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Abstract
The Shor–Laflamme distribution (SLD) of a quantum state is a collection of
local unitary invariants that quantify k-body correlations. We show that the
SLD of graph states can be derived by solving a graph-theoretical problem. In
this way, the mean and variance of the SLD are obtained as simple functions of
efficiently computable graph properties. Furthermore, this formulation enables
us to derive closed expressions of SLDs for some graph state families. For
cluster states, we observe that the SLD is very similar to a binomial distri-
bution, and we argue that this property is typical for graph states in general.
Finally, we derive an SLD-based entanglement criterion from the purity cri-
terion and apply it to derive meaningful noise thresholds for entanglement. Our
new entanglement criterion is easy to use and also applies to the case of higher-
dimensional qudits. In the bigger picture, our results foster the understanding
both of quantum error-correcting codes, where a closely related notion of SLDs
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plays an important role, and of the geometry of quantum states, where SLDs
are known as sector length distributions.

Keywords: Shor–Laflamme distributions, sector length distributions,
graph states, stabilizer formalism, quantum entanglement,
noisy entangled states, quantum error correction
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1. Introduction

In the quest toward fault-tolerant quantum computation, quantum error-correcting codes
(QECCs) are taking the main stage. A thorough understanding of QECCs is central to the
eventual success of realizing error-corrected quantum computers. In a landmark paper of 1997,
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Peter Shor and Raymond Laflamme pointed out that certain numerical invariants are partic-
ularly useful to characterize a QECC [1]. Their idea is most easily explained for the special
case of a stabilizer QECC [2], which is defined via a stabilizer subgroup S of the n-qubit Pauli
group Pn = {iqXrZ s | q ∈ Z/4Z,r,s ∈ Fn

2}, where F2 = {0,1} is the binary field and a Pauli
operator XrZ s is defined via its action XrZ s|b〉= (−1)b·s|b+ r〉 on computational basis states
|b〉 ∈ (C2)⊗n. For a stabilizer group S, Shor and Laflamme define for each k ∈ {0, . . . ,n} the
integers

Ak(S) = |{S ∈ S | wt(S) = k}| (1)

and Bk(S) = |{P ∈N (S)/∼ | wt(P) = k}| , (2)

where N (S) = {P ∈ Pn | ∀S ∈ S : PSP† ∈ S} is the normalizer of S in the Pauli group, and
N (S)/∼ is the normalizer modulo global phases. In other words,Ak(S) counts Pauli operators
XrZ s acting as the logical identity on the QECC for which the Pauli weight wt(XrZ s) = |{i ∈
{1, . . . ,n} | ri = 1∨ si = 1}| is equal to k. Similarly,Bk(S) counts weight-k Pauli operators that
act as any logical operations on the QECC. In particular, we have Ak(S)⩽ Bk(S) for all k; the
smallest integer dwithAd(S)< Bd(S) is the distance of the QECC, i.e. the smallest weight of a
Pauli operator that maps some codeword of the QECC onto a different one. While the distance
d is one of the most important characteristics of a QECC, it is in general notoriously difficult
to compute. To tackle this problem, the quantities defined in equations (1) and (2) provide a
powerful handle: first note that d=min{k⩾ 1 |Ak(S)< Bk(S)} can be reconstructed ifAk and
Bk are known for all k. Strikingly, it is sufficient to know the Ak’s because, surprisingly, they
uniquely determine the Bk’s through a quantum version of the MacWilliams identity [1]. This
reduces the problem of computing the distance of a stabilizer QECC to counting its weight-k
stabilizers, which is still challenging but at least it breaks down the problem.

1.1. Relevance of our developments

In this paper, we develop a formal approach (theorem 1) for counting weight-k stabilizers in
the special case of stabilizer states [2]. On the one hand, our work should be understood as a
first step toward tackling the challenge of computing the distance of stabilizer QECCs via the
quantum MacWilliams identity. On the other hand, computing Ak(S) for a stabilizer state |ψ〉
is interesting in its own right. For example, it is well known that A1 = A2 = · · ·= Am = 0 is
equivalent to |ψ〉 being an m-uniform state, i.e. all m-body marginals of |ψ〉 being maximally
mixed [3, 4]. This already shows that the Shor–Laflamme distribution (SLD) of a quantum
state contains information about its entanglement.

As a second important contribution, we apply the purity criterion [5] to derive a new entan-
glement criterion (theorem 4). The new criterion is very general as it also applies to higher-
dimensional qudits and non-stabilizer states. Furthermore, it allows the derivation of lower
bounds on the entanglement noise threshold (corollary 5) of quantum states for which we only
need to know the SLD. Importantly, all of this also works for the physically relevant case of
local white noise, a noise channel with many cross terms that render many other entanglement
criteria inapplicable.

Among other applications, to showcase the effectiveness of our approach, we derive the
SLD of cycle graph states. This enables us to improve the best previously-known lower bound
on the entanglement noise threshold of cycle graph states.
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1.2. Setting the stage

Before we begin the presentation of our theory in section 2, let us briefly review a generaliz-
ation of the definition in equation (1). For a general n-qubit state with density matrix ρ and
every k ∈ {0, . . . ,n}, let

Ak[ρ] =
∑
r,s∈Fn

2
swt(r,s)=k

|Tr[ρXrZ s]|2 , (3)

where swt(r,s) = wt(XrZ s) is the symplectic weight of (r,s) ∈ Fn
2 ⊕Fn

2. To honor the seminal
work [1] in which equation (3) was first defined, we will call

A[ρ] = (A0[ρ], . . . ,An[ρ]) ∈ Rn+1 (4)

the SLD of the state ρ. Note thatA[ρ] is sometimes referred to as sector length (SL) distribution
in the literature [1, 6–12] which conveniently has the same acronym. Because of Tr[ρ2] =∑n

k=0Ak[ρ]/2n, the normalized SLD a= A/2n is a probability distribution, provided ρ is a
pure state.

To develop the theory of SLDs of stabilizer states, we can restrict ourselves to the case of
graph states [13, 14]

|Γ〉= 1√
2n

∑
r=(r1,...,rn)∈Fn

2

(−1)

n∑
i=1

n∑
j=i+1

ri γi,jrj
|r〉, (5)

which are defined via the adjacency matrixΓ = (γi,j)1⩽i,j⩽n ∈ Fn×n
2 of a graph. IfΓ ′ is a differ-

ent graph (we do not distinguish between a graph and its adjacency matrix) that arises from Γ
via local complementation [15], the states |Γ〉 and |Γ ′〉 are local-unitary (LU) equivalent [13].
Since equation (3) is invariant under LU transformations [1], the SLDs of |Γ〉 and |Γ ′〉 coin-
cide. It is well known that every stabilizer state is LU-equivalent to some graph state [16].
For this reason, most of our results about SLDs of graph states will be directly applicable to
general stabilizer states.

1.3. Outline of our paper

This paper is organized as follows. We begin in section 2 by formulating and investigating a
graph-theoretical color assignment problem, which the SLD of the corresponding graph state
solves. In section 3, we numerically examine SLDs of cluster states and random graph states.
In section 4, we generalize some of our findings to SLDs of graph states for higher-dimensional
qudits, and we present a simplified version of the purity criterion that can be tested already on
the level of SLDs. Afterward, in section 5, we derive formulas for how SLDs change under
the influence of global or local depolarizing noise, and we investigate implications for noise
thresholds of entanglement. Finally, in section 6, we summarize the central results of this work
and provide a short outlook about related research avenues.

2. Graph-theoretical formulation for SLDs

Every n-qubit graph state |Γ〉, as defined in equation (5), is a stabilizer state whose stabilizer
group S = 〈S1, . . . ,Sn〉 is generated by operators of the form [13, 14]

Si = X(i)
n∏

j=1

(Z( j))γi,j . (6)
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Table 1. Correspondence between black-white color assignments, binary vectors r ∈ Fn
2,

and stabilizer operators (up to sign) XrZΓr for the path-graph Pn with n= 3 vertices.
White and black vertices correspond to zeros and ones in r, respectively. Thus, every
black vertex is associated with an X-operator on the corresponding qubit. Likewise,
a Z-operator is induced on each neighbor of a black vertex. Since a vertex can have
multiple black neighbors, the induced Z-operators may cancel, e.g. r= (1,0,1). The
weight swt(r,s) of a Pauli operator ±XrZs counts the number of non-identity tensor
factors. The only possibility for 1 to occur as a tensor factor of an operator XrZΓr is if
the corresponding vertex is white (no X) and has an even number of black neighbors (no
Z). The SLD (A0,A1,A2,A3) = (1,0,3,4) coincides with the Pauli-weight distribution
of the operators in the stabilizer group of |P3⟩.

Color assignment r= (r1,r2,r3) XrZΓr swt(r,Γr)

(0,0,0) 1⊗1⊗1 0

(0,0,1) 1⊗ Z⊗X 2

(0,1,0) Z⊗X⊗ Z 3

(0,1,1) Z⊗XZ⊗XZ 3

(1,0,0) X⊗ Z⊗1 2

(1,0,1) X⊗1⊗X 2

(1,1,0) XZ⊗XZ⊗ Z 3

(1,1,1) XZ⊗X⊗XZ 3

Therefore, every operator in S can be written as

n∏
i=1

Srii = σΓ(r)XrZΓr (7)

for some bit string r= (r1, . . . ,rn) ∈ Fn
2. Note that the prefactor σΓ(r) =

∏
i<j(−1)riγi,jrj in

equation (7), which arises from the anti-commutativity relation of X and Z, is irrelevant for
our purposes as we are only interested in the Pauli weight of XrZΓr, which is equal to the
symplectic weight of (r,Γr) ∈ Fn

2 ⊕Fn
2. By counting all weight-k Pauli operators in S , we

obtain the k-body SL,

Ak = |{r ∈ Fn
2 | swt(r,Γr) = k}| , (8)

of the graph state |Γ〉. We can interpret a given bit string r ∈ Fn
2 as a color assignment of the

graph Γ by declaring vertex i to be white if ri = 0, and black if ri = 1. The symplectic weight
of (r,Γr) is then given by the sum of the number of black vertices (ri = 1) and the number of
white vertices having an odd number of black neighbors (ri = 0 but the ith entry of Γr is equal
to 1). In other words, we have swt(r,Γr) = k if and only if (iff) there are exactly n− k white
vertices with an even number of black neighbors, see table 1 for an illustrative example. This
shows:

Theorem 1 (graph-theoretical formulation of SLDs). Let |Γ〉 be an n-qubit graph state and
A= (A0, . . . ,An) its SLD. For each k ∈ {0, . . . ,n}, Ak is equal to the number of black-white
color assignments of Γ for which exactly n− k white vertices have an even number of black
neighbors.
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2.1. General insights

While theorem 1 does not alleviate the exponential complexity of computing the entire SLD
of an arbitrary graph state |Γ〉, we can exploit it to express Ak for small values of k in purely
graph-theoretical terms:

In the trivial case, k= 0, the theorem only addresses the color assignment for which all n
vertices are white; we obtain the well-known normalization condition A0 = 1.

For k= 1, the situation is more interesting: in order for a color assignment to contribute
to A1, there have to be n− 1 white vertices that are disconnected from the black vertex. Thus,
every color assignment with a single black, isolated vertex contributes; other color assignments
do not contribute. Therefore, we find

A1 = I, (9)

where I is the number of isolated vertices of the graph. This number is efficiently computed
as the number of rows of the adjacency matrix Γ in which all entries are equal to zero. After
potentially reordering the qubits, we can write |Γ〉= |+〉⊗A1 ⊗ |Γ̃〉 where Γ̃ is a graph without
any isolated vertices.

To express the 2-body SL in graph-theoretical terms, we note that only color assignments
with one or two black vertices can contribute to A2. If there is only one black vertex, it has to
be connected to exactly one other (automatically white) vertex to ensure that there are exactly
n− 2 white vertices with an even number (automatically zero) of black neighbors; thus, the
black vertex has to be a leaf. For the color assignments with exactly two black vertices, how-
ever, all other vertices have to be connected to either both or none of the black ones. Otherwise,
one of the white vertices would have an odd number of black neighbors; thus, the two black
vertices must form a twin pair, i.e. have the same neighborhood. Therefore,

A2 = L+T (10)

is the sum of the number of leaves L= |{i ∈ {1, . . . ,n} | ∃!j ∈ {1, . . . ,n} : γi,j = 1}| and
the number of twin pairs T= |{{i, j} ⊂ {1, . . . ,n} | i 6= j,∀k ∈ {1, . . . ,n}\{i, j} : γi,k = γj,k}|,
where ‘∃!’ denotes the unique existential quantification. It has been pointed out before that
L+T is invariant under local complementation [15]. Our interpretation of this number as the
2-body SL establishes the stronger [17, 18] fact that L+T is an LU invariant of graph states.

In principle, one could continue in a similar manner and also express Ak for k⩾ 3 in graph-
theoretical terms. By counting all color assignments contributing to Ak which have exactly
b ∈ {0, . . . ,k} black vertices, we obtain the formal expression

Ak =
k∑

b=0

∑
r∈Bb

δswt(r,Γr),k, (11)

where Bb ⊂ Fn
2 is the subset of bit strings having a Hamming weight of b. For k⩾ 3, how-

ever, the graph-theoretical interpretation of equation (11) becomes increasingly complicated.
Nevertheless, it immediately yields that the cumulative binomial distribution is an upper bound
for the k-body SL, i.e.

Ak[ρ]⩽
k∑

b=0

|Bb|=
k∑

b=0

(
n
b

)
(12)

for every graph state ρ= |Γ〉〈Γ|. Since every stabilizer state is LU-equivalent to a graph state
and Ak[·] is convex and LU-invariant, the bound in equation (12) is also fulfilled for mix-
tures ρ=

∑
i pi|ψi〉〈ψi| of stabilizer states |ψi〉. For k⩾ 1, we can drop the term with b= 0 in

6
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equation (12) because B0 only contains the trivial color assignment that contributes to A0 but
not to Ak for k> 0.

By equation (11), Ak can be computed with runtime O(nk), which is efficient for small
values of k. In the opposite case, where k= n, theorem 1 simplifies to the following prob-
lem: ‘An is equal to the number of color assignments of Γ for which every white vertex has
an odd number of black neighbors’. Hence, a color assignment r ∈ Fn

2 contributes to An iff
every vertex i ∈ {1, . . . ,n} is either black (ri = 1) or has an odd number of black neighbors
(
∑n

j=1 γi,jrj = 1), or both. In other words, r contributes to An = |V| iff it lies in the intersection,
V =

⋂n
i=1Vi, of the n quadric hypersurfaces Vi that are defined as

Vi =

r ∈ Fn
2

∣∣∣∣∣ (1+ ri)

1+
n∑

j=1

γi,jrj

= 0

 . (13)

Note that V contains the affine subspace

A=

r ∈ Fn
2

∣∣∣∣∣ ∀i ∈ {1, . . . ,n} :
n∑

j=1

γi,jrj = 1

 (14)

of the color assignments with the property ‘every vertex has an odd number of black neigh-
bors’. For a large class of graphs, we can make the lower bound An ⩾ |A| explicit:

Corollary 2 (lower bound on the full-body SL of certain graph states). Let Γ be a graph
that admits a color assignment with the property ‘every vertex has an odd number of black
neighbors’. Then, the full-body SL of the corresponding graph state |Γ〉 can be lower bounded
as An ⩾ 2dim(ker(Γ)), where ker(Γ) is the null space of the adjacency matrix Γ.

Proof. Let r ∈ Fn
2 be the color assignment with the property Γr= 1= (1, . . . ,1). Then, each

of the 2dim(ker(Γ)) vectors of the form r+ swith s ∈ ker(Γ) has the same property,Γ(r+ s) = 1,
and therefore contributes to An.

2.2. Formulae for mean and variance of normalized SLDs

For a pure n-qubit state |ψ〉 the normalized SLD a= A/2n can be regarded as a probability
distribution over the set {0, . . . ,n}. In the special case where |ψ〉 is a stabilizer state with
stabilizer group S, the SLD coincides with the Pauli-weight distribution (PWD) for S, i.e.
ak is the probability that an operator S ∈ S (drawn uniformly at random) has Pauli weight k.
Information about the PWD is relevant in the context of simultaneous measurements of all
operators in S [19]. It is possible to infer mean and variance of a from A1 and A2 alone by
exploiting the MacWilliams identities

m∑
k=0

(
n− k
n−m

)
Ak = 4m

n∑
k=0

(
n− k
m

)
Ak

2n
, (15)

which hold for all m ∈ {0, . . . ,n} and for all pure n-qubit states [1, 11, 12, 20, 21]. Inserting
m= 1 into equation (15) yields the first moment of the normalized SLD,

〈k〉a =
n∑

k=0

kak =
3n−A1

4
, (16)

7
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Figure 1. Example of the SLD (left) for a graph state (right) with n= 5 vertices and
I= L= T= 1. Here, vertex 1 is an isolated vertex, while vertex 2 is a leaf. Vertices 3 and
4 form a twin pair because they share the same neighborhood; this fact would not change
if the edge between them was removed. By corollary 3, the mean of the normalized SLD
a is given by ⟨k⟩a = 7/2 and its variance is given by ⟨k2⟩a −⟨k⟩2a = 5/4.

and inserting m= 2 yields the second moment,

〈k2〉a =
n∑

k=0

k2ak =
9n2 + 3n− (6n− 2)A1 + 2A2

16
. (17)

Similarly, it is possible to express 〈kj〉a in terms of A1, . . . ,Aj for all j⩽ n. By combining
equations (16) and (17), we obtain the variance of the normalized SLD,

〈k2〉a −〈k〉2a =
3n− (A1 − 2)A1 + 2A2

16
. (18)

Using the bounds 0⩽ A1 ⩽ n and 0⩽ A2 ⩽
(n
2

)
from [12], we can infer from equations

(16)–(18) that all pure states obey 〈k〉a ∈ [ n2 ,
3n
4 ], 〈k

2〉a ∈ [ 3n
2+5n
16 , 10n

2+2n
16 ], and 〈k2〉a −〈k〉2a ⩽

(n+1)2

16 . Here, the minimum mean 〈k〉a = n
2 is attained iff |ψ〉 is fully separable because A1 = n

is equivalent to all 1-body marginals being pure [12]. Combining equations (9) and (16), yields
that the maximum mean 〈k〉a = 3n

4 is reached for all graph states without any isolated vertices
and, more generally, for all genuinely multipartite entangled (GME) stabilizer states [5]. Note
that equations (16)–(18) do not generalize to states that are not pure, e.g. the maximally mixed
state ρ= 1/2n has A1 = A2 = 0 but 〈k〉a = 〈k2〉a = 0.

To compute the mean and variance of the normalized SLD for an arbitrary stabilizer state
|ψ〉, one can efficiently compute a graph state |Γ〉 that is LU-equivalent to |ψ〉 by exploiting
theorem 1 of [16]. Then, one can read off I, L, and T from Γ and exploit equations (9)–(18),
see figure 1 for an example. This shows:

Corollary 3 (mean and variance of the normalized SLD of a graph state). Let Γ be a graph
with n vertices, I isolated vertices, L leaves, and T twin pairs. Then, the mean of the normalized
SLD a of |Γ〉 is given by 〈k〉a = (3n− I)/4. Furthermore, its variance is given by 〈k2〉a −〈k〉2a =
(3n− (I− 2)I+ 2(L+T))/16.

8
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2.3. Analytical SLDs of various families of graph states

The graph color assignment problem, as formulated in theorem 1, constitutes a powerful tool
for understanding the geometry of quantum states. In this section, we introduce families of
graph states with certain symmetry properties which allow us to derive analytical formulas of
their SLDs.

The complete graph Kn has n vertices and each pair of vertices is connected by an edge,
i.e. all off-diagonal entries of its adjacency matrix are equal to 1. Its complement Kn is appro-
priately called the edgeless graph and the corresponding graph state |Kn〉= |+〉⊗n is fully
separable. For every color assignment of Kn it is vacuously true that every white vertex has
zero black neighbors. Thus, the graph-theoretical problem from theorem 1 can be simplified
as follows. For each k ∈ {0, . . . ,n}, Asep(n)

k is equal to the number of color assignments with

exactly n− k white vertices. This immediately yields the well-known [6] SLD Asep(n)
k =

(n
k

)
of

a fully separable, pure n-qubit state.
The star graph K1,n−1 arises from Kn via local complementation [15] at one of the vertices,

say vertex 1. Vertex 1 is then connected to all other vertices via an edge and there are no
further edges. Both |Kn〉 and |K1,n−1〉 are LU-equivalent to the Greenberger–Horne–Zeilinger
state |GHZ(n)〉= 1√

2
(|0〉⊗n + |1〉⊗n) [22]. Let us rederive its well-known [6] SLD

AGHZ(n)
k =

(
n
k

)
δk,even + 2n−1δk,n, (19)

where δk,even =
1+(−1)k

2 , by applying theorem 1 to the star graph. If vertex 1 (the central vertex)
is black, there are no white vertices with an even number of black neighbors. Thus, all of
the 2n−1 color assignments r ∈ Fn

2 with r1 = 1 contribute to An. Now assume that vertex 1 is
white. Then, all other vertices have zero black neighbors, which is even. There are

(n−1
k

)
color

assignments for which exactly k of the vertices 2, . . . ,n are black. If k is even, vertex 1 also
has an even number of black neighbors, i.e. such a color assignment contributes to Ak (because
n− k vertices are white and all of them have an even number of black neighbors). If k is odd,
however, the color assignment contributes to Ak+1 as only the n− k− 1 white vertices with
index i ∈ {2, . . . ,n} have an even number of black neighbors. Therefore, the SLD of the star
graph state is given by Ak =

(n−1
k−1

)
+
(n−1

k

)
=
(n
k

)
if k< n is even, Ak = 0 if k< n is odd, and

An = 2n−1 + δn,even. This proves equation (19).
The Pusteblume graph [23] is a close cousin ofK1,n−1, see figure 2. It has n⩾ 5 vertices and

n− 1 edges. Vertex 1 has three neighbors: 2,3, and 4. Vertex 2 has n− 3 neighbors: 1,5,6, . . .,
n. An elementary but lengthy analysis, which we provide in appendix A, shows that the SLD
of the n-qubit Pusteblume graph state, |Pust(n)〉, is given by

APust(n)
k =

((
n− 3
k− 3

)
+ 3

(
n− 2
k− 2

)
+

(
n− 3
k

))
δk,even + 3× 2n−4δk,n−2 + 5× 2n−4δk,n, (20)

where we set
(n
k

)
= 0 if n or k is a negative integer. In figure 3, we plot the normalized SLD

a= A/2n for a GHZ state (blue) and for a Pusteblume graph state (yellow). The two distri-
butions have a significant amount of overlap (lavender), which we attribute to the similarity
between star graphs and Pusteblume graphs. In both cases, we observe ak = 0 for all odd k,
a property that a graph state exhibits iff all of its vertices have an odd number of neighbors
[20, 23]. It is well known that an is maximized by the GHZ state, i.e. aGHZ(n)n ⩾ an[ρ] for every
n-qubit state ρ [9, 11]. In figure 3, we can see that the process of moving two leaves from the
central vertex to one of the other leaves (a process which turns |K1,n−1〉 into |Pust(n)〉) has the
effect that aGHZ(n)n ≈ 0.5 splits into aPust(n)n ≈ 0.31 and aPust(n)n−2 ≈ 0.19. Since, by corollary 3,
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Figure 2. Pusteblume (German for dandelion) graphs with n ∈ {5,6,7,8} vertices.

Figure 3. Normalized SLDs ak = 2−nAk of |GHZ(n)⟩ and |Pust(n)⟩ for n= 40 qubits.

both distributions have the same mean, 〈k〉a = 3n/4, this splitting of an must be compensated
somehow. Here, this compensation is ensured by aGHZ(n)k < aPust(n)k for n/2< k< n, whereas

aGHZ(n)k > aPust(n)k for k⩽ n/2. This explains why the yellow bars in figure 3 are enclosed from
both sides by blue bars.

The cycle graph Cn has n vertices, where vertex i ∈ {1, . . . ,n} is connected to vertices i− 1
(mod n) and i+ 1 (mod n), see figure 4. The corresponding cycle graph state, |Cn〉= |RC(n)〉,
is also known as the ring cluster (RC) state [24], which is a prototypical resource state for
measurement-based quantum computation (MBQC) [25, 26]. By exploiting periodic boundary
conditions of Cn, we show in appendix B its SLD is given by ARC(n)

0 = 1 and

ARC(n)
k =

n
k

(
k

n− k

)
+

b k−1
2 c∑

m=1

n
m

(
k− 2m− 1

m− 1

) n−k∑
l=0

(
k− 3m
n− k− l

)(
l+m− 1

l

)
(21)

for all n⩾ 3 and all k ∈ {1, . . . ,n}. Note that ARC(n)
n is minimal among all n-qubit graph states

with a connected graph of n⩽ 8 vertices [27]; for n= 9, however, there is already a graph state
with an even lower n-body SL [28]. As we portray in figure 5 for the example of n= 100 qubits,
the normalized SLD aRC(n) (blue) has a very large overlap (lavender) with the asymmetrical
binomial distribution b(p) for success probability p= 3/4 (yellow). By applying corollary 3,

10
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Figure 4. Cycle graphs Cn with n ∈ {3,4,5,6} vertices.

Figure 5. Comparison of the normalized SLD aRC(n)k = 2−nARC(n)
k of the ring cluster

state from equation (21) to an asymmetric binomial distribution bk(p= 3/4) =(n
k

)
3k4−n for n= 100.

we find that the mean 〈k〉= 3n/4 and the variance 〈k2〉− 〈k〉2 = 3n/16 coincide for both dis-
tributions. Still, there are minor differences between them: At the left tail, k ∈ {0, . . . ,66}, the
normalized SLD of the RC state dominates, with the exception of aRC(100)1 = aRC(100)2 = 0. At
the right tail, k ∈ {82, . . . ,100}, the binomial distribution takes larger values. Around the peak,
the behavior is reversed: The binomial distribution dominates left of the peak, k ∈ {67, . . . ,74},
whereas the SLD of the RC state is larger for k ∈ {75, . . .81}. These minor differences have
profound implications on the robustness of the entanglement in |RC(n)〉, see section 5.2 and
appendix C.

3. Numerical investigation of SLDs of graph states

In the previous section (see figure 5), we noticed how the normalized SLD a= (a0, . . . ,an)
of an n-qubit RC state visually matches a binomial distribution b(p= 0.75), where bk(p) =(n
k

)
pk(1− p)n−k. In this section, we turn such qualitative statements into quantitative ones by

investigating the difference of the distributions in terms of the total variation distance

TVD(a,b(p)) =
1
2

n∑
k=0

|ak − bk(p)| ∈ [0,1]. (22)

The TVD is equal to 0 iff the two probability distributions coincide, and equal to 1 iff the
supports of a and b(p) are disjoint.

11
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Figure 6. Graph of a 2D cluster state |C(l,m)⟩ with n= l×m qubits.

Figure 7. Total variation distance, see equation (22), between the normalized SLD a of
various families of n-qubit states and a corresponding binomial distribution b(p) with
success probability p= 3/4 for all states with the exception of |W(n)⟩, where we instead
use p= 1/2 for reasons explained in appendix D.

3.1. SLDs of cluster states

An important family of well-studied graph states are cluster states, which are crucial resource
states for MBQC [25, 26]. For example, the 2D cluster state |C(l,m)〉 has an l×m grid as
its graph, see figure 6. To contribute to the theoretical understanding of cluster states, we now
investigate their SLDs as this provides new insights about their stabilizer groups. Furthermore,
when applied to corollary 5 in section 5.2, this will yield insights into the noise robustness of
the entanglement that is exhibited by these states.

In figure 7, we plot the TVD between the normalized SLD a of certain n-qubit states and the
binomial distribution b(p) for an appropriately chosen probability p. For theW state (lavender
W’s), we choose p= 0.5 as this causes TVD(aW(n),b(p= 0.5))→ 0 for n→∞; for readers
that are interested in the important case of SLDs of non-stabilizer states, we provide more
details in appendix D. For all other states, we use p= 0.75 as this ensures that a and b(p)
have the same mean, recall corollary 3. We observe in figure 7 that the TVD converges to 1
for GHZ states (brown G’s) and Pusteblume graph states (yellow P’s). This is because their
normalized SLDs are far from being binomial distributions, recall figure 3. As expected, the
TVD for RC states (blue R’s) is smaller than for GHZ states and Pusteblume graph states.
With equation (21) at hand (the solution of the graph-theoretical problem for cycle graphs),

12



J. Phys. A: Math. Theor. 56 (2023) 335303 D Miller et al

we compute TVD(aRC(n),b(p= 0.75)) for all n⩽ 1000 and find that 0.15/
√
n fits the data

very well for large n.
For the broader class of general cluster states (red to blue), we lack the solution of the graph-

theoretical problem, thus, we are limited to n⩽ 30. Aside from finite size effects, we can see
that the TVDs decrease with n. Hereby, the TVD is smaller for 2D cluster states |C(l,m)〉 than
for |RC(n)〉 and 1D linear cluster (LC) states |LC(n)〉= |C(1,n)〉 (red L’s). For 2D cluster
states, the TVD tends to be smaller for broader cluster patches, e.g. for n= 30 qubits, the TVD
of the width-2 cluster state (blue crosses) is three times as large as that of the width-5 cluster
state (pink pentagons). We also compute the SLD of an analogously-defined 3D cluster state
|C(3,3,3)〉 for n= 27 qubits and find an even smaller TVD of 0.00138 (not plotted)5.

In conclusion, the normalized SLD is very similar to a binomial distribution for some
graph states (cluster states), while for others (GHZ, Pusteblume) it is not. To identify which
of the two is the exception and which is the norm, we will next investigate random graph
states.

3.2. SLDs of random graph states

To further solidify our understanding of the geometry of quantum states, we now illustrate the
behavior of random graphs states. To this end, we employ the Erdős–Rènyi graph model [29],
however, we expect that similar results hold true for other common random graph models
as well. Given a probability q ∈ [0,1], a random Erdős–Rényi graph with n vertices is cre-
ated as follows: for each i ∈ {1, . . . ,n} and j ∈ {i+ 1, . . . ,n}, an edge between vertex i and j

is created with probability q. We denote the resulting random variable as Γ(q)
n . The probab-

ility of drawing a specific graph Γ∼ Γ
(q)
n only depends on its number of edges e(Γ) and is

given by

Pr[Γ(q)
n = Γ] = qe(Γ)(1− q)(

n
2)−e(Γ). (23)

In particular, 〈A1〉q = n(1− q)n−1 is the expected number of isolated vertices. Thus, by corol-
lary 3, the expected mean of the SLD of a random graph state is given by

〈〈k〉a〉q =
3n
4

− n(1− q)n−1

4
, (24)

which is approximately equal to 3n/4 if q and n are large enough.
In a numerical experiment, we sample Erdős–Rényi graphs with n ∈ {5,10,15,20} vertices

and compute the normalized SLD a of the corresponding random graph states. Then, we cal-
culate the TVD between a and a binomial distribution b(p) with the same mean, i.e. for each
sample holds 〈k〉a = np. In figure 8, we plot the result over the whole interval q ∈ [0,1] with a
step size of 0.01. For complexity reasons, we vary the number of samples from 105 for n= 5
(blue) to 102 for n= 20 (brown). Overall, the curves show a similar behavior albeit less pro-
nounced for n= 5 due to finite size effects. For q= 0, there are no edges and every sampled
graph state is equal to |Γ〉= |+〉⊗n. Since the normalized SLD of such a fully separable state
is equal to a symmetric binomial distribution, the TVD between the two distributions van-
ishes. As q≳ 0 grows, the TVD first begins to increase before it drops again and stagnates at a
very small value over a wide range of q. The latter observation implies that random graph states
with 〈TVD(a,b(p))〉q ≈ 0 are abundant.We attribute the small initial peak at small q> 0 to the

5 Digital feature: For the graph of |C(3,3,3)⟩ and its SLD, please click on this link.
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Figure 8. Total variation distance, see equation (22), between the normalized SLD a of
random graph states and a corresponding binomial distribution b(p), where p is selected
for every individual graph such that the two distributions have the same mean. In the
generation of the random graphs, an edge between each pair of qubits is created with
probability q. The shaded region marks the range in which the TVD lies with probability
68% (1 sigma). For better readability, the curves have an offset spacing.

existence of tensor factors that are LU-equivalent to |GHZ(m)〉 for small values ofm< n.6 The
position of the peak is consistent with q≈ ln(n)/n, which is the threshold below (above) which
Γ∼ Γ

(q)
n is almost surely disconnected (connected) [29]. Around q≈ 0.8 the TVD suddenly

starts to grow again and eventually, at q= 1, the complete graph is reached and |Γ〉= |Kn〉
is LU-equivalent to |GHZ(n)〉, which has a very large TVD to the corresponding binomial
distributions; recall figure 7. For larger n, we observe a decline of TVD at intermediate val-
ues of q, e.g. at q= 0.5 we find the values 〈〈k〉a〉q = 0.10(6) for n= 5, 〈〈k〉a〉q = 0.02(2) for
n= 10, 〈〈k〉a〉q = 0.004(3) for n= 15, and 〈〈k〉a〉q = 0.0007(4) for n= 20. Also, the plateau
of small TVD values is broader for larger n as both the small initial peak and the final steep
are sharpened.

To explain the emergence of the plateaus in figure 8, we show in appendix E that the expec-
ted k-body SL of an n-vertex Erdős–Rényi graph state with edge-probability q is given by

〈Ak〉q =
(
n
k

)
2−n

k∑
b=0

(
k
b

)
2b(1+(1− 2q)b)n−k(1− (1− 2q)b)k−b. (25)

6 If the edge probability q is small, there will be many graph components with a small number m of vertices. For
m= 2 and m= 3, every graph state is LU-equivalent to a GHZ state, and for m= 4, GHZ and cycle graph are the
only LU equivalence classes. The SLDs of GHZ states are far from the binomial distribution, see figure 7. This (total
variational) distance is inherited by SLDs of product states that contain a considerable amount of GHZ states.
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For n� 1, we can use the approximation
(k
b

)
2b(1+(1− 2q)b)n−k(1− (1− 2q)b)k−b ≈

(k
b

)
2b

at a wide range around q≈ 1/2. This allows us to simplify equation (25) using the binomial
theorem, which yields

〈ak〉q ≈
(
n
k

)
4−n

k∑
b=0

(
k
b

)
2b =

(
n
k

)
3k4−n = Bk(p= 3/4). (26)

The plateaus in figure 8 show for which values of n and q the approximation in equation (26)
is valid.

A direct physical consequence of the results in figure 8 is the following: if we prepare the
state |+〉⊗n, where n� 5, and apply to each pair of qubits a controlled-Z gate with probability
0� q� 1 (and do nothing with probability 1− q), then we should expect that the SLD of the
resulting state is approximately given by Ak ≈

(n
k

)
3k2−n. However, this approximation should

be applied with care, see footnote 7 in appendix C for an example of what can go wrong
otherwise.

Now, we are finally in the position to answer the question raised at the end of section 3.1:
there is an abundance of random graph states for which the normalized SLD is remarkably
close to an asymmetrical binomial distribution; we call SLDs with this property generic. In
that sense, cluster graphs have generic SLDs (recall figure 5), whereas star, complete, and
Pusteblume graphs do not (recall figure 3). Hence, we will say that SLDs of the latter graph
states are special. Also note that among the 4n Pauli operators of the form XrZ s, there are
exactly

(n
k

)
3k operators with wt(XrZ s) = k. This shows that the PWD of the stabilizer group

of a graph state with a generic SLD closely resembles the PWD of the full Pauli group.

4. Generalization to higher-dimensional qudits

In this section, we extend the scope of our investigation to the case of n-qudit states, where
every qudit has a Hilbert space dimension of d⩾ 2. For studying such states, we find it con-
venient to label the computational basis by elements of the free module (Z/dZ)n over the ring
Z/dZ= {0,1, . . . ,d− 1} of integers modulo d. In this way, any pure state can be written as
a superposition of states of the form |j〉, where j ∈ (Z/dZ)n. Moreover, a general mixed state
for n qudits can be written as

ρ=
1
dn

∑
r,s∈(Z/dZ)n

ρr,sX
r
dZ

s
d (27)

for unique coefficients ρr,s ∈ C, where the generalized Pauli operators can be defined as

Xr
dZ

s
d =

∑
j∈(Z/dZ)n

ωj·s
d |j+ r〉〈j| (28)

and ωd = exp(2π i/d) [30]. Then, the n-qudit k-body SL of ρ is defined as

Ak[ρ] =
∑

r,s∈(Z/dZ)n
swtd(r,s)=k

|Tr[ρXr
dZ

s
d]|

2
=

∑
r,s∈(Z/dZ)n
swtd(r,s)=k

|ρr,s|2, (29)

where swtd(r,s) = |{i ∈ {1, . . . ,n} | ri 6= 0∨ si 6= 0}| is the symplectic weight for qudits [11].
Note the similarity between equations (3) and (29). If ρ is a pure state, the normalized SLD
a= A/dn is a probability distribution, and equation (15) generalizes to
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m∑
k=0

(
n− k
m− k

)
Ak = d2m

n∑
k=0

(
n− k
m

)
ak (30)

for allm ∈ {0, . . . ,n} [11, 12, 21]. After insertingm= 1 andm= 2 into equation (30), and after
a little algebra, we find

〈k〉a =
(d2 − 1)n−A1

d2
(31)

and 〈k2〉a =
d4n2 − d2(2n− 1)n+ n(n− 1) + (2(n− 1)− d2(2n− 1))A1 + 2A2

d4
. (32)

Note that equations (31) and (32) generalize equations (16) and (17) to the case of pure n-qudit
states; to the best of our knowledge, both results are new.

4.1. Known results about SLDs of qudit states

For every Abelian subgroup S ⊂ Pn
d of the n-qudit Pauli group

Pn
d =

{
ωq
2dX

rZ s
∣∣ q ∈ Z/2dZ, r,s ∈ (Z/dZ)n

}
(33)

with |S|= dn and z1 6∈ S for z ∈ C\{1}, there exists a unique stabilizer state |ψ〉 ∈ (Cd)⊗n

which, by definition, fulfills S|ψ〉= |ψ〉 for all S ∈ S [2, 31]. In this case, the k-body SL is
equal to the number of stabilizer operators S ∈ S which have a Pauli weight of k [8]. For
example, the n-qudit GHZ state

|GHZd(n)〉=
1√
d
(|0〉⊗n + . . .+ |d− 1〉⊗n) (34)

is a stabilizer state for which S is generated by Xd ⊗ . . .⊗Xd and Z(i)d Z(i+1)†
d for all i ∈

{1, . . . ,n− 1}. In proposition 10 of [27], we have derived its SLD

AGHZd(n)
k =

(
n
k

)
(d− 1)k +(−1)k(d− 1)

d
+ δk,n(d− 1)dn−1 (35)

by counting all weight-k operators in S (see [11] for an alternative proof). For every symmetric
matrix Γ = (γi,j) ∈ (Z/dZ)n×n with zeros on the diagonal, a qudit graph state

|Γ〉= 1√
dn

∑
r∈(Z/dZ)n

ω

n∑
i=1

n∑
j=i+1

ri γi,jrj

d |r〉 (36)

is defined [32–34]. An important example is |+d〉⊗n = 1√
dn

∑
k∈(Z/dZ)n |k〉, which is the graph

state with the trivial adjacency matrix Γ = 0. As the stabilizer group of |+d〉⊗n is given by

S = {Xr
d | r ∈ (Z/dZ)n}, its SLD follows as Asepd(n)

k =
(n
k

)
(d− 1)k.

Since SLs are convex and LU-invariant, the k-body SL of a fully separable state cannot

exceed A
sepd(n)
k . In other words, every n-qudit state with

Ak[ρ]>

(
n
k

)
(d− 1)k (37)

is entangled [9, 10]. We refer to equation (37) as the k-body SL criterion. In all examples
we know of, the n-body SL criterion is stronger than other k-body SL criteria. To experi-
mentally verify that a state ρ is entangled, it is therefore sufficient to measure the expecta-
tion values Tr[ρPi] for an increasing number N of weight-n Pauli operators P1, . . . ,PN ∈ Pn

d

until
∑N

i=1 |Tr[ρPi]|2 exceeds the full-separability bound (d− 1)n with high confidence. This
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approach is particularly promising for qubits, where estimating only N= 2 Pauli expectation
values can be sufficient. For D> 2, on the other hand, this entanglement test is not scalable as
an exponential (in n) number of Pauli expectation values would need to be estimated exper-
imentally. Note that for every ideal, i.e. noise-free, graph state |Γ〉, the n-body SL is lower
bounded as

An [|Γ〉〈Γ|]⩾ A
sepd(n)
n = (d− 1)n (38)

because (up to a global phase) XrZΓr is a weight-n stabilizer operator of |Γ〉 for every r ∈
{1, . . . ,d− 1}n. For a technical discussion how the bound in equation (38) can be improved,
see appendix B in [27]. It is well known that in the case of qubits, An is maximized by the
GHZ state, but for higher-dimensional qudits, An is maximized by a biseparable state [9, 11].
Furthermore, some GME states with An = 0 have been identified [35]. These two facts demon-
strate that An only contains limited information about the entanglement of a state. If the SLD is
considered as a whole, however, it is possible to establish that a state is GME in a few cases [7].
For these reasons, here we will also adopt the mindset that the SLD should be considered as a
whole.

4.2. A novel entanglement criterion for multi-qudit states based on SLDs

By exploiting the purity criterion [5], we can derive the following entanglement criterion.

Theorem 4 (purity criterion applied to SLDs). LetA= (A0, . . . ,An) be the SLD of an n-qudit
state, ρ, with qudit dimension d⩾ 2. If

n∑
k=0

((d− 1)n− dk)Ak[ρ]< 0, (39)

then ρ is entangled.

The proof of a generalized version of this theorem is stated in appendix G. To apply the-
orem 4, the only information needed about a state is its SLD. In the special case where |Γ〉
is an n-qudit graph state, we can relate the SLD to a graph-theoretical problem that general-
izes theorem 1. For this, we associate every element r ∈ Z/dZ with a color. Then, each color
assignment (with d colors) of Γ corresponds to a stabilizer operator XrZΓr (up to phase) and
contributes to Ak iff exactly n− k white (ri = 0) vertices i ∈ {1, . . . ,n} have the property

n∑
j=1

γi,jrj = 0. (40)

Only for qubits, equation (40) simplifies to the property ‘the number of vertices j with γi,j = 1
and rj = 1 is equal to 0 modulo 2, i.e. even’. In the qudit case, the situation is more involved.
This is because computing Ak amounts to counting solutions to equations in modular arith-
metic, see appendix F for a more detailed treatment. Here, we restrict ourselves to presenting
only some of our less-technical results: If d is a prime number, we find

A1 = (d− 1)I (41)

as a generalization of equation (9), where I again denotes the number of isolated vertices of
Γ. Furthermore, we find for d prime that the 2-body SL obeys

T0(d− 1)2 +(L+T1)(d− 1) ⩽ A2 ⩽ T0(d− 1)2 +

(
L+

n−2∑
m=1

Tm

)
(d− 1), (42)
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where L is the number of leaves and Tm denotes the number of (twin) vertex pairs with exactly
m common neighbors and zero non-shared neighbors, e.g. T0 =

(I
2

)
. For a given graph state

|Γ〉, one can efficiently compute the exact value of A2 by exploiting the formula

Ak =
k∑

b=1

∑
r∈Db

δswtd(r,Γr),k, (43)

which generalizes equation (11) and holds for arbitrary d⩾ 2 and k⩾ 1. Here,Db ⊂ (Z/dZ)n
denotes the subset of ‘dit’ strings with exactly b nonzero entries. The evaluation runtime of
equation (43) is given by O((dn)k), which is efficient for small values of k. This also enables
the efficient computation of the mean and the variance of the normalized SLD of a qudit graph
state for arbitrary d via equations (31) and (32). Finally note that, if d is prime, every n-qudit
stabilizer state is LU-equivalent to a qudit graph state [33], which further extends the applic-
ability of our results.

5. SLDs of noisy states

Until this point, we have exclusively focused on SLDs of pure quantum states. In reality, how-
ever, experimental imprecision and decoherence always lead to some uncertainty about the
state of a quantum system. This necessitates that we extend our discussion to the more general
case of mixed states. In section 5.1, we investigate the impact of noise on the SLD of a gen-
eral n-qudit state. Then, in section 5.2, we apply our insights for the derivation of noise levels
below which entanglement is preserved.

5.1. The impact of noise on qudit SLDs

The n-qudit depolarizing channel of strength p ∈ [0,1], which is defined via

E(p)
glob[ρ] = (1− p)ρ+ p

1

dn
, (44)

is a very simplistic model that describes global white noise acting on all qudits simultaneously.
Since there are only two terms in equation (44), global white noise is easy to treat theoretically
and, therefore, often used as a first approximation. A more realistic error channel, which takes
spatial separation of qudits into account, is the local white noise channel

E(p)
loc [ρ] =

(
E(p)

)⊗n
[ρ], (45)

where E(p) denotes the single-qudit depolarizing channel of strength p. Both the global and
the local white noise channel are generalized Pauli channels,

E(p)
glob/loc[ρ] =

∑
r,s∈(Z/dZ)n

pglob/locr,s (Xr
dZ

s
d)ρ(X

r
dZ

s
d)

†, (46)

where a discrete Pauli error Xr
dZ

s
d occurs with probability

pglobr,s =

{
1− p+ p

d2n , if r= s= (0, . . . ,0)
p
d2n , otherwise

(47)

and

plocr,s =
( p
d2

)swtd(r,s)(
1− p+

p
d2

)n−swtd(r,s)
, (48)
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respectively [36]. To establish the influence of any given quantum channel E on the Bloch
decomposition of an n-qudit state ρ as in equation (27), it suffices to compute how E acts on
individual Pauli operators. This is because E is a linear map,

E

 1
dn

∑
r,s∈(Z/dZ)n

ρr,sX
r
dZ

s
d

=
1
dn

∑
r,s∈(Z/dZ)n

ρr,s E [Xr
dZ

s
d] . (49)

By exploiting Tr[Xr
dZ

s
d] = δr,0δs,0dn, we find

E(p)
glob[X

r
dZ

s
d] = (1− p)Xr

dZ
s
d + pTr[Xr

dZ
s
d]
1

dn
=

{
1, if r= s= 0

(1− p)Xr
dZ

s
d, otherwise

(50)

for the global white noise channel and

E(p)
loc [X

r
dZ

s
d] =

n⊗
i=1

(
(1− p)Xri

dZ
si
d + pTr[XriZsi ]

1

d

)
= (1− p)swtd(r,s)Xr

dZ
s
d (51)

for local white noise. Inserting this into equation (29) yields the k-body SLs,

Ak

[
E(p)
glob[ρ]

]
= (1− p)2Ak [ρ] (52)

and Ak

[
E(p)
loc [ρ]

]
= (1− p)2kAk [ρ] (53)

of the noisy states E(p)
glob[ρ] and E(p)

loc [ρ]. Since the prefactor (1− p)2k is exponentially sup-
pressed, the correlations between large numbers of subsystems are strongly diminished in the
presence of local white noise. This is unsurprising because, by equation (48), Pauli errors Xr

dZ
s
d

that jointly affect a large number k= swtd(r,s) of subsystems are very unlikely to occur. In a
recent work [37], where equation (53) was independently derived, this insight played a role in
establishing stringent limitations on the experimental feasibility of quantum error mitigation
protocols on near-term quantum computers.

5.2. Lower bounds on entanglement noise thresholds

Quantum entanglement is a crucial resource for many quantum information protocols, espe-
cially in quantum communication [5, 38]. Here, we address the question ‘how much noise can
an entangled state tolerate before it becomes fully separable?’.

For example, if |ψ〉 is an n-qudit stabilizer state that is not fully separable, then the noisy
state E(p)

glob

[
|ψ〉〈ψ|

]
is also entangled for all values of p that are smaller than

pstabPPT,glob = 1− 1
dn−1 + 1

, (54)

as we show in [27] for arbitrary d and n by exploiting the positive partial transpose (PPT)
criterion [39, 40]. While equation (54) is both simple and general, its physical relevance is
questionable since pstabPPT,glob → 1 for n→∞. In other words, entanglement can be preserved
arbitrarily well by adding more and more qudits in state |0〉 to a system that is affected by
global white noise. This behavior is clearly unphysical in a quantum communication setting,
in which the qudits are spatially separated. For this setting, the local white noise model is more
appropriate.

Luckily, it is also possible to derive noise thresholds for the case of local white noise, e.g. we
can insert equation (53) into equation (37) and solve for p. For every n-qudit state ρ, this yields
that the noisy state E(p)

loc [ρ] is entangled for all values of p below
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pnSL,loc = 1− 2n

√
(d− 1)n

An[ρ]
. (55)

Recall from equation (38) that every n-qudit graph state |Γ〉 has An ⩾ (d− 1)n. Hence, for
a nontrivial threshold pnSL,loc > 0 it is sufficient that the graph Γ admits a color assignment
contributing to An with at least one white vertex. Furthermore, we can exploit equation (53)
in combination with our new entanglement criterion from theorem 4 to derive the following
result:

Corollary 5 (local-white-noise threshold for entanglement). Let ρ be an n-qudit state that
is entangled by theorem 4. Then, the polynomial function

f : [0,1]−→ R, p 7−→
n∑

k=0

((d− 1)n− dk)(1− p)2kAk[ρ] (56)

has a root ppur,loc ∈ (0,1) at which the sign of f changes from minus to plus. Moreover, every

such solution is a lower bound on the local-white-noise threshold for entanglement, i.e. E(p)
loc [ρ]

is entangled for every value of p< ppur,loc.

Proof. By assumption, we have f(0)< 0. Because of f(1) = (d− 1)n> 0, a solution of
f(ppur,loc) = 0 with 0< ppur,loc < 1 and the desired sign change is guaranteed by the intermedi-
ate value theorem. Without loss of generality, ppur,loc is the largest (polynomials have finitely

many roots) such solution. Now, let p< ppur,loc and consider the state ρ ′ = E(p)
loc [ρ]. By construc-

tion, it is possible to select p ′ ∈ [p,ppur,loc)with f(p ′)< 0. Because of 0⩽ p⩽ p ′ < 1, we have

0⩽ p ′−p
1−p < 1. Thus, we can apply a depolarizing channel of strength q= p ′−p

1−p to every qudit of

ρ ′. Because of E(q)
loc [E

(p)
loc [ρ]] = E(p+q−pq)

loc [ρ], this results in the state E(q)
loc [ρ

′] = E(p ′)
loc [ρ], which

is entangled by f(p ′)< 0. Since local operations cannot create entanglement, the initial state
ρ ′ must have been entangled as well.

Note that corollary 5 is constructive as ppur,loc > 0 can always be found algorithmically, for
instance via the bisection method. For example, we can apply corollary 5 to the logical states
|0〉L, |1〉L, |+〉L, and |−〉L of the [[n,1,

√
n]] rotated surface code [41, 42], all of which have the

same SLD Asurf(n) because the logical operators XL and ZL are transversal. For the smallest
nontrivial instance of the rotated surface code, we find

Asurf(9) = (1, 0, 4, 12, 22, 52, 100, 148, 129, 44), (57)

which yields psurf(9)pur,loc ≈ 0.28, whereas the bound psurf(9)nSL,loc ≈ 0.19 from equation (55), which is
based on the previously-known n-body SL criterion, is weaker. Both bounds show that the
entanglement-noise threshold for |0〉L etc lies well above the error-correcting threshold ∼1%
of the surface code [43]. Similarly, we compute

Asurf(25) = (1, 0, 8, 0, 72, 80, 534, 984, 3715, 8776, 25816, 62160, 158448,

386416, 782532, 1561984, 2726047, 3951328, 5115376, 5666352,

5136632, 3919936, 2437206, 1141160, 390829, 78040), (58)

which yields psurf(25)pur,loc ≈ 0.31 and psurf(25)nSL,loc ≈ 0.20. This indicates that entanglement is better pre-
served in states of QECCs with larger code distances. We find similar results for other families
of stabilizer states and refer the interested reader to appendix C.
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6. Conclusion and outlook

In this paper, we developed the theory of SLDs of graph states, which has its historical origins
in [44, 45]. The starting point of our exploration was theorem 1, which relates SLDs to a graph
color assignment problem. By solving this problem in the special case of Pusteblume graph
states and RC states, we derived explicit formulas for their SLDs. In this way, we extended the
list of analytically known SLDs, which to our knowledge was hitherto limited to fully separ-
able states, GHZ states, Dicke states, and tensor products thereof [6]. For graph states based
on random Erdős–Rényi graphs, we discovered that the normalized SLD is remarkably close
to an asymmetrical binomial distribution; hence, we proposed to call such SLDs generic. This
discovery was spurred by a visualization tool that we report separately in [23]. While SLDs of
GHZ states and alike are not generic, those of cluster states are. Hence, RC states now consti-
tute the only family of states with analytically-known, generic SLDs. Further consequences of
theorem 1 are captured in corollaries 2 and 3, which provide simple formulas for a bound on
the full-body SL for certain graph states and for the mean and the variance of the normalized
SLD for arbitrary graph states, respectively. Additionally, we formulated similar results for
the more general case of higher-dimensional qudits.

While our theoretical developments have their own intrinsic academic relevance, we can
also apply them to tackle difficult relevant problems in other branches of quantum information
theory. To accomplish this, in theorem 4 we reformulate the purity criterion [46] such that (a
potentially weaker form of) it can be tested based on knowledge of the SLD alone. After having
derived formulas for the decline of SLDs in the presence of noise, we deduce corollary 5 and
apply it to compute lower bounds on noise thresholds for entanglement. In some cases, this
approach allows us to outperform the best previous results based on other criteria [47].

By definition, the SLDs are invariants of degree two in the quantum state. Analogous to
other hierarchies of entanglement criteria [48], we expect more information on the state to
be embodied in higher-degree invariants. Thus, further research could focus on investigating
higher-degree generalizations of SLDs. Similarly, it could be fruitful to extend the discussion
of qudit graph states to the case of continuous variable systems [49, 50], and search for easily-
applicable entanglement criteria that are similar to our theorem 4.

We envision that our graph-theoretical formulation of the SLD problem will facilitate the
discovery of SLDs for awider range of quantum states, e.g. for certain logical states of quantum
error-correcting (QEC) codes or for cluster states that appear in MBQC. As QEC and MBQC
are fields that heavily rely on the stabilizer formalism, we anticipate that our results will find
applications there. Last but not least, we hope that our work will stimulate the investigation of
SLDs in a more general setting, e.g. for Dicke states for which the SLDs are available [6], or
for qubit (or qudit) hypergraph states for which a theory of SLDs is not developed yet [51].
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Appendix A. Solution of the graph-theoretical problem for the Pusteblume
graph

Here we solve the color assignment problem for Pusteblume graphs, see figure 2, which will
prove equation (20) from themain text. To accomplish this, we distinguish the four cases where
vertices 1 and 2 are black and white, respectively. Note that, in each case, there are 2n−2 color
assignments that contribute to certain SLs.

• If both vertex 1 and 2 are black, see figure 9(a), there cannot be a white vertex with an even
number of black neighbors because all remaining vertices are leaves with a black neighbor.
Thus, all 2n−2 color assignments of the leaves contribute to An.

• If vertex 1 is white and vertex 2 is black, see figure 9(b), the colors of the n− 4 neighbors
of vertex 2 do not influence the number of white vertices having an even number of black
neighbors; only the colors of vertex 3 and 4 do. If both of these vertices are black, vertex 1
has three black neighbors, and all 2n−4 color assignments of vertex 5, . . . ,n contribute to
An. Otherwise, there are two white vertices with an even number of black neighbors, i.e. the
remaining 3× 2n−4 color assignments contribute to An−2.

The first of these four cases has a contribution of 2n−2δk,n to Ak, while the second case con-
tributes 3× 2n−4δk,n−2 + 2n−4δk,n. Thus, together they yield the term

3× 2n−4δk,n−2 + 5× 2n−4δk,n, (59)

in equation (20) from the main text. We continue with the remaining two cases.

• If vertex 1 is black and vertex 2 is white, see figure 9(c), all four color assignments of vertex 3
and 4 (neighbors of vertex 1) contribute to the same SL. There are

(n−4
b

)
color assignments

of the neighbors of vertex 2 with b black neighbors. Since vertex 2 is white, all its n− 4− b
white neighbors have an even number (zero) of black neighbors. If b is odd, vertex 2 also has
an even number of black neighbors. In that case, all 4

(n−4
b

)
color assignments contribute to

An−(n−4−b+1) = Ab+3. If b is even, however, we have 4
(n−4

b

)
color assignments contributing

to Ab+4 because the white vertex 2 has an odd number of black neighbors.
• If both vertex 1 and 2 are white, see figure 9(d), we look at vertex 3 and 4 first. If they are
also white, we already have three white vertices (1,3, and 4) having an even (zero) number
of black neighbors. Otherwise, there is exactly one such white vertex among 1,3, and 4.
Again, we distinguish between the

(n−4
b

)
color assignments of vertex 5, . . .n with exactly b
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Figure 9. Some black-white color assignments of a Pusteblume graph with n= 7 ver-
tices. (a) All color assignments where vertex 1 and 2 are black contribute to An. (b) If
vertex 1 is white, vertex 2 is black, and vertex 3 is black, there are exactly two white
vertices (1 and 4) with an even number of black neighbors, i.e. such a color assignment
contributes to An−2. (c) If vertex 1 is black and vertex 2 is white, every white neighbor
of vertex 2 has an even number (zero) of white neighbors. (d) If vertex 1 and 2 are white,
the white vertices with an even number of black neighbors are vertex 1, 3, 4, all white
neighbors of vertex 2, and possibly vertex 2.

black vertices. If b is odd, the total number of white vertices with an even number of black
neighbors is either (n− 4− b)+ 3 (if all 1,3, and 4 are among them) or (n− 4− b)+ 1 (if
only one vertex among 1,3, and 4 is white and has an even number of black neighbors).
Thus, if b is odd, we have

(n−4
b

)
color assignments which contribute to Ab+1 and 3

(n−4
b

)
contributing to Ab+3. If b is even, however, the total number of white vertices with an even
number of black neighbors is either (n− 4− b)+ 3+ 1 or (n− 4− b)+ 1+ 1 because now
vertex 2 is also one of them. Thus, we have

(n−4
b

)
color assignments contributing Ab and

3
(n−4

b

)
contributing to Ab+2.

We have distinguished between the number b ∈ {0, . . . ,n− 4} of the dandelion seed head ver-
tices being black. We find that we only get a contribution to Ak if k is even. From case three, Ak

gets a contribution of 4
(n−4
k−4

)
+ 4
(n−4
k−3

)
= 4
(n−3
k−3

)
, where the first and second terms come from

the color assignments where b= k− 4 and b= k− 3, respectively. Similarly, from case four,
Ak gets a contribution of 3

(n−4
k−3

)
+ 3
(n−4
k−2

)
+
(n−4
k−1

)
+
(n−4

k

)
= 3
(n−3
k−2

)
+
(n−3

k

)
, if k is even. In

total, case three and four have a contribution of((
n− 3
k− 3

)
+ 3

(
n− 2
k− 2

)
+

(
n− 3
k

))
δk,even (60)

to Ak for each k. This finishes the derivation of equation (20) stated in the main text.

Appendix B. Solution of the graph-theoretical problem for the cycle graph

In this appendix, we derive the SLD of the n-qubit RC state, which is stated in equation (21).
According to the color assignment problem, Ak is the number of color assignments of the n-
vertex cycle graph, see figure 4, such that n− k white vertices have an even number of black
neighbors. All possible color assignments are parameterized by the set Fn

2 where r ∈ Fn
2 cor-

responds to the color assignment where vertex i ∈ V is white if ri = 0 and black if ri = 1.
To capture the periodicity of the cycle, we use integers modulo n as the vertex set V= Z/nZ.
Since each vertex of the cycle graph has exactly two neighbors, the condition of having an even

23



J. Phys. A: Math. Theor. 56 (2023) 335303 D Miller et al

Figure 10. If one distributes b= b1 + b2 + . . .+ bn−b black vertices into n− b boxes
in such a way that no box remains empty, one obtains a color assignment pattern b=
(b1, . . . ,bn−b) ∈ Bb,n−b of the cycle graph which contributes to Cn,b,0. By shifting the
whole pattern to the left, where periodic boundary conditions are applied, one obtains
1+ b1 different color assignments before there is again a white vertex on the leftmost
position.

number of black neighbors is equivalent to the condition of both neighbors having the same
color. Thus, the number of white vertices fulfilling this condition for a given color assignment
r ∈ Fn

2 can be expressed as

x1(r) =
∣∣{i ∈ V

∣∣ ri = 0, ri−1 = ri+1
}∣∣ . (61)

By introducing the notation x2(r) = |{i ∈ V | ri = 0, ri−1 6= ri+1}| for the number of other
white vertices, as well as x3(r) = |{i ∈ V | ri = 1}| for the number of black vertices, we obtain
the relation x1(r)+ x2(r)+ x3(r) = n. Therefore, the k-body SL Ak is given by the cardinality
of the set

Xk =
{
r ∈ Fn

2

∣∣ x1(r) = n− k
}
=
{
r ∈ Fn

2

∣∣ x2(r)+ x3(r) = k
}
. (62)

At each vertex i ∈ Vwith ri−1 = 1, ri = ri+1 = 0 there starts a path of li ⩾ 2 white vertices, i.e.
ri+2 = · · ·= ri+li = 0 but ri+li+1 = 1. The inner vertices contribute to x1(r) as they have two
white neighbors. The two ends of the white path, however, contribute to x2(r) = 2m(r), where
m(r) is the number of white paths of length l⩾ 2. By sorting the color assignments r ∈ Xk by
m(r), we obtain the disjoint union Xk =

⋃⌊k/2⌋
m=0 X (m)

k into the sets

X (m)
k =

{
r ∈ Fn

2

∣∣ x2(r) = 2m, x3(r) = k− 2m
}
. (63)

Note that m only runs from 0 to bk/2c because, otherwise, x2(r) or x3(r) would be negative.
By defining Cn,b,m as the number of color assignments of the n-vertex cycle graph with exactly
b⩾ 0 black vertices and exactly m⩾ 0 white paths of length greater than or equal to 2, we
obtain the formal expression

Ak =

b k
2c∑

m=0

Cn,k−2m,m, (64)

which will reduce to equation (21) once we have found explicit formulas for Cn,b,m.
Let us treat the easy case, m= 0, first. If b= 0, all vertices must be white and we obtain the

trivial SL A0 = Cn,0,0 = 1, which is fixed by normalization. However, if there is at least one
black vertex, b⩾ 1, the graph-theoretical problem from theorem 1 from the main text can be
restated into ‘Cn,b,0 is the number of color assignments of the n-vertex cycle graph with exactly
b black vertices such that each white vertex has zero white neighbors’ because there are no
white paths of length l⩾ 2. To achieve this condition, b black vertices have to be distributed
among the n− b gaps between the white vertices, cf figure 10. The resulting set of possible
patterns is given by

Bb,w =

{
(b1, . . . ,bw) ∈ Zw

∣∣∣∣∣
w∑

i=1

bi = b, bi ⩾ 1

}
, (65)
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Figure 11. Top: a pattern contributing toCn,b,m consists ofmwhite paths of length li ⩾ 2,
which are separated by mixed paths of length bi +wi as depicted in blue. By shifting the
whole pattern to the left, where periodic boundary conditions are applied, one obtains
l1 + b1 +w1 different color assignments before there is again a white path (of length
l2) starting at the leftmost position. Bottom: in the ith mixed path, each of the wi white
vertices needs two black neighbors. There are |Bbi,wi+1|=

(bi −1
wi

)
choices to distribute

the bi = bi,1 + . . .+ bi,wi+1 black vertices into wi + 1 boxes such that no box remains
empty.

where w= n− b. We will need the notation introduced in equation (65) for general w⩾ 1 at
a later stage. Via repeated shifts to the left, one obtains 1+ b1 different color assignments for
each pattern b= (b1,b2, . . . ,bw) ∈ Bb,w. An additional shift would result in a color assignment
which is already covered by the pattern (b2, . . . ,bw,b1) ∈ Bb,w. Therefore, we find

Cn,b,0 =
∑

b∈Bb,n−b

(1+ b1). (66)

By elementary combinatorics, there are |Bb,w|=
(b−1
w−1

)
possibilities to distribute b unlabeled

balls into w labeled boxes such that no box remains empty. After a little algebra, we find the
formula (needed later in full generality)∑

b∈Bb,w

(x+ b1y) =

(
b− 1
w− 1

)(
x+

by
w

)
, (67)

which holds for any choice of x,y ∈ R and integers b⩾ 0, m⩾ 1. Setting w= n− b and x=
y= 1, we obtain Cn,b,0 =

n
b

( b
n−b

)
which appears as the first term in equation (21).

Now, we solve Cn,b,m for m⩾ 1 white paths of length l1, . . . , lm ⩾ 2. For each color assign-
ment, the total number l= l1 + . . .+ lm of white vertices in the m paths is somewhere in
between 2m and n− b. The number w of isolated white vertices, i.e. white vertices with two
black neighbors, is fixed by the relation w= n− l− b. As it is depicted in figure 11, these isol-
ated white vertices are part of the mixed paths which separate the white paths of length li ⩾ 2
from each other. The mixed path, which separates the white paths of length li from the white
path of length li+1, consists of bi black and wi white vertices. Since the vertices at the end of
the mixed path have to be black and the isolated white vertices are separated by at least one
black vertex, there are |Bbi,wi+1|=

(bi−1
wi

)
different mixed paths consisting of bi black and wi

white vertices. In analogy to equation (65), we introduce the sets

Ll,m =

{
(l1, . . . , lm) ∈ Zm

∣∣∣∣∣
m∑

i=1

li = l, li ⩾ 2

}
(68)

and Ww,m =

{
(w1, . . . ,wm) ∈ Zm

∣∣∣∣∣
m∑

i=1

wi = w, wi ⩾ 0

}
. (69)
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The set Ll,m contains all possible lengths for the white paths of a fixed combined length
l ∈ {2m, . . . ,n− b}. The set Ww,m is used to parameterize the possibilities of distributing
the remaining w= n− b− l isolated white vertices among the mixed paths. Since there are(bi−1

wi

)
mixed paths for each choice of bi and wi, we obtain

∏m
i=1

(bi−1
wi

)
different mixed-chain

color assignments for each choice of b= (b1, . . . ,bm) ∈ Bb,m, w= (w1, . . . ,wm) ∈Ww,m. In
analogy to our argumentation around the derivation of Cn,b,0 in equation (66), each pattern
(l,b,w) ∈

⋃n−b
l=2mLl,m ×Bb,m ×Wn−l−b,m gives rise to exactly l1 + b1 +w1 color assignments

if the mixed-chain color assignment is fixed. Combining all of our arguments, we obtain the
equation

Cn,b,m =
n−b∑
l=2m

∑
l∈Ll,m

∑
b∈Bb,m

∑
w∈Wn−l−b,m

(l1 + b1 +w1)
m∏

i=1

(
bi − 1
wi

)
. (70)

To simplify this expression, we make use of the well-known Vandermonde identity∑
w∈Wn−l−b,m

m∏
i=1

(
bi − 1
wi

)
=

(
b−m

n− b− l

)
(71)

as well as one of its generalizations [52, equation (8)]∑
w∈Wn−l−b,m

w1

m∏
i=1

(
bi − 1
wi

)
=

(
b−m

n− b− l

)
(n− b− l)(b1 − 1)

b−m
. (72)

By combining equations (70)–(72), we obtain

Cn,b,m =
n−b∑
l=2m

(
b−m

n− b− l

) ∑
l∈Ll,m

∑
b∈Bb,m

(
(l1 + b1)+

(n− b− l)(b1 − 1)
b−m

)
(73)

=
n−b∑
l=2m

(
b−m

n− b− l

) ∑
l∈Ll,m

∑
b∈Bb,m

((
l1 −

n− b− l
b−m

)
+ b1

(
1+

n− b− l
b−m

))
(74)

(67)
=

(
b− 1
m− 1

) n−b∑
l=2m

(
b−m

n− b− l

) ∑
l∈Ll,m

(
l1 −

n− b− l
b−m

+
b
m

(
1+

n− b− l
b−m

))
(75)

=

(
b− 1
m− 1

) n−b∑
l=2m

(
b−m

n− b− l

) ∑
l∈Ll,m

(
l1 +

n− l
m

)
. (76)

Similar to equation (67), we can simplify the last term,∑
l∈Ll,m

(
n− l
m

+ l1

)
=

(
l−m− 1
m− 1

)(
n− l
m

+
l
m

)
=

(
l−m− 1
m− 1

)
n
m
. (77)

Substituting b= k− 2m together with an index shift l 7→ l− 2m yields

Cn,k−2m,m =
n
m

(
k− 2m− 1

m− 1

) n−k∑
l=0

(
k− 3m
n− k− l

)(
l+m− 1

l

)
. (78)

Inserting this into equation (64), we finally arrive at equation (21) from the main text. Note
that it suffices if m runs from 1 to

⌊
k−1
2

⌋
because

(k−2m−1
m−1

)
= 0 if m⩾ k

2 .
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Figure 12. Lower bounds plb on the local-white-noise entanglement threshold pcrit for
n-qubit GHZ (left) and RC states (right). The noisy state E(p)

loc [|ψ⟩⟨ψ|], see equation (45),
is entangled iff p< pcrit, where |ψ⟩= |GHZ(n)⟩ and |ψ⟩= |RC(n)⟩, respectively.

Appendix C. Lower bounds on entanglement noise thresholds of graph states

In this appendix, we apply corollary 5 from the main text to derive lower bounds on the local-
white-noise entanglement threshold for several families of stabilizer states. We start with the
qubit case in appendix C.1 and discuss higher-dimensional qudits in appendix C.2.

C.1. Robustness of entanglement in qubit graph states against local white noise

In section 3 of the main text, we show that the normalized SLD of a typical graph state is very
close to a binomial distribution. To cover both a special case and the generic case, in figure 12
we plot for n-qubit GHZ (left) and RC states (right) several lower bounds plb on the local-
white-noise entanglement threshold as a function of n. Note that the largest value of plb in
figure 12 corresponds to the strongest entanglement criterion for a given state. We see that the
PPT criterion (gray circles) outperforms the other criteria in all cases for which it is available.
Whenever n is even, the PPT criterion yields the lower bound,

pGHZ(n)PPT,loc = 1− 1√
22−2/n + 1

, (79)

on the entanglement noise threshold for n-qubit GHZ states [53]. For GHZ states with odd
n⩽ 9, we compute the PPT bound using a direct approach with exponential runtime. To our
knowledge, a result similar to equation (79) is not available for RC states; our direct approach
yields pRC(n)PPT,loc for all n ∈ {3,4, . . . ,9}. For n⩾ 10, the best available lower bound on the noise
threshold for |RC(n)〉 is based on the purity criterion (lavender upward triangles) and found via
corollary 5. Interestingly, the same criterion performs comparatively badly for GHZ states. For
them, the second best criterion (after PPT) is given by the n-body SL criterion (blue downward
triangles) from equation (55) of the main text. For comparison, we also plot the bound (yellow
squares),

pgraphdistill,loc = 1− 2
−2/

(
2+ max

{i,j}∈E
{deg(i)+deg( j)}

)
, (80)

which is based on an entanglement distillation protocol for graph states |Γ〉whose set of edges
is denoted by E [47]. Finally, we determine the value of p for which the fidelity of the noisy
state with the target state, |ψ〉, is equal to 0.5. If the noise parameter is below this value (brown
plusses), the noisy state is GME since the operatorW= 1

2 − |ψ〉〈ψ| is a GMEwitness [54–57].
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As this direct approach also has exponential runtime, we can apply this fidelity criterion only
for n⩽ 9.

In contrast to the unphysical case of global white noise from equation (54), all entanglement
criteria considered in figure 12 yield physically meaningful local-noise thresholds that are
smaller than 1, e.g. lim

n→∞
pGHZ(n)PPT,loc = 1− 1/

√
5≈ 0.553 and lim

n→∞
pGHZnSL,loc = 1− 1/

√
2≈ 0.293.

The latter is larger than lim
n→∞

pRC(n)nSL,loc ≈ 0.174 because AGHZ(n)
n = 2n−1 + δn,even exceeds

ARC(n)
n = 1+

⌊n/3⌋∑
k=1

(
n− 2k− 1

k− 1

)
n
k
. (81)

Note that equation (81) is a simplified special case of equation (21) of the main text. Next, we
point out that for qubits, theorem 4 simplifies to:

⌊n/2⌋∑
k=0

(n− 2k)Ak[ρ]<
n∑

k=⌈n/2⌉

(2k− n)Ak[ρ] =⇒ ρ is entangled. (82)

In other words, ρ is entangled if the (slightly rescaled) k-body SLs with k> n/2 outperform
those with k< n/2, which is intuitive because Ak quantifies k-body correlations and entangle-
ment is a strong form of correlation. For the GHZ state, the most important contribution to the
k-body SLs with k> n/2 is An. We attribute the observation that pGHZ(n)pur,loc from corollary 5 con-
verges to zero in figure 12 to the fact that An declines extremely fast, recall equation (53). For
RC states, on the other hand, the normalized SLD is close to a binomial distribution centered at
3n/4. Since the k-body SL decline around k= 3n/4 is not as severe as for k≈ n, this causes the
corresponding lower bound from corollary 5 to numerically converge to lim

n→∞
pRC(n)pur,loc ≈ 0.310,

which to our knowledge is the best available lower bound on the noise threshold for RC states7.
It is closely followed by pRC(n)distill,loc ≈ 0.283, which is constant because the degrees of the vertices
in a cycle graph Cn are independent of n [47]. For the star graph K1,n−1, on the other hand, the

degree of the central vertex is unbounded, which causes pGHZ(n)distill,loc to converge to zero [47].
Finally, consider the bound that is based on the fidelity criterion. Since this criterion can be

used to certify GME, it is often employed in experiments [58–61]. As we can see in figure 12,
the level of noise that is required to successfully apply the fidelity criterion in such an experi-
ment decreases in n. This is bad news for benchmarkers of quantum processors in which errors
are accurately modeled by local white noise because the qubits have to become less noisy (in
the next generation of the quantum processor with an increased number of qubits) to verify
GME via fidelity measurements. This is very demanding for near-term quantum hardware. The
n-body SL for the verification of (possibly biseparable) entanglement, on the other hand, has
critical noise thresholds well above ten percent, independent of the number of qubits.

C.2. Robustness of entanglement in qudit graph states against local white noise

For the sake of completeness, let us also apply the results developed in this paper to the general
case of qudits in dimension d⩾ 2. The only bound on the local-white-noise threshold of an

7 The minor differences between the two distributions in figure 5 that are discussed in section 2.3 would lead to an
overestimation of the SL-based noise thresholds: For a hypothetical state with ahypo = b(p= 3/4), we would find
limn→∞ phypopur,loc ≈ 0.423 and limn→∞ phyponSL,loc ≈ 0.184. For this reason, the approximation aRC(n) ≈ b(3/4) and its
analogues for other generic graph states should only be used with care.
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Figure 13. Lower bounds plb on the local-white-noise entanglement threshold pcrit
for four-qudit GHZ (left) and AME states (right) as a function of the qudit dimen-
sion. The noisy state E(p)

loc [|ψ⟩⟨ψ|] is entangled iff p< pcrit, where |ψ⟩= |GHZd(4)⟩
or |ψ⟩= |RCd(4)⟩.

n-qudit state that we were able to find in the literature applies to the n-qudit GHZ state, as
defined in equation (34). It is given by

pGHZd(n)
PPT,loc =

2d
n
√
4+ n

√
2
√
4+ n

√
2d+ 2d

(83)

and holds for arbitrary d and even n [62]. Note that equation (79) is a special case of
equation (83). As we show in the left panel of figure 13 for the example of n= 4 qubits, the PPT
bound (gray circles) converges to 1 in the limit of d→∞. The same trend is recovered by the
bound based on the purity criterion (lavender upward triangles), which is obtained by applying
corollary 5 for the SLD of |GHZd(n)〉 from equation (35). We also display the bound based on
the n-body SL criterion from equation (55) of the main text (blue downward triangles), which
converges to zero; this is consistent with the previous observation of the discrepancy between
entanglement and An in the qudit case [11]. As in the qubit case, the PPT criterion always leads
to the best lower bound on the entanglement noise threshold.

For states where the PPT criterion is not solved, our SL-based approaches still work
provided the SLD of the investigated state is known. Consider, for example, the four-
qudit absolutely maximally entangled (AME) state |RCd(4)〉, which is defined for odd d in
equation (101). We present its SLD in equation (102) of appendix F and plot the corresponding
lower bounds on the local-white-noise threshold in the right panel of figure 13. As in the case
of four-qudit GHZ states, we find that the bound based on the n-body SL criterion decreases,
whereas the purity bound increases in d. This demonstrates the usefulness of corollary 5 in the
case of higher-dimensional qudits.

Appendix D. SLDs of W states as an example of the non-stabilizer case

In the main text, we almost exclusively discuss SLDs of stabilizer states. Since such states
constitute only a finite subset of the 2n-dimensional state space of an n-qubit system, not all of
our results apply in the general case. In this appendix, we highlight some important differences
using the example of W states [63]. The n-qubit W state is defined as

|W(n)〉= 1√
n

n∑
i=1

|ei〉, (84)
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Figure 14. Comparison of the normalized SLD aW(n)
k = 2−nAW(n)

k of the W state from
equation (85) to the symmetric binomial distribution bk(p= 0.5) =

(n
k

)
2−n for n= 10.

The latter coincides with the normalized SLD of a fully separable state, i.e. b(p= 0.5) =
asep(n).

where e1 = (1,0, . . . ,0), . . ., en = (0, . . . ,0,1) is the standard basis of Fn
2. For n⩾ 3, the W

state is not a (Pauli) stabilizer state. While the definition of the k-body SL in equation (3) is
applicable to any n-qubit state, only in the case of a pure stabilizer state is Ak guaranteed to be
an integer. The k-body SL of |W(n)〉, on the other hand, is given by

AW(n)
k =

(
n
k

)(
1+

4k
n2

(2k− n− 1)

)
, (85)

see equation (18) of [6] for the more general case of Dicke states. For n⩾ 3, it can hap-
pen that AW(n)

k is not an integer, e.g. AW(5) = (1,1.8,3.6,10,11.4,4.2). However, there are
also non-stabilizer states for which the SLD takes integer values, e.g. AW(4) = (1,1,3,7,4).
Interestingly, |W(4)〉 has exactly the same SLD as the only stabilizer state (up to LU-
equivalence) for which A1 = I= 1, namely |+〉⊗ |GHZ(3)〉.

For pure stabilizer states, we establish in equation (9) that Astab
1 is the number of qubits that

are disentangled from all other qubits. In particular, Astab
1 ⩾ 1 implies that the stabilizer state

is separable. The W state, however, has a 1-body SL of AW(n)
1 = (n− 2)2/n. In particular, we

have AW(n)
1 ⩾ 1 for all n⩾ 4, despite |W(n)〉 being GME.

Note that the mean 〈k〉aW(n) = (n2 + 2n− 4)/2n can still be inferred from AW(n)
1 via

equation (16) from the main text becauseMacWilliams identities hold for arbitrary pure states.
While GME stabilizer states obey 〈k〉astab/n= 3/4 for all n, we find 〈k〉aW(n)/n→ 1/2 for
n→∞. In figure 14, we plot the normalized SLD aW(n) (blue) and the symmetrical bino-
mial distribution b (yellow) with bk = 1

2n
(n
k

)
for the example of n= 10 qubits. Although the

mean 〈k〉aW(10) = 5.9 of aW(n) is still notably larger than 〈k〉b = 5, the two distributions exhibit a
considerable overlap (lavender). In the main text, section 3.1, we plot the TVD between aW(n)

and b as a function of n (lavender curve in figure 7). There, we observe that the curve decreases
with n. This is unsurprising because the difference of the normalized Bloch vectors of |W(n)〉
and |0〉⊗n converges to zero in the limit of n→∞; see supplemental material of [64] for the
Bloch vector components of |W(n)〉.
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Let us rigorously show that TVD(aW(n),b) converges to zero. For simplicity, we write a=
aW(n). From equation (85), we can see that ak ⩾ bk is equivalent to 2k⩾ n+ 1. Thus, we can
split the sum in equation (22) to avoid absolute values, which yields

TVD(a,b) =
1
2

b n2c−1∑
k=0

(bk − ak)+
n∑

k=b n2c+1

(ak − bk)

+
bn/2 − an/2

2
δn,even. (86)

After substituting k 7→ n− k in the second sum and exploiting the fact that all terms of the form
bk − bn−k vanish, we can rewrite equation (86) as

TVD(a,b) =
1
2

b n2c−1∑
k=0

(an−k − ak)+
1
2nn

(
n
n
2

)
δn,even, (87)

where we also used an/2 − bn/2 =
2
2nn

( n
n/2

)
for the case of n even. Next, we find

an−k − ak =
n− 1
2n−2n2

(
n
k

)
(n− 2k) (88)

by exploiting equation (85). In combination with
∑⌊n/2⌋−1

k=0 (n− 2k) =
⌊
n
2

⌋( n
⌊n/2⌋

)
, this yields

TVD(a,b) =
n− 1
2n−1n2

⌊n
2

⌋( n⌊
n
2

⌋)+
1
2nn

(
n
n
2

)
δn,even. (89)

In the case of even n, Stirling’s formula allows us to rewrite equation (89) as

TVD(a,b) =
1
2n

(
n
n
2

)
∝ 1√

n
n→∞−−−→ 0. (90)

Similarly, equation (89) simplifies to TVD(a,b) = n2−1
2nn2

( n
(n−1)/2

)
∝ 1/

√
n if n is odd. This

establishes that TVD(aW(n),b(p= 0.5)) converges to zero as 1/
√
n. Recall from figure 7, that

we have strong numerical evidence that TVD(aRC(n),b(p= 0.75)) features the same behavior.
Conducting a more detailed study of such convergence effects could be a worthwhile endeavor
as it may further strengthen our understanding of SLDs.

Appendix E. Expected SLD for random graph states

Here, we derive equation (25) from the main text. The expected k-body SL of an Erdős–Rényi
graph state with n vertices and edge-probability q is given by

〈Ak〉q =
∑
Γ∈G

Pr[Γ(q)
n = Γ]Ak [|Γ〉〈Γ|] , (91)

where G ⊂ Fn×n
2 denotes the set of all adjacency matrices. Inserting equation (11) into

equation (91) allows us to write

〈Ak〉q =
k∑

b=0

∑
r∈Bb

∑
Γ∈G

Pr[Γ(q)
n = Γ]δswt(r,Γr),k (92)

as a sum over all color assignments r ∈ Fn
2 with an increasing number b⩽ k of black vertices.

As Pr[Γ(q)
n = Γ] is invariant under renumeration of the vertices of Γ, we can replace r by the

color assignment rb = (1, . . . ,1,0, . . . ,0) for which the first b vertices are black, while the
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other n− b vertices are white. Since there are |Bb|=
(n
b

)
color assignments with exactly b

black vertices, we can restate equation (92) as

〈Ak〉q =
k∑

b=0

(
n
b

)
p(n,q,b,k), (93)

where p(n,q,b,k) =
∑

Γ∈G Pr[Γ
(q)
n = Γ]δswt(rb,Γrb),k denotes the probability that a graph with b

black vertices has exactly n− k white vertices with an even number of black neighbors; recall
theorem 1. For any given white vertex, the probability of having an even number of black
neighbors is given by

peven(q,b) =
b∑

a=0
a even

(
b
a

)
qa(1− q)a =

1+(1− 2q)b

2
(94)

because every edge (between the given white vertex and any of the black vertices) is present
with probability q. Since this probability is independently the same for each of the n− bwhite
vertices, the probability that exactly n− k of them have the desired property follows as

p(n,q,b,k) =

(
n− b
n− k

)
peven(n,q,b)

n−k(1− peven(n,q,b))
k−b. (95)

Inserting equations (94) and (95) into equation (93) yields equation (25) from the main text.

Appendix F. Graph-theoretical treatment of SLDs of qudit graph states

In this appendix, we discuss what information about the SLD of a qudit graph state |Γ〉, as
defined in equation (36) of the main text, one can directly infer from the graph Γ. Since the
stabilizer group

S =

{
Xr
dZ

Γr
d ω

∑
i<j ri γi,jrj

d

∣∣∣∣ r ∈ (Z/dZ)n
}

(96)

of |Γ〉 is parameterized by the color assignments r ∈ (Z/dZ)n of Γ (with d colors), we can
state

Ak = |{r ∈ (Z/dZ)n | swtd(r,Γr) = k}| , (97)

which generalizes equation (8) from the main text. However, only if d and n are small enough,
it is feasible to iterate through all dn color assignments to compute the SLD A= (A0, . . . ,An)
via equation (97). Since only color assignments with b⩽ k non-white (ri 6= 0) vertices i can
contribute to Ak, we find for n-qudit graph states the bound

Ak ⩽
k∑

b=1

(
n
k

)
(d− 1)b, (98)

which generalizes equation (12) from the main text, where k⩾ 1. Since SLDs are convex,
equation (98) also holds for mixtures of graph states. If d is prime, every stabilizer state is
LU-equivalent to a graph state [33]. This implies the validity of the bound in equation (98) for
all mixtures of arbitrary n-qudit stabilizer states.

For qudits in prime dimension d, one can relate A1 and A2 to graph-theoretical notions: the
1-body SL is equal to the number of color assignments where exactly one vertex j ∈ {1, . . . ,n}
obeys rj 6= 0 and all other vertices i 6= j fulfill γi,jrj = 0. Here, Z/dZ= Fd is a field. Thus,
γi,jrj = 0 is equivalent to γi,j = 0, i.e. i is an isolated vertex. Since there are d− 1 choices for
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rj 6= 0, we find A1 = (d− 1)I, as mentioned in equation (41) of the main text. For the 2-body
SL, two types of color assignments r ∈ Fn

d can contribute: either one or two vertices are not
colored white. If there is exactly one vertex j ∈ {1, . . . ,n} with rj 6= 0, there has to be exactly
one other vertex i 6= j with γi,jrj 6= 0. Since Fd is a field, the latter is equivalent to γi,j 6= 0.
Therefore, such a color assignment contributes iff j has exactly one neighbor, i.e. j is a leaf.
This yields exactly (d− 1)L color assignments of the first type that contribute to A2, where L is
the number of leaves. For the second type of color assignments r ∈ Fn

d, which have exactly two
vertices j 6= j ′ with rj,rj ′ 6= 0, the property in equation (40) simplifies to: a color assignment r
contributes to A2 iff

γi,jrj =−γi,j ′rj ′ (99)

for all i ∈ {1, . . . ,n}\{j, j ′}. If γi,j 6= 0, for a given vertex i, then equation (99) can only be
fulfilled if γi,j ′ 6= 0 because Fd is a field. This implies that only twin pairs, i.e. pairs of vertices
( j, j ′) with the same neighborhood, have the potential to contribute to A2; note that γi,j 6= γi,j ′
is allowed here. We denote the number of twin pairs with exactly m ∈ {0, . . . ,n− 2} common
neighbors as

Tm =
∣∣∣{{j, j ′} ⊂ {1, . . . ,n}

∣∣∣ j 6= j ′,m=
∣∣{i ∈ {1, . . . ,n}\{j, j ′}

∣∣γi,j,γi,j ′ 6= 0
}∣∣}∣∣∣ . (100)

Every twin pair with exactlym= 0 common neighbors, of which there are T0 =
(I
2

)
, contributes

with (d− 1)2 color assignments because equation (99) is trivially fulfilled for every choice of
(rj,rj ′) ∈ (Z/dZ)2. Every twin pair with exactly m= 1 common neighbors contributes with
exactly d− 1 color assignments because one can freely pick rj 6= 0 but rj ′ =−γi,jrj/γi,j ′ is
fully determined by the other parameters. All of these considerations lead to the lower bound
on A2 in equation (42) of the main text, which is tight if T2 = · · ·= Tn−2 = 0, e.g. if Γ does not
feature any cycles of length 4. In general, however, Tm ⩾ 0 for m⩾ 2. Then, rj ′ =−γi,jrj/γi,j ′
is again fully determined by rj, where i is one of the shared neighbors of j and j

′
. However, the

color assignment r only contributes to A2 if equation (99) is fulfilled for all common neighbors
i of j and j

′
; this may or may not happen. If it happens, there are again d− 1 color assignments

per valid twin pair. This establishes the upper bound on A2 in equation (42) of the main text.
Consider, for example, the qudit generalization |RCd(n= 4)〉 of the four-qubit RC state for

which the adjacency matrix is given by

RCd(4) =


0 +1 0 −1
+1 0 +1 0
0 +1 0 +1
−1 0 +1 0

 . (101)

This graph has I= 0 isolated vertices, L= 0 leaves, T2 = 2 twin pairs with two common neigh-
bors, and Tm = 0 twin pairs with m 6= 2 common neighbors. For every choice of d⩾ 2 (prime
or not), all edges have invertible weights. Hence, the only possibility for a color assignment
r= (r1,r2,r3,r4) ∈ Z/dZ to contribute to ARCd(4)

2 is if one pair of twin pairs is white, while the
other is not; without loss of generality, r1,r3 6= 0 and r2 = r4 = 0. Additionally, the induced Z-
operators on the qudits 2 and 4 must cancel, i.e. r1 + r3 = 0 and r1 − r3 = 0, which can only be
solved if d is even. Therefore, ARCd(4)

2 = 0 for all odd d. Since I= 0 implies that ARCd(4)
1 = 0

also, we recover the well-known fact that all 2-body marginals of |RCd(4)〉 are maximally
mixed, i.e. |RCd(4)〉 is AME [65]. In proposition 11 of [27], we computed the SLD of this
AME state for arbitrary odd d,

ARCd(4) =
(
1, 0, 0, 4(d2 − 1), d4 − 4(d2 − 1)− 1

)
. (102)
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From now on, consider the case of a general n-qudit graph state for which the dimension d
is a composite number. Then, Z/dZ contains zero divisors, which causes the SLD problem to
change from being mainly graph-theoretical to mainly algebraic in nature. For simplicity, we
limit our discussion to the case k= 1, where only color assignments with n− 1 white vertices
contribute to A1. For the vertex j which is not white, there are d− 1 choices for rj 6= 0 and, if
j is isolated, all of them contribute. Thus, we obtain a lower bound for arbitrary d,

A1 ⩾ (d− 1)I, (103)

which is a generalization of equation (41). For composite d, the bound in equation (103) is
not necessarily tight, e.g. if d= 6, n= 2, and γ1,2 = 2, then there are I= 0 isolated vertices but
the color assignment r= (3,0) still contributes to A1 = 2 because r1γ1,2 = 0 modulo 6, and
similarly for r= (0,3). For an arbitrary n-qudit graph state, we find for general d,

A1 =
n∑

i=1

∣∣{r ∈ Z/dZ
∣∣ r 6= 0 and (rγ1,i, . . . ,rγn,i) = (0, . . . ,0)

}∣∣ , (104)

or, using notions from commutative algebra [66],

A1 =
n∑

i=1

|AnnZ/dZ(Γei)\{0}|, (105)

where AnnR(x) denotes the annihilator of an element x ∈M in a module M over a ring R,
and ei is the ith standard basis element of (Z/dZ)n, i.e. Γei ∈ (Z/dZ)n is the ith column of
the adjacency matrix Γ. If x 6= 0, then AnnR(x) cannot contain any invertible elements; we
find |AnnZ/dZ(Γei)|⩽ d−φ(d), where φ is Euler’s totient function, i.e. φ(d) is the number of
invertible elements in Z/dZ. This yields an upper bound for general d,

A1 ⩽ I(d− 1)+ (n− I)(d− 1−φ(d)). (106)

Note that the second term in equation (106) vanishes if d is a prime. In this case, the bounds
in equations (103) and (106) combine to the result stated in equation (41) of the main text.

Appendix G. Proof of theorem 4

In this appendix, we derive a new family of SLD-based entanglement criteria. The purity
criterion [5] states that every fully separable n-qudit state ρ obeys

Tr[ρ2]⩽ Tr
[
TrJ[ρ]

2
]
, (107)

where J⊂ {1, . . . ,n} is a subset of parties and TrJ[ρ] is the reduced density matrix of the com-
plementary system JC = {1, . . . ,n}\J. Using the expansion in equation (27), the marginal state
can be written as

TrJ[ρ] =
∑

l∈(Z/dZ)m

1
dn

∑
r,s∈(Z/dZ)n

ρr,s〈l|JXr
dZ

s
d|l〉J (108)

=
1
dn

∑
r,s∈(Z/dZ)n

ρr,sX
r|J
d Zs|Jd

∑
l∈(Z/dZ)m

ω
s|J·l
d

〈
l
∣∣∣ r|J + l

〉
︸ ︷︷ ︸

=δr|J,0δs|J,0d
m

(109)
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=
1

dn−m

∑
r,s∈(Z/dZ)n
∀j∈J: rj=sj=0

ρr,sX
r|J
d Zs|Jd , (110)

where r|J = (rj1 , . . . ,rjm) denotes the restriction of r to J= {j1, . . . , jm} and likewise for s|J.
Consequently, the right-hand side of equation (107) takes the form

Tr
[
TrJ[ρ]

2
]
=

1
dn−m

∑
r,s∈(Z/dZ)n
∀j∈J: rj=sj=0

|ρr,s|2. (111)

In the next step of our derivation, we sum up equation (107) for all choices of J⊂ {1, . . . ,n}
with |J|= m. The right-hand side becomes∑

J⊂{1,...,n}
|J|=m

Tr
[
TrJ[ρ]

2
]
=

1
dn−m

∑
J⊂{1,...,n}

|J|=m

∑
r,s∈(Z/dZ)n
∀j∈J: rj=sj=0

|ρr,s|2 (112)

=
1

dn−m

n−m∑
k=0

∑
J⊂{1,...,n}

|J|=m

∑
r,s∈(Z/dZ)n
∀j∈J: rj=sj=0
swtd(r,s)=k

|ρr,s|2. (113)

For each choice of k and J, there are∣∣{r,s ∈ (Z/dZ)n
∣∣ ∀j ∈ J : rj = sj = 0,swtd(r,s) = k

}∣∣= (n−m
k

)
(d2 − 1)k (114)

terms in the inner sum of equation (113) as there are
(n−m

k

)
choices for k indices i ∈

{1, . . . ,n}\J with (ri,si) 6= (0,0) and, for each such choice, there are (d2 − 1)k choices for the
values of the nonzero entries of (r,s). Hence, there are

(n
m

)(n−m
k

)
(d2 − 1)k =

(n−k
m

)(n
k

)
(d2 − 1)k

terms in the inner two sums of equation (113) for each k ∈ {0, . . . ,n−m}. In contrast, there
are only

(n
k

)
(d2 − 1)k terms in the sum of equation (29). Due to our symmetrization, we thus

find ∑
J⊂{1,...,n}

|J|=m

Tr
[
TrJ[ρ]

2
]
=

1
dn−m

n∑
k=0

(
n− k
m

)
Ak, (115)

where, again, we have used the convention
(n−k

m

)
= 0 for all m> n− k. A similar calculation

leads to ∑
J⊂{1,...,n}

|J|=m

Tr[ρ2] =

(
n
m

)
1
dn

n∑
k=0

Ak. (116)

Since, for a fully separable state, the expression in equation (115) is always larger than the one
in equation (116), it follows that every state ρ with

n∑
k=0

((
n
m

)
− dm

(
n− k
m

))
Ak[ρ]> 0 (117)

is entangled. As we explain next, we have numerical evidence that the criterion in
equation (117) is strongest if m= 1. In this case, equation (117) simplifies to theorem 4.
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Our numerical evidence is as follows.We draw n-qubit states at random from theHaar distri-
bution. Then, we compute its SLD via equation (3). For everym ∈ {1, . . . ,n− 1}, we compute
the noise threshold below which Ineq. (117) is satisfied using a straightforward generalization
of corollary 5. We run this test for 1000 random per qubit numbers for all n ∈ {3,4,5,6,7,8}.
In every single case, we find that the noise threshold is a strictly decreasing function of m.
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