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Abstract: Due to the harm forest fires cause to the environment and the economy as they occur more
frequently around the world, early fire prediction and detection are necessary. To anticipate and
discover forest fires, several technologies and techniques were put forth. To forecast the likelihood
of forest fires and evaluate the risk of forest fire-induced damage, artificial intelligence techniques
are a crucial enabling technology. In current times, there has been a lot of interest in machine
learning techniques. The machine learning methods that are used to identify and forecast forest
fires are reviewed in this article. Selecting the best forecasting model is a constant gamble because
each ML algorithm has advantages and disadvantages. Our main goal is to discover the research
gaps and recent studies that use machine learning techniques to study forest fires. By choosing
the best ML techniques based on particular forest characteristics, the current research results boost
prediction power.

Keywords: machine learning; forest fires; wildfire; deep learning; drone; UAV; remote sensing;
Google Earth Engine (GEE)

1. Introduction

Forest fires are a ubiquitous and vital component of the Earth’s system [1], and it is a
year-round worldwide phenomenon that happens each month (Figure 1). According to [2],
the current estimate of the annual worldwide area burned is around 420 Mha, which is
more than the area of India. Grasslands and savannas account are the areas most affected by
forest fires. People start over 90% of forest fires, and flash of lightning is to blame for most of
the leftover ignitions. Humans may suffer severe effects from forest fires, directly through
fatalities and community devastation or indirectly through smoke and ash inhalation [3].

Forest fires have ramifications for global warming and the survival of flora and
fauna [3]. Early fire prediction and identification are crucial to limit damage and reduce
firefighting efforts. Millions are spent annually on fire management efforts to reduce or
stop forest fires [3]. Therefore, it is essential to comprehend forest fires and their triggers
and to improve forest fire prediction in several vital areas of forest fire management.

Two main measures are to be taken to prevent forest fires. The first is forest fire
incidence prediction, which essentially forecasts the forest fire eruption likelihood earlier in
its early ignition by modeling the relationship between the fire risk and significant factors,
for example, fuel content or weather conditions. The second measure is forest fire detection,
which involves identifying and locating existing active fires. The primary goal is to offer
precise localization and a fire alarm early, before the fire spreads over a vast region and
becomes uncontrollable.
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Figure 1. An aerial image displays fires engulfing plants as a forestry fire rages in Lebanon’s Ras El 
Metn area in October 2020. 

Forest fires have ramifications for global warming and the survival of flora and fauna 
[3]. Early fire prediction and identification are crucial to limit damage and reduce fire-
fighting efforts. Millions are spent annually on fire management efforts to reduce or stop 
forest fires [3]. Therefore, it is essential to comprehend forest fires and their triggers and 
to improve forest fire prediction in several vital areas of forest fire management. 

Two main measures are to be taken to prevent forest fires. The first is forest fire inci-
dence prediction, which essentially forecasts the forest fire eruption likelihood earlier in 
its early ignition by modeling the relationship between the fire risk and significant factors, 
for example, fuel content or weather conditions. The second measure is forest fire detec-
tion, which involves identifying and locating existing active fires. The primary goal is to 
offer precise localization and a fire alarm early, before the fire spreads over a vast region 
and becomes uncontrollable. 

Although fire activity can be measured on various scales (centimeters to kilometers, 
seconds to millennia), it does face some limitations. For instance, combustion and fire for-
merly are physicochemical processes that may be effectively signified at relatively fine 
scales in mechanistic models [4]. Nevertheless, the capacity to resolve important physical 
processes and availability of input data and the quality frequently constrain such models 
[5]. Furthermore, due to restraints associated with present processing capacity, it is im-
possible to use physical models to influence research and fire management at bigger and 
longer scales that are occasionally required in near real-time. Thus, forest fire management 
and science strongly rely on creating empirical and statistical models. For meso-, synoptic-
, strategic-, and global-scale phenomena [6], the value of which is contingent on their ca-
pacity to capture the frequently complicated and nonlinear interactions between variables 
of interest, in addition to data availability, including data quality. 

Although the intricacies of forest fires sometimes create modeling issues, significant 
breakthroughs in forest fire observation and monitoring have been accomplished, mainly 
due to the capabilities and increased availability of remote-sensing technology. Several 
satellites (NASA, TERRA, and AQUA) contain onboard fire detection sensors (Advanced 
Very High-Resolution, Radiometer (AVHRR), Visible Infrared Imaging Radiometer Suite 
(VIIRS), and Moderate Resolution Imaging Spectroradiometer (MODIS)). These sensors 
regularly monitor changes and vegetation distributions. Furthermore, advances in numer-
ical weather prediction and climate models provide lesser geographical resolutions and 
lengthier lead forecast times [7], potentially improving forecasting of intense fire weather 
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Although fire activity can be measured on various scales (centimeters to kilometers,
seconds to millennia), it does face some limitations. For instance, combustion and fire formerly
are physicochemical processes that may be effectively signified at relatively fine scales in
mechanistic models [4]. Nevertheless, the capacity to resolve important physical processes
and availability of input data and the quality frequently constrain such models [5]. Fur-
thermore, due to restraints associated with present processing capacity, it is impossible to
use physical models to influence research and fire management at bigger and longer scales
that are occasionally required in near real-time. Thus, forest fire management and science
strongly rely on creating empirical and statistical models. For meso-, synoptic-, strategic-, and
global-scale phenomena [6], the value of which is contingent on their capacity to capture the
frequently complicated and nonlinear interactions between variables of interest, in addition to
data availability, including data quality.

Although the intricacies of forest fires sometimes create modeling issues, significant
breakthroughs in forest fire observation and monitoring have been accomplished, mainly
due to the capabilities and increased availability of remote-sensing technology. Several
satellites (NASA, TERRA, and AQUA) contain onboard fire detection sensors (Advanced
Very High-Resolution, Radiometer (AVHRR), Visible Infrared Imaging Radiometer Suite
(VIIRS), and Moderate Resolution Imaging Spectroradiometer (MODIS)). These sensors
regularly monitor changes and vegetation distributions. Furthermore, advances in numer-
ical weather prediction and climate models provide lesser geographical resolutions and
lengthier lead forecast times [7], potentially improving forecasting of intense fire weather
occurrences. Given enough data, such advancements make a data-centric approach to forest
fire modeling a natural progression for many research challenges. As a result, there has
been a surge in attention to applying machine learning methods in forest fire management
and science in current years.

Despite the lack of a formal definition, we embrace the ordinary meaning of ML as
the study of computer algorithms that can improve themselves spontaneously via experi-
ence [8]. This method is inherently data-centric, with ML algorithm success determined
by the quality and amount of accessible data relevant to the job. In recent years, ML has
grown rapidly in the context of data analysis and computing, which typically allows the
applications to function in an intelligent manner. AI researchers seek to comprehend and
synthesize intelligent beings capable of acting in accordance with their circumstances and
aims, adapting to changing surroundings, and learning from experience [9]. A previous
work [10] outlined the incentives for employing AI for forested ecosystem-related research,
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including disruptions caused by forest fire, insects, and disease. Ref. [11] suggested using
ML approaches to represent complex problems in ecology. Current reviews in the geo-
sciences [12], extreme weather prediction [13], forest ecology [14], flood forecasting [15],
statistical downscaling [16], remote sensing [17], and water resources, show that the use
of ML models is effective [18,19]. Two current viewpoints have also presented persua-
sive cases for the use of deep learning in Earth system studies and for combating climate
change [20,21]. However, studies still need to consolidate the various ML techniques
employed in the diverse difficulties confronting forest fire research.

2. Artificial Intelligence and Machine Learning

New technologies are typically designed to make the process more manageable, pre-
cise, quicker, or less expensive. They also allow us to do or develop previously unattainable
jobs in certain circumstances. One of the most quickly expanding scientific procedures for
practical use in recent years has been (AI).

ML is an AI application in which data-trained algorithms produce AI. Artificial in-
telligence and machine learning have grown in popularity over the last decade thanks to
significant advancements in computer technology [22]. This popularity has resulted in
dramatic advancements in the capacity to gather and analyze enormous amounts of data.

2.1. ML Technologies

Machine learning is a collection of methodologies, tools, and computer algorithms
that teach machines to analyze, comprehend, and discover hidden patterns in data to make
predictions. The ultimate objective of machine learning is to use data for self-learning,
removing the need to train computers explicitly. Machines trained on datasets can apply
learned patterns to new data and generate better predictions [23]. The most popular
ML methods fall into three groups: Reinforcement learning, supervised learning, and
unsupervised learning [24,25].

� Supervised learning: Machines are taught to solve problems with the help of humans,
who gather and identify data and then “feed” it to systems. A computer is given
specific data features to examine to detect patterns, classify items, and assess whether
its prediction is correct or incorrect [26].

� Unsupervised learning: Methods are primarily concerned with grouping/clustering
uncategorized data. In this learning category, machines learn to spot patterns and
trends in unlabeled data without anyone being overseen by humans [27].

� Reinforcement learning: In a confined setting foreign to them, models must solve a
problem through a series of tries and mistakes. Machines are punished for errors and
rewarded for good trials, similar to a scenario in many games. They learn to find the
best answer this way [28].

2.2. ML Process

The standard procedure for analyzing DATA by machine learning comprises many
steps (Figure 2) Gathering data and choosing appropriate characteristics, building machine
learning models, and assessing the target systems [29].

All machine learning algorithms rely on data, which is essential for developing correct
ML models. As is well known, the amount of data is crucial, and it is commonly assumed
that adding more data will improve the accuracy of ML models. Even though this is
often true, data quality is not insignificant and should also be considered. Data sets with
insufficient or low-quality data (e.g., data that is difficult to recreate or contains significant
mistakes) might result in incorrect ML predictions, biasing the related result interpretation.
In this scenario, the first step in developing a credible ML model is to create a data set
that reflects the topic under consideration. The process of cleaning and altering raw data
before processing and analyzing is known as data preparation. It is a critical stage before
processing that frequently involves reformatting data, making changes, and integrating
data sets to enrich data. The original data may then be turned into samples to train the
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ML model after feature engineering and data cleaning (including selection and feature
extraction). The modeling stage addresses the core ML objectives of developing a model
that meets the project’s goals given a high-quality dataset with appropriate attributes. The
first three phases are Algorithm Selection, Hyperparameter Optimization, and Training, in
which an ML algorithm is selected, set up, and run to build a model. The above three stages
can be combined to form the challenge of Combined Algorithm Search and Hyperparameter
Optimization or Full Model Selection. Numerous iterations complete the problem, with
additional modifications to the dataset being required. The feedback loops between data
preparation and modeling are critical elements to depict these iterations.
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The diagnosis process is an addition to the standard approaches that bridge the gap
between a model’s performance and understanding, given that the results of a successful ML
project should be understandable to domain experts. Finally, professionals and researchers
can utilize these models to assure the accessibility of the findings obtained; we consider the
purpose of deployment as making the resultant model available to the application’s end-user.

2.3. Deep Learning (DL)

Deep learning is a branch of machine learning that takes inspiration from the structure
of the human brain, often referred to as artificial neural networks. Its objective is to develop
computer systems capable of learning patterns and gaining insights from data, enabling
them to make predictions or decisions in a manner similar to humans. Unlike traditional
machine learning algorithms, deep learning algorithms utilize multiple layers of processing.
Each layer serves as a model trained on data, with the output of one layer serving as input
for the next. This multi-layered approach allows deep learning algorithms to identify
complex patterns and gain deeper insights from data compared to traditional machine
learning algorithms [28]. There exists a variety of deep learning algorithms, among which
some of the most well-known are convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs). CNNs, in particular, are
widely employed in fire detection systems, primarily for detecting the presence of fires
in images. The deep learning approach has also been explored in forest fire prediction
systems, with CNNs being extensively utilized to address this specific issue [30].

3. Review of ML Technologies and Their Applications in Forest Fire Science

There are several studies in the literature discussing the use of machine learning
in forest fire science [31–33]. Here, we review publications relevant to forest fires that
investigate and employ machine learning approaches in multiple domains of application.
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3.1. Fire Detection

There have been several studies aimed at early fire detection in forest fires since fire
detection is an important area. There is growing interest in the use of newer technologies in
fire detection, such as machine and deep learning. Here are some methods that have been
proposed by research works.

In order to design a false alarm reduction system, ref. [34] conducted a study to evalu-
ate multi-source data, such as metrological geographic information, as well as visual and
infrared camera data. A detection rate of over 98% and a false alarm rate of 1.93% were
achieved by the study, which used WSN approaches in conjunction with the Backpropa-
gation Network (BPN), Radial Base Function Network (RBFN), Dynamic Learning Vector
Quantization (DLVQ), and MLP.

By assessing the Canadian FWI system’s forest fire features and residential fire tem-
perature Ionization Photoelectric CO gas, ref. [35] performed data analysis for the detection
of forest fires and residential fires. Distributed ANN and Naive Bayes were both used to
analyze these data. The accuracy of home fire detection in their study was 81%, whereas
the accuracy of forest fire detection was 92%.

Ref. [36] used UAV-based aerial images as their data to detect forest fires using a
Convolution neural network (CNN). Their study had an 83% preference accuracy.

The study’s goal was to self-organize and fault-tolerate the WSN model for forest fire
detection, which they achieved by evaluating meteorological data using the DT method [37].
Their study failed detection of about 45% of possible failure identification in the application.

Ref. [38] evaluated 17 fire films using FLURIA, OneR, and NN as classifiers in a study
to detect video-based fire. Their research produced an SVM of 90.9%.

Ref. [39] conducted a study similar to [36], in which they used the same classifier to
detect forest fires. However, they switched to aerial 360-degree imagery, which resulted
in higher performance accuracy (94%). Ref. [40] study aimed to detect forest fires using
UAV by analyzing thermal camera data using the Multilayer NN method. Their research
findings are not available.

Ref. [41] used MLP with WSN as classifiers to analyze a dataset made up of relative
temperature, humidity, smoke, and wind speed in order to detect forest fires in real-time.
An average communication load ratio of 2.5% to 8% was found in their investigation, both
with and without the use of the NN technique.

Using a fuzzy unordered rule induction algorithm (FURIA), NN, and OneR, ref. [42]
conducted a study comparing data mining approaches on WSN-based fire detection sys-
tems. They arrived at their conclusions by assessing various combinations of temperature,
humidity, light, and CO. Three percentages of occurrences were accurately classified as a
consequence of their study: FURIA: 87.6, OneR: 71.6, and NN: 93.8%.

In order to identify fire using a data fusion system, ref. [43] did a comparison study.
To do this, they evaluated temperature, humidity, light intensity, and CO using fuzzy logic
in the WSN approach. They did not have any outcomes for their study.

Ref. [44] looked into a CNN camera-based fire detection model that has been fine-tuned
through the analysis of CCTV security cameras. Their investigation’s accuracy, precision,
recall, and F-measure were 94.3%, 0.82, 0.98, and 0.89, respectively. According to [45], the
study aimed to detect forest fires by evaluating fire and fire-like object videos using the
Rule-Based image processing algorithm. For their study, recall was 93.13%, precision was
92.59, F-score was 92.86, and the false detection rate was less than 40%.

Ref. [46] study’s goal was to detect fires with fuzzy logic and a home monitoring
system, which they achieved by evaluating temperature, humidity, CO, and smoke in the
WSN method with fuzzy logic. Their study yielded a 6.67% error ratio.

The study’s goal was to detect forest fires using multi-sensor WSN, which they accom-
plished by evaluating temperature, humidity, smoke, and light sensors using the Naive
Bayes method [47]. Their study had a 94% accuracy rate.

Ref. [48] investigated fire detection using UAV imagery as their data and evaluated it
using the deep convolutional NN, which had a performance accuracy of more than 95%.
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Ref. [49] aim to identify a dominant combustion phase in real-time by evaluating smoke,
CO2, and temperature with an MLP classifier. Their research yields an accuracy of 82.5%.

Ref. [50] used deep CNN and SVM to evaluate fire photos in order to evaluate their
experiment’s goal of detecting fire occurrences in photographs. Their research produced
two accuracy levels: Patch locations (SVM 92.2% and CNN 93.2%) and global image-level
testing with Deep CNN with 90% accuracy.

3.2. Fire Prediction

Disaster preparedness depends on predicting forest fires. Novel forest fire prediction
technology would, therefore, enable better management of forest fires. This domain has
been successfully tackled through the use of machine learning and deep learning methods.
Some methods suggested by research works are listed below.

According to Arpaci [51], the study evaluated topology, infrastructure, and socioe-
conomic data before using the RF predictor to forecast fire. Their research produced an
accuracy rate of 78%.

The chance of a fire occurring was explored by [52] using a Bayesian analysis of data
based on eyesight. A false positive rate of 0.68% and a false negative rate of 0.028% were
found in their study.

In order to forecast fire ignition, ref. [53] used logistic regression to analyze terrain,
vegetation kinds, meteorological conditions, climate, and human activities. Their research
produced an accuracy rate of 85.7%.

Ref. [54] used MLP and fuzzy logic techniques to analyze multi-sensor data, temper-
ature, smoke density, and CO density in order to predict fire likelihood. The error value
from their study was 10−4.

The ignition probability prediction of a forest fire was made using a model created by
analyzing data from raster GIS, including the date of occurrence, geographic coordinates,
cause of ignition, land use, and burned areas [55]. These data were evaluated using logistic
regression and MLP as experimental techniques. Their findings included ANN accuracy of
75.5% with ignition and 87.8% without ignition, as well as logistic regression accuracy of
78.8% with ignition and 74% without ignition.

Research on chosen and prioritized biotic, abiotic, and human factors that affect forest
fire activity was done by [56]. They used the BNN approach to analyze a satellite-based
fire dataset (MODIS) for their investigation. A recall of 0.963, a specificity of 072, and an
accuracy of 0.961 were obtained from their study.

Ref. [57] used the CNN method to evaluate landscaping, fuel types, and weather
conditions in order to predict the time-resolved spatial evolution of a forest fire. Their
research produced a mean precision of 97%, sensitivity of 925, and an F-measure of 93%.

Ref. [58] used the LSTM classifier to evaluate weather and forest fire data to predict
the forest fire scale, which performed with 90.9% accuracy.

Ref. [59] found that using weather, location, and time to predict forest fires using a
fuzzy inference system was 75% accurate.

By employing the CART technique to assess environmental characteristics such veg-
etation status, accessibility, fire history, and topography, ref. [60] sought to identify the
occurrence of fire in certain models. The accuracy of their study was 88.39%.

In their study, ref. [61] evaluated the NDVI composite MODIS data using the Multilayer
feedforward networks (MLFN) as the classifier to determine the high-risk FFD based on
information in the pixels of multi-temporal satellite pictures. The accuracy and MSE values
of their investigation were 90% and 0.07, respectively.

Ref. [62] used Random Forest (RF) Multiple Linear Regression to evaluate 37 variables
taken from multiple databases spanning diverse features in order to develop models of fire
occurrence likelihood and the contributing factors (MLR). According to the RF classifier,
their investigation produced a total price-fire season variable of 93.31% and 179% for no-fire
season. The MLR processor’s metrics for the no-fire season variable and the fire season
variable were, respectively, 49.193 and 22.15.
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In order to study human-caused fire occurrence modeling, ref. [63] employed logistic
regression to assess weather information, regional traits, and historical records of daily fire.
Their research produced an accurate range for the total proportion of accurately anticipated
fires of 47.4% to 82.6%.

Ref. [64] used the Boosted regression tree classifier to mask a forest fire’s susceptibility.
They assessed using two satellite images (OLI and MODIS), yielding an accuracy of 0.89.

Ref. [65] investigate the establishment of forest fire susceptibility by evaluating topo-
graphical, meteorological, and geological data using BRT, GAM, and RF methods. Their
research yielded three inaccuracies (BRT: 80, 74; RF: 72, 79; GAM: 87, 70).

Ref. [66] investigated the occurrence of fire forecasting by analyzing weather data with
the auto-learn framework, achieving an accuracy of 87%.

Using three classifiers, ref. [67] evaluated the following data: Socioeconomic, economic
activity, and fire-causing potential (LR, SVM, RF). Their research had a 74.6% performance
accuracy and was intended to investigate the frequency of human-caused forest fires.

A study by [68] uses several machine learning models to predict the spread and
behavior of forest fires using a dataset collected from Brazilian government open data.
Their research yielded the following findings: AdaBoost model accuracy is 91%, RF model
accuracy is 88%, ANN model accuracy is 86%, and SVM model accuracy is 81%.

Weather observations were used by [69] to forecast the Fire weather index. The NN
predictor was utilized, and the performance error rate was 9%.

Ref. [70] conducted a study to predict the occurrence and size of forest fires, which
they accomplished by analyzing a monthly resolution global dataset of burned areas in
0.25◦ 0.25◦ regions around the entire globe for the year 2015 using multiple ML models
such as random forest, XGBoost, multilayer perceptron, and logistic and linear regressions.
Their study yielded an XGBoost accuracy of 94%, logistic regression accuracy of 81%, RF
accuracy of 89%, and MLP accuracy of 90%.

By analyzing GIS data, multi-temporal MODIS data, and meteorological ALADIN
data using the BT, RF, Logistic regression, Naive Bayesian (NB), and SVM algorithms,
ref. [71] were able to predict forest fires. The outcomes of their research were as follows:
84.9% accuracy for BT, 82.5% accuracy for RF, 83% accuracy for logistic regression, 81%
accuracy for NB, and 83% accuracy for SVM.

Ref. [72] predicted the danger of forest fires using the same data as [59]. They did,
however, use a different predictor, the DFP-MnBpAnn. A study by [72] has a higher
performance accuracy of 89%.

In a study on predicting the factors’ significance in a fire initiation threat scheme,
ref. [73] used MLP and BPA to analyze meteorological data, vegetation, and topological
human presence data. According to their research, the following factors (PI) had the highest
percentages of influence: 35.9% rainfall in the previous 24 h, 1028.7% temperature, 60.3%
fuel moisture (10 h), 16.9% aspect, 17.3% primary road network, and 14.3% for the month
of the year.

Ref. [74] conducted a comparative study of ANN and logistic regression models in the
context of human-caused fire prediction systems. They evaluated spatially differentiated
data managed in a Geographical Information System and applied logistic regression (RBFN)
as a method. Their study yielded an ANN accuracy of 85% for no-fire correct prediction.

In a study by [75], a combination of locally weighted learning (LWL) algorithm with
ensemble learning techniques, such as Cascade Generalization (CG), Bagging, Decorate,
and Dagging, was employed to predict forest fire susceptibility in the Pu Mat National Park,
Nghe An Province, Vietnam. The training process involved utilizing a geospatial database
containing 56 historical fire records and nine explanatory variables to train the standalone
LWL model as well as its derived ensemble models. To assess the models’ performance
and predictive capability, several statistical performance criteria were employed, includ-
ing the area under the receiver operating characteristic curve (AUC). The CG-LWL and
Bagging-LWL models exhibited the highest training performance, with an AUC of 0.993.
Furthermore, the Dagging-LWL ensemble model, with an AUC of 0.983, outperformed the
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Decorate-LWL (AUC = 0.976), CG-LWL and Bagging-LWL (AUC = 0.972), and standalone
LWL (AUC = 0.965) models in predicting the spatial pattern of fire susceptibilities across
the study area.

3.3. Fire Mapping

ML methods have been relatively recently introduced in fire mapping studies in
comparison to other fields. However, these studies have already incorporated a diverse
range of ML methods. Below are some of the methods recommended by research studies:

Ref. [76] used UAV imagery as research data to map fire severity. Their experiment
employed the Random Forest Classifier, which achieved a performance accuracy of 89%.

Using the logistic regression method and GIS-based data, ref. [77] carried out a study
to map the fire ignition risk based on human activities and presence factors. Their research
yielded a global accuracy of 79.8%, an ignition prediction accuracy of 78.2%, and an ignition
prediction accuracy of 82.7%.

In their study, ref. [78] used the SVM method to analyze meteorological data in order
to identify burned areas that they had reached. The MAD and RMES predictions were
13.07 and 64.7, respectively. Their study’s performance has a 12.7% error rate.

Ref. [79] did a study with the goal of creating a map of the susceptibility of forests to
fires. To do this, they used BPN to evaluate GIS-based data. Their research produced a
78% agreement.

On the study site, ref. [80] assessed fire severity mapping using Sentinel satellite
imagery and a Random Forest classifier. Their study performed admirably, with a 98%
accuracy level.

Ref. [81] mapped the burned areas using Landsat Thematic Mapper imagery (TM).
With a performance accuracy of more than 93%, they have identified it using SVM and nine
additional classifiers.

Ref. [82] used spectral bands (MODIS) as data assessed by the supervised minimum
distance classifier to map the burned areas with 90% accuracy.

Ref. [83] investigated the spatial performance of forest fires by evaluating the weather,
vegetation, and infrastructure using the MARS-DFP classifier. The study was completed
with an accuracy of 86.5%.

In a study by [84], five hybrid machine learning algorithms were developed to map
forest fire susceptibility in the northern region of Morocco. These algorithms are Fre-
quency Ratio-Multilayer Perceptron, Frequency Ratio-Logistic Regression, Frequency Ratio-
Classification and Regression Tree, Frequency Ratio-Support Vector Machine, and Fre-
quency Ratio-Random Forest. The mapping process involved utilizing a dataset consisting
of 510 historic forest fire points as the forest fire inventory map and ten independent causal
factors, including elevation, slope, aspect, distance to roads, distance to residential areas,
land use, normalized difference vegetation index, rainfall, temperature, and wind speed.
To evaluate the models’ effectiveness, the area under the receiver operating characteristics
curves (AUC) was computed. The results revealed that the Frequency Ratio-Random Forest
model achieved the highest performance with an AUC of 0.989, followed by Frequency
Ratio-Support Vector Machine with an AUC of 0.959, Frequency Ratio-Multilayer Percep-
tron with an AUC of 0.858, Frequency Ratio-Classification and Regression Tree with an
AUC of 0.847, and Frequency Ratio-Logistic Regression with an AUC of 0.809 in predicting
forest fire occurrences.

3.4. Evaluating Data Collected from Forest Fires

Datasets have played a pivotal role in driving progress and fostering innovation
in machine learning research. They enable the evaluation and comparison of model
performance. As the availability of extensive forest fire datasets continues to increase,
there is a significant opportunity to utilize ML and DL methods that can efficiently extract
relevant features from the data. Here are some studies covering several datasets and ML
methods in forest fire domain.
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The CNN method was used in a study by [85] to evaluate the IRIS dataset. There were
no reported outcomes.

A study by [86] employed the R-CNN method to evaluate data from the ConFoBi
project. Their analysis produced a precision of 43.4% and a precision of 92.4%.

The CNN method was used in a study by [87] to evaluate images captured by a drone.
There were no published findings from the study.

The YOLOv3 method was used in a study by [88] to evaluate drone videos. Their
study had an 82% precision, 79% recall, and a FI score of 81%.

In a study by [89], the Bi-CNN method was used to evaluate the YUPENN, BUAA,
and Maryland datasets. Their research yielded a mean accuracy of 93%.

A study by [90] compared the UAV dataset Kaggle, drone images, and open-source
photos using the DenseNet121, Resnet52, and MobilNetv2 networks. Their research yielded
a DenseNet accuracy of 93.1%.

A study by [91] used DenseNet121, Resnet52, and MobilNetv2 to evaluate COCO-
Dataset. Their research yielded a mobile net accuracy of 87.5%.

Ref. [92] evaluated images created with the CycleGan and DenseNet methods. The
study’s results were 99.38% precision, 98.16% FI-Score, and 98.27% accuracy.

A study by [93] used CNN and RNBFE methods to evaluate the UCM and WHU RS
datasets. Their research yielded UCM accuracy of 97.84% and WHU accuracy of 97%.

The FLAME dataset was evaluated using the CNN and UNet methods in a study
by [94]. Their research yielded CLA accuracy of 76.23%, SEG recall of 83.88%, precision of
91.99%, and a FI score of 87.75%.

A study by [95] used UNet++ and UNet methods to evaluate data collected from a
forest fire in Andong, Republic of Korea, on April 20. Their study yielded specificities of
91.77% and 83.11%.

A study by [96] used mobile net V3 and YOLOv4 methods to evaluate MSCOCO and
collect images. Their research yielded 99.21% recall, 99.21% precession, 99.57% accuracy,
and 75.68% interference time reduction.

A study by [97] used Mobile Net v2, CNN, FireNet, and AlexNet methods to evalu-
ate 2096 images collected from the internet. The study yielded 2.5M parameters with a
99.3% accuracy.

A study by [98] employed FireNet to evaluate images from Google on Baida and the
AInML lab dataset (DCNN). Their study had a 98% accuracy rate.

A study by [99] evaluated drone images using the author’s model as the method. Their
research yielded an accuracy of 81.97%.

In a study by [100], seven ML approaches were employed to assess active fire pixels
obtained from MODIS monthly MCD14ML composites. The ML approaches utilized were
Logistic Regression, SVM, Linear Discriminant Analysis, as well as ensemble algorithms,
such as eXtreme Gradient Boosting, Random Forest, Gradient Boosting, and AdaBoost
(AB). Five performance metrics, namely average accuracy, F1 score, precision, recall, and
area under the curve, were employed for evaluation. The AUC values ranged from 0.817
to 0.879 across the seven methods, while accuracy scores ranged between 0.734 and 0.812.
The results indicated that the RF model consistently outperformed the other approaches
across all performance metrics.

4. Discussion

In this section, we discuss some suggestions and significant challenges of integrating
ML and forest fire science, as well as identify several research priorities for the future.
The benefits of powerful, efficient ML methods in forest fire science and management are
widely anticipated. We examined some considerations for using ML methods in forest fires
in our review of studies, including data considerations, model selection, and accuracy, and
which forest fire domains have been used.

� To develop forest fire resilience, it is essential to mention that big data measurement
and analysis connected to fire occurrences and forecast of fire events require a more
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robust framework involving the government and populations living nearby fire-
prone expanses. More research is needed to investigate such frameworks based on
community social media interactions and crowdsourced event sensing.

� Cloud computing platforms have been developed to provide computational and data
storage resources to cope with these massive datasets, particularly remote sensing big
data, which have caused significant issues. The large volume, high spatial-temporal
resolution, and complexity cause these problems. In any case, data processing and
administration are critical in making use of substantial geographic datasets. Google
Earth Engine (GEE) is one of the most promising and practical solutions for an-
alyzing remote sensing big data. It provides access to the most freely available,
multi-temporal remote sensing data, and offers scalable, cloud-based computational
power for geospatial data analysis. These remote sensing data can be imported and
processed rapidly on the cloud platform, eliminating the requirement to download
data to local computers for processing [101,102].

� GEE provides various RS algorithms for image enhancement, image classification,
and cloud masking. These algorithms can be used to improve the quality of images
by reducing noise or improving accuracy. These algorithms are easily access customiz-
able and accessible and enable data processing and visualization at various scales
via JavaScript or Python Application Program Interfaces (APIs) [103–106]. These
capabilities eliminate most of the time-consuming preparation processes required in
traditional RS techniques.

� ML is a data-centric modeling paradigm that can be used to detect patterns in data.
It is best suited for problems with sufficient high-quality data. However, this tool
only comes into play when the situation calls for it, which is not always the case. To
address the fundamental issue of data scarcity while eliminating human error, we
might construct new synthetic data instances where training a forest fire detection
model with synthetic datasets enhances model performance [107].

� In forest fire domains, where most ML applications use some type of imaging, remote
sensing plays a crucial role in data collection [108]. Although continued advances in
remote sensing have increased the availability of large spatiotemporal datasets, not
all satellite images have good resolution. In addition, weather may not be stable in
all situations as it varies, resulting in noisy images. UAVs can collect high-resolution
photos of the forest. They can give additional frequent and precise pictures of the
forest canopy than ground-based imaging due to their excellent mobility and ability to
cover large regions at minimal expense [109]. As a result, more accurate fire location
detection is achievable than satellite photography. As a result, the combination of
UAVs and machine learning could be highly effective for detecting forest fires in their
early stages. It can also be beneficial for transmitting critical information to relevant
authorities via efficient communication technology [110]. These features of UAVs
make them effective as a solution for the real-time detection of forest fires utilizing
UAV footage in various light and weather conditions.

� Due to their superior performance compared to traditional image recognition methods,
deep learning algorithms have become increasingly popular in the last decade for
using spatial features to help identify and predict fire behavior. This has resulted
in a sharp rise in the application of deep learning for forest fires applications. Deep
learning has the advantage of learning numerous layers of representations for data,
which can better capture the complicated structure of data and increase pattern
recognition performance compared to typical machine learning approaches.

5. Conclusions

This research reviewed several studies proposed for integrating machine learning
techniques in forest fire science. According to the papers examined, developing advanced
systems incorporating artificial intelligence is a promising direction that forecasts such
significant environmental issues and helps public policies in the prevention of forest fires.



Appl. Sci. 2023, 13, 8275 11 of 15

Machine learning in forest fire science poses disadvantages—ML systems, which require
a large amount of data to train, are frequently unavailable during forest fires. Next, ML
learning approaches require a large amount of computing power, which can be expensive
and difficult to scale. Finally, the accuracy of ML learning system predictions in the
real world may be challenging to evaluate. Furthermore, while ML models can learn
independently, expertise in forest fire research is required to provide realistic modeling
of forest fire processes through many scales. The complexity of some ML methods needs
devoted and sophisticated knowledge of their application. This study aims to provide
scholars with an overview of the state-of-the-art in the threat of forest fires, which is still an
open subject.
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