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Part I

Introduction





1 General introduction

1.1 The sonority challenge

Sonority is a central notion in phonetics and phonology, with many useful for-
mal applications, yet it has remained vague in too many important respects. The
centrality of sonority is primarily derived from the important theoretical weight
that it carries in descriptions of syllables in phonology. Sonority is a single hier-
archical concept that is most often used to characterize all speech sounds along
a single scale in a manner that is pivotal for generalizing preferences and restric-
tions on syllabic organization.

However, even after many decades in which sonority has played a crucial role
in phonology, there is no consensus with regards to its phonetic basis in articu-
lation or perception of speech. Many proposals have been debated, but no real
consensus has ever been reached. Sonority therefore presents an ongoing pho-
netic challenge. A good overview of the multiplicity of proposals for the basis of
sonority can be found in the various publications by Stephen Parker, from his dis-
sertation (Parker 2002), to subsequent publications (like Parker 2012, 2017, 2018)
that meticulously document the vast research related to sonority in the linguistic
literature.

The most prevalent models of sonority are based on the Sonority Sequencing
Principle (SSP) and they are very characteristic of linguistic models from the sec-
ond half of the twentieth century, whereby the speech signal is represented as a
sequence of discrete units, phonological processes are modeled as symbol manip-
ulating rules, and time is accounted for in terms of the non-overlapping linear
order of the discrete units in symbolic representations (see Section 3.1).

It may very well be the case that little progress has been made in the theory of
sonority since the turn of the century because of the constraining role that SSP-
based models play with regards to phonetic dimensions. Specifically, the classic
theoretical idea that the speech signal is composed of segments that have a fixed
sonority value, which they share with other members of the same category, may
have created an impossibility in the traditional theory. This is because the speech
signal does not in fact lend itself to such analyses of non-overlapping discrete
units with fixed sonority values (see Section 3.1). Such units can only be extracted
from a humanmind. In other words, the classic theory may have created a formal
notion of sonority that simply cannot be found in any phonetic space.



1 General introduction

The challenges of sonority are therefore at the intersection of phonetics and
phonology. Chiefly, these are issues pertaining to phonetic substance itself and
to phonological theory, which accounts for the parts of the system that are lin-
guistically relevant. A better model of sonority would seem to require novelties
on both fronts.

1.2 Beyond correlates

Another issue highlighted by the notion of sonority, and directly related to the
above, is the lack of explanatory power in many phonological models. A good
example of this problem can be gleaned from the common practice of suggesting
acoustic correlates for various linguistic phenomena, without any related attempt
to suggest plausible causation. This is very often the case when the suggested
acoustic correlates do not seem to have any clear and consistent links to the
perception or articulation of speech. In many other cases, the implied causation
can be misguided. A case in point is the use of physical acoustic intensity as a
correlate of linguistic phenomena – sonority inter alia – although the physical
amplitude of the entire signal does not consistently relate to perceived loudness,
or any other aspect of perception and/or articulation (see details in Section 2.2.3).

Thus, it seems already at the outset of this project that in order to suggest a
form of phonetic substance for sonority we need to be able to explain its function
in the language system, beyond its ability to exhibit statistical correlations with
sonority hierarchies. This cannot be achieved with a few tweaks in traditional
discrete and symbolic models, as they are too far removed from cognitive plau-
sibility owing to their classic computer-like architectures (see Chapter 3). The
mainstream models of phonology from the second half of the twentieth century
are simply not designed to achieve explanatory goals of this kind.

1.3 Goals and motivations of the current endeavor

The challenges that sonority presents are far-reaching, as apparent from the
list of problems detailed above. Solving them requires a host of theoretical and
methodological novelties that necessitate a relatively large-scale effort. To un-
dertake these challenges, this work aims to determine what sonority is, what it
does, and how it does it. To this end, it is also imperative to break away from tra-
ditional discrete and symbolic models in linguistics by incorporating continuity
and dynamics in a perception-based model of phonology.

4



1.4 A note about terminological choices

1.4 A note about terminological choices

Terminology can be confusing. Often there are multiple terms for the same thing,
and they are sometimes loaded with differing implications in different scientific
and professional circles. The following description of terminological interpreta-
tions is intended to reduce confusion for readers of this book.

The terms consonant and vowel are used here broadly to denote the phono-
logical entities, which also consider the position within the syllable. In some
cases, when it is specifically relevant to only refer to phonetic features (i.e. only
to the degree of vocal tract stricture), I use the terms contoid and vocoid (re-
spectively), following Pike (1943).

Successive consonants that follow each other in the phonological description
are either referred to as a sequence or a cluster. The latter has a more specific
meaning, implying that clusters are syllabified together in a single syllable, thus
constituting a tautosyllabic complex onset or coda. The term sequence is used
when no implication is made about the status of the two successive items, which
could also be heterosyllabic.

When writing about auditory perception, it can be useful to keep acoustic
and perceptual aspects separate via distinct terminology. The terms intensity,
power and amplitude relate to the acoustic signal. They are often interchange-
able although whenever the distinction between the raw pressure and the log-
transformed dB scale is relevant, I use power for the raw pressure and intensity
for the the log-transformed dB scale. Crucially, the related term for perception of
acoustic strength is consistently loudness. Likewise, F0, or the fundamental
frequency, always refer to the acoustic signal. The related term in perception
is pitch.

Note that the terms tone and tune have specificmeanings in linguist contexts.
A tone is a pitch target with a communicative function that is either part of
the lexical repertoire (e.g. lexical tone) or the post-lexical repertoire (e.g. a pitch
accent/boundary tone). A tune is often used to describe larger intonation contours
(that are commonly analyzed as being composed of tones).

This book deals with discrete vs. continuous, and with symbolic vs. dy-
namic entities or elements. These pairs are interchangeable in the majority of
the contexts used here. Likewise, the terms trajectory and curve, as they are
used here to denote graphs within plots or, more abstractly, when describing the
progression of a certain feature in time, are largely interchangeable.

5



1 General introduction

1.5 Conventions

Phonemic depictions of speech are presented in this book with mostly standard
IPA conventions. A few diversions from the IPA norm include the use of acute
accents (´) on the vowel (e.g. é, ó, á) to mark the stressed syllable, and the use
of the simple grapheme /c/ to denote the voiceless alveolar affricate, which is
transcribed with the complex grapheme /t͡s/ in the standard IPA.

Within phonemic transcriptions, a dash (-) is sometimes used to mark mor-
pheme boundaries, while a dot (.) is used to mark syllabic boundaries. For in-
stance, dla.t-ót stands for ‘door-pl’ in Modern Hebrew, where the suffix -ot forms
a syllable with the final consonant of the base morpheme (/t/), as shown by the
location of the dot.

1.6 Scope of book

The current book is divided into five parts in an attempt to address all the nec-
essary issues mentioned above. The first part, Introduction, includes this chap-
ter (Chapter 1) and two more chapters that present the relevant background on
sonority (Chapter 2) and linguistic models more generally (Chapter 3).

The second part, Novel theoretical outlooks, contains three chapters that pres-
ent the new theoretical proposals that this work develops: (i) the PRiORS frame-
work for modeling auditory perception (Chapter 4); (ii) the proposal for sonor-
ity’s perceptual cause and acoustic correlate, and the new sonority-based crite-
rion for well-formedness determinations, the Nucleus Attraction Principle (Chap-
ter 5); and (iii) the implementation of the Nucleus Attraction Principle in both
symbolic and dynamic terms as two separate models (Chapter 6).

The third part, Evidence in support of the Nucleus Attraction Principle, consists
of two chapters. Chapter 7 presents an experimental study that analyzes data
from perception tasks carried out by native speakers of German and Modern
Hebrew. Chapter 8 presents a corpus study that looks at some phonologized reg-
ularities in Modern Hebrew.

The last chapter in which new data is presented (Chapter 9) constitutes the
fifth part of this book, titled Further contributions of periodic energy to the study
of prosody. This chapter is a showcase for the ProPer toolbox, which is an ongoing
open-source project building on the assumptions proposed here for sonority in
order to develop new acoustic tools for the study of prosody.

This book ends in the Conclusion part (Chapter 10), with short discussions on
issues that this work can contribute to, followed by the closing section,Directions

6
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for future work. The discussions cover implications of the current work on issues
such as analysis of phonotactic phenomena, the universality of sonority and the
typical interpretations of the classic phonetics–phonology dichotomy.

7





2 Sonority: Background

Sonority is a fundamental notion in phonetics and phonology, playing a crucial
role in accounts of the syllable in linguistic theory (as a good indication in sup-
port of this claim, Parker 2018 cites 2413 titles involving sonority). The topic of
sonority can be roughly divided into two related theoretical constructs: (i) sonor-
ity hierarchies (or scales) and; (ii) sonority principles (or generalizations). Sonority
hierarchies locate all speech sounds on a single scale, while sonority principles
are universal generalizations about the well-formedness of syllables. Sonority
principles require a sonority hierarchy to model the well-formedness of sylla-
bles given their underlying sequence of consonants and vowels. Thus, a model of
sonority is capable of predicting distributional patterns of consonants and vow-
els in all human language systems in terms of phonotactics – preferences and
restrictions with regards to possible combinations of segmental sequences.

Sonority hierarchies and principles are designed to model speech in discrete
terms. Thus, sonority models standardly express sonority in terms of integers
that are associated to classes of consonants and vowels along an ordinal sonor-
ity hierarchy. Syllabic well-formedness is computed from the concatenation of
these values in symbolic time (i.e. from linearly ordered non-overlapping sym-
bols). This type of modeling lacks robust cognitive motivations as it assumes –
explicitly or implicitly – that linguistic processing is analogous to the workings
of a computer despite strong evidence to the contrary (see Chapter 3 and espe-
cially Section 3.1).

Although widely used and accepted, the notion of sonority at the same time re-
mains vague and highly contested for various reasons. To date, no real consensus
exists with respect to the phonetic basis of sonority in terms of a consistent artic-
ulatory or perceptual phenomenon which sonority distinctions could be derived
from. This results in a multitude of different sonority hierarchies. Furthermore,
the lack of a phonetically useful metric for sonority plagued most sonority mod-
els with inherent circularity, as sonority hierarchies are often both determined
and confirmed by attested segmental combinations, without recourse to any in-
dependently motivated phenomenon (Ohala 1992). Moreover, sonority principles
such as the widely used Sonority Sequencing Principle (SSP) have been taken as
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axioms with formal definitions that lack an explicit functional motivation relat-
ing to speech articulation or perception. This choice of architecture for the SSP
resulted in some of the persistent failures of SSP-based models, such as the un-
predicted prevalence of /s/-stop clusters on the one hand, and the unpredicted
rarity of sonorant plateaus on the other (see Section 2.2).

2.1 Hierarchies and principles

2.1.1 Sonority hierarchies

A sonority hierarchy is a single scale on which all consonant and vowel types can
be ranked relative to each other.1 Such hierarchies can be traced back centuries,
and concepts akin to sonority hierarchies can be found already in the pioneering
works of early Sanskrit grammarians. Donegan (1978) notes that Pāṇini and the
Sanskrit grammarians used the term svara to imply some kind of harmonic mu-
sical quality which applies mainly to vowels. Parker (2002: 58) notes further that
the Sanskrit grammarians observed natural classes for speech sounds that are
“grouped according to their degree of ‘opening’ (vivāra)”. Early versions of cur-
rent sonority hierarchies are often dated to Sievers (1893), Jespersen (1899), and
Whitney (1865), while Ohala (1992) even goes as far back as de Brosses (1765).

While the phonetic basis of sonority hierarchies remains controversial, phono-
logical sonority hierarchies have been primarily based on repeated observations
that revealed systematic behaviors of segmental distribution and syllabic organi-
zation within and across languages. The general consensus regarding the phono-
logical sonority hierarchy thus stems from attested cross-linguistic phonotactic
behaviors of different segmental classes, such as, for instance, the preference for
stop-liquid sequences in onset positions (e.g. /kl/ in the English word clean) and
for the mirror-image liquid-stop sequences in coda positions (e.g. /lk/ in the En-
glish word milk), but not the other way around. See examples in Zwicky (1972),
Selkirk (1984), Parker (2002), Jany et al. (2007), and recall Ohala’s (1992) related
criticism regarding the circularity that results from determining sonority hier-
archies according to attested behavior without another independent (phonetic)
variable (see also Yin et al. 2023).

Most common phonological sonority hierarchies group segment types into
classes that primarily reflect the standard manners of articulation in traditional

1Note that a related notion of strength hierarchies makes similar distinctions, yet in the oppo-
site direction (stronger = less sonorant). Strength hierarchies are mostly evoked in relation to
lenition processes rather than phonotactic phenomena.

10



2.1 Hierarchies and principles

phonology. The distinct categories commonly used include stops, fricatives, na-
sals, liquids, glides, and vowels, often with additional distinctions such as voicing
and vowel height.2 Although there are many different proposals for sonority hi-
erarchies (Parker 2002 found more than 100 distinct sonority hierarchies in the
literature), a very basic hierarchy that seems to reach a considerable consensus,
and is often cited in relation to Clements’s (1990) seminal paper is given in (1).

(1) Obstruents < Nasals < Liquids < Glides < Vowels

The ordering of different speech sounds along the sonority hierarchy is as-
sumed to be universal, in line with the common assumption that sonority has a
phonetic basis in perception and/or articulation, yet the patterning of segmental
classes as distinct groups along the scale is considered to be language-specific, i.e.
based on phonological categorization. For example, voiceless stops may be con-
sidered universally lower than voiced fricatives on the sonority hierarchy, yet
for some languages and analyses they may constitute a single level of obstruents.
Classes along the sonority hierarchy are most commonly modeled as a series of
integers (often referred to as sonority indices) reflecting the ordinal nature of
phonological interpretations of the sonority hierarchy.

The main differences that result from variation of the basic hierarchy in (1)
concern the class of obstruents, which may contain voiced and voiceless variants
of stops and fricatives (to mention just the most prominent distinctions). It is
therefore not uncommon to expand the class of obstruents, whereby stops are
lower than fricatives and voiceless consonants are lower than voiced ones. Note
that vowels are often also commonly divided into subgroups along the sonority
hierarchy (see Gordon et al. 2012), but these distinctions will be irrelevant in the
context of this work.

The two variants of sonority index values given in Table 2.1 thus reflect two
ends of a common sonority hierarchies spectrum. These range from hierarchies
that collapse all obstruents together into a single class (resulting in the same
sonority index value for all obstruents), to hierarchies that expand the class of
obstruents by employing voicing distinctions as well as manner distinctions be-
tween stops and fricatives (resulting in multiple sonority index values within
the class of obstruents). In what follows I will refer to these two versions of the
sonority hierarchy as H col for the collapsed sonority hierarchy, and Hexp for the
expanded sonority hierarchy.

2The group of liquids is the most loosely defined, as it includes both lateral approximants
(namely /l/) and various types of rhotics such as trills (/r, ʀ, ʁ/), taps (namely /ɾ/), and alve-
olar and retroflex approximants (/ɹ, ɻ/).

11
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Table 2.1: Traditional phonological sonority hierarchies. Index values
reflect the ordinal ranking of categories in sonority hierarchies. The
obstruents in H col are collapsed into one category (bottom four rows =
1), while in H exp they are expanded into four distinct levels.

Sonority index

H col Hexp Segmental class Phonemic examples

5 8 Vowels /u, i, o, e, a/
4 7 Glides /w, j/
3 6 Liquids /l, r/
2 5 Nasals /m, n/
1 4 Voiced Fricatives /v, z/
1 3 Voiced Stops /b, d, g/
1 2 Voiceless Fricatives /f, s/
1 1 Voiceless Stops /p, t, k/

2.1.2 Traditional sequencing principles

Sequencing principles can be understood as a mapping scheme between the
ranks of a sonority hierarchy and the linear order of symbolic speech segments.
Modern formulations of such principles, which use the ordinal sonority hierar-
chy to generalize over the phonotactics of consonantal sequences in terms of
sonority slopes were developed mainly throughout the 1970s and 1980s in sem-
inal works such as Zwicky (1972), Hankamer & Aissen (1974), Hooper (1976),
Kiparsky (1979), Lowenstamm (1981), Steriade (1982), Cairns & Feinstein (1982),
Selkirk (1984), Harris (1983), Mohanan (1986) and Clements (1990).

Sonority index values, indicating a rank on the sonority hierarchy, can be
readily plugged into models that are able to predict distributional patterns of
segments vis-à-vis syllabic organization in terms of sonority slopes. Consonants
and vowels in a given string are interpreted as a sequence of discrete points in
symbolic linear time. The corresponding sonority index values that are associ-
ated with these segments are then interpreted in terms of slopes that result from
interpolation over the sequence of points. Thus, for instance, going from a low
ranking segment to a high one is considered to yield a rising slope, while two ad-
jacent segments that share the same sonority index yield a plateau. Importantly,
the notion of the syllable is required to define the ranges and types of preferred
slopes, which rise from the onset of the syllable to its nucleus and fall from the
nucleus of the syllable to its coda. Syllabic well-formedness is therefore defined

12



2.1 Hierarchies and principles

in terms of universal generalizations over the preferred and dispreferred types
of sonority slopes that result from the concatenation of different consonants and
vowels, and their grouping into syllables.

The most basic and widely used sonority-based principle that derives phono-
tactic predictions in terms of syllabic well-formedness is the Sonority Sequencing
Principle (SSP). The SSP is a simple yet powerful generalization about phonotac-
tics that has been evidently useful in countless theoretical accounts. It identifies
three distinct types of slopes – rises, falls, and plateaus – such that sequences
of segments should rise in sonority from the consonant(s) in the syllabic on-
set to the syllable’s nucleus (most often a vowel) and fall from the nucleus to
the consonant(s) in the syllabic coda. In this project, I focus on syllable-initial
onset consonant clusters that precede a vowel, whereby a rising sonority slope
(e.g. plV ) is considered well-formed and a falling sonority slope (e.g. lpV ) is con-
sidered ill-formed (see Figure 2.1). Sonority plateaus (e.g. pkV ) fare in between,
giving way to various interpretations depending on the language and analysis.
As such, plateaus may be considered as ill-formed or well-formed (e.g. Blevins
1995, Asherov&Bat-El 2019, Bat-El 1996), although they are generally interpreted
as denoting a third, mid-level of well-formedness.

Vowels
Glides
Liquids
Nasals
Voiced Fricatives
Voiced Stop
Voiceless Fricatives
Voiceless Stops

p l V l p V

Sonority slopes: different types
well-formed
onset rise

ill-formed
onset fall

Figure 2.1: Schematic depiction of the sonority slopes of two onset clus-
ters, plV and lpV. The red line denotes the sonority slope of the onset
cluster (i.e. the two onset consonants), while the grey line denotes the
slope between the second consonant and the vowel at the nucleus po-
sition (always a rise in these cases). The angle of the red lines reflects
the well-formed rising sonority slope of the onset cluster in plV and
the ill-formed falling sonority slope of the onset cluster in lpv.

The concept of Minimum Sonority Distance (MSD; Steriade 1982, Selkirk 1984)
is a well-known elaboration on the preferred angle of sonority slopes compared
to basic applications of the SSP, given that the SSP makes no distinction between
different angles of rising or falling slopes. The MSD was designed to prefer onset
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rises with steep slopes over onset rises with shallow slopes, under the assump-
tion that consonantal sequences in the onset are preferred with a larger sonority
distance between them. For instance, plV has a steeper rise compared to bnV and
it is therefore better-formed according to the MSD (see Figure 2.2).

The Sonority Dispersion Principle (SDP; Clements 1990, 1992) is a slightly dif-
ferent yet related principle that prefers onset rises with a large distance and an
equal dispersion of sonority index values across the consonantal sequence and
the following vowel. The results of the SDP are highly contingent on the given
sonority hierarchy and it is not very clear how to apply the SDP formula with
onset sonority falls (among other problems listed in Parker 2002: 22–24). The
SDP is therefore not comparable as a model that can generate the full set of well-
formedness predictions for onset clusters. Indeed, the SDP is mostly invoked in
relation to other generalizations that it makes about the status of the onset versus
the coda (not directly related to consonantal clusters), by assuming that onsets
prefer to maximize sonority distance from the following nucleus while codas
prefer to minimize it.

Vowels
Glides
Liquids
Nasals
Voiced Fricatives
Voiced Stop
Voiceless Fricatives
Voiceless Stops

p l V b n V

Sonority rises: different slopes
steep rise shallow rise

Figure 2.2: Schematic depiction of the sonority slopes of two onset clus-
ters, plV and bnV (the red solid line denotes the sonority slope of the
onset clusters). The angle of the red lines reflects a steeper rise for plV
(left) compared with bnV (right), due to the larger sonority distance
between the consonants in plV.

2.2 Problems with standard sonority theory

2.2.1 Slippery sonority slopes

The widely accepted use of sonority slopes in order to explain and predict pho-
notactic behaviors has been adopted by many researchers with only few changes
such as the above-mentioned elaborations on the angle of sonority slopes (e.g. the
MSD). This is a strong testament to the simplicity and power of the concept of
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2.2 Problems with standard sonority theory

sonority slopes. However, given that the role of slopes is essentially formal, with
no explicit functional motivation from articulation, perception or cognition, they
remain open for interpretation. In other words, since sonority slopes are not tied
to functional aspects such as degree of jaw opening, or the degree of perceived
loudness, they pose no inherent limit on what type of phonotactic behavior they
can be used to explain and predict. Indeed, sonority slopes have been used in
attempts to explain practically all types of phonotactic phenomena, regardless
of their different potential sources. This over-application of sonority slopes has
resulted in various contradictions in the sonority literature (such as the case of
/s/-stop clusters, see Section 2.2.2), which were highlighted in some prominent
objections to a notion of sonority that is not phonetically motivated and appears
to act like a cover term for various functionally-different processes (e.g. Ohala &
Kawasaki 1984, Henke et al. 2012, Laks 1995, Ohala 1992, Steriade 1999, Wright
2004).

Traditional sonority accounts formalize sonority principles in terms of slopes
that are obtained from the sonority index values of members of a consonantal
cluster, where only the difference, or distance, between segments in a sequence
is taken into account. This suffices to characterize the rough angle of the sonor-
ity slope, but not its underlying power, which could potentially differentiate be-
tween a low sonority sequence and a high sonority sequence that have the exact
same type of sonority slope (see Figures 2.3 and 2.5). To cover this aspect of
the sequence, it suffices to obtain the sonority index value of the most marginal
member of a sequence alongside the information about the slope of that sequence.
For onset sequences, the most marginal member is the first segment that reflects
the sonority intercept of the onset sequence. In the context of the current study,
which focuses on complex onset clusters consisting of biconsonantal sequences,
the slope is the difference between members of a sequence and the intercept is
the sonority index value of the first consonant.

Intercepts play no role in the characterization of traditional sonority profiles
although they are informative with respect to the amount of underlying sonority
that a certain slope carries. This is a curious fact given that sonority-based ac-
counts stem from the assumption that sonority quantities have an effect on the
observed phenomena. Clements’s (1990) SDP was actually designed to prefer less
sonorant onsets, which could account for this aspect of sonority profiles, but, as
mentioned above in Section 2.1.2, the SDP has a host of problems that prevent
it from becoming a full model (e.g. it is not designed to account for falling con-
sonantal slopes in onsets). Crucially, the SSP and MSD do not account for this
aspect at all, as they only look at sonority slopes. Presumably, it is the propensity
for simple and elegant rather than functional generalizations in many theoretical
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linguistic traditions (see Chomsky 2021) that cemented the formal architecture
of sonority principles with a maximally reduced conception of sonority slopes.

Taken together, the over-application of traditional sonority principles that
employ a highly reduced conception of slopes leads to consistent cases of mis-
interpretation of sonority principles, wherein superficially similar qualities are
treated as similar regardless of their underlying differences in quantity. For ex-
ample, the rising slopes in mlV and psV (see Figure 2.3), are treated similarly in
hierarchies such as Hexp regardless of their underlying differences in quantity,
which are reflected by their different intercepts: the cluster /ml/ has a higher
underlying sonority level than the comparable sonority rise in the cluster /ps/.
A similar generalization holds for the two plateaus in Figure 2.5 below, in Sec-
tion 2.2.2.

Vowels
Glides
Liquids
Nasals
Voiced Fricatives
Voiced Stop
Voiceless Fricatives
Voiceless Stops

m l V p s V

Sonority rises: different intercepts

high rise low rise

Figure 2.3: Schematic depiction of the sonority slopes of two sonority
onset rises, mlV and psV, with comparable angles but different inter-
cepts. The red solid line which denotes the sonority slope of the onset
clusters is higher for mlV (left) than for psV (right) due to the higher
intercept of /m/ compared to /p/.

2.2.2 Inherent failures of traditional sonority principles

2.2.2.1 /s/-stop clusters are well-formed

One rather well-known and well-studied consistent flaw in the empirical cover-
age of all traditional sonority principles concerns sequences that are often termed
/s/-stop clusters, referring to cases where a sibilant fricative – most often /s/ –
precedes a stop consonant, like in the English words stop, sky and sport (see,
e.g., Fudge 1969, Goad 2011, Kenstowicz 1994, Olender 2013, Vaux & Wolfe 2009,
Wright 2004, Yavaş et al. 2008). The sonority slope of /s/-stop clusters is either an
onset fall or an onset plateau, depending on the given sonority hierarchy (see Fig-
ure 2.4). Thus, although /s/-stop clusters are relatively common in languages that
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tolerate sequences and should therefore be considered as relatively well-formed
(Morelli 2003, Steriade 1999), such clusters are predicted to be rare, or even ex-
tremely rare, due to their ill-formed sonority slopes.

As can be seen in the sketches of the syllable spV, illustrated here in Figure 2.4
with two different sonority hierarchies, the sonority slopes of the consonantal se-
quence (red solid line) is either a fall or a plateau depending on the given sonority
hierarchy (H col vs. Hexp in Table 2.1). The very low intercept of the clusters may
serve as an indication that the effect of these ill-formed slopes may be somewhat
diminished due to the low amount of underlying sonority. This would make it a
case of misinterpretation (i.e. /s/-stop clusters do not violate sonority principles)
due to over-application of sonority slopes, implying that sonority has a limited
explanatory contribution to the phonotactics of /s/-stop clusters.

Vowels
Glides
Liquids
Nasals
Voiced Fricatives
Voiced Stop
Voiceless Fricatives
Voiceless Stops

s p V s p V

O
bs

tr
ue

nt
s

Fricative-stop clusters: different hierarchies
H[exp] (expanded)

sonority fall
H[col] (collapsed)

sonority plateau

Figure 2.4: Schematic depiction of the two potential sonority slopes
of the /s/-stop cluster spV. The red solid line that denotes the sonority
slope of the consonantal clusters is falling when the expanded sonority
hierarchy H exp is adopted (left), and it is a plateau when the collapsed
sonority hierarchy H col is adopted (right).

Rather than redefining sonority principles to be able to account for the phe-
nomenon of /s/-stop clusters, more successful attempts to solve this problem in
the phonological literature redefined deviant marginal sibilants as exceptional,
keeping the traditional sonority principles unaffected by their consistent failure
to predict the attested relative well-formedness of /s/-stop clusters. Themain type
of exception that is used to explain sibilant-initial clusters is based on tweaking
symbolic representations by removing the symbol of the marginal sibilant seg-
ment outside of the syllable that contains the following consonant such that – in
theory – there is no tautosyllabic complex cluster to trigger sonority restrictions
in the first place (see, e.g., Steriade 1982, Kaye 1992, Rialland 1994, Vaux & Wolfe
2009). A slightly different theoretical solution with similar results is to assert
that /s/-stop clusters are, in fact, a single complex segment (see, e.g., Fudge 1969,
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van deWeijer 1996) such that, again, there simply is no cluster to account for (for
an overview, see Goad 2016).

Those theoretical tweaks are not without merit as they follow a strong intu-
ition that marginal sibilants are somehow “outside” the scope of syllabic pro-
cesses. This intuition is supported by evidence of some unique behaviors of
marginal sibilants, such as the kinematic data presented in Hermes et al. (2013),
which finds unique coordination patterns in the articulation of sibilant-initial
consonantal gestures in Italian. That said, it is important to remember that the
problem with /s/-stop clusters is not that they are common, and, at the same time,
unique. The problem with /s/-stop clusters is that traditional sonority principles
fail to account for them in consistent manners, without resorting to exceptions.

I return to this point in Section 10.1 in proposing a more holistic account of
/s/-stop clusters that illustrates the division of labor between sonority and other
phonotactic principles.

2.2.2.2 Not all plateaus are equal

A second problem that has received far less attention in the literature (but see
Baroni 2014) is the general failure of traditional sonority principles to correctly
account for sonority plateaus. This case is perhaps less prominent as it is the
absence of some plateau types that serves as the main evidence. Sonority plateaus
can result from any combination of consonants of the same class, regardless of
which class. Thus, a voiceless fricative plateau such as sfV, like in the English
word sphere, should be exactly as ill- or well-formed as a nasal plateau, such as
nmV (see Figure 2.5), which is, in fact, amuch less common (moremarked) cluster
among the languages of the world (Greenberg 1978, Kreitman 2008, Lindblom
1983). This problem can be, again, attributed to the lack of the notion of intercept
in traditional sonority models.

Different sonority plateaus have the same flat line in terms of sonority slopes,
yet they differ in their apparent distribution. This difference seems to be linked to
the different intercepts of the plateaus. A plateau with a low-sonority intercept
like sfV is better-formed, given that it is cross-linguistically more common, than
a plateau with a higher sonority intercept like nmV.

Note that the critique regarding the lack of intercepts in traditional sonor-
ity principles is given from within a discrete symbolic framework, where non-
overlapping segments and their associated sonority values are interpolated into
slopes in symbolic time. This is only the first step towards a more radically dif-
ferent treatment of sonority with continuous entities and dynamic procedures,
which I will propose in Chapter 5.
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Vowels
Glides
Liquids
Nasals
Voiced Fricatives
Voiced Stop
Voiceless Fricatives
Voiceless Stops

n m V s f V

Sonority plateaus: different intercepts

high plateau low plateau

Figure 2.5: Schematic depiction of the sonority slopes of two sonority
plateaus, nmV and sfV. The red solid line which denotes the sonority
slope of the onset clusters is higher for nmV (left) than for sfV (right)
due to the higher intercept of /n/ compared to /s/. This difference is not
accounted for by traditional sequencing principles.

2.2.3 Sonority “correlusions”

Although no strong consensus has ever been reached with respect to the pho-
netic basis of sonority, acoustic intensity is perhaps the most widely assumed
correlate of linguistic sonority. This is evident from the many influential studies
on sonority that consider acoustic intensity as its phonetic correlate (e.g. Siev-
ers 1893, Blevins 1995, Clements 1990, Heffner 1969, Ladefoged 1975, Parker 2008,
and Gordon et al. 2012, to name just a few prominent examples).3

The main problem with intensity-based accounts is related to the distinction
between causation and correlation. It is possible to find acoustic markers that cor-
relate with some linguistic phenomenon. A discovery of this kind is valuable, but
to advance our knowledge further we would also need to know if the correlation
between the linguistic phenomenon and our acoustic marker of choice can be
characterized in terms of causation. Establishing causation from acoustic signals
necessitates a theory that can reliably map acoustic markers to consistent oper-
ations or processes in sensorimotor speech articulation and/or auditory speech
perception. The problem with accounts that are based on acoustic intensity is
that the general acoustic intensity of the signal does not consistently map to any
aspect of human auditory perception, not even perceived loudness.

3In his overview of existing literature, Parker (2002) found close to 100 different proposals for
correlates of sonority, and he tested five leading proposals in laboratory conditions: intensity,
intraoral air pressure, F1 frequency, total air flow, and duration. In his study, the tightest corre-
lations with sonority classes were obtained for acoustic intensity measurements, a conclusion
that was repeated and further developed in Parker (2008).
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2.2.3.1 Acoustic intensity ≠ perceived loudness

The acoustic signal has certain physical qualities contributing to its overall power,
but they have different effects on the perceptual system of the human hearer.
This discrepancy between acoustic intensity and perceived loudness is a well-
known problem, playing a role at different dimensions of the mapping between
acoustics and perception. The prominent points of departure between acous-
tic intensity and perceived loudness include the following: (i) loudness percep-
tion differs for sine waves with the same intensity level at different frequen-
cies (e.g. Fletcher & Munson 1933, Plack & Carlyon 1995, Suzuki & Takeshima
2004); (ii) loudness perception differs for comparable sounds at different dura-
tions (e.g. Turk & Sawusch 1996, Moore 2013: 143, Olsen et al. 2010, Seshadri &
Yegnanarayana 2009); and (iii) loudness perception differs for otherwise compa-
rable periodic (harmonic) vs. aperiodic (noise) sounds, and noise, like sine waves,
is not uniformly loud across the frequency spectrum (e.g. Hellman 1972, Bao &
Panahi 2010, Moore 2013: 140). Acoustic intensity is therefore a physical descrip-
tion of sound waves in space which does not consistently relate to how loud we
perceive these sounds, or to any other perceptual phenomenon for that matter.

2.2.3.2 Loudness is not a good candidate for sonority

Note also that the relevance of perceived loudness to syllabic organization re-
quires some sort of functional explanation, which seems to be lacking. The sys-
tematic differences in intensity of adjacent speech sounds imply that these dif-
ferences are neutralized in perception, as it should make sense to assume that
the different sounds that compose coherent speech are perceived as having com-
parable loudness. The literature on perceived loudness supports this assumption
given that speech portions with relatively low acoustic intensity, like voiceless
fricatives, appear in speech next to portions with relatively high acoustic inten-
sity, like vowels. Our auditory system perceives the aperiodic high-mid frequen-
cies of many obstruents as exceptionally loud compared to the periodic low-mid
frequency ranges of vowel sounds, thus compensating in perception for physical
differences in acoustic intensity.

Given the above, we should anticipate that perceived loudness will not be a
good candidate for the acoustic correlate of sonority hierarchies, as a measure of
perceived loudness would bring all speech sounds closer together by diminishing
the distinctions provided by acoustic intensity. Indeed, although good approxi-
mations of perceived loudness from acoustic signals are available (e.g. Seshadri
& Yegnanarayana 2009, ITU-R 2015, Lund & Skovenborg 2014, Skovenborg 2012),
I am not aware of any attempts to employ such measures for sonority.
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Instead of attempts to map acoustic intensity to perception in terms of per-
ceived loudness, most successful endeavors that use intensity-based measures
as correlates of sonority do so by essentially enhancing the intensity–loudness
discrepancy. Certain frequency bands are targeted to – roughly speaking – discri-
minate against energy at the higher frequencies (which are more characteristic
of obstruents) in favor of energy at low-mid ranges of the spectrum (which are
more characteristic of sonorants and particularly vowels).4 The relative success
of such metrics is not commonly based on perceptual grounds. However, they
are often tightly linked to the perceptual quality that is identified with sonority
in this work – the capacity to perceive pitch.

4For example, Pfitzinger et al. (1996), Port et al. (1996), Fant et al. (2000), Galves et al. (2002),
Wang & Narayanan (2007), Tilsen & Arvaniti (2013), Patha et al. (2016), Nakajima et al. (2017),
and Räsänen et al. (2018).
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3 Linguistic models: Between symbolic
discreteness and dynamic continuity

The study of the sound system of human languages has been one of the longest-
standing intersections of symbol-based categorical analyses on the one hand, and
signal-based continuous descriptions on the other. These two different types of
analysis stand at the core of the distinction many researchers make between pho-
netics and phonology, where the former addresses continuous and measurable as-
pects of the speech signal (namely, sensorimotor aspects of articulation, acous-
tic signals and neurological patterns in perception), while the latter addresses
categorical aspects of the speech signal using discrete and symbolic units like
consonants, vowels and phonemes (see overviews in Harris 2007 and Ladd 2011).

3.1 Thesis and antithesis: Problems with symbol-based
models

The incompatibility between the continuous and the discrete types of description
did not escape early studies. Menzerath & Lacerda (1933), Wickelgren (1969) and
Fowler (1980) noted how the reality of co-articulation of segments defies the ide-
alized conception of speech signals as consisting in a non-overlapping sequence
of discrete phonemes. Warren (1982: 172–187) also provides an overview of this
problem given the limitations of auditory perception.

Morris Halle acknowledged the problem of discrete descriptions already in
Halle (1954), which was written in defense of phonemes (p. 198): “It is now nec-
essary for us to show why the discrete picture of language is preferable. Our
answer is that it enables us to account for many facts which on the assumption
of continuity would be extremely difficult, if not impossible, to explain”. Halle
wrote this a decade before he published The sound pattern of English with Noam
Chomsky (Chomsky & Halle 1968), perhaps the most influential work in phonol-
ogy from the second half of the twentieth century, in which speech sounds are
modeled as discrete symbolic units and phonological processes are modeled as
rules that manipulate symbols.
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Beyond phonology and linguistics, many successful enterprises in the cogni-
tive sciences of the second half of the twentieth century likened cognitive capac-
ities to symbol-processing machines. In that context, John Searle provided some
well-known attacks on common notions of artificial intelligence (Searle 1980) and
the computer metaphor of the mind (Searle 1990), responding, among others, to
prominent voices like Fodor (1983), Pylyshyn (1985) and Cummins (1985).

The connectionist program in cognitive psychology (e.g. Rumelhart et al.
1986a,b, Bates & Elman 2002) was set to change that classic view with the in-
troduction of connectionist models to phonology (e.g. Goldsmith 1992, Joanisse
2000, Laks 1995, Smolensky & Legendre 2006, Tupper & Fry 2012). These mod-
els replaced classic symbolic models with neuromimetic models (Laks 1995: 52)
that attempt to improve the cognitive plausibility of language models with ar-
chitectures that resemble neurobiological systems. They were faced with fierce
opposition from voices like Fodor & Pylyshyn (1988) and Pinker & Prince (1988),
who criticized the connectionist models of the time for lacking a symbolic level
of representation.

It should be noted, however, that the main focus of connectionist models is
not so much on the symbols in the system as on the classic processes of symbol
manipulation. Connectionist models present alternatives to the notion of rules
of symbol manipulation that directly transform symbols (see Harnad 1990). In-
deed, as Smolensky & Legendre (2006) point out, (some versions of) connection-
ist models in phonology are largely compatible with Harmonic Grammar, which
describes the learning processes in a constraint-based system likeOptimality The-
ory (Prince & Smolensky 2004). In that sense, connectionism is like a low-level
description for which Optimality Theory provides the high-level description.

The problem with all the models that Smolensky & Legendre (2006) mention
is that they still take discrete symbols in their input in order to generate discrete
symbols in their output. As Gafos (2006: 57) points out in the context of modeling
variation, these models deal with “variation among discrete alternatives”, with-
out accounting directly for the continuous aspects of the system. For different
reasons, related to the architecture of neural networks in connectionism, Harnad
(1990: 337) even suggested that it may be reasonable to consider connectionism
as “a special family of symbolic algorithms”.

In the context of the present work, connectionist models can be effective in
modeling the phonology of speech perception in a top-downmodel, which repre-
sents processes that start and end with discrete symbols. However, I assume here
that there is a functional source for linguistic distinctions in perception, which
has to be accounted for via the bottom-up route, originating from continuous
events in real time.
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3.2 Synthesis: Integrating dynamic and symbolic notions

Port & Van Gelder (1995), Kelso (1997) and Spivey (2007) have presented a com-
prehensive refutation of the computer metaphor of the mind at the turn of the
century, relying primarily on the many advancements achieved with dynami-
cal systems models of cognition. Dynamical systems have been also success-
fully implemented in phonology, underlying the enterprise known as Articula-
tory Phonology (see, e.g., Browman & Goldstein 1992, Goldstein et al. 2009, Nam
et al. 2009). This approach models phonology with continuous motor gestures,
whereby coordinative structures can be understood in terms of the coupling and
decoupling of oscillations with respect to syllabic organization (see Haken et al.
1985 for early incarnations of these models).

Using models of dynamical systems, it is possible to integrate continuous as-
pects of the speech system (articulatory trajectories and the related output on
the acoustic surface) with the discrete symbolic categories that linguists postu-
late. One way to achieve this is via attractor landscape models, where discrete
categorical units can be modeled as stable states in a continuous phase space in
terms of attractor basins (see Haken 1990). In this type of model, various continu-
ous events can contributemore or less to the (partial) activation of different, often
competing, attractors. Convincing examples for the application of such attractor
landscapes can be found in Tuller et al. (1994), Case et al. (1995), Rączaszek et al.
(1999), Gafos & Beňuš (2006), Roessig & Mücke (2019) and Roessig et al. (2019).

In fact, using attractor landscape models shows not only that discrete alterna-
tives can be selected by continuous events, but that attractor landscapes can also
be advantageous in modeling categories. This is especially true for models that
embody a more nuanced understanding of the nature of discrete categories in
responding to multiple – often redundant – cues and exhibiting fuzzy category
boundaries that can be readily accounted for in terms of noise in the system (see
Roessig et al. 2019: 8–9).

Attractor landscapes are therefore an essential component of models con-
cerned with the interaction between continuous and discrete entities in a lan-
guage system. However, much like the connectionist models in phonology, at-
tractor landscapes explicate the process by which a discrete alternative can be
(partially) activated, but they have little to say about the components of the sys-
tem otherwise. For example, attractor models cannot explain or predict the shape
and behavior of the attractor landscape itself (e.g. universal and idiosyncratic lan-
guage categories), they cannot address the limitations on dynamic events that
the system can reliably detect (e.g. selecting the relevant effects in auditory per-
ception), and they pose no restrictions on what a valid symbol is in a natural
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language system (what Harnad 1990 called “the symbol grounding problem”).
In other words, attractor-based models are good at integrating continuous vari-
ables with discrete alternatives, but they are not designed to reveal what drives
and limits the dynamic and symbolic modes of the system.

3.3 Dynamics in perceptual phonology

Dynamic descriptions have played an increasingly important role in phonologi-
cal theory with the growing body of work from the school of Articulatory Phonol-
ogy, which suggests a framework for modeling phonological systems with con-
tinuous articulatory gestures as the basic units of speech production. Applying
similar concepts to perception has been thus far a much less productive avenue
in phonology, perhaps because it is much less clear what the relevant continuous
entities are that need to be modeled in perception.

Dynamic accounts of phonological perception have been presented in works
like Tuller et al. (1994), Case et al. (1995), Hock et al. (2003), Tuller (2004), Tuller
et al. (2008), and Lancia &Winter (2013). However, theymostly deal with categor-
ical perception of systematically varying speech stimuli without breaking down
the speech input into subcomponents, as is the case in Articulatory Phonology,
whereby different moving parts within the vocal tract (e.g. tongue tip and lips)
are the continuous subcomponents of the speech signal.1

In that sense, the vast majority of dynamic perception accounts that I am
aware of cover the same aspects as the attractor landscape models mentioned
above (and indeed, attractor landscape models are common in dynamic percep-
tion studies): providing a unified model for the integration of continuous and
discrete entities in cognition.

3.4 Making sense: Symbols and dynamics in Howard
Pattee’s work

Cariani (2001) and Rączaszek-Leonardi & Kelso (2008) note the writings of physi-
cist and theoretical biologist, Howard Pattee, as a potential source of novelty in
cognitive modeling (see Pattee & Rączaszek-Leonardi 2012 for a collection of
Pattee’s classic papers with contemporary commentary). For Pattee, the sym-
bolic and dynamic modes of biological systems are two crucial components with

1Note the work in Liberman &Mattingly (1985), where perception is conceived of as continuous,
albeit in a manner that is contingent on production (“the motor theory of speech perception”).
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specific roles to play: symbols are the stable forms that harness dynamic events.
Symbols, according to Pattee (1987: 337), cannot exist outside of a dynamic sys-
tem that they constrain.

Bear in mind that these descriptions were initially laid out to investigate bio-
logical systems in which DNA appears to be the symbolic mode that constrains
the dynamics of the cell. However, as Pattee and his followers have been arguing
in recent decades, this description can be extended to any language system. In
that context, it is perhaps useful to elucidate the difference in Pattee’s thought
between a language and a code.

Joanna Rączaszek-Leonardi clarifies the difference between language and code
in Pattee’s work (Pattee &Rączaszek-Leonardi 2012: 307–310) and emphasizes the
centrality of the idea that language systems are characterized by symbols that
harness or constrain dynamics. The effects of constraining, rather than mapping,
are, in her words, “naturally context-dependent (crucially relying on the dynam-
ics being constrained), thus are predictable only to some degree”. In contrast,
coding is a relatively noise-free process in which we “map one symbolic struc-
ture onto another symbolic structure” (p. 309). “In natural language”, Rączaszek-
Leonardi suggests as an example, “writing is a code for spoken expressions, but
it is the spoken expressions that are the level at which meaning relation should
be sought”. In Pattee’s original analysis, this meant that the DNA bases code for
the amino acids, while it is “the folded amino acid sequence (the protein enzyme)
where the first informational constraint on dynamics occurs” (p. 310).

What makes symbols meaningful in a language system is therefore “a relation
in which a symbolic structure acts to harness dynamics” (p. 309). Symbols in
language systems acquire their meanings from the co-occurrence with dynamic
events, i.e. via grounding (and later ungrounding, see Rączaszek-Leonardi et al.
2018). Symbols can be “coded in another set of symbols, perhaps for a better adap-
tation to a given transmission medium (e.g., the Morse code is better adapted to a
telegraph than the alphabet) but it does not make them more, or less meaningful.
A code is not a language” (Pattee & Rączaszek-Leonardi 2012: 309).

3.5 The complementarity of mind

Pattee’s specific conception of language systems entails a few interesting out-
comes. One of the most important ones in the context of the current work is the
idea that the two modes of language – the discrete/symbolic on the one hand,
and the continuous/dynamic on the other hand – require two separate comple-
mentary models. Pattee summarizes this in Pattee & Rączaszek-Leonardi (2012:
18–21):
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Complementary models as I define them are models of a system that may be
formally incompatible in the sense that no one model is logically or mathe-
matically derivable from, or reducible to the others, and all such models are
necessary for a complete understanding of the system. (pp. 18–19)

Pattee is careful not to imply ontological dualism, as he means that comple-
mentarity is an “epistemic necessity”, although he still finds it difficult to as-
sume conceptual compatibility given that “conceptual categories such as ‘dis-
crete’ and ‘continuous’ derive from different pattern recognizing regions of the
brain” (p. 19). Why it is so hard to see this picture more clearly is suggested to be
related to inherent limitations on what “our classical brains can model”:

The complementarity of discrete and continuous models is a fundamen-
tal aspect of the symbol-matter problem. Evolution prepared the simplest
brains to distinguish discrete objects from the continuous motion of objects,
thereby allowing effective sensorimotor control. Our everyday experience
as well as classical physics is based on a clear and objective distinction be-
tween discrete particles and continuous motion. In modern physics, how-
ever, this clear distinction is no longer possible. Discrete particles and con-
tinuous fields, matter and energy, space and time are no longer objectively
separable but depend on how we observe nature. It appears that our artifi-
cial instruments have extended our senses beyond what our classical brains
can model without cognitive dissonance. It is not clear how far we can re-
duce this dissonance by learning new concepts. (pp. 20–21)

It is therefore pertinent to understand symbols in language systems with re-
spect to the continuous events that they relate to. In the present work, this means
that to fully understand sonority we need to address its potential functions in
auditory perception and cognition, and their effects in linguistic communication.
Although tightly related to top-down symbol-based generalizations, this bottom-
up route is a separate process that is based on different driving forces (e.g. laws
of physics rather than statistics).

3.6 Missing links: Anticipating current contributions

In an attempt to break new ground, the current project proposes two theoretical
novelties that are still missing from the picture described above in Sections 3.1–
3.4: (i) decomposing speech into continuous subcomponents in the acoustic sig-
nal that allow us to extend our dynamic vocabulary with perception-based en-
tities; and (ii) suggesting a principled way to separately model continuous and
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symbolic aspects of speech. To elaborate on (i), I present the PRiORS framework
in Chapter 4. PRiORS stands for Perceptual Regimes of Repetitive Sound, essen-
tially targeting a single primitive – repetition – at different timescales that acti-
vate two distinct regimes in perception. To elaborate on (ii), I present two comple-
mentary models for a single phonological principle in Chapter 6. These models
are built around the distinction between bottom-up and top-down processes in
cognition of speech sounds (see, e.g., Klatt 1979, Fowler 1986). The bottom-up
route expects dynamic and continuous inputs, while the top-down route in per-
ception arrives at inferences via the learned categorical and symbolic constructs
of the system. The top-down route requires symbolic models that are based on
the distributional history of categorizable speech sounds, while the bottom-up
route requires a model that can deal with continuous entities that must obey the
laws of physics and fit with the capabilities of human perception and cognition.
Crucially, these two models are irreducible into one and they explicitly attempt
to model two complementary aspects of cognition, considering both bottom-up
and top-down inferences in perception of speech.
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4 Perceptual regimes of repetitive
sound (PRiORS)

One of the crucial components that this project suggests is a general framework
for modeling the dynamic mode of auditory perception and cognition: Perceptual
Regimes of Repetitive Sound, abbreviated as PRiORS. This framework is used here
to account for phonological phenomena, i.e. it is used to account for some cog-
nitive aspects of auditory perception that are manifested in linguistic systems.
PRiORS reduces the rich acoustic signal to a single primitive, based solely on
the notion of repetition, to account for auditory perception in terms of temporal
integration. Crucially, a major role is played by the rate of repetitions, and , as
PRiORS makes clear, this single quantitative modulation in rate of repetition has
two qualitatively distinct effects in perception and cognition.

4.1 Time and frequency dualism

4.1.1 Time and frequency domains in mathematical representations

Very often we are interested in representing and analyzing the course of certain
observed phenomena over time. This relates to physical signals, mathematical
functions and any time series of data such as economic and environmental de-
velopments. These time domain representations are relatively straightforward as
they follow the progression of a single variable. Typically, time is plotted on the
x-axis, showing progression in time from left to right, while the y-axis is used
to plot the magnitude of the observed variable. Time domain representations are
therefore very informative with regard to the change in magnitude (or power)
over time of a single variable.

Time domain representations apply well to acoustic signals, where we can
observe the progression of acoustic power over time to represent and analyze
sounds. In the simplest of cases, we can observe a single sine wave like the one
in the oscillogram in Figure 4.1. Here, a time domain representation is very in-
formative with respect to the signal it depicts. The power, the (fundamental)
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Figure 4.1: An arbitrary sine wave in a time domain oscillogram repre-
sentation

frequency and the duration of the signal can all be readily deduced from this rep-
resentation. However, most natural sounds involve a much more complex distri-
bution of acoustic power over different frequencies at different durations, many
of them overlapping in time. A time domain representation of complex natural
sounds can effectively represent the overall impact of the many subcomponents
on the amount of acoustic power at different points in time. It is, however, not
very well suited to being informative with respect to any of the subcomponents
of complex sound. Their individual frequencies, power and durations are all bun-
dled together when we measure acoustic power over time.

We can decompose the complex signal into its subcomponents, provided that
the subcomponents can be described as periodic signals, just like the simplest
non-decomposable sine wave that characterizes acoustic signals. Doing that re-
quires a switch from the time domain to the frequency domain: rather than look-
ing at the distribution of acoustic power over time, we can look at the distribution
of acoustic power over different frequencies. A frequency domain representation
allows us to observe the many subcomponents in terms of their frequency and
power at given points in time.

Switching from time domain to frequency domain is possible with the Fourier
transform, a mathematical transform named after the Frenchmathematician Jean-
Baptiste-Joseph Fourier, who introduced it in Fourier (1822). The Fourier trans-
form decomposes a time series into a sum of finite series of sine or cosine func-
tions. Note that in many contexts of acoustic analysis, the procedure is referred
to as fast Fourier transform (FFT), which is the name given to a wide range of al-
gorithms that perform quick calculations of the Fourier transform (see overview
in Brigham 1988).

The time and frequency domains are two complementary, and, to some extent,
redundant mathematical representations of the same physical reality. By repre-
senting time as a scale of different potential rates, we can shift the representation
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of events in time into a representation of the co-activation of different rates in
the frequency domain.

4.1.2 Time and place theories in models of pitch perception

Models of pitch perception attempt to explain how the auditory system resolves
the harmonic structure of complex signals into the sensation of pitch. Two types
of theories have traditionally dominated this field. Place theories of pitch are
based on the idea that different frequencies in the signal can excite different
places along the basilar membrane. Time (or temporal) theories of pitch are based
on the idea that neural firing rates exhibit sensitivity in time to periodic events,
allowing them to phase-lock to the rate of periodicity in time.

Place theories of pitch often date back to Ohm (1843) and vonHelmholtz (1863),
and they are in line with the notion of the frequency domain (Ohm 1843 in fact as-
sumed that a Fourier analysis took place in the auditory system). Time theories of
pitch often date back to Seebeck (1841), Wever & Bray (1930) and Schouten (1938),
and they are likewise in line with the notion of the time domain. De Cheveigné
(2005) traced back the early roots of these two pitch theories to ancient Greece,
linking writings from Pythagoras (6th century BCE) and Aristoxenos (4th cen-
tury BCE) with place theories of pitch, and linking the writings of Greek mathe-
matician Nicomachus (2nd century CE) with time theories of pitch.

Place and time theories are sometimes presented as two dueling narratives,
highlighting historical differences between Seebeck (1841) and Ohm (1843), and
later between von Helmholtz (1863) and Schouten (1938) and many others. How-
ever, of consequence to this work is the more currently common appreciation
that these two theories of pitch are, in fact, complementary and even desirably
redundant to various extents (see House 1990, De Cheveigné 2005, Houtsma 1995,
Oxenham 2013).

Warren & Bashford (1981) mention the findings that frequency selectivity
along the basilar membrane, which is essential for place-related pitch resolution,
is roughly limited to 50–16k Hz (von Békésy &Wever 1960), while phase-locking
of the auditory nerve fibers’ firing rate, which is essential for time-related pitch
resolution, has a typical upper limit of about 5k Hz (Rose et al. 1967; see a more
recent review on this topic in Verschooten et al. 2019). Warren & Bashford (1981)
then make the point that the range in which both place and time models overlap,
around 50–5k Hz is exactly the range for optimal perception of musical pitch.
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4.2 The spectral and temporal regimes of auditory
perception

Auditory perception according to PRiORS is dramatically affected by two dif-
ferent responses to repetitions at two distinct timescales that constitute two
perceptual regimes: the temporal regime and the spectral regime. The temporal
regime designates the timescale at which humans can perceive successive acous-
tic events as isolated events in time, while exhibiting a relatively good ability to
predict the upcoming event with a given steady rate, or perceive and estimate
durations, in the related terminology of Fraisse (1984). These upper and lower
limits of perception were described in MacDougall (1903: 321) as conditions for
“the impression of rhythm”, and, indeed, the timescale of the temporal regime
defines the range at which musical rhythmic patterns tend to occur and audi-
tory sensitivity to changes in rate allows us to reliably detect temporal patterns
(e.g. Fraisse 1984, Farbood et al. 2013, Repp 2005). In other words, the temporal
regime covers our ability to perceive the difference between fast and slow.

The spectral regime, in contrast, operates at a faster timescale, where a se-
quence of acoustic events repeats too fast to be perceived as isolated events (see,
e.g, Miller & Taylor 1948, Broadbent & Ladefoged 1959, Efron 1973, Hirsh 1959).
At these fast rates, rather than perceiving temporal intervals as occurring at non-
overlapping moments in time, cognition switches to perceiving them as spectral
intervals that occur at the same time, giving rise to the perception of a complex
harmonic tone, whereby the harmonic partials reflect the rate of repetition in the
spectral dimension (Flanagan & Guttman 1960, Stockhausen 1959, Warren 1982).
Within the spectral regime, changes in rate of repetition of periodic signals are
perceived as changes in pitch. In other words, the spectral regime covers our
ability to perceive the difference between high and low (pitch).1

In principle, the temporal regime is congruent with the notion of time do-
main and the spectral regime is congruent with the notion of frequency domain
(see Section 4.1.1). Likewise, the two regimes correspond to the two independent
anatomical and neurological processes for pitch resolution that are also based on
time and frequency representations (see Section 4.1.2). However, while the time

1The notion of repetition is not limited to rate-based distinctions, but this work requires only
this type of distinction to cover prosodic phenomena. To cover the acoustic qualities of segmen-
tal phenomena in speech we can analyze the lack of regular repetition at the spectral regime in
at least two meaningful ways: (i) transient bursts are characteristic of speech sounds like stops
that exhibit a non-repeating signal (or more accurately, a critically damped signal); (ii) contin-
uous yet irregular (asynchronous) repetitions within the timescale of the spectral regime are
characteristic of aperiodic noise that results from articulatory friction (e.g. fricatives).
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and frequency domains can independently describe the same event in mathe-
matical terms, and while place and time theories of pitch perception may be, to a
large extent, complementary and redundant, the perceptual regimes in PRiORS
operate at two slightly overlapping yet mostly distinct and mutually exclusive
timescales. Each perceptual regime responds to repetitions within its timescale
such that a single quantitative modulation of the rate of repetition gives rise to
qualitative differences in the sensation of rhythm (temporal regime), or, alter-
natively, the sensation of pitch (spectral regime). In other words, the temporal
and spectral regimes suggest a perceptual qualia perspective, whereby the two
regimes are mutually exclusive.

This last point is reminiscent of Pattee’s quote from Pattee & Rączaszek-Leo-
nardi (2012: 21), which was given in Section 3.5, and is partially repeated here:
“It appears that our artificial instruments have extended our senses beyond what
our classical brains can model without cognitive dissonance.” In that sense, the
time and frequency domains in physics are revealed by our instruments as two
overlapping representations, but in our mind, the temporal and spectral regimes
are represented as two distinct and separate sensations. To be clear, auditory
perception can handle the two regimes at the same time, i.e. process information
with both rhythmic and periodic effects. The mutual exclusivity is in response to
isolated events within their relevant timescale.

When evaluating PRiORS, it is useful to acknowledge how the auditory system
is uniquely adapted to capturing reoccurrence in terms of repetition. Chowning
(2001) suggests that the auditory system is far more sensitive than the visual
system to differences in reoccurring structures. He reflects this ability in the vi-
sual system in terms of the capacity to detect minute differences in the spacing
between otherwise identical objects (think of a typical spot the difference puz-
zle as an example), essentially equating quasi-periodicity with quasi-symmetry.
Chowning (2001: 267) claims that the auditory system, unlike the visual system,
“can readily detect a fraction of a percent of deviation from periodicity”. This
great sensitivity to repetition is linked in PRiORS to perceptual and cognitive
aspects of an auditory system that is specialized in processing rhythm and pitch
as the two modes of auditory temporal integration.

4.3 Visual FFT-based simulations

It is useful to illustrate the distinction between perceptual regimes with a Band-
Limited Impulse Train (BLIT) synthesis that produces a train of transient acous-
tic bursts at adjustable rates. Each burst is a single impulse, which is the shortest
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electric burst a given system can produce, with equal power across the frequency
scale (a perfect impulse has acoustic power over an infinite frequency range, but
the impulses in a BLIT, as the name suggests, are band-limited to human hearing
ranges, between approx. 20–20k Hz).2 The BLIT signal can be effectively visu-
alized with standard FFT-based tools that convert signals between time domain
and frequency domain representations (see Section 4.1)

Table 4.1 presents a rough sketch of the relevant timescales of the two percep-
tual regimes. Within each regime the effects of repetition are named differently
in order to maintain a distinction that attempts to be in-line with most com-
mon uses of these terms: it is Rhythm when occurring within the timescale of
the temporal regime vs. Periodicity when occurring within the timescale of the
spectral regime. Table 4.1 also shows that these repetition-induced effects have
boundaries. Repetitions within the temporal regime may be too slow to be per-
ceived as rhythmic (infra-rhythmic perception below 30 BPM; see Fraisse 1984,
Farbood et al. 2013, and see overview of tapping literature in Repp 2005). Like-
wise, repetitions within the spectral regime may be too fast to be perceived as pe-
riodic (ultra-periodic perception above 5k Hz, given that our auditory system can
typically perceive frequencies up to 20k Hz, but our ability to sense discernible
pitches does not typically exceed 5k Hz; see Ward 1954, Attneave & Olson 1971).

Table 4.1: Perceptual regimes with corresponding effects and time-
scales (rough sketch). Note. Hz = Hertz (repetitions per second); BPM
= Beat Per Minute; ms = millisecond (duration of repeating intervals).

Timescales

Perceptual regimes Effects Hz BPM ms

Temporal Infra-rhythmic 0–0.5 0–30 ∞–2k
Rhythm 0.5–20 30–1200 2k–50

Spectral Periodicity 20–5k 1200–300k 50–0.2
Ultra-periodic 5k–20k 300k–1200k 0.2–0.05

Four examples are provided in Figure 4.2, each one with three corresponding
visual panels. The bottomwhite panel presents a 1-second longwaveform (oscillo-
gram) which shows the unipolar transient bursts produced by the BLIT synthesis

2One major advantage of the BLIT synthesis concerns the minimal duration of impulses that
allows the simulation to reduce confounding factors regarding burst duration. Longer bursts
are expected to appear as more continuous at slower rates than comparable impulses because
they fill a longer portion of the intervals between onsets of recurring events (i.e. they have a
longer tail).
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in the time domain, going from left to right. The number of visible bursts within
this 1-second interval corresponds to the rate of the BLIT in Hz. The two upper
dark panels show FFT-based analyses exhibiting the dispersion of acoustic power
across the audible frequency range in the frequency domain. The middle panel,
often called a spectrograph, exhibits a 2-dimensional representation of frequency
(x-axis) and power (y-axis), while the top panel, which is typically called a spec-
trogram, exhibits a 3-dimensional representation of frequency (x-axis), power
(color) and time (y-axis). The frequency x-axes of the spectrograph and the spec-
trogram are perfectly aligned to facilitate the interpretation of the spectrograph
in the middle as a “slice”, or a “still image” of the temporal representation in the
spectrogram above it.

Figure 4.2(a) (top left) shows a clear rhythmic effect at 4Hz, indicated by four
bursts in the bottom oscillogram panel. A single burst appears with equal power
along the (band-limited) frequency range in the spectrograph, indicated by the
fairly straight horizontal green line across the middle panel. Note that the still
image shown here captured a moment in time in which the power graph of the
spectrograph was high. With rhythmic bursts, like the 4Hz BLIT in Figure 4.2(a),
this graph goes visibly up and down over time. Above it, a succession of 10 im-
pulses over a short period of time (about 2.5 seconds) is visible as isolated bursts,
indicated by the horizontal lines going from bottom to top in the corresponding
upper spectrogram panel.

In sharp contrast, Figure 4.2(d) (bottom right) clearly shows tonal behavior
at 120Hz. There are, indeed, 120 bursts in the time-domain display of the bot-
tom oscillogram panel, but the isolated bursts are no longer visible in the top
spectrogram panel, i.e. there are no horizontal lines going from bottom to top
across the upper panel (note that with the 2.5 second-long window of the spec-
trogram, 120 bursts per second should have resulted in 300 horizontal lines by
comparison to Figure 4.2(a)). The sensation of isolated discrete bursts transitions
into a sensation of continuous sound in perception at these higher rates of rep-
etition. This can be thought of as a smearing effect that occurs above a certain
threshold. This perceptual effect is neatly reflected by the two FFT-based repre-
sentations in Figure 4.2(d), which display a signal with the properties of a con-
tinuous sound that has a complex harmonic structure. The middle spectrograph
panel shows a series of “bumps” along the green curve, from left to right, corre-
sponding to a series of continuous energy “poles” in the vertical representations
of the upper spectrogram panel. This is a harmonic series in which the rate of
repetition of the BLIT synthesis is mapped onto the fundamental frequency (F0)
of the continuous sound, which is also manifested in the distance between par-
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Figure 4.2: Illustration of perceptual regimes with visual analyses of
acoustic impulse trains (BLIT) at different rates and different domains
(see text for details).
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tials in the harmonic series.3 Specifically, the two FFT-based representations in
Figure 4.2(d) show the harmonic partials in terms of continuous acoustic power
at the frequencies 120Hz, 240Hz, 360Hz, 480Hz, etc. This demonstrates that at
this faster timescale of the spectral regime, the sensation of repetition feeds per-
ceptual effects of continuity and pitch, rather than of discreteness and rhythm.

The switch between regimes does not occur at once. Between the temporal
and the spectral regime, we can spot a transitional range in which effects of both
rhythm and periodicity are present, but neither is strong enough to completely
take over. This results in a less definitive effective sensation. Figures 4.2(b–c)
demonstrate this transitional range between the two distinct regimes that are
illustrated by Figure 4.2(a) (for the temporal regime) and Figure 4.2(d) (for the
spectral regime), as detailed above.

Figure 4.2(b) (top right) is especially well-suited for illustrating the indetermi-
nacy of the transitional range. At a BLIT rate of 24Hz, the impulses seem to be too
fast to support a rhythmic perception of discrete bursts, and, at the same time, too
slow to support the perception of a continuous harmonic (pitch-bearing) sound.
The upper spectrogram panel of Figure 4.2(b) shows a combination of both hori-
zontal lines that reflect isolated events in time, going from bottom to top, as well
as vertical lines that reflect the emerging harmonic structure of a continuous
complex tone (visible also as corresponding energy fluctuations in the middle
spectrograph panel).

To consider the transitional phases between the two regimes, Table 4.2 pres-
ents a slightly more elaborate sketch than Table 4.1, with transitional phases at
12–50Hz. Essentially, this emphasizes the fact that the main effects – rhythm
sensation in the temporal regime and periodic sensation in the spectral regime –
are optimally achieved closer to the center of each perceptual regime.

Note that the visual effects of the FFT-based representations in Figure 4.2
are calibrated to reflect human perception.4 The shift from temporal to spectral
regimes does not represent a change in any physical quality. Rather, it repre-
sents a perceptual threshold of a given system. A different system that responds
to higher rates of periodicities, such as, for example, models simulating the au-
ditory system of barn owls (see Köppl 1997), will most probably require higher

3The polarity of the impulses can also play a role with pitch perception at higher rates within
the spectral regime, as demonstrated in Flanagan & Guttman (1960). For this reason, I used
only unipolar impulses for which the relationship between impulse rate and frequency rate is
kept stable.

4Here I use a commercial metering application, SpectraFoo by Metric Halo (version 4.2.3), with
the default Analyzer depth setting of 4,096 points (10Hz). The BLIT synthesis and the oscillo-
gram were produced with the sound design software Plogue Bidule (version 0.9766).
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Table 4.2: Rough sketch of perceptual regimes with corresponding ef-
fects and timescales (transitions included). Note. Hz = Hertz (repeti-
tions per second); BPM = Beat Per Minute; ms = millisecond (duration
of repeating intervals).

Timescales

Perceptual regimes Effects Hz BPM ms

Temporal Infra-rhythmic 0–0.5 0–30 ∞–2k
Rhythm 0.5–12 30–720 2k–83.3

Ultra-rhythmic 12–20 720–1200 83.3–50

Spectral Infra-periodic 20–50 1200–3k 50–20
Periodicity 50–5k 3k–300k 20–0.2

Ultra-periodic 5k–20k 300k–1200k 0.2–0.05

frequencies to adequately represent the shift from the temporal to the spectral
regime. Importantly, higher frequencies will require higher resolutions before
the temporal representation becomes too fast and eventually “smears” into the
spectral one.

4.4 A note about previous works

The ideas in PRiORS are not entirely new. For one, they are not based on any new
data, but on established findings in the literature from the fields of acoustics, au-
ditory perception, neuroscience and linguistics. More specifically, previous pro-
posals were presented in the past for frameworks of perception that are, much
like PRiORS, based on delineating the unique contribution of different timescales
to auditory perception. I will summarize two of these in the following.

Richard Warren, who studied temporal integration in auditory perception
quite extensively, sketched a model with different perceptual effects at differ-
ent timescales in Warren & Bashford (1981) and Warren (1982: 80–85). Warren
& Bashford (1981) determined that 50–5k Hz is the optimal timescale for pitch
perception (“melodic pure pitch”), given that in this range, both place-based and
time-based resolutions of pitch are available. At faster rates of 5k–16k Hz, where
only place-based pitch resolution may be available, an “amelodic pure pitch” per-
ception takes over. At slower rates, between 20–50Hz, with only time-based
pitch resolution available, the “pure pitch” sensation changes to “noisy pitch”.
Further down, below 20Hz, repetitions are considered by Warren & Bashford
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(1981) as infrapitch, as they are too slow to induce a sensation of pitch. War-
ren & Bashford (1981) follow Guttman & Julesz (1963) in determining 0.5Hz as a
rough lower floor for perceptual integration of acoustic events. This 0.5Hz floor
of about 2 second-long intervals is commonly mentioned as the lower threshold
of the human ability to keep isochronous rhythm or temporally integrate events
(see Fraisse 1984, Farbood et al. 2013, Repp 2005).

Approaching auditory perception of speech from a more linguistic point of
view, Rosen (1992) presented a framework for describing temporal information in
speech, which can also be considered as a precursor of the PRiORS framework. In
his framework, Rosen (1992) divides perception into three “temporal features” at
distinct timescales: envelope (2–50Hz), periodicity (50–500Hz) and fine-structure
(600–1k Hz). Envelope covers mainly “tempo, rhythm” and “syllabicity”, while
periodicity covers mainly “stress”, “intonation” and “voicing” (see Rosen 1992: 76,
in which other segmental qualities are also covered).

4.5 Advantages of PRiORS

The PRiORS framework is useful for understanding various phenomena in audi-
tory cognition and in phonological systems. It can be useful for models of speech
perception that consider the contribution of auditory perception and cognition
to language systems, as was detailed in Chapter 3, and especially Section 3.6. The
following subsections address two major points that PRiORS can greatly help to
elucidate. In Section 4.5.1 I discuss how PRiORS can dispel a lot of the mystery
surrounding the phonological notion of the syllable, and in Section 4.5.2 I discuss
PRiORS’ potential for uncovering the different functions that music and speech
utilize when they wield the effect of rhythm from the timescale of the temporal
regime.

4.5.1 Universal aspects of syllabic structure

Syllables are, first and foremost, abstract units of phonological systems and they
do not easily lend themselves to consistent and straightforward phonetic expla-
nations in terms of perception and/or articulation. The PRiORS framework can
do a lot of heavy lifting in this regard, by providing the baseline conditions that
can explain the evolutionary trajectory of syllables. According to this analysis,
syllables were shaped by selection to optimally take advantage of the two per-
ceptual regimes: carrying pitch in the spectral regime and giving rise to speech
rate relations in the temporal regime (see Räsänen et al. 2018 for a similar type

43
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Figure 4.3: Schematic illustration of the relationship between percep-
tual regimes and syllabic units, using the three canonical syllables of
the English word syllable (demonstrated with one possible underly-
ing annotation). Segmental makeup, i.e. sonority, is related to the spec-
tral regime with high-frequency (periodic) oscillations within syllables,
while syllabic speech rate is related to the temporal regime with low-
frequency (rhythmic) oscillations between syllables. The ratio between
the low-frequency and high-frequency oscillations in this illustration is
arbitrarily set to be 1:20. This is a realistic ratio for syllables such that if
syllables are taken to have a typical duration of 200ms (5Hz), the high-
frequency oscillationwithin it would reflect a typical F0 for adult males
at 100Hz. For simplicity, this generalized illustration shows a single
rate at each timescale with isochronous repetitions (see Section 4.5.2
on the more complex picture regarding isochrony in speech).

of analysis). In other words, syllables have an internal segmental makeup that is
optimized to carry pitch in order to exploit the distinction between low vs. high
periodicity in the spectral regime, and, at the same time, they appear in sizes that
allow the distance between them to give rise to speech rate effects in order to
exploit the distinction between slow vs. fast rates in the temporal regime. Fig-
ure 4.3 illustrates this state of affairs with a highly generalized schematic sketch
of the slower rhythmic cycle between syllables and faster periodic cycles within
syllables.

PRiORS can therefore explain the universality of the typical syllable size and
the universality of the preferred segmental makeup in the syllabic nucleus, which
is commonly measured in linguistic terms of sonority. In line with PRiORS, this
work claims that sonority should be understood as a measure of pitch intelli-
gibility, acting as a defining feature of syllabic nuclei. Syllables therefore need
to be long enough to allow a minimum amount of periods to be effectively per-
ceived. For example, a very low F0 of 50Hz, which repeats every 20ms, requires
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a minimum of 3 periods (60ms) to be perceived, while higher F0 values (which
characterize most speech) repeat faster and require even shorter minimum inter-
vals (Fyk 1987, Josephs 1967). It is of interest to note that the average duration
of syllables is about 200ms (5Hz, 300 BPM), which is enough for adequate per-
ception of pitch, as well as being at the center of the temporal regime, where
it is optimally situated to achieve speech rate effects from the distance between
syllables.

4.5.2 Speech is quasi-repetitive

The notion of repetition implies identical intervals between occurrences over
time, i.e. repetition is taken to be isochronous unless otherwise stated. It has long
been noted that pitch-inducing speech sounds are in fact not fully-isochronous,
but, rather, quasi-periodic, as the pitch and its underlying periods are often un-
stable at some level. The notion of quasi-repetitiveness is mostly used to refer
to an inherent jitter in the regularity of repeating patterns that prevent perfect
isochrony. This level of jitter (or noise) in the voice is assumed to be perceptu-
ally negligible. However, on top of that there is another – much larger – source
of apparent instability in repetitive structures in speech. Speech is dynamically
changing all the time, in magnitudes that far exceed the levels of inherent jitter,
in order to achieve perceptible goals and to effectively exploit the sensations of
rhythm and pitch.

Consider for example the periods during a rising pitch contour, in which every
period is shorter than the previous one. These degrees of change do not hinder
the perception of coherent pitch contours, demonstrating our specialized ability
to perceive dynamically-changing pitch. As long as these communicatively rel-
evant pitch differences occur within the timescale of the spectral regime (and
follow basic Gestalt principles) they invoke a reliable effect in perception. It is
exactly these dynamic changes in the rate of repetition that prosody seems to
exploit in speech.

A similar behavior can be observed for rhythm in speech. Speech rates do not
typically appear as isochronouswithin the rhythm-inducing timescale of the tem-
poral regime (see Turk & Shattuck-Hufnagel 2013 and Nolan & Jeon 2014). This
is the temporal range which is exploited in speech for its perceptible effect on
speech rate in terms of slow vs. fast. Crucially, there are no strong reasons to
assume that the effect of rhythm in speech is exploited for isochrony, as it is not
clear what purpose this would serve in speech. However, in order to achieve var-
ious prosodic goals such as phrasal demarcation, turn-taking management and
prominencemarking (amongmany others), asynchronous temporal relations are
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exploited within the scope of speech rate sensations. In other words, speech is
also quasi-rhythmic and dynamically changing at the timescale of the rhythm-
inducing effects of the temporal regime in order to be effective for prosody.

Confusingly, speechmakes a very different usage of the temporal regimewhen
compared to music, which, more often than not seems to favor isochronous
rhythmic patterns over meandering ones within the rhythm-inducing timescale.
Musical experiences tend towards isochronous rhythms, perhaps because of the
powerful ability of the perception of isochrony to create a shared clock that can
be synced across separate systems and human agents, whereby different peo-
ple can couple sensorimotor oscillations between one another and experience
entrainment (see, e.g., Cummins 2009, 2015, Benichov et al. 2016, Haegens &
Golumbic 2018, Kotz et al. 2018, Rouse et al. 2016, Tal et al. 2017).

In contrast to a classic case of entrainment to external clocks, languages seem
to use the effects of rhythm in the temporal regime for a different set of goals
that do not seem to require isochrony and should not be considered to reflect
classic entrainment (see, e.g., Cummins 2012 and Meyer et al. 2020). The rhythm-
inducing timescale is mostly used in speech to effectively exploit the distinction
between slow and fast speech rates as useful cues in a system of speech prosody.
To that end, (quasi-)isochrony in speech perception should be considered as inter-
nal (endogenous neural activity) rather than external (exogenous neural activity),
to allow the hearer to infer the dynamic (and largely unpredictable) changes in
the speech rate of their interlocutors.

Thus, a striking feature of the effects of auditory temporal integration in lan-
guage is that they make use of the two perceptual regimes by keeping repeti-
tive elements in a constant state of flux within their effective timescales. To be
communicatively useful in prosody, pitch in speech is mostly quasi-periodic and
highly dynamic within a privileged range of pitch perception. Likewise, speech
rate is mostly quasi-rhythmic and highly dynamic within a privileged range of
rhythm perception.

4.6 Neural oscillations in perception and cognition

The PRiORS timescales also fit very well with the characterization of speech pro-
cessing via neural oscillations of brain activity at different wave lengths (see
overviews in Buzsáki 2006, Myers et al. 2019, Poeppel & Assaneo 2020). As Ta-
ble 4.3 demonstrates, three distinct neural activity patterns are commonly ob-
served within the rhythmic portion of the temporal regime, comprising a set
of low frequency oscillations. Interestingly, the mid-range among the three, the
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Table 4.3: Generic neural oscillations (roughly defined) across the tem-
poral regime

Perceptual regimes Effects Neural Oscillations Timescales (Hz)

Temporal Rhythm delta 0.5–4
theta 4–8
alpha 8–12

theta frequency band at 4–8Hz, has been often studied in conjunction with sylla-
bles, as it covers the range of durations (125–250ms) that, indeed, characterizes
the vast majority of syllables cross-linguistically (Ding et al. 2014, 2017, Gross
et al. 2013, Keitel et al. 2017, Luo et al. 2010, Poeppel & Assaneo 2020).

The link between the theta frequency and syllables is consistent with the PRi-
ORS framework, whereby syllables and the temporal domains of cognition are as-
sumed to have co-evolved to exploit the rhythmic effects of the temporal regime,
therefore tending towards the center of this particular perceptual-cognitive sen-
sation.

Note that the timescales of speech units do not necessarily fall into the clas-
sic division of generic wave lengths. Syllables can be quite diverse and they
can be found at rates ranging from 2Hz, with long 500ms intervals (e.g. Chan-
drasekaran et al. 2009), to 20Hz, with short 50ms intervals (e.g. Greenberg et
al. 2003). Likewise, various speech phenomena have been associated with the
ranges of delta and theta waves (1–8Hz), i.e. at intervals ranging from a little
over 100ms up to one second (e.g. Ghitza 2017, 2013, Cummins 2012, Goswami &
Leong 2013, Inbar et al. 2020, Meyer et al. 2017).

Keitel et al. (2018) focus on timescales directly extracted from statistical regu-
larities in their speech material, rather than focusing on generic timescales like
delta or theta bands. The timescales in their study reflected the rates of phrases
(0.6–1.3Hz), words (1.8–3Hz), syllables (2.8–4.8Hz), and phonemes (8–12.4Hz) as
they appeared in their corpus of carefully read speech (by a trained, male, na-
tive British actor). Indeed, after analyzing corresponding speech tracking signals
from listeners using magnetoencephalography (MEG), they found neural activ-
ity strongly correlated to these timescales. PRiORS can shed light on such re-
sults, whereby, as with the generic waves, the timescale of syllables occupies
a central portion of the rhythm-inducing range of the temporal regime (2.8–
4.8Hz). Furthermore, all the different linguistic units are neatly spread across the
rhythm-inducing range, defined here at 0.5–12Hz (see Table 4.2), allowing speak-
ers to perceive quasi-rhythmic patterns of stressed and emphasized/accented
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syllables at the lower end of the rhythmic perception that Keitel et al. (2018)
link with “phrases” (0.6–1.3Hz) and “words” (1.8–3Hz), as well as perceiving
quasi-rhythmic patterns of segment-size units that Keitel et al. (2018) link with
“phonemes” at the highest end of rhythmic perception (8–12.4Hz).

Note that the transitional range between regimes in PRiORS, defined here as
roughly 12–50Hz (see Table 4.2), is expected to be of little usefulness for bottom-
up processing of auditory material given that at this timescale the effects of
rhythm and periodicity are somewhat indeterminate. The neural oscillations that
are commonly associated with this timescale are the beta band at about 13–30Hz
and the gamma band at about 30–50Hz. Interestingly, studies such as Mai et al.
(2016) and Keitel et al. (2018) find the beta and gamma rates of neural oscillation
to be more closely related to top-down inferences involved in processing of syn-
tax and semantics. This implies a functional division of labor when processing
speech, whereby top-down inferences may “piggyback” on channels that are less
useful for bottom-up processes.

Recent work in Tang et al. (2020) is in line with the rationale of the PRiORS
framework, linking phonological outcomes with the same perceptual primitives
that the PRiORS framework assumes. Tang et al. (2020) investigate the relation-
ship between the frequency of certain genes in human populations and phoneme
inventories in their respective languages. The genes they investigate are assumed
to modify faithful spectral and temporal encoding in the auditory cortex. It ap-
pears that the distribution of these genes across human populations can quite
reliably predict the size of stop and nasal consonant inventories that will be fea-
tured in their languages. The authors suggest that the differences in spectral and
temporal precision that can explain these phonemic preferences, may be directly
related to observed differences in genetic expressions.

4.7 Shifting paradigms in linguistic theory with PRiORS

The most relevant areas of phonological theory that PRiORS can shed light on
concern the notions of sonority (see Section 4.7.2), as well as the notion of rhythm
in speech. Rhythm is beyond the scope of the current study, but some pointers
towards the potential contribution of PRiORS are given in Section 4.7.1 below.

4.7.1 A different rhythm

The idea that the effect of rhythm in speech has the same function as rhythm in
music has misled many attempts to characterize rhythm phenomena in speech.
The thorniest challenge that such endeavors have to face is the search for iso-
chrony in conversational speech that is not chanted or sung. A strict view of
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isochrony, which is sometimes referred to as coordinative or periodic rhythm, is
very characteristic of what we typically consider to be rhythmic in musical terms
– the division of time into equal parts (and the further subdivisions of those equal
parts into simple fractions: 1/2, 1/3, 1/4, 1/8, 1/16, etc.).

A well-known manifestation of this search for isochrony can be found in the
typological classification of stress-timed vs. syllable-timed languages (see Pike
1945, Abercrombie 1967, Dauer 1983, Lehiste 1990), whereby isochrony is sup-
posedly maintained between syllables in syllable-timed languages and between
stressed syllables in stress-timed languages. According to this idealized view, lan-
guages that do not reduce unstressed syllables (e.g. Spanish) maintain isochrony
between all the syllables within a phrase, while languages like English, with sec-
ondary stress and reduction of unstressed syllables, maintain isochrony only be-
tween the stressed syllables within a phrase (such that reduced syllables do not
participate in this timing scheme). This view is idealized since a straightforward
isochrony of this type, in which some level of spoken language adheres to an ex-
ternal clock, is not to be found on the surface acoustics of speech (e.g. Arvaniti
2009, Turk & Shattuck-Hufnagel 2013).

A slightly more nuanced concept of rhythm targets the relationship between
speech items, rather than the alignment of speech items to real time. It is some-
times referred to as contrastive or phonological rhythm as it addresses our ten-
dency to perceive a strong/weak distinction between repeating items in a se-
quence. This conception of rhythm does not assume strict isochrony that adheres
to an external clock. Instead, it uses local timing relations to reflect prominence
and grouping in the speech signal (e.g. Arvaniti 2009).

Various acoustic metrics were developed in order to measure global rhythmic
distinctions, with the aim of characterizing different languages. Among them are
measurements of the relative abundance or regularity of durations of selected
units such as vowels and consonants, e.g. %V, ∆V, ∆C (Ramus et al. 1999), Var-
coV, VarcoC (Dellwo 2006) and variants of the Pairwise Variability Index (PVI)
(e.g. Grabe & Low 2002). These metrics manage to avoid the requirement for
strict isochrony and they succeed in characterizing different languages, but this
seems to be true only to some extent, with small effect sizes (the variabilitywithin
languages can be very high due to various factors like speech style and method-
ological decisions in themeasurement itself) and inmanners that are inconsistent
with classic rhythm typologies (see Arvaniti 2012). Lowit (2014) concluded that
none of these metrics are useful in clinical settings, based on systematic compar-
isons between speakers with dysarthria and matched healthy participants.

Nolan & Jeon (2014) provide an overview of these problems. They suggest
that language is perhaps antirhythmic such that isochronous patterns are not to
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be found in the surface acoustics, but they might be metaphorically projected
in perception. This description is indicative of the fact that even the concept of
contrastive rhythm is essentially based on comparison to an isochronous baseline,
as if isochrony is an underlying goal of speech rhythm in and of itself.

PRiORS can help us make the next logical step by providing a slightly different
framework for the understanding of rhythm, such that isochrony is no longer
a key ingredient in its definition. Isochrony is one goal that can be achieved
from rhythm effects in the temporal regime, and, indeed, this goal is exploited
extensively in music. Music seems to exploit rhythm effects to achieve isochrony
in order to promote entrainment, while speech seems to exploit rhythm effects
in order to control the temporal dimension of prosody and effectively use the
distinct sensation of slow vs. fast. Speech – unlike music – is mostly meandering
in its rhythmic patterns. Expecting rhythm in speech to exhibit isochrony is akin
to an expectation that every syllable would have a steady level pitch in order
to count as periodic, overlooking the major role of perceived dynamic changes
within each perceptual regime (see Section 4.5.2).

Rhythm in speech should therefore be understood as a moving target that
can be more adequately modeled in terms of a trajectory, much like the trajec-
tory of the F0 at the faster timescale of the spectral regime. Related ideas to-
wards this goal can be found in the pioneering work of Pfitzinger (2001), which
uses dynamic trajectories to describe local speech rate. A PRiORS-based analy-
sis of rhythm in speech should therefore target the syllable-size fluctuations in
the periodic energy curve, and model their temporal distances in terms of a dy-
namic smooth trajectory in order to capture local speech rate as the main effect
of rhythm in speech (for preliminary attempts, see Section 9.2.3).

4.7.2 A new type of sonority

The human auditory system evolved to exhibit great sensitivity to (quasi-)period-
ic signals within the spectral regime, specializing in the perception of pitch. This
is evident from the impact of pitch on our categorization of manymusical sounds
(e.g. Bidelman & Krishnan 2009) as well as on tone and intonation in speech
(e.g. Krishnan et al. 2005). This is also evident from anatomical and neurological
activity, either in terms of place representations in the cochlea (i.e. in spectral
terms) or in terms of timing representations in the auditory nerve, characterized
by phase-locking to neural firing rates (see Section 4.2).

The vocalic or voiced portions of speech can be described as a train of glottal
pulses produced by vocal fold vibration, not unlike the idealized BLIT simulation
in Section 4.3. This voiced component of the speech signal is the main carrier of
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pitch in speech and it is a striking fact about all languages that they prefer this
auditory characteristic at the nucleus of their syllables (as well as the fact that
all known languages exhibit a syllabic structure to begin with).

One aspect of this important dimension of linguistic sound systems is our
ability to obtain good estimations of the fundamental frequency (F0) of complex
sounds, which we take as a reliable correlate of perceived pitch height. Indeed,
phonologists and phoneticians have incorporated continuous measurements of
F0 as a regular part of their toolbox, and they are well aware of the fact that
F0 is more robust at syllabic nuclei, where the most sonorant elements usually
sustain a sufficiently long and powerful (quasi-)periodic sound (see Barnes et al.
2011, 2014, Roettger & Grice 2019).

Measurements of F0 therefore cover a qualitative aspect of perceived pitch: its
height in terms of the rate of repetition of the fundamental frequency. What is
missing from this picture is the quantitative aspect of this auditory dimension,
a description of acoustic power that targets only the pitch-inducing (vocalic/pe-
riodic) portions of the speech signal, unlike the commonplace practice to obtain
the physical intensity of the acoustic signal as a whole. A measurement of this
kind, referred to as periodic energy, has the promising ability to correlate with
the notion of sonority in a way that implies causation related to pitch intelligi-
bility, as it separates pitch-inducing components that favor syllabic nuclei from
noise-inducing aperiodic components that favor syllabic margins.

Sonority in this sense is viewed as a measurement of the goodness of fit for syl-
labic nuclei, directly targeting pitch as an auditory dimension that our perceptual-
cognitive systems are specialized for and that has evidently shaped the basic
structure of all linguistic sound systems, given the universality of syllables with
sonorous/pitch-bearing nuclei.

The perspective that PRiORS suggests helps in redirecting our focus away
from the non-discriminative nature of general acoustic intensity and other acous-
tic measurements that do not suggest a clear and consistent association with
perception and cognition. Instead, PRiORS directs us to search for acoustic mea-
surements that exhibit robust links to pitch-inducing phenomena in the spectral
regime in order to adequately characterize sonority. As PRiORS helps elucidating,
periodic sounds in the acoustic speech signal carry valuable pitch information,
which, in turn, makes them privileged in terms of position within the syllable.
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Attraction Principle (NAP)

5.1 Sonority and pitch intelligibility: A causal link

The observation that sonority summarizes an essential quality that is related to
vowels and their propensity to deliver a relatively steady harmonic structure,
highlighting pitch and formant information, is by no means new. Previous pro-
posals already defined sonority as either relating to vowels in some general way,
more specifically relating it to voicing or glottal fold vibration, or to the clari-
ty/strength of formants.1 A few previous accounts went even further, by address-
ing the function of this evasive vowel-centric feature, suggesting that sonority
may be related to periodic energy or pitch/tone (Heselwood 1998, Ladefoged 1997,
Lass 1988, Nathan 1989, Puppel 1992). What all these proposals share, explicitly
or implicitly, is a recurring insight about a strong link between the preferred
type of segmental material in syllabic nuclei and a set of features that conspire
to optimize pitch intelligibility, a property which characterizes vowels more than
consonants.

Pitch is an indispensable communicative dimension of all linguistic sound
systems (Bolinger 1978, Cutler et al. 1997, House 1990, Roettger & Grice 2019),
whether it is lexically determined as in linguistic tone, or post-lexically employed
to convey intonation, i.e. the linguistic tune (see typological accounts of prosodic
systems in Jun 2005, 2015). Tones are used to distinguish lexical itemswhile tunes
are used to demarcate units, to modulate semantics (e.g. information structure
and sentence modality) and to express a vast array of non-propositional mean-
ings (e.g. discourse-pragmatic intention, emotional state, socio-indexical identity,
and attitudinal stance). The importance of pitch to human communication can-
not be overstated.

1A partial list of some prominent examples includes Sigurd (1955), Jakobson & Halle (1956),
Chomsky & Halle (1968), Foley (1972), Ladefoged (1971), Allen (1973), Fujimura (1975), Donegan
(1978), Ultan (1978), Price (1980), Lindblom (1983), Anderson (1986), Vennemann (1988), Levitt et
al. (1991), Pierrehumbert & Talkin (1992), Fujimura & Erickson (1999), Bernhardt & Stemberger
(1997), Boersma (1998), Zhang (2001), Howe & Pulleyblank (2004), Clements (2009), Sharma &
Prasanna (2018).
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Crucially, linguistic pitch events are known to target syllable-sized units as
their “docking site”, regardless of the type of pitch event, whether they are lexi-
cal tones or post-lexical tunes. These linguistic pitch events are commonly con-
sidered to associate with tone-bearing units (see Leben 1973), that are either syl-
lables or moras.2 These associations between the text on the one hand and tone
or tune on the other hand are widely assumed to be mediated by syllabic/moraic
units. For example, intonation pitch contours that highlight and modulate whole
words and phrases essentially target privileged syllables – heads (stressed syl-
lables) and edges (syllables at initial and final positions of prosodic words and
phrases) – to achieve their communicative goal on textual material of various
sizes. This tone-bearing role of syllables and moras is the hallmark of many
prominent theories regarding tone and intonation, following from Autosegmen-
tal and Autosegmental-Metrical Phonology (e.g. Liberman 1975, Goldsmith 1976,
Ladd 2008, Pierrehumbert 1980).

The functionally motivated conclusion that emerges with respect to sonority
is therefore that syllables require a pitch-bearing nucleus and that sonority is
a scalar measure of the ability to bear pitch. In other words, sonority is, most
likely, a measure of pitch intelligibility. This hypothesis comes with an under-
lying assumption that was introduced by the PRiORS theoretical framework in
Chapter 4, whereby syllables are claimed to have followed an evolutionary tra-
jectory that shaped them to optimally carry pitch in their nuclei (Section 4.5.1).
Sonority, according to this description, serves as the tool that governs the re-
quirement for intelligible pitch as a fundamental characteristic in the design of
the building blocks of prosody (see Section 4.7.2).

It is important to note that this view of sonority is explicitly and exclusively
based on perception, rather than articulation of speech. However, it does not
exclude articulation-based description of syllables under the assumption that re-
strictions on syllabic structure must be derived from both the perception and
the articulation of speech. A case in point is the Articulatory Phonology frame-
work (see Section 3.2), with its valuable descriptions of temporal coordination
and phase relations between motor gestures, which can be effectively linked to
syllabic organization (see, e.g., Goldstein et al. 2007, Gafos et al. 2014, Goldstein
et al. 2009, Hermes et al. 2017, Shaw et al. 2009).

2Moras are used to represent quantitative differences between light and heavy syllables (weight
sensitivity, see Section 5.3.2), such that light syllables contain one mora while heavier sylla-
bles contain two (and sometimes even three) moras (see Hyman 1984, Hayes 1989, Itô 1989,
McCarthy & Prince 1990, Zec 1995, 2003).
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5.2 Periodic energy and sonority: Causation by
transitivity

Pitch is a psychophysical phenomenon based on perception and cognition (see
Plomp 1976, Plack & Oxenham 2005). We can technically obtain pitch-related
measurements in terms of neurological and behavioral responses directly from
perception. Such measurements are hard to accumulate in very large numbers
as they require intricate lab procedures in order to collect data from each sub-
ject. Another avenue for obtaining perception-relatedmeasurements is to extract
them from acoustics, i.e. not directly from the perceived sensation of a human
subject but from the digitally-analyzed description of the physical sound in space.
The benefits of acoustic measurements include the accessibility of recording and
processing capabilities and the availability of many existing corpora, which fa-
cilitate access to large amounts and diverse types of acoustic speech data. Using
acoustics to cover auditory psychophysical phenomena is not a straightforward
task. It requires a consistent and reliable association between acoustics on the
one hand, and perception and cognition on the other hand. This task is poten-
tially complicated further with a complex phenomenon like pitch, which is ev-
idently sensitive to various aspects of the rich acoustic signal as well as to our
top-down expectations with regard to learned regularities of pitch behavior in
the speech signal (see, e.g., Houtsma 1995, McPherson &McDermott 2018, Moore
2013, Shepard 2001: 203).

Fortunately, there are strong links between pitch and acoustic markers. This is
well-known from the extensive use of acoustic F0 measurements to estimate per-
ceived pitch height. Furthermore, pitch estimations from F0 measurements can
become more reliable when dealing with specific types of audio such as speech,
as in this case the bulk of pitch information comes from a single source (i.e. one
speaker) within a limited range of fundamental frequencies (mostly between 75–
400Hz, rarely below 50Hz or above 600Hz).

To estimate perceived pitch intelligibility from acoustic signals, we need to ob-
tain a measure of periodic energy, which is a measurement of the acoustic power
of periodic components in the signal. It may be helpful to think of this as a mea-
surement of general intensity that excludes the contribution of aperiodic noise
and transient bursts. Measurements of periodic energy are not very different
from widely-used F0 measurements that are commonly based on the ability to
detect periodic components in the complex signal. Roughly speaking, rather than
resolving the harmonic denominator of detected periodic components in order
to estimate F0, a periodic energy meter needs to sum over their power.
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To conclude, our ability to detect periodicity in acoustic signals allows us to
extract good estimates of F0 and periodic energy from speech data. We stand
on firm grounds when we map these acoustic markers to perception in terms of
pitch height and pitch intelligibility (respectively). Given a causal link between
perceived pitch height and linguistic tone and intonation contours, it is reason-
able and, indeed, commonplace, to assume by transitivity that acoustic F0 main-
tains a causal link to linguistic tone and intonation. Likewise, given a causal
link between perceived pitch intelligibility and linguistic sonority, it should be
reasonable to assume by transitivity that acoustic periodic energy maintains a
causal link with the linguistically-loaded notion of sonority.

5.3 The Nucleus Attraction Principle

At the heart of all sonority-based principles lies the idea that the most sonorous
segment in a sequence is containedwithin the nucleus of the syllable. This idea in
fact postulates a link between the amount of sonority and the nucleus position of
the syllable. I adopt this fundamental insight that guides all other sonority princi-
ples in the development of the Nucleus Attraction Principle. However, instead of
adding further formal assumptions about non-overlapping segments with fixed
sonority values and corresponding sonority slopes in symbolic time, the link be-
tween sonority and the syllabic nucleus is simply modeled as a dynamic process
in real time. All the portions of the speech signal compete against each other for
available nuclei in this process.

Sonority is therefore the quality that is capable of attracting the nucleus. The
varying quantities of this quality, which temporally fluctuate along the stream
of speech, determine which portions of speech are prone to succeed in attract-
ing nuclei given their superior local sonority mass. The speech portions that fall
between those successful attractors are syllabified in the margins of syllables, at
onset and coda positions.

Crucially, NAP treats the postulated link between sonority peaks and syllabic
nuclei as the result of a perceptual-cognitive process in real time, rather than de-
scribing a geometric state of affairs with symbolic discrete tools. In fact, by mod-
elling the link between sonority and the syllabic nucleus in dynamic terms it is
not necessary to add further theoretical postulates about sonority slopes or dis-
crete segmental categories of consonants and vowels in order to determine well-
formedness of syllabic structures. Syllabic ill-formedness in NAP-based models
is positively correlated with the degree of nucleus competition that a given syl-
labified portion incurs.
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It is important to note that the informativeness of NAP-based models is not
derived from identifying the winner of the nucleus competition, but from quan-
tifying the degree of competition within different portions of speech that stand
for potential syllabic parses. NAP-based models can analyze speech parts that
are parsed together as a single syllabic unit in order to estimate the degree of
competition they give rise to when they compete for a single nucleus. In discrete
terms, NAP-based models can quantify different sequences of segments to reflect
how strongly they compete for a single nucleus. Either way, the higher the de-
gree of internal competition, the more ill-formed a syllable is predicted to result
from this parse. To simplify this further with respect to the subset of instances
discussed in this work (i.e. syllables with complex consonantal onset clusters),
it is possible to say that the winner of the nucleus competition is always the
only vowel in the structure. The determination of ill-formedness in these cases
is based on quantifying the amount of competition that the winning vowel has to
withstand given different consonantal clusters in the onset of the same syllable.

It should be also useful to note that we do not expect serious competition to
arise from a consonant adjacent to the vowel in the same syllable, such that in
a C1C2V syllable only C1 is considered to be the potential competitor to V. The
consonant in C2 position has a crucial impact on the competing potential of C1
but it is not, in and of itself, a competitor in the data presented in this study.3

To elucidate this point, consider the case of simple CV syllables. Here, sonority
levels are expected to rise from C to V continuously, with no competition for the
nucleus. Nucleus competition, much like sonority slopes, has a limited impact on
syllables with maximally simple onsets and/or codas, (i.e. V, CV, VC and CVC).
Principles like SSP and NAP play a role chieflywhen sequences of consonants are
syllabified within a single syllable as complex onset or coda clusters (e.g. CCV or
VCC). The phonotactics of these possible sequences are determined to a large ex-
tent by sonority principles. We interpret this aspect of cluster phonotactics such
that sequences within syllables are avoided the more they increase the potential
competition for the nucleus in the process of syllabifying/parsing the stream of
speech.

5.3.1 Schematic NAP sketches

To understand the rationale of NAP, a series of schematic sketches are presented
in Figure 5.1, accompanied by an impressionistic description. These will eventu-

3We narrowly expect vocoids (i.e. glides) to be able to compete for the nucleus from the vowel-
adjacent C2 position, but this case is likely circular since a glide in the nucleus position would
be simply considered a (high) vowel.
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Figure 5.1: Schematic depictions of competition scenarios with sym-
bolic CCV structures. Nucleus competition can be understood as the
competition between the blue and the purple areas under the sonority
curve. The two examples in the top row – plV and lpV – suggest a repli-
cation of successful traditional predictions, while the three examples
in the bottom row – spV, sfV and nmV – suggest a divergence from
SSP-type models (see text for more details).

ally be implemented within formal models that are described in detail in Chap-
ter 6. The five examples with specified consonantal clusters exhibit their related
sonorant energy depicted as the area under the curve, whereby the curve itself is
an idealized depiction of schematic sonority. The purple area in each syllable in
Figure 5.1 denotes the sonorant energy of the winning vowel in the nucleus posi-
tion while the blue area denotes the sonorant energy of the losing portions in the
onset. Consider for example the pair plV and lpV, with schematic NAP-related
depictions in the top row of Figure 5.1 (and with more traditional sonority slopes
in Figure 2.1). A consonantal onset cluster with a putatively well-formed rising
sonority slope like plV should be also considered well-formed under NAP due to
the very low potential of competition between the marginal minimally-sonorous
onset consonant /p/ and the non-adjacent vowel that wins the competition for
the nucleus. The intervening /l/ in this case only promotes a continuous rise in
sonority from /p/ to V. Likewise, a consonantal onset cluster with a putatively ill-
formed falling sonority slope like lpV should be also considered ill-formed under
NAP due to the strong potential for competition between the marginal sonorous
onset consonant /l/ and the non-adjacent vowel, especially given the intervening
/p/ that leads to discontinuity in the sonority trajectory between /l/ and V.

Unlike the examples above, where the rationale of NAP is expected to replicate
successful predictions of the SSPwith cases like plV and lpV, NAP is also expected
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to diverge from traditional sonority sequencing principles in those cases where
traditional principles suffer from inherent failures, as detailed in Section 2.2.2.
Consider the examples in the bottom row of Figure 5.1, which were also depicted
with traditional sonority slopes in Figures 2.4 and 2.5. Under NAP, neither /s/-stop
clusters like spV nor voiceless obstruent plateaus like sfV are expected to incur
a strong competition syllable-internally due to the low potential for competi-
tion between the minimally-sonorous onset consonant /s/ and the non-adjacent
vowel that wins the competition (here, the intervening voiceless obstruents /p/
and /f/ retain a minimally sonorous trajectory throughout the whole onset). At
the same time, a strong competition potential is predicted under NAP for nasal
plateaus like nmV when compared to obstruent plateaus like sfV. This should
be expected given the strong potential for competition between the marginal
sonorous onset consonant /n/ and the non-adjacent winning vowel (here, the
intervening nasal retains a relatively level sonorous trajectory throughout the
onset).

As a rough conclusion, it is possible to suggest that by observing the potential
competition between blue and purple areas in Figure 5.1, we should easily see
that the two structures on the right-most side (lpV and nmV ) exhibit a stronger
competition potential syllable-internally in comparison to the other three struc-
tures, in a manner that is not fully predictable from their sonority slopes. For
more elaborate competition-based distinctions, see Section 6.3.

5.3.2 On the roots of prosodic attraction

The central idea behind NAP, whereby sonority attracts syllabic nuclei, is, in fact,
well-established in phonological theory. In various descriptions of stress systems,
it is often suggested that some languages exhibit weight sensitivity. This is not a
universal process, as stress assignment patterns vary from language to language,
and not all languages even have stress to begin with. However, weight sensi-
tivity is one of the naturally occurring stress assignment patterns that various
unrelated languages exhibit (e.g. Arabic, Tibetan (Lhasa), Wolof, Finnish, Latin
and many more; see Goedemans & van der Hulst 2013, and Gordon 2006: 23 for
more exhaustive lists).

Weight sensitivity usually means that a language which regularly assigns the
primary stress to a certain syllabic position within phonological words (e.g. ini-
tial/final syllable, etc.) may diverge from this canonical position and assign the
stress to an adjacent syllable if it is heavier than the syllable at the canonically
stressed position. This is standardly understood as attraction of the primary
stress by the heavy syllable, where heaviness is mainly the product of a longer
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vowel in the nucleus, and in some languages heaviness may also result from a
(preferably sonorant) consonant in the coda (see, e.g., McCarthy 1979, Gordon
2006, Hayes 1980, Prince 1990). There are also analyses whereby vowel quali-
ties that are considered more sonorous due to degree of opening (i.e. more open/
lower vowels) can contribute to heaviness and attract stress (Gordon et al. 2012,
Kenstowicz 1997, de Lacy 2002, Zec 1995, 2003).

Importantly, all of these notions of weight are consistent with a hierarchy of
sonority. Structurally, the rime is the locus of weight phenomena, and within
the rime – the nucleus is most important for weight. Segmentally, sonorants
contribute more to weight than obstruents, and within sonorants, open vow-
els are the strongest attractors. Viewed with NAP in mind, attraction of stress
in weight-sensitive systems is simply the special case of a regular procedure,
whereby weight – i.e. sonority mass – attracts syllabic nuclei. In other words,
given the regular process that NAP assumes, by which syllabic nuclei are at-
tracted to sonorant energy masses, weight sensitivity is simply an extension
whereby heavy syllabic nuclei are attracted to heavy sonorant energy masses.

The stressed syllable in weight-sensitive systems is maintained as highly sono-
rous, which makes it an optimal syllable for carrying tonal events in intonation,
generally serving as the docking site for pitch accents. Attraction in prosody thus
follows a consistent rationale: sufficiently pitch-intelligible units satisfy the re-
quirement for a regular syllable by attracting nuclei in general, and exceptionally
pitch-intelligible units may satisfy a special requirement for the stressed syllable
by attracting the strongest nuclei.

A similar process also occurs post-lexically in many languages. This process is
related to text-tune interaction, which can often lead to local sonority enhance-
ments of syllables that need to carry tonal information. The most prominent
cases are post-lexical prosodic enhancements through an increase in duration
and/or intensity of sonorant material (alongside insertions of transitional vo-
coids and epenthetic vowels) serving to accommodate certain tonal events in
intonation (see Roettger & Grice 2019).

To conclude, the understanding that sonority is linked to pitch via syllabic
units is well established in phonology. NAP takes this understanding further than
previous insights about prosodic weight and text-tune interactions in proposing
a functional theory of prosody and sonority based on pitch intelligibility.
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6.1 Complementary NAP models

NAP essentially describes a bottom-up process, illustrating the parsing of the
stream of speech into syllables as the end point of a process that starts in percep-
tion. As such, NAP is designed to agree with the laws of physics and the biases
of the human auditory system in order to shed light on linguistic processing. A
bottom-up perspective on modelling NAP is therefore relatively straightforward
as it requires a similar approach to the process NAP describes: the analysis of
continuous acoustic data at the input, resulting in well-formedness predictions
at the output.

A bottom-up approach for NAPmodels has no capacity to exploit the power of
abstraction, so it essentially has no “memory”. It is a mechanistic dynamic model
that contains discrete symbolic entities only as the linguistic target of the task,
at the end of the process determining syllabic well-formedness. This means that
a bottom-up model can only be designed to analyze concrete speech tokens. Un-
like traditional sonority principles and their models, a bottom-up model of NAP
cannot determine the well-formedness of an abstract syllable as it is depicted in
symbolic form. It will, therefore, give slightly different scores to different rendi-
tions of the same syllable, even by the same speaker.

A NAP-based model operating on abstracted symbolic units is used as a sepa-
rate, complementary top-downmodel (see Chapter 3 and specifically Section 3.6).
Top-down inferences are based on learned regularities and categorical abstrac-
tions that reflect linguistic experience. To that end, knowledge about consonantal
inventories and the probabilities of consonantal co-occurrence and distribution
with respect to position in the syllable has to be acquired and then stored in ab-
stract symbolic forms which are available for top-down inferences. In that sense,
top-down inferences in perception are based on the distributional probability of
recognized symbols.

The above description of top-down inferences, which are detached from the
functional aspects of the bottom-up route, echo models of the language user as
a statistical learner (see, e.g., Christiansen & Curtin 1999, Frisch & Zawaydeh
2001, Tremblay et al. 2013) and, more specifically, they are very much in line with
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models of phonotactic learners (see, e.g., Coleman & Pierrehumbert 1997, Albright
2009, Bailey & Hahn 2001, Daland et al. 2011, Hayes 2011, Hayes & Wilson 2008,
Jarosz et al. 2017, Mayer & Nelson 2020, Vitevitch & Luce 2004). That said, the
current project does not explore the statistical nature of top-down inferences.
Instead, it operationalizes the rationale behind NAP with symbolic machinery
to present what can be understood as the symbolic model of NAP and is used to
estimate top-down inferences. This choice allows the presentation of a top-down
model with a stronger explanatory value with regards to NAP as it uses a similar
architecture to that of standard sonority principles, helping to elucidate NAP’s
core ideas while using a familiar vocabulary (see Section 6.2.2).

Moreover, it should be noted that since a cognitively plausible top-down archi-
tecture in this framework is based on the distributional patterns of recognizable
symbols, these distributions should be “blind” to their various sources, which
include a host of universal and idiosyncratic phonotactic pressures. A true top-
down statistical learner is thus inherently “contaminated” by all the different
sources that contribute to phonotactics in a given system, without a clear dis-
tinction between sonority and other factors. Thus, it remains an open question
whether top-down inferences that target only sonority-based phonotactics can
be modeled in a more direct and principled way than the one presented here with
the symbolic model of NAP.

As two complementary inference routes, the top-down and bottom-up mod-
els should not be considered equal. The bottom-up route is the source of learned
linguistic distinctions and it is functionally motivated by the laws of physics and
the limitations of the perceptual and cognitive systems. In contrast, the top-down
route is based on linguistic experience and superficial inferences that reflect the
history of the symbols in the system (i.e. the distributional probabilities of rec-
ognizable recurring patterns and their extensions by analogy). In other words,
top-down inferences reflect functionally motivated behaviors only indirectly, as
the outcome of learning the superficial expressions of functionally-motivated
(bottom-up) dynamics.

6.2 Model implementations in dynamic and symbolic
terms

In order to compare the different proposals, four types of traditional sonority
models are considered alongside the two NAP models. For traditional models I
use the two types of sonority hierarchies that were presented in Section 2.1.1
(see Table 2.1, repeated here in Table 6.1), where the class of obstruents is either
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Table 6.1: Traditional phonological sonority hierarchies (repeated from
Table 2.1). Index values reflect the ordinal ranking of categories in
sonority hierarchies. The obstruents inH col are collapsed into one cate-
gory (bottom four rows = 1), while in H exp they are expanded into four
distinct levels.

Sonority index

H col Hexp Segmental class Phonemic examples

5 8 Vowels /u, i, o, e, a/
4 7 Glides /w, j/
3 6 Liquids /l, r/
2 5 Nasals /m, n/
1 4 Voiced Fricatives /v, z/
1 3 Voiced Stops /b, d, g/
1 2 Voiceless Fricatives /f, s/
1 1 Voiceless Stops /p, t, k/

collapsed (H col) into a single level or expanded (Hexp) to include distinctions be-
tween voiced and voiceless obstruents, and between stops and fricatives. Both
hierarchies are applied with each of the two main variants of traditional sonor-
ity principles, the Sonority Sequencing Principle, SSP, and the Minimum Sonority
Distance, MSD (see Section 2.1.2). The four traditional sonority models under dis-
cussion are therefore a combination of a sonority principle (either SSP or MSD)
and a sonority hierarchy (either H col or Hexp). Accordingly, they are referred to
as SSPcol, SSPexp, MSDcol, and MSDexp.

The two NAP models use periodic energy as the correlate of sonority, and
periodic energy is applied either continuously through acoustics (bottom-up
model), or in a discrete manner using symbols (top-down model). These two
NAP models are referred to as NAPtd for the top-down model and NAPbu for the
bottom-up one.

To demonstrate the different sonority models, this study focuses on complex
onset clusters of the general form CCV, where C denotes consonants in onset
position and V denotes a vowel in nucleus position. Traditional sonority mod-
els inspect the sonority slope of the onset cluster to determine well-formedness
of CCV syllables, while NAP-based models apply the notion of competition to
determine well-formedness.

In the following sections, I will elaborate on the methods for obtaining well-
formedness scores, starting with the ordinal scores obtained from the four tradi-
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tional sonority models (Section 6.2.1), and the symbolic NAP model NAPtd (Sec-
tion 6.2.2). The implementation of the continuous model NAPbu follows in Sec-
tion 6.2.4. Finally, this chapter concludeswith a short overview of key advantages
of NAP over traditional sonority principles (Section 6.3).

6.2.1 Traditional sonority models

Implementation of traditional sonority principles like the SSP is based on a calcu-
lation of the sonority slope over a given sequence of segments. Speech segments
in these frameworks have fixed index values on the sonority hierarchy, based on
their class membership, as in the H col and Hexp hierarchies (see Table 6.1). These
sonority index values are usually expressed in terms of integers since they reflect
an ordinal scale. Due to this, the mathematical operations that these models em-
ploy should be restricted to basic arithmetic functions of addition and subtraction.
Sonority slopes can be, therefore, obtained straightforwardly by a subtraction be-
tween the corresponding sonority indices of two adjacent consonants. In onset
clusters with two consonants (CCV) this can simply be achieved by the formula
𝐶2–𝐶1, which yields positive results for rising sonority slopes, negative results
for falling sonority slopes, or a zero for plateaus. This calculation is applied to
the two SSP models, SSPcol and SSPexp (see examples in Table 6.3).

The exact same formula is also used to obtain scores for theMinimum Sonority
Distance models, MSDcol and MSDexp, which elaborate on the well-formedness
of onset rises. MSD models differ from the SSP in the interpretation of positive
values (that reflect rising sonority slopes). While under the SSP all positive scores
map to a single score (i.e. all rises are well-formed to the same extent), under the
MSD higher positive scores are preferred over lower positive scores to reflect
the preference for a larger sonority distance (or a steeper slope) in a rising onset
configuration (see examples in Table 6.3).

6.2.2 The top-down symbolic NAP model

The symbolic version of NAP, which is used to derive predictions for the top-
down NAP (NAPtd), shares a similar architecture with common SSP-based mod-
els. Crucially, it also reflects the novelties of the current proposal, both in terms
of the sonority hierarchy it assumes, and in terms of the design of the sonority
principle. NAPtd uses a sonority hierarchy that is based on the periodic energy
potential of different phoneme classes as the basis of distinct categorical pattern-
ing (see Section 6.2.2.1). Furthermore, NAPtd models syllabic well-formedness
with the notion of nucleus competition, rather than the formal notion of sonor-
ity slopes as in traditional SSP-type models (see Section 6.2.2.2).
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6.2.2.1 The sonority hierarchy in NAPtd

The symbolic sonority hierarchy in NAP uses the basic ratio between periodic
and aperiodic energy in the speech signal to divide all speech sounds into three
distinct groups. This reflects the coarse, yet reliable differences in potential pe-
riodic energy mass of different abstract speech sound categories. To achieve that,
we rely on the following set of general characteristics: (i) the main source of pe-
riodic energy in speech stems from vocal fold vibrations when voicing occurs;
(ii) aperiodic energy in speech is mostly the outcome of the turbulent airflow
resulting from articulatory friction (i.e. fricatives) and from articulatory closure
in oral stops, which often results in transient bursts when released (see Rosen
1992).

The ratio between periodic and aperiodic components in speech sounds read-
ily yields the following three distinct groups: (i) voiceless obstruents that consist
of mostly aperiodic energy and are the least sonorous type of speech sounds; (ii)
sonorant consonants and vowels that consist of mostly periodic energy and are
the most sonorous type of speech sounds; as well as (iii) voiced obstruents that
consist of both periodic and aperiodic energy and belong in the middle of this
ternary scale (see 6.1).

Voiceless obstruents < Voiced obstruents < Sonorants (6.1)

A further distinction in NAP’s sonority hierarchy is based on the general pres-
ence or absence of articulatory contact. A free and open vocal tract contributes to
a potentially stronger and longer vocalic signal that can qualitatively enhance the
potential periodic energy mass. This distinction effectively separates the sono-
rants into sonorant vocoids (glides and vowels) and sonorant contoids (nasals and
liquids).1 See Table 6.2 for the full sonority hierarchy in the symbolic model of
NAP.

The symbolic sonority hierarchy in NAP reconciles perceptual and articula-
tory approaches to sonority bymodelling their mutual contribution to enhancing
pitch intelligibility (or periodic energy mass, in acoustic terms). This hierarchy is
similar to a few proposals for sonority hierarchies that combined levels of voic-
ing/periodicity with degree of vocal tract opening (e.g. Lass 1988, Miller 2012, and
Sharma & Prasanna 2018). Such hierarchies may also be seen as compatible with
source-filter models of speech (Fant 1970), where the source controls voicing and
the filter controls opening (e.g. Puppel 1992).

1Note that some rhotics, which are traditionally considered liquids, may in fact belong with the
vocoid consonants (e.g. most of the English rhotics, especially in coda position).
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Table 6.2: The symbolic sonority hierarchy in NAPtd. Index values re-
flect the ordinal ranking of categories in the sonority hierarchy. The
distinctions between categories in the symbolic NAP hierarchy are
based on the characteristic ratio between periodic and aperiodic en-
ergy, and on articulatory contact, both taken to reflect the potential of
the periodic energy mass, i.e. the potential for nucleus attraction.

Sonority Periodic: Articulatory
index Segmental classes Aperiodic contact

4 Sonorant vocoids (glides, vowels) 1:0 −
3 Sonorant contoids (nasals, liquids) 1:0 +
2 Voiced obstruents (stops, fricatives) 1:1 +
1 Voiceless obstruents (stops, fricatives) 0:1 +

The complete 4-place sonority hierarchy of NAPtd in Table 6.2 also reflects a
basic typology of nucleus types, which supports the use of this scale as a qualita-
tive measure for nucleus attraction potentials. Sonorant vocoids, like glides and
vowels, can attract the nucleus in all languages we know (a glide is considered
a vowel when syllabified in the nucleus position), while sonorant contoids like
nasals or liquids can be syllabic (i.e. attract the nucleus) only in a subset of lan-
guages, of which a smaller subset may allow obstruents to attract nuclei (but see
Easterday 2019 for some divergent patterns with syllabic obstruents relative to
syllabic liquids).

6.2.2.2 NAPtd implementation

When assessing C1C2V syllables under the NAP framework, we essentially aim
to measure the competition potential between C1 and V given C2. In and of itself,
C2 is not considered a competitor due to its proximity to the vowel, as discussed
in Section (5.3). The issue of competition may be therefore expressed by the fol-
lowing questions: (i) what is the potential periodic energy mass of C1 (i.e. how
sonorous is C1, or what is the intercept of the cluster that determines the starting
point of the slope); (ii) how much of the energy in C1 is potentially lost, gained
or maintained in C2, before peaking at the vowel (i.e. what is the sonority slope).
Assessing this relationship between C1 and V given C2 can be achieved by the
combination of two subtraction formulas: (i) a calculation of the difference be-
tween C1 and the non-adjacent vowel, to reflect the potential strength of C1 in
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terms of the intercept relative to the nucleus; (ii) a calculation of the slope be-
tween adjacent C1 and C2, as in SSP-based models, to reflect the trajectories of
fluctuating energy towards the peak. This can be summarized with the formula
in (6.2).2

(V − C1) + (C2 − C1) (6.2)

6.2.3 Ordinal sonority scores

Table 6.3 (page 68) demonstrates and compares the scores of the five ordinal
models (2𝑋SSP, 2𝑋MSD and NAPtd) with different CCV cluster types. It shows
that the main difference between the two sonority hierarchies, Hexp and H col,
concerns fricative-stop clusters like the /s/-stop cluster spV, which are consid-
ered as either an onset fall (with the Hexp hierarchy) or an onset plateau (with
the H col hierarchy). When the MSD is applied, the two sonority hierarchies also
show differences in ranking within onset rises, given their different treatment
of obstruents. In models that use the Hexp hierarchy there are four levels of ob-
struents (voiced and voiceless stops and fricatives) which are collapsed into one
level in models that use the H col hierarchy. This results in five distinct sonority
rise scores in the MSDexp model, but only two in the MSDcol model (where some
of the trends also differ, e.g. smV vs. vlV in the two MSD-based models).

Unlike traditional models, the predictions of NAPtd are not grouped into lev-
els that reflect the rough angle of the sonority slope in terms of falls, rises and
plateaus. The raw score of the NAPtd formula is taken as reflective of the nu-
cleus competition potential such that higher scores denote weaker competition
and are thus better-formed. The top-down NAP model allows scores within a
range that goes from −3 for the most ill-formed syllable up to 6 for the most
well-formed, although a more relevant range to consider, given that glides are
excluded from this set, is between −1 and 5. These scores are not immediately
comparable to the traditional model scores, but some interesting departures from
the traditional models can be observed in Table 6.3. For example, NAPtd consid-
ers the onset rise in the sonorous cluster mlV to be equally as ill-formed as the
inverse fall, lmV. Both of these clusters pattern with nasal plateaus (e.g. nmV ),
where they all receive the same relatively low value of 1. At the same time, voice-
less clusters pattern in with well-formed combinations (scoring 3), although they
may include sonority plateaus (e.g. sfV ) or sonority falls (e.g. spV ) in traditional
model terms.

2A somewhat similar calculation can be found in Fullwood’s (2014) Sonority Angle.
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6.2 Model implementations in dynamic and symbolic terms

6.2.4 The bottom-up dynamic NAP model

There are various ways to calculate an estimation of the nucleus competition
potential within syllables based on the periodic energy in the acoustic signal. The
method presented here has the advantage of not relying on segmental landmarks
that are categorical abstractions of the type that is not assumed to be available in
the bottom-up route (see Sections 3.6 and 6.1). See also Chapter 3 and especially
Section 3.1 for more detail on the problems related to the assumption of discrete
segments in continuous signals of speech.

The periodic energy data that were extracted from acoustic recordings of
speech is viewed in terms of a mass, i.e. the area under the periodic energy
curve, integrating duration and power as the two linked dimensions of quantity
in sound (see Turk & Sawusch 1996 on interactions between duration and in-
tensity in linguistic perception contexts). Summing is essentially different from
averaging, as well as from peak extraction, in how much strength is assigned to
the dimension of duration in the abstract measurement of quantity: duration is
absent from peak extraction, it is normalized in averages and it is strongly influ-
encing the sum. Importantly, only summing strategies are capable of uncovering
the quantitative difference between two sounds that have similar amplitude en-
velopes yet differ in duration.

The contribution of duration to sonority was convincingly illustrated in the
seminal work of Price (1980). Price showed that disyllabic English words like
polite /pəlʌɪt/ were perceived when the duration of the sonorant /l/ in the su-
perficially related monosyllabic word plight /plʌɪt/ was manipulated. Thus, an
increase in the duration of the sonorant essentially leads to the perception of
another syllable. More supporting evidence on the interaction between duration
and syllabic parsing can be found in Dupoux et al. (1999), who showed differ-
ences in perception between Japanese and French speakers, and in Berent et al.
(2007) as well as Wilson et al. (2014), who analyzed patterns of misperception of
Russian onset clusters by English speakers.

It is therefore useful to locate the center of mass within regions of interest as a
measurement that is sensitive to the two axes of periodic energy mass – duration
(x-axis) and power (y-axis). The center of mass can be viewed as the point in
time in which the area under the curve is split into two equal parts. The location
of the center of mass in time (x-axis) is attracted to the peak of the curve (on
the y-axis), where it is expected to be found given a perfectly symmetrical shape.
However, the center of mass most often diverges from the peak of rise-fall curves
so as to reflect asymmetries in the overall distribution of mass. Identification
of the center of mass of the periodic energy curve (henceforth CoM) follows a
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Figure 6.1: Smoothed periodic energy curve (black) of the four sylla-
bles from the experimental stimuli – lpal, nmal, vlal, and smal. The red
vertical line denotes the center of periodic mass of the entire syllable
(CoMsyllable), the blue vertical line denotes the center of periodic mass
of the left portion (CoMonset). Grey dotted vertical lines and annotated
text denote segmental intervals by manual segmentation (for exposi-
tion purposes only). The distance between the two CoM landmarks is
indicative of the energy displacement away from the syllabic center,
reflecting the nucleus competition potential within the syllable (see
details on this measurement in Section 7.2.3).

methodology that was introduced with the tonal center of gravity (Barnes et al.
2012), in calculating a weighted average time point that uses a continuous time
series as the weighting term. The equation in (6.3) is used to locate the average
point in time (t), weighted by continuous periodic energy (per) at discrete time
points:

CoM = ∑𝑖 per𝑖 𝑡𝑖
∑𝑖 per𝑖

(6.3)

The location of the center of periodic energymass of the entire syllable (hence-
forth CoMsyllable) guides us to the point in time, where the periodic mass of all
the competing forces within that syllable are split into two equal parts. Once we
obtain this reference point we can repeat this process within the resulting left-
side portion, i.e. from the beginning of the syllable up to CoMsyllable, to focus
on the onset position (henceforth CoMonset). We therefore measure the center of
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6.3 NAP advantages

mass twice – first for the entire syllable (resulting in CoMsyllable) and then for
the left portion of the first measurement (resulting in CoMonset). The distance
between CoMsyllable and CoMonset is indicative of the amount of displacement of
energy away from the center of the syllable, which in turn reflects the degree of
nucleus competition (see Figure 6.1).

The center of mass is capable of capturing both components of a two-dimen-
sional mass by considering the non-linear shape of the periodic energy curve.
The leftward displacement of CoMonset relative to CoMsyllable is affected by the
distance, the amplitude, and the amount of discontinuity between the periodic
energy at the onset and the center of mass of the entire syllable. Any increase
in the above results in a larger distance between the two centers of mass, as
Figure 6.1 demonstrates.

6.3 NAP advantages

Before turning to the experimental evidence in Chapter 7, the potential advan-
tages of NAP over traditional models can already be demonstrated with four ex-
amples that illustrate major differences in the expected model predictions. Con-
sider the clusters in the syllables spV (an /s/-stop cluster), sfV (a voiceless frica-
tive plateau), nmV (a nasal plateau) and npV (a sonority fall from sonorant to
voiceless obstruent). In traditional sonority slope terms, all of these clusters are
either highly ill-formed (with sonority falls) or borderline ill-formed (with sonor-
ity plateaus). Predictions may slightly differ with different sonority hierarchies,
such that these examples can represent three sonority plateaus and one fall with
the H col hierarchy (npV < spV = sfV = nmv), or two plateaus and two falls with
the Hexp hierarchy (npv = spV < sfV = nmV ).

Figure 6.2 schematizes these four examples with traditional sonority slopes,
using red lines to denote the portion of the trajectory that represents the relevant
slope of the consonantal clusters. These red slopes are level in the onset plateaus
sfV and nmV and falling in the onsets npV and spV (note again that with theH col
hierarchy, spV can be considered a plateau; see Figure 2.4). The representation
of sonority slopes in Figure 6.2 highlights the irrelevance of the overall height of
the slope in traditional sonority formalizations – only the general trend of the
slope matters for the characterization of well-formedness.

In contrast to the traditional approach, NAP is explicitly concerned with en-
ergetic quantities that compete for the nucleus (as described in Section 5.3). The
scores of NAPtd reflect the estimated degree of competition such that lower val-
ues imply more competition (= worse-formed). In Table 6.3, both sfV and spV
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Figure 6.2: Schematic depiction of the sonority slopes of four different
onset clusters. The solid red line which denotes the sonority slope of
the onset clusters is a plateau in the case of nmV and sfV and it is
falling in the case of npV and spV. Note that these determinations are
based solely on the angle of the red line, regardless of its overall height.
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Figure 6.3: Smoothed periodic energy curve (black) of the same four syl-
lables as in Figure 6.2, taken from the experimental stimuli (see Chap-
ter 7). Plot details are described in Figure 6.1.
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receive the relatively high value 3 (i.e. relatively well-formed). nmV receives a
lower score of 1 (i.e. relatively ill-formed), and npV is almost at the bottom of the
NAPtd scale with −1 (i.e. clearly ill-formed).

Unlike the symbol-based ordinal scores of NAPtd, the continuous signal-based
NAPbu makes no a priori predictions via symbols. A few concrete audio stimuli
that were measured in the context of the experiment (see Chapter 7) can, never-
theless, be shown here to reflect the exact same trend as in the symbolic NAP
model. Figure 6.3 shows the periodic energy curve of the four examples with an-
notated landmarks. As before, the vertical red line denotes the center of periodic
mass of the entire syllable (CoMsyllable), while the vertical blue line denotes the
center of periodic mass of the left half of the syllabic mass (CoMonset). A greater
distance between the two lines implies more competition (=worse-formed). Here,
the distance between CoMsyllable and CoMonset is around 50ms for the two voice-
less clusters (sfal and spal), it is close to 100ms for the nasal plateau nmal, and
above 150ms for the nasal-initial falling sonority slope in npal.

In NAP terms, the two voiceless clusters spV and sfV have only minimal, if any,
sonorant energy (effectively zero periodic mass) that would make their onset a
serious competitor for the nucleus, regardless of the slope. Therefore, even if spV
exhibits a sonority fall it should not pattern with npV in terms of ill-formedness.
Likewise, if we consider spV as a plateau, neither this nor sfV should pattern with
nmV just because they are all considered plateaus. The two nasal-initial clusters,
nmV and npV, should in fact be considered as more worse-formed than the two
/s/-initial voiceless clusters given their distribution within and across languages.
Previous works by Greenberg (1978), Lindblom (1983), Lombardi (1995, 1991) and
Kreitman (2008, 2010) have basically confirmed (although with some consider-
able differences) that voiceless initial consonant clusters are less marked (more
common) than voiced clusters, and both types of clusters are less marked than
voiced-voiceless initial clusters. Such a hierarchy of well-formedness is neatly
captured by the rationale and results of NAP, while traditional sonority models
regularly make predictions that contradict it to at least some extent.
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7 Experimental study

In order to assess NAP-based predictions in situations where both bottom-up and
top-down inferences contribute to speech processing, an experimental procedure
was designed to collect behavioral responses using a perception task. In what fol-
lows I present three experiments: Experiment 1 is a short exploratory pilot study
with 12 German-speaking subjects; Experiment 2 is a confirmatory study with
51 German-speaking subjects; and Experiment 3 is a confirmatory study with 33
Hebrew-speaking subjects. This chapter starts by describing the rationale of the
experimental design (Section 7.1) before presenting the linguistic and acoustic
materials used in the experiments (Section 7.2) and the perception task proce-
dures (Section 7.3). The predictions of the different models are then summarized
in Section 7.4, followed by descriptions of the experimental design (Section 7.5),
participants (Section 7.6) and our data analysis strategies (Section 7.7). The results
and related discussions follow in Section 7.8.

Important notes with respect to the following chapter:

• The design of the model implementations and the ensuing experiments
were co-authored with Bruno Nicenboim (University of Potsdam and Til-
burg University), who also contributed greatly to the statistical analyses
of the results. Major parts of this chapter were also published in Albert &
Nicenboim (2022).

• The original code and all the materials and data can be found online in an
Open Science Framework repository at https://osf.io/y477r/.

• The experiments were complied with the June 1964 Declaration of Helsinki
(carried out by the World Medical Association and entitled “Ethical Prin-
ciples for Medical Research Involving Human Subjects”), as last revised
in accordance with German Research Foundation (DFG) guidelines for ex-
periments with unimpaired adult populations. The ethics approval was ob-
tained by the Principal Investigator (Prof. Dr. Martine Grice). Informed
consent from the participants was obtained before each experimental ses-
sion.

https://osf.io/y477r/


7 Experimental study

7.1 Rationale

The goal of the experimental procedure is to tap into the cognitive cost of syl-
labification processes. To that end, we devised a forced-choice task that allowed
us to systematically compare response times of forced categorical decisions. Re-
sponse times are linked with cognitive cost, which, in the context of this task,
is understood as the result of nucleus competition. The working assumption is
that more competition within a structure makes it cognitively harder for this
structure to be parsed as a single syllable, which is reflected in slower processing
times altogether.

This design uses nonce words to test specific consonantal combinations in
structures that either feature two vowels and no consonantal sequences (typi-
cally considered to be disyllabic forms) or one vowel with a word-initial con-
sonantal sequence (more likely to be considered as monosyllabic forms). This
experimental design is reminiscent of many experiments on sonority effects that
Iris Berent and her colleagues have published, starting with the seminal paper
Berent et al. (2007).1 The premise of many of the tasks that Berent et al. test in the
context of traditional sonority principles has a slightly different rationale than
the one used for NAP, although with very similar predictions. For Berent et al.,
an ill-formed sonority onset fall, as in the monosyllable lbV, is more likely to be
confused with disyllabic lə.bV when compared with well-formed monosyllable
blV and its disyllabic counterpart, bə.lV (the schwa /ə/ in these examples denotes
a generic epenthetic weak vowel). This misperception and confusion between al-
ternatives is expected to be systematically greater with worse-formed sonority
clusters, which leads to a drop in categorical accuracy (e.g. “correct” identifica-
tion of syllable number, or correct detection of similarity in a same/different task)
accompanied by a scalar increase in response time (I return to Berent’s work in
the general discussion in Section 10.2).

Comparable experimental assumptions regarding misperception of consonan-
tal clusters can be found in related works on perception of non-native clusters
such as Dupoux et al. (1999) and Davidson & Shaw (2012), including also tasks
that utilized the production of such clusters (e.g. Davidson 2010 and Wilson et al.
2014).

1Examples of further publications by Berent et al. with various experimental settings that test
sonority effects in perception with behavioral data include: Berent et al. (2008, 2010, 2011),
Berent, Lennertz & Balaban (2012), Berent et al. (2013), Tamási & Berent (2014), Zhao & Berent
(2015), Lennertz & Berent (2015). The following examples also include neurological data: Berent
et al. (2014), Gómez et al. (2014), Berent et al. (2015).
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To test the different predictions of the six sonority models (SSPcol, SSPexp,
MSDcol, MSDexp, NAPtd and NAPbu), we designed a perception task that prompts
meta-linguistic syllable count judgement with 29 experimental target items. Par-
ticipants were presented with a collection of speech items that were systemati-
cally produced with one or two vowels for each combination of consonants in
our set. Only the single-vowel productions were considered as targets, and an
accurate response to our targets is always the monosyllabic option (note that
the term “accuracy” is used here to describe participants’ responses with respect
to predictions). By focusing on the response time of “correct” responses to the
target words we essentially measure the time it took participants to decide that
a given single-vowel stimulus is monosyllabic. We can therefore interpret the
reaction times of monosyllabic responses to single-vowel targets as reflective of
the processing cost of assigning one nucleus to a given target stimulus with one
vowel.

We assume with NAP-based models that this processing cost is tightly related
to the nucleus competition between different portions of a syllable, such that
response times will reflect the degree of nucleus competition within syllables
(more competition = slower responses = worse-formed sequence). Traditional
sonority models interpret the processing cost as related to well-formedness in
terms of sonority slopes, such that worse-formed clusters are more likely to be
misperceived and take longer to process (e.g. Berent et al. 2007, Berent, Lennertz
& Balaban 2012, Berent et al. 2008, 2009, Lennertz 2010, Maıönchi-Pino et al. 2015,
Sung 2016, Young & Wilson 2017).

The SSP derives a ternary ordinal hierarchy of complex onset well-formedness
scores: onset rise > onset plateau > onset fall. This essentially predicts that re-
sponse times will pattern into three groups, in line with the sonority slope of the
onset clusters. MSD models derive a slightly more elaborate ordinal hierarchy,
where onset rises with a small sonority distance pattern below onset rises with
a larger sonority distance. The latter are predicted to evoke the fastest responses
in MSD models.

Note that since the bottom-up predictions of NAP are derived via measure-
ments of acoustic signals of particular productions rather than from fixed sym-
bolic predictions, the assumption that all things other than the controlled vari-
able are equal in the experimental stimuli should hold also for a large degree of
variation that occurs in natural speech. Thus, if a certain segment in one item is
slightly longer, shorter, louder or softer than in other comparable tokens, bottom-
up NAP is designed to directly account for this variation, while the other symbol-
based ordinal models essentially assume that such variation is mostly negligible.
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This allows us to opt for a slightly more ecologically valid experimental para-
digm, by using natural speech recordings that were designed and selected to
sound as similar as possible, rather than using synthesized speech, which would
have allowed a higher degree of similarity between tokens.

7.2 Materials

The experimental design is focused on onset consonantal clusters with twomem-
bers. These CC combinations are composed from a set of consonants with one
of two major place of articulation types: coronal and labial. This allows us to
avoid articulatory effects that may arise from homorganic sequences (i.e. adja-
cent consonants that share the same place of articulation, and may coalesce to
some extent as a result) while exploiting both directions of each combination –
coronal-labial (back-to-front) and labial-coronal (front-to-back). From an articu-
latory point of view, there is also an advantage in the fact that the two places of
articulation use different main articulators – the tongue tip reaches the palate in
coronals, while the lower lip reaches the upper lip or teeth in labials. This rela-
tive articulatory independence helps to reduce co-articulation effects of adjacent
gestures in consonantal clusters.

The consonantal classes in this study include stops, fricatives, nasals, and liq-
uids to reflect the main manner of articulation classes in traditional sonority hier-
archies (excluding glides). The list of considerations and criteria that were used
in constructing the experimental stimulus set is presented in Section 7.2.1.

Table 7.1 presents the 29 CC types in the experimental set, reflecting 16 differ-
ent combinations of manner classes (16 unique cells in Table 7.1, irrespective of
differences in place of articulation). Of the 16 cluster types, 7–8 are considered
onset falls, 3–4 are considered onset plateaus (11 total), and 5 are considered onset
rises.2

Of the 29 different clusters, only three clusters regularly occur in German
words (/ʃp, ʃm, fl/), while six clusters are attested to some degree in German loan-
words (/sp, sf, sm, vl, zv, ml/; see van de Vijver & Baer-Henney 2012), and one
cluster (/ʃf/) may be considered as similar to German licit clusters with a voiced
obstruent following a voiceless one (i.e. /ʃv/ and /cv/).3 Thus, the experimental
set contains 19 clusters that are unattested in German words. These unattested

2Depending on whether fricatives are considered higher or similar in sonority to stops, clusters
of the type fricative-stop may be considered as either an onset fall or an onset plateau.

3Recall that the symbol /c/ is used here as an alternative sign to the voiceless affricate /t͡s/ in
the standard IPA system, see Section 1.5.
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Table 7.1: Experimental stimulus set: CC types. Legend: S− = voiceless
stops; F− = voiceless fricatives; F+ = voiced fricatives; N = nasals; L =
liquids; cor = coronal; lab = labial; * = voicing disagreement between
obstruents; ** = no labial liquid; *** = dorsal stop /k/ (see list in Sec-
tion 7.2.1).

C1

F− F+ N L

C2 cor-lab lab-cor cor-lab lab-cor cor-lab lab-cor cor-lab lab-cor

S− sp, ʃp ft * * np mt lp lk***
F− sf, ʃf fs * * nf ms lf **
F+ * * zv vz nv mz lv **
N sm, ʃm fn zm vn nm mn lm **
L ** fl ** vl ** ml ** **

clusters appear in 13 of the 16 unique cluster types. The other three are rising
sonority clusters with a liquid in C2, /fl, vl, ml/, that are attested in German com-
plex onsets to some degree, yet only marginally so in the case of /vl/ and /ml/.

More clusters out of the 29 different cluster types in Table 7.1 occur regularly
in Modern Hebrew (see Asherov & Bat-El 2019). These include all of the eight
sibilant-initial clusters, /sp, ʃp, sf, ʃf, sm, ʃm, zm, zv/, and two liquid-second clus-
ters, /fl, vl/. The voiceless cluster /ft/ and the /m/-initial clusters /ml, mn/ are
marginally attested in Modern Hebrew (Asherov & Bat-El 2019: 75, 86). Thus, the
experimental set contains 16 cluster types that are unattested in Hebrew words.
These unattested CC types appear in 12 of the 16 unique combinations in Table 7.1,
excluding the three rising sonority clusters with a liquid in C2 (e.g. /fl, vl, ml/),
and the fricative-stop clusters (including /ft/), although note that /ft/ and /ml/ are
only marginally attested in Hebrew complex onsets.

The different CC sequences were embedded within a /CCal/ word-like frame,
with a recurring -al rime. These /CCal/ tokens were produced with a single
vowel, intended to yield monosyllabic items that resemble typical content words
(i.e. prosodically heavier than a single light syllable; see, e.g., Demuth 1996). Two
disyllabic counterparts were prepared for each CC type – one with an epenthetic
vowel, /CəCal/, and another with a prothetic vowel, /əCCal/ (a more accurate an-
notation should be /(ʔ)əCCal/, given that the presence of an initial glottal stop
was not controlled for). Note that the schwa in the stimulus set recorded by
speaker AA was produced as a weak (unstressed) /e/ vowel from the 5-vowel
inventory of Modern Hebrew, while in the stimulus set recorded by speaker
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HN it was produced as a typical German schwa. The entire word set eventually
included 29 single-vowel target types and 58 associated bi-vocalic filler types,
adding up to 87 different word-like stimuli.

7.2.1 Segmental considerations

The following list summarizes concerns that were taken into consideration when
constructing the stimulus set (see full set in Table 7.1):

• Glides were excluded from the experimental set due to their complex sta-
tus, which is dependent on both structure and theory. A glide (sometimes
referred to as a semi-vowel) is considered a vowel when it is in the nu-
cleus position. A glide immediately adjacent to a nuclear vowel may be
analyzed as a vowel in the nucleus, or as a consonant in the onset or coda
positions, depending on language and analysis (namely, this depends on
whether the language is considered to feature diphthongs or not, in itself
not always a simple determination). Furthermore, clusters with glides in
C1 are predicted to be ill-formed in all the models we consider, while clus-
ters with glides in C2 are predicted to be well-formed in all of them. We
therefore also do not expect glides to be very informative in the context of
this study.

• For the class of liquids, only the lateral /l/ is used, disregarding the sub-
class of rhotics that are phonetically very varied and highly inconsistent
between different languages in terms of phonetic detail (see, e.g., Lindau
1985, Ladefoged & Maddieson 1996, Wiese 2001). In that context, it is im-
portant to note that the set of stimuli used in this study was created with
the intention of being used on speakers of many different languages in
which the relevant segments can map to native segments to a comparable
degree. There are therefore no liquid plateaus in the experimental set.

• The alveolar /s/ is used for the class of voiceless sibilants (voiceless coronal
fricatives). In C1 positions, the post-alveolar /ʃ/ is also used to control for
potential language-specific effects that may appear due to specific restric-
tions on /s/. For example, in German /ʃC/ onset clusters can be licit, while
/sC/ onset clusters occur only marginally in loanwords.

• Stops are used only in C2 position, and only voiceless stops are used in
order to keep the size of the stimulus set reasonably small. Stops in C1
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position are avoided since it is also the phrase-initial position of the stim-
uli, which is practically devoid of acoustic cues for the closure phase of
the stop. Within the stream of speech, the movement of articulators to-
wards the target of a stop’s closure phase leaves auditory traces from the
preceding segment and into the closure of the stop, containing important
information about the identity of the stop (e.g. Barry 1984). In that sense,
a stop in C1 position at the beginning of a phrase contains only a transient
release burst. Furthermore, note that all the stop-initial clusters (with the
exclusion of stop-stop plateaus) are generally well-formed according to all
sonority models tested here, such that their added value in this compari-
son would have been smaller than their cost (in terms of the size of the
stimulus set).

• The set includes one instance of the dorsal consonant /k/ instead of the
coronal /t/ as an alternative to a labial-coronal cluster, which would have
required a labial liquid. Instead, the coronal-dorsal cluster /lk/ is used to
retain the same direction of a labial-coronal cluster – both are front-to-
back in terms of places of articulation. There are no other dorsals in the
set (i.e. no fricative, nasal or liquid dorsal), as these tend to be relatively
more marked and less consistent between languages.

• Lastly, sequences of obstruents that differ in voicing are avoided due to the
cross-linguistic tendency of obstruent clusters to agree in voicing (see, e.g.,
Cho 1990), although note that German allows /ʃv/ and /cv/ clusters while
banning /ʃf/.

7.2.2 Audio recordings

Audio stimuli for the experiment were recorded by a phonetically trained na-
tive Hebrew speaker, AA (the author), and a phonetically trained native German
speaker, HN, in a sound-attenuated booth at the phonetics laboratory of the Uni-
versity of Cologne. Speech was recorded via a head-mounted headset condenser
microphone (AKG C420), capturing mono digital audio files at a resolution of
44.1kHz sample-rate and 24 bit depth with a Metric Halo MIO 2882 audio in-
terface. Selected audio takes were treated in the original high resolution for DC
offset correction and compression of ultra low frequencies under 52Hz (to com-
pensate for some room reverberation effects). Audio was then downgraded from
24 to 16 bit depth with Goodhertz Good Dither dithering to be used in the per-
ception task running on OpenSesame 3.1.9 (Mathôt et al. 2012). The audio that
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was submitted to analyses by the APP Detector (see Section 7.2.3) was also down-
graded in sample-rate to 16k Hz. Finally, all audio takes, at all resolutions, were
normalized to the same RMS target of −20 dBFS (dB full scale).

To record the stimuli, the combined 87 word-like stimuli (29 targets and 58
fillers) were embedded within carrier sentences in non-final position and pro-
duced with default declarative intonation, in order to maintain consistent pros-
ody. Carrier sentences were also designed to minimize potential effects of re-
syllabification as well as co-articulation by controlling the segmental makeup
immediately preceding and following target words (see examples in (1–2)).

(1) /ze maʁ.gíʃ CCal ka.ʁé.ga/ (Hebrew: ‘it feels (like) CCal at the momentʼ)

(2) er muss CCal kaufen (German: ‘he must buy CCalʼ)

The original sentence elicitation lists are available at the OSF repository in
mixed Hebrew, German and phonemic transcripts in the form of the PowerPoint
presentations that were used in this self-paced task (see link in the opening notes
of Chapter 7).

7.2.3 Obtaining periodic energy data

Continuous measurements of periodic energy from acoustic signals were ex-
tracted for the experiments using the Aperiodicity, Periodicity and Pitch Detec-
tor (APP Detector), a computer code that was introduced in Deshmukh & Espy-
Wilson (2003) and developed in subsequent publications (Deshmukh et al. 2005,
Vishnubhotla 2007). The APP Detector has the ability to measure the spectral dis-
tribution of periodic energy from digital audio files with a 16k Hz sample-rate, ef-
fectively measuring periodic energy up to 8k Hz (more than sufficient for speech,
see Section 5.2). The periodic energy data was exported from the APP Detector’s
Matlab analysis tables into R (R Core Team 2018) for further data manipulation,
visualization, modelling, and statistical analysis.

To obtain the periodic energy curve, it is necessary to first sum over the differ-
ent frequencies that the APP Detector measures at each time point (every 10ms)
to create a time series of periodic power. Next, a smoothed curve is fitted to the
periodic power time series with Tukey’s (running median) smoothing (“3RS3R”),
to eliminate small-scale fluctuations in the periodic power curve. Finally, the pe-
riodic power time series is log-transformed to yield periodic energy, see Equation
(7.3).

Within the log-transform function we can plug a value that reflects the thresh-
old of effective voicing periodicity to set a meaningful zero for the periodic en-
ergy floor – the periodic floor in Equation (7.3). This is similar to the standard
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dB SPL measurement (SPL stands for sound pressure level), which plugs a generic
value that represents the threshold of human hearing in terms of sound pressure
into the denominator of the log-transform function. In this way, SPL suggests
a shared reference for different dB measurements that use the zero value to de-
note the low end of human hearing. In the case of the current periodic energy
measurement the threshold of the floor is not a universal determination but a
calibration that allows us to take the audio quality and the inner-workings of
the APP Detector into account. The effective periodicity threshold for the log-
transform of the periodic energy time series was determined by extracting the
maximal periodic power value obtained for voiceless portions in the given set.
To be sure that there was no marginal voicing in these samples, only voiceless
C1 consonants that precede another voiceless consonant in C2 were measured.
In this way, the value 0 in our periodic energy curve is optimally calibrated to
reflect the low end of pitch-related periodic components in the signal.

periodic energy = 10 log10(
periodic power
periodic floor

) (7.3)

Note that the periodic energy curve is smoothed furtherwith Local Polynomial
Regression Fitting (loess) in the figures shown in this chapter. This is only used
for additional visual clarity. All the acoustic analyses are based on the periodic
energy curve before this final aesthetic smoothing (and after the other processes
mentioned above). The codes of all the above processes are available at the OSF
repository (see link in the opening notes of Chapter 7).

7.3 Perception task procedures

Recall that the experiments were designed as a forced-choice 2-alternative per-
ception task, where accuracy and response time information were collected. To
normalize response times, the countdown in each trial started in themiddle of the
transition fromC2 to /a/, illustratedwith the location of the dash in (ə)C1(ə)C2–al.
This zero time point was determined individually for each one of the 87 stimuli,
capitalizing on the fact that all stimuli share the rime -al, which is fully pre-
dictable in the context of the experiment, in contrast to the unpredictability of
preceding material (the predictability of the -al rime was assumed to become
evident already in the training phase, before any data were collected for analy-
sis). Manual segmentations conducted by the author were used to determine this
point for each target. Eventually, response times shorter than 100ms (i.e. 100ms
after the zero point between C2 and /a/) were considered as too fast to be valid
and were therefore excluded. This threshold led to only one observation being
excluded from Experiment 2.
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Participants were seated in a quiet room in front of a laptop computer (a
MacBook Air 13-inch, Early 2014) running the experiment on OpenSesame 3.1.9
(Mathôt et al. 2012), where they listened to the stimuli through a set of closed
headphones (Sennheiser HD 201), fed directly from the laptop’s internal audio
interface. After verifying that participants shared a standard understanding of
the notion of the syllable with a few examples of words in their language (Ger-
man or Hebrew) with one and two syllables (e.g. German See, Spaß, Quark, Angst
vs. Schu-le, Kin-der, Bre-zel, Pflau-men), they were instructed to listen to nonce
words in an “unknown” foreign language. Nonce words were used and a foreign
language was mentioned in order to increase reliance on bottom-up processing
in the task as much as possible. The meta-linguistic task may otherwise strongly
have favoured top-down inferences. To that end, it was important to use record-
ings of a speaker with a foreign native language compared to the participants’
L1. The German-speaking listeners in Experiments 1–2 heard speech recording
of a native Hebrew speaker and the Hebrew-speaking listeners in Experiment 3
heard speech recording of a native German speaker.

Participants were instructed to respond quickly and accurately whether they
heard one or two syllables by using their left and right index fingers to choose
1 or 2 at the location of the “F” (for 1) and “J” (for 2) keys on a QWERTY key-
board layout (relevant keys were covered with salient red-on-white “1” and “2”
stickers).

A training session of ten trials preceded the experimental blocks, allowing
the participants to familiarize themselves with the task, and allowing the exper-
imenter to adjust listening volume and monitor potential problems and misun-
derstandings regarding the task.

7.4 Summary of predictions

The full set of predictions for the 29 experimental targets is presented for all
the symbol-based ordinal models (SSPcol, SSPexp, MSDcol, MSDexp and NAPtd)
in Table 7.2, and for the signal-based continuous model (NAPbu) in Figures 7.1–
7.2. Note that the scores of NAPbu are presented on a continuous ratio scale, with
specific predictions for each token and consequential intervals between scores.
The scores in NAPbu are not a generalization (nor are they based on averages).
Rather, they were extracted from the specific set of recordings, and they are ex-
pected to vary to some extent when measuring different tokens. NAPbu scores
are presented for the two sets of stimuli used in the experiments: a set spoken
by a native Hebrew speaker (Figure 7.1) and a set spoken by a native German
speaker (Figure 7.2).
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Table 7.2: Well-formedness scores for the 29 experimental items using
the five ordinal models that are based on symbolic phonemes. Positive
values indicate a rise (rs), negative values a fall (fll), and 0 a plateau
(plt). Note that higher values predict better-formed onset clusters in
an ordinal scale (i.e. magnitude of differences between values cannot
be inferred from these models).

Onset cluster types SSPcol SSPexp MSDcol MSDexp NAPtd

fl 1 (rs) 1 (rs) 2 (rs) 4 (rs) 5
sm, ʃm, fn 1 (rs) 1 (rs) 1 (rs) 3 (rs) 5
vl 1 (rs) 1 (rs) 2 (rs) 2 (rs) 3
zm, vn 1 (rs) 1 (rs) 1 (rs) 1 (rs) 3
ml 1 (rs) 1 (rs) 1 (rs) 1 (rs) 1
sf, ʃf, fs 0 (plt) 0 (plt) 0 (plt) 0 (plt) 3
zv, vz 0 (plt) 0 (plt) 0 (plt) 0 (plt) 2
nm, mn 0 (plt) 0 (plt) 0 (plt) 0 (plt) 1
sp, ʃp, ft 0 (plt) −1 (fll) 0 (plt) −1 (fll) 3
lm −1 (fll) −1 (fll) −1 (fll) −1 (fll) 1
mz, nv, lv −1 (fll) −1 (fll) −1 (fll) −1 (fll) 0
ms, nf, np, mt, lf, lp, lk −1 (fll) −1 (fll) −1 (fll) −1 (fll) −1
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Figure 7.1: AA set (Hebrew speaker).Well-formedness scores in the con-
tinuous NAPbu model shown in terms of the distance between the cen-
ter of mass of the entire syllable, CoMsyllable (red vertical lines), and the
center of mass of the left portion, CoMonset (blue vertical lines). See Sec-
tion 6.2.4 for details. Periodic energy is represented by the black curve.
Grey dotted vertical lines and annotated text denote segmental inter-
vals by manual segmentation (for exposition purposes only). Items are
ordered by score (from worse- to better-formed), going from left-to-
right and from top-to-bottom.
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Figure 7.2: HN set (German speaker). See previous figure (Figure 7.1)
for plot details.
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7.5 Designs

The details in the following analyses address three separate experiments: Exper-
iment 1, an exploratory pilot experiment with 12 German-speaking subjects lis-
tening to stimulus set AA (Hebrew speaker); Experiment 2, a confirmatory ex-
periment with 51 German-speaking subjects listening to stimulus set AA; and
Experiment 3, a confirmatory experiment with 33 Hebrew-speaking subjects lis-
tening to stimulus set HN (German speaker).

Given the various novelties in this proposal, the methodologies for data col-
lection, data extraction, and model implementation were first tested on a small
body of real data that we collected before finalizing our methodologies (namely,
the model implementations in Chapter 6 and the various procedural details in
Section 7.2). We used this exploratory study to test our methodologies and to
explore the possibilities for properly estimating nucleus competition in each of
the NAP models.

We also used the exploratory pilot study to verify that the number of par-
ticipants is large enough with respect to the size of the expected effects. With
12 participants, we could already observe clear effects (see Section 7.8). To be
confident that we have enough power to compare the models, we aimed at 50
participants in the confirmatory studies (note that this goal was only partially
reached in Experiment 3 due to the COVID-19 pandemic).

The exploratory pilot study was conducted in two versions, each with half of
the fillers and all of the targets in one block, yielding a total of 58 data points
per subject (29 fillers + 29 targets, no repetitions). The two different versions
were evenly split between participants (each version was presented to six partic-
ipants).

Experiments 2 and 3 are the main confirmatory studies conducted after final-
izing our hypotheses and methodologies with the data from Experiment 1. The
difference between Experiments 2 and 3 concerns the native language of the sub-
jects, and, as a consequence, the stimulus set in use. Experiment 2 tested German-
speaking subjects on stimulus set AA, featuring a Hebrew speaker, while Experi-
ment 3 tested Hebrew-speaking subjects on stimulus set HN, featuring a German
speaker (see explanation in Section 7.1). Each experimental block in Experiments
2–3 consisted of two repetitions of the target words (2 × 29 = 58) and one trial of
each filler word (1 × 58). The experiment consisted of two blocks with random-
ized trials, generating altogether four repetitions of the target words (4 × 29 =
116) and two repetitions of the filler words (2 × 58 = 116), yielding a total of 232
data points per subject.
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7.6 Participants

7.6.1 Experiment 1

The exploratory pilot study consisted of 12 subjects (two males and ten females),
all native German-speaking students from the Technische Hochschule Köln, who
volunteered to participate in the study. The experiment was administered in a
quiet room at one the institute’s buildings in Cologne. The mean age of partici-
pants in the pilot study was 25 (21–30 range).

7.6.2 Experiment 2

Figure 7.3: Participants in Experiment 2 (𝑛 = 51). Education categories
refer to academic achievements (“school” = academic degree not yet
acquired).

Fifty-one native German speakers (who did not participate in the exploratory
pilot study) participated in Experiment 2, of which 48 were monolingual (the 3
bilingual speakers had Polish, Low German, and Hebrew as their heritage lan-
guage). 49 participants were right-handed. See more details on age, gender and
education of participants in Figure 7.3.

Of the 51 participants, 34 were students at the University of Cologne who took
part in the experiment at the sound-attenuated booth of the phonetics laboratory.
The other 17 participants took part in the experiment at three different locations
– all small quiet rooms within private apartments. All subjects were paid five
Euros for their participation.

We excluded the responses from one participant who failed in our participant
inclusion criterion requiring accuracy of at least 75% with bi-vocalic fillers. The
bi-vocalic fillers of the forms /CəCal/ and /əCCal/ link correct responses to the
disyllabic choice (2), and we expect relatively few monosyllabic choices (1) in re-
sponse to stimuli with two separate vowels. Indeed, the overall average accuracy
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of all 51 participants, when responding to bi-vocalic filler stimuli, was 96%. The
excluded participant achieved a much lower accuracy score for bi-vocalic fillers,
almost approaching chance-level with 65%.

7.6.3 Experiment 3

Figure 7.4: Participants in Experiment 3 (𝑛 = 33). Education categories
refer to academic achievements (“school” = academic degree not yet
acquired).

Thirty-three native Hebrew speakers participated in Experiment 3, of which
28 were monolingual (the five bilinguals were also native speakers of English,
Russian and Spanish). 28 participants were right-handed. See more details on
age, gender and education of participants in Figure 7.4.

The data collection in Experiment 3 was more diverse, and, perhaps therefore
also more “noisy” than in Experiment 2. The first round of data collection took
place in 2019 with student volunteers from Tel Aviv University and The Hebrew
University of Jerusalem. The second round of data collection took place during
the early phases of the global COVID-19 pandemic, which resulted in fewer over-
all participants and the use of different ad-hoc and suboptimal locations to ad-
minister the experiment.

7.7 Data analysis

We used a Bayesian data analysis approach implemented in the probabilistic pro-
gramming language Stan (Stan Development Team 2018b) using the model wrap-
per package brms (Bürkner 2017, 2018) in R (R Core Team 2018).4 An important

4The complete list of R packages and versions thatwe used is: R (Version 3.6.3; R Core Team 2018)
and the R-packages brms (Version 2.16.3; Bürkner 2017, 2018), Cairo (Version 1.5.12; Urbanek
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motivation for using the Bayesian approach is that it facilitates fitting fully hi-
erarchical models with the so-called “maximal random effect structure”, which
provide the most conservative estimates of uncertainty (Schielzeth & Forstmeier
2009). In all our models, we used regularizing priors (detailed below). These pri-
ors areminimally informative and have the objective of yielding stable inferences
(Chung et al. 2013, Gelman et al. 2008, 2017). Nicenboim & Vasishth (2016) and
Vasishth et al. (2018) discuss the Bayesian approach in detail in the context of
psycholinguistics and phonetics. We fitted the models with four chains and 4000
iterations each, of which 1000 iterations were the warm-up phase. In order to
assess convergence, we verified that there were no divergent transitions, that
all the �̂� (the between- to within-chain variances) were close to one, that the
number of effective sample size was at least 10% of the number of post-warmup
samples, and visually inspected the chains.

For the statistical models, we took into account that the traditional sonority
models and the top-down version of NAP (i.e. SSPcol, SSPexp, MSDcol, MSDexp
and NAPtd) are ordinal models, while the bottom-up version of NAP (NAPbu)
is a continuous model. The ordinal models predict that certain groups of onset
clusters will be better or worse-formed than other group depending on an ordinal
score, but they do not assume that the score will be equidistant with respect to its
effect on the response variable, log-transformed response times. For this reason,
the discrete scores of these models are assumed to have a monotonic effect on
the log-response time in our task, that is, having a monotonically increasing or
decreasing relationship with the log-response time, while the distance between
groups is estimated from the data (Bürkner & Charpentier 2018).

In contrast, NAPbu provides scores on a ratio scale, in which the distance be-
tween scores is also taken to be informative (as opposed to the ordinal scales of
the other models), which is modeled with a continuous predictor that is assumed
to have a linear relationship with the log-response times. Finally, as a baseline,
we fitted a null model which assumes no relationship between the stimuli and
the response times.

All the models included a random intercept and slope by subjects (except
for the null model that included only a random intercept) and the following

& Horner 2020), dplyr (Version 0.8.5; Wickham, François, et al. 2020), ggplot2 (Version 3.3.0;
Wickham, Chang, et al. 2020), ggrepel (Version 0.8.2; Slowikowski 2019), hexbin (Version 1.28.1;
Carr et al. 2018), loo (Version 2.4.1; Yao et al. 2017), purrr (Version 0.3.4; Henry & Wickham
2020), R.matlab (Version 3.6.2; Bengtsson 2018), Rcpp (Version 1.0.4.6; Eddelbuettel & François
2011, Eddelbuettel & Balamuta 2017), readr (Version 1.3.1; Wickham et al. 2018), rstan (Version
2.19.3; Stan Development Team 2018a), StanHeaders (Version 2.21.0.1; Stan Development Team
2018c), stringr (Version 1.4.0;Wickham 2019), and tidyr (Version 1.0.2;Wickham&Henry 2018).
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weakly regularizing priors: Normal(6, 2) for the intercept, Normal(0, 1) for the
slope, Normal+(0, 1) for the variance components, and 𝑙𝑘𝑗(2) for the correlation
between by-participant adjustments. The ordinal models also have a Dirichlet
prior for the simplex vector that represents the distance between the categories
set to one for each of its parameters.

We evaluated the models in three different ways: (i) estimation, (ii) descriptive
adequacy, and (iii) model comparison.

Estimation: We report mean estimates and 95% quantile-based Bayesian credible
intervals. A 95% Bayesian credible interval is interpreted such that it con-
tains the true value with 95% probability given the data and the model (see,
for example, Jaynes & Kempthorne 1976, Morey et al. 2016).

Descriptive adequacy: We used posterior predictive checks to examine the de-
scriptive adequacy or “fit” of the models (Shiffrin et al. 2008). The observed
data should look plausible under the posterior predictive distribution of
the models. The posterior predictive distribution of each model is com-
posed of simulated datasets generated based on the posterior distributions
of its parameters. Given the posteriors of the parameters of the model, the
posterior predictive distribution shows how similar data may look. Achiev-
ing descriptive adequacy means that the current data could have been pre-
dicted with the model. It is important to note that a good fit, that is, passing
a test of descriptive adequacy, is not strong evidence in favor of a model.
In contrast, a major failure in descriptive adequacy can be interpreted as
strong evidence against a model (Shiffrin et al. 2008). Thus, we use poste-
rior predictive checks to assess whether the model behavior is reasonable
and in which situations it is not (see Gelman et al. 2013 for further discus-
sion).

Model comparison: For model comparison, we examine the out-of-sample predic-
tive accuracy of the different models using 𝑘-fold (𝑘 = 15) cross-validation
stratified by subjects.5 Cross-validation evaluates the differentmodelswith
respect to their predictive accuracy, that is, howwell the models generalize
to new data.

5Pareto smoothed importance sampling approximation to leave-one-out cross-validation (im-
plemented in the package loo, Vehtari et al. 2015, 2017) failed to yield stable estimates.
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7.8 Results

7.8.1 Estimations

For all the models, the well-formedness score shows a clear effect on response
times, with lower scores yielding longer log-transformed response times (see
Table 7.3).

Table 7.3: Estimations

̂𝛽 95% CrI

Experiment 1
SSPcol −0.18 [−0.27, −0.087 ]
SSPexp −0.1 [−0.19, −0.011 ]
MSDcol −0.13 [−0.2, −0.056 ]
MSDexp −0.052 [−0.11, 0.0016 ]
NAPtd −0.079 [−0.13, −0.03 ]
NAPbu −0.003 [−0.0054, −0.00068]
Experiment 2
SSPcol −0.14 [−0.17, −0.11 ]
SSPexp −0.066 [−0.084, −0.048 ]
MSDcol −0.099 [−0.12, −0.078 ]
MSDexp −0.039 [−0.049, −0.03 ]
NAPtd −0.071 [−0.085, −0.058 ]
NAPbu −0.0027 [−0.0032, −0.0021 ]

Experiment 3
SSPcol −0.066 [−0.096, −0.036 ]
SSPexp −0.043 [−0.065, −0.02 ]
MSDcol −0.045 [−0.066, −0.024 ]
MSDexp −0.02 [−0.032, −0.009 ]
NAPtd −0.032 [−0.048, −0.017 ]
NAPbu −0.00097 [−0.0015, −0.00049]

Note that the posterior of the effect of well-formedness, ̂𝛽 , is not compara-
ble across models. For the ordinal models, it represents the average increase (or
decrease) in the dependent variable associated with two neighboring factor lev-
els, or in other words, ̂𝛽 multiplied by the number of categories minus one rep-
resents the increase in log-scale between the first and the last category. This
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means that it is highly affected by the number of categories. For the continuous
bottom-up model, NAPbu, 𝛽 represents the increase in log-scale for one unit in
the well-formedness scale. To give some concrete examples from set AA, there
are 24 units between /lpal/ and /lkal/ (since their NAP scores are −129 and −153,
respectively); and there are 81 units between /lkal/ and /spal/ (−48 and −129,
respectively). However, for all the models, ̂𝛽 is negative, indicating that well-
formedness is associated with faster responses. See Appendix A for the complete
output of the models.

The results shown here reflect the final state of the models in the exploratory
stage, which is the same as the state of the models in the confirmatory stage.
Importantly, the results of the confirmatory studies, Experiments 2–3, which are
statistically much more robust, remain consistent with those of Experiment 1,
which had a relatively small number of observations. As such, Experiment 1 was
not designed to distinguish between the models and it will not be considered in
the further presentation of results.

7.8.2 Descriptive adequacy

The model fits of the different models are shown in Figures 7.5–7.11. The plots in
these figures present the dispersion of the average response time results, depicted
as red points for related CC clusters, vis-à-vis each model’s predictions in the
form of distributions, depicted with blue violins. The order of the stimuli, from
left to right, follows from the models’ scores such that predictions for better-
formed clusters appear further to the right. Recall that scores in the NAPbu model
yield slightly different predictions for each stimulus set (AA vs. HN).

7.8.2.1 Null models

The null models are shown in Figure 7.5 as baselines in the respective experi-
ments (the order of stimuli along the x-axis follows the NAPbu scores, but in a
forced ordinal scale, with equidistant intervals). The slight differences in predic-
tions for different clusters are due to individual differences in the accuracy. Re-
call that we subset the response times conditional on the monosyllabic response
(when pressing ’1’) to the forced-choice task. This means that when participants
give more monosyllabic answers for a specific cluster, their adjusted intercept
will have a greater influence on the predictions of the model for that cluster. In
addition, clusters with fewer monosyllabic responses show more variability in
their predictions (e.g. /lf/ vs. /fl/ in the AA set, on the left side of Figure 7.5).
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Figure 7.5: Null model fit. Observed mean log-transformed response
times are depicted with red points, distribution of simulated means
based on the null model are depicted with blue violins.

7.8.2.2 SSP and MSD models

We consider a good fit in the case of the ordinal models to be roughly charac-
terized by the following three criteria: (i) the data are contained within the pre-
dictions, i.e. the red points appear within the respective violins; (ii) the data are
consistent within each predicted level, i.e. the vertical dispersion of red points
pattern together around the same area within each level (preferably in the mid-
dle of the distribution); and (iii) the model predictors are not redundant, i.e. the
violins of the different model levels show little overlap between them.

A quick glance at the four plots for Experiment 2, in the left panels of Fig-
ures 7.6–7.9, reveals a common failure of all the traditional sonority models to
contain the nasal plateaus (/mn/ and /nm/) within their predicted distribution
alongside all the other plateaus (0 model score in all figures). Furthermore, the
data within the 0 plateau levels appears to be broadly dispersed for the German-
speaking subjects in Experiment 2 (plots on the left side) but quite well centered
for the Hebrew-speaking subjects in Experiment 3 (right plots).

A comparison of the left-most violins in Figures 7.6–7.9 highlights some differ-
ences between the two sonority hierarchies H col (SSP/MSDcol) and Hexp (SSP/
MSDexp). The left-most violins reflect the onset fall levels of the SSP and MSD
models. For the Hebrew-speaking subjects in Experiment 3 (right panels), there
was no clear difference between the two sonority hierarchies and a similar, broad
distribution appears in all fits of sonority falls. In contrast, the reponse times
of German-speaking subjects in Experiment 2 exhibit a bimodal distribution in
the falling onsets of sonority models that use the Hexp hierarchy (SSP/MSDexp),
whereby fricative-stop clusters /ʃp, sp, ft/ are considered to be highly ill-formed
onset falls.

This suggests that the H col hierarchy (where all obstruents are grouped into
one class on the sonority hierarchy such that fricative-stop clusters are consid-
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Figure 7.6: SSPcol model fit. Stimuli ordered from left to right according
to their score in the model in ascending well-formedness (other details
are the same as above).
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Figure 7.7: SSPexp model fit (plot details are the same as above).
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Figure 7.8: MSDcol model fit (plot details are the same as above).
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Figure 7.9: MSDexp model fit (plot details are the same as above).
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ered plateaus) is better than the Hexp hierarchy in treating fricative-stop clus-
ters. This can be deduced from the better model fits for onset sonority falls and
plateaus when the H col hierarchy is applied (SSP/MSDcol vs. SSP/MSDexp). How-
ever, the difference between the two sonority hierarchies also plays a role in the
grouping of onset rises when the MSD-based models are taken into account.

The violins in the right panel of each plot, reflecting well-formed onset rises
with positive model scores, present three types of grouping across the four mod-
els. The two SSP models (SSPcol/exp) make identical predictions with respect to
onset rises, lumping all rises into one category (1 in Figures 7.6–7.7). This, again,
results in a broader distribution for the German-speaking subjects in Experiment
2 (left panels) compared to the Hebrew-speaking subjects in Experiment 3 (right
panels).

The MSD models present multiple levels of well-formedness for onset rises.
MSDcol exhibits two levels of rises (1–2 in Figure 7.8) while MSDexp exhibits four
levels of rises (1–4 in Figure 7.9). This elaboration seems to be beneficial in fitting
the scores of the German-speaking subjects to the 4 rise levels ofMSDexp, but less
so for MSDcol. Furthermore, the additional levels of the MSD are redundant, and
even slightly reversed for the fits of the scores of the Hebrew-speaking subjects
in Experiment 3 (right plots).

To conclude, an observation of the model fits of the four traditional sonority
models in the two confirmatory studies reveals a mixed picture. The H col hierar-
chy (in models SSP/MSDcol) appears to result in a better fit with onset falls and
plateaus, especially for the German-speaking subjects. The competing Hexp hier-
archy appears to be advantageous when fitting the scores of rising onset slopes,
but mostly with MSDexp and only for the German-speaking subjects in Experi-
ment 2, where sonority falls can exhibit an undesirable bimodal distribution.

7.8.2.3 NAP models

Although NAPtd is an ordinal model like all the traditional sonority models, it
follows a different rationale (see Section 6.2.2), whereby the scores of the model
estimate nucleus competition to reflect well-formedness.

Figure 7.10 shows that NAPtd succeeds in containing all the data (points)
within the respective predictions (blue violins) in both experiments, making
NAPtd the only model to achieve such coverage. NAPtd appears to exhibit some
redundancy, as suggested by the relatively large degrees of overlap between
some of the predictive distributions of the model. This is apparent from the over-
lap between violins in the left side (worse-formed) of the model fit with Experi-
ment 2 (left panel), and between violins in the right side (better-formed) of the
model fit with Experiment 3 (right panel) in Figure 7.10.
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NAPbu is different from all the other models in that it presents scores that are
specific to each token in a continuous ratio scale, rather than an ordinal scale
(i.e. the distances between scores in the model are also predicted). Importantly,
the expected correlation between response time and ill-formedness appears to
hold for the model fits of NAPbu in Figure 7.11.
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Figure 7.10: NAPtd model fit (plot details are the same as above).
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Figure 7.11: NAPbu model fit (plot details are the same as above).

Our criteria for goodness of fit based on the plot analyses (see Subsection
7.8.2.2) are not all valid when evaluating NAPbu since we have no classes and
no vertical dispersion of data (points) within levels, and the horizontal overlap
of predictions (violins) between levels requires a different interpretation. How-
ever, the criterion for inclusion of data points within the violins of the models’
predictions naturally also holds for the NAPbu fit, which fails to include the data
for the nasal plateaus /nm/ and /mn/ within the respective predictive distribution
in Experiment 2 (a failure that is shared by all the traditional models in Exper-
iment 2; see Section 7.8.2.2). Furthermore, in Experiment 2 NAPbu also fails to
include the /z/-initial clusters – /zm/ and /zv/ – within their respective predictive
distribution.

The failures in the fit of the NAPbu model with German-speaking subjects in
Experiment 2 can be split into two types: (i) nasal-initial clusters – nval, nmal,
andmnal –which received results on a par with the slowest responses in the data,
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reflecting an overestimation of well-formedness by the model, and; (ii) syllables
beginning with a voiced sibilant – zval and zmal – which received results that
pattern with faster responses, reflecting an underestimation of well-formedness
by the model.

These results may be taken to suggest language-specific top-down effects of
German. In German, sibilants are regularly unvoiced/devoiced at edges of clus-
ters, while nasals, on the other hand, can be syllabic. In that sense, German-
speaking listeners may be more prone to considering marginal sibilance as a
voiceless nucleus repeller and nasality as a potential nucleus attractor. Compare
this with Hebrew (the native language of the subjects in Experiment 3), in which
nasals cannot be syllabic and voiced sibilants are common in marginal cluster
edges.

7.8.3 Model comparison

While the model fits give us an insight into the behavior of each model with re-
spect to the data, they are not well-suited for a comparison of different models
against a consistent criterion. To do this, we ran out-of-sample predictions us-
ing cross-validation, thereby testing the ability of each model to predict unseen
items.

7.8.3.1 Experiment 2

A bird’s eye view of all the six model fits in Experiment 2 is available in Fig-
ure 7.12. The results of the model comparison from Experiment 2 are available
in Table 7.4. They reveal a clear advantage of NAPtd over all other models. The
main metric in the table is the êlpd score, henceforth elpd, which stands for ex-
pected log-predictive density (higher score indicating better predictive accuracy).
The raw values are transformed to more informative values that measure the dis-
tance from the best score in terms of difference in elpd. The size of this difference
can be compared to the size of a standard error of difference, difference SE.

The difference of NAPtd from the next three models – SSPcol, MSDcol and
NAPbu – is about 6 standard errors (considering that the difference is around 90
elpd and the corresponding standard error is around 15), reflecting a very robust
lead for NAPtd. The small differences between the next three models (SSPcol,
MSDcol and NAPbu) make them all indistinguishable in the second place. The
two traditional models that are based on the Hexp hierarchy – SSP/MSDexp – are
similar to each other in last place and only marginally better than the null model.

The right-most column in Table 7.4, weight, shows model averaging via stack-
ing of predictive distributions. Stacking maximizes the potential elpd score by
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pulling the predictions of all the different models together. The values under the
weight column represent the relative contribution of eachmodel to this combined
optimal model. NAPtd alone contributes the lion’s share with 65% and NAPbu
comes second with 14%. This is notable as both NAPmodels are essentially based
on the same principle, lending support to the idea that the two models are essen-
tially complementary. The other traditional models contribute 8% (SSPcol) and
3% (MSDcol) to this picture, less than the 9% that the null model manages to con-
tribute.

7.8.3.2 Experiment 3

Abird’s eye view of all the sixmodel fits in Experiment 3 is available in Figure 7.13.
The results of the model comparison from Experiment 3 (see Table 7.5) reveal a
borderline advantage of NAPtd over other models. The difference in elpd scores
from the next two models – MSDcol and NAPbu – is only about 2 standard errors
(considering the difference at around 10 elpd and the corresponding standard
error at around 5 elpd).

SSPcol is more clearly distinguishable from NAPtd, with a difference that is al-
most 3 standard errors (about 20:7). MSDcol andNAPbu are barely distinguishable
from SSPcol and NAPtd. The two traditional models that are based on the Hexp
hierarchy – SSP/MSDexp – are, again, very clearly the worst in the comparison.

The weight values of Experiment 3 in Table 7.5 show that, again, NAPtd alone
provides the biggest relative contribution to a combined optimal model, with 61%.
MSDcol covers almost the entire remaining space with 37%, leaving NAPbu and
all the other traditional models with practically zero additional contribution.

7.8.4 Summary of results

The results of the confirmatory studies, Experiments 2–3, can be summarized
as follows: (i) all of the sonority models we tested are capable of explaining the
response time data for different consonant clusters to a reasonable extent; (ii) the
symbolic top-down NAP model, NAPtd, outperforms all the the other models;
(iii) some interesting differences between the H col and Hexp sonority hierarchies
were observed and the advantages of theminimalH col sonority hierarchy proved
to be more effective.

Experiment 3 exhibits most of the general trends found in Experiment 2, al-
beit in a less compelling way. The Hebrew speakers in Experiment 3 tended to
respond relatively fast to ill-formed structures. One path of explanation for these
discrepancies can be found in the differences between the ambient languages.
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Table 7.4: All models comparison: Experiment 2. The table is ordered
by the expected log-predictive density (elpd) score of the models, with
a higher score indicating better predictive accuracy. The highest scored
model is used as a baseline for the difference in elpd and the difference
standard error (SE). The column weight represents the weights of the
individual models that maximize the total elpd score of all the models.

model êlpd Difference in êlpd Difference SE weight

NAPtd −28595 0.00 0.00 0.65
SSPcol −28685 −89.56 14.30 0.08
NAPbu −28686 −90.91 15.45 0.14
MSDcol −28689 −93.85 14.07 0.03
MSDexp −28796 −200.32 20.14 ≈ 0
SSPexp −28806 −211.12 20.20 ≈ 0
Null −28850 −255.00 23.69 0.09
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Figure 7.12: Experiment 2: all sonority model fits (unspecified cluster
types, see detailed versions above). Observed mean log-transformed
response times are depicted with red points; distribution of simulated
means based on the model are depicted with blue violins. Stimuli are
ordered from left to right according to their score in a given model in
ascending well-formedness.
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Table 7.5: All models comparison: Experiment 3 (details are the same
as above)

model êlpd Difference in êlpd Difference SE weight

NAPtd −22981 0.00 0.00 0.61
NAPbu −22990 −9.58 4.82 ≈ 0
MSDcol −22991 −10.01 6.89 0.37
SSPcol −23000 −19.77 6.99 ≈ 0
SSPexp −23027 −46.22 10.25 ≈ 0
MSDexp −23031 −50.44 10.10 ≈ 0
Null −23053 −72.62 12.52 0.01
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Figure 7.13: Experiment 3: all sonority model fits (plot details are the
same as above).
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We expect language-specific differences to account for some of the differences
between the experiments, as was mentioned in Section 7.5. Specifically, the differ-
ence between nasals, as well as the difference between voiced sibilants in Hebrew
and German, were suggested as explanations in Section 7.8.2.3.

Moreover, we suspect that differences between the experiments were also due
to the various sources of noise that were introduced in the process. These include
the smaller group of participants and the diverse physical locations in which Ex-
periment 3 was administered (see Section 7.6.3). The results may be taken to
support this with a larger standard deviation for the by-subject adjustments to
the intercept for the models of Experiment 3 in comparison with Experiment 2
(e.g. �̂�𝛼 = 0.32 [0.25, 0.41] in Experiment 3 vs. �̂�𝛼 = 0.21 [0.17, 0.26] in Experi-
ment 2, when comparing the null models, see the full models in Appendix A).

The success of our NAP models relative to the traditional models in predict-
ing the data can be mainly attributed to the following traits of NAP: (i) all the
voiceless-initial onset clusters, including onset falls and plateaus (e.g. /sp/ and
/sf/), are relatively well-formed in NAP, correctly predicting the patterning to-
gether of such data with faster response times (at the low-right parts of the plots);
(ii) onset rises (like /ml/), nasal plateaus (/nm/ and /mn/), and onset falls (like
/lm/) pattern together as similar and relatively ill-formed in NAP, correctly pre-
dicting the data, as sonorant-initial plateaus and rises do not tend to pattern with
(better-formed) obstruent-initial plateaus and rises.

A superficial formal generalization that can illustrate these results in sym-
bolic terms may be that the sonority intercept of onset clusters appears to be
(at least) as impactful as the sonority slope in determining syllabic well-formed-
ness (i.e. the starting level of the onset cluster is at least as predictive of well-
formedness as the angle of the cluster’s slope).
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A useful aspect of the symbolic interpretation of NAP is that it can be employed
for diachronic descriptions of historical sound change, where processes tend to
be phonologized over time in ways that lend themselves to symbolic descrip-
tions such as deletion, insertion and category change of individual segments.
Thus, NAP-based predictions can be tested against the prevailing SSP-based pre-
dictions in cases of diachronic sound change where syllabic well-formedness is
assumed to play a role.

Traditional sonority-based principles have often been invoked with relation to
Modern Hebrew (MH) phonotactics, as they have been for many other languages
that were studiedwith the toolbox ofmainstream phonological research in recent
decades (for examples from MH see Adam 2002, Asherov & Bat-El 2019, Bat-El
1994, 1996, 2002, 2012b, Bolozky 1978, 2006, 2009, Cohen 2009, Faust 2014, 2015,
Kreitman 2008, Laks et al. 2016, Schwarzwald 2005). One prominent feature of
MH is that complex onsets of consonant clusters are often formed morpheme-
initially in the plural inflection of many nouns, where sonority seems to play a
crucial role in determining which sequences of consonants would be considered
well-formed enough to allow complex onset clusters to occur.

The data for this corpus study are derived from the Living Lexicon of Hebrew
Nouns (LLHN; Bolozky & Becker 2006). The LLHN is a tabulated collection of
12,043 Hebrew nouns based on a normativeMH dictionary, the Even-Shoshan Dic-
tionary (Even-Shoshan 2003), with phonemic transcriptions in IPA of colloquial
singular and plural forms, provided by the LLHN authors as a highly generalized
depiction of MH around the turn of the century.

This study targets the Segholate class, which comprises a very large group
of Hebrew nouns, with 1,016 entries in the LLHN (close to 10% of the entire
list). Segholates feature many frequently used words like ké.lev (‘dog’), pé.ʁaχ
(‘flower’) and jé.led (‘kid’). Consonant clusters appear morpheme-initially in the
plural inflections of Segholates if the two initial consonants can be syllabified to-
gether in a well-formed complex onset. To illustrate this with the three examples
above, consider the potential sequences /kl/ and /pʁ/ from ké.lev and pé.ʁaχ (re-
spectively), that make a well-formed complex onset (rising sonority), in contrast
to the potential sequence /jl/ from jé.led, that makes an ill-formed complex onset
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(falling sonority). As a result, the plural forms kla.v-ím (‘dog-pl’) and pʁa.χ-ím
(‘flower-pl’) allow a complex onset cluster, while the plural form je.la.d-ím (‘kid-
pl’) does not (*jla.d-ím).

In the remainder of this chapter, I provide the relevant background on MH
(Sections 8.2–8.4) and outline the preparation of the study corpus (Sections 8.5–
8.7), before presenting a descriptive analysis of the data (Sections 8.8–8.10) and
concluding with a short discussion in Section 8.11. I start in the next section (8.1)
with a description of the goals and limitations of the corpus, to help clarify the
scope of this study.

Important notes with respect to the following chapter:

• Major parts of this chapter were also published in Albert (2022).

• The corpus study is fully replicable from the LLHN public data file and
the R code made available in an Open Science Framework repository at the
following link: https://osf.io/wuf3j/.

8.1 Goals and limitations of the corpus study

It is important to clarify the goals and limitations of this corpus study at the out-
set. This is not a survey of MH phonotactics, nor can it be regarded as such. The
point of this study is to observe sonority-related phonotactics in phonologized
MH forms, based on systematic divergence from the Biblical Hebrew norm. The
class of Segholate nouns presents an opportunity to limit the scope of this ques-
tion and make it more manageable in terms of the size of the dataset. Segholates
are both unique and abundant at the same time. Their uniqueness makes it easier
to cover an exhaustive list of confounding factors to screen out forms that are
not informative with respect to the question at hand. Their abundance assures
us that even after we reduce the size of the Segholate set due to exclusions, we
will still remain with a rich enough set of tokens that contains many varied ex-
amples of the systematic alternation of interest for the study of sonority-related
phonotactics.

Segholates are frequent nouns that are distinctively of older Hebrew origin.
The Segholate class is not a productive host for new nouns (see Bolozky 2020).
As such, Segholates may reflect some facts about the phonology of Biblical He-
brew rather than MH. For example, only sibilants are possible fricatives in C1 of
Segholates and the bilabial stops /p, b/ never occur in the C2 position of Segho-
lates. These generalizations are a legacy of the old spirantization rule of Biblical
Hebrew, which is mostly maintained as a morphological alternation in MH (see
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Albert 2019). It should not be taken to mean that there are no /f/-initial and /χ/-
initial nouns in MH, or that bilabial stops are illicit in C2 positions in MH.

This corpus is, therefore, very useful for the following type of observation:
given that MH tends to delete the reduced vowel of Biblical Hebrew (the mobile
schwa; see Section 8.3), we can learn about the phonotactics of MH by system-
atically tracking which types of consonants around this position allow a cluster
formation or, otherwise, block it with an epenthetic vowel.

8.2 Historical sound change and the Hebrew languages

One very interesting diachronic process in the context of sonority is cluster for-
mation due to loss of vocalic elements, such as the loss of yers in the Slavic lan-
guage family (e.g. Rubach & Booij 1990, Gouskova & Becker 2013, Scheer 2007).
The loss of vocalic elements creates new phonological environments where of-
ten two consonants that where initially in different syllabic positions and/or dif-
ferent syllables end up as members of a tautosyllabic cluster, forming complex
onsets or complex codas. Phonotactic principles are expected to restrict certain
clusters such that some segmental sequences will end up following a different
path of historical sound change in order to prevent illicit clusters from occur-
ring. This is often achieved by inserting the language’s default vocalic element –
its epenthetic vowel – between the two consonants.

Historical loss of vocalic elements can therefore serve as a window into lan-
guage-specific criteria for syllabic well-formedness in terms of licit and illicit con-
sonantal combinations. In what follows, NAP-based and SSP-based predictions
are tested against data from MH, which – given the characteristics detailed be-
low – serves as a hotbed for the emergence of phonotactic universals (see Adam
2002, Albert 2014, Bat-El 2005).

This situation in MH is unique. On the one hand, MH is based on centuries-
old classical Hebrew varieties that were preserved via writing systems and niche
roles that spoken Hebrew traditions kept filling (chiefly in religious contexts).
On the other hand, as a natural language with a community of native speakers,
MH is a brand new language from the late nineteenth century, with only few
generations of native speakers. Thus, unlike more typical historical trajectories,
MH cannot be described as the result of direct evolution from classical Hebrew
varieties (see Blanc 1957, Fellman 1973, Morag 1959).

The reliance of MH on textual sources (see Myhill 2004) contributed greatly
to the perseverance of old Hebrew morphology, but was less determinant in pre-
serving the phonology of old Hebrew. The resolution of MH phonology by the
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new Hebrew speakers, especially given the rich morphological structure of He-
brew grammar, provides us with a rare opportunity to observe accelerated and
well-documented phonological patterns that resemble historical sound-change,
which – under more typical conditions – would have taken many generations to
establish.

Note that there are different periods of old Hebrew that contributed to MH:
Biblical Hebrew (spoken around 1200–300 BCE), Mishnaic or Rabbinic Hebrew
(from around 300 BCE to 600 CE) and Medieval Hebrew (mostly written around
600–1300 CE). An important role duringMedieval Hebrewwas played by what is
known as Tiberian Hebrew or Masoretic Hebrew (7th to 10th century CE) which
was crucial in developing the intricate writing system that is still in use in MH
to a large extent. Since this study does not deal with historical Hebrew varieties
and the differences between them, in what follows I simply refer to all the old
varieties of Hebrew under the cover term Biblical Hebrew, which is abbreviated
as BH.

8.3 Consonantal clusters in Modern Hebrew

The phonology of MH can be roughly described as a combination of the native
phonologies of the new MH speakers (varieties of Yiddish, as well as a myriad of
Slavic, Arabic, Germanic, Romance, and other languages), and their various tra-
ditions for mapping Hebrew graphemes to sounds in religious reading contexts,
where Hebrew often remained in use.

One striking feature of MH phonology that sets it apart from BH is its much
broader tolerance towards consonantal clusters. In BH, tautosyllabic consonantal
clusters were limited to final coda positions as a result of morpho-phonological
processes, most often when the suffix -t was attached to a consonant-final base
of a verb in the feminine inflection (e.g. ka.táv-t ‘write.pst-2sg.f’). Morpheme-
initial consonants in BH were regularly separated by a vowel to avoid complex
(tautosyllabic) onset clusters.1 In contrast to the restrictive phonology of BHwith
respect to complex onset clusters, MH speakers seem to prefer clusters in many
unstressed morpheme-initial positions, as various studies have already noted
before (e.g. Rosén 1956, Albert et al. 2013, Asherov & Bat-El 2019, Bat-El 2008,
Bolozky 1978, 2006, Cohen-Gross 2015, Laufer 1991, Schwarzwald 2005).

1Consonantal sequences in middle positions of BH words occur frequently, yet they are mostly
considered as belonging to two different syllables (i.e. heterosyllabic), not forming a tautosyl-
labic complex cluster.
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BH featured a reduced (short) vowel in unstressed positions, which the Tibe-
rian scholars marked with a unique diacritic termed schwa, which inspired the
naming of the phonetic schwa, although they are quite different (see Laufer 2019
for a short overview of the two terms). The schwa in the Tiberian writing sys-
tem has two main interpretations: it is either a short vowel (mobile schwa) or
no vowel (silent schwa). The silent schwa is restricted to coda positions, to indi-
cate that the consonantal grapheme has no following vowel. The mobile schwa
occurs in onsets, indicating a reduced vowel after the consonantal grapheme. In
MH there are no phonologically reduced vowels in unstressed positions (not con-
sidering post-lexical prosody) such that the reduced vowel of BH – the mobile
schwa – tends to be deleted in MH.

Hebrew words typically combine affixation with vocalic changes in the base
morpheme when inflected. This also includes the movement of stress towards
the suffix in order to keep the strong syllable at the final edge of the prosodic
word. This regular stress shift towards the final edge has implications for the
beginning of the prosodic structure as well, considering that unstressed initial
syllables are more prone to reduction processes. Furthermore, when an inflec-
tional suffix is added to a base morpheme, the deletion of a vowel from the base
can offset the overall increase in the size of the prosodic word due to affixation.
These are perhaps the main contributors to the relative abundance of morpheme-
initial complex clusters in MH (Asherov & Bat-El 2019, Bat-El 2008).

Regardless of the sources of MH phonotactic patterns, MH speakers produce
many complex onset clusters (C1C2V) across the lexicon. Moreover, the variety
of possible onset clusters in MH is relatively large, allowing more combinations
than most Germanic and Romance languages exhibit, including practically any
combination of two obstruents in a complex onset cluster (i.e. stop-stop, stop-
fricative, fricative-fricative and fricative-stop).

Importantly, the tendency towards cluster formation can be blocked with
MH’s epenthetic vowel /e/ to avoid certain ill-formed CC combinations in com-
plex onsets, thus serving as a window into the phonology of MH, with a specific
view to its phonotactic landscape. The literature on the subject of clusters in MH
points at the crucial role that sonority seems to play in blocking cluster forma-
tion. For example, it has often been noticed that the sonorant consonants of the
system (/m, n, l, ʁ, j/)2 do not form a cluster with a following consonant when-

2The historical labiovelar glide /w/, which was native to BH phonology, has merged with the
voiced labiodental fricative /v/ in MH. That said, the glide /w/ has a marginal phonemic status
in MH as a distinctive consonant in many common loanwords from both English (e.g. wáj.faj
‘WiFi’) and Arabic (e.g. wá.la ‘indeed’).
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ever they are morpheme-initial, i.e. in C1 position (e.g. Rosén 1956, Asherov &
Bat-El 2019, Bolozky 2006, Schwarzwald 2005).

(1) ka.χól → kχu.l-ím (‘blue-pl.m’)

(2) ja.ʁók → je.ʁu.k-ím (‘green-pl.m’)

Examples (1–2) demonstrate this with two color adjectives that share the same
vocalic template – C1a.C2óC3 – while differing in their consonantal makeup. The
base morpheme of inflected adjectives in the C1a.C2óC3 pattern deletes its first
vowel /a/ and changes the quality of its second vowel, which is no longer in
the stressed syllable, by raising from /o/ to /u/. As a result, C1a.C2óC3 becomes
C1C2u.C3-ím. This is apparent in (1) but note that in (2) the epenthetic vowel
/e/ is inserted between C1 and C2 in the plural inflection, yielding trisyllabic
C1e.C2u.C3-ím. This is done in order to avoid an otherwise ill-formed onset clus-
ter that would be headed by a highly sonorant glide /j/ (*jʁu.kím).

8.4 Segholates in Modern Hebrew

Segholates form a special class of Hebrew nouns due to their unique stress pat-
tern (see Bat-El 2012a). In citation form, when the base morpheme is devoid of
affixes (the singular masculine forms by default), Segholates exhibit a penulti-
mate stress unlike typical nouns of Hebrew origin, which standardly exhibit a
final stress (iambic pattern). At the same time, Segholates do behave like typical
Hebrew nouns in that they exhibit the standard final stress pattern with inflected
forms, whereby the stress shifts from the base morpheme to the suffix. This diver-
gence from the norm in the bare citation form of Segholates is related to histori-
cal processes within BH (see Yeverechyahu & Bat-El 2020) and is maintained by
the lexical stress system of MH, which tolerates varying stress assignments, in-
cluding some apparent tendencies towards penultimate stress (trochaic pattern),
despite the strong iambic preference of BH (Bat-El 2005).

When the default plural suffixes -im or -ot are added to typical Segholates, the
stress shifts to the end, and the first vowel of the base morpheme is deleted. As a
result, the first two consonants of Segholates tend to form a complex onset clus-
ter morpheme-initially when plural suffixes are added. However, if the resulting
C1C2 sequence constitutes an ill-formed complex onset cluster, the formation
of a cluster is blocked by the epenthetic vowel of MH, /e/. See Tables 8.1–8.2
for various examples of these two main routes in plural inflections of disyllabic
Segholates, resulting in either onset clusters (Table 8.1) or epenthesis (Table 8.2)
morpheme-initially.
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Table 8.1: Cluster formation inMH Segholates. Here and elsewhere, the
“Complex onset” column refers to the data in the LLHN such that “3”
indicates a complex onset cluster in plural inflections and “7” indicates
that a vowel appears between C1 and C2 in the plural inflection.

Singular Plural Gloss C1C2 Complex onset

pé.ʁaχ pʁa.χ-ím ‘flower’ pʁ 3

dé.let dla.t-ót ‘door’ dl 3

pá.χad pχa.d-ím ‘fear’ pχ 3

kó.tel kta.l-ím ‘wall’ kt 3

ʃé.ka ʃka.-ím ‘socket’ ʃk 3

sé.feʁ sfa.ʁ-ím ‘book’ sf 3

ʃé.meʃ ʃma.ʃ-ót ‘sun’ ʃm 3

vé.ʁed vʁa.d-ím ‘rose’ vʁ 3

Table 8.2: Vowel epenthesis in MH Segholates

Singular Plural Gloss C1C2 Complex onset

ʁé.geʃ ʁe.ga.ʃ-ót ‘feeling’ ʁg 7

ʁó.tev ʁe.ta.v-ím ‘sauce’ ʁt 7

lé.χem le.χa.m-ím ‘bread’ lχ 7

má.χat me.χa.t-ím ‘needle’ mχ 7

né.meʃ ne.ma.ʃ-ím ‘freckle’ nm 7

mé.laχ me.la.χ-ím ‘salt’ ml 7

The vast majority of Segholates are disyllabic. The most common vocalic pat-
tern in Segholates is the Cé.Ce(C) patternwith two /e/ vowels in the citation form
(e.g. dé.let in Table 13). Other vocalic patterns in citation form in Tables 8.1–8.2 in-
clude Cá.Ca(C) (e.g., má.χat, pá.χad), Có.Ce(C) (e.g., ʁó.tev, kó.tel) and Cé.Ca(C)
(e.g. pé.ʁaχ, mé.laχ, ʃé.ka).

8.5 Epenthesis verification

The epenthetic status of the vowel that appears between C1 and C2 in inflected
Segholates can be independently verified via systematic resyllabification pro-
cesses in MH. For example, when preceded by a proclitic such as the definite
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article (h)a-, the epenthetic vowel can disappear if C1 resyllabifies as the coda
of (h)a- leaving C2 in a simple onset position: /ha-C1.C2V…/. This scenario al-
lows consonantal sequences to surface without an intervening vowel as they no
longer constitute a tautosyllabic complex onset (see Bolozky 2006: 227). This pro-
cedure yields forms like those given in Table 8.3, demonstrating heterosyllabic
sequences for all the same cases that exhibit an epenthetic vowel to block a tau-
tosyllabic onset cluster in Table 8.2.

Importantly, if a non-epenthetic vowel appears between C1 and C2 of Segho-
lates, as detailed in the following section, it will not be deleted in any of these
environments, including environments that do not require a vowel to break com-
plex tautosyllablic clusters, as demonstrated for the forms in Table 8.4.

Table 8.3: Number inflection in Segholates with epenthtic vowels.
The epenthetic vowels between C1 and C2 are not mandatory in the
Det+Plural forms, where they are not required to break a complex on-
set cluster, and they can be deleted as shown here.

Singular Plural Det+Plural Gloss C1C2 COa EVb

ʁé.geʃ ʁe.ga.ʃ-ót (h)a-ʁ.ga.ʃ-ót ‘feeling’ ʁg 7 3

ʁó.tev ʁe.ta.v-ím (h)a-ʁ.ta.v-ím ‘sauce’ ʁt 7 3

lé.χem le.χa.m-ím (h)a-l.χa.m-ím ‘bread’ lχ 7 3

má.χat me.χa.t-ím (h)a-m.χa.t-ím ‘needle’ mχ 7 3

né.meʃ ne.ma.ʃ-ím (h)a-n.ma.ʃ-ím ‘freckle’ nm 7 3

mé.laχ me.la.χ-ím (h)a-m.la.χ-ím ‘salt’ ml 7 3

aComplex onset
bEpenthetic vowel

Table 8.4: Number inflection in Segholates with non-epenthtic vowels.
The non-epenthetic vowels between C1 and C2 are mandatory. They
are expected to surface regardless of syllabic structure.

Singular Plural Det+Plural Gloss C1C2 CO EV

ʁó.maχ ʁo.ma.χ-ím (h)a-.ʁo.ma.χ-ím ‘lance’ ʁm 7 7

nó.feʃ no.fa.ʃ-ím (h)a-.no.fa.ʃ-ím ‘vacation’ nf 7 7

nó.saχ no.sa.χ-ím (h)a-.no.sa.χ-ím ‘wording’ ns 7 7

χé.ʁev χa.ʁa.v-ót (h)a-.χa.ʁa.v-ót ‘sword’ χʁ 7 7

kó.va ko.va.(ʔ)-ím (h)a-.ko.va.(ʔ)-ím ‘hat’ kv 7 7

ʃó.ʁeʃ ʃo.ʁa.ʃ-ím (h)a-.ʃo.ʁa.ʃ-ím ‘root’ ʃʁ 7 7
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It is of interest to note that consonantal sequences which cannot appear as
word-initial tautosyllabic clusters (e.g. /lχ/ in illicit *lχa.m-ím) can, at the same
time, appear as sequences with no intervening vowel if they are heterosyllabic
(e.g. (h)al.χa.m-ím). This is an independent validation that the ill-formedness of
the structures in the corpus is not simply due to adjacency, but involves restric-
tions on adjacency in the context of syllabic structure. Hence, this verification
process also serves as an independent validation that syllabic well-formedness,
and more specifically sonority, are justifiably invoked in this case.

Crucially, the Segholate forms that reveal sensitivity to sonority-related pho-
notactics must be those that either allow a complex onset cluster in the plural
inflection, thus deleting the first vowel that surfaces in the singular form (as in
Table 8.1), or, alternatively, require a vowel that can be shown to be an epenthetic
vowel (as shown in Table 8.3).

8.6 Confounding factors

The forms that fail in the general epenthetic vowel test (see Section 8.5) were ul-
timately excluded from the corpus study since their behavior across the number
inflection is not expected to be reflective of sonority-based phonotactics. Apart
from a few idiosyncratic forms which are covered in Section 8.6.5, the vast major-
ity of these exclusions stem from structural and segmental factors, not related to
sonority, which I consider as confounding factors. The following Sections 8.6.1–
8.6.5 cover the various confounding factors that lead to exclusion from the study
corpus.

8.6.1 Final rime merge

As described above, the condition for cluster formation in Segholates is related to
a morpheme-initial adjustment (vowel deletion) that offsets the additional vowel
of suffixes when inflected to plural forms. While this pattern is the most promi-
nent in Segholates, it is not the only one. A large subset of Segholates (336 nouns,
about a third of all LLHN Segholates) makes the adjustment morpheme-finally,
mostly replacing the final VC rime of the singular form with the VC suffix -im
or -ot.

This final rime merge happens almost exclusively with Segholates that end in
/Vt/ (et or at), that is, either with a feminine suffix such as -et in gvé.ʁet (‘lady’;
lit. ‘man-sg.f’) or with a templatic particle such as C1a.C2é.C3et in da.lé.ket (‘in-
flammation’). The plural suffix in these cases is almost always -ot such that it
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either replaces the singular-feminine suffix -Vt with the plural-feminine suffix
-ot, or, alternatively, it merges with the templatic final -Vt of the base morpheme
rather than being concatenated to it. These two processes are superficially iden-
tical in that the change from singular to plural requires only the replacement of
the final vowel while retaining the following coda /t/, and without altering the
morpheme-initial structure (see examples in Table 8.5).

Note that due to the fact that this final -Vt particle is appended to the default
triconsonantal root, these Segholates tend to stand out because they are mostly
either trisyllabic or include a complex onset cluster in their singular citation form
to accommodate this extra material (see examples in Table 8.5).

Table 8.5: Fixed morpheme-initial forms: changes in final rather than
initial vowel. Parentheses in the “Complex onset” condition are due to
the lack of morpheme-initial change between the singular and plural
inflections.

Singular Plural Gloss C1C2 Complex onset

ka.sé.fet ka.sa.f-ót ‘safe’ ks (7)
ʁa.ké.vet ʁa.ka.v-ót ‘train’ ʁk (7)
da.lé.ket da.la.k-ót ‘inflamation’ dl (7)
któ.vet kto.v-ót ‘address’ kt (3)
gvé.ʁet gva.ʁ-ót ‘lady’ gv (3)
kné.set kna.s-ót ‘assembly’ kn (3)

One Segholate exception in the LLHN uses the plural suffix -im to replace
the final et portion of the base morpheme: ʃi.bó.let → ʃi.bo.l-ím ‘stalk (of grain)-
pl’. Two other Segholate exceptions in the LLHN delete the final vowel of base
morphemes that endwith en and take -im as their plural suffix, yielding: ci.pó.ʁen
→ ci.poʁ.n-ím ‘clove-pl’ and mik.tó.ʁen → mik.toʁ.n-ím ‘jacket-pl’. These, and
the more typical patterns where the final -Vt portion of the base morpheme is
replaced by the plural suffix -ot, are excluded from the study as they do not exhibit
morpheme-initial epenthesis or cluster formation when the plural suffix is added.

8.6.2 Non-typical plurals

Segholate nouns that lack any plural inflectionwere excluded from the study. The
LLHN lists 49 of 1,016 Segholates (about 5%) without plurals. These include mass
nouns like ʃá.χat ‘hay’ and té.va ‘nature’. Moreover, there are nine Segholates in
the LLHN with an irregular plural inflection, derived from the old dual inflection
of Hebrew. These trigger adjustments of the base morpheme that differ from
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the regular pattern. MH retained this restricted version of the dual morphology
of BH, a number inflection that is common in Semitic languages, alongside the
more general singular and plural inflections. The dual suffix is used in MH with
a limited set of nouns of Hebrew origin, with varying semantics (either general
plural, exactly two, or even a mass noun interpretation).

The -á(j)im dual suffix features two vowels with inherent penultimate stress,
unlike the regular -ot or -im of the plural suffixes, that appear within the (typ-
ically stressed) word-final syllable. Importantly, the effect of the dual suffix on
morpheme-initial cluster formation cannot be related to sonority. Four of the
nine Segholates with dual suffixes in the LLHN exhibit a potentially well-formed
obstruent-sonorant cluster, yet only one of those four exhibits a cluster in the
plural inflection with the dual suffix since these forms evidently allow the dele-
tion of the second vowel from the base morpheme, thus exhibiting C2C3 clusters
rather than C1C2, regardless of sonority (see Table 8.6).

Table 8.6: Segholates with the historical dual suffix

Singular Plural Gloss C1C2 Complex onset

té.lef tla.f-á.(j)im ‘hoof’ tl 3

gé.ʁev gaʁ.b-á.(j)im ‘sock’ gʁ 7

bé.ʁeχ biʁ.k-á.(j)im ‘knee’ bʁ 7

ké.ʁen kaʁ.n-á.(j)im ‘horn’ kʁ 7

8.6.3 Gutturals

A major confounding factor to consider with respect to the expected phonotac-
tics of Segholates is related to the segmental identity of the first two consonants,
C1 and C2. Specifically, consider cases in which C1 features one of the four histor-
ical gutturals of BH – /ʔ, h, ʕ, ħ/ – or if C2 features a member of the glottal(ized)
subset of the historical gutturals: /ʔ, h, ʕ/. The exception to this broad general-
ization concerns the historical voiceless pharyngeal fricative /ħ/, which typically
surfaces in MH as the dorsal fricative /χ/ that can participate in MH Segholate
clusters when it is in the C2 position (see Tables 8.7–8.8).

The cause of this peculiar behavior is related to the fact that the historical
gutturals of BH have undergone major phonological changes in MH, where they
are still denoted by unique graphemes in the writing system (see Bolozky 1978,
Faust 2019, Gafter 2019, Schwarzwald 2005). The historical glottal stop /ʔ/ and the
voiced pharyngeal fricative /ʕ/ both tend to have no consonantal interpretation
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Table 8.7: Cluster avoidance with historical gutturals in C1. Consonants
within parentheses are optional; starred consonants denote historical
sounds; “>” marks change.

Singular Plural Gloss C1C2 Complex onset

(ʔ)é.ʁec (ʔ)a.ʁa.c-ót ‘land’ (ʔ)ʁ 7

(h)é.vel (h)a.va.l-ím ‘nonsense’ (h)v 7

(*ʕ>ʔ)é.ʁev (*ʕ>ʔ)a.ʁa.v-ím ‘evening’ (ʔ)ʁ 7

(*ħ>)χé.ʁev (*ħ>)χa.ʁa.v-ót ‘sword’ χʁ 7

Table 8.8: Cluster avoidance with glottal(ized) historical gutturals in C2
(the details are the same as Table 8.7 above).

Singular Plural Gloss C1C2 Complex onset

tó.(ʔ)aʁ te.(ʔ)a.ʁ-ím ‘title’ t(ʔ) 7

sá.(h)aʁ se.(h)a.ʁ-ím ‘crescent’ s(h) 7

ʃá.(*ʕ>ʔ)aʁ ʃe.(*ʕ>ʔ)a.ʁ-ím ‘gate’ ʃ(ʔ) 7

ʃá.(*ħ>)χaf ʃ(*ħ>)χa.f-ím ‘seagull’ ʃχ 3

in MH, mostly alternating between no consonant and a glottal stop on phonetic
rather than phonological grounds. Likewise, the glottal fricative /h/ alternates
between a glottal fricative or stop, or no consonant. Therefore, these glottal(ized)
gutturals do not canonically participate in consonantal clusters in MH, as they
simply do not even have a stable consonantal interpretation.

The fate of the voiceless pharyngeal fricative /ħ/ is different as it merged with
the uvular-velar fricative /χ/ of MH, which also corresponds to the historical spi-
rantized counterpart of /k/ (Adam 2002, Albert 2019, Barkai 1975, Bolozky 1978,
2013). Importantly, /ħ/ is the only historical guttural in this set that is consis-
tently mapped to a consonant in MH. Furthermore, unlike the glottal stop and
the fricative, which are restricted to simple onsets in MH, /χ/ can also be found
in complex onsets and codas (e.g. sχa.vá ‘rag’, ma.táχ-t ‘stretch.pst-2sg.f’), al-
though rarely at the margins of clusters. This general behavior of /χ/ is apparent
also in MH Segholates. When /χ/ is in C1 position of a Segholate it behaves like
the other historical gutturals, essentially avoiding /χC/ complex onset clusters
with /χ/ at their margin (see Table 8.7). However, when /χ/ is in C2 position it
behaves much like a typical obstruent in MH, potentially forming clusters with
other obstruents in C1 (see Table 8.8).
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To conclude, Segholates featuring one of the four historical gutturals – /ʔ, h,
ʕ, ħ/ – in C1, or one of the three historical gutturals – /ʔ, h, ʕ/ – in C2, were
excluded from this study. Out of the 1,016 Segholate entries in the LLHN, 125
feature historical gutturals in C1 and 68 Segholates feature historical /ʔ, h, ʕ/ in
C2. One word, (ʔ)ó.(h)el ‘tent’, exhibits historical gutturals in both C1 and C2
positions, bringing the total of guttural exclusions to 192 out of 1,016 Segholates
(about 19%) in the LLHN.

8.6.4 Glides

Segholates with the glide /j/ in C2 position should also be excluded from the study
corpus, as they inconsistently vary between allowing and avoiding a morpheme-
initial cluster in plurals, regardless of sonority. For instance, consider the follow-
ing two examples with a voiceless stop in C1: (i) ˈka.(j)ic → kej.ˈc-im ‘summer-pl’;
(ii) ˈta.(j)iʃ → tja.ˈʃ-im ‘billy goat-pl’. A cluster is formed in (ii) with /tj/ but not in
(i) with comparable /kj/. The disyllabic structure is maintained in both scenarios
thanks to the glide’s ability to occupy the coda of the first syllable in plural in-
flections as in (i). Segholates with /j/ in C2 were thus completely excluded from
the study. The LLHN lists 19 such Segholates with a glide in C2 (three of which
also have a guttural in C1).

8.6.5 Other exclusions

8.6.5.1 Loanwords

Segholates are defined for the purpose of this study as in the LLHN, that is, as
nouns with penultimate stress in their bare (citation) form and with a stress shift
towards the suffix under inflection. Only words of Hebrew origin demonstrate
this type of behavior, as loanwords do not shift the stress to the final syllable with
plural inflections. For example, the wordmé.teʁ, which is the adapted form of the
loanword ‘meter’, fits with the most common Segholate pattern, Cé.CeC, yet as
a loanword it retains the position of stress on the initial syllable when inflected
to plural (i.e. mét.ʁ-im ‘meter-pl’), therefore not giving way to the deletion of
the initial vowel and deleting the second vowel instead (although note that the
sequence /mt/ is nevertheless not expected to form a cluster).3 Thus, even when

3Two further notes regarding ‘meter-pl’ in MH: (i) the choice between the two potential syllab-
ifications – mé.tʁim vs. mét.ʁim – is inconsequential for this study and it will not be pursued
here; (ii) the Hebraized version of the plural met.ʁím, where the stress does move to the final
position as it does with nouns of Hebrew origin, may also be attested in hypercorrect speech.
The latter could be due to the fact that this loanword has an exceptional Hebrew-like form and
is widely used (moreover, it is very often used with number inflections), thus increasing the
probability that speakers will not treat it like other loanwords.
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superficial similarities to Hebrew Segholates are striking, loanwords follow a dif-
ferent path in MHmorpho-phonology (see Bat-El 1994, Cohen 2009). Loanwords
are not considered as Segholates in the LLHN, such that no further exclusion
was needed. Furthermore, I am not aware of another example of a Segholate-like
loanword beyond meter, as detailed above.

8.6.5.2 Obligatory Contour Principle (OCP)

Another confounding factor is related to dissimilatory processes in articulation
rather than sonority, often linked to the notion of the Obligatory Contour Prin-
ciple (OCP) in the phonological literature going back to Leben (1973), Goldsmith
(1976) and McCarthy (1979). According to this, clusters are avoided if both conso-
nants are identical. However, since voicing differences between otherwise iden-
tical obstruents do not appear to have a relevant effect on coordination of artic-
ulatory gestures, any cluster in which the two consonants share the same place
andmanner of articulation is avoided, essentially also targeting sequences of two
near-identical stops or fricatives as they may still differ in voicing.

Of all the Segholates in the LLHN, only the noun té.deʁ ‘frequency’ exhibits
two consonants that share the same manner and place of articulation, /t/ and
/d/. Here, the epenthetic vowel in the plural inflection, te.da.ʁ-ím ‘frequency-pl’,
should be attributed to OCP rather than to sonority. This single case was ex-
cluded from the study corpus. It is in fact not surprising that only one case was
found to exhibit this problem, as Hebrew, along with other Semitic languages,
tends to keep the first two consonants of lexical roots phonetically distinct (Yev-
erechyahu 2019).

8.6.5.3 Idiosyncrasies

After considering structural and segmental generalizations that can affect the
phonotactics of inflected Segholates irrespective of sonority, there are still 35
Segholates that feature a non-epenthetic vowel in the plural inflection, without
an apparent independent explanation for this behavior, other than, perhaps, lex-
icalized exceptions (although note that 33 of the 35 Segholates feature /o/ as the
first vowel of the base morpheme).

For example, consider the items in Table 8.9. Compare the expected obstruent-
sonorant cluster /ʃʁ/ in ʃé.ʁec → ʃʁa.c-ím (‘vermin-pl’) with the non-epenthetic
vowel in the exact same consonantal sequence type when it appears in the noun
ʃó.ʁeʃ → ʃo.ʁa.ʃ-ím (‘root-pl’). Likewise, compare the opposite sonorant-obstruent
sequence /nf/ with a typical epenthetic vowel in né.feʃ → ne.fa.ʃ-ót (‘soul-pl’)
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Table 8.9: Segholates with and without non-epenthetic vowels in the
plural inflection. Forms that either allow a complex onset cluster or,
alternatively, introduce an epenthtic vowel in the plural inflection are
considered as valid forms in this study. The two invalid forms in this
example (nó.feʃ and ʃó.ʁeʃ ) feature a non-epenthetic vowel.

Singular Plural Det+Plural Gloss C1C2 COa EVb

né.feʃ ne.fa.ʃ-ót (h)a-n.fa.ʃ-ót ‘soul’ nf 7 3

nó.feʃ no.fa.ʃ-ím (h)a-.no.fa.ʃ-ím ‘vacation’ nf 7 7

ʃé.ʁec ʃʁa.c-ím (h)a-ʃ.ʁa.c-ím ‘vermin’ ʃʁ 3 (-)
ʃó.ʁeʃ ʃo.ʁa.ʃ-ím (h)a-.ʃo.ʁa.ʃ-ím ‘root’ ʃʁ 7 7

aComplex onset
bEpenthetic vowel

and with the non-epenthetic vowel in the same cluster type in nó.feʃ → no.fa.ʃ-
ím (‘vacation-pl’). Note also how the forms with non-epenthetic vowel in the
plural inflection are accordingly not expected to change their initial vowel across
inflections in Table 8.9, even when resyllabification of an initial consonantal se-
quence is possible following the proclitic (h)a-, which results in related examples
like in (h)a-.ʃo.ʁa.ʃ-ím and (h)a-.no.fa.ʃ-ím, not *(h)a-ʃ.ʁa.ʃ-ím or *(h)a-n.fa.ʃ-ím
(compare with (h)a-ʃ.ʁa.c-ím and (h)a-n.fa.ʃ-ót in cases where the plural exhibits
a cluster or an epenthetic vowel).4

8.7 Final corpus of Modern Hebrew Segholates

The preparation of the Segholate dataset, using the different criteria detailed in
Sections 8.5–8.6, resulted in 381 different singular–plural pairs of Segholates that
represent 381 C1C2 tokens in the study (see Table 8.10 for a summary of this dis-
tribution, and see Appendix B for the full list of words). Note that in this context,
C1C2 refers to the two initial consonants of alternating Segholates, without mak-
ing reference to potential clusters and epenthetic vowels, which will be exam-
ined in the following Descriptive analysis (Section 8.8). These tokens consist of
144 unique C1C2 types at the level of segmental description (i.e. 144 unique C1C2
combinations in Table 8.10), and 50 unique C1C2 types at the level of segmental-
class description (i.e. 50 unique non-empty cells in Table 8.10).

4The determination of syllabic boundaries in the case of obstruent-sonorant sequences in the
middle of a prosodic word (like (h)a-ʃ.ʁa.c-ím in the examples discussed) is potentially arguable
as it could also be (h)a-.ʃʁa.c-ím. However, these discrepancies have no implications for the
current observation.
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Table 8.10: C1C2 types and tokens in the Segholate study corpus. Su-
perscript numbers represent the number of word tokens per C1C2 type.
Colored cells mark sequences of obstruents that differ in voicing (see
Section 8.8.3). Legend: S− = voiceless stops; S+ = voiced stops; A− =
voiceless affricates; F− = voiceless fricatives; F+ = voiced fricatives; N
= nasals; L = liquids, G = glides; Frics. = fricatives; Affrics. = affricates.
See Appendix B for the full list of word tokens.

C2

Voiceless Voiced Sonorants

C1 Stops Affrics. Frics. Stops Frics. Nasals Liquids

S− kt9 pt5 kc4 pc1 kf3 ks4 kʃ6 kd1 pg3 kv8 tv2 km5 kn1 kl7 kʁ11

tk4 kχ1 ps4 pʃ2 tm2 tn2 pl6 pʁ5

pχ2 tf5 tχ3 tl1 tʁ4

tʃ1

A− – – cf4 cd1 cv3 cm4 cl1 cʁ1

F− sk1 st1 ʃc1 sf3 sχ7 ʃf3 sd2 sg4 sv2 ʃv3 sm2 ʃm4 sl2 sʁ3

ʃk7 ʃt4 ʃs1 ʃχ6 ʃd1 ʃg1 ʃn2 ʃl5 ʃʁ1

S+ bk1 bt1 bc1 bs1 bχ1 df4 bd1 bg1 dv2 gv4 dm2 gm1 bʁ2 dl4

dk1 dʃ2 dχ4 gf2 dg2 gd3 gz4 dʁ2 gl2

gʃ2 gχ1 gʁ2

F+ vt1 – vs1 vʃ1 – zv2 zm1 vʁ1 zl1

zf2 zχ2 zʁ5

N mt3 nk3 mc1 nc2 ms2 mʃ2 mg1 nd1 mz2 nv3 mn1 nm2 ml4 mʁ3

nt6 mχ5 nf4 ns1 ng4 nz3

nʃ5 nχ5

L lk2 lt1 ʁc2 lf1 ls1 lʃ1 ʁg3 lv2 ʁv3 ʁm3 –
ʁk

3
ʁt5 lχ1 ʁf2 ʁs3

ʁʃ3 ʁχ6

G jk1 jt1 jc1 jf1 jʃ1 jχ1 jd1 jg1 jz1 – jl1 jʁ1
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The 144 types and 381 tokens in Table 8.10 provide a large and diverse set of
C1C2 combinations that behave in one of two possible ways in the plural inflec-
tion: either they form a complex onset cluster, or they introduce an epenthetic
vowel. Crucially, the working hypothesis for the set in Table 8.10 is that the
choice between a cluster or epenthesis in the plural inflection is directly related
to syllabic well-formedness in terms of sonority-based restrictions, serving as
a window into the top-down, sonority-based phonotactics of MH. Thus, there
should be a cut-off point of well-formedness in the predictions of symbolic sonor-
ity models that is linked to the tendency to either form a complex onset cluster
or break the sequence with an epenthetic vowel.

8.8 Descriptive analysis

The MH data exhibit a binary distinction between two phonotactic alternatives,
either permitting or avoiding complex onset clusters in the initial position of
Segholate plural inflections. For the current analysis, this binary distinction is
mapped onto the N-ary scores of the different sonority models (Sections 8.8.1–
8.8.2). This mapping makes it possible to provide a descriptive observation and
analysis of the fit between each of the competing sonority models and the MH
data (Sections 8.9–8.10). Before the analysis itself, I will also present an explana-
tion of the treatment of voicing assimilation processes in Section 8.8.3. A discus-
sion in Section 8.11 concludes this chapter.

8.8.1 Sonority hierarchies with Modern Hebrew considered

Table 2.1 in Section 2.1 (which is included below in Table 8.11) demonstrated two
sonority hierarchies that represent two ends of the spectrum of potential (and
common) treatments of the obstruent class in sonority hierarchies: the H col hier-
archy, which collapses all obstruents into a single class; and the Hexp hierarchy,
which expands obstruents by employing both voicing distinctions and manner of
articulation distinctions between fricatives and stops.

Since the following analysis concerns MH, a few specific additions are in place.
First, the class of affricates was added to the subtypes of obstruents in order to
account for the MH affricate – the voiceless alveolar /c/ (also regularly annotated
as t͡s in standard IPA). The voiced counterpart, /d͡z/, is also taken into account in
the following study (see Section 8.8.3).

Second, another hierarchy is suggested in anticipation of the most suitable
obstruent configuration for MH: the HMH hierarchy, which partially expands
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obstruents by employing only voicing distinctions. This is in line with the fact
that MH tolerates various obstruent-obstruent complex clusters such that differ-
ences between stops and fricatives do not appear to play a role (see Section 8.3).
At the same time, MH is known to exhibit voicing assimilation between obstru-
ents (see Section 8.8.3) such that this distinction does appear to be playing a role,
as the descriptions and analyses in Sections 8.9–8.10 reveal.

Table 8.11 presents all the above-mentioned additions to the sonority hierar-
chies that were considered thus far. It demonstrates the three different hierar-
chies, H col, Hexp and HMH, and it shows them all with the addition of the af-
fricates class between stops and fricatives, although note that this is consequen-
tial only in the case of the Hexp hierarchy.

Note also that the symbolic NAP-based model, NAPtd, remains unchanged
from when it was introduced in Section 6.2.2 (see Table 6.2, repeated below in
Table 8.12). This is the case because the addition of the affricate class plays no
role in the sonority hierarchy of the symbolic NAPtd model, which only consid-
ers voicing to be distinctive between obstruents. Furthermore, the NAPtd model
assumes one basic, fixed and universal sonority hierarchy. Contrary to the typ-
ical approach in SSP-based models, NAP-based models are not compatible with
the notion of language-specific sonority hierarchies. Instead, NAP is committed
to a universal view of sonority which is explicitly based on pitch intelligibility
in perception and periodic energy in the acoustic signal. NAPtd links this quality
with different symbolic discrete speech sounds in terms of their potential to de-
liver periodic energy, yielding a relatively coarse separation of all speech sounds
into four groups (see Section 6.2.2).

8.8.2 Mapping sonority scores to Modern Hebrew data

Traditional SSP-based models focus on the sonority slope of the consonantal se-
quence, which they rate with a ternary ordinal scale capturing the distinction
between sonority slope types: falls, rises and plateaus. As discussed in Asherov
& Bat-El (2019), the location of the SSP cut-off point for well-formedness in MH
should be found between onset falls on the one hand, and plateaus and rises on
the other hand, since stop-stop and fricative-fricative clusters are known to be
licit in MH. Therefore, onset sonority plateaus and rises should be well-formed
in MH (thus allowing complex onset clusters), while onset sonority falls should
be ill-formed (thus promoting vowel epenthesis to break illicit clusters).5

5Note that since the cut-off point for SSP-based models includes both rises and plateaus within
the set of well-formed clusters, we can ignore the Minimum Sonority Distance (MSD), which
only adds irrelevant distinctions for MH within the set of sonority rises.
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Table 8.11: Traditional sonority hierarchies (with MH-related informa-
tion). Index values reflect the ordinal ranking of categories in different
sonority hierarchies. The voiced affricate in parentheses is the voiced
allophone of the voiceless /c/ in MH (see text for details).

Sonority index Segmental class Phonemic examples (MH)

H col HMH Hexp

5 6 10 Vowels /u, i, o, e, a/
4 5 9 Glides /w, j/
3 4 8 Liquids /l, ʁ/
2 3 7 Nasals /m, n/
1 2 6 Voiced Fricatives /v, z/
1 2 5 Voiced Affricates (d͡z)
1 2 4 Voiced Stops /b, d, g/
1 1 3 Voiceless Fricatives /f, s, χ/
1 1 2 Voiceless Affricates /c/
1 1 1 Voiceless Stops /p, t, k/

Table 8.12: The symbolic sonority hierarchy in NAPtd (repeated from
Table 6.2). Index values reflect the ordinal ranking of categories in the
sonority hierarchy. The distinctions between categories in the sym-
bolic NAP hierarchy are based on the characteristic ratio between pe-
riodic and aperiodic energy, and on articulatory contact, both taken to
reflect the potential of the periodic energy mass, i.e. the potential for
nucleus attraction.

Sonority Periodic: Articulatory
index Segmental classes Aperiodic contact

4 Sonorant vocoids (glides, vowels) 1:0 −
3 Sonorant contoids (nasals, liquids) 1:0 +
2 Voiced obstruents (stops, fricatives) 1:1 +
1 Voiceless obstruents (stops, fricatives) 0:1 +
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In contrast to the SSP-based models that provide scores on a ternary ordinal
scale, the scores in NAPtd give a numerical estimation of competition potential
based on symbolic representations. The formula used here to derive NAPtd scores
(see Sections 6.2.2–6.2.3 and Table 6.3) assigns higher numerical values to better-
formed combinations, assuming that they represent a weaker competition po-
tential for the nucleus. The search for a cut-off point with NAPtd is therefore
the search for a number that reliably separates well-formed cluster formations
(higher scores) from ill-formed epenthesis cases (lower scores). For the case of
MH and the NAPtd scale, the cut-off point was found between 1 and 2 such that
NAPtd scores equal to 1 and below (down to −3) are ill-formed, while NAPtd
scores that are equal to 2 and above (up to 5) are well-formed, as we shall see in
Section 8.9.

Table 8.13: Sonority cut-off points for well-formed complex onsets in
MH

SSPcol/exp/MH NAPtd Complex onset

plateau/rise 2 – 5 3

fall (–3) – 1 7

Table 8.13 summarizes this expected mapping scheme with color codes that
will remain effective throughout this chapter: green for well-formed sequences
and red for ill-formed ones. Recall that well-formed cases are those found in the
LLHN-based study corpus that have a complex cluster in plural Segholates. The
ill-formed cases are the rest of the plural Segholates found in the LLHN-based
study corpus, which appear with an epenthetic vowel. Section 8.9 observes this
mapping from a “bird’s eye view” via bar plots, before going into a more in-depth
analysis of the successes and failures of the models with respect to the segmental
content of the sequences (Section 8.10).

8.8.3 A note about voicing assimilation processes

Table 8.10 above consisted of colored cells with obstruent sequences that differ
in voicing. Purple cells feature voiced-initial sequences that are followed by a
voiceless obstruent, while blue cells feature voiceless-initial sequences that are
followed by a voiced obstruent. MH is typically considered to exhibit regressive
voicing assimilation between adjacent obstruents (see Barkai 1972). The picture is
in fact more complex and less dichotomous, not only in terms of the likelihood,
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but also the degree and even directionality of voicing assimilation in MH (see
Bolozky 2006, Kreitman 2010, Mizrachi 2019).

Be that as it may, all of the sequences with obstruents that differ in voicing
have the potential to agree in voicing as a result of voicing assimilation processes.
Table 8.14 summarizes the possible effects of voicing assimilation processes on
the well-formedness predictions of the different sonority models. The top row,
No V.A., demonstrates the well-formedness status of those sequences when no
voicing assimilation takes place. The two bottom rows, Reg. V.A. and Prog. V.A.,
demonstrate the results of regressive and progressive voicing assimilation (re-
spectively). As can be seen, the two possible directions yield identical results vis-
à-vis the well-formedness predictions of the different models. In other words,
what matters in this context is only whether the sequences of obstruents do or
do not agree in voicing.

The color codes of the fonts in Table 8.14 are in line with the coloring of cells
in Table 8.10: the purple sequences are canonically voiced-voiceless and the blue
sequences are canonically voiceless-voiced. Note that the predictions of the SSPcol
model (right column in Table 8.14) are the same for all the sequences in all con-
ditions. This is the case because the H col hierarchy considers all obstruents as
a single sonority class, regardless of voicing and manner distinctions between
stops and fricatives. As a result, all of these sequences are evaluated as sonority
plateaus (which are well-formed in this context; see Section 8.8.2).

The picture is different in all the other sonority models since they are based on
sonority hierarchies that use voicing distinctions. When no voicing assimilation
takes place (top row in Table 8.14), the blue voiceless-voiced clusters are consid-
ered as well-formed in all these models. The SSPexp and SSPMH models evaluate
them as well-formed onset sonority rises and NAPtd scores for these clusters are
larger than 1 (which is the NAPtd threshold of well-formedness in this context;
see Section 8.8.2). At the same time, the purple voiced-voiceless clusters are con-
sidered ill-formed since they are onset falls in SSPexp and SSPMH terms, and the
NAPtd score of these clusters is not larger than 1.

Table 8.14 shows the potential implications of voicing assimilation on the well-
formedness predictions of the different models. The crucial effect is that in all
the models that make voicing distinctions, the purple voiced-voiceless clusters
have the potential to change from ill-formed to well-formed. This is a complete
description of events for both the SSPMH and the NAPtd models. The picture
is slightly more complex for the SSPexp model, which makes a further manner-
based distinction between obstruents, namely separating fricatives from stops.
This means that in the SSPexp model, all fricative-stop sequences are evaluated
as ill-formed onset falls in sequences that agree in voicing. As a result, one of
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Table 8.14: Voicing assimilation scenarios. Legend: V.A. = Voicing As-
similation; Reg. = Regressive; Prog. = Progressive. Sequences in paren-
theses are not very likely (/χ/ does not tend to alternate in voicing).
The symbols “7” and “3” reflect the binary model predictions for well-
formedness: in SSP models, plateaus and rises are well-formed while
falls are ill-formed; in the NAPtd model, scores larger than 1 are con-
sidered well-formed (see Section 8.8.2). The color codes are consistent
with Table 8.10. Bold purple font in the regressive voicing assimiliation
scenario in the middle (Reg. V.A.) is used to highlight the C1 devoicing
process that was eventually taken into account. See text in Section 8.8.3
for more details.

SSPexp SSPMH / NAPtd SSPcol

7 3 7 3 3

No
V.A.

bk bt dk bc kd pg kv tv bk bt dk bc kd pg kv tv kd pg kv tv
bs bχ df dʃ cd cv sd sg bs bχ df dʃ cd cv sd sg cd cv sd sg
dχ gf gʃ gχ ʃd ʃg sv ʃv dχ gf gʃ gχ ʃd ʃg sv ʃv ʃd ʃg sv ʃv
vt vs vʃ zf zχ vt vs vʃ zf zχ bk bt dk bc

bs bχ df dʃ
dχ gf gʃ gχ
vt vs vʃ zf zχ

Reg.
V.A.

d͡zd zd zg gd bg gv dv gd bg gv dv gd bg gv dv
ʒd ʒg d͡zv zv ʒv d͡zd d͡zv zd zg d͡zd d͡zv zd zg
ft pk pt tk pc ʒd ʒg zv ʒv ʒd ʒg zv ʒv

ps pχ tf tʃ pk pt tk pc pk pt tk pc
tχ kf kʃ kχ ps pχ tf tʃ ps pχ tf tʃ
fs fʃ sf sχ tχ kf kʃ kχ tχ kf kʃ kχ

ft fs fʃ sf sχ ft fs fʃ sf sχ

Prog.
V.A.

ct st sk kt pk kf tf kt pk kf tf kt pk kf tf
ʃt ʃk cf sf ʃf ct cf st sk ct cf st sk
vd bg bd dg bd͡z ʃt ʃk sf ʃf ʃt ʃk sf ʃf

bz (bʁ) dv dʒ bg bd dg bd͡z bg bd dg bd͡z
(dʁ) gv gʒ (gʁ) bz (bʁ) dv dʒ bz (bʁ) dv dʒ
vz vʒ zv (zʁ) (dʁ) gv gʒ (gʁ) (dʁ) gv gʒ (gʁ)

vd vz vʒ zv (zʁ) vd vz vʒ zv (zʁ)
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the canonically ill-formed purple sequences remains ill-formed after voicing as-
similation and five canonically well-formed sequences become ill-formed (left
column and two bottom rows in Table 8.14).

The vast majority of consequences summarized in Table 8.14 are unchanged
or improved in terms of well-formedness, when considering the switch from no
voicing assimilation (top row) to one of the two voicing assimilation patterns
(regressive or progressive). Only a small subset of cases exhibits the few worse-
formed scenarios when voicing assimilation occurs. Considering that voicing as-
similation is an optional process in MH, the pressure to assimilate in voicing
should be weaker if the result is a substantially worse-formed syllable. A rea-
sonable simplification of these facts is to consider the potential of C1 to devoice,
as would be most typically expected in MH. Bolozky (2006: 232) already noted
this systematic alternation between MH word-initial voiced-voiceless sequences.
According to his account, the voiced obstruent in C1 can retain its voicing with
a following epenthetic vowel (resembling a more archaic and prescriptively cor-
rect pronunciation), but in most speech contexts when the sequence appears as
a cluster, there is a devoicing of C1.

The outcome of this consideration can be seen in Table 8.14. Devoicing poten-
tials of C1 are marked in bold for the purple sequences in the middle row of the
regressive assimilation scenario. This means that the corpus does not consider
the theoretical possibility of the five fricative-stop sequences in blue, at the left
column of the SSPexp model, to change from well-formed to ill-formed (essen-
tially not disadvantaging the SSPexp model for this less likely and rather negligi-
ble possibility).

The propensity to devoice C1 in voiced-voiceless sequences of obstruents is
therefore taken into account in the following analysis. In order to consider this
variation, the study corpus used here elaborates on the data sourced from the
LLHN by providing two forms for plural inflections with a voiced-voiceless se-
quence of obstruents: plurals with an epenthetic vowel, whereby C1 remains
voiced; and plurals with a complex onset cluster, whereby C1 is devoiced. For ex-
ample, the singular zá.χal ‘larva’ is expected to yield two possible plural forms:
ze.χa.l-ím or sχa.l-ím ‘larva-pl’. In this way, both potential options can be ac-
counted for, regardless of any independent determination about the frequency
and likelihood of certain devoiced forms.6

6Note that in the LLHN, most Segholates with voiced-voiceless C1C2 sequences of obstruents
appear with a complex onset cluster in their plural inflections. The only exceptions that appear
with an epenthetic vowel in their plural inflections are the sequence types bc, vs, vʃ and vt.
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8.9 Model fits

The following plots in Figures 8.1–8.4 show the 144 different CC types distributed
along the scores of each sonority model. The x-axis in each plot displays the
different scores of the given model while the y-axis reflects the amount of CC
types that received this score. The color codes reflect the status of C1 and C2
in plural Segholates in the LLHN, with the addition of the Variable category in
orange, to account for the CC types that can potentially devoice their C1, and thus
change from ill-formed to well-formed complex onset clusters (see Section 8.8.3).

For simplicity and clarity, the plots in Figures 8.1–8.4 show only the distribu-
tion of different CC types in the corpus. For completeness, the same distribution
is presented using the 381 different CC tokens (i.e. different lexical items) in Ap-
pendix C. Importantly, the differences between the two descriptions of the data
are negligible.

The distribution of the data in the following plots (Figures 8.1–8.4) shows that
all of the sonority models have a relatively good fit with the bulk of the data. This
is true even for the worst fitting models that employ the two extreme sonority
hierarchies, i.e. H col, which collapses all obstruents into one class, resulting in
the SSPcol model (see Figure 8.1), and Hexp, which expands the class of obstru-
ents to include all distinctions based on manner of articulation (stop < affricate
< fricative) and on voicing (voiceless < voiced), resulting in the SSPexp model (see
Figure 8.2).

0
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Fall (X) Plateau (√) Rise (√)
SSPcol slopes

CC
 ty
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s Complex Onset
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Figure 8.1: Fit of CC types between the SSPcol model (x-axis) and the
corpus data (color). The symbols in parenthesis indicate which cate-
gories are considered ill-formed (X ) or well-formed (√ ).
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Figure 8.1 shows that the SSPcol model manages to allocate all of the well-
formed onset clusters in the data (green color) to either sonority plateaus or
sonority rises, as expected. It exhibits a marginal failure with the allocation of
the ill-formed onset clusters (red color) to sonority falls, evident from the red
portions at the top of the Plateau and Rise bars. These are, in fact, the sequences
of the types /ml, mʁ/ (sonority rises) and /mn, nm/ (sonority plateaus), that all
the traditional sonority models fail to predict here. Furthermore, SSPcol is inca-
pable of reflecting the potential variation due to voicing assimilation processes
(orange color) since any obstruent sequence in SSPcol has to be considered a
plateau, which, in the context of MH, means that a well-formed onset cluster is
expected, irrespective of voicing assimilation.

The fit of SSPexp in Figure 8.2 has the same marginal problem that SSPcol ex-
hibits with respect to allocation of the ill-formed onset clusters (red color) to
sonority falls, given the red portions at the top of the Plateau and Rise bars.
SSPexp introduces a new marginal problem given that some well-formed onset
clusters are now allocated to the ill-formed sonority fall category (green por-
tion at the bottom of the Fall bar). These are, in fact, the fricative-stop sequences
which are all /s/-stop clusters here. On the other hand, SSPexp succeeds where the
SSPcol failed in accounting for variation due to voicing assimilation. The poten-
tially varying items (in orange) are allocated to F↔P or F↔R (excluding one case
at the very bottom of the Fall bar), indicating their ability to change between an
ill-formed sonority fall and a well-formed sonority plateau or rise, respectively.

Not surprisingly, the combination of the H col and Hexp hierarchies into a hi-
erarchy that is more specifically tailored to account for distinctions relevant to
MH speakers manages to yield the best SSP model in this study: SSPMH. As ev-
ident from the plot in Figure 8.3, the only problem that persists in SSPMH is
the incomplete allocation of ill-formed clusters in red to the falling onset cate-
gory, resulting in some of them being allocated to the supposedly well-formed
categories of sonority plateaus and falls (these are the nasal-initial plateaus and
rises, as mentioned above). At the same time, SSPMH manages to retain the suc-
cess of SSPcol (Figure 8.1) in allocating all the well-formed clusters (in green) to
either sonority plateaus or rises. Furthermore, SSPMH manages to retain the suc-
cess of SSPexp (Figure 8.2) in accounting for variation due to voicing assimilation,
where devoiced CC clusters can change score from ill-formed falls to well-formed
plateaus.

The most successful fit among the four models in this comparison is found
with the NAPtd model in Figure 8.4. As expected, all the well-formed clusters in
the data (green) are allocated to well-formedness scores of 2 and above, while all
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the ill-formed clusters in the data (red) are allocated to scores of 1 and below. Like-
wise, the potentially varying clusters (orange) switch from an ill-formed value
of 1 with the voiced-initial clusters to a well-formed value of 3 with the devoiced
versions.
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Figure 8.2: Fit of CC types between the SSPexp model (x-axis) and the
corpus data (color). F↔P can vary between Fall and Plateau and F↔R
can vary between Fall and Rise (both X↔√ ) due to voicing assimila-
tion.
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Figure 8.3: Fit of CC types between the SSPMH model (x-axis) and the
corpus data (color). F↔P can vary between Fall and Plateau (X↔√ )
due to voicing assimilation.
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Figure 8.4: Fit of CC types between the NAPtd model (x-axis) and the
corpus data (color). 1↔3 can vary between scores 1 and 3 (X↔√ ) due
to voicing assimilation.

8.10 Model analyses

In what follows, the general model fits reported above are examined for the seg-
mental content that underlies their successes and failures, starting with cases
that successfully predict the data and are shared by all models (Section 8.10.1),
and moving on to the subsets of cases in which SSP models are incongruent with
the data (Section 8.10.2).

8.10.1 Congruent predictions

Table 8.15 exhibits all the cases that are fully congruent between the data and all
the different sonority models. These represent about 82% of the types (118/144)
and about 86% of the tokens (329/381) in the dataset. Evidently, for the vast ma-
jority of the items in the corpus, all the sonority models are capable of explaining
the data and provide scores that are congruent with the data.

The items in Subsets (I–IV) in Table 8.15 are all well-formed given that they
are either analyzed as having sonority plateaus or rises in SSP models, or obtain
a well-formedness score of 2 and above in the NAPtd model. The differences
between those sets concern specific assignments and scores, but are redundant
in the binary distinction of ill-formed vs. well-formed onsets.

8.10.2 Incongruent predictions

Table 8.16 focuses on the relatively fewer cases of incongruence between scores
obtained from the different SSP models and the corpus data (only the scores of
the NAPtd model were fully congruent with the corpus, see Section 8.9). These
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Table 8.15: Congruence between all sonority models and complex on-
sets in the MH data. See Appendix B for the full list of word tokens.

SSPcol SSPexp SSPMH NAPtd
Complex
onset

I. rise rise rise 3 – 5 3

bʁ, cl, cm, cʁ, dl, dm, dʁ, gl, gm, gʁ, kl, km, kn, kʁ, pl, pʁ
pʁ, sl, sm, sʁ, ʃl, ʃm, ʃn, ʃʁ, tl, tm, tn, tʁ, vʁ, zl, zm, zʁ

II. plateau rise rise 2 – 4 3

cd, cv, kd, kv, pg, sd, sg, sv, ʃd, ʃg, ʃv, tv

III. plateau rise plateau 2 – 4 3

cf, dv, gv, gz, kc, kf, ks, kʃ, kχ, pc, ps, pʃ, pχ, tf, tʃ, tχ

IV. plateau plateau plateau 2 – 3 3

bd, bg, dg, gd, kt, pt, sf, sχ, ʃf, ʃs, ʃχ, tk, zv

V. fall fall fall (-3) – 1 X
jc, jd, jf, jg, jk, jl, jʁ, jʃ, jt, jz, jχ, lf, lk, ls, lʃ, lt, lv, lχ, mc
mg, ms, mʃ, mt, mz, mχ, nc, nd, nf, ng, nk, ns, nʃ, nt, nv
nz, nχ, ʁc, ʁf, ʁg, ʁk, ʁm, ʁs, ʁʃ, ʁt, ʁv, ʁχ

incongruent cases account for 18% of the types (26/144) and 14% of the tokens
(52/381) in the dataset.

The items in Subset (I) in Table 8.16 are all types of licit /s/-stop clusters in MH
that are produced as complex onset clusters in the plural inflection. Subset (I) is
correctly predicted to be well-formed by the SSPcol model, in which all the dif-
ferent combinations of obstruent clusters are considered as plateaus. Likewise,
the SSPMH model successfully predicts the well-formedness of Subset (I) since it
does not make a distinction between stops and fricatives (only voicing is distinc-
tive between obstruents in SSPMH). The SSPexp model fails with Subset (I) as it
predicts that the clusters will be ill-formed due to the onset sonority fall they in-
cur when stops and fricatives pattern separately on the corresponding sonority
scale.

The case of Subsets (IIa–c) in Table 8.16 is of particular interest and requires
some elaboration. The sequences in these sets exhibit a voiced-voiceless pattern
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Table 8.16: Incongruence between SSP models and complex onsets in
the MH data. See Appendix B for the full list of word tokens.

SSPcol SSPexp SSPMH NAPtd
Complex
onset

I. plateau fall plateau 3 3

sk, st, ʃc, ʃk, ʃt

IIa. plateau fall↔rise fall↔plateau 1 ↔ 3 X ↔ √
bc, bs, bχ, df, dʃ, dχ, gf, gʃ, gχ

IIb. plateau fall↔plateau fall↔plateau 1 ↔ 3 X ↔ √
bk, bt, dk, vs, vʃ, zf, zχ

IIc. plateau fall fall↔plateau 1 ↔ 3 X ↔ √
vt

III. plateau plateau plateau 1 X
mn, nm

IV. rise rise rise 1 X
ml, mʁ

of obstruents that is prone to devoice C1 due to typical voicing assimilation pro-
cesses (associated with a switch between ill-formed and well-formed complex
onset clusters; see Section 8.8.3). The SSPcol model cannot capture this variation
since all obstruents belong to the same level in this model. All the other models
that do indeed make a distinction between voiceless and voiced (obstruents) suc-
ceed in capturing this variation to a large extent. However, because the SSPexp
model also makes the distinction between stops and fricatives, it fails to capture
the potentially devoiced sequence vtV↔ftV in Subset (IIc). The SSPMH model,
in slight contrast, provides a more uniform picture of a switch between fall and
plateau for all the items in Subsets (IIa–c), much like the successful prediction
of the NAPtd model, where the values for all items in Subset (IIa–c) uniformly
switch from 1 to 3, below and above the threshold of well-formedness, respec-
tively. Essentially, SSPMH, NAPtd and to a certain extent also SSPexp reflect the
expected variation whereby the clusters in Subsets (IIa–c) are predicted to block

135



8 Corpus study

cluster formation if no voicing assimilation takes place, yet allow complex onsets
if devoicing occurs.

Lastly, as reflected in the persistent red portions at the top of the Plateau and
Rise bars in Figures 8.1–8.3, all three SSP-based models tested here fail in predict-
ing the ill-formedness of the sonorant plateaus in Subset (III) and the sonorant-
initial rises in Subset (IV). Both cases are blocked from surfacing as complex
clusters in MH, even though all SSP models consider them as well-formed.7 In
contrast, NAPtd assigns a low score of 1 to these clusters (putting them in the
range of ill-formed onset clusters), thus correctly predicting that they will be
systematically avoided through insertion of an epenthetic vowel.

8.11 Discussion

Formal sonority models can do a lot of heavy lifting with a very simple princi-
ple which reduces sonority-based phonotactics to the angle of the sonority slope,
but this simplicity comes at a price. It gives the notion of slopes either too much
or too little power. Thus, sonority slopes at the lower ends of the sonority hier-
archy, such as the notorious /s/-stop clusters, receive too much power in tradi-
tional sonority models, which mostly judge them to be ill-formed, despite their
relative abundance (Goad 2016, Morelli 2003, Steriade 1999). Likewise, sonority
slopes at the higher ends of the hierarchy, such as the highly uncommon sono-
rant rises and plateaus, are considered to be well-formed although they are quite
rare (Greenberg 1978).

This corpus study showed that the strictly symbolic model NAPtd is the ap-
propriate model for dealing with annotated corpus data of highly abstracted pro-
totypical phonemic transcriptions. The failures of the SSP models compared to
NAPtd in analyzing the MH data are marginal in quantity, but they are not ran-
domly distributed. These failures were also evident in the experimental study in
Chapter 7, and they exhibit the same distinct problems that were highlighted as
being an inherent part of traditional sonority sequencing principles in Section 2.2.
These problems can be demonstrated with failures to predict the ill-formedness
of sonorant-initial onset clusters, which do not present a falling sonority slope
(e.g. /nm, ml/), as well as difficulties to predict the well-formedness of some
obstruent-initial onset clusters that do not present a rising sonority slope (e.g. /s/-
stop clusters). Note that although SSPcol and SSPMH are capable of considering

7Note that even if the NAPtd hierarchy would have been used with the SSP, the epenthetic
vowel in the cases of /ml, mʁ, mn, nm/ would not have been successfully predicted as all of
these sequence types would have been regarded as well-formed onset plateaus.
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/s/-stop clusters as well-formed, they still score them with the borderline well-
formedness of plateaus, which may not be the best reflection of the relatively
robust well-formed behavior of /s/-stop clusters. The NAPtd model consistently
fares better in accounting for these cases, while at the same time replicating the
success of traditional models for the vast majority of cases in which the SSP al-
ready provides useful predictions.
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9 Prosodic analysis with periodic
energy (ProPer)

The conceptualization of sonority with causal links to pitch perception has di-
rect implications on models that cover prosodic phenomena. If acoustic periodic
energy is strongly associated with the notion of sonority, then the major fluc-
tuations along the periodic energy curve should reflect an underlying syllabic
structure in the speech signal. This is very similar to a relatively common prac-
tice (mentioned in Section 2.2.3), in which the amplitude envelope of the acous-
tic signal is used to automatically detect syllables (see, e.g., Pfitzinger et al. 1996,
Galves et al. 2002, Nakajima et al. 2017, Patha et al. 2016, Port et al. 1996, Räsä-
nen et al. 2018, Tilsen &Arvaniti 2013,Wang&Narayanan 2007). This is typically
done by filtering some frequency bands that discriminate in favor of the low-mid
range, where most periodic energy in speech is typically found. The periodic en-
ergy curve is thus similar to an amplitude modulation curve that is specialized
for the detection of syllabic nuclei in acoustic signals.

Having a continuous measure of the duration and the power of the acoustic
correlate of sonority is akin to having a continuous representation of an impor-
tant syllabic essence. This is valuable for modeling various aspects of prosodic
structure that go far beyond automatic syllable detection, and include acoustic
manifestations of speech rate and prominence aspects of speech. In other words,
if we take periodic energy to be the acoustic correlate of sonority, we can de-
duce from it where syllables are located by observing the location of the major
fluctuations on the periodic energy curve. Moreover, we can compute the tempo-
ral distance between different syllables in order to measure speech rate, and we
can furthermore deduce how prosodically strong each syllable is with respect to
other syllables in the same utterance to estimate effects of prominence (e.g. lexi-
cal stress and post-lexical accents).

The advantages mentioned thus far concern only the periodic energy time
series. Measuring periodic energy in correspondence with the F0 of the speech
signal can unlock a host of other advantages for prosodic analysis. Recall that the
values of F0 measurement denote the rate of the fundamental frequency, essen-
tially capturing the quality of the pitch sensation in terms of high vs. low frequen-
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cies. Periodic energy provides the quantity component of the same sensation that
F0 describes from a qualitative perspective. The two measurements are therefore
fully compatible, and their interaction is meaningful in any model that attempts
to characterize perceived pitch. Thus, regardless of any link to the linguistic no-
tion of sonority, the interaction between F0 and periodic energy should lead to
more comprehensive representations of pitch in speech and beyond.

To test these goals and operationalize them, a set of tools for prosodic analysis
based on periodic energy was developed using Praat (Boersma & Weenink 2019)
and R (R Core Team 2018) codes, that are combined together in a coherent work-
flow which we call ProPer, standing for Prosodic analysis with Periodic energy
(see notes at the end of this subsection on collaborators and the availability of
ProPer).1 The ProPer tools essentially reduce the acoustic signal into two paral-
lel interacting time series of periodic energy and F0 in order to describe various
phenomena in speech prosody by visualization and quantification procedures.

The following presentation should be regarded as a showcase for an indepen-
dent project that is still under development. It is relevant in the context of this
book since it is the direct result of the main claim behind this work – that the
quantitative dimension of pitch perception is the basis of sonority, and, as such,
has the potential to account for many aspects of prosody that have been thus far
hard to model. In the remainder of this chapter, I present the various capabili-
ties and advantages that ProPer currently has to offer, without providing a great
amount of technical detail (as all technical details can be seen and inspected in
the public repositorymentioned in the notes below, andmany of themmay likely
change over time). I start by describing how periodic energy data is obtained in
ProPer (Section 9.1), and continue by showing how these data can be exploited on
their own (Section 9.2), as well as in interaction with F0 data to further enhance
our inventory of prosodic analysis tools (Section 9.3).

Important notes with respect to the following chapter:

• The ProPer toolbox has been developed in collaboration with Francesco
Cangemi and has benefitted from active contributions by T. Mark Ellison
and Martine Grice (all from the University of Cologne).

• The ProPer workflow is an open-source project, freely available via an
Open Science Framework repository at: https://osf.io/28ea5/.

1The complete list of R packages and versions currently used in ProPer is: R (Version 3.6.3; R
Core Team 2018) and the R-packages Cairo (Version 1.5.12; Urbanek & Horner 2020), dplyr
(Version 0.8.5; Wickham, François, et al. 2020), ggplot2 (Version 3.3.0; Wickham 2016), purrr
(Version 0.3.4; Henry & Wickham 2020), rPraat (Version 1.3.1; Boril 2020), seewave (Version
2.1.6; Sueur et al. 2020), stringr (Version 1.4.0; Wickham 2019), tuneR (Version 1.3.3; Ligges
et al. 2018), and zoo (Version 1.8.7; Zeileis et al. 2020).

142

https://osf.io/28ea5/
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9.1 Obtaining periodic energy data in ProPer

The current method used to obtain periodic energy data is not inherent to the
ProPer workflow, and is expected to change whenever improved methods will
become available. It is already different from the method used in the experimen-
tal study of NAP (Chapter 7), where the APP Detector (Deshmukh et al. 2005,
see Section 7.2.3) was used. The current ProPer workflow uses Praat’s signal pro-
cessing abilities to extract the raw data and obtain the periodic energy curve, as
detailed below.2

We use Praat’s autocorrelation analysis to detect periodicity. With autocorre-
lation, the signal is compared to itself at given time points. Periodic signals are
generally more similar to themselves than aperiodic signals such that the level
of similarity in the autocorrelation function serve as a very good indication of
periodicity in the signal. There are various ways to extract this data from Praat,
either directly from a Harmonicity object that computes the harmonics-to-noise
ratio (HNR), or, as we have chosen to do here, from the strength value associated
with each pitch candidate in Praat’s Pitch object (on a scale of 0–1). We choose the
highest strength from up to 15 pitch candidates between 40–1kHz at each time
point (every 1ms) to determine the similarity index (or periodic fraction). The full
details of this implementation are available in the public release of the ProPer
workflow (see notes at the end of the introduction of this chapter).

The similarity index is not indicative of acoustic power and it may give the
same values to signals with very different underlying acoustic power. The sim-
ilarity index values, always ranging from 0 to 1, need to be multiplied by the
general acoustic power of the signal in order to express the power of the perio-
dic component, as shown in (9.2). Before doing so, we need to run the inverse
function using the formula in (9.1), in order to recover the acoustic power from
the intensity measurements of Praat (that are log-transformed to present values
in dB SPL).

acoustic power = 4 × 10−10 × 10
intensity

10 (9.1)

periodic power = acoustic power × similarity index (9.2)

Demonstrations of these data can be viewed in the plot in Figure 9.2, with
an example taken from Albert et al. (2019), which is also available at the public
ProPer repository (the following example is named “joe_7” in the examples of
the ProPer repository). The audio recording is a rendition of the expression can I

2I thank Paul Boersma for his kind help in solving some of the issues related to Praat via personal
communication. Any possible misunderstanding in the interpretation is my own.
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ask you a question?, spontaneously uttered by a morning show host (specifically,
Joe Scarborough on MSNBC’s Morning Joe), and made available to the public
at the TV News Archive.3 Figure 9.1 displays a waveform representation of the
acoustic signal, and Figure 9.2 shows the similarity index in the red dotted line,
the acoustic power in the dashed blue line, and the resulting periodic power in the
solid purple curve. Note that scales are normalized to fit the entire plot.
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Figure 9.1: Waveform representation (a time-domain oscillogram) of
the audio example used in the following Figures 9.2–9.11.
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Figure 9.2: Examples of the similarity index (red dotted line), acous-
tic power (dashed blue line), and resulting periodic power (solid purple
curve). Dotted vertical lines and annotations were manually added by
the author for exposition purposes.

Note how the purple periodic power curve in Figure 9.2 appears to overlap
with the dashed blue curve of the general acoustic power in vocalic portions (the
high peaks), but not in the voiceless obstruent portions, where the blue curve
shows some energy but the purple curve reaches the floor due to the aperiodicity
of the signal (e.g. /s/ in ask and in question).

To obtain the periodic energy curve, we log-transform the periodic power val-
ues in a similar way as with theAPP Detector, as explained in Section 7.2.3 and the

3https://archive.org/details/tv
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function in (7.3), repeated here in (9.3). Given the varying conditions of different
audio recordings, we need to estimate the threshold of effective pitch sensation
on the periodic power scale to set the periodic floor variable in the denominator
of the log transform in Equation (9.3) and thus set the zero value of the resulting
periodic energy curve. The estimation of the periodic floor can be achieved, for
example, by sampling voiceless portions in the same dataset to track how high
they reach on the periodic power scale.

periodic energy = 10 log10(
periodic power
periodic floor

) (9.3)
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Figure 9.3: Examples of the periodic power (solid purple curve) and the
log-transformed periodic energy, smoothed with a 20Hz low-pass filter.
Other details are the same as for the previous plot.

This can be viewed in the plot in Figure 9.3, which continues with the same
audio example, and with the same periodic power curve in purple as in Figure 9.2.
The red curve that is added is the periodic energy curve after the log-transform
function and a 20Hz low-pass filter that smooths the final periodic energy curve.
Again, note that the scales are normalized to fit the plot.

The log-transform is not only useful for setting the floor, it is also a widely
used approach to dealing with perception of quantities at various domains and
dimensions. In acoustics, it is common to log-transform both the frequency and
power scales under the general assumption that differences at the high ends of
these scales have a smaller effect than differences of the same absolute size at the
lower ends of the scale (e.g. a 100Hz difference is perceptually salient between
200 and 300Hz, but it is negligible when occurring between 15 and 15.1kHz). In-
deed, it is easy to see how the differences at the higher ends of the purple periodic
power curve are diminished in the red periodic energy curve, and, likewise, dif-
ferences at the lower ends of the purple periodic power curve are enhanced in
the red periodic energy curve.
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The periodic energy curve in ProPer is smoothed with low-pass filters at 4
different frequencies from 5Hz (capturing syllable-size fluctuations of 200ms-
long intervals) to 20Hz (capturing segment-size fluctuations of down to 50ms-
long intervals). Two values in between, at 8 and 12Hz, are also automatically
extracted to cover intervals of 125 and 83ms (respectively).

can I ask you a ques- tion

0 500 1000 1500
Time (ms)

No
rm

ali
ze

d 
sc

ale
s

Figure 9.4: Examples of the 4 levels of periodic energy smoothings, with
low-pass filters at 20Hz (red), 12Hz (brown), 8Hz (orange) and 5Hz
(pink). Other details are the same as for the previous plots.

The plot in Figure 9.4 demonstrates the four levels of smoothing applied in
ProPer to the periodic energy curve. This is the same audio example, here with
the same red curve of periodic energy with a 20Hz low-pass filter as in the pre-
vious figure (9.3). The added curves show gradually more smoothed behavior by
small drops in the frequency of the low-pass filter, from 20Hz in red, to 12Hz in
brown, to 8Hz in orange, and down to 5Hz in the thicker pink colored curve. The
least smoothed version (the red curve with 20Hz low-pass filter) is considered
the default and will be used in the remainder of this demonstration.

9.2 Prosodic measurements based on periodic energy

Periodic energy already makes several important measurements available. First
of these is the ability to detect the major fluctuations in the curve reflecting
different syllables (Section 9.2.1). With syllabic intervals in place, it is possible
to measure the strength of each syllable in terms of the periodic energy mass,
i.e. the integral of duration and energy, which is the area under the periodic en-
ergy curve (Section 9.2.2). We can then locate the center of mass of each syllable
– a crucial landmark for many of the following computations, such as the speech
rate trajectory (Section 9.2.3), which only requires the periodic energy curve.
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9.2.1 Boundary detection

The automatic boundary detector in ProPer is based on the fluctuations of the
periodic energy curve. We use the 2nd derivative of the periodic energy curve
to locate turning points. Positive local peaks in the 2nd derivative are indica-
tive of relevant turning points in the periodic energy curve, from sharp drops
to more subtle shoulders. The 2nd derivative undergoes dynamic smoothing in
this process. It starts with a very strong smooth of 1Hz low-pass filtering and
repeats the search with incremental steps allowing higher frequencies to con-
trol the low-pass filter – effectively reducing the level of smoothing – until the
expected amount of boundaries is successfully detected (or until the smoothing
reaches 40Hz low-pass filtering).

As implied above, this algorithm expects a certain number of syllables for each
token. If the data is separately annotated (e.g. using Praat’s TextGrid to demar-
cate syllables), it is possible to use this information to derive expectations for syl-
lables. Otherwise, an automatic expectation can be produced given an adjustable
average syllable size. The algorithm can take advantage of separately annotated
syllabic intervals in another useful way: if syllabic boundaries were segmented
by a separate process and fed to ProPer, the automatic boundary detector can
avoid the detection of boundaries when they are too far from a pre-segmented
boundary, and it can add a boundary if – at the end of the automatic detection
process – there are pre-segmented boundaries that have no automatic boundary
in their vicinity. It is also possible to completely force the given segmentation on
the automatic detector, but that will result in many suboptimal boundaries that
are slightly off the periodic energy minima.

The boundary detection algorithm in ProPer thus allows the whole spectrum
of behaviors, from fully automatic (signal-based) detection, all the way to fully
pre-segmented boundaries, as well as options that incorporate the two. These
combined processes use pre-segmented boundaries to inform the signal-based
automatic detector, offering an optimal boundary detection in the current sys-
tem: choosing the desirable periodic energy minima only where a boundary is
required, while not missing any crucial boundary that the periodic energy curve
cannot detect on its own.

Figure 9.5 demonstrates this with the the same red periodic energy curve as in
Figures 9.3–9.4. At the bottom of the plot, two derivative curves fluctuate above
and below zero. The green curve is the raw 2nd derivative (i.e. the acceleration
curve of the periodic energy trajectory). The purple curve is the dynamically
smoothed copy of the 2nd derivative. Automatic boundaries appear in thick red
vertical lines and they are located at the positive high peakmaxima along the pur-
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Figure 9.5: A demonstration of the ProPer boundary detector with the
same audio example as above, including the same manual segmenta-
tion boundaries in dotted vertical black lines, and the same periodic
energy curve in red. Vertical red lines denote the boundaries of the
ProPer boundary detection algorithm. The curves fluctuating above
and below zero are derivatives of the red periodic energy curve: the
green curve shows the raw 2nd derivative and the purple curve shows
the dynamically smoothed 2nd derivative that is used in the boundary
detection algorithm.

ple curve. The dynamically smoothed purple curve is initially highly smoothed
(1 Hz low-pass filter) and it stops the process of “unsmoothing” (gradually raising
the cut-off frequency of the low-pass filter) as soon as it reached a sufficient num-
ber of valid positive peaks on the purple curve. The expected number of bound-
aries in this example is seven, and it is derived from the number of the manually
annotated boundaries provided via a Praat TextGrid (black dotted vertical lines
in the plot). Note that since the manual segmentation into syllabic intervals was
available for the automatic boundary detection algorithm, it “knew” not to place
a boundary in the middle of the last syllable (-tion), although the shoulder of the
final nasal on the red periodic energy curve was pronounced enough to be de-
tected by the purple 2nd derivative curve as a boundary (a positive peak on the
purple curve).

Crucially, ProPer does not require an input of discrete segmental or syllabic
intervals in order to work, but, as explained above, it can make use of such stan-
dard segmentation information when available. The actual preferred strategy in
this respect should always be tied to a specific task. For example, a different
preference should be made if it is important to avoid discrete assumption in the
model, or, if it is more important to target a specific syllable in a corpus of elicited
speech. Another consideration in this respect is related to statistical power. With
a relatively small dataset, small deviations can have a big impact on the results,
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9.2 Prosodic measurements based on periodic energy

so a separate syllabic segmentation may be a good way to reduce inconsistencies
that could result from problematic boundary placement. However, if a relatively
big amount of data is considered, small deviations due to suboptimal boundary
detection should be more easily identified as noise, and the ability to process big
data without a separate segmentation process can become a crucial advantage.

9.2.2 Mass

Once interval boundaries are finalized, it is possible to characterize different as-
pects of the signal based on the syllable-sized intervals, the most immediate of
which is the estimation of prosodic strength. The area under the periodic energy
curve between two boundaries is termed mass in ProPer (Albert et al. 2022). It is
the integral of duration and power, that are often measured as two separate cues
to prominence. Typically, acoustic intensity is measured for its contribution to
prominence rather than periodic energy. The switch to periodic energy instead
of the more general intensity is supported by the current proposal that periodic
energy is related to sonority (Section 5.1), and the relatively established link be-
tween sonority and syllable weight (Section 5.3.2), sharing, among others, the
idea that voiceless obstruents hardly contribute to syllable weight and prosodic
prominence.4

Typical usages of intensity in order to measure cues to prominence or sonority
tend to employ them within regions of interest in one of the following two ways:
(i) extracting peak values from the intensity curve (either minima or maxima,
e.g. Parker 2008); or (ii) calculating an average value over the intensity curve
(probably the more common strategy of the two). These kinds of measurements
either ignore the interaction of duration and power (i), or normalize over the con-
tribution of duration (ii). The periodic energy mass employs a different strategy
of summing – rather than averaging or peak tracking – which accounts for dura-
tion and power together in a single variable that attempts to capture the overall
prosodic strength. This move towards summing was discussed in Section 6.2.4
citing seminal works that provided evidence for the interaction of duration with
sonority (Price 1980) and with the perception of loudness in linguistic contexts
(Turk & Sawusch 1996).

It is noteworthy to add that duration and power are two abstract aspects of
acoustic quantity. They are abstract in the sense that we never experience one

4Note that emphasis in service of prosodic prominence (where lexical stress and post-lexical
accents play a role) is different from a selective emphasis that is intended to improve clarity of
communication by reducing potential ambiguity. In the latter case, any portion of the speech
signal – including voiceless portions – may be the target of emphasis, depending on various
contextual variables that have little to do with prosodic prominence.
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9 Prosodic analysis with periodic energy (ProPer)

without the other. In perception, acoustic quantity is always expressed by the
combination of duration and power. The mass measurement in ProPer aims to
capture that, while retaining the ability to disintegrate mass into the two sub-
components: interval duration and mean periodic energy (which remain, indeed,
interesting to observe as well).

Roessig et al. (2022) found ProPer’s mass measurement to be the second best
predictor of the occurrence of pitch accent (second only to F0 mean). Mass was
tested in that part of the study alongside 14 other competing acoustic and articu-
latory measurements. Those included also what might be considered as the two
sub-components of mass, RMS amplitude and vowel duration.

can I ask you a ques- tion
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Figure 9.6: A demonstration of Mass and center of mass (CoM) with
the same speech example as above. Mass values (relative scale) are pre-
sented in numbers below each syllabic interval. The dashed vertical
red lines show the position of the CoM within intervals. Other details
are the same as for the previous plots.

Note that the raw mass values are, in and of themselves, not very informative.
The absolute values are contingent on various degrees of freedom in the adjust-
ment of the periodic energy curve (see Section 9.1), and on the resolution of the
dataset (e.g. a data point every 1ms should yield mass values that are about ten
times higher than a data point every 10ms). In order to calculate the mass values
in an informative way, it is useful to calculate relative mass values, representing
the prosodic strength of syllables relative to other syllables in the utterance. To
achieve this, the area under the periodic energy curve of the entire utterance
is calculated and then divided by the number of syllabic intervals in the utter-
ance. The resulting value is the utterance’s average mass for a single syllable,
which can then be compared against each syllable by calculating the mass of
each observed syllable relative to the average value (i.e. observed mass divided
by average mass). The resulting values are centered around 1, which is exactly
average, such that weak syllables exhibit mass values lower than 1 and strong
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9.2 Prosodic measurements based on periodic energy

syllables exhibit mass values higher than 1. Figure 9.6 presents the mass values
of each syllabic interval at the bottom of the plot.

The dashed vertical red lines in the middle of syllabic intervals in Figure 9.6
denote the center of mass (CoM) at each interval. This is a weighted average
calculation which finds the average time point weighted by the corresponding
periodic energy curve, within each syllabic interval. The center of mass splits the
area under the periodic energy curve into two equal parts (within an interval).
CoM was introduced in the implementation of the NAPbu model (Section 6.2.4)
and equation (6.3), repeated here in (9.4). Note that per = periodic energy and 𝑡 =
time. As we shall see below, the center of mass is an essential landmark for many
ProPer tools.

CoM = ∑𝑖 per𝑖 𝑡𝑖
∑𝑖 per𝑖

(9.4)

9.2.3 Speech rate

In line with the PRiORS framework, presented in Chapter 4 (and specifically Sec-
tion 4.7.1), the ProPer toolbox views rhythm in speech much like F0 on a slower
timescale, that is, as a moving target that exploits dynamic change for commu-
nicative effect. Rhythm in speech according to this understanding should be ad-
equately modeled as a trajectory, reminiscent of the local speech rate curves in
Pfitzinger (2001).

In keeping with the PRiORS understanding that rhythm trajectories are me-
chanically related to F0, the speech rate measurements in ProPer are based on
temporal distances between anchors rather than on the duration of the intervals.
This difference should yield similar results in the majority of cases, but differ-
ences are also to be expected (and are yet to be explored).

The speech rate trajectory (see thick green curve in Figure 9.7) is calculated
from the temporal distance between successive CoMs, which serve as robust an-
chors in this context. The continuous curve is based on a smoothed interpola-
tion over these CoM-distance values. The speech rate curve goes up to designate
faster rates (shorter distance from the previous CoM) and down for slower rates
(larger distance from the previous CoM). The full implementation is available at
the public ProPer repository. Note that the speech rate curve starts at the first
CoM in Figure 9.7, even though it has no previous CoM to calculate distance from.
To overcome this problem, the first syllable is measured for its duration relative
to the duration of the longest interval in the same utterance. The status of this
initial value should be therefore considered as speculative and experimental at
this stage.
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can I ask you a ques- tion
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Figure 9.7: A demonstration of the speech rate curve in green, based
on the distance between successive CoMs (up = faster; down = slower).
Other details are the same as for the previous plots.

9.3 Interactions between F0 and periodic energy

The ProPer tools considered thus far were based solely on the periodic energy
curve. As was already mentioned in the opening of this chapter, there are further
advantages for the study of prosody that can be unlocked when considering the
interaction of periodic energy with the corresponding F0 of the speech signal.
These advantages include improvements of the visual representation of F0 data
with periograms (Section 9.3.1), as well as novel methods to characterize the F0
trajectory between syllables with ∆F0 (Section 9.3.2) and within syllables with
synchrony (Section 9.3.3).

9.3.1 Periograms

The first type of interaction between periodic energy and F0 is designed to en-
rich visual representations of pitch by adding a 3rd informative dimension to the
standard visual representations of F0. We call these representations periograms
(Albert et al. 2018) to echo the 3 dimensions of the spectrogram representation
which shows time and frequency on the x/y axes, while representing power in
terms of color differences. Most standard visual representations of pitch show a
2-dimensional plot of the F0 trajectory, whereby the x-axis represents time and
the y-axis represents frequency. The F0 trajectory in itself is binary – it is ei-
ther present or absent (on or off ). Figure 9.8 shows the running example with a
standard F0 representation.

Periograms enrich the standard representation by adding the power dimension
in terms of intuitive changes in visual appearance of the F0 curve. In periograms,
the width and darkness of the F0 curve change to reflect the underlying periodic
energy. The F0 curve changes gradually from thin and transparent on the weak
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Figure 9.8: Standard “binary” F0 representation. F0 in blue is either
present or absent across the 2-dimensional plane, with time on the x-
axis and frequency on the y-axis. Other details are the same as for the
previous plots.
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Figure 9.9: A periogram representation. Note how the red periodic en-
ergy curve in the lower half of the plot modulates the appearance of
the F0 curve in blue in the upper half of the plot. Note also that the
frequency values on the y-axis correspond only to F0 at the upper half,
not to periodic energy at the lower half. Other details are the same as
for the previous plots.
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end (when the corresponding periodic energy curve is low), to wide and dark on
the strong end (when the corresponding periodic energy curve is high). Figure 9.9
shows a periogram representation of the running example.

9.3.2 ∆F0

The following ProPer tools, ∆F0 and synchrony, are designed to characterize F0
shape within and across syllables using metrics that build on the interaction be-
tween F0 and periodic energy. The first one is rather straightforward: ∆F0 (Delta
F0) extracts the F0 values at the centers of mass and measures the difference
in frequency between successive syllables. The ∆F0 values therefore reflect the
change in F0 between syllables by computing the difference from the previous
syllable. The ∆F0 values are computed in absolute terms (Hz), but they are also
transformed to a speaker-specific relative scale where we divide the raw ∆F0
values by the speaker’s F0 range, considering all tokens from that speaker. The
relative measurement is presented in percentages (see demonstration of ∆F0 in
Figure 9.10).

can I ask you a ques- tion
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Figure 9.10: A demonstration of ∆F0 data reflecting change in F0 be-
tween syllables. The location of the CoMs is indicated by a short red
dashed line on the F0 trajectory, to show where F0 values were ex-
tracted. ∆F0 values are superimposed above the F0 curve (note the
negative and positive signs, which extend also to the values in per-
centages). Other details are the same as for the previous plots.

Note that this measurement shares methodological aspects with the measure-
ment of speech rate (see Section 9.2.3), as both speech rate and ∆F0 focus on
differences between successive CoMs, regarding either their temporal distance
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(for speech rate) or their spectral distance in F0 (for ∆F0). Relatedly, the utterance-
initial syllable cannot provide ∆F0 data that is based on the difference from the
previous syllable. Instead, the ∆F0 of the first syllable computes the difference in
F0 from the speaker’s median F0 value, considering all tokens from that speaker.
In this way, the ∆F0 of the first syllable can quite reliably show when speakers
start an utterance with low or, more commonly, high pitch.

9.3.3 Synchrony

While ∆F0 is a good indication of long-distance outcomes in terms of pitch
change, it is not able to characterize the shape of the F0 trajectory locally, within
syllables. For this we designed the complementary measurement termed syn-
chrony (Cangemi et al. 2019), which is capable of characterizing the trend of F0
within syllables (rising/falling/level pitch) by taking the non-linear shape of the
curves into account.

To achieve this goal, another landmark needs to be extracted from the F0 curve
within each syllabic interval. This is very similar to the CoMmeasurement, being
an average point in time, weighted by corresponding curves of acoustic data. The
methodology takes inspiration from the tonal center of gravity (Barnes et al. 2012),
for which an average time point, weighted by F0, is computed to replace themore
typical landmark of the F0 peak in standard intonation research.5

It is important to note that periodic energy and F0 curves are essentially very
different. The periodic energy curve represents a quantity that goes all the way
down to zero, while the F0 curve represents a quality with values typically be-
tween 50–600Hz. The interpretation of the periodic energy contribution to our
CoM procedure is therefore straightforward, as can be seen in the CoM function
in (9.4). However, since F0 does not represent a quantity it needs to be used with
caution as it is not immediately clear what it means to sum and average over
qualities rather than quantities. For that reason, it makes good sense to call this
measurement the center of gravity (CoG), in keeping with Barnes et al. (2012),
and retaining a useful distinction between mass, which relates to quantity, and
gravity, which relates to the shape of the F0 slope. Importantly, to reliably reflect
the general slope of the non-linear F0 curve, the CoG measurement requires a
few adjustments.

5The F0 peak is commonly used in measurements of tonal alignment (e.g. Arvaniti et al. 2006),
which calculate temporal distance from a selected F0 peak to an anchor in the segmented
speech stream (usually the stressed syllable). The F0 peak is likewise used in standard scaling
measurements, which calculate the spectral distance in F0 between a selected F0 peak and a
previous low turning point on the F0 curve (or any other anchor in the annotation of segmented
speech).
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The function for CoG is given in (9.5). As before, 𝑡 is time and per stands for
periodic energy. There are two adjustments in the CoG function: (i) we multi-
ply F0 by the corresponding periodic energy (using a normalized 0–1 scale) to
account for the strength of F0 at each observed point in time; and (ii) instead of
directly using F0 we subtract the constant F0floor, which corrects for the prob-
lematic distance between the floor of the F0 curve and the never-attained zero
value. The first adjustment makes sure that the magnitude of an F0 inflection and
its influence on the outcome can be diminished when the signal is weak, based
on the underlying periodic energy. For the second adjustment we need to define
the F0floor variable as detailed below.

CoG = ∑𝑖(F0 − F0floor)𝑖 per𝑖 𝑡𝑖
∑𝑖(F0 − F0floor)𝑖 per𝑖

(9.5)

Once we have extracted the two landmarks of CoM and CoG within each syl-
labic interval we can compute synchrony simply by measuring the temporal dis-
tance between these two centers (see examples in Figure 9.11). More rightward
displacement of CoG relative to CoM reflects a more rising F0 trend. Likewise,
more leftward displacement of CoG relative to CoM reflects a more falling F0
trend. At values around zero the two centers are in synchrony, meaning that the
F0 contour is either level, or includes a symmetric rise-fall or fall-rise F0 move-
ment syllable-internally (the additional measure of ∆F0 is needed for complete
interpretations of zero synchrony values).

Note that the raw synchrony values are given in absolute terms ofmilliseconds
(ms) and are therefore affected by the overall duration of the interval. To elim-
inate this effect, relative synchrony values in percentage are given, by dividing
the raw synchrony value with the duration of the interval. This allows a more
reliable and consistent representation of the angles of the F0 slope.

Without setting any floor for the F0 curve in the CoG function, the values of
CoG would show very little sensitivity to the F0 slope. For example, a noticeably
rising F0 slope of 50Hz from 400 to 450Hz will be computed as having a fixed
“quantity” of 400Hz and a much smaller change of 50Hz on top of that. Correct-
ing the floor here would mean to designate the minimum F0 as the relevant zero
of this interval (400Hz in this example), so that the change in 50Hz will become
noticeable in the CoG function (50Hz out of 50 rather than 450Hz). In fact, it
may easily become too noticeable since any change in a trajectory that has its
minimal F0 value set to zero can greatly affect the result of the CoG function.
Even a negligible rise of 5Hz would be exaggerated in scale if we simply choose
the minimum F0 value as our zero for each interval. To solve this problem, the
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can I ask you a ques- tion
-4 ms (4%)

-4 ms (6%)
-9 ms (6%)

-9 ms (6%)
+15 ms (6%)

+2 ms (1%)

CoG

CoM

Synchrony
fall < 0 < rise

50

100

150

200

250

300

0 500 1000 1500
Time (ms)

F0
 (H

z)

Figure 9.11: A demonstration of synchrony data reflecting change in F0
within syllables. The location of the CoMs is indicated by dashed red
vertical lines (under the periodic energy curve and on top of the F0
trajectory). The location of the CoGs is indicated by short blue vertical
lines on top of the F0 trajectory. The distance between the two centers
yields the synchrony values that are superimposed above the F0 curve
(note the negative and positive signs, which extend also to the values
in percentages). Other details are the same as the previous plots.

F0floor variable in the CoG function computes a certain fixed size to take the floor
slightly below the local minimum F0 in each interval. This fixed size is set at 10%
of a speaker’s F0 range, relative to all tokens produced by that same speaker.

Roessig et al. (2022) found the synchrony measurement to be the third best
predictor of different types of pitch accents (closely following two classic mea-
surements, peak alignment and tonal onglide, that are both based on annotated
segmental landmarks and F0 turning points). Synchrony was tested in that part
of their study alongside 18 other competing acoustic and articulatory measure-
ments.

9.4 ProPer prospects

A brief overview of the ProPer toolbox was shown here to present the bene-
fits of incorporating periodic energy into prosodic research. ProPer is a work in
progress but a number of studies have already used the ProPer toolbox in vari-
ous ways, which can help to evaluate themethodology: Albert et al. (2018), Albert
(2018), Albert et al. (2019, 2022), Cangemi et al. (2019), Ventura et al. (2019), Lialiou
et al. (2021), Savino et al. (2021), Jeon & Nichols (2022), Sbranna et al. (2023) and
Roessig et al. (2022). The presentation of ProPer in this chapter is an important
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opportunity to present the ProPer tools in a context that fully illustrates the ratio-
nale behind them, as well as the rationale behind this work: from the theoretical
PRiORS framework presented in Chapter 4, which suggests new ways to concep-
tualize perception models in speech, to the proposals that redefine sonority as a
measure of pitch intelligibility in perception, with periodic energy as its acous-
tic correlate (Chapter 5), all the way to the relevant contribution that periodic
energy can make for the study of various prosodic phenomena using the ProPer
toolbox (Chapter 9).
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10 General discussion

The results of the experimental study (Chapter 7) and the corpus study (Chap-
ter 8), alongside the promising outlook of the ProPer toolbox (Chapter 9), provide
strong support for the synergy of proposals laid out in this work. These include
the general PRiORS framework for models of auditory perception in linguistic
contexts (Chapter 4), the specific treatment of sonority with direct links to per-
ception of pitch and the modeling of syllabic well-formedness with the Nucleus
Attraction Principle (Chapter 5), as well as the dual-route modeling strategy that
considers both top-down and bottom-up inferences with complementary models
that can successfully account for both symbolic and dynamic aspects of speech
(Chapter 6).

A few interesting issues deserve elaboration given the above. In Section 10.1
I discuss the phonotactic division of labor with respect to sonority, which is
defined here in very explicit terms, resulting in a narrower approach to what
sonority should and should not account for. The discussion uses the case of /s/-
stop clusters to illustrate this division of labor, making it of special interest as
it provides an explanation for the preference of /s/-stop clusters over other ob-
struent clusters, a preference that has been thus far lacking from the current
account. Section 10.2 is devoted to the classic nature vs. nurture debate as ap-
plied to sonority. I use this context to explicate the contribution of this work to
answering the question of the universality of sonority-based restrictions. In Sec-
tion 10.3 I discuss the complementarity of symbolic/discrete and dynamic/con-
tinuous modes in cognitive modeling, suggesting that the top-down–bottom-up
distinction exhibits a better fit with the discrete–continuous dichotomy than the
classic phonetics–phonology dichotomy. Finally, I end this book in Section 10.4
with a brief description of directions for future work.

10.1 Phonotactic division of labor

As alreadymentioned in Chapter 2 (and especially Section 2.2), sonority has been
widely used to explain practically any type of phonotactic phenomenon, since
there is nothing in the standard theory that commits the formal concept of sonor-
ity to any specific effect in the perception or articulation of speech. The position
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taken in this work is very different, drawing explicit links between sonority and
the auditory perception of pitch. As a result, sonority in this work is a more
specific and more narrowly defined concept. This is important since it is very
unlikely that a single factor underlies all the different phonotactic phenomena.
However, given that there is no consensus on its phonetic basis, sonority has
become the lightning rod for unrelated phonotactic phenomena. A more well-
defined notion of sonority allows us to achieve a better understanding of the
phonotactic division of labor between different articulatory and perceptual fac-
tors that play a role in the processing of speech. /s/-stop clusters make a good
case in point.

10.1.1 Towards a holistic account of /s/-stop clusters

Thewell-formedness accounts that are based on the Nucleus Attraction Principle
(NAP) do not suffice to explain the phonotactic phenomenon of /s/-stop clusters
since there is nothing in NAP specific to sibilants or stops that would justify
assigning a special status to the particular obstruent combination of a sibilant
followed by a stop. In fact, any voiceless element is practically invisible to NAP
as it is only sensitive to portions of the speech signal that contain sufficient pe-
riodic energy. Indeed, the predictions of NAP, which were corroborated by ex-
perimental results (in Section 7.8), expect non-sibilant counterparts of /s/, like /f/
in the cluster ftV, to pattern with spV and ʃpV. Furthermore, NAPbu successfully
predicted that all the voiceless-initial clusters in the experiment – including the
/s/-stop clusters – generally pattern together as well-formed, as far as sonority-
based restrictions are concerned. This may suffice to explain why /s/-stop clusters
are tolerated, but not why they are so often preferred over other obstruent com-
binations. The complete phonotactic story of /s/-stop clusters thus requires an
integrative explanation, in which sonority only plays a limited role.

First, there are various reasons to assume that fricative-stop clusters are better-
formed than stop-stop clusters. This generalization is traditionally captured in
abstract formal phonological constraints like the Obligatory Contour Principle
(OCP; going back to Leben 1973, Goldsmith 1976 and McCarthy 1979), which acts
as a general dissimilatory requirement banning two successive units of the same
type. The OCP in this case may be the reflection of an articulatory disadvantage
of the stop-stop configuration since it should be harder to coordinate two suc-
cessive closure and release gestures within the span of a complex onset due to
aerodynamic reasons.

Note that this also leads to a disadvantage of stop-stop from a perceptual point
of view, since the first stop in a stop-stop configuration is released into the closure
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phase of the following stop (see Surprenant & Goldstein 1998). The release of a
stop burst into a silent closure phase of another stop, rather than the periodic
signal of a vowel, means that many of the acoustic cues to the identity of the
first stop consonant are severely attenuated (see Fujimura et al. 1978).

This explanation is essentially based on the concept of perceptual cue robust-
ness (Wright 2004), which is less relevant to syllabic organization, but rather
based on adjacency between speech sounds and their chances of being recovered
given transitions between them. As Ohala & Kawasaki-Fukumori (1997: 361) con-
cluded, “the degree of salience of modulations created by segmental transitions”,
rather than sonority and syllabicity, is the determinant factor of many phonotac-
tic constraints.

Wright’s (2004) cue robustness is also critical for the remaining explanation
regarding the phonotactic advantage of /s/-stop clusters over comparable non-
sibilant fricative-stop clusters, e.g., spV vs. ftV. Here, the notion of cue robustness
serves to explain why sibilants, with their salient and distinctive high frequency
aperiodic energy, stand out more than other fricatives, thus allowing more effec-
tive recoverability from relatively weak marginal positions (i.e. distant from the
vocalic nucleus).

The three phonotactic perspectives are complementary, and although they do
not represent an exhaustive list of phonotactic pressures, we need at least these
three – sonority, articulatory dissimilation, and cue robustness – in order to prop-
erly appreciate the phonotactic phenomenon of /s/-stop clusters. According to
this more holistic account, /s/-stop clusters are relatively well-formed in terms of
sonority because the syllabic margins are not competing for the nucleus, they are
well-formed in terms of articulatory coordination complexity due to the two dis-
similar successive gestures and, finally, they are robust in terms of their acoustic
cues: stops in C2 can be released into a vowel to optimize the effect of the burst
in the release phase, while sibilants retain strong cues to their identity thanks to
their unique spectral profile.

10.1.2 Revisiting extrasyllabicity

Recall the common extrasyllabic accounts of sibilants in /s/-stop clusters, dis-
cussed in Section 2.2.2, in whichmarginal sibilants are given a unique status with
respect to syllabification to explain why they are not predicted by traditional
sonority accounts. NAP-based accounts present an advantage because they do
not need to carve out exceptions in order to theoretically remove sibilants from
syllables that are not predicted by the model. Under NAP, those sibilants can
remain in the structure as members of a well-formed syllable.
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On the other hand, NAP-based accounts are compatible with the kinematic
findings in Hermes et al. (2013), which were taken to support extrasyllabic ac-
counts (having found unique articulatory coordination patterns for sibilants in
cluster-initial position in Italian). In NAP-based accounts, sonority has prosodic
roles to play in carrying the pitch and the overall prosodic strength at the nucleus
of the syllable. Marginal voiceless elements can, therefore, be timed with differ-
ent considerations in NAP-based accounts. For example, it may be beneficial to
prolong duration of marginal voiceless elements to increase their recoverability
without the risk of increased nucleus competition. This would, indeed, result in
some unique timing patterns of marginal sibilants in complex onsets while still
fitting comfortably with the rationale of NAP.

10.2 Universality of sonority

A consistent interest within theoretical phonology concerns the universality of
sonority-based principles. An impressive volume of publications devoted to this
question can be found in the works of Iris Berent and her colleagues, starting
with Berent et al. (2007), and followed by many subsequent studies (e.g. Berent
et al. 2008, 2015, Berent, Lennertz & Balaban 2012, Berent, Lennertz & Rosselli
2012, Berent et al. 2011, 2014, 2013, Berent 2017, Gómez et al. 2014, Lennertz &
Berent 2015, Zhao & Berent 2015). Berent and her colleagues collected mostly
behavioral data from perception tasks, where subjects of various different lan-
guage backgrounds were found to adhere to the SSP, even when presented with
combinations that are not attested in their language. The patterns under Berent’s
consistent scrutiny are usually limited to a set of initial clusters with an onset rise
(e.g. blif ), an onset plateau (e.g. bdif ) and an onset fall (e.g. lbif ). Since /s/-initial
clusters and sonorant plateaus are absent from these studies, Berent’s experi-
mental results with SSP-based models are largely compatible with NAP, as the
hierarchy blif (3) > bdif (2) > lbif (0) is maintained in NAPtd.1

Berent and her colleagues interpret these findings as supporting the innateness
hypothesis, assuming that all humans share a universal linguistic knowledge,
which is genetically encoded (the Universal Grammar in generative traditions).
The universality of sonority principles thus implies innate knowledge of ordinal
sonority hierarchies that map onto a discrete representation of the speech signal,

1NAPtd model scores are given in brackets. NAPbu cannot make such determinations based on
symbolic representations, but it should be expected to generally follow the same trends in the
vast majority of cases.
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10.2 Universality of sonority

with mechanisms that compute the sonority slopes within syllables to determine
well-formedness.

The interpretation of Berent’s findings has been a matter of interest in the
literature. Some responses, like Daland et al. (2011) and Hayes (2011), have ar-
gued that the universal phonotactic behaviors that Berent et al. present can be
shown to result from speakers’ ability to generalize categories and distributions
from the attested lexicon, and use analogy and probabilities to predict unattested
forms. Such models can successfully apply statistical learning methods based on
the lexicon, without a requirement for prior formal knowledge of sonority (e.g.,
Jurafsky & Martin 2009, Albright 2009, Bailey & Hahn 2001, Coleman & Pierre-
humbert 1997, Futrell et al. 2017, Hayes 2011, Hayes & Wilson 2008, Jarosz et al.
2017, Mayer & Nelson 2020, Vitevitch & Luce 2004, and Mirea & Bicknell 2019).

While it is relatively clear that statistical learners reflect top-down inferences,
it is perhaps less obvious that connectionist models, such as Goldsmith (1992),
Laks (1995), Smolensky et al. (2014) and Tupper & Fry (2012), also seem to be quite
compatible with what is considered here as top-down phonology. Connectionist
models can be historically related to an opposition to the classic symbol-based
models (see Section 3.1). However, the inputs and outputs of these models are
expressed in discrete symbols and they are designed to capture generalizations
in terms of the weights of connections in the system, which may serve as a good
mechanistic description of top-down operations.

In contrast to traditional sonority principles, NAP was designed to be com-
patible with general cognitive processes and auditory perception, such that no
unique assumptions are required for postulating an innate formal knowledge of
sonority. Sonority-based patterns in NAP arise from the general cognitive pro-
cess that underlies the parsing of the speech stream into syllables with a pitch-
bearing nucleus (i.e. nucleus competition). This requirement for pitch-bearing
units may be explained in evolutionary timescales as the inevitable result of the
important role of pitch in speech communication (Bolinger 1978, Cutler et al. 1997,
House 1990, Roettger & Grice 2019) and the observation that tune-text integra-
tion occurs with syllable-sized units (e.g. Goldsmith 1976, Ladd 2008, Liberman
1975, Pierrehumbert 1980).

The PRiORS framework from Chapter 4, and especially its take on universal
aspects of syllabic structure (Section 4.5.1), can contribute greatly to explanations
regarding the universality of syllables. This is the case both in terms of their
typical duration, which is governed by the temporal regime of perception, and
their internal segmentalmakeup in terms of sonority and pitch perception, which
are governed by the timescale of the spectral regime.
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10 General discussion

The NAP approach appears capable of synthesizing the different views on the
origins of universal sonority. The bottom-up model of NAP can explain the uni-
versality of sonority as the natural development of communication systems that
exploit pitch perception as they shape language systems. The top-downmodel of
NAP is, at the same time, very much in line with statistical phonotactic learners,
in which the regularities of language can be deduced from the symbolic abstrac-
tions that reflect the speakers’ knowledge in stable forms. Top-down inferences
reflect the history of the distribution of recognized symbols as they appear in
the lexicon of the ambient language. They only indirectly express the functional
aspects that we see in the bottom-up route since they reflect the surface mani-
festations of the functionally-motivated (bottom-up) dynamics.

To conclude, bottom-up NAP combines the innateness claims for formal sonor-
ity universals with a more general explanation that is based on the workings of
the perceptual and cognitive systems and the evolution of languages as pitch-
bearing communication systems. At the same time, top-down NAP is in line with
the rationale of statistical learners and the mechanics of connectionist models.
These explanations require symbolic interpretation of the signal that abstract
from variable dynamic events into stable forms (e.g. consonants, vowels, phono-
logical features) in order to learn and generalize over their distributions.

10.3 Reshuffling dichotomies in linguistic models

This work rejects the classic dichotomy between phonetics and phonology,
whereby continuous phenomena are considered phonetic, while phonology is ex-
clusively modeled in discrete terms (see Section 3.1). As I previously mentioned
in Section 3.2, the integration of dynamic aspects into phonological models has
already shown that a phonetics–phonology dichotomy does not fit well with a
classic continuous–discrete dichotomy, as we have good reasons to incorporate
continuous entities into phonology alongside discrete units, and we have good
models to simulate this integration (e.g. Articulatory Phonology and attractor
landscape models).

I suggest in this work further avenues to integrate dynamics and continuity
in perception-based models of phonology, alongside discrete symbolic entities. I
model the effects of processes that respond to signal-based continuous stimuli as
bottom-up processes, while the effects of processes that are initiated by symbol-
based discrete units are separately modeled as top-down processes. Thus, I sug-
gest that the continuous–discrete dichotomy in phonology should be linked to
the bottom-up–top-down dichotomy, and that both of these distinct types of pro-
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10.3 Reshuffling dichotomies in linguistic models

cesses need to coexist in language systems. It is therefore important to highlight
the difference between them.

Bottom-up routes in perception are based on continuous stimuli and they are
functional in the sense that they adhere to the laws of physics and to the limita-
tions of the perceptual and cognitive systems of the agents. Bottom-up processes
that seem to systematically characterize language processing may be taken to im-
ply an evolutionary benefit for reliable communication.

In contrast, top-down inferences in perception are based on the history of sym-
bolic representations that speakers learn from experience. This learning ability
has its own universal functional limitations (e.g. memory-related capacities), but
the learned links between the dynamic and symbolic modes can be largely ar-
bitrary, as they rely on the superficial history of co-occurrence, systematically
presented by a given language system (see Section 3.4). These symbols and their
probabilistic distributions may be constantly updated, in a Bayesian fashion, re-
flecting knowledge about the distribution of categorically analyzable units of
speech, and contributing to what is typically considered to be phonological knowl-
edge.

In this book, I modeled the notion of sonority and its contribution to linguistic
sound systems with the assumption that the two different routes – bottom-up
and top-down – are both active when speech inferences take place. The bottom-
up model uses continuous data (periodic energy), dynamic principles (attraction
and competition), and functional motivation (syllables carry pitch information)
to model sonority. The top-down model is based on generalizations over the
discrete segmental units in the system and their distribution given bottom-up
sonority restrictions (note that the top-down NAP model is not a true statistical
learner for reasons that are explained in Section 6.1).

The results of the perception experiments may be taken to support the impor-
tance of both routes, given the evident relative success of both the NAPtd and the
NAPbu model. More specifically, the results of the model comparison in Experi-
ment 2 (see Section 7.8.3) suggest further support for the complementarity of the
top-down and bottom-up models. Table 7.4 shows the combined contribution of
all the different sonority models to a maximized score, which reflects the com-
bined ability of the models to predict unseen forms (see details in Section 7.7).
Model comparison in Experiment 2 shows that the combined contribution of the
two NAP models exhibits the highest degree of complementarity among all mod-
els (65% for NAPtd and 14% for NAPbu), even though they represent the same
principle. This is a desirable result for the present framework, which advocates
for the need for two complementary models to better account for phonological
phenomena.
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10 General discussion

The division of language perception into signal-based models that adhere to
the laws of physics and auditory perception, and symbol-based models that ad-
here to probability-based inferences in cognitive systems, can have profound im-
plications. For one, it should allow us to extend traditional models of phonology
to be readily compatible with models in related scientific fields, providing more
opportunities to share terminologies and models across disciplines.

10.4 Directions for future work

The novelties that are proposed here for models of sonority, and more gener-
ally, for models of phonology and auditory perception, will need to amass more
supporting evidence from multiple sources in order to be more widely adopted.
I hope to have laid the foundations for such potential long-term contributions
with this book.

There are many different threads in this work that call for further research.
Among them are improved characterizations of the competition procedure in
NAP. The method presented here for NAPbu, using the center of mass calcula-
tions (see Section 6.2.4), is not a model of the cognitive process itself, but rather
an estimation of its result. Amore robust and cognitively-plausible measurement
would surely improve our bottom-up model of competition for the syllabic nu-
cleus based on NAP.

Furthermore, there is a potentially vast uncharted ground yet to explore by
combining the PRiORS theoretical backbone (see Chapter 4) with the methodol-
ogy of the ProPer toolbox (see Chapter 9). Most immediately, this relates to the
study of prosody, where the continuous information of F0 and periodic energy,
and their interactions, can be effectively exploited to model the major prosodic
effects, namely intonation, prominence and speech rate.

Hopefully, the findings and approaches presented in this work will be able
to deliver more valuable insights into old and new problems in phonology and
linguistic theory.
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Appendix A: Complete output of the
Bayesian models

The complete results of the exploratory (Experiment 1) and confirmatory models
(Experiment 2–3) are presented in Tables A.1–A.21.

Notice that the parameters are not entirely comparable across models: (i) The
intercept, 𝛼 , represents the mean log-RT of the first category for the ordinal mod-
els, but it is the grand mean for the continuous model, NAPbu. (ii) The size of the
effect of well-formedness, 𝛽 , represents the distance between two adjacent cat-
egories had they been equidistant for the ordinal models but it is the increase
in log-scale for one unit in the well-formedness scale for the continuous model,
NAPbu. (iii) The parameter vector, 𝜁 , (present only in ordinal models) represents
the normalized distances between consecutive predictor categories, so that the
distance between the first and last category is 1. (iv) For all models, the variance
components are comparable: 𝜎 represents the scale of the log-normal likelihood
(or standard deviation of the distribution on the log scale), 𝜎𝛼 and 𝜎𝛽 represent
the by-participant adjustment to the intercept and slope respectively, and 𝜌𝛼,𝛽
represents the correlation between by-participant intercept and slope.

For each parameter, Bulk ESS and Tail ESS are effective sample size measures,
and �̂� is the potential scale reduction factor on split chains (at convergence, �̂� = 1,
and ESS > 10% of post-warmup samples = 1200).



A Complete output of the Bayesian models

Table A.1: Results from the exploratory model examining the results of
the NAPbu model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.51 6.26 6.76 1.00 3422 3521
̂𝛽 0.00 −0.01 0.00 1.00 4599 4614

�̂� 0.37 0.33 0.40 1.00 9928 5390
�̂�𝛼 0.23 0.04 0.58 1.00 2120 1734
�̂�𝛽 0.00 0.00 0.01 1.00 2615 2548
̂𝜌𝛼,𝛽 −0.09 −0.83 0.72 1.00 5437 4908

Table A.2: Results from the exploratory model examining the results
of the Null model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.76 6.50 7.04 1.00 1699 1920
�̂� 0.39 0.35 0.43 1.00 4180 4097
�̂�𝛼 0.27 0.12 0.63 1.00 1408 1524

Table A.3: Results from the exploratory model examining the results
of the SSPexp model. See text for the interpretation of the parameters
and column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.88 6.58 7.16 1.00 2469 3101
̂𝛽 −0.10 −0.19 −0.01 1.00 3931 3852
̂𝜁1 0.67 0.21 0.98 1.00 6903 3137
̂𝜁2 0.33 0.02 0.79 1.00 6903 3137
�̂� 0.38 0.34 0.41 1.00 8599 5422
�̂�𝛼 0.31 0.14 0.67 1.00 2464 3230
�̂�𝛽 0.06 0.00 0.19 1.00 2426 3329
̂𝜌𝛼,𝛽 −0.26 −0.90 0.66 1.00 5457 4726
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Table A.4: Results from the exploratory model examining the results
of the SSPcol model. See text for the interpretation of the parameters
and column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 7.02 6.70 7.35 1.00 2313 2875
̂𝛽 −0.18 −0.27 −0.09 1.00 4371 3662
̂𝜁1 0.84 0.60 0.99 1.00 4927 2647
̂𝜁2 0.16 0.01 0.40 1.00 4927 2647
�̂� 0.36 0.33 0.40 1.00 8316 5110
�̂�𝛼 0.33 0.15 0.73 1.00 2677 3583
�̂�𝛽 0.06 0.00 0.20 1.00 2359 2925
̂𝜌𝛼,𝛽 −0.30 −0.91 0.61 1.00 5286 5596

Table A.5: Results from the exploratory model examining the results
of the MSDexp model. See text for the interpretation of the parameters
and column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.86 6.57 7.15 1.00 2507 3179
̂𝛽 −0.05 −0.11 0.00 1.00 3741 3191
̂𝜁1 0.33 0.04 0.64 1.00 6564 3212
̂𝜁2 0.13 0.01 0.41 1.00 7609 4539
̂𝜁3 0.18 0.01 0.52 1.00 8598 5011
̂𝜁4 0.18 0.01 0.52 1.00 8300 5200
̂𝜁5 0.17 0.01 0.47 1.00 8367 4663
�̂� 0.37 0.34 0.41 1.00 8786 5483
�̂�𝛼 0.32 0.15 0.69 1.00 2779 4136
�̂�𝛽 0.05 0.00 0.13 1.00 2161 2411
̂𝜌𝛼,𝛽 −0.35 −0.92 0.54 1.00 6063 5421
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A Complete output of the Bayesian models

Table A.6: Results from the exploratory model examining the results
of the MSDcol model. See text for the interpretation of the parameters
and column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 7.01 6.69 7.31 1.00 2215 3274
̂𝛽 −0.13 −0.20 −0.06 1.00 3873 3367
̂𝜁1 0.73 0.48 0.94 1.00 7306 5031
̂𝜁2 0.13 0.01 0.34 1.00 7999 5527
̂𝜁3 0.14 0.01 0.37 1.00 6914 4640
�̂� 0.36 0.33 0.40 1.00 9150 5817
�̂�𝛼 0.33 0.15 0.71 1.00 2431 3409
�̂�𝛽 0.05 0.00 0.15 1.00 2492 3790
̂𝜌𝛼,𝛽 −0.30 −0.91 0.62 1.00 5388 4968

Table A.7: Results from the exploratory model examining the results of
the NAPtd model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 7.02 6.69 7.34 1.00 2337 3522
̂𝛽 −0.08 −0.13 −0.03 1.00 3475 3721
̂𝜁1 0.12 0.00 0.34 1.00 6743 3888
̂𝜁2 0.13 0.00 0.37 1.00 6403 3807
̂𝜁3 0.39 0.06 0.72 1.00 6840 4077
̂𝜁4 0.20 0.01 0.52 1.00 6718 5006
̂𝜁5 0.16 0.01 0.37 1.00 7022 3686
�̂� 0.36 0.32 0.39 1.00 9611 6104
�̂�𝛼 0.35 0.16 0.76 1.00 2598 3969
�̂�𝛽 0.04 0.00 0.12 1.00 1993 2749
̂𝜌𝛼,𝛽 −0.40 −0.93 0.48 1.00 4377 5097
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Table A.8: Results from Experiment 2 model examining the results of
the NAPbu model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.48 6.42 6.54 1.00 4241 6483
̂𝛽 0.00 0.00 0.00 1.00 8424 9130

�̂� 0.37 0.36 0.38 1.00 25283 8277
�̂�𝛼 0.20 0.16 0.26 1.00 5968 7794
�̂�𝛽 0.00 0.00 0.00 1.00 4577 5943
̂𝜌𝛼,𝛽 0.12 −0.25 0.46 1.00 4703 7104

Table A.9: Results from Experiment 2 model examining the results of
the Null model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.69 6.63 6.76 1.00 753 1402
�̂� 0.39 0.38 0.39 1.00 12050 9344
�̂�𝛼 0.21 0.17 0.26 1.00 941 1718

Table A.10: Results from Experiment 2 model examining the results of
the SSPexp model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.76 6.69 6.82 1.00 1405 2886
̂𝛽 −0.07 −0.08 −0.05 1.00 7932 7602
̂𝜁1 0.55 0.34 0.76 1.00 5261 6751
̂𝜁2 0.45 0.24 0.66 1.00 5261 6751
�̂� 0.38 0.37 0.39 1.00 13103 8310
�̂�𝛼 0.22 0.18 0.28 1.00 2113 4788
�̂�𝛽 0.03 0.00 0.06 1.00 1467 2084
̂𝜌𝛼,𝛽 −0.30 −0.75 0.30 1.00 10180 5395
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A Complete output of the Bayesian models

Table A.11: Results from Experiment 2 model examining the results of
the SSPcol model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.91 6.83 7.00 1.00 2823 4693
̂𝛽 −0.14 −0.17 −0.11 1.00 4828 7415
̂𝜁1 0.91 0.83 0.98 1.00 9893 5241
̂𝜁2 0.09 0.02 0.17 1.00 9893 5241
�̂� 0.37 0.36 0.38 1.00 20139 8355
�̂�𝛼 0.27 0.22 0.34 1.00 3389 5328
�̂�𝛽 0.08 0.06 0.11 1.00 3885 5590
̂𝜌𝛼,𝛽 −0.60 −0.79 −0.33 1.00 6511 7972

Table A.12: Results from Experiment 2 model examining the results of
theMSDexp model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.76 6.69 6.83 1.00 1207 2483
̂𝛽 −0.04 −0.05 −0.03 1.00 9059 8906
̂𝜁1 0.32 0.18 0.46 1.00 11717 8196
̂𝜁2 0.07 0.00 0.20 1.00 10623 5950
̂𝜁3 0.25 0.03 0.51 1.00 11737 6303
̂𝜁4 0.27 0.03 0.52 1.00 12246 6832
̂𝜁5 0.10 0.00 0.27 1.00 13303 7245
�̂� 0.38 0.37 0.39 1.00 17200 8875
�̂�𝛼 0.22 0.18 0.28 1.00 2036 4080
�̂�𝛽 0.01 0.00 0.03 1.00 2493 3373
̂𝜌𝛼,𝛽 −0.45 −0.85 0.11 1.00 10053 7010
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Table A.13: Results from Experiment 2 model examining the results of
the MSDcol model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.91 6.83 7.00 1.00 3182 4917
̂𝛽 −0.10 −0.12 −0.08 1.00 5746 8322
̂𝜁1 0.86 0.77 0.95 1.00 12442 6840
̂𝜁2 0.07 0.01 0.15 1.00 13136 6788
̂𝜁3 0.07 0.00 0.17 1.00 13613 7719
�̂� 0.37 0.36 0.38 1.00 20521 8436
�̂�𝛼 0.27 0.22 0.34 1.00 4490 6821
�̂�𝛽 0.06 0.04 0.08 1.00 4531 7459
̂𝜌𝛼,𝛽 −0.59 −0.79 −0.34 1.00 7168 8915

Table A.14: Results from Experiment 2 model examining the results of
the NAPtd model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.94 6.85 7.02 1.00 2816 4806
̂𝛽 −0.07 −0.09 −0.06 1.00 4432 6643
̂𝜁1 0.10 0.01 0.22 1.00 10863 6583
̂𝜁2 0.07 0.00 0.18 1.00 11702 7035
̂𝜁3 0.48 0.34 0.62 1.00 16602 9264
̂𝜁4 0.24 0.13 0.36 1.00 17005 8633
̂𝜁5 0.11 0.03 0.18 1.00 13157 5839
�̂� 0.36 0.35 0.37 1.00 19667 8740
�̂�𝛼 0.28 0.23 0.35 1.00 3831 5793
�̂�𝛽 0.04 0.03 0.05 1.00 4381 6643
̂𝜌𝛼,𝛽 −0.64 −0.81 −0.40 1.00 6906 8639
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A Complete output of the Bayesian models

Table A.15: Results from Experiment 3 model examining the results of
the NAPbu model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.43 6.32 6.55 1.00 1320 2587
̂𝛽 0.00 0.00 0.00 1.00 4426 5286

�̂� 0.38 0.37 0.39 1.00 16733 5993
�̂�𝛼 0.32 0.24 0.43 1.00 2186 3603
�̂�𝛽 0.00 0.00 0.00 1.00 3905 5283
̂𝜌𝛼,𝛽 0.15 −0.26 0.52 1.00 3634 4740

Table A.16: Results from Experiment 3 model examining the results of
the Null model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.53 6.42 6.64 1.01 339 647
�̂� 0.39 0.38 0.40 1.00 3590 4226
�̂�𝛼 0.32 0.25 0.41 1.00 576 983

Table A.17: Results from Experiment 3 model examining the results of
the SSPexp model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.57 6.46 6.69 1.00 879 1658
̂𝛽 −0.04 −0.07 −0.02 1.00 5233 5514
̂𝜁1 0.84 0.61 0.99 1.00 7170 4354
̂𝜁2 0.16 0.01 0.39 1.00 7170 4354
�̂� 0.38 0.37 0.39 1.00 15130 5447
�̂�𝛼 0.33 0.26 0.43 1.00 1600 2901
�̂�𝛽 0.05 0.03 0.08 1.00 3175 4883
̂𝜌𝛼,𝛽 −0.21 −0.60 0.24 1.00 6966 6286
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Table A.18: Results from Experiment 3 model examining the results of
the SSPcol model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.62 6.49 6.74 1.00 1042 1848
̂𝛽 −0.07 −0.10 −0.04 1.00 2548 3659
̂𝜁1 0.91 0.77 1.00 1.00 6966 3706
̂𝜁2 0.09 0.00 0.23 1.00 6966 3706
�̂� 0.38 0.37 0.39 1.00 13379 6069
�̂�𝛼 0.36 0.28 0.46 1.00 1599 3025
�̂�𝛽 0.07 0.05 0.10 1.00 3090 4429
̂𝜌𝛼,𝛽 −0.43 −0.72 −0.06 1.00 3567 5039

Table A.19: Results from Experiment 3 model examining the results of
theMSDexp model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.57 6.45 6.69 1.00 1101 1762
̂𝛽 −0.02 −0.03 −0.01 1.00 5495 6179
̂𝜁1 0.63 0.41 0.83 1.00 8412 5254
̂𝜁2 0.08 0.00 0.26 1.00 8409 3902
̂𝜁3 0.12 0.00 0.33 1.00 8357 5302
̂𝜁4 0.11 0.00 0.31 1.00 8465 5234
̂𝜁5 0.06 0.00 0.20 1.00 10235 5349
�̂� 0.38 0.37 0.39 1.00 12449 5474
�̂�𝛼 0.33 0.26 0.43 1.00 1778 3012
�̂�𝛽 0.02 0.01 0.04 1.00 3317 4125
̂𝜌𝛼,𝛽 −0.23 −0.61 0.22 1.00 6490 5979
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A Complete output of the Bayesian models

Table A.20: Results from Experiment 3 model examining the results of
the MSDcol model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.62 6.49 6.74 1.00 682 1299
̂𝛽 −0.04 −0.07 −0.02 1.00 2356 4065
̂𝜁1 0.87 0.72 0.97 1.00 9025 4916
̂𝜁2 0.08 0.00 0.21 1.00 7847 4930
̂𝜁3 0.05 0.00 0.16 1.00 10180 4781
�̂� 0.38 0.37 0.39 1.00 14667 5153
�̂�𝛼 0.36 0.28 0.46 1.00 1625 3090
�̂�𝛽 0.05 0.03 0.07 1.00 2849 4976
̂𝜌𝛼,𝛽 −0.43 −0.72 −0.05 1.00 3649 5390

Table A.21: Results from Experiment 3 model examining the results of
the NAPtd model. See text for the interpretation of the parameters and
column names.

Parameter Estimate l-95% CI u-95% CI �̂� Bulk ESS Tail ESS

�̂� 6.64 6.51 6.77 1.00 928 1670
̂𝛽 −0.03 −0.05 −0.02 1.00 2191 3841
̂𝜁1 0.36 0.17 0.53 1.00 7212 4742
̂𝜁2 0.10 0.00 0.29 1.00 6872 4497
̂𝜁3 0.40 0.20 0.59 1.00 9288 6920
̂𝜁4 0.08 0.00 0.24 1.00 9474 6006
̂𝜁5 0.06 0.00 0.17 1.00 9796 5460
�̂� 0.38 0.37 0.39 1.00 12640 5343
�̂�𝛼 0.36 0.28 0.47 1.00 1821 2456
�̂�𝛽 0.04 0.03 0.05 1.00 2516 4376
̂𝜌𝛼,𝛽 −0.43 −0.71 −0.08 1.00 3396 4574
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Appendix B: Full list of Modern Hebrew
Segholate nouns in the
corpus study

(1) bé.ca

(2) bé.dek

(3) bé.ged

(4) bé.ka

(5) bé.ʁez

(6) bé.ten

(7) bó.ʁeg

(8) bó.sem

(9) bó.χan

(10) cé.dek

(11) cé.fa

(12) cé.fek

(13) cé.fi

(14) cé.lem

(15) cé.maχ

(16) cé.med

(17) cé.meʁ

(18) cé.va

(19) cé.veʁ

(20) cé.vet

(21) có.fen

(22) có.met

(23) có.ʁeχ

(24) dá.χaf

(25) dé.fek

(26) dé.gel

(27) dé.gem

(28) dé.kel

(29) dé.lef

(30) dé.lek

(31) dé.let

(32) dé.ma

(33) dé.ʁeg

(34) dé.ʁeχ

(35) dé.ʃe

(36) dé.ʃen

(37) dé.vek

(38) dé.veʁ

(39) dé.χi

(40) dó.fek

(41) dó.fen

(42) dó.fi

(43) dó.lev

(44) dó.men

(45) dó.χak

(46) dó.χan

(47) gá.χal

(48) gé.dem

(49) gé.fen

(50) gé.led

(51) gé.ʁed

(52) gé.ʃem

(53) gé.ʃeʁ

(54) gé.va

(55) gé.veʁ

(56) gé.ves

(57) gé.za

(58) gé.zel

(59) gé.zem

(60) gé.zeʁ

(61) gó.del

(62) gó.deʃ

(63) gó.feʁ

(64) gó.lem

(65) gó.me

(66) gó.ʁen

(67) gó.vah

(68) já.χas

(69) jé.ceʁ

(70) jé.da

(71) jé.ga

(72) jé.kev

(73) jé.led

(74) jé.ʁaχ

(75) jé.ʃa

(76) jé.teʁ

(77) jé.za

(78) jó.fi

(79) ká.χaʃ

(80) ké.caχ

(81) ké.cef

(82) ké.ceʁ

(83) ké.cev

(84) ké.dem



B Full list of Modern Hebrew Segholate nouns in the corpus study

(85) ké.fel

(86) ké.fel

(87) ké.la

(88) ké.laχ

(89) ké.laχ

(90) ké.le

(91) ké.les

(92) ké.let

(93) ké.lev

(94) ké.maχ

(95) ké.meʃ

(96) ké.met

(97) ké.nes

(98) ké.ʁa

(99) ké.ʁa

(100) ké.ʁaχ

(101) ké.ʁem

(102) ké.ʁen

(103) ké.ʁes

(104) ké.ʁes

(105) ké.ʁes

(106) ké.ʁeʃ

(107) ké.ʁet

(108) ké.ʁeχ

(109) ké.sef

(110) ké.sem

(111) ké.set

(112) ké.set

(113) ké.ʃel

(114) ké.ʃeʁ

(115) ké.ʃet

(116) ké.ʃev

(117) ké.ta

(118) ké.tel

(119) ké.tem

(120) ké.teʁ

(121) ké.va

(122) ké.vel

(123) ké.veʁ

(124) ké.ves

(125) ké.ves

(126) ké.veʃ

(127) kó.feʁ

(128) kó.mec

(129) kó.meʁ

(130) kó.ʃeʁ

(131) kó.ʃi

(132) kó.tel

(133) kó.tel

(134) kó.ten

(135) kó.teʁ

(136) kó.tev

(137) kó.vec

(138) kó.ved

(139) lá.χac

(140) lá.χan

(141) lá.χaʃ

(142) lé.fet

(143) lé.kaχ

(144) lé.ket

(145) lé.set

(146) lé.ʃem

(147) lé.tet

(148) lé.ved

(149) lé.vet

(150) lé.χem

(151) má.χac

(152) má.χak

(153) má.χat

(154) mé.caχ

(155) mé.ged

(156) mé.laχ

(157) mé.lel

(158) mé.let

(159) mé.leχ

(160) mé.na

(161) mé.ʁec

(162) mé.ʁed

(163) mé.ʁek

(164) mé.seg

(165) mé.seʁ

(166) mé.ʃek

(167) mé.ʃeχ

(168) mé.taχ

(169) mé.teg

(170) mé.tek

(171) mé.zaχ

(172) mé.zeg

(173) mé.χeʁ

(174) mé.χes

(175) ná.χac

(176) ná.χal

(177) né.caχ

(178) né.ceʁ

(179) né.deʁ

(180) né.faχ

(181) né.fec

(182) né.fel

(183) né.feʃ

(184) né.ga

(185) né.gef

(186) né.gen

(187) né.gev

(188) né.ka

(189) né.keʁ

(190) né.kev

(191) né.mek

(192) né.meʃ

(193) né.seχ

(194) né.ʃef

(195) né.ʃek

(196) né.ʃel

(197) né.ʃeʁ

(198) né.ʃeχ

(199) né.ta

(200) né.taχ

(201) né.tek

(202) né.tel

(203) né.tez

(204) né.teχ
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(205) né.veg

(206) né.vel

(207) né.vet

(208) né.zek

(209) né.zem

(210) né.zeʁ

(211) né.χed

(212) né.χel

(213) né.χes

(214) pá.χad

(215) pá.χaz

(216) pé.ca

(217) pé.ga

(218) pé.geʁ

(219) pé.geʃ

(220) pé.laχ

(221) pé.le

(222) pé.leg

(223) pé.les

(224) pé.let

(225) pé.leχ

(226) pé.ʁaχ

(227) pé.ʁe

(228) pé.ʁec

(229) pé.ʁek

(230) pé.ʁeʃ

(231) pé.sa

(232) pé.saχ

(233) pé.sek

(234) pé.sel

(235) pé.ʃa

(236) pé.ʃeʁ

(237) pé.taχ

(238) pé.tek

(239) pé.tel

(240) pé.tem

(241) pé.ti

(242) ʁá.χam

(243) ʁá.χaʃ

(244) ʁé.caχ

(245) ʁé.cef

(246) ʁé.feʃ

(247) ʁé.fet

(248) ʁé.ga

(249) ʁé.geʃ

(250) ʁé.gev

(251) ʁé.ka

(252) ʁé.kaχ

(253) ʁé.kev

(254) ʁé.mec

(255) ʁé.mes

(256) ʁé.mez

(257) ʁé.sek

(258) ʁé.sen

(259) ʁé.ses

(260) ʁé.ʃef

(261) ʁé.ʃet

(262) ʁé.ta

(263) ʁé.tek

(264) ʁé.tet

(265) ʁé.tet

(266) ʁé.va

(267) ʁé.vaχ

(268) ʁé.χem

(269) ʁé.χes

(270) ʁé.χeʃ

(271) ʁé.χev

(272) ʁó.ʃem

(273) ʁó.tev

(274) ʁó.ved

(275) sá.χaf

(276) sá.χaʁ

(277) sá.χav

(278) sé.dek

(279) sé.deʁ

(280) sé.faχ

(281) sé.fel

(282) sé.feʁ

(283) sé.gel

(284) sé.gen

(285) sé.geʁ

(286) sé.gev

(287) sé.keʁ

(288) sé.la

(289) sé.lek

(290) sé.mel

(291) sé.meχ

(292) sé.ʁaχ

(293) sé.ʁen

(294) sé.ʁet

(295) sé.teʁ

(296) sé.vel

(297) sé.veʁ

(298) sé.χel

(299) sé.χel

(300) sé.χem

(301) sé.χeʁ

(302) ʃá.χac

(303) ʃá.χaf

(304) ʃá.χak

(305) ʃá.χal

(306) ʃé.cef

(307) ʃé.deʁ

(308) ʃé.fa

(309) ʃé.fel

(310) ʃé.feχ

(311) ʃé.geʁ

(312) ʃé.ka

(313) ʃé.kec

(314) ʃé.kef

(315) ʃé.kel

(316) ʃé.keʁ

(317) ʃé.ket

(318) ʃé.laχ

(319) ʃé.led

(320) ʃé.lef

(321) ʃé.leg

(322) ʃé.let

(323) ʃé.ma

(324) ʃé.mec
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B Full list of Modern Hebrew Segholate nouns in the corpus study

(325) ʃé.meʁ

(326) ʃé.meʃ

(327) ʃé.nec

(328) ʃé.net

(329) ʃé.ʁec

(330) ʃé.sa

(331) ʃé.taχ

(332) ʃé.tef

(333) ʃé.tel

(334) ʃé.ten

(335) ʃé.vaχ

(336) ʃé.veʁ

(337) ʃé.vet

(338) ʃé.χem

(339) ʃé.χev

(340) ʃó.ket

(341) tá.χaʃ

(342) tá.χav

(343) té.faχ

(344) té.feʁ

(345) té.fes

(346) té.ka

(347) té.ken

(348) té.keʁ

(349) té.kes

(350) té.lem

(351) té.ma

(352) té.meχ

(353) té.na

(354) té.ne

(355) té.ʁed

(356) té.ʁef

(357) té.ʁeʃ

(358) té.ʃeʁ

(359) té.vaχ

(360) té.ven

(361) tó.fes

(362) tó.fet

(363) tó.ʁen

(364) tó.χen

(365) vé.ʁed

(366) vé.set

(367) vé.ʃet

(368) vé.tek

(369) zá.χal

(370) zé.fek

(371) zé.fet

(372) zé.lef

(373) zé.meʁ

(374) zé.ʁa

(375) zé.ʁaχ

(376) zé.ʁed

(377) zé.ʁem

(378) zé.ʁet

(379) zé.vaχ

(380) zé.vel

(381) zé.χeʁ
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Appendix C: Model fits of the corpus
data using CC tokens

Figures C.1–C.4 are equivalent to Figures 8.1–8.4. The latter show the distribution
of CC types and the former (here) show the distribution of different CC tokens
(i.e. different lexical items). The differences between the two descriptions of the
data are negligible.
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Figure C.1: Fit of CC tokens between the SSPcol model (x-axis) and the
corpus data (color).
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Figure C.2: Fit of CC tokens between the SSPexp model (x-axis) and the
corpus data (color). F↔P can vary between Fall and Plateau and F↔R
can vary between Fall and Rise (both X↔√ ) due to voicing assimila-
tion.



C Model fits of the corpus data using CC tokens

Figure C.3: Fit of CC tokens between the SSPMH model (x-axis) and the
corpus data (color). F↔P can vary between Fall and Plateau (X↔√ )
due to voicing assimilation.
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Figure C.4: Fit of CC tokens between the NAPtd model (x-axis) and the
corpus data (color). 1↔3 can vary between scores 1 and 3 (X↔√ ) due
to voicing assimilation.
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A model of sonority based on pitch
intelligibility

Sonority is a central notion in phonetics and phonology and it is essential for general-
izations related to syllabic organization. However, to date there is no clear consensus
on the phonetic basis of sonority, neither in perception nor in production. The widely
used Sonority Sequencing Principle (SSP) represents the speech signal as a sequence of
discrete units, where phonological processes are modeled as symbol manipulating rules
that lack a temporal dimension and are devoid of inherent links to perceptual, motoric or
cognitive processes. The current work aims to change this by outlining a novel approach
for the extraction of continuous entities from acoustic space in order to model dynamic
aspects of phonological perception. It is used here to advance a functional understanding
of sonority as a universal aspect of prosody that requires pitch-bearing syllables as the
building blocks of speech.

This book argues that sonority is best understood as a measurement of pitch intelli-
gibility in perception, which is closely linked to periodic energy in acoustics. It presents
a novel principle for sonority-based determinations of well-formedness – the Nucleus
Attraction Principle (NAP). Two complementary NAP models independently account for
symbolic and continuous representations and they mostly outperform SSP-based mod-
els, demonstrated here with experimental perception studies and with a corpus study of
Modern Hebrew nouns.

This work also includes a description of ProPer (Prosodic Analysis with Periodic En-
ergy). The ProPer toolbox further exploits the proposal that periodic energy reflects
sonority in order to cover major topics in prosodic research, such as prominence, into-
nation and speech rate. The book is finally concluded with brief discussions on selected
topics: (i) the phonotactic division of labor with respect to /s/-stop clusters; (ii) the debate
about the universality of sonority; and (iii) the fate of the classic phonetics–phonology
dichotomy as it relates to continuity and dynamics in phonology.
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