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Multilevel comparison of deep
learning models for function
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Background: Cardiac function quantification in cardiovascular magnetic
resonance requires precise contouring of the heart chambers. This time-
consuming task is increasingly being addressed by a plethora of ever more
complex deep learning methods. However, only a small fraction of these have
made their way from academia into clinical practice. In the quality assessment
and control of medical artificial intelligence, the opaque reasoning and
associated distinctive errors of neural networks meet an extraordinarily low
tolerance for failure.
Aim: The aim of this study is a multilevel analysis and comparison of the
performance of three popular convolutional neural network (CNN) models for
cardiac function quantification.
Methods: U-Net, FCN, and MultiResUNet were trained for the segmentation of the
left and right ventricles on short-axis cine images of 119 patients from clinical
routine. The training pipeline and hyperparameters were kept constant to isolate
the influence of network architecture. CNN performance was evaluated against
expert segmentations for 29 test cases on contour level and in terms of
quantitative clinical parameters. Multilevel analysis included breakdown of results
by slice position, as well as visualization of segmentation deviations and linkage
of volume differences to segmentation metrics via correlation plots for
qualitative analysis.
Results: All models showed strong correlation to the expert with respect to
quantitative clinical parameters (rz′= 0.978, 0.977, 0.978 for U-Net, FCN,
MultiResUNet respectively). The MultiResUNet significantly underestimated
ventricular volumes and left ventricular myocardial mass. Segmentation
difficulties and failures clustered in basal and apical slices for all CNNs, with the
largest volume differences in the basal slices (mean absolute error per slice:
4.2 ± 4.5 ml for basal, 0.9 ± 1.3 ml for midventricular, 0.9 ± 0.9 ml for apical
slices). Results for the right ventricle had higher variance and more outliers
compared to the left ventricle. Intraclass correlation for clinical parameters was
excellent (≥0.91) among the CNNs.
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Conclusion: Modifications to CNN architecture were not critical to the quality of error for
our dataset. Despite good overall agreement with the expert, errors accumulated in basal
and apical slices for all models.

KEYWORDS

cardiovascular magnetic resonance, MRI, artificial intelligence, deep learning, cardiac image

segmentation, cardiac function quantification, quality control
1. Introduction

Cardiovascular magnetic resonance (CMR) is considered the

gold standard for an accurate and reproducible assessment of

cardiac anatomy and function (1, 2). Furthermore, CMR is unique

in noninvasive imaging for its capabilities to characterize

myocardial tissue (3) and is increasingly being included in clinical

guidelines (4–6). Quantitative clinical parameters for ventricular

function such as end-diastolic and end-systolic volumes, ejection

fraction and left ventricular myocardial mass are predictive of

patient outcome and relevant for treatment (6). Their calculation

depends on exact contouring of ventricular blood volumes and

myocardium. Manual segmentation is time-consuming and

typically takes trained physicians up to 20 min per subject (7).

In recent years convolutional neural networks (CNN)

demonstrated promising results for automating semantic

segmentation tasks in the medical domain (8, 9). Next to a

substantial time advantage, the reproducibility of automatic image

analysis eliminates the interobserver error between different

readers and the intraobserver variability for the same reader at

different times. Deep learning-based methods are easy to deploy to

medical image segmentation tasks as they do not require

geometric a-priori-knowledge or extensive feature engineering.

Automated deep learning approaches match or exceed the

performance of established conventional algorithms, typically

measured by total segmentation overlap and mean differences in

clinical parameters. Despite published overall results in the range

of interobserver errors for cardiac function quantification (7, 10, 11),

however, CNNs continue to make errors that compromise their

acceptance for clinical application (10, 12) as generalizability and

reliability remain challenging (13). Errors are not necessarily reflected

in the overall results of the method, but they violate anatomical

principles and are incomprehensible to human experts. Variations to

the U-Net architecture [e.g., residual connections (14) or inception

modules (15)] intend to improve robustness and accuracy. Yet, it

remains questionable to what extent these modifications offer a

substantial benefit to the segmentation accuracy given the increasing

complexity and computational power requirements.

The aim of this work is to provide a detailed analysis and

comparison of three different CNN architectures for the

quantification of ventricular function in short-axis cine images.
2. Material and methods

Ethical approval for this retrospective study was obtained from

the ethics committee of Charité — Universitätsmedizin Berlin
02
(approval number EA1/367/20). Part of this work has been

presented at the scientific sessions of the 2022 Joint Annual

Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting (16).
2.1. Data

The dataset consists of routine clinical magnetic resonance

studies of 148 patients randomly split into 119 training cases

(1,955 images) and 29 test cases (479 images). Full specification

on the dataset is published by Gröschel et al. (17). Seven patients

were excluded due to technical limitations. Indications for CMR

include coronary artery disease, cardiomyopathies, myocarditis,

valvular heart disease, and cardiac mass. As a result, cardiac

function in the study population spans the full clinical range of

left ventricular ejection fraction from 12% to 78%. Short-axis

cine images were acquired on a 1.5 Tesla scanner (MAGNETOM

Avanto Fit, Siemens Healthineers, Erlangen, Germany) using a

prototype 2-shot 2D cine Compressed Sensing balanced steady-

state free precession sequence. Each short-axis stack contains a

series of images sliced from the apex to the atrioventricular

junction (7 mm slice thickness, no gap) over 25 phases in the

cardiac cycle. The 2-shot sequence acquires one slice in two

cardiac cycles (plus one additional cardiac cycle for preparation)

per breath hold, providing an acceleration factor of 5.6.

A trained physician manually segmented the left ventricular

(LV) endocardial and epicardial borders as well as the right

ventricular (RV) endocardial border in end-diastole and end-

systole using dedicated software (cvi42 version 5.6.2, Circle

Cardiovascular Imaging, Calgary, Canada) according to the post-

processing consensus statement by the Society for Cardiovascular

Magnetic Resonance (1). The endocardial contour encloses the

ventricular blood pool for the calculation of volumes and,

together with the epicardial contour, delimits the myocardium.

Papillary muscles and trabeculae were included in blood pool

volumes, and not added to the myocardial mass.
2.2. CNN models

Three different published CNN architectures were compared:

U-Net (18), a variant of Fully Convolutional Network (FCN)

(19) as described by Xie and Tu (20), and MultiResUNet (21).

U-Net has established itself as the reference model for deep

learning in medical image segmentation and is heading the

leaderboards of recent challenges (10, 22). The FCN architecture

was selected due to its popularity (8) and use in major
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publications in the field (7). MultiResUNet is a more recent CNN

variation and was chosen because it promises more stable results

on challenging images (21, 23), which has proven to be a major

problem with other architectures (10, 13). In the convolutional

layers of CNNs the input of each neuron is computed as the dot

product with a small learned convolutional matrix. The input

image is gradually encoded into a low-resolution, feature-rich

latent space, which must then be up-sampled to original

resolution to eventually perform a pixel-wise classification (24).

The U-Net is a special type of FCN that uses a symmetrical

encoder and decoder structure (Figure 1B). Furthermore, spatial

information from the down-sampling pathway is propagated to

the up-sampling part through concatenation via skip

connections. The FCN, on the other hand, has only one

decoding layer, so that predictions from the different encoding
FIGURE 1

Convolutional neural network architectures. (A) Network input and output exa
U-Net with symmetrical encoder and decoder architecture. (C) FCN with on
each layer. (D) In MultiResUNet, a single MultiRes Block replaces the two co
each skip connection. The number of feature channels varies with the dep
Legend: ReLU, rectifier linear unit; d, layer depth; N1–5, Number of feature ch
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layers are fused and up-sampled to the original resolution in one

step (Figure 1C). The MultiResUNet is based on the U-Net but

uses more complex convolutional layers with the intention of

making segmentation results more robust to outliers. It embraces

the idea of inception modules and residual learning. Each

convolutional layer in the MultiResUNet consists of three

successive convolutional operations (having the same effect as

different kernel sizes) that are concatenated and to which a

residual connection is added (Figure 1D MultiRes Block). The

modified skip connections involve a variable sequence of

convolutional steps, each with a residual connection (Figure 1D

Res Path).

Our implementations of the three network architectures

share a comparable number of trainable parameters and

similar hyperparameters. Input to the networks was a
mple with corresponding shape. Shared legend for operational blocks. (B)
e-step decoding by 16-channel up-convolution and concatenation from
nvolutional operations in each layer of U-Net, and a Res Path replaces
th of the layer in the CNN and is given in the two tables on the right.
annels according to table.
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normalized image with shape 256 × 256 × 1; the output was a

segmentation map with shape 256 × 256 × 3 for LV blood

pool, RV blood pool and left ventricular myocardium

respectively (Figure 1A). We aimed for a minimum feature

map size of 4 × 4 in the deepest layer of the encoding path

to ensure good context aggregation, as suggested by Isensee

et al. (25). The number of filter kernels was doubled for

each convolutional block during encoding, however limited

to a maximum of 512 to counteract the exponential growth

in the number of parameters. Convolutional layers used

leaky rectifier linear unit activation functions followed by

batch normalizations except for the output layer, which

used a sigmoidal activation function. Dropout with a rate

of 0.1 was added to each convolutional block for the U-Net

and FCN.
2.3. Training pipeline

Neural network performance is significantly affected by data

pre-processing and training pipeline design. We used the exact

same framework for all networks to make the architectures

comparable, starting with a conversion of manual contour points

to Shapely (26) polygon objects and mapping them to the

respective images. Images and contours were resized by a factor

of 1.5 before applying extensive random data augmentation using

the imgaug (27) library including affine transformation, zooming,

average pooling, Gaussian noise and blurring as well as contrast

and brightness alterations. Image augmentation parameters were

defined based on published configurations (25) and adjusted to

produce profound but not extreme alterations so that cardiac

structures were not truncated and remained visually delineable.

Only after image augmentation, the ground truth contours were

rasterized to segmentation maps to preserve subpixel information

that would have otherwise been lost in the floating-point

operations during preprocessing. In clinical practice interpolated

images are commonly used for segmentation tasks to draw

contours with subpixel resolution resulting in non-integer

contour definitions.

The segmentation networks and deep learning were

implemented in Python 3.8.10 with TensorFlow 2.8.0 (28).

The CNNs were trained with a batch size of eight images

for a maximum of 700 epochs depending upon an early

stopping mechanism safeguarding an increasing Dice

similarity coefficient (Dice, see 2.3) within 50 epochs.

Training time per epoch (1,960 images) was 95s for U-Net,

97s for FCN and 161s for MultiResUNet on a workstation

with NVIDIA Tesla P100 16GB and Quadro P4000 GPU,

24-core 3.40 GHz Intel Xeon CPU and 512 GB of RAM.

Adam algorithm was used to optimize a combined binary

cross-entropy and Dice loss function with polynomial

decaying learning rates starting at 0.01.

h ¼ 0:01 � 1� t
700

� �0:9
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Postprocessing was limited to extracting the largest polygon

for each segmentation mask, vectorization to contours and

back-transformation to original resolution.
2.4. Metrics

The evaluation of segmentation quality was based on

quantitative clinical parameters and geometric segmentation

metrics as well as visual inspection for qualitative analysis.

Clinical parameters include end-diastolic and end-systolic

volumes for the left ventricle (LVEDV, LVESV) and right

ventricle (RVEDV, RVESV), the left and right ventricular

ejection fraction (LVEF, RVEF), and the left ventricular

myocardium (LVM). For better comparability with other work

and in accordance with clinical practice all values for LVM are

given for the end-diastole.

For segmentation metrics, the Dice similarity coefficient and

the Hausdorff distance (Hd) were used to calculate the

percentage overlap and the maximal regional distance

respectively, the combination of which allows for the evaluation

of geometrical differences between two individual segmentations

A and B.

Dice (A, B) ¼ 2 � jA> Bj
jAj þ jBj

Hd (A, B) ¼ max sup
a[A

inf
b[B

d(a, b), sup
b[B

inf
a[A

d(a, b)

� �

Average Dice values are significantly influenced by slices not

segmented in A and B resulting in a perfect value of 100%, but

also by slices segmented by only one of the methods resulting in a

value of zero percent. Therefore, two Dice metric averages were

computed, one for all slices and thus considering segmentation

decisions (whether a segmentation is given for the respective

structure in each image) and the other only for images segmented

by both, the expert and neural network. Especially the zero values

distort Dice distribution and complicate the interpretation, which

is why no standard deviation is given for the average Dice metric

for all slices. CNN training required the calculation of a pixel-

based Dice metric in the loss function, while exact Dice scores

based on contours are reported in the analysis.

Binary metrics were used to gauge segmentation decision

accuracy compared to the expert. In this context, precision (in

medical science better known as the positive predictive value)

describes the proportion of correctly considered slices among all

slices segmented by a CNN for a corresponding structure. Recall,

on the other hand, measures the percentage of correctly

considered slices of all slices that should have been segmented

and is commonly referred to in medicine as the sensitivity.

Precision ¼ tp
tp þ fp

; Recall ¼ tp
tp þ fn

tp: true positive, fp: false positive, fn: false negative.
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2.5. Analysis

Network predictions for the 29 test cases were evaluated against

the expert segmentations using the recently published dedicated

software Lazy Luna (29). Analyses were performed on image

(segmentation metrics) and patient (clinical parameters) levels

using contours and not pixel-masks for all calculations.

Quantitative clinical parameters were automatically calculated

and linked to segmentation metrics via Lazy Luna, which allowed

for a back-tracing of quantitative errors to segmentation

differences illuminating their volumetric relevance.

Visualizations of segmentation errors facilitated manual

qualitative analysis. Here, interactive correlation plots of Dice on

one axis and volume difference in milliliters on the other

provided an overview of the dataset and easy navigation for

qualitative inspection. This, together with data tables and Bland-

Altman plots in Lazy Luna, allowed difficult cases and outliers to

be identified and the respective segmentation deviations to be

visualized on the CMR images by clicking on the data points.

The scatterplots were designed in such a way that segmentation

decision errors and non-overlapping segmentations accumulate at

the base with a Dice of zero. Slices that were neither segmented

by the network nor the expert as well as perfectly matching

segmentations, both have a Dice of 100 and no volume

difference. These correspond to the top center data points.

To evaluate the origin of quantitative errors, each image stack

was subdivided by slice position in the heart (Figure 2). The most

basal slice segmented by the expert and all slices incorrectly
FIGURE 2

Method overview. Cardiovascular magnetic resonance cine images in the short
neural networks to quantify left and right ventricular function. The obtained
compared for each neural network against the expert. In addition, analys
ventricle; RV, right ventricle; red, left ventricular cavity; green, left ventricular
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segmented by the respective CNN above it were defined as basal.

Accordingly, the most apical slice segmented by the expert and

all slices incorrectly segmented by the respective CNN below it

were defined as apical. All other slices in between were

designated midventricular. This allowed for a focused assessment

of the typically difficult slices containing heart valves or apical

trabeculation.
2.6. Statistics

Statistical analysis included the calculation of mean differences

± standard deviation for the quantitative clinical parameters and

2-sided paired t-tests to check for significant (significance level α =

0.05) deviations from the expert. The distribution of the errors

for clinical parameters and the distribution of both Dice metrics

were visualized using boxplots. Additionally, Pearson correlation

coefficients were calculated for clinical parameters, and transformed

to normalized values using Fisher’s z′ to form overall correlation

values. Dice and Hd as well as their means and standard deviations

and precision and recall including their means were calculated for

all CNNs compared to the expert segmentations. Segmentation

metrics were additionally performed separately for basal,

midventricular, and apical slices. Intraclass-correlation estimates

among the three tested networks were calculated using R 4.2.2

based on a single-rating, consistency-agreement, 2-way mixed-

effects model.
axis were annotated by an experienced physician and three convolutional
segmentations and the clinical parameters calculated from them were

is was performed separately by position in the heart. Legend: LV, left
myocardium; blue, right ventricular cavity.
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Lazy Luna was used for data preparation and calculation of

segmentation metrics and clinical parameters. Statistical analysis

and graphic creation were carried out in R 4.2.2 (using library

psych 2.2.9), Python 3.8.10 (using packages SciPy 1.7.0,

Matplotlib 3.4.3 and Seaborn 0.11.2) as well as Microsoft Excel

for Mac 16.54.
3. Results

Mean combined processing and prediction time per test case

(full image stack of 325–525 images) was 5.0s for U-Net, 4.6s for

FCN and 7.3s for MultiResUNet.
3.1. Quantitative clinical results and
segmentation accuracy

All three networks showed strong correlations for left and right

ventricular quantitative clinical parameters, as presented in Table 1

(average Pearson correlation via Fisher-z-transformation rz′ =

0.978, 0.977, 0.978 for U-Net, FCN, MultiResUNet respectively).

The MultiResUNet significantly underestimated all volumes

(LVEDV: p < 0.001; LVESV: p < 0.001; RVEDV: p < 0.001;

RVESV: p = 0.001) and LVM (p = 0.02) and overestimated the

LVEF (p < 0.001). The U-Net significantly overestimated LVEF

(p = 0.05) and RVESV (p = 0.03). The distribution of the errors

and the Dice values for the 29 test cases is illustrated in Figure 3

by candlelight boxplots. Dice values were consistently high (LV:

91.7%, 91.1%, 91.0%; LVM: 83.5%, 82.5%, 81.4%; RV: 85.1%,

85.8%, 84.9% for U-Net, FCN, and MultiResUNet respectively)

and Hausdorff distances averaged within 1–2 voxels for LV and
TABLE 1 Evaluation of CNNs on clinical parameters, segmentation metrics an

Left Ventricle

U-Net
mean (±σ)

FCN
mean (±σ)

M

EF (CNN—expert) [%] 1.4 ± 3.7* −0.1 ± 4.1

Correlation 0.969 0.961

EDV (CNN—expert) [ml] 3.6 ± 9.5 1.9 ± 10.2

Correlation 0.994 0.993

Dice (all slices) [%] 92.2 91.3

Dice (slices segmented by both) [%] 95.4 ± 6.4 94.3 ± 10.2

Hd [mm] 1.9 ± 1.1 2.2 ± 1.8

ESV (CNN—expert) [ml] −0.7 ± 5.3 1.1 ± 5.8

Correlation 0.998 0.997

Dice (all slices) [%] 91.1 90.9

Dice (slices segmented by both) [%] 91.5 ± 9.1 91.3 ± 9.1

Hd [mm] 2.5 ± 1.7 2.5 ± 1.3

LVM (CNN—expert, in ED) [g] 0.7 ± 6.8 0.7 ± 7.6

Correlation 0.988 0.985

Dice (all slices) [%] 83.5 82.5

Dice (slices segmented by both) [%] 85.8 ± 9.9 84.0 ± 13.0

Hd [mm] 2.3 ± 2.1 2.6 ± 2.9

CNN, convolutional neural network; EF, ejection fraction; EDV, end-diastolic volume

distance; ED, end-diastole.

*p < 0.05.
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three voxels for RV, indicating good agreement between the

segmentations of all three CNNs and the expert. The networks

performed better for the left than for the right ventricle across all

results in Table 1. Dice values were higher in end-diastole than

in end-systole. Among all three CNNs, the right ventricle showed

greater variance in the Dice metric for slices segmented by both

methods (RVEDV: σ = 15.8% vs. LVEDV: σ = 8.6%; RVESV: σ =

19.7% vs. LVESV: σ = 9.2%) and in volume differences (RVEDV:

σ = 13.3 ml vs. LVEDV: σ = 9.8 ml; RVESV: σ = 12.3 ml vs.

LVESV: σ = 6.6 ml), as also demonstrated in Figure 4. Intraclass

correlation (Table 2) was consistently excellent (≥0.91) for

clinical parameters among U-Net, FCN and MultiResUNet.

When estimated for all three CNNs and the expert, the intraclass

correlation was good (0.85 for RVEF) to excellent (≥0.97 for all

other parameters).
3.2. Multilevel analysis of error

The average Dice similarity coefficients for slices segmented by

both CNN and expert were consistently higher than the ones for all

slices (Figure 3). In Table 3, metrics for segmentation decision and

quality according to slice position in the heart are examined and

compared to the average absolute volume difference per slice.

Here, the CNNs performed similarly, revealing difficulties in

basal and apical slices. The overall results by slice position are

summarized in Table 4 for all networks and across all contour

entities. Dice values were low in basal (51.7%) and apical (43.9%)

slices and segmentation decision errors were more frequent

(mean precision: 80.6%, 99.7%, 72.4%; mean recall: 80.6%,

100.0%, 86.9% for basal, midventricular, apical respectively). The

basal slices of the right ventricle showed exceptionally poor
d segmentation decision metrics. Best Results Underlaid in Blue.

Right Ventricle

ultiResUNet
mean (±σ)

U-Net
mean (±σ)

FCN
mean (±σ)

MultiResUNet
mean (±σ)

3.7 ± 4.0* −1.6 ± 6.9 0.3 ± 6.4 2.2 ± 6.2

0.966 0.751 0.803 0.808

−8.2 ± 9.8* 4.3 ± 13.4 0.9 ± 13.3 −9.5 ± 13.2*

0.995 0.962 0.963 0.963

91.8 86.9 86.7 85.8

94.1 ± 8.7 88.9 ± 15.3 87.5 ± 16.8 87.4 ± 15.4

2.3 ± 1.7 4.8 ± 5.9 5.2 ± 6.6 5.1 ± 6.1

−10.6 ± 8.3* 5.1 ± 12.4* 0.8 ± 12.5 −8.2 ± 12.1*

0.996 0.957 0.955 0.950

90.2 83.2 85.0 84.1

90.2 ± 9.5 82.6 ± 18.9 82.1 ± 20.4 82.5 ± 19.9

2.8 ± 2.0 6.0 ± 6.8 5.9 ± 6.3 6.0 ± 7.1

−3.2 ± 6.9*

0.990

81.4

82.5 ± 12.9

2.7 ± 2.9

; ESV, end-systolic volume; LVM, left ventricular myocardial mass; Hd, Hausdorff
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FIGURE 3

Candlelight plots of errors in clinical parameters and Dice values. Vertical boxplots show quantile one, median and quantile three of mean errors and Dice
values for all test cases compared to the expert. The last graph displays two boxplots per network according to different definitions of the Dice metric:
one for all images, another limited to images segmented by both expert and CNN. Legend: CNN, convolutional neural network; LVEDV, left ventricular
end-diastolic volume; LVESV, left ventricular end-systolic volume; RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic
volume; LVEF, left ventricular ejection fraction; RVEF, right ventricular ejection fraction; LVM, left ventricular myocardial mass.
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precision (68.4%), low Dice values (33.4%) and large average

Hausdorff distances (19.1 ± 13.7 mm). In more than 40% of

apical slices, the CNNs predicted LVM segmentations in which

the expert had not segmented the left ventricular myocardium

(average precision = 58.6%). The correlation plots in Figure 4 are

color-coded according to slice position and subdivided by

network and contour entity. Consistent with the results in

Table 3, there is little scatter in the midventricular slices, with

relevant volume differences in the basal slices. Apical slices

showed low Dice values, but at the same time had negligible

volume effects (mean absolute error per slice: 4.2 ± 4.5 ml for

basal, 0.9 ± 1.3 ml for midventricular, 0.9 ± 0.9 ml for apical

slices). In challenging test slices, repeated errors were made by all

networks (Figure 5). The network architecture did not affect the

type or quality of the segmentation errors, so it was not possible

to infer a CNN from specific errors during visual inspection.
4. Discussion

To summarize, our results show that none of the CNN

architectures provided a consistent advantage in segmentation

quality across different metrics. Segmentation proved more

difficult for the right ventricle than for the left; and was more

challenging for basal and apical slices than for midventricular

slices. When tested for mean differences in clinical parameters,

we found that both U-Net and FCN were within predefined

published tolerance limits (17, 30) based on intraobserver
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variability and thus did not show greater deviation from the

expert than is acceptable for human readers, whereas the

MultiResUNet showed intolerable mean differences for LVEDV,

LVESV, and RVESV (Figure 6).
4.1. Basal errors cause large volume
differences

All CNNs struggled with segmentation decision errors and

large volume differences in basal slices, which are sometimes

challenging also for experienced physicians. Reasons for this may

be, first, the difficulty of a perfect orthogonal slicing during

acquisition; second, the partial volume effect as each voxel may

contain different structures depending on its slice thickness; and

third, a difficult detection of the atrioventricular or semilunar

valves. Moreover, segmentation decision of the basal slice can be

a matter of definition: a common rule is that at least 50% of the

LV blood pool must be surrounded by myocardium (1), which

highlights the importance of coherent high-quality training data,

so that neural networks can learn such restrictions. The

particularly poor results for the RV can be explained by the fact,

that it is divided basally by a myocardial invagination into inflow

and outflow tract, so that if the valves are not perfectly sliced in-

plane, only part of the visible lumen may belong to the ventricle.

Basal slices capture large ventricular blood volumes, so errors

here weigh heavily.
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FIGURE 4

Correlation plots of segmentation comparisons according to slice position. Rows identify the network compared to the expert. Columns identify the
considered contour type. Points represent contour comparisons characterized by volume difference and Dice value. Color implies the slice position.
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4.2. Segmentation difficulties are not always
reflected in clinical parameters

Apical slices showed the lowest Dice values. Reasons for this

could be, first, that contrast is frequently impaired due to

physiologic apical fat, so that the ventricles cannot always be

clearly localized in the short-axis view; and second, that the apex

often shows heavy trabeculation. However, the resulting volume

differences were no worse than in midventricular slices with

excellent segmentation agreement. The simplest explanation is
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that the heart is narrow at the apex and cardiac structures are

small. In addition, for some apical slices at comparable volume,

nonoverlapping or only marginally overlapping segmentations

were observed, resulting in poor segmentation metrics but small

volume differences. Here, segmentation failures also occurred in

terms of confusion of left and right ventricles or segmentation of

extracardiac structures. Performance on apical slices was

comparable for all three models and particularly poor for the LVM.

Besides and specifically in the case of thin LV myocardium, all

CNNs predicted displaced segmentations for LVM with little
frontiersin.org
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TABLE 2 Intraclass correlation.

CNNs
ICC(3,1) [95% CI]

CNNs + Expert
ICC(3,1) [95% CI]

LVEF 0.98 [0.96–0.99] 0.97 [0.95–0.98]

LVEDV 1.00 [0.99–1.00] 1.00 [0.99–1.00]

LVESV 1.00 [0.99–1.00] 1.00 [0.99–1.00]

LVM 1.00 [0.99–1.00] 0.99 [0.98–1.00]

RVEF 0.91 [0.85–0.95] 0.85 [0.76–0.92]

RVEDV 0.98 [0.97–0.99] 0.97 [0.95–0.99]

RVESV 0.98 [0.96–0.99] 0.97 [0.94–0.98]

ICC(3,1), 2-way mixed-effects, single-rater intraclass correlation; CI, confidence

interval; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-

diastolic volume; LVESV, left ventricular end-systolic volume; LVM, left ventricular

myocardial mass; RVEF, right ventricular ejection fraction; RVEDV, right

ventricular end-diastolic volume; RVESV, right ventricular end-systolic volume.

TABLE 4 Overall segmentation accuracy by slice position.

Basal
mean (±σ)

Midventricular
mean (±σ)

Apical
mean (±σ)

Precision [%] 80.6 99.7 72.4

Recall [%] 80.6 100.0 86.9

Dice (all slices) [%] 51.7 89.6 43.9

Dice (segmented by
both) [%]

75.7 ± 24.9 89.8 ± 8.5 67.6 ± 21.5

Hd [mm] 9.6 ± 9.5 2.9 ± 2.6 4.1 ± 2.9

Abs. vol. diff. (per
slice) [ml]

4.2 ± 4.5 0.9 ± 1.3 0.9 ± 0.9

Hd, Hausdorff distance; abs. vol. diff., absolute volume difference.
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overlap but small area deviation or anatomically implausible,

fragmented segmentations. Misinterpretation of large trabeculae

or papillary muscles caused mis-segmentation of the ventricular

lumen, especially in the thin-walled right ventricle but also in the

left ventricle, which in turn led to errors in segmentation of the

myocardium. While most of these errors do not have a large

impact on overall clinical results, they do affect the

trustworthiness of AI models, which is why Bernard et al. also

raised a “need for a new metric” (10).
4.3. Network architecture may not be the
key to achieve the best results

With respect to quantitative clinical parameters, the

MultiResUNet showed greater bias compared to U-Net and FCN,
TABLE 3 Comparison of convolutional neural networks by segmentation me

LV Endocardial Contour

U-Net
mean
(±σ)

FCN
mean
(±σ)

MultiResUNet
mean (±σ)

U
m

Basal Precision [%] 86.2 94.8 84.5

Recall [%] 82.0 78.6 87.5

Dice (all slices) [%] 67.1 68.7 67.0

Dice (segmented by both) [%] 92.6 ±
13.0

91.2 ±
15.6

88.9 ± 17.3 8

Hd [mm] 3.4 ± 3.3 3.8 ± 4.1 4.6 ± 4.8 5

Abs. vol. diff. (per slice) [ml] 3.7 ± 5.2 3.7 ± 5.5 4.5 ± 5.5 2

Mid. Precision [%] 99.8 99.8 100.0

Recall [%] 100.0 100.0 100.0

Dice (all slices) [%] 94.5 94.3 93.4

Dice (segmented by both) [%] 94.6 ± 5.8 94.5 ± 4.7 93.4 ± 7.2 87

Hd [mm] 2.0 ± 1.1 2.2 ± 1.0 2.4 ± 1.3 2

Abs. vol. diff. (per slice) [ml] 0.5 ± 0.4 0.5 ± 0.5 0.8 ± 0.7 0

Apical Precision [%] 77.6 82.8 75.9

Recall [%] 91.8 85.7 91.7

Dice (all slices) [%] 58.8 54.8 57.1

Dice (segmented by both) [%] 81.1 ±
13.5

75.3 ±
22.6

80.4 ± 11.8 6

Hd [mm] 2.4 ± 1.3 2.8 ± 2.0 2.3 ± 1.2 3

Abs. vol. diff. (per slice) [ml] 0.5 ± 0.4 0.5 ± 0.5 0.5 ± 0.5 1

Hd, Hausdorff distance; abs. vol. diff., absolute volume difference; Mid., Midventricula
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which is surprising as publications introducing modifications to

CNN architectures usually report their superiority to the

unmodified network. However, these findings do not necessarily

generalize to other datasets or replicate with different machine

learning configurations and pipelines. This becomes evident in

the leaderboards of (bio)medical image segmentation challenges,

with a comprehensive survey by Litjens et al. noting that “many

researchers use the exact same architectures, […] but have widely

varying results” (9). Therefore, this study aims to isolate the

influence of architectural variations, as opposed to segmentation

challenges (10, 22), where complete methodologies with widely

varying hyperparameter and training pipeline configurations

(including data pre- and postprocessing) were benchmarked.

Against the given background, our results suggest that the more

important determinants of network performance are in the

variables that were fixed for this comparison. They comprise

the dataset used, the configuration of most hyperparameters (e.g.,

the loss function, learning rate or batch size), and the training
trics subdivided by contour entity and slice position.

LV Myocardial Contour RV Endocardial Contour

-Net
ean

(±σ)

FCN
mean
(±σ)

MultiResUNet
mean (±σ)

U-Net
mean
(±σ)

FCN
mean
(±σ)

MultiResUNet
mean (±σ)

86.2 89.7 79.3 74.1 65.5 65.5

75.8 74.3 85.2 76.8 80.9 84.4

55.3 53.1 54.2 35.2 33.5 31.6

1.8 ±
10.0

77.7 ±
21.9

77.7 ± 13.0 58.1 ±
37.3

59.1 ±
37.1

54.1 ± 36.5

.1 ± 6.2 6.3 ± 9.1 6.1 ± 9.2 18.2 ±
13.4

18.3 ±
14.5

20.7 ± 13.2

.8 ± 3.0 2.7 ± 3.1 3.0 ± 3.0 5.7 ± 5.0 5.7 ± 4.8 5.8 ± 4.3

99.7 100.0 99.7 100.0 99.8 98.8

100.0 100.0 100.0 100.0 100.0 100.0

86.9 86.0 84.0 90.1 89.3 87.8

.2 ± 7.8 86.0 ± 9.3 84.3 ± 9.8 90.1 ± 9.1 89.5 ± 9.8 88.9 ± 10.7

.0 ± 1.0 2.1 ± 0.9 2.4 ± 1.4 4.2 ± 4.1 4.5 ± 4.3 4.4 ± 4.2

.6 ± 0.5 0.6 ± 0.5 0.7 ± 0.5 1.3 ± 2.0 1.4 ± 2.0 1.5 ± 2.2

55.2 65.5 55.2 86.2 87.9 65.5

94.1 90.5 94.1 67.6 82.3 84.4

34.0 35.6 28.2 41.8 44.6 39.8

3.8 ±
18.4

58.1 ±
21.7

52.8 ± 26.2 68.6 ±
21.4

60.3 ±
29.3

68.0 ± 22.8

.8 ± 2.2 4.9 ± 3.3 5.2 ± 3.4 5.2 ± 3.1 6.1 ± 4.5 4.5 ± 3.4

.0 ± 0.8 1.3 ± 1.3 1.2 ± 1.0 1.0 ± 1.0 1.0 ± 0.9 1.1 ± 0.9

r.
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FIGURE 5

Correlation plots of segmentation comparisons. Each subplot shows the comparison of the contours of a neural network to the expert. Points represent
contour comparisons and are distributed based on volume difference in milliliters and Dice. For interactive qualitative error analysis, visualizations of
segmentation agreement could be displayed when clicking on a point. Examples are given on the right side of the figure.
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FIGURE 6

Equivalence testing for clinical parameters. The 95% confidence intervals of mean errors in quantitative clinical parameters are plotted against the
tolerance intervals (blue) as defined by Zange et al. (30) and Gröschel et al. (17) based on intraobserver variability. Equivalence is assumed if the
respective CI lies completely within the tolerance range. Legend: CI, confidence interval; LVEDV, left ventricular end-diastolic volume; LVESV, left
ventricular end-systolic volume; LVEF, left ventricular ejection fraction; LVM, left ventricular myocardial mass; RVEDV, right ventricular end-diastolic
volume; RVESV, right ventricular end-systolic volume; RVEF, right ventricular ejection fraction; red, outside tolerance range.
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pipeline including data pre- and post-processing. This assumption

is consistent with findings of Isensee et al. who concluded that

“details in method configuration have more impact on

performance than do architectural variations” (25); and it is also

supported by Baumgartner et al. who found in their comparison

of techniques for CMR image segmentation that “the exact

architecture played a minor role in the accuracy of the system”

(31). The strong influence of data pre-processing and machine

learning configuration is further illustrated when looking at the

disparate results achieved by participants in the M&Ms

Challenge despite their near-universal use of a U-Net

architecture as baseline (22).
4.4. Data inherent problems and possible
solutions

CNN results must be considered in light of human intra- and

interobserver variability including possibly inconsistent definitions

used in segmentation procedures concerning small trabeculae or

basal slices. The fact that most clinical parameters derived from

the three CNNs tested were within their tolerance intervals

(Figure 6) underscores that the main problem is not with mean

deviations but with anatomically implausible segmentation errors,

rare outliers, and large basal differences. In (32), slices were

automatically classified according to their position and processed

by region-specific segmentation CNNs, which improved

performance basally and apically. To increase the reliability (13)

of deep learning-based models and prevent anatomically

implausible segmentations, constraints to preserve cardiac

geometry could be implemented via a topological loss function

(33), shape prior (34) or by automatic correction during post-

processing (35). Suinesiaputra et al. (36) found that incorporating
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landmark and segmentation information from the short-axis and

2- and 4-chamber long-axis views into a combined shape atlas

increased robustness basally and apically. The inclusion of spatial

and temporal relationships through 3D- or 4D-CNNs using only

short-axis view is theoretically attractive, but has so far mostly

been inferior in direct comparison (10, 31).

Overall, the uncertainty of deep learning models depends

primarily on the data to which they are applied, making

generalizability difficult for data characteristics not seen during

training (11), which also raises issues for underrepresented

entities and complicates a comparison of results outside of

standardized settings. For training and test data, the aim

should be to achieve heterogeneity of disease entities, patients,

scanners, and centers (7, 11), while at the same time ensuring

a homogeneous and coherent ground truth annotation. The

dataset used in this study, although single-center and single-

vendor, comes directly from the clinic and reflects the range of

patient populations and clinical indications for CMR. Data

augmentation, normalization, as well as network parameter

adjustment can help make the best use of limited data to train

models, that still generalize well (37). At the same time, data-

centric AI may be a suitable approach in small-data settings.

However, dealing with outliers against a background of limited

training data and extremely low error tolerance in medical

diagnostics requires continuous quality control and supervision

of all steps in the method pipeline (38, 39).
4.5. Automated quantification will increase
efficiency and reproducibility

Automated function quantification took a fraction of the time

compared to manual analysis and may help address the increasing
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workload (40) in medical imaging. Results are reproducible,

eliminating observer bias, and therefore show promise for

increasing reliability and tracking of even small changes in

patients over time. In addition, the CNN models can segment all

slices of the cardiac cycle to obtain time-volume curves in almost

no additional time, prospectively providing extended information

for diagnosis. Still, the main obstacle to widespread adoption of

automated deep learning based image analysis methods remains

their implementation in routine clinical practice (41), as

technical, administrative, and regulatory hurdles have not yet

been met by an accessible deployment infrastructure.

Our dataset was acquired using Compressed Sensing as an

acceleration technique to minimize scan time and duration of

breath holds. To date, very limited literature has been published

on deep learning methods for image segmentation applied to

such data. While the sequence used does not significantly affect

diagnostic image quality according to objective criteria, the

images have been considered to be blurrier and prone to

ghosting artifacts (17), which is why the data presents a

particular challenge for image analysis algorithms. Clinical

evaluation using the Compressed Sensing sequence was

considered equivalent to the standard method in (17). We would

expect similar, arguably slightly improved results on a dataset

acquired using a standard sequence. The merging of the

reconstruction task in Compressed Sensing during image

acquisition and the cardiac segmentation task into a joint

network could prospectively be advantageous for both (42),

which has also been demonstrated for brain MRI (43).
4.6. Outlook

To overcome the scarcity of well-labeled and accessible data for

training, data sharing platforms (44) as well as technical

approaches like multi-view or cross-modal, and semi-, self-, or

unsupervised learning (8, 45) offer great potential to accelerate

the development of AI. A deployment infrastructure for image

analysis methods that integrates with existing workflows is

essential to bring AI broadly into the clinic and validate it

prospectively (41). Since small structures (e.g., in apical slices,

papillary muscles, or thin myocardium) are only a few pixels in

size, the training of CNNs is likely to benefit from hyper-

resolution. For a readily available semi-automatic solution,

segmentation agreement could be estimated without ground truth

to flag difficult cases or slices and guide the attention of a

supervising expert. In the future, there will be a shift from slice-

imaging to volumetric 3D CMR sequences, providing

opportunities for new automatic quantification techniques.

Segmentation-derived features will be useful for radiomics-based

image phenotyping and diagnostic AI (46, 47).
4.7. Conclusions

Multilevel analysis allowed for a detailed comparison of

differences in quantitative clinical parameters among the three
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CNNs and their attribution to individual segmentation

problems. All three CNNs demonstrated strong correlation to

the expert on our dataset, which is primarily explained by low

errors in midventricular slices. Segmentation errors clustered

in basal and apical slices and are not necessarily reflected in

the overall results usually reported. In summary, modifications

to CNN architecture might not be the decisive factor in

achieving the best results. Our findings further highlight the

need for detailed quality assurance of medical AI, as even rare

errors that violate medical principles or anatomy can severely

undermine confidence in deep learning algorithms. Automatic

segmentation combined with fast acquisition will increase the

efficiency of cardiac MRI, allowing more patients to benefit

from this examination.
4.8. Limitations

The focus in defining the three CNNs was on a mostly

unaltered reproduction of the published architectures, that

all share the same basic network configuration and a

similar number of trainable parameters, in favor of which

extensive hyperparameter tuning was omitted. The

underlying assumption was that the three network

architectures are more comparable with similar parameters

and network complexity than with individually optimized

configurations. Due to the continuous emergence of new

CNN architectures, this study does not provide a fully

comprehensive comparison of novel architecture variants.

Instead, it focuses on an in-depth analysis of recurring

problems in cardiac image segmentation with the two most

popular and a newer, complex CNN architecture specifically

designed to address their weaknesses. To contextualize the

qualitative and slice-specific evaluation of the CNNs, an

equally nuanced interobserver analysis of human experts

may be necessary.
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