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Abstract: We present a model predictive control (MPC) scheme to control linear time-invariant
systems using only measured input-output data and no model knowledge. The scheme includes
a terminal cost and a terminal set constraint on an extended state containing past input-output
values. We provide an explicit design procedure for the corresponding terminal ingredients that
only uses measured input-output data. Further, we prove that the MPC scheme based on these
terminal ingredients exponentially stabilizes the desired setpoint in closed loop. Finally, we
illustrate the advantages over existing data-driven MPC approaches with a numerical example.

1. INTRODUCTION

Designing model predictive control (MPC) schemes based
on measured data with only partial or no model knowledge
is an active field of research using, e.g., model adap-
tation (Adetola and Guay, 2011; Aswani et al., 2013;
Tanaskovic et al., 2014) or reinforcement learning based
approaches (Berkenkamp et al., 2017; Zanon and Gros,
2020). A key motivation for such approaches is that obtain-
ing accurate model knowledge can be difficult in practice,
whereas large amounts of data are often available and can
be exploited for control. In this paper, we investigate MPC
of unknown linear time-invariant (LTI) systems using only
measured input-output data and no model knowledge.
Our approach relies on a result by Willems et al. (2005),
which shows that all trajectories of an LTI system can be
parametrized via one persistently exciting data trajectory.
This fact has been used, e.g., for data-driven simulation
by Markovsky and Rapisarda (2008) and, subsequently, for
data-driven MPC by Yang and Li (2015); Coulson et al.
(2019). While Coulson et al. (2020) derive open-loop ro-
bustness guarantees of the scheme, Berberich et al. (2021a)
prove closed-loop stability and robustness properties, even
if the measured data are affected by noise. Further theo-
retical results on robust constraint satisfaction based on
noisy data and on a tracking MPC formulation are derived
by Berberich et al. (2020b) and Berberich et al. (2020a),
respectively. Notably, the existing works with closed-loop
guarantees by Berberich et al. (2021a, 2020a,b) require
terminal equality constraints, which may result in a small
region of attraction and a small robustness margin.
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In this paper, we propose a novel data-driven MPC scheme
with terminal cost and terminal constraints, thereby im-
proving robustness and increasing the region of attraction
of the closed loop, in analogy to results from model-
based MPC (Chen and Allgöwer (1998); Rawlings et al.
(2020)). Similar to other works on data-driven MPC based
onWillems et al. (2005), we assume that only input-output
data of the unknown system are available and thus, we em-
ploy an extended state vector involving consecutive input-
output measurements. We prove that the MPC scheme
with suitable terminal ingredients involving this extended
state exponentially stabilizes the closed loop. Further,
using recent results on data-driven control by Berberich
et al. (2020c), we show how the terminal ingredients can
be constructed using only measured data. A key benefit
of the presented approach is that closed-loop stability
guarantees can be given in an end-to-end fashion, without
prior system identification steps. Throughout this paper,
we assume that the measured data are not affected by
noise, but we conjecture that practical stability using noisy
measurements can be proven based on recent robustness
results for data-driven MPC in Berberich et al. (2021b).

The work by Dutta et al. (2014) is conceptually related
to our results since it provides a terminal set constraint
for (model-based) MPC with input-output models using
an implicit characterization of the maximal invariant set.
Moreover, Abbas et al. (2016) propose a linear matrix
inequality (LMI) based procedure to construct stabilizing
terminal ingredients for linear parameter-varying input-
output models. Compared to these model-based results,
the proposed MPC scheme and the computation of the
terminal ingredients require only one input-output trajec-
tory of an LTI system and no model knowledge.

The remainder of the paper is structured as follows. After
introducing required preliminaries in Section 2, we present
the data-driven MPC scheme, prove closed-loop stability,
and provide a design procedure for terminal ingredients in
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based MPC (Chen and Allgöwer (1998); Rawlings et al.
(2020)). Similar to other works on data-driven MPC based
onWillems et al. (2005), we assume that only input-output
data of the unknown system are available and thus, we em-
ploy an extended state vector involving consecutive input-
output measurements. We prove that the MPC scheme
with suitable terminal ingredients involving this extended
state exponentially stabilizes the closed loop. Further,
using recent results on data-driven control by Berberich
et al. (2020c), we show how the terminal ingredients can
be constructed using only measured data. A key benefit
of the presented approach is that closed-loop stability
guarantees can be given in an end-to-end fashion, without
prior system identification steps. Throughout this paper,
we assume that the measured data are not affected by
noise, but we conjecture that practical stability using noisy
measurements can be proven based on recent robustness
results for data-driven MPC in Berberich et al. (2021b).

The work by Dutta et al. (2014) is conceptually related
to our results since it provides a terminal set constraint
for (model-based) MPC with input-output models using
an implicit characterization of the maximal invariant set.
Moreover, Abbas et al. (2016) propose a linear matrix
inequality (LMI) based procedure to construct stabilizing
terminal ingredients for linear parameter-varying input-
output models. Compared to these model-based results,
the proposed MPC scheme and the computation of the
terminal ingredients require only one input-output trajec-
tory of an LTI system and no model knowledge.

The remainder of the paper is structured as follows. After
introducing required preliminaries in Section 2, we present
the data-driven MPC scheme, prove closed-loop stability,
and provide a design procedure for terminal ingredients in

On the design of terminal ingredients for
data-driven MPC

Julian Berberich ∗ Johannes Köhler ∗ Matthias A. Müller ∗∗
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only uses measured input-output data. Further, we prove that the MPC scheme based on these
terminal ingredients exponentially stabilizes the desired setpoint in closed loop. Finally, we
illustrate the advantages over existing data-driven MPC approaches with a numerical example.

1. INTRODUCTION

Designing model predictive control (MPC) schemes based
on measured data with only partial or no model knowledge
is an active field of research using, e.g., model adap-
tation (Adetola and Guay, 2011; Aswani et al., 2013;
Tanaskovic et al., 2014) or reinforcement learning based
approaches (Berkenkamp et al., 2017; Zanon and Gros,
2020). A key motivation for such approaches is that obtain-
ing accurate model knowledge can be difficult in practice,
whereas large amounts of data are often available and can
be exploited for control. In this paper, we investigate MPC
of unknown linear time-invariant (LTI) systems using only
measured input-output data and no model knowledge.
Our approach relies on a result by Willems et al. (2005),
which shows that all trajectories of an LTI system can be
parametrized via one persistently exciting data trajectory.
This fact has been used, e.g., for data-driven simulation
by Markovsky and Rapisarda (2008) and, subsequently, for
data-driven MPC by Yang and Li (2015); Coulson et al.
(2019). While Coulson et al. (2020) derive open-loop ro-
bustness guarantees of the scheme, Berberich et al. (2021a)
prove closed-loop stability and robustness properties, even
if the measured data are affected by noise. Further theo-
retical results on robust constraint satisfaction based on
noisy data and on a tracking MPC formulation are derived
by Berberich et al. (2020b) and Berberich et al. (2020a),
respectively. Notably, the existing works with closed-loop
guarantees by Berberich et al. (2021a, 2020a,b) require
terminal equality constraints, which may result in a small
region of attraction and a small robustness margin.

� This work was funded by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy
- EXC 2075 - 390740016. The authors thank the International
Max Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting Julian Berberich, and the International Research
Training Group Soft Tissue Robotics (GRK 2198/1 - 277536708).

In this paper, we propose a novel data-driven MPC scheme
with terminal cost and terminal constraints, thereby im-
proving robustness and increasing the region of attraction
of the closed loop, in analogy to results from model-
based MPC (Chen and Allgöwer (1998); Rawlings et al.
(2020)). Similar to other works on data-driven MPC based
onWillems et al. (2005), we assume that only input-output
data of the unknown system are available and thus, we em-
ploy an extended state vector involving consecutive input-
output measurements. We prove that the MPC scheme
with suitable terminal ingredients involving this extended
state exponentially stabilizes the closed loop. Further,
using recent results on data-driven control by Berberich
et al. (2020c), we show how the terminal ingredients can
be constructed using only measured data. A key benefit
of the presented approach is that closed-loop stability
guarantees can be given in an end-to-end fashion, without
prior system identification steps. Throughout this paper,
we assume that the measured data are not affected by
noise, but we conjecture that practical stability using noisy
measurements can be proven based on recent robustness
results for data-driven MPC in Berberich et al. (2021b).

The work by Dutta et al. (2014) is conceptually related
to our results since it provides a terminal set constraint
for (model-based) MPC with input-output models using
an implicit characterization of the maximal invariant set.
Moreover, Abbas et al. (2016) propose a linear matrix
inequality (LMI) based procedure to construct stabilizing
terminal ingredients for linear parameter-varying input-
output models. Compared to these model-based results,
the proposed MPC scheme and the computation of the
terminal ingredients require only one input-output trajec-
tory of an LTI system and no model knowledge.

The remainder of the paper is structured as follows. After
introducing required preliminaries in Section 2, we present
the data-driven MPC scheme, prove closed-loop stability,
and provide a design procedure for terminal ingredients in
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Section 3. The approach is applied to a numerical example
in Section 4, and the paper is concluded in Section 5.

Notation We denote the set of integers in the inter-
val [a, b] by I[a,b] and the set of nonnegative integers
by I≥0. Moreover, we write ‖x‖2 and ‖A‖2 for the (in-
duced) 2-norm of some vector x and matrix A. For ma-
trices P = P�, P2 = P�

2 , we write λmin(P ) for the
minimum eigenvalue of P and we define λmin(P, P2) :=
min{λmin(P ), λmin(P2)}, and similarly for λmax(P ) and
λmax(P, P2). We write P � 0 (P � 0) if P is positive (semi-
) definite, and similarly P ≺ 0 (P � 0) if P is negative
(semi-) definite. Further, we define ‖x‖2P := x�Px, we
denote matrix entries which can be inferred from symme-
try by �, and we write I for an identity matrix of ap-
propriate dimension. For some generic sequence {xk}N−1

k=0 ,

we introduce x[a,b] :=
[
x�
a . . . x�

b

]�
and we abbreviate

x := x[0,N−1]. Finally, we define the Hankel matrix

HL(x) :=




x0 x1 . . . xN−L

x1 x2 . . . xN−L+1

...
...

...
...

xL−1 xL . . . xN−1


 .

2. PRELIMINARIES

In this section, we introduce preliminaries regarding the
data-driven system representation (Section 2.1) and the
extended state-space description (Section 2.2). Further, we
describe the problem setting in Section 2.3.

2.1 Data-driven system parametrization

We consider discrete-time LTI systems of the form

xk+1 = Axk +Buk,

yk = Cxk +Duk
(1)

with state xk ∈ Rn, input uk ∈ Rm, and output yk ∈ Rp,
all at time k ∈ I≥0, where the matrices (A,B,C,D) are
unknown. Throughout this paper, we assume that (A,B)
is controllable and (A,C) is observable. Controllability is
required both for applying the main result of Willems et al.
(2005) and for the presented design of terminal ingredients,
whereas observability is w.l.o.g. since unobservable modes
do not affect the output cost or constraints.

Definition 1. We say that {uk}N−1
k=0 with uk ∈ Rm is

persistently exciting of order L if rank(HL(u)) = mL.

The following main result of Willems et al. (2005) states

that a given input-output trajectory {ud
k, y

d
k}

N−1
k=0 can be

used to parametrize all system trajectories if the input ud

is persistently exciting (compare Berberich and Allgöwer
(2020) for a description in the state-space framework).

Theorem 2. (Willems et al. (2005)) Suppose {ud
k, y

d
k}

N−1
k=0

is a trajectory of (1), where ud is persistently exciting of

order L+n. Then, {ūk, ȳk}L−1
k=0 is a trajectory of (1) if and

only if there exists α ∈ RN−L+1 such that[
HL(u

d)
HL(y

d)

]
α =

[
ū
ȳ

]
. (2)

Theorem 2 provides a direct non-parametric system de-
scription without identifying a model of the system. Thus,

it can be used to predict system trajectories, which we
exploit for the MPC scheme presented in this paper.

2.2 Extended state representation

We define the lag of the system (1) as follows.

Definition 3. The lag l of (1) is the smallest l ∈ I[1,n]
such that the following observability matrix has rank n:

Φl :=
[
C� (CA)� . . . (CAl−1)�

]�
. (3)

For some integer l, we define the extended state ξt as

ξt :=

[
u[t−l,t−1]

y[t−l,t−1]

]
, (4)

where t ≥ l. We abbreviate the dimension of ξt by nξ :=
(m + p)l and we denote the discrete-time LTI dynamics
corresponding to the extended state by

ξk+1 = Ãξk + B̃uk,

yk = C̃ξk + D̃uk

(5)

for suitable matrices Ã, B̃, C̃, D̃. To be precise, the matri-
ces in (5) take the form shown in (6), where the matrices
Fi, Gi, i ∈ I[1,l], D are unknown. It is straightforward
to show that (1) and (5) have an equivalent input-output
behavior if l ≥ l (compare Goodwin and Sin (2014); Koch
et al. (2020)). Throughout this paper, we assume that an
upper bound l on the lag l is available. The proposed
design method (Section 3.3) further requires pl = n, which
is only valid if l is known exactly. Finally, we define the
matrix Ty such that yt−1 = Tyξt, i.e., Ty = [0 . . . 0 I].

2.3 Problem setting

Throughout this paper, the matrices A, B, C, D, or
equivalently, Fi, Gi,D, are unknown and one input-output
trajectory {ud

k, y
d
k}

N−1
k=0 of (1) is available. We consider

pointwise-in-time constraints on the input and output, i.e.,
ut ∈ U ⊆ Rm and yt ∈ Y ⊆ Rp for t ∈ I≥0. Our objective
is stabilization of a given input-output setpoint (us, ys)
which is an equilibrium in the following sense.

Definition 4. We say that (us, ys) ∈ Rm+p is an equilib-

rium of (1), if the sequence {ūk, ȳk}
l
k=0 with (ūk, ȳk) =

(us, ys) for all k ∈ I[0,l] is a trajectory of (1).

We assume (us, ys) ∈ int (U× Y) and we denote the
corresponding steady-state of (5) by ξs. While assuming
knowledge of whether an input-output setpoint (us, ys) �=
0 is an equilibrium of the system (1) can be restrictive since
A, B, C, D are unknown, this condition can be relaxed by
introducing artificial setpoints in the MPC scheme which
are optimized online (cf. Limón et al. (2008)).

Our contribution can be summarized as follows. We pro-
pose a data-driven MPC approach to control (1) with
closed-loop stability guarantees. The MPC scheme uses (2)
to predict future trajectories based on one persistently
exciting input-output trajectory {ud

k, y
d
k}

N−1
k=0 . In contrast

to earlier works, e.g., by Coulson et al. (2019); Berberich
et al. (2021a), we ensure closed-loop stability via terminal
ingredients, i.e., via an appropriate terminal set constraint
and a terminal cost. This follows standard arguments from
model-based MPC (Chen and Allgöwer, 1998; Rawlings
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all at time k ∈ I≥0, where the matrices (A,B,C,D) are
unknown. Throughout this paper, we assume that (A,B)
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Theorem 2 provides a direct non-parametric system de-
scription without identifying a model of the system. Thus,

it can be used to predict system trajectories, which we
exploit for the MPC scheme presented in this paper.

2.2 Extended state representation

We define the lag of the system (1) as follows.

Definition 3. The lag l of (1) is the smallest l ∈ I[1,n]
such that the following observability matrix has rank n:
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where t ≥ l. We abbreviate the dimension of ξt by nξ :=
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corresponding to the extended state by
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for suitable matrices Ã, B̃, C̃, D̃. To be precise, the matri-
ces in (5) take the form shown in (6), where the matrices
Fi, Gi, i ∈ I[1,l], D are unknown. It is straightforward
to show that (1) and (5) have an equivalent input-output
behavior if l ≥ l (compare Goodwin and Sin (2014); Koch
et al. (2020)). Throughout this paper, we assume that an
upper bound l on the lag l is available. The proposed
design method (Section 3.3) further requires pl = n, which
is only valid if l is known exactly. Finally, we define the
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Throughout this paper, the matrices A, B, C, D, or
equivalently, Fi, Gi,D, are unknown and one input-output
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k=0 of (1) is available. We consider

pointwise-in-time constraints on the input and output, i.e.,
ut ∈ U ⊆ Rm and yt ∈ Y ⊆ Rp for t ∈ I≥0. Our objective
is stabilization of a given input-output setpoint (us, ys)
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We assume (us, ys) ∈ int (U× Y) and we denote the
corresponding steady-state of (5) by ξs. While assuming
knowledge of whether an input-output setpoint (us, ys) �=
0 is an equilibrium of the system (1) can be restrictive since
A, B, C, D are unknown, this condition can be relaxed by
introducing artificial setpoints in the MPC scheme which
are optimized online (cf. Limón et al. (2008)).

Our contribution can be summarized as follows. We pro-
pose a data-driven MPC approach to control (1) with
closed-loop stability guarantees. The MPC scheme uses (2)
to predict future trajectories based on one persistently
exciting input-output trajectory {ud
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d
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k=0 . In contrast
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


uk−l+1
...

uk−1
uk

yk−l+1
...

yk−1
yk




=




0 I . . . 0 0 . . . . . . 0
...

. . .
. . .

...
...

. . .
. . .

...

0
. . .

. . . I
...

. . .
. . .
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0 . . . . . . 0 0 I . . . 0
...

. . .
. . .

...
...

. . .
. . .

...
0 . . . . . . 0 0 . . . . . . I
Gl . . . . . . G1 Fl . . . . . . F1







uk−l
...

uk−2
uk−1

yk−l
...

yk−2
yk−1




+




0
...
0
I
0
...
0
D




uk (6)

et al., 2020). The key difficulty is that, since we do not have
access to the state xt or the matrices A, B, C, D in (1), the
terminal ingredients need to be designed for the extended
state ξt in (5) using only measured data. Based on recent
results on data-driven control by Berberich et al. (2020c),
we compute terminal ingredients which can be used to
implement the MPC scheme. Finally, we illustrate the
advantages w.r.t. earlier works with a numerical example.

3. DATA-DRIVEN MPC WITH TERMINAL
INGREDIENTS

In this section, we present a data-driven MPC scheme with
terminal ingredients and closed-loop stability guarantees.
After defining the MPC scheme in Section 3.1, we prove
the desired closed-loop properties in Section 3.2. Further,
in Section 3.3, we show how the corresponding terminal
ingredients can be computed using only measured data.

3.1 Proposed MPC scheme

Given an input-output data trajectory {ud
k, y

d
k}

N−1
k=0 and

initial conditions {uk, yk}t−1
k=t−l, the proposed MPC scheme

relies on the following open-loop optimal control problem

min
α(t)

ū(t),ȳ(t)

L−1∑
k=0

‖ūk(t)− us‖2R + ‖ȳk(t)− ys‖2Q (7a)

+ ‖ξ̄L(t)− ξs‖2P

s.t.

[
ū[−l,L−1](t)
ȳ[−l,L−1](t)

]
=

[
HL+l(u

d)
HL+l(y

d)

]
α(t), (7b)

[
ū[−l,−1](t)
ȳ[−l,−1](t)

]
=

[
u[t−l,t−1]

y[t−l,t−1]

]
, (7c)

ξ̄L(t) ∈ Ξf , ξ̄L(t) =

[
ū[L−l,L−1](t)
ȳ[L−l,L−1](t)

]
, (7d)

ūk(t) ∈ U, ȳk(t) ∈ Y, k ∈ I[0,L−1]. (7e)

In the cost (7a), we penalize the distance of the predicted
variables w.r.t. the desired setpoint (us, ys), where Q �
0, R � 0 are design parameters. The constraint (7b)
parametrizes all input-output trajectories ū(t), ȳ(t) of (5)
using Theorem 2. Moreover, the predicted trajectory is
initialized using past l input-output measurements in (7c),
and the scheme includes pointwise-in-time constraints on
the predicted input and output in (7e). Finally, the matrix
P � 0 and the set Ξf characterize a suitable terminal cost
‖ξ̄L(t) − ξs‖2P and terminal constraint ξ̄L(t) ∈ Ξf on the
predicted extended state at time L. We assume that these
terminal ingredients satisfy the following assumption.

Assumption 5. There exist matrices P = P� � 0,
K ∈ Rm×nξ , and a set Ξf ⊆ Ul×Yl with ξs ∈ int(Ξf ) such

that for all ξ ∈ Ξf , u = us+K(ξ−ξs), and y = (C̃+D̃K)ξ,
we have

i) Ãξ + B̃u ∈ Ξf ,
ii) u ∈ U and y ∈ Y,
iii) the following inequality holds:

‖(Ã+ B̃K)ξ‖2P ≤ ‖ξ‖2P − ‖ξ‖K�RK − ‖y‖2Q. (8)

Assumption 5 is a standard condition in model-based
MPC to ensure closed-loop stability, compare Chen and
Allgöwer (1998); Rawlings et al. (2020). In Section 3.3, we
show how a matrix P and a set Ξf as in Assumption 5
can be constructed using only measured data and no
model knowledge. If U, Y, and Ξf are convex polytopes
(ellipsoids), then Problem (7) is a convex (quadratically
constrained) quadratic program which can be solved effi-
ciently. Throughout this paper, ū∗(t), ȳ∗(t), α∗(t) denote
the optimal solution of Problem (7) at time t ∈ I≥0,
whereas ut, yt denote the closed-loop input and output
at time t ∈ I≥0. Further, we write J∗

L(ξt) for the op-
timal cost of Problem (7) with initial condition ξt =[
u�
[t−l,t−1], y

�
[t−l,t−1]

]�
. Algorithm 6 summarizes the MPC

scheme based on repeatedly solving Problem (7).

Algorithm 6. Data-Driven MPC Scheme
(1) At time t, take the past l measurements u[t−l,t−1],

y[t−l,t−1] and solve (7).
(2) Apply the input ut = ū∗

0(t).
(3) Set t = t+ 1 and go back to (1).

3.2 Closed-loop guarantees

We make the following common assumption.

Assumption 7. The optimal value function is quadrat-
ically upper bounded, i.e., there exists cu > 0 such that
J∗
L(ξ) ≤ cu‖ξ‖22 for all ξ such that Problem (7) is feasible.

Assumption 7 is, e.g., satisfied if the sets U, Y, Ξf are
polytopes (Bemporad et al., 2002) or if U and Y are com-
pact, compare (Rawlings et al., 2020, Proposition 2.16).
More generally, Assumption 7 holds with a non-quadratic
upper bound, thus leading only to asymptotic stability
guarantees for the closed loop, if U is compact (Rawlings
et al., 2020, Proposition 2.16).

Theorem 8. Suppose Assumptions 5 and 7 hold and the
input ud is persistently exciting of order L + l + n. If
Problem (7) is feasible at initial time t = 0, then

i) it is feasible at any t ∈ I≥0,
ii) the closed-loop trajectory satisfies the constraints,

i.e., ut ∈ U and yt ∈ Y for all t ∈ I≥0,
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iii) the equilibrium ξs is exponentially stable for the
resulting closed loop.

Proof. W.l.o.g., we assume us = 0, ys = 0, ξs = 0.
At time t + 1, we construct a feasible candidate solution
(ū′(t + 1), ȳ′(t + 1)) of (7) by shifting the previously
optimal solution ū∗(t), ȳ∗(t) of (7) and appending the

input ū′
L−1(t + 1) = K

[
ū∗
[L−l,L−1](t)

ȳ∗[L−l,L−1](t)

]
, with K as in

Assumption 5. Since (ū′(t + 1), ȳ′(t + 1)) is a trajectory
of (1), there exists α′(t+1) satisfying (7b) by Theorem 2,
i.e., all constraints of (7) are satisfied. Denoting the cost
of (7) for this candidate solution by J ′

L(ξt+1), we have

J∗
L(ξt+1)− J∗

L(ξt) ≤ J ′
L(ξt+1)− J∗

L(ξt) (9)

=‖ū′
L−1(t+ 1)‖2R + ‖ȳ′L−1(t+ 1)‖2Q − ‖ū∗

0(t)‖2R − ‖ȳ∗0(t)‖2Q

+ ‖ξ̄′L(t+ 1)‖2P − ‖ξ̄∗L(t)‖2P
(8)

≤ −‖ut‖2R − ‖yt‖2Q.

Since (A,C) is observable, the pair (Ã, C̃) is detectable
and hence, there exists an input-output-to-state stability
(IOSS) Lyapunov function W (ξ) = ξ�PW ξ satisfying

W (Ãξ + B̃u)−W (ξ) ≤ −1

2
‖ξ‖22 + c1‖u‖22 + c2‖y‖22 (10)

for suitable c1, c2 > 0, PW � 0, and all u ∈ Rm,
ξ ∈ Rnξ , y = C̃ξ + D̃u, compare Cai and Teel (2008). We
consider as a Lyapunov function candidate the weighted
sum of J∗

L and W , i.e., V (ξt) = J∗
L(ξt) + γW (ξt) with

γ = λmin(Q,R)
max{c1,c2} > 0. Combining (9) and (10), this implies

V (ξt+1) − V (ξt) ≤ −γ
2 ‖ξt‖

2
2. The Lyapunov function

candidate V (ξt) is clearly quadratically lower bounded and
it is quadratically upper bounded due to Assumption 7
such that ξs is exponentially stable in closed loop due to
standard Lyapunov arguments (Rawlings et al., 2020). �

Theorem 8 shows that the proposed MPC scheme based on
Problem (7) exponentially stabilizes the desired setpoint
ξs and hence, the closed-loop input/output exponentially
converges to us/ys. Since the cost of Problem (7) is only
positive semidefinite in the minimal state x, the proof
relies on detectability to construct a Lyapunov function
based on IOSS arguments, compare also (Rawlings et al.,
2020, Theorem 2.24), Berberich et al. (2021a); Grimm
et al. (2005). Note that Theorem 8 requires persistence
of excitation of order L + l + n for the input since the
length of the constructed input-output trajectory is L+ l
due to the initial conditions in (7c).

Remark 9. We note that, if the terminal set constraint
in (7d) is dropped, i.e., Ξf = Rnξ , closed-loop stability as
shown in Theorem 8 holds locally with some region of at-
traction as long as the terminal cost matrix P satisfies the
conditions in Assumption 5, compare Limón et al. (2006).
For the special case of open-loop stable systems with no
output constraints, i.e., Y = Rp, Assumption 5 can always
be satisfied with K = 0 and without the terminal set
constraint in (7d), i.e., Ξf = Rnξ , compare Rawlings and
Muske (1993). In this case, Problem (7) is globally feasible
and Theorem 8 ensures global exponential stability.

3.3 Data-driven design of terminal ingredients

In this section, we show how terminal ingredients satisfying
Assumption 5 can be computed using only measured data

and no model knowledge, based on recent results on data-
driven controller design by Berberich et al. (2020c). To this
end, we write (5) as a linear fractional transformation

[
ξk+1

zk

]
=




A′ Bw B′[
I
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]
0

[
0
I

]




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
 , (11)

wk = ∆zk,

where w �→ z represents an additional uncertainty channel
capturing all unknown elements of (5) (compare Zhou

et al. (1996)). More precisely, A′, B′, Bw = [0 I]
�

are
known matrices according to the structure in (6), and

∆ = [Gl . . . G1 Fl . . . F1 D]

contains the unknown system parameters. We factorize
T�
y QTy = Q�

r Qr, R = R�
r Rr with Ty as in Section 2.2,

and we define the data-dependent matrices

Ξ :=
[
ξdl ξdl+1 . . . ξdN−1

]
, Ξ+ :=

[
ξdl+1 ξdl+2 . . . ξdN

]
,

U :=
[
ud
l ud

l+1 . . . ud
N−1

]
, Z :=
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Ξ
U

]
,

where {ξdk}
N−1
k=l is the extended state trajectory cor-

responding to the available input-output measurements
{ud

k, y
d
k}

N−1
k=0 . Using that B�

w is the Moore-Penrose inverse
of Bw, (Berberich et al., 2020c, Proposition 1) implies the
following data-dependent bound on the “uncertainty” ∆:

[
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I
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+Bw
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� −B�
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]
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Moreover, we abbreviate

P̄w
∆ :=

[
0 I
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w 0

]�
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∆

[
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w 0

]
.

Proposition 10. Suppose there exist X � 0, Γ � 0, M ,

τ ≥ 0, γ > 0 such that trace(Γ) < γ2,

[
Γ I
I X

]
� 0, and
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X 0
0 0

]) 

A′X +B′M

X
M


 0

� −X
[
QrX
RrM

]�

� � −I



≺ 0,

(13)

define P := X−1−T�
y QTy, K := MX−1, and choose β > 0

such that

Ξf :={ξ ∈ Rnξ | ‖ξ − ξs‖2P ≤ β} ⊆ Ul × Yl. (14)

Then, Assumption 5 holds with P , K, and Ξf .

Proof. By applying the Schur complement to the right-
lower block of (13) and subsequently left- and right-
multiplying diag(I,X−1), we obtain


τP̄w

∆ −
[
X 0
0 0

] 

A′ +B′K

I
K




� T�
y QTy +K�RK −X−1


 ≺ 0. (15)

Applying the Schur complement to the right-lower block
of (15) and re-arranging terms leads to Q := X−1 −
T�
y QTy −K�RK � 0 as well as
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iii) the equilibrium ξs is exponentially stable for the
resulting closed loop.

Proof. W.l.o.g., we assume us = 0, ys = 0, ξs = 0.
At time t + 1, we construct a feasible candidate solution
(ū′(t + 1), ȳ′(t + 1)) of (7) by shifting the previously
optimal solution ū∗(t), ȳ∗(t) of (7) and appending the

input ū′
L−1(t + 1) = K

[
ū∗
[L−l,L−1](t)

ȳ∗[L−l,L−1](t)

]
, with K as in

Assumption 5. Since (ū′(t + 1), ȳ′(t + 1)) is a trajectory
of (1), there exists α′(t+1) satisfying (7b) by Theorem 2,
i.e., all constraints of (7) are satisfied. Denoting the cost
of (7) for this candidate solution by J ′

L(ξt+1), we have

J∗
L(ξt+1)− J∗

L(ξt) ≤ J ′
L(ξt+1)− J∗

L(ξt) (9)

=‖ū′
L−1(t+ 1)‖2R + ‖ȳ′L−1(t+ 1)‖2Q − ‖ū∗

0(t)‖2R − ‖ȳ∗0(t)‖2Q

+ ‖ξ̄′L(t+ 1)‖2P − ‖ξ̄∗L(t)‖2P
(8)

≤ −‖ut‖2R − ‖yt‖2Q.

Since (A,C) is observable, the pair (Ã, C̃) is detectable
and hence, there exists an input-output-to-state stability
(IOSS) Lyapunov function W (ξ) = ξ�PW ξ satisfying

W (Ãξ + B̃u)−W (ξ) ≤ −1

2
‖ξ‖22 + c1‖u‖22 + c2‖y‖22 (10)

for suitable c1, c2 > 0, PW � 0, and all u ∈ Rm,
ξ ∈ Rnξ , y = C̃ξ + D̃u, compare Cai and Teel (2008). We
consider as a Lyapunov function candidate the weighted
sum of J∗

L and W , i.e., V (ξt) = J∗
L(ξt) + γW (ξt) with

γ = λmin(Q,R)
max{c1,c2} > 0. Combining (9) and (10), this implies

V (ξt+1) − V (ξt) ≤ −γ
2 ‖ξt‖

2
2. The Lyapunov function

candidate V (ξt) is clearly quadratically lower bounded and
it is quadratically upper bounded due to Assumption 7
such that ξs is exponentially stable in closed loop due to
standard Lyapunov arguments (Rawlings et al., 2020). �

Theorem 8 shows that the proposed MPC scheme based on
Problem (7) exponentially stabilizes the desired setpoint
ξs and hence, the closed-loop input/output exponentially
converges to us/ys. Since the cost of Problem (7) is only
positive semidefinite in the minimal state x, the proof
relies on detectability to construct a Lyapunov function
based on IOSS arguments, compare also (Rawlings et al.,
2020, Theorem 2.24), Berberich et al. (2021a); Grimm
et al. (2005). Note that Theorem 8 requires persistence
of excitation of order L + l + n for the input since the
length of the constructed input-output trajectory is L+ l
due to the initial conditions in (7c).

Remark 9. We note that, if the terminal set constraint
in (7d) is dropped, i.e., Ξf = Rnξ , closed-loop stability as
shown in Theorem 8 holds locally with some region of at-
traction as long as the terminal cost matrix P satisfies the
conditions in Assumption 5, compare Limón et al. (2006).
For the special case of open-loop stable systems with no
output constraints, i.e., Y = Rp, Assumption 5 can always
be satisfied with K = 0 and without the terminal set
constraint in (7d), i.e., Ξf = Rnξ , compare Rawlings and
Muske (1993). In this case, Problem (7) is globally feasible
and Theorem 8 ensures global exponential stability.

3.3 Data-driven design of terminal ingredients

In this section, we show how terminal ingredients satisfying
Assumption 5 can be computed using only measured data

and no model knowledge, based on recent results on data-
driven controller design by Berberich et al. (2020c). To this
end, we write (5) as a linear fractional transformation
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wk = ∆zk,

where w �→ z represents an additional uncertainty channel
capturing all unknown elements of (5) (compare Zhou

et al. (1996)). More precisely, A′, B′, Bw = [0 I]
�

are
known matrices according to the structure in (6), and

∆ = [Gl . . . G1 Fl . . . F1 D]

contains the unknown system parameters. We factorize
T�
y QTy = Q�

r Qr, R = R�
r Rr with Ty as in Section 2.2,

and we define the data-dependent matrices

Ξ :=
[
ξdl ξdl+1 . . . ξdN−1

]
, Ξ+ :=

[
ξdl+1 ξdl+2 . . . ξdN

]
,

U :=
[
ud
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Ξ
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,

where {ξdk}
N−1
k=l is the extended state trajectory cor-

responding to the available input-output measurements
{ud

k, y
d
k}

N−1
k=0 . Using that B�

w is the Moore-Penrose inverse
of Bw, (Berberich et al., 2020c, Proposition 1) implies the
following data-dependent bound on the “uncertainty” ∆:
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Moreover, we abbreviate
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∆ :=
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.

Proposition 10. Suppose there exist X � 0, Γ � 0, M ,

τ ≥ 0, γ > 0 such that trace(Γ) < γ2,
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� 0, and
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(13)

define P := X−1−T�
y QTy, K := MX−1, and choose β > 0

such that

Ξf :={ξ ∈ Rnξ | ‖ξ − ξs‖2P ≤ β} ⊆ Ul × Yl. (14)

Then, Assumption 5 holds with P , K, and Ξf .

Proof. By applying the Schur complement to the right-
lower block of (13) and subsequently left- and right-
multiplying diag(I,X−1), we obtain


τP̄w

∆ −
[
X 0
0 0

] 

A′ +B′K

I
K




� T�
y QTy +K�RK −X−1


 ≺ 0. (15)

Applying the Schur complement to the right-lower block
of (15) and re-arranging terms leads to Q := X−1 −
T�
y QTy −K�RK � 0 as well as




I 0

(A′ +B′K)�
[
I
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
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Using the full-block S-procedure (compare Scherer (2001))

and Ã = A′ + Bw∆

[
I
0

]
, B̃ = B′ + Bw∆

[
0
I

]
, where ∆

satisfies (12), the latter inequality implies

−X + (Ã+ B̃K)Q−1(Ã+ B̃K)� ≺ 0. (16)

Applying the Schur complement twice, this in turn implies

(Ã+ B̃K)�X−1(�)−X−1 + T�
y QTy +K�RK ≺ 0.

(17)

Let now ξ+ = (Ã + B̃K)ξ, y = (C̃ + D̃K)ξ for some
ξ ∈ Rnξ . We then have

‖ξ+‖2P
(17)

≤ ‖ξ‖X−1 − ‖ξ‖2T�
y QTy+K�RK − ‖ξ+‖2T�

y QTy

= ‖ξ‖P − ‖y‖2Q − ‖ξ‖2K�RK ,

which proves Part (iii) of Assumption 5. Part (i) is a simple
consequence of Part (iii). Finally, Part (ii) follows from
invariance of Ξf ⊆ Ul × Yl. �

Proposition 10 provides a procedure to compute termi-
nal ingredients satisfying Assumption 5, using no model
knowledge but only input-output data. The proof relies on
the full-block S-procedure (Scherer (2001)), which is used
to robustify the model-based matrix inequality (8) against
the unknown parameters ∆ satisfying the known quadratic
bound (12) derived by Berberich et al. (2020c), compare
also van Waarde et al. (2020) for a similar approach to
data-driven H2-state-feedback design. The design proce-
dure in Proposition 10 is an LMI feasibility problem which
can be solved efficiently in practice. Although any feasible
solution X � 0, M , τ ≥ 0 satisfying (13) leads to ter-
minal ingredients satisfying Assumption 5, the additional

conditions trace(Γ) < γ2,

[
Γ I
I X

]
� 0 for some Γ � 0,

γ > 0 lead to a smaller terminal cost. To be precise, the
optimal solution minimizing γ subject to the conditions in
Proposition 10 (provided it exists) is equivalent to a linear
quadratic regulator for the system (5), compare Berberich
et al. (2020c) for details. Hence, this optimal solution
provides a standard choice for terminal ingredients, com-
pare Chen and Allgöwer (1998), leading to a good closed-
loop performance. For a reliable numerical implementa-
tion, we perform a bisection algorithm over γ > 0 subject
to the conditions in Proposition 10.

Remark 11. The proposed MPC scheme as well as the
theoretical analysis in Section 3.2 and the design of the
terminal ingredients explained above all require that the
measured data are noise-free. However, an extension of the
presented results to noisy data is straightforward, where
the noise may enter both the offline data used to build
the Hankel matrices in (7b) and to compute the terminal
ingredients via Proposition 10 as well as the online data
used to specify initial conditions in (7c). In particular, it is
shown in Berberich et al. (2021b) that (offline and online)
output measurement noise in data-driven MPC can be
viewed as an input disturbance for the corresponding nom-

inal (noise-free) data-driven MPC scheme. Since model-
based MPC with terminal ingredients possesses inherent
robustness properties (Yu et al., 2014), we conjecture that
the closed loop is practically exponentially stable w.r.t. the
noise and disturbance level, provided that Problem (7) is
slightly modified (by including a slack variable in (7b) and
a regularization on α(t) in the cost, cf. Berberich et al.
(2021b) for details). As a noteworthy advantage, this is
possible based on a one-step MPC scheme as in Algo-
rithm 6, whereas the robustness guarantees from Berberich
et al. (2021a,b) require the application of a multi-step
MPC scheme due to the presence of terminal equality
constraints. Finally, the (offline) design by Berberich et al.
(2020c) which forms the basis for Proposition 10 also
applies in the presence of noise and hence, our design of
terminal ingredients can be carried out in this case. More
precisely, replacing the definition of Pw

∆ in (12) by

Pw
∆ =

[
−ZZ� ZΞ�

+Bw

B�
wΞ+Z

� d̄I −B�
wΞ+Ξ

�
+Bw

]

for some d̄ > 0, Proposition 10 leads to terminal ingre-
dients which satisfy Assumption 5 robustly for all sys-
tems (5) which are consistent with the measured data,
when assuming that data generated offline are perturbed
by process noise {dk}N−1

k=0 and measurement noise {εk}Nk=0

satisfying a bound
∑N−1

k=0 ‖dk‖22+‖εk+1−Ãεk‖22 ≤ d̄ (com-
pare Berberich et al. (2020c) for details). To summarize,
all results in this paper can be extended to the realistic
scenario where the measured data are affected by noise
and the system is subject to disturbances.

Remark 12. In case of noise-free data, an indirect ap-
proach consisting of system identification and model-based
MPC is a simple alternative to our data-driven MPC
scheme. In particular, with persistently exciting data, the
system matrices can be computed exactly and thus, a
model-based design of terminal ingredients and implemen-
tation of MPC can be carried out analogous to Propo-
sition 10 and Algorithm 6, respectively. The resulting
computational complexity is comparable to that of the
direct approach proposed in this paper. On the other
hand, as discussed in more detail in Remark 11, our data-
driven MPC can be extended to noisy data, in which case
it may be preferable over the indirect approach due to
the challenges in obtaining tight estimation bounds from
data (Matni et al., 2019). A theoretical comparison of indi-
rect and direct data-driven MPC is an interesting direction
for future research, cf. Dörfler et al. (2021); Krishnan and
Pasqualetti (2021) for existing open-loop results.

In the remainder of this section, we investigate when a
crucial necessary condition for feasibility of the conditions
in Proposition 10 is fulfilled. Since (13) is a strict LMI,

its feasibility requires τP̄w
∆ −

[
X 0
0 0

]
≺ 0, which implies

−ZZ� ≺ 0. This in turn requires that the data matrix

Z =
[
Ξ� U�]� has full row rank. The latter condition

is related to persistence of excitation (Definition 1). In
particular, (Willems et al., 2005, Corollary 2 (ii)) implies

that Z has full row rank if (Ã, B̃) is controllable and ud is
persistently exciting of a sufficiently high order. Thus, one
possibility to ensure that (13) is feasible via a sufficiently

rich input signal is to require that (Ã, B̃) is controllable,
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which need not be the case in general, even if (A,B) is
controllable. In order to determine when this sufficient
condition for Z having full row rank holds, the following
result provides an equivalent condition for controllability
of (Ã, B̃) based on the observability matrix Φl in (3).

Lemma 13. The pair (Ã, B̃) is controllable if and only if
Φl is square.

Proof. We show that an arbitrary ξk ∈ Rnξ is reachable
from any initial condition if and only if Φl is square. The
system dynamics (1) imply for any k ≥ nξ

ξk =

[
u[k−l,k−1]

Φlxk−l + Γlu[k−l,k−1]

]
(18)

with a suitably defined matrix Γl. By observability, i.e.,
full column rank of Φl, we have pl ≥ pl ≥ n and hence,
k−l ≥ nξ−l ≥ n. Thus, using controllability of (A,B), the
system can be steered to an arbitrary state xk−l from any
initial condition x0 by appropriately selecting the input
u[0,k−l−1]. Therefore, the state ξk is reachable if and only
if there exist an input u[k−l,k−1] and a state xk−l such
that (18) holds. The first block row of (18) is trivially
satisfied by definition of ξk. Using u[k−l,k−1] = [I 0] ξk,
the second block row of (18) takes the form

[−Γl I] ξk = Φlxk−l. (19)

Clearly, there exists a state xk−l for any given ξk such
that (19) holds if and only if [−Γl I] ξk lies in the image of
Φl for any ξk ∈ Rnξ . Since [−Γl I] has full row rank, this
means that Φl has full row rank. Since Φl has full column
rank by the assumption that (A,C) is observable, full row
rank of Φl is equivalent to Φl being square. �

Lemma 13 shows that, under the present assumptions, the
extended dynamics (5) are controllable if and only if the
matrix Φl is square. This means that full row rank of Z,
which is a necessary condition for the presented design of
terminal ingredients and thus the proposed MPC scheme,
can be guaranteed if Φl is square. The latter condition
requires l = l, i.e., the lag of the system is known and
chosen for defining the extended state ξ, as well as pl = n.
For single-output systems with p = 1, this in turn requires
that l = n, i.e., the system order is known exactly. For
multiple-output systems on the other hand, the condition
pl = n does in general not hold even if both the system
order and the lag are known exactly. Addressing this issue
and designing data-driven controllers for the extended
system (5) in case it is not controllable is an interesting
issue for future research, independently of its application
to data-driven MPC in this paper.

4. NUMERICAL EXAMPLE

We apply our MPC scheme to a linearized version of
the four-tank system considered by Raff et al. (2006),
see Berberich et al. (2021a) for the numerical values of
A, B, C, D. We consider the prediction horizon L = 15,
cost matrices Q = I, R = 5 · 10−3I, an input constraint
set U = [−2, 2]2, but no output constraints, i.e., Y = Rp,

and the input-output setpoint (us, ys) =

([
1
1

]
,

[
0.65
0.77

])
.

Moreover, we regularize α(t) in the cost of Problem (7) by
penalizing 10−4 · ‖α(t)‖22 for better numerical stability and
robustness (compare Coulson et al. (2020); Berberich et al.
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Fig. 1. Closed loop under the data-driven MPC scheme.

(2021a)). We generate data of length N = 100 of the above
system by applying an input sampled uniformly from uk ∈
[−1, 1]2. First, we note that the observability matrix Φl of
this system is square, i.e., the extended system is control-
lable (compare Lemma 13), for l = l = 2, i.e., if l is chosen
as the lag of the system. Based on this knowledge, we apply
Proposition 10 to compute terminal ingredients satisfy-
ing Assumption 5. To be precise, using Yalmip (Löfberg
(2004)) with the solver MOSEK (MOSEK ApS (2015)),
we obtain a feasible solution of the conditions in Propo-
sition 10 with K = 0 and γ = 52. We then apply the
MPC scheme based on Problem (7) with Ξf = Rnξ . Since
the above system is open-loop stable, the closed loop under
this MPC scheme is globally exponentially stable (compare
Remark 9). The closed-loop input and output trajectories
are displayed in Figure 1. It can be seen that the MPC
scheme tracks the desired setpoint reliably. On the other
hand, an MPC scheme using no terminal ingredients (i.e.,
setting P = 0 in (7)) leads to an unstable closed loop
since the prediction horizon is chosen too short. Moreover,
an MPC scheme based on terminal equality constraints as
proposed by Berberich et al. (2021a) is not initially feasible

for the initial condition x0 = [0.1 0.1 0.2 0.2]
�

with any
prediction horizon L ≤ 24 due to the input constraints.
This means that x0 does not lie in the (bounded) region
of attraction of the scheme by Berberich et al. (2021a),
in contrast to the global stability guarantees of the MPC
scheme designed above. Finally, we note that it is also
possible to design a non-zero K based on Proposition 10
resulting in a less conservative terminal penalty. However,
in this case, non-trivial terminal set constraints need to be
included which reduces the region of attraction. To con-
clude, our results show that enhancing data-driven MPC
with non-trivial terminal ingredients improves both the
theoretical properties as well as the practical performance.

5. CONCLUSION

We presented a data-driven MPC scheme with terminal
ingredients. The scheme uses only measured input-output
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which need not be the case in general, even if (A,B) is
controllable. In order to determine when this sufficient
condition for Z having full row rank holds, the following
result provides an equivalent condition for controllability
of (Ã, B̃) based on the observability matrix Φl in (3).

Lemma 13. The pair (Ã, B̃) is controllable if and only if
Φl is square.

Proof. We show that an arbitrary ξk ∈ Rnξ is reachable
from any initial condition if and only if Φl is square. The
system dynamics (1) imply for any k ≥ nξ

ξk =

[
u[k−l,k−1]

Φlxk−l + Γlu[k−l,k−1]

]
(18)

with a suitably defined matrix Γl. By observability, i.e.,
full column rank of Φl, we have pl ≥ pl ≥ n and hence,
k−l ≥ nξ−l ≥ n. Thus, using controllability of (A,B), the
system can be steered to an arbitrary state xk−l from any
initial condition x0 by appropriately selecting the input
u[0,k−l−1]. Therefore, the state ξk is reachable if and only
if there exist an input u[k−l,k−1] and a state xk−l such
that (18) holds. The first block row of (18) is trivially
satisfied by definition of ξk. Using u[k−l,k−1] = [I 0] ξk,
the second block row of (18) takes the form

[−Γl I] ξk = Φlxk−l. (19)

Clearly, there exists a state xk−l for any given ξk such
that (19) holds if and only if [−Γl I] ξk lies in the image of
Φl for any ξk ∈ Rnξ . Since [−Γl I] has full row rank, this
means that Φl has full row rank. Since Φl has full column
rank by the assumption that (A,C) is observable, full row
rank of Φl is equivalent to Φl being square. �

Lemma 13 shows that, under the present assumptions, the
extended dynamics (5) are controllable if and only if the
matrix Φl is square. This means that full row rank of Z,
which is a necessary condition for the presented design of
terminal ingredients and thus the proposed MPC scheme,
can be guaranteed if Φl is square. The latter condition
requires l = l, i.e., the lag of the system is known and
chosen for defining the extended state ξ, as well as pl = n.
For single-output systems with p = 1, this in turn requires
that l = n, i.e., the system order is known exactly. For
multiple-output systems on the other hand, the condition
pl = n does in general not hold even if both the system
order and the lag are known exactly. Addressing this issue
and designing data-driven controllers for the extended
system (5) in case it is not controllable is an interesting
issue for future research, independently of its application
to data-driven MPC in this paper.

4. NUMERICAL EXAMPLE

We apply our MPC scheme to a linearized version of
the four-tank system considered by Raff et al. (2006),
see Berberich et al. (2021a) for the numerical values of
A, B, C, D. We consider the prediction horizon L = 15,
cost matrices Q = I, R = 5 · 10−3I, an input constraint
set U = [−2, 2]2, but no output constraints, i.e., Y = Rp,

and the input-output setpoint (us, ys) =

([
1
1

]
,

[
0.65
0.77

])
.

Moreover, we regularize α(t) in the cost of Problem (7) by
penalizing 10−4 · ‖α(t)‖22 for better numerical stability and
robustness (compare Coulson et al. (2020); Berberich et al.
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Fig. 1. Closed loop under the data-driven MPC scheme.

(2021a)). We generate data of length N = 100 of the above
system by applying an input sampled uniformly from uk ∈
[−1, 1]2. First, we note that the observability matrix Φl of
this system is square, i.e., the extended system is control-
lable (compare Lemma 13), for l = l = 2, i.e., if l is chosen
as the lag of the system. Based on this knowledge, we apply
Proposition 10 to compute terminal ingredients satisfy-
ing Assumption 5. To be precise, using Yalmip (Löfberg
(2004)) with the solver MOSEK (MOSEK ApS (2015)),
we obtain a feasible solution of the conditions in Propo-
sition 10 with K = 0 and γ = 52. We then apply the
MPC scheme based on Problem (7) with Ξf = Rnξ . Since
the above system is open-loop stable, the closed loop under
this MPC scheme is globally exponentially stable (compare
Remark 9). The closed-loop input and output trajectories
are displayed in Figure 1. It can be seen that the MPC
scheme tracks the desired setpoint reliably. On the other
hand, an MPC scheme using no terminal ingredients (i.e.,
setting P = 0 in (7)) leads to an unstable closed loop
since the prediction horizon is chosen too short. Moreover,
an MPC scheme based on terminal equality constraints as
proposed by Berberich et al. (2021a) is not initially feasible

for the initial condition x0 = [0.1 0.1 0.2 0.2]
�

with any
prediction horizon L ≤ 24 due to the input constraints.
This means that x0 does not lie in the (bounded) region
of attraction of the scheme by Berberich et al. (2021a),
in contrast to the global stability guarantees of the MPC
scheme designed above. Finally, we note that it is also
possible to design a non-zero K based on Proposition 10
resulting in a less conservative terminal penalty. However,
in this case, non-trivial terminal set constraints need to be
included which reduces the region of attraction. To con-
clude, our results show that enhancing data-driven MPC
with non-trivial terminal ingredients improves both the
theoretical properties as well as the practical performance.

5. CONCLUSION

We presented a data-driven MPC scheme with terminal
ingredients. The scheme uses only measured input-output

data for prediction and thus, the terminal ingredients
involve an extended state consisting of consecutive input-
output values. We proved closed-loop stability and showed
that the required terminal ingredients can be computed
based on data without explicit model knowledge. If com-
pared to existing data-driven MPC schemes with closed-
loop guarantees (Berberich et al. (2021a)), the presented
approach has superior closed-loop robustness and perfor-
mance properties both in theory and practice.
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Chen, H., Allgöwer, F., 1998. A quasi-infinite horizon non-
linear model predictive control scheme with guaranteed
stability. Automatica 34 (10), 1205–1217.

Coulson, J., Lygeros, J., Dörfler, F., 2019. Data-enabled
predictive control: in the shallows of the DeePC. In:
Proc. European Control Conf. pp. 307–312.

Coulson, J., Lygeros, J., Dörfler, F., 2020. Distribution-
ally robust chance constrained data-enabled predictive
control. arXiv:2006.01702.

Dörfler, F., Coulson, J., Markovsky, I., 2021. Bridging
direct & indirect data-driven control formulations via
regularizations and relaxations. arXiv:2101.01273.

Dutta, A., Hartley, E., Maciejowski, J., De Keyser, R.,
2014. Certification of a class of industrial predictive

controllers without terminal conditions. In: Proc. Conf.
Decision and Control. pp. 6695–6700.

Goodwin, G. C., Sin, K. S., 2014. Adaptive filtering
prediction and control. Courier Corporation.

Grimm, G., Messina, M. J., Tuna, S. E., Teel, A. R., 2005.
Model predictive control: for want of a local control
Lyapunov function, all is not lost. Trans. Automat.
Control 50 (5), 546–558.

Koch, A., Berberich, J., Allgöwer, F., 2020. Provably
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