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Many protocols in quantum science and technology require initializing a system in a pure quantum state. In the context
of the motional state of massive resonators, this enables studying fundamental physics at the elusive quantum–classical
transition, and measuring force and acceleration with enhanced sensitivity. Laser cooling has been a method of choice
to prepare mechanical resonators in the quantum ground state, one of the simplest pure states. However, to overcome
the heating and decoherence by the thermal bath, this usually has to be combined with cryogenic cooling. Here, we
laser-cool an ultracoherent, soft-clamped mechanical resonator close to the quantum ground state directly from room
temperature. To this end, we implement the versatile membrane-in-the-middle setup with one fiber mirror and one
phononic crystal mirror, which reaches a quantum cooperativity close to unity already at room temperature. We further-
more introduce a powerful combination of coherent and measurement-based quantum control techniques, which allows
us to mitigate thermal intermodulation noise. The lowest occupancy we reach is 30 phonons, limited by measurement
imprecision. Doing away with the necessity for cryogenic cooling should further facilitate the spread of optomechanical
quantum technologies. ©2023Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement
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1. INTRODUCTION

Over the last decade, the relative simplicity and great versatility
of membrane-in-the-middle (MIM) systems [1] have rendered
them a highly popular choice for a variety of optomechanics exper-
iments. To name just a few examples, they have been used for early
demonstrations of optomechanical effects such as dynamical [2–5]
and quantum backaction [6], optomechanically induced trans-
parency [7], and Raman ratio thermometry [8,9], to implement
coupling between mechanical and atomic degrees of freedom
[10–13], to explore novel routes for enhanced sensitivity in gravi-
tational wave detection [14–16], to study multimode [17–19]
and topological physics [20], to manipulate the quantum state of
light [21,22], and to realize electro–opto–mechanical transducers
[23–26]. More recently, force sensing [27–29] and imaging [30]
applications have received particular attention, due to the very
low thermomechanical force noise [31–33], and the potential for
very efficient optical detection of the sensor state [34,35]. Indeed,
using a broadband correlation technique [36,37], this platform has
even allowed continuous force measurements beyond the standard
quantum limit (SQL) for the first time [38].

However, to reach the quantum regime, it has so far been
necessary to cool the membrane to cryogenic temperatures [6,8–
11,13,18,21,22,24–26,34,35,38]. For even greater flexibility and
versatility, it would be desirable to be able to operate in the quan-
tum regime already at room temperature. To date, few mechanical
systems have even approached the quantum regime at room tem-
perature, including optically levitated nanoparticles [39,40], select
nano- [41–43] and micromechanical devices [44], as well as a set of
macroscopic mirrors in a gravitational wave observatory [45]. Save
for the latter, a broad range of applications have yet to be demon-
strated with these platforms, in contrast to MIM systems. Our goal
is therefore to implement a room-temperature MIM system in the
quantum regime.

A key enabler towards this goal is a recently developed ultraco-
herent mechanical system, a “soft-clamped” membrane resonator
[33], whose coherence at room temperature rivals those of standard
membranes at cryogenic temperatures [6,18]. We also bring to
bear several techniques to mitigate background thermal noises in
the system, including a phononic mirror and a combination of
sideband cooling and feedback cooling.
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Fig. 1. (a) Sketch of the cavity assembly with main components. (b) Top view of membrane geometry, with a central defect in a phononic crystal. Color
code indicates simulated out-of-plane displacement (increasing from blue to red shades). (c) Thermal spectrum of the Dandelion, as measured inside the
fiber cavity. It features a bandgap in the region from 1.2 MHz to 1.5 MHz and two soft-clamped defect modes around its center. (d) Cavity resonance as
measured in reflection. The asymmetric line shape is a consequence of the filtering done by the fiber mode. The fit to the model (solid black line) can be
decomposed into the Lorentzian and dispersive contributions (dashed and dotted light gray lines, respectively).

2. SOFT-CLAMPED MEMBRANE-IN-THE-MIDDLE
SYSTEM

The membrane is placed inside a Fabry–Pérot optical resonator
(Fig. 1), between a node and an anti-node of the standing optical
wave in the cavity. We thereby implement the standard MIM dis-
persive optomechanical coupling [1] described by the Hamiltonian
[46,47] Hom = ~g 0a †a(b + b†). Here, ~ is the reduced Planck
constant, g 0 the vacuum optomechanical coupling rate, and a(a †)

and b(b†) the optical and mechanical annihilation (creation)
operators, respectively. The membrane is 15 nm thick and pat-
terned with a phononic crystal, which affords soft-clamping of an
out-of-plane mechanical mode localized close to an intentionally
introduced crystal defect [33]. In this work, we introduce a new
design for both the crystal and the defect (which we refer to as the
“Dandelion” design); see Fig. 1(b). Compared to the design used in
our previous works [13,22,29,33–35,38], Dandelion-class defects
exhibit significantly lower masses (up to a 30-fold reduction)
when fabricated from identical substrates and targeting the same
frequency and Q-factors. Additionally, the mechanical mode can
be centered in an ∼50% bigger bandgap, with typically only one
extra mechanical mode in the bandgap (two total). However, these
benefits come with a significant reduction in the size of the pad
at the defect center, which can lead to complications with large
cavity waists and/or optical alignment. As such, the optimal for
any application is not necessarily the design with the smallest mass,
highest Q-factor, or other figure of merit.

Specifically due to alignment tolerances, the particular design
used in this work is a medium-size Dandelion with a central pad
approximately 30 µm across, resulting in a mechanical mode
with resonance frequency �m/2π = 1.3 MHz and modal mass
meff ≈ 200 pg. This results in a relatively large amplitude of
zero-point fluctuations, xzpf =

√
~/2meff�m = 5.7 fm. Due

to the soft-clamping effect, we achieve intrinsic damping rates
0m/2π ≈ 9 mHz, corresponding to quality factors as high as
Qm =�m/0m = 1.4× 108 with these devices at room temper-
ature, T ≈ 300 K, where the occupation of the mechanical bath
is as high as n̄th ≈ kBT/~�m ≈ 5.1 · 106 (kB is the Boltzmann
constant). This implies a thermomechanical decoherence
rate of γ = n̄th0m ≈ 2π · 48 kHz. In turn, this corresponds to
�m/γ ≈ 27 coherent oscillations, comparing favorably to similar
experiments (four coherent oscillations [41]) and even levitated
optomechanical systems (<∼15 coherent oscillations [39]).

The cavity consists of one curved and one flat mirror. We fabri-
cate the curved mirror by laser-machining a concave indentation
into the facet of a single-mode fiber, and subsequently coating it
with a high-reflectivity coating [48,49]. To realize the flat mirror,
a slightly different coating is deposited on a flat Pyrex glass wafer
that has been bonded to a silicon “exoskeleton” support structure,
whose role will be detailed in Section 4.B. The mirrors are set up
to face each other with a distance of L ≈ 95 µm. Details on the
fabrication of the mirrors and the mechanical setup are provided in
Supplement 1.

The mirror coatings are designed to provide a one-sided, high-
finesse cavity at a wavelength of around 1550 nm. Independent
measurements of the actually realized mirrors’ power transmissiv-
ities, Tf and Te for the fiber and exoskeleton mirror, respectively,
suggest an overcoupling of ηc = Tf /(Tf + Te )≈ 0.9 for the cavity
coupled through the fiber mirror. For the assembled cavity includ-
ing a membrane, we measure the reflection signal through the
(more transmissive) fiber mirror, as shown in Fig. 1(d). Using the
model in [50] to fit the data, we obtain a FWHM cavity linewidth
of κ/2π = 340 MHz, corresponding to a finesse of F ≈ 4400.
Note that the spatial filtering of the cavity leakage by the fiber mode
leads to an asymmetric reflection signature (with two contributions
of Lorentzian and dispersive shapes), the depth of which is not
limited by the mode-matching efficiency ε between the cavity and
detected optical modes. See Supplement 1 for more details on the
model.

The geometry of the indentation in the fiber mirror is approx-
imately spherical with a 300 µm radius of curvature, leading to
an approximately 10 µm waist of the cavity’s fundamental optical
mode. This allows good transverse overlap (ξ ∼ 1) of the optical
and mechanical mode shapes, even for the small—and therefore
low-mass—defect of the Dandelion design. Together with the
short cavity length, this facilitates large vacuum optomechanical
coupling, which can, for the optimal position of the membrane
within the cavity standing wave, be approximated as

g max
0 ≈ 2

ωc

L
|r |xzpfξ, (1)

whereωc is the cavity resonance frequency, and r is the membrane’s
optical (field) reflectivity. Indeed, for the parameters of the system,
we expect a coupling rate of g 0/2π <

∼ 3.3 kHz.
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3. DYNAMICAL BACKACTION

Broadly speaking, to reach the quantum regime, it is necessary to
achieve a quantum cooperativity Cq = 4g 2/(κγ ) >∼ 1, where κ and
γ are the optical and mechanical decoherence rates, respectively,
and g = g 0

√
n̄cav is the field-enhanced coupling rate with the

intracavity photon number n̄cav. In a first set of experiments, we
infer the obtained coupling by analyzing dynamical backaction
[2–5] on the mechanical mode.

To this end, we couple a low-noise laser (NKT Photonics
Koheras Basik E15) of wavelength λ≈ 1542 nm to the cavity. We
derive two beams from this laser: a “probe” beam to lock the cavity
on resonance with one of its fundamental modes using a Pound–
Drever–Hall locking scheme, and to read out the mechanical
motion via a homodyne interferometer. A second, “cooling” beam
is offset by −80 MHz via a fiber-based acousto-optic modulator,
and its polarization is made orthogonal to that of the probe. These
two facts help minimize the unwanted effect of the cooling beam
on the measurement record. Figure 2(a) shows the schematic of the
experimental setup, an extended discussion of which is presented
in Supplement 1.

As we increase the cooling beam power, we observe the evo-
lution of the mechanical noise spectrum through the probe
homodyne detector. We extract the mechanical frequency shift
δ�c

m resulting from the optical spring effect, as a function of the
cooling beam power (cf. Fig. 2(b)). The standard model for the
mechanical frequency shift by an optical spring [46],

δ�c
m = g 2

c

(
1c −�m

κ2/4+ (1c −�m)
2 +

1c +�m

κ2/4+ (1c +�m)
2

)
,

(2)
supplied with the independently known �m, κ , and detuning
1c, allows us to extract the field-enhanced coupling rate g c as
a function of measured power. The index “c” here refers to the
cooling beam. For a given power, we can estimate the intracavity
photon number by estimating the incoupling efficiency of light.
In this manner, we infer an experimental value for the vacuum
optomechanical coupling rate of g 0/2π = 2.3 kHz, in good agree-
ment with the theoretical value, assuming slightly sub-optimal
longitudinal and transverse positioning of the membrane.

We also compare the observed broadening of the mechanical
linewidth with the expected damping due to dynamical backaction
of the cooling beam [46],

0c
m = g 2

c

(
κ

κ2/4+ (1c +�m)
2 −

κ

κ2/4+ (1c −�m)
2

)
,

(3)
for all of the inferred couplings g c, and find good agreement.
Specifically, in Fig. 2(c), we show the total damping rate
0tot

m = 0m + 0
p
m + 0

c
m, with 0

p
m the contribution from opti-

cal damping by the (very slightly red-detuned) probe beam. To
allow for this probe-induced damping, the dashed line is a fit
with the vertical offset as the only free parameter, but is otherwise
fully constrained by independently known parameters (�m, κ ,
and1c) and the fit of the optical spring. The fit to the linewidths
yields 0p

m/2π = 4.6 Hz, corresponding to a probe detuning
1p/2π <

∼−2 MHz. The zero-power linewidth is likely overesti-
mated due to inhomogeneous broadening caused by a fluctuation
in coupled laser power.

Finally, we confirm that we can increase the probe power fur-
ther, into a regime where Cq ≈ 1 would be expected, without the
onset of optomechanical (or other) instabilities.

Fig. 2. (a) Schematic of the experimental setup. The probe (red)
and cooling (blue) beams are derived from a single laser. The probe is
locked on resonance with the cavity and used for a homodyne readout
of the membrane motion. The feedback force is exerted by convolving
this measurement with a filter function h fb and using it to modulate the
amplitude of the cooling beam. The cooling beam is detuned from the
cavity by 1c/2π =−80 MHz and thus also provides sideband cooling.
The optomechanical cavity is kept in a vacuum chamber at a pressure
pUHV ≈ 2× 10−8 mbar. (b) Mechanical frequency shift due to the cool-
ing beam as a function of input optical power. The dashed line is a linear fit
to the data following Eq. (2), with g 2

c ∝ (Power). (c) Optically broadened
mechanical linewidth as a function of the cooling beam coupling rate
g c. With g c extracted from the measured power based on the fit in (b),
the only fit parameter for the dashed line is a vertical offset due to a small
cooling by the probe. The data points in both (b) and (c) are mean values
over five acquisitions, and the error bars correspond to the standard errors
of the mean.

4. LASER COOLING CLOSE TO THE QUANTUM
GROUND STATE

A. Theoretical Cooling Limits

Next we aim at preparing the mechanical system in a pure quantum
state—specifically, the quantum ground state. That is, starting
from the equilibrium value n̄th = 5.1 · 106, we want to reduce the
residual mechanical occupation n̄ = 〈b†b〉→ 0. Laser sideband
cooling has been used with great success to cool mechanical oscilla-
tors, including MIM systems [2–5,18,38]. Adapting the theory of
sideband cooling yields the final occupation [46]

n̄ =
n̄th0m(1+Cq)+ n̄c

m0
c
m

0tot
m

, (4)

where 0tot
m in the denominator allows for a small probe detuning,

the numerator accounts for the probe’s quantum backaction (with
Cq

<
∼ 1 the probe’s quantum cooperativity), and

https://doi.org/10.6084/m9.figshare.21940814
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n̄c
m =

(�m +1c)
2
+ (κ/2)2

−41c�m
(5)

is the minimum occupancy that can be reached in the limit of
strong cooling 0c

m� n̄th0m(1+Cq), due to quantum back-
action of the cooling beam. In the unresolved-sideband regime
with κ��m, in which we work here, n̄c

m ≈ κ/4�m for optimal
detuning 1c, corresponding to about 65 phonons for the param-
eters of our system. We note that Eq. (4) should, in principle, also
contain classical backaction, i.e., photothermal heating and inten-
sity noise heating, which would manifest as an effective thermal
bath occupation that increases with optical power. The analysis
of the mechanical area as a function of optical power presented in
Supplement 1 shows, however, that this effect is negligible.

Given that sideband cooling to the ground state is pro-
hibited by quantum backaction, we additionally expect to
be using measurement-based quantum control techniques
[34,35,40,47,51–54] to reach it. In these approaches, one tracks
the mechanical position x (t)= xzpf(b(t)+ b†(t)) through
the optical signal, in our case the output y (t) of the homo-
dyne interferometer detecting the probe light. A sufficiently
precise measurement record allows tracking the state of the
oscillator, and preparing it in a highly pure conditional quan-
tum state [35]. Alternatively, one can derive a feedback force
Ffb(t)= h fb(t) ∗ y (t) from the measured displacement, where
h fb(t) is a filter kernel, and ∗ denotes a convolution. Applying this
force to the mechanical resonator allows preparing it in its ground
state unconditionally [34].

Importantly, the measured signal y (t)= x (t)+ ximp(t) con-
tains, apart from the true position x (t), also the imprecision
ximp(t), a noise background inevitable in the kind of interfero-
metric measurement discussed here [55]. For optimal gain in the
feedback loop, the minimum occupation that can be reached can
be written approximately as (see Supplement 1)

n̄fb
min ≈

√
S̄ tot

FF · S̄
imp
xx

4~2
−

1

2
. (6)

Here, S̄ tot
FF is the (symmetrized, single-sided) spectral density of

force fluctuations driving the mechanical resonator, whereas S̄ imp
xx

is the spectral density of ximp. We assume these spectral densities
are constant in the relevant range around the mechanical frequency
�m and have dropped the frequency argument for brevity. The
total force fluctuations S̄ tot

FF = S̄ th
FF + S̄ rp

FF contain both the thermal
Langevin force noise S̄ th

FF = 4meff0mkBT, as well as the radiation
pressure fluctuations of the intracavity light field(s) S̄ rp

FF. If the latter
are given only by quantum fluctuations, we have S̄ rp

FF =Cq S̄ th
FF.

The imprecision, in turn, must at least contain the quan-
tum (shot) noise in the optical detector. This ensures that the
Heisenberg measurement-disturbance uncertainty relation
S̄ rp

FF S̄ imp
xx ≥ ~2 is always respected [46,47,55]. For imperfect detec-

tion efficiency ηdet < 1, the imprecision as referenced to equivalent
mechanical displacement grows, and S̄ rp

FF S̄ imp
xx = ~2/ηdet if both

radiation pressure and imprecision noise are limited by quantum
fluctuations otherwise [56]. We can additionally take into account

the classical contribution to the imprecision noise S̄ imp,cl
xx , for

example, due to fluctuations of the cavity mirrors, which produce
cavity length changes unrelated to (but indistinguishable from)

membrane motion. We then have S̄ imp
xx = S̄ imp,q

xx + S̄ imp,cl
xx and

S̄ imp,q
xx = ~2/ηdetCq S̄ th

FF, with which we can rewrite Eq. (6) as

n̄fb
min ≈

√√√√(1+Cq
) ( 1

4ηdetCq
+

S̄ imp,cl
xx · n̄th0m

2x 2
zpf

)
−

1

2
. (7)

Evidently, for quantum-limited (S̄ imp,cl
xx → 0), strong (Cq� 1),

and efficient (ηdet→ 1) measurement, the ground state can be
reached (n̄fb

min→ 0), as demonstrated in [34] for a MIM system
and [40] for a levitated nanoparticle.

B. Imprecision Noise Analysis

Key challenges when moving from cryogenic to room temperature
operation include that not only the quantum cooperativity
Cq ∝ 1/n̄th but also the classical imprecision contribution

(∝ S̄ imp,cl
xx · n̄th) in Eq. (7) need to be compatible with a ∼100-

fold increase of n̄th, given that most cryogenic experiments operate
at ∼4 K or even lower. Several contributions must be considered
here.

The first is laser frequency (or phase) noise. The spectral
density of laser frequency fluctuations S̄ωω close to �m can
be rescaled to effective displacement using the frequency pull
parameter dωc/dx = g 0/xzpf [cf. Eq. (1)]. If the corresponding

imprecision S̄ imp,ln
xx = S̄ωω/(dωc/dx )2 dominates the quantum

imprecision, this leads to a minimum occupation of the order of
(S̄ωω · n̄th0m/g 2

0)
1/2 for Cq ≈ 1. Interestingly, a similar limit has

been derived and observed for laser sideband cooling [57–59].
In our experiment, the frequency noise of the employed laser is
specified as S̄ωω <∼ (2π · 1 Hz)2/Hz [60], leading to a negligible
contribution as S̄ωω · n̄th0m/2g 2

0 ≈ 0.03, much smaller than the
quantum imprecision term 1/4ηdetCq (see below).

To analyze the second potential contribution, we need to note
that the transduction of the cavity frequency fluctuations into the
optical field is inherently nonlinear. As shown in [61], these non-
linearly transduced frequency fluctuations result in a broadband
“thermal intermodulation noise” (TIN) that can dominate the
noise in photodetection when the linearly transduced fluctuations
are small, e.g., when detecting the intensity of a resonant beam (as
in [61]). Conversely, for a homodyne measurement of a resonant
beam’s phase, employed in our work, the linear contribution is
maximal. Moreover, the leading nonlinear term is not quadratic,
but cubic in small fluctuations, which leads to a more favorable
scaling of different contributions to TIN (see Supplement 1 for
more details). Finally, because our MIM cavity is deep in the
unresolved-sideband regime, the cooling beam provides sideband
cooling of a wide range of mechanical modes, which should alle-
viate the effect of TIN even further [62], such that we expect not
to be limited by it. While TIN-related intensity noise can still be
present in the system, it neither appears in the cavity scans [Fig.
1(d)] nor does it manifest as excess heating, as discussed before.

A third relevant source of classical imprecision noise is thermal
fluctuations in the cavity mirrors. This phenomenon has been
studied extremely carefully in the context of the large mirrors
employed in gravitational wave observatories, and a number of
possible mechanisms have been identified [63]. More compact
cavities with millimeter-scale mirrors are typically dominated by
the thermal fluctuations of the mirror substrate, displacing the
boundary off which the light is reflected. Since the mirror sub-
strates in general support a discrete set of mechanical resonance

https://doi.org/10.6084/m9.figshare.21940814
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modes, the spectra of these fluctuations are expected to consist of
a series of relatively sharp peaks, depending on the Q-factor of the
mirror modes. Such spectra have been systematically studied for
some two decades [64–66], and indeed even used as mechanical
modes in early optomechanics experiments [64]. They have also
constituted a limiting factor of MIM experiments, where they
can mask quantum effects in the spectral regions where the peaks
appear [18,38,67]. At room temperature, peak displacement spec-
tral densities at the level of (1− 10 am)2/Hz have been measured
for commonly employed mirror geometries [64–66].

The purpose of our flat mirror’s “exoskeleton” [shown in
Fig. 3(a)] is to reduce the impact of this noise. Indeed, this silicon
substrate is structured with a phononic crystal similar to the one
employed as membrane support in earlier work [68,69]. It is modi-
fied in such a way that if bonded to the Pyrex wafer that carries the
mirror reflective coating, the joint structure exhibits an acoustic
bandgap in the MHz frequency regime. We have verified the exist-
ence of the bandgap by measuring the out-of-plane motion of the
mirror surface in response to a swept excitation with a piezoelectric
transducer [Fig. 3(b)]. Within the bandgap, we therefore expect no
substrate thermal noise peaks to appear at a relevant level.

Informed by earlier studies of guided acoustic-wave Brillouin
scattering in single-mode fiber [70], we would expect the acoustic
resonances of the fiber mirror to exhibit a sparse spectrum and
in particular remain confined to high frequencies & 10 MHz. A
dedicated study [71] of a fiber cavity has revealed, however, that,
e.g., fiber bending modes can occur already in the MHz regime,
and more importantly, also the existence of a broadband noise at
the level of about (20 am)2/Hz in the MHz frequency region.

We have independently analyzed the background noise in our
composite exoskeleton/fiber-mirror cavity, with a dedicated mea-
surement of its apparent displacement noise with the membrane
removed. The result is shown in Fig. 3(c). Not only does it display
peaks already above 2 MHz, but it does indeed also show broad-
band noise, which reaches the level of ∼(10 am)2/Hz at 1 MHz,
well compatible with earlier measurements [71] (note that we use
only one fiber mirror). We interpret the absence of any signature
of the exoskeleton’s bandgap in this joint noise spectrum to be a
consequence of the fact that the latter is dominated by broadband
noise of the fiber mirror. Whereas this noise is certainly sub-ideal,
we can tolerate the associated level of classical imprecision (with

S̄ imp,cl
xx · n̄th0m/2x 2

zpf ≈ 0.5) in the current experiments, since the
quantum noise contribution is much larger (see below).

Quantum noise in the detection is the last contribution to
consider. For a resonant probe in the unresolved-sideband
regime, the equivalent displacement noise power spectral den-
sity is given by S̄ imp,q

xx = ~2/ηdetCq S̄ th
FF = x 2

zpf/2ηdetCqγ . Here,
the overall detection efficiency is determined by the product
ηdet = ε · ηc · |β| · V · PQE, with the efficiency ε · ηc for cou-
pling cavity photons into the guided fiber mode, fiber losses |β|,
homodyne fringe visibility V , and the photodetectors’ quantum
efficiency PQE. We achieve ηdet ≈ 1.2%, dominated by a rela-
tively low cavity mode matching ε≈ 4%; see Supplement 1 for
details. We determine the quantum cooperativity Cq = 4g 2/κγ

of the probe from the measured power ratio of the two beams,
their known detunings, and the cooling beam’s coupling rate g c as
determined by the dynamical backaction measurements described
in Section 3.

Our laser does not provide enough optical power to reach unity
cooperativity with the probe, and simultaneously feed the cool-
ing beam and local oscillator with sufficient power. We therefore
operate with a relatively modest probe power, corresponding to
Cq = 0.1. We then have enough optical power available for the
local oscillator to overwhelm the detectors’ electronic noise with
shot noise. Whereas higher quantum cooperativity would cer-
tainly be desirable, the achieved value constitutes a significant
advancement over many tabletop room-temperature experiments,
reaching Cq ≈ 10−5 [43], Cq< 10−4 [5], Cq ≈ 4 · 10−3 [41],
and Cq ≈ 5 · 10−3 [42], and is on par with that in [44]. With
this available probe power, the expected quantum imprecision of
S̄ imp,q

xx ≈ (210 am)2/Hz is still well above the mirror noise.

C. Cooling Results

To cool the membrane mode close to its motional ground state,
we employ the setup shown in Fig. 2(a), and described already
in Section 3. Additional details can be found in Supplement
1. Cooling proceeds via the combined effect of laser sideband
and feedback cooling. That is, the cooling beam is detuned by
1c/2π ≈−80 MHz from the cavity resonance, and its dynamical
backaction damps the mechanical motion. The corresponding
“anchor” spectrum of mechanical fluctuations is recorded by
homodyne detection of the second, probe beam. The broadened
mechanical resonance width 0tot

m /2π ≈ 52 Hz can be straightfor-
wardly extracted from the homodyne spectrum via a Lorentzian
fit. Together with independently determined optical (1c, κ) and
mechanical (�m, 0m) parameters, we can estimate the resulting
occupation n̄ of the mode after sideband cooling from Eqs. (4) and
(5). Here, the bare mechanical damping0m is obtained from ring-
down measurements in a different setup and corrected for slightly
different pressure; see Supplement 1 for details. The calculated
sideband-cooled mode occupation n̄ ≈ 1070 quanta is then used
to calibrate the homodyne spectrum, which is originally recorded
in electrical (voltage) units. That is, the measured homodyne spec-
trum S̄yy(�)= S̄xx(�)+ S̄ imp

xx is calibrated in displacement units
so that

n̄ =
∫
∞

0

S̄xx(�)

2x 2
zpf

d�

2π
−

1

2
(8)

holds, whereby S̄xx(�)= |χ
tot
m (�)|

2 S̄ tot
FF , and χ tot

m (�) is the
Lorentzian mechanical susceptibility modified by dynamical
backaction.

We now turn on the feedback cooling of the membrane mode.
To this end, the homodyne signal y (t) is filtered and amplified,
and subsequently used to modulate the radiation-pressure force
Ffb(t)= h fb(t) ∗ y (t) exerted by the cooling beam via the acousto-
optic modulator [Fig. 2(a)]. In the frequency domain, the filter’s
transfer function is of the form h fb(�)= hmain(�)+ haux(�),
with

hmain(�)= G fbe i(�τfb−φfb)

[
0fb�

�2
fb −�

2 − i0fb�

]2

. (9)

Here, G fb is the overall feedback gain, the main filter central fre-
quency is �fb/2π = 1.34 MHz, and the bandwidth 0fb/2π =
77.86 kHz. The total delay is measured to be τfb ≈ 300 ns, and
the phase φfb is adjusted so as to give arg(h fb(�

tot
m ))≈ π/2 (where

�tot
m =�m + δ�

p
m + δ�

c
m, and δ�p

m is the optical spring from
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Fig. 3. (a) Photograph of an exoskeleton mirror, showing the silicon phononic crystal structure underneath the Pyrex wafer, on which a mirror was
coated. Interference fringes indicate areas where the Pyrex–silicon bonding was not successful. Below is a schematic cross section of the device. (b) Spectrum
of the driven response on different parts of the exoskeleton mirror: the center (red) exhibits a suppression compared to the frame (blue) for frequencies in a
window around 1.5 MHz. The sharp peak within this window is an externally applied calibration tone. The light gray trace corresponds to detection noise.
(c) Measured homodyne spectrum of the empty optical cavity, presented as frequency noise (left axis, black) and displacement noise (right axis, blue). The
dashed gray line indicates (frequency)−1 scaling. Both this behavior at low frequencies and the discernible peaks have been observed in fiber cavities. The
light red shading indicates the frequency region of the exoskeleton bandgap.

the probe), which corresponds to Ffb approximating a friction
force on the membrane. The function haux(�) represents a narrow
auxiliary filter designed to stabilize a mechanical mode just out-
side of the bandgap, excited by the main filter, while maintaining
h fb(�

tot
m )≈ hmain(�

tot
m ). More information on the filter and its

implementation can be found in Supplement 1.
Closing the feedback loop leads to a modified susceptibility of

the mechanical mode to forces:

χfb(�)=
χ tot

m (�)

1− χ tot
m (�)h fb(�)

. (10)

Furthermore, also the measurement (imprecision) noise is now fed
back as a force, so that

S̄xx(�)= |χfb(�)|
2 (S̄ tot

FF + |h fb(�)|
2 S̄ imp

xx

)
, (11)

whereas the measured (in-loop) homodyne spectra are modified as

S̄yy(�)= |χfb(�)|
2 (S̄ tot

FF + |χ
tot
m (�)|

−2 S̄ imp
xx

)
. (12)

Figure 4 shows the homodyne spectra measured with the feed-
back loop closed, and plotted normalized to the peak spectral
density in the ground state S̄xzp ≡ 4x 2

zpf/0m. Here, we use the
same conversion factor for the homodyne spectra from electrical
(voltage) to displacement units as obtained for the only sideband-
cooled, anchor spectrum described above, under the reasonable
assumption that this conversion is not affected by changes in the
feedback gain.

We fit the model of Eq. (12) to these spectra, adjusting the free
parameters G fb, φfb and the measurement imprecision in units
of quanta, n̄imp = S̄ imp

xx /(2S̄xzp). The total force noise in units
of quanta, n̄tot = S̄ tot

FF S̄xzp/(8~2), is fixed to the value expected
from the sum of thermal bath and quantum backaction heating.
Other parameters of the model are extracted from the homodyne
spectrum in the absence of feedback (�tot

m ,0tot
m ) or measured inde-

pendently. The best-fit values of the fitted parameters as a function
of gain are shown in Supplement 1. We plug these best-fit values
into Eq. (11), and integrate the resulting displacement spectral
density, as in Eq. (8), to obtain the mechanical occupation n̄ equiv-
alent to the measured spectra. The results are shown in Fig. 4(b) as a
function of feedback gain. As a sanity check, the described analysis

is done also for the anchor spectrum, constraining G fb ≈ 0, and the
estimated sideband-cooled occupancy is obtained to within≈ 1%.

The lowest occupancy we have obtained is n̄ = 30± 8, where
the confidence interval is derived by propagating the statistical
uncertainty in the area of the anchor spectrum, which is used for
calibrating the feedback-cooled spectra. The uncertainty propa-
gated from those of the fit parameters for the feedback-cooled
spectrum is negligible in comparison. We also expect systematic
effects such as power or polarization drifts to not contribute sig-
nificant additional uncertainty. From fits to the calibrated spectra,
we extract a very low number of imprecision noise quanta, with
the average over all gain values being n̄imp = (3.2± 0.6)× 10−5,

corresponding to S̄ imp
xx = (370± 20 am)2/Hz. Still, this number is

above the expected quantum imprecision noise. Correspondingly,
for higher gains, the achieved occupation reaches the limit of 30
quanta expected from integrating Eq. (11) in the presence of excess

imprecision S̄ imp,cl
xx , as compared to n̄fb

min ≈ 15 were S̄ imp,cl
xx neg-

ligible [see Fig. 4(b)]. Two possible causes of excess noise include
cooling beam bleedthrough to the probe homodyne spectrum,
due to imperfect polarization control, and residual TIN. However,
other sources cannot be ruled out based on an extended analysis
discussed in Supplement 1.

5. DISCUSSION

Regarding improvements to the experiment’s performance, first
and foremost, better alignment should help remedy the most
significant optical losses due to poor mode matching between the
cavity mode and the single-mode fiber. This should be possible
by using a more precise alignment stage that positions the fiber
with the fiber mirror before gluing it in place and, in particular,
sets the pitch and yaw angles relative to the exoskeleton mirror.
Namely, while the maximally attainable mode-matching efficiency
is determined by the decentration of the fiber mirror vertex with
respect to the fiber core, efficiencies of the order of 80% have
been achieved with fiber cavities [48], an ∼20-fold improvement
over the current performance. Improved mode matching would
simultaneously allow higher intracavity powers, even with the rest
of the experiment unchanged, so that Cq ∼ 2 can be reached and
combined with homodyne detection. It would also mitigate two
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(a)

(b)

Fig. 4. (a) Measured mechanical spectra for progressively higher
feedback gains from light to dark blue. The lightest trace is obtained with
pure sideband cooling and is used as a calibration anchor. The right peak is
the mode of interest, corresponding to the higher-frequency defect mode
in Fig. 1(c), now shifted by the optical spring. The gray trace corresponds
to shot noise of the light. Dark gray lines are fits to the data. The feature
to the left is a stiff mechanical mode not susceptible to radiation pressure
effects, and is excluded from the fit. (b) Occupation inferred from fits to
the sideband- and feedback-cooled spectra as a function of electronic gain.
Circles are color coded to the corresponding traces in (a), whereas squares
correspond to data not shown in (a) for clarity. The solid black line is the
theoretical prediction for quantum-limited imprecision (cf. Supplement
1), whereas the dashed gray line includes excess noise. The top of the
blue-shaded region indicates the ideal-filter threshold, n̄fb

min.

of the potential contributions to classical imprecision, which stem
from imperfect control of the cooling beam polarization (by allow-
ing for a larger LO power) and from TIN (by enabling stronger
sideband cooling). In the absence of other imprecision noise,
realistic further improvements to an overall detection efficiency of
ηdet = 50% then enable n̄ < 1 even in the presence of fiber mirror
noise, according to Eq. (7). To reach n̄ < 0.5, the mirror noise
could be suppressed by a factor of 10. This might be accomplished
by replacing the fiber mirror with a second exoskeleton mirror,
featuring a concave indentation made by laser ablation [72] or by
solvent vapor reflow and reactive ion etching [73].

In comparison with other experiments performing feedback
cooling of room-temperature devices, our achieved occupancy

is orders of magnitude below what has been demonstrated with
most suspended mechanical systems [53,74,75] and on par with
state-of-the-art nanodevices (n̄ = 27) [41], as well as the test masses
in advanced LIGO (n̄ = 11) [45]. Lower occupancies (n̄ < 1) have
recently been achieved with nanoparticles held in optical traps
[39,40], which are some five orders of magnitude lighter than the
resonators studied here. We see a great potential of the membrane
platform for room-temperature quantum experiments, due to its
relative simplicity and great versatility. In addition to the many
possibilities arising from a quantum-enabled optomechanical
interface (see Introduction), membrane resonators can be func-
tionalized to couple to charge [23,24] or spin [27,28], and can
be decorated with samples such as viruses or metal nanoparticles
[30]. This opens many application prospects that may benefit from
initializing the mechanical system in a low-entropy state, e.g., by
allowing to discern small displacements in phase space. A particu-
larly interesting prospect would also be to implement a compact,
wavelength-agnostic, room-temperature source of broadband
ponderomotive squeezing [76].
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