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In this work, space-time goal-oriented a posteriori error estimation using a partition-of-unity localization is applied to the
linear heat equation. The algorithmic developments are substantiated with a numerical example.
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1 Introduction

The dual weighted residual (DWR) method [2] for deriving goal-oriented error estimates using an adjoint equation has been
used sucessfully for both stationary and nonstationary methods. In order to employ the approach for mesh adaptivity, error
indicators must be localized. One of the first approaches for obtaining (cell-)local estimators is by applying integration-
by-parts to the global estimator. This results in the strong form of the estimator, which holds point-wise, allowing for the
calculation of cell-wise estimators and the use of a marking strategy. In [5] a new approach was proposed for stationary
problems, using a DoF-wise partition of unity (PU). In this work, we apply this approach to the nonstationary linear heat
equation and compare the results to the classical approach using integration by parts. Our implementation is based on the
DTM package dwr-diffusion [4] and the finite element library deal.II [1].

2 Discretization and Goal Oriented Estimator

We work with a space-time formulation, and refer the reader to [6] for a detailed description of the procedure. In the following,
we will use (·, ·)H for the spatial L2 scalar product (·, ·)L2(Ω). The discretization is split into the temporal and spatial part
to allow for different finite element spaces. The time interval I = (0, T ) is split into M subintervals and the spatial domain
Ω is discretized on each subinterval using quadrilaterals yielding M triangulations T m

h . The temporal function spaces are
obtained by taking polynomials of degree r on each subinterval Im. Using quadrilateral finite elements of degree s and
allowing for different spatial triangulations on each temporal subinterval we obtain two fully discrete function spaces Xr,s

k,h

and X̃r,s
k,h. The latter function space allows for discontinuities on the discrete time points. Using discontinuous elements of

degree 0 in time and linear elements in space we obtain the weak formulation of the heat equation. Find ukh ∈ X̃0,1
k,h, such

that A(ukh, φkh) = F (φ) for all φkh ∈ X̃0,1
k,h with

A(ukh, φkh) :=
M∑

m=1

∫

Im

(∂tukh, φkh)H + (∇ukh,∇φkh)H dt+
M∑

m=0

([ukh]m, φ
+
kh,m)H + (ukh,0, φ

−
kh,0)H

F (φ) :=

M∑

m=1

∫

Im

(f, φkh)H dt+ (u0, φ−
kh,0)H .

For a given global goal functional J(u) =
T∫
0

J̃(u(t)) dt we can now apply the Lagrange formalism to obtain an auxiliary dual

problem which has to be solved backward in time.
Find zkh ∈ X1,2

k,h, such that

M∑

m=1

∫

Im

(ψkh,−∂tukh)H + (∇ψkh,∇ukh)H dt = J ′
u(ukh)(ψ)∀ψ ∈ X̃0,1

k,h (1)

Since the heat equation is linear we obtain the following (see [2])
Proposition 2.1 It holds the error identity

J(u)− J(ukh) = F (z − zkh)−A(ukh, z − zkh)
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2 of 2 Section 18: Numerical methods of differential equations

In practice z is usually unknown and is replaced by a higher order solution, which is then interpolated to obtain the
approximate solution zkh. In our case this leads to J(u)− J(ukh) ≈ ηkh := F (zkh − ikhzkh)−A(ukh, zkh − ikhzkh) with
the interpolation operator ikh : X1,2

k,h → X̃0,1
k,h.

3 Error Localization with the PU Approach

The fundamental idea is the multiplication of the interpolation difference with a smart choice of 1 in all terms of the estimator.
For many finite element families the sum over all test functions forms a partition of unity (PU), such that most, if not all,
common finite element libraries bring all the ingredients for this approach with them.
The simplest choice in a space-time setting is χj ∈ X̃0,1

kh , which results in one spatial PU (χi,m)
#DoFs(T m

h )
i=1 in each time

interval Im. Insertion into the error estimator yields

ηkh =
M∑

m=1

#DoFs(T m
h )∑

i=1

ηmi , with ηmi := F ([zkh − ikhzkh]χi,m)−A(ukh, [zkh − ikhzkh]χi,m). (2)

4 Numerical Example

This test case, introduced in [3], is a moving hill circling around the center of the domain Ω = (0, 1)2 with homogeneous
Dirichlet boundary conditions on all four sides. Insertion of the manufactured solution

u(x, y, t) =
1

(1 + (x− 0.5− 0.25 cos(2πt))2 + (y − 0.5− 0.25 sin(2πt))2

into the heat equation yields the right hand side and the initial condition.
The functional of interest is the global L2 error over the space-time domain Q = (0, T )× Ω.

Table 1: Error, indicators and effectivity indices.

loop Nmax Kmax ∥e∥L2(Q) ηkh Ieff

1 10 4 1.78372e-01 1.93504e-01 1.085
2 15 7 1.19508e-01 1.45724e-01 1.219
...
8 163 133 1.03063e-02 7.44191e-03 0.722
9 244 166 7.69145e-03 6.26862e-03 0.815
10 366 205 5.81066e-03 5.51932e-03 0.950
11 549 256 4.88177e-03 4.64812e-03 0.952
12 823 322 3.81006e-03 4.06347e-03 1.067
13 1234 415 3.14812e-03 3.09928e-03 0.984
14 1851 532 2.64354e-03 2.58486e-03 0.978
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Fig. 1: L2 error convergence for refinement strategies
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