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Analysis-Suitable T-Splines of arbitrary degree and dimension
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This paper defines analysis-suitable T-splines for arbitrary degree (including even and mixed degrees) and arbitrary dimension.
We generalize the concept of anchor elements known from the two-dimensional setting, extend two existing concepts of
analysis-suitability and justify their sufficiency for linear independence of the T-spline basis.
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1 Introduction

T-splines were introduced in 2003 in computer-aided design as a new realization for B-splines on non-uniform meshes [1]
with local mesh refinement [2]. Shortly after, Isogeometric Analysis was introduced, and T-splines were applied as ansatz
functions for Galerkin schemes with promising results [3,4], but were proven to lack linear independence in certain cases [5],
which actually excludes them from the application in a Galerkin method. The issue was solved in 2012 [6], proving that
linear independence is guaranteed if meshline extensions at the hanging nodes, called T-junction extensions, do not intersect.
This criterion is referred to as analysis-suitability. Still in 2012, the introduction of dual-compatibility and its equivalence
to analysis-suitability [7] provided new insight on the linear independence of T-splines, and in 2013, analysis-suitability was
generalized to T-splines of arbitrary polynomial degree [8], still restricted to the two-dimensional case. At that time, techniques
for the construction of 3D T-spline meshes from boundary representations were introduced [9, 10], motivating the theoretical
research on T-splines in three space dimensions, but in particular the linear independence of higher-dimensional T-splines
was only characterized through the dual-compatibility criterion, until in 2016, a definition of T-junction extensions and a
more abstract version of analysis-suitability in three dimensions [11] was introduced and, in 2017, generalized to arbitrary
dimension [12], but only for odd polynomial degrees.

In this paper, we give a dimension-independent definition of analysis-suitable T-Splines of arbitrary degree. We general-
ize both approaches to analysis-suitability, the abstract and the geometric one, and argue that both are sufficient for linear
independence of the corresponding T-splines.

The rest of this paper is organized as follows. Section 2 generalizes T-splines of arbitrary degree, in particular the concept
of anchor elements, to arbitrary dimension and explains the construction of the T-spline blending functions. Section 3 gives
a generalization of analysis-suitability in the sense of [12] to arbitrary degree, called abstract analysis-suitability, and a gen-
eralization of analysis-suitability in the sense of [8] to arbitrary dimension, called geometric analysis-suitability. Finally, we
sketch a proof that geometric analysis-suitability is sufficient for abstract analysis-suitability, and hence that both criteria are
sufficient for linearly independent T-splines. In Section 4, we give conclusions and outlook to future work.

2 Multivariate T-Splines

We consider a rectangular index domain 2 = XZ:1[07 Ng], with N, € Nfor k = 1,...,d and the corresponding para-

metric domain ) = Xzzl[&’f, 13 f\,k] Let T be a mesh of €, consisting of open axis-parallel boxes with integer vertices.
For k = 1,...,d, we denote by H*) the set of k-dimensional mesh entities of T. The union of all element boundaries
Sk = Upes 0T = U?;S HU) = Q\ T is called the skeleton of T. For an index set & = {k1,..., %, } and a d-dimensional

(volumetric) element 7 = Ty X --- x Ty € H@ = T composed from open intervals 77, ..., Ty, we denote the (d — n)-
dimensional, x-orthogonal interfaces by H®) (T), i.e.

H(T) = {T =Ty x---x Ty | T; C 0T for j € k, Tj = Tj for j & x},

where the components Tj are either singleton sets or open intervals with start and end points in {0, ..., N;}.

The global set of x-orthogonal mesh entities is denoted by H*) = Urer HW)(T) € (4= with equality only if n = 0
or n = d, see Figure 1 for a 3D illustration. Note that x may be empty, which yields H?)(T) = {T'} and H?) = 7.

For polynomial degrees p = (p1, . ..,pq) € N%, we split the index domain 2 into an active region AR and a frame region
FR, with

d
AR::)(HP’“;:%J,N,C—V’CJBH and FR:= O\ AR.
k=1
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We restrict ourselves to certain types of index T-meshes which we call admissible. The index T-mesh defines T-Splines
based on the knot vectors associated with the anchor elements. Since we consider p-open knot vectors in the construction, we
require the following condition on the T-meshes.

Definition 2.1 (T-junctions, admissible meshes) We define forany £ =1,...,dandn =0, ..., N; the slice

d

Su(n) = X[0,1] x {n} x X [0,n;] = {(x1,...,24) €O | &; =),
J=1 j=k+1

and we call an interface E € H(4=2) with E ¢ 0$) a hanging interface or T-junction if it has valence |[{ H € H~V | E c 0H}| < 4.
Finally, a mesh 7 is called admissible if fork =1,...,d

pr+3
2

Si(n) C Sk forn:0,...,{pk;—3

Jandn:Nk—{ J,...,Nk, (1)

and if there are no hanging interfaces in the frame region.

Definition 2.2 (anchors) Let p = (p1, ..., pq) be the vector of polynomial degrees of the T-splines. The set of anchors is
then defined by

A={AcH"® | AcCAR} withr={l]psodd}.

Definition 2.3 (Index sets and vectors) For any mesh entity £ = E; x --- x Eq € H®) with an index set £ C {1,...,d},
we define the index sets

J;(E) ={neN|Ey x---x Ej_1 x{n} x Ej41 x - x Eg c gy,
The index vectors v;(A) for an anchor A = A; X --- x Ay are defined as subsets of the index sets J;(A ) given by:

« If p; is odd, then v;(A) € NPi*2 consists of the p; + 2 consecutive indices £y, ..., £y, +1 in J;(A), such that A; =
{€(p,+1)/2} is the middle element.

« If p; is even, then v;(A) € NPiT2 consists of the p; + 2 consecutive indices £o, ..., ¢y, +1 in J;(A), such that A; =
(€p, /25 Ly, j241) is the interval bounded by the two middle elements.

An example is given in Figure 2. With p = (3, 2), the set of anchors is given by all the vertical line segments in the active
region AR. In Figure 2 the anchor A = {3} X (2, 3) is marked by a solid dot. The index sets are given by fixing one coordinate
and checking for which integer it is in the set of vertices, hence J;(A) = {0,1,2,3,5,6,7} and J3(A) = {0,1,2,3,4,5}.
In the first coordinate we have p; = 3 (odd), thus we choose the p; + 2 = 5 indices £},..., ¢}, s.t. 3 = 3 and we
get v (A) = (1,2,3,5,6). In the other direction we have p; = 2 (even), and we choose again the p2 + 2 = 4 indices

H(2:3)
, (1,
i e i Ja(A)
5 ©
H(2:3)
H(1:2)
4
D
(1.2 @ H(1.2) 3
A J1(A)
H(, 2
T3 H(2:3) 1
< oo 0 o
oo 0 1 2 3 4 5 6 7
Fig. 1: Visualization of the different entities. The lines H(*?) Fig. 2: Visualization of index sets and vectors for an anchor
have coordinates x; and x; fixed, and the planes (resp. faces) A. The filled ellipses resp. circles correspond to the indices
H*) have coordinate z, fixed. For sake of simplicity, the ver- of the index set that fill the index vector. The marked entities
tices have been left out in this example. correspond to the indices used for the index set, resp. vector.
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03, ... 03, st (02,03) = (2,3) and we get vi,(A) = (1,2, 3,4). Since the index vector v;(A) is associated to the knot vector
(Eers s o +2), the support of the T-Spline at the anchor A is
Pr

> 1 ¢l 2 +2
supp BA = [51 ’ 66] X [61 ) 54]
In a structured, uniform mesh, this construction yields the usual tensor-product B-spline basis. However, a non-uniform
refinement (i.e. adaptive) results in meshes as demonstrated in Figure 2, where B-splines or NURBS cannot be applied.

Definition 2.4 (T-spline) For p; € N, we denote by By, (a): Q — R the univariate B-spline function of degree p; that is
returned by the Cox-deBoor recursion with knot vector &, (a) = (&egs - - - Egpj +1)- The T-spline function associated with the
anchor A is defined as

d
Ba(Gry---:¢a) =[] Boyay(&), for (G, Ca) €9, 0]
j=1

~

and the corresponding T-spline space is given by 81 4(€2) = span{Ba | A € A}. The index support of B will be denoted
by suppq(Ba) = XZ:1 conv(vg(A)), where conv (M) is the convex hull of a set M.

3 Analysis-Suitability

Definition 3.1 (Abstract T-junction extensions and analysis-suitability) We define forallj =1,...,dandn =0,...,N;
the abstract T-junction extension
Nj
ATJ;(n) =S;(n)N U suppg(Ba) N U suppg(Ba) and ATJ; = U ATJ;(n).
AcAa AcA n=0

n€d; (A) ngd;(A)

We call the mesh T abstractly analysis suitable (AAS) if the abstract T-junction extensions are pairwise disjoint, i.e. if
ATJ; NATJ; = O for i # j.

This definition is applicable in the index space as well as in the parametric space, and it can be shown that AAS T-meshes
generate linearly independent T-splines, see [12, Theorems 5.3.14 and 5.3.15]. However, an application in practice as a
sufficient criterion for linear independence is likely to be more expensive than checking for singularity of the system matrix,
including assembly. We therefore introduce a second, geometric approach to analysis-suitability which refers to the classical
notion of T-junction extensions, see e.g. [6, 13, 14].

Definition 3.2 (Geometric T-junction extensions and analysis-suitability) LetT = Ty x - - - x Ty € H(@=2) be a T-Junction,
i.e. T is a hanging interface, with T; and T, being singletons, and let Jj(T) be its corresponding index sets. For each index k
we define the extension (index) vector v (T), to be the vector of the (pi + 1) consecutive indices of Jj(T), s.t. Ty, is the middle
element (see also the definition of index vectors for anchors). Further, let £ = i or £ = j be the index, s.t.

GTJ(T) := Se(Te) Neonv([vf(T) x - - x v§(T)]) ¢ HY.

We then call GTJ,(T) the geometric T-Junction extension of T. Further, we say that T is geometrically analysis-suitable
(GAS), if for all T1, T2 € H(4~2), with T1 and T2 hanging interfaces and corresponding direction 7 # j, there is GTJ;(T1) N
GTJ;(T2) = 0.

Note that ¢ is not necessary unique, however, if the mesh is geometrically analysis-suitable it is by definition.

The key ideas in both definitions are the same, i.e. the T-Junction extensions are required to be pairwise disjoint. Although
the above definitions of analysis-suitability seem very different, the following theorem shows their connection, namely, that
abstract T-junction extensions are neighborhoods of T-junctions.

Theorem 3.3 All GAS T-meshes are AAS.

Sketch of proof. We know that all uniform meshes (i.e., meshes without T-junctions and hence empty ATJs and non-
existent GTJs) are AAS and GAS. Consider a non-uniform T-mesh T and suppose w.l.o.g. that ATJ; # ( and hence
ATJ;(n) # 0 for some n € {0,..., N;}. Then there exists

x € ATJ1(n) = S1(n) N U suppq(Ba) N U suppg(Ba),

AcA AcA
nedi (A) n¢Ji(A)

and there exist anchors A = AQ x ... x AD A® = A®) ... x A®) ¢ A withn € 7;(AD) and n ¢ J;(A®) such
that x € S1(n) N supp(Bam)) N supp(Bae) ). The definition of J(e) yields that {n} x A(Ql) X oee X A(dl) C Yntvith
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and {n} x A(22) X oee X A(d2) ¢ D, Hence, there exist points 7,5 € Sy(n) N supp(Baw) N supp(Bae) such
that 7 € Sy(n) N UHCYTD and s € Sy(n) \ UH D, Somewhere between r and s is a hanging interface T C S;(n) N
supp(Bam ) N supp(Bae ) N UHH . The maximal distance between x and T are 23* segments in dimensions with odd
polynomial degree and § segments in dimensions with even polynomial degree, except the first dimension, since both 2 and T
are in Sy (n).

Consequently, the arbitrarily chosen z € ATJ; is always contained in some geometric T-junction extension, and hence the
union of all geometric T-junction extensions in first direction is a superset of the union of the corresponding abstract T-junction
extension,

zeGTI(T)C | J GTI(T) forallz € AT]; = AT, C [ GTJy(T)

T’ T-junction T’ T-junction
in direction 1 in direction 1
and analogously for other dimensions 7 = 2,...,d.
If T is not AAS, then two ATJs intersect, so will two GTJs, and hence T is not GAS. This concludes the proof. O

4 Conclusions & Outlook

We have generalized analysis-suitability of T-splines to arbitrary degree in higher dimensions. In addition to the abstract
notion of analysis-suitability developped in [12], a generalized version of classical geometric T-junction extensions was shown
to be an appropriate tool for analysis-suitability as well. Ongoing work is the detailed elaboration of the sketched proof of
Theorem 3.3 and the precise application of [12, Theorems 5.3.14 and 5.3.15] to the definitions given here, furthermore an
implementation for trivariate AS T-splines and the development of anisotropic refinement schemes that preserve analysis-
suitability.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References

[1] T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, T-splines and t-NURCCs, in: ACM SIGGRAPH 2003 Papers on - SIGGRAPH
'03, (ACM Press, 2003).
[2] T.W. Sederberg, D.L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche, T-spline simplification and local refinement, in:
ACM SIGGRAPH 2004 Papers, , SIGGRAPH 04 (Association for Computing Machinery, New York, NY, USA, 2004), p. 276-283.
[3] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and T. Sederberg, Computer Methods in Applied Mechanics
and Engineering 199(5), 229-263 (2010), Computational Geometry and Analysis.
[4] M.R. Dorfel, B. Jiittler, and B. Simeon, Computer Methods in Applied Mechanics and Engineering 199(5), 264-275 (2010), Com-
putational Geometry and Analysis.
[5] A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 199(23), 1437-1445 (2010).
[6] X.Li,J. Zheng, T. W. Sederberg, T.J. Hughes, and M. A. Scott, Computer Aided Geometric Design 29(1), 63-76 (2012), Geometric
Constraints and Reasoning.
[7] L. Beirdo da Veiga, A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 249-252, 42-51
(2012), Higher Order Finite Element and Isogeometric Methods.
[8] L. Beirdo da Veiga, A. Buffa, and other, Mathematical Models and Methods in Applied Sciences 23(11), 1979-2003 (2013).
[9] Y.Zhang, W. Wang, and T. J. Hughes, Computer Methods in Applied Mechanics and Engineering 249-252, 185-197 (2012), Higher
Order Finite Element and Isogeometric Methods.
[10] W. Wang, Y. Zhang, L. Liu, and T.J. Hughes, Computer-Aided Design 45(2), 351-360 (2013), Solid and Physical Modeling 2012.
[11] P. Morgenstern, SIAM Journal on Numerical Analysis 54(4), 2163-2186 (2016).
[12] P. Morgenstern, Mesh Refinement Strategies for the Adaptive [sogeometric Method, PhD thesis, Friedrich-Wilhelm-University Bonn,
June 2017.
[13] L. Beirdo da Veiga, A. Buffa, D. Cho, and G. Sangalli, Computer Methods in Applied Mechanics and Engineering 249-252, 42-51
(2012).
[14] L. Beirdo da Veiga, A. Buffa, G. Sangalli, and R. Vdzquez, Acta Numerica 23, 157-287 (2014).

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. Www.gamm-proceedings.com

35U01] SUOWILLIOD) SAEBID 3| ddke aU) Aq pauIAOB 31 SO O 188N J0 S9N 10} AZRIq1 8UIIUO /3| I UO (SUOIPUOD-PUE-SWLB}LI0D" A8 |1 ARe.q U UO//SAL) SUORIPUOD PUE SLLB | 3U) 885 *[£202/0T/LT] U ARIGIT 3UIIUO A3 11 SRUIO!IGIGSUO IeULIOJU | BU3SIULER L A EZ00TZ0Z WILLE/Z00T 0T /10p/00 A3 | 1M ATeiqjjou uo//Say WOy papeojumod T “TZ02 “T902LT9T



