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A Computational Model for Biological Tissues Considering the Influence
of Injury on Growth and Remodelling
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Biological tissues adapt to changed loading conditions through growth and remodelling (G&R) to reestablish a so-called
homeostatic state. On the other hand, loading conditions above their physiological limits, as during trauma or surgical pro-
cedures, cause injury and can initiate pathological G&R. Herein, a modelling approach for G&R influenced by injury is
presented combining the theories of plasticity and homogenised constrained mixtures. The results show that injury has a
significant impact on the G&R behaviour and thus on the accomplishment of homeostasis.
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1 Introduction

Soft biological tissues adapt continuously to their mechanical state by the addition of new mass (growth) to the tissue and mass
turnover (remodelling) within the tissue. In addition, tissues can also be damaged when unphysiologically loaded. Damage
in collagen fibres is considered the most important since elastin deforms elastically up to high strains. Of several damage
mechanisms in the fibres, the interstrand delamination, i.e. the permanent elongation of collagen molecular nanostructure,
seems to play a crucial role [1]. The presented computational model considers the influence of injury on G&R. The interstrand
delamination is modelled using the theory of elastoplasticity for fibre-reinforced matrices as presented by Gasser and Holzapfel
in [2]. Growth and remodelling is added following the approach by Cyron et al. in [3] which is based on the homogenized
constrained mixture theory.

2 Methods

The deformation gradient F is multiplicatively decomposed into elastic Fie, plastic Fip, remodelling Fir and growth Fig defor-
mation gradients. Two constituents, collagen fibres (i = c) and the elastin matrix (i = m) are considered. Note that both
constituents experience the same total deformation F but different elastic and inelastic deformations, see Fig. 1. Injury and

Table 1: Material and simulation parameters

µ 80 J/kg ρc0(0) 300 kg/m3

k1 160 J/kg ρm0 650 kg/m3

k2 3.5 ã0 {0.3, 0.5, 1.0}
a0 ã0/||ã0||

Injury [2] G&R [4]
τ0 80 kPa σhom 60 kPa
h 50 kPa Tr 1.5 s
τ∞ 200 kPa kσ 0.02
a0 0.1

Fig. 1: Decomposition of the deforma-
tion gradient
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Fig. 2: Cauchy stresses with and with-
out injury over stretch

remodelling are assumed to occur only in the collagen fibres. Growth is the same for both constituents, Fc
g = Fm

g = Fg. An
anisotropic, invariant-based Helmholtz free energy function

Ψ(Fc
e,F

m
e , a0, A, p, θ) = ρc0 (ψc

σ(Fc
e, a0) + ψc

A(A)) + ρm0 ψ
m(F̄m

e ) + ρ0ψL(p, θ) (1)

is defined as a function of the elastic deformations, the fibre direction a0 in the reference configuration, an injury-related
variable A, a pressure p and strain variable θ. The free energy is additively decomposed into a free energy for collagen
(superscript c), elastin (m) and a term accounting for the nearly incompressible behaviour of tissues (ΨL). A selective Hu-
Washizu functional with the constraint for the volumetric deformation det(F)/det(Fg) = 1, which restricts the volume
change to the growth deformation, is employed. Since the reference mass density changes due to G&R, the free energies are
defined per unit mass and multiplied by the reference mass densities per unit volume of the whole tissue. The total reference
mass density is ρ0 = ρc0 + ρm0 . To account for injury, the collagen free energy is again additively decomposed into an elastic
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2 of 2 Section 2: Biomechanics
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Fig. 3: Decomposed deformation gradient components [F]11 without (left) and with (right)
injury over time
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Fig. 4: Reference collagen densities rela-
tive to initial reference density over time

term ψc
σ and a plastic term ψc

A associated with the permanent elongation due to interstrand delamination. Plastic flow is
governed by a combined linear-exponential hardening [2] with the internal variable A as a hardening variable. G&R governs
the change of the reference total mass density ρ̇0 = ρ̇c0 + ρ̇m0 , where the collagen density rate ρ̇c0 is governed by the difference
between the current Cauchy stress and a homeostatic stress value, whereas the elastin density is assumed to be constant in
time (i.e., ρ̇m0 = 0). The detailed approach is presented by Braeu et al. in [4]. Following the slow-growth assumption, the
time-scales of growth and elastoplastic deformations can be clearly separated. As a consequence, the plastic deformation and
G&R are implemented in a staggered way.

3 Numerical Examples

The features of the model are investigated by a uniaxial tension test on an H1P0 one-element cube with edge length 1 cm.
The maximum stretch λ3 = 1.5 of the top surface is achieved after 1 s and held constant afterwards. G&R is activated after
1.5 s and isotropic growth is considered. Two simulations are compared: in the first simulation, the material deforms only
elastically before G&R whereas in the second, it is damaged during loading. The stresses are derived using an exponential
function for collagen and a Neo-Hookean approach for the matrix

ψc
σ =

k1
2k2

(
ek2(I4−1)

2 − 1
)
, ψm =

µ

2

(
Ī1 − 3

)
, (2)

where k1, k2, µ are material parameters, I4 the quadratic stretch of collagen in fibre direction and Ī1 the first invariant of the
isochoric part of the elastic matrix deformation gradient. The material parameters are listed in Tab. 1.

For both simulations, the Cauchy stresses progressively decrease at λ = 1.5 due to G&R, converging towards the homeo-
static state, see Fig. 2. However, before G&R, the evolution of the stresses differ between both simulations. This difference
causes different evolutions of growth and remodelling and thus total deformations, see Fig. 3. The evolution of the reference
densities of collagen relative to the initial reference density is depicted in Fig. 4. The density changes with injury 9.7 % and
without 18.0 %. The results show that the impact of injury on G&R is evident and hence should be considered in further
research. The approach has also been applied to idealized axisymmetric artery models. These results and modifications of
the presented approach will be discussed in future publications. In particular, the biochemical and cellular reaction to injury
driving G&R is an essential ingredient to be modelled and incorporated.
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