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Summary
In this article, we present an extension of the formulation recently developed by
the authors to the structural dynamics setting. Inspired by a structure-preserving
family of variational integrators, our new formulation relies on a discrete bal-
ance equation that establishes the dynamic equilibrium. From this point of
departure, we first derive an “exact” discrete-continuous nonlinear optimization
problem that works directly with data sets. We then develop this formulation
further into an “approximate” nonlinear optimization problem that relies on
a general constitutive model. This underlying model can be identified from a
data set in an offline phase. To showcase the advantages of our framework,
we specialize our methodology to the case of a geometrically exact beam for-
mulation that makes use of all elements of our approach. We investigate three
numerical examples of increasing difficulty that demonstrate the excellent com-
putational behavior of the proposed framework and motivate future research in
this direction.
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1 INTRODUCTION

Data-Driven Computational Mechanics is a new computing philosophy that enables the evolution from con-
ventional data-free methods to modern data-rich approaches. Its underlying concept relies on the reformula-
tion of classical boundary value problems of elasticity and inelasticity such that material models, which are
calibrated from experiments, are replaced by some form of experimental material data. On the one hand,
Data-Driven Computational Mechanics eliminates some modeling errors and the associated uncertainty by employ-
ing experimental data directly. On the other hand, new sources of error emerge that are associated with
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the measurements and with the particular measuring technology employed. At least for the moment, there
is no consensus regarding which sources of error are the most severe, and therefore, there is still a long
way to go.

Among recent developments, two principal approaches of Data-Driven Computational Mechanics can be distin-
guished. On the one hand, there is a direct one,1,2 whose methods are based on a discrete-continuous optimization
problem that attempts to assign to each material point a point in the phase space that under fulfillment of the
compatibility and equilibrium constraints is closest to the data set provided. Within that framework, some very
interesting advances are reported, for instance, regarding nonlinear elasticity,3 general elasticity,4 inelasticity,5 and
mixed-integer quadratic optimization problems.6 On the other hand, there is an inverse one,7-9 whose methods rely
on an inverse approach that attempts to reconstruct from the data sets provided a constitutive manifold with a
well-defined functional structure. In the context of these two families of methods, our recent work on approxi-
mate nonlinear optimization problems10 represents a hybrid approach, targeting at a synergistic compromise that
combines their strengths and mitigates some of their main weaknesses, in particular the high computational cost
associated with the resolution of a discrete-continuous nonlinear optimization problem for the direct approach and
the limitation to a special functional structure that only allows the explicit definition of stresses for the inverse
approach.

Data-Driven Structural Dynamics, the application of Data-Driven Computational Mechanics principles to struc-
tural dynamics problems, is currently less developed, with a few papers published so far. For instance, in Refer-
ence 11, the data-driven solvers for quasistatic problems developed in References 1,2 were extended to dynamics,
relying on variational time-stepping schemes such as the Newmark algorithm. In Reference 12, a thermodynam-
ically consistent approach that relies on the “General Equation for Non-Equilibrium Reversible-Irreversible Cou-
pling” formalism was presented, which enforces by design the conservation of energy and positive production of
entropy.

The central goal of the present work is the formulation of an approximate nonlinear optimization problem for
Data-Driven Structural Dynamics, which can be understood as the structural dynamics counterpart of the formulation
previously developed by the authors in Reference 10. The proposed approximate nonlinear optimization problem relies
on a discrete balance equation, which is inspired by a class of variational integrators13-20 and represents the dynamic
equilibrium. Since in our approach, no special functional structure of the constitutive manifold is assumed, the existence
of an energy function is in general not guaranteed, and therefore, energy-momentum methods19,21-24 are not directly
applicable. First, the proposed framework improves computational efficiency and robustness with respect to the type of
solvers that rely on discrete-continuous optimization problems. In particular, our approximate nonlinear optimization
problem can be solved with local sequential quadratic programming methods, circumventing the necessity of employ-
ing meta-heuristic methods. Second, the proposed framework can deal with implicitly defined stress-strain relations and
kinematic constraints, thus enlarging its range of applicability. Finally, we consider the case of a geometrically exact beam
element to demonstrate the advantages of our approach. Such a finite element model makes full use of our computational
machinery. Be aware that our primary goal is a proof of concept for our new approximate nonlinear optimization approach
for Data-Driven Structural Dynamics, and therefore, the identification of the underlying constitutive manifold is not
addressed here.

The remainder of this work is organized as follows: Section 2, the core of this article, presents two optimization
problems for Data-Driven Structural Dynamics that are built upon a time integration approach inspired by a class
of structure-preserving methods. The first one is an “exact” discrete-continuous nonlinear optimization problem that
works directly with data sets. Such a problem can be considered as the starting point and is not going to be solved
within this work. The second one is an “approximate” nonlinear optimization problem that relies on a general approx-
imation of the underlying constitutive manifold, which circumvents completely the necessity of online handling of
data sets. For both problems, we define the associated Lagrangian functions and derive explicitly the first order opti-
mality conditions as well as the corresponding KKT matrices. We also carefully discuss the differences between the
static and dynamic cases. In Section 3, we specialize the proposed methodology for the geometrically exact beam
finite element in a purely dynamic setting. This particular structural model has been chosen because it makes use
of all elements of our approach. Section 4 presents simulation results that illustrate the capability of the derived
approach with special emphasis on preserved quantities along the discrete motion, which is seen as the solution of a
sequence of successive nonlinear optimization problems. Finally, in Section 5, we draw concluding remarks and propose
future work.
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2 NONLINEAR OPTIMIZATION PROBLEMS

The definition of successive nonlinear optimization problems in Data-Driven Structural Dynamics implies the parti-
tioning of the considered time interval [ta, tb] into subintervals [ti, ti+1] such that ta = t0 < … < tN = tb. We consider an
equidistant partitioning by a fixed time step, that is, ti+1 − ti = Δt ∀i ∈ [0,N − 1]. A very simple scalar cost function to be
minimized at time instant ti+ 1

2
∈ (ti, ti+1) can be defined as

 (ẽi+ 1
2
, s̃i+ 1

2
, ei+ 1

2
, si+ 1

2
) = 1

2
||ei+ 1

2
− ẽi+ 1

2
||2C + 1

2
||si+ 1

2
− s̃i+ 1

2
||2C−1 , (1)

where the pair (ei+ 1
2
, si+ 1

2
) ∈  denotes continuous strain and stress variables ei+ 1

2
and si+ 1

2
, respectively, a given finite data

set ̃ contains strain and stress measurements (ẽi+ 1
2
, s̃i+ 1

2
), C ∈ Rne×ne is a symmetric positive-definite weight matrix with

inverse C−1, and || ⋅ ||C and || ⋅ ||−1
C are norms derived from an inner product. At this point, there is no necessity to specify

ne since it depends on the structural model considered, which for now remains unspecified. The cost function (1) has to
be minimized under the following constraints: (i) the compatibility equation that enforces the equivalence between strain
variables and displacement-based strains at time instant ti+ 1

2
,

ei+ 1
2
− e(qi+ 1

2
) = 0, (2)

in which qi+ 1
2
∈ Q ⊂ Rm+n is the vector of generalized coordinates and Q stands for the configuration manifold; (ii) the

discrete balance equation that establishes the dynamic equilibrium, for instance, we chose an approximation inspired by
a family of variational integrators13-20 that renders the dynamic equilibrium at time instant ti as

M
qi+1 − 2qi + qi−1

Δt
+ Δt

2

(
B(qi− 1

2
)Tsi− 1

2
+ B(qi+ 1

2
)Tsi+ 1

2

)
+ ΔtG(qi)T𝝌 i −

Δt
2

(
f ext

i− 1
2
+ f ext

i+ 1
2

)
= 0, (3)

in which M ∈ T∗
qQ × T∗

qQ represents the constant mass matrix,

qi− 1
2
≈

qi−1 + qi

2
and qi+ 1

2
≈

qi + qi+1

2
, (4)

B(qi+ 1
2
) = 𝜕qi+ 1

2
e(qi+ 1

2
) ∈ L(Tqi+ 1

2
Q,Rne) is the Jacobian matrix of the displacement-based strains, similarly for B(qi− 1

2
),

G(qi) = 𝜕qi
g(qi) ∈ L(Tqi

Q,Rm) is the Jacobian matrix of the kinematic constraints at time instant ti, 𝝌 i ∈ Rm is the corre-
sponding vector of Lagrange multipliers, and f ext

i+ 1
2
∈ T∗

qi+ 1
2

Q represents the vector of generalized external loads, similarly

for f ext
i− 1

2
; and, (iii) the kinematic constraints at time instant ti+1,

g(qi+1) = 0, (5)

a finite set of integrable restrictions that belongs to Rm. As usual in the finite element setting, we assume that the Jacobian
matrix of the displacement-based strains B(q) and the Jacobian matrix of the constraints G(q) are linear in q, yielding sub-
stantial simplifications when calculating higher-order derivatives. Since the existence of an energy function is in general
not guaranteed, energy-momentum methods are not directly applicable.19,21-24

Now, to briefly investigate the conservation properties of the adopted time integration scheme, let us first neglect the
external forces and define the discrete momenta:

p+
i = M

qi − qi−1

Δt
− Δt

2
B(qi− 1

2
)Tsi− 1

2
− Δt

2
G(qi)T𝝌 i ∈ T∗

qi
Q, (6a)

p−
i = M

qi+1 − qi

Δt
+ Δt

2
B(qi+ 1

2
)Tsi+ 1

2
+ Δt

2
G(qi)T𝝌 i ∈ T∗

qi
Q. (6b)

These definitions are inspired by the discrete Legendre transforms that are widely used in the context of variational
integrators. Having at hand the discrete momenta, the discrete balance equation can be rewritten as p+

i − p−
i = 0, which
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leads to the existence of a unique momentum pi at time instant ti. In this discrete setting, there are two possible definitions
of linear momentum, namely

l−i =
Nnodes∑
a=1

𝔏trans(p−
i )a and l+i =

Nnodes∑
a=1

𝔏trans(p+
i )a, (7)

in which 𝔏trans filters out all non-translational contributions and Nnodes denotes the number of nodes. Provided that the
system under consideration is invariant under translations, that is, the orthogonality between the internal forces and the
infinitesimal generator of translation is given, a unique discrete linear momentum does exist, namely ld(qi,qi+1) = l−i = l+i ,
and is an invariant of the discrete motion, whose conservation law reads

ld(qi,qi+1) − ld(qi−1,qi) = 0. (8)

Likewise, there are two possible definitions of angular momentum, namely

j−i =
Nnodes∑
a=1

(qi)a × (p−
i )a and j+i =

Nnodes∑
a=1

(qi+1)a × (p+
i )a. (9)

Similarly, provided that the system under consideration is invariant under rotations, that is, the orthogonality between
the internal forces and the infinitesimal generator of the rotation is given, a unique discrete angular momentum does
exist, namely jd(qi,qi+1) = j−i = j+i , and is an invariant of the discrete motion, whose conservation law reads

jd(qi,qi+1) − jd(qi−1,qi) = 0. (10)

Finally, to avoid problems caused by overdetermination and singular KKT matrices in the subsequent optimiza-
tion problems, we eliminate the Lagrange multipliers from (3) by means of the null-space method. This requires
a null-space basis matrix N(qi) ∈ L(Rn,Tqi

Q) for ker(G(qi)) = {n ∈ Tqi
Q|G(qi)n = 0 ∈ Rm} with n = dim(Q) − m, the

system's number of degrees of freedom, and rank(N(qi)) = dim(ker(G(qi))) = n, such that

G(qi)N(qi) = 0. (11)

Then, dynamic equilibrium adopts the form

0 = N(qi)T
(

M
qi+1 − 2qi + qi−1

Δt
+ Δt

2

(
B(qi− 1

2
)Tsi− 1

2
+ B(qi+ 1

2
)Tsi+ 1

2

)
− Δt

2

(
f ext

i− 1
2
+ f ext

i+ 1
2

))
(12a)

= f (qi+1, si+ 1
2
), (12b)

where only the dependency on unknown quantities is explicitly indicated in f (qi+1, si+ 1
2
).

2.1 The “exact” discrete-continuous nonlinear optimization problem

Definition 1 (Exact DCNLP): Employing directly the strain and stress measurements, each successive
“Data-Driven Structural Dynamics” problem can be defined as a discrete-continuous nonlinear optimization problem
that can be stated as

min
(ẽi+ 1

2
,s̃i+ 1

2
,qi+1,ei+ 1

2
,si+ 1

2
)

1
2
||ei+ 1

2
− ẽi+ 1

2
||2C + 1

2
||si+ 1

2
− s̃i+ 1

2
||2C−1

subject to ei+ 1
2
− e(qi+ 1

2
) = 0,
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GEBHARDT et al. 5451

f (qi+1, si+ 1
2
) = 0,

g(qi+1) = 0. (13)

Note that the discrete variables (ẽi+ 1
2
, s̃i+ 1

2
) ∈ ̃ at time instant ti+ 1

2
appear only in the cost function. For fixed

(ẽi+ 1
2
, s̃i+ 1

2
), the exact DCNLP becomes a smooth nonlinear optimization problem (NLP), referred to as NLP(ẽi+ 1

2
, s̃i+ 1

2
).

Any solution provides a set of values (qi+1, ei+ 1
2
, si+ 1

2
) that (locally) minimizes the cost function for the fixed data point

under the constraints given above.

Theorem 1. The first-order optimality conditions of NLP(ẽi+ 1
2
, s̃i+ 1

2
) are:

𝛿qi+1 ∶ −1
2

B(qi+ 1
2
)T𝝀i+ 1

2
+ F(si+ 1

2
)T𝝁i + G(qi+1)T𝝂i+1 = 0, (14a)

𝛿ei+ 1
2
∶ C(ei+ 1

2
− ẽi+ 1

2
) + 𝝀i+ 1

2
= 0, (14b)

𝛿si+ 1
2
∶ C−1(si+ 1

2
− s̃i+ 1

2
) + Δt

2
B(qi+ 1

2
)N(qi)𝝁i = 0, (14c)

𝛿𝝀i+ 1
2
∶ ei+ 1

2
− e(qi+ 1

2
) = 0, (14d)

𝛿𝝁i ∶ f (qi+1, si+ 1
2
) = 0, (14e)

𝛿𝝂i+1 ∶ g(qi+1) = 0, (14f)

where we define

F(si+ 1
2
) ∶= 𝜕qi+1

f (qi+1, si+ 1
2
) = N(qi)T

( 1
Δt

M + Δt
4

U2(si+ 1
2
)
)

(15)

with

U2(s) ∶= 𝜕q(B(q)Ts) = U2(s)T . (16)

Proof. The Lagrangian function of NLP(ẽi+ 1
2
, s̃i+ 1

2
) is

fix(qi+1, ei+ 1
2
, si+ 1

2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1; ẽi+ 1

2
, s̃i+ 1

2
) = 1

2
||ei+ 1

2
− ẽi+ 1

2
||2C + 1

2
||si+ 1

2
− s̃i+ 1

2
||2C−1

+ 𝝀T
i+ 1

2

(
ei+ 1

2
− e(qi+ 1

2
)
)

+ 𝝁i
Tf (qi+1, si+ 1

2
)

+ 𝝂i+1
Tg(qi+1), (17)

where 𝝀i+ 1
2
∈ Rne are Lagrange multipliers of the compatibility equation at time instant ti+ 1

2
, 𝝁i ∈ Rn are Lagrange mul-

tipliers of the balance equation premultiplied by the null-space basis matrix evaluated at time instant ti, and 𝝂i+1 ∈ Rm

are Lagrange multipliers of kinematic constraints at the instant ti+1. To derive the corresponding first-order optimality
conditions, we calculate the variation of fix as

𝛿fix(qi+1, ei+ 1
2
, si+ 1

2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1; ẽi+ 1

2
, s̃i+ 1

2
) = 𝜕xfixfix(xfix; ẽi+ 1

2
, s̃i+ 1

2
)𝛿xfix (18)
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with the primal-dual NLP variable vector

xfix ∶= (qT
i+1, eT

i+ 1
2

, sT
i+ 1

2

,𝝀T
i+ 1

2

,𝝁i
T , 𝝂i+1

T)T , (19)

obtaining

𝜕xfixfix(xfix; ẽi+ 1
2
, s̃i+ 1

2
)𝛿xfix = 𝛿qT

i+1

(
−1

2
B(qi+ 1

2
)T𝝀i+ 1

2
+
(
𝜕qi+1

f (qi+1, si+ 1
2
)
)T

𝝁i + G(qi+1)T𝝂i+1

)
+ 𝛿eT

i+ 1
2

(
C(ei+ 1

2
− ẽi+ 1

2
) + 𝝀i+ 1

2

)
+ 𝛿sT

i+ 1
2

(
C−1(si+ 1

2
− s̃i+ 1

2
) + Δt

2
B(qi+ 1

2
)N(qi)𝝁i

)
+ 𝛿𝝀T

i+ 1
2

(
ei+ 1

2
− e(qi+ 1

2
)
)

+ 𝛿𝝁i
Tf (qi+1, si+ 1

2
)

+ 𝛿𝝂i+1
Tg(qi+1). (20)

Setting this to zero for any choice of the varied quantities yields the KKT conditions (14). ▪

Note that ei+ 1
2

and 𝝀i+ 1
2

can be eliminated by substitution, but as we are interested in the problem's global format, we
are not going to eliminate anything unless strictly necessary.

The linearization of the variation of fix reads

Δ𝛿fix(xfix; ẽi+ 1
2
, s̃i+ 1

2
) = 𝛿xT

fixSfix(qi+1, si+ 1
2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1)Δxfix, (21)

where the KKT matrix Sfix is symmetric indefinite and can be written

Sfix(qi+1, si+ 1
2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 1
4

U2(𝝀i+ 1
2
) + V (𝝂i+1) 0 Δt

4
U1(N(qi)𝝁i)T − 1

2
B(qi+ 1

2
)T F(si+ 1

2
)T G(qi+1)T

0 C 0 I 0 0
Δt
4

U1(N(qi)𝝁i) 0 C−1 0 Δt
2

B(qi+ 1
2
)N(qi) 0

− 1
2

B(qi+ 1
2
) I 0 0 0 0

F(si+ 1
2
) 0 Δt

2
N(qi)TB(qi+ 1

2
)T 0 0 0

G(qi+1) 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

with

V (𝝂) ∶= 𝜕q(G(q)T𝝂) = V (𝝂)T and U1(a) ∶= 𝜕q(B(q)a), (23)

for any constant vector a ∈ Rn+m. As the KKT matrix Sfix is non-singular, all local minima are strict minima and
NLP(ẽi+ 1

2
, s̃i+ 1

2
) can be solved by local sequential quadratic programming methods.

The overall DCNLP can be treated by meta-heuristic methods. Since it has no useful structure with respect to the
discrete variables (ẽi+ 1

2
, s̃i+ 1

2
) ∈ ̃, a mathematically rigorous solution requires enumeration, that is, finding the minimal

value over all measurements (ẽi+ 1
2
, s̃i+ 1

2
) ∈ ̃ by solving every NLP(ẽi+ 1

2
, s̃i+ 1

2
) globally. Therefore we suggest a different

approach: we propose to add suitable structure that enables us to replace the DCNLP with a single approximating NLP,
as already done in the static case.10
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GEBHARDT et al. 5453

The proposed exact DCNLP for Data-Driven Structural Dynamics can be understood as a further development of the
seminal work by Kirchdoerfer and Ortiz.1,2,11 There are, nevertheless, some important novel contributions of our current
work with respect to the state of the art that ought to be clearly stated. The first one is that our approach is capable of
dealing with fully nonlinear kinematics and strain measures independently of the structural elements chosen. The second
one is that our methodology can naturally handle algebraic constraints, which can be employed for enforcing a particular
kinematics based on the unit sphere S2, the special orthogonal group SO(3), and/or the special Euclidean group SE(3),
but can be also employed for enforcing special constitutive restrictions, for example, implicit stress-strain definitions. The
third one is that our approach relies on a discrete version of the dynamic equilibrium inspired by a structure-preserving
family of variational integrators. Therefore our approach goes beyond what has been already done. On this basis, we
derive next an approximate NLP with which we move forward in the remainder of this work.

2.2 The “approximate” nonlinear optimization problem

The idea here is to replace the measurement data set ̃ by enforcing the state to belong to a reconstructed constitutive
manifold that has a precise mathematical structure and that is derived from the data set. The underlying assumption
is, of course, that such a constitutive manifold exists and that we can reconstruct a (smooth) implicit representation h.
The reconstructed constitutive manifold (an approximation) will enormously facilitate the task of the data-driven solver,
avoiding the cost of solving a DCNLP, either by enumeration, or by heuristic or meta-heuristic methods which can in
general only provide approximate solutions that strongly depend on the initial guess and whose convergence properties
are inferior when compared to gradient-based methods.

Definition 2. An “approximate” constitutive manifold is defined as

̌ ∶= {(ěi+ 1
2
, ši+ 1

2
) ∈ R

2ne |h(ěi+ 1
2
, ši+ 1

2
) = 0 ∈ R

ne}. (24)

It satisfies

||h(ẽi+ 1
2
, s̃i+ 1

2
)|| ≤ 𝜀 ∀ (ẽi+ 1

2
, s̃i+ 1

2
) ∈ ̃, (25)

for some accuracy 𝜀 > 0. Additionally, physical consistency requires that h(ěi+ 1
2
, 0) = 0 implies ěi+ 1

2
= 0 and h(0, ši+ 1

2
) = 0

implies ši+ 1
2
= 0.

A constitutive manifold is said to be thermomechanically consistent if it is derived from an energy function Ψ such
that the following functional structure holds:7,10,25

h(ěi+ 1
2
, ši+ 1

2
) = ši+ 1

2
− 𝜕ěi+ 1

2
Ψ(ěi+ 1

2
). (26)

However, in the case of new composite materials or metamaterials that exhibit nonconvex responses, the reconstruc-
tion of the energy function may not be very convenient. More importantly, in some cases, the formulation of an energy
function may not even be possible. Thus, we adopt the constitutive manifold ̌ as introduced previously without assum-
ing any special functional structure of the constitutive constraint h. Further specializations are possible and should be
instantiated for specific applications of the proposed formulation.

Definition 3 (Approximate NLP): Each successive “Data-Driven Structural Dynamics” problem can be approximated
as a nonlinear optimization problem of the form

min
(ěi+ 1

2
,ši+ 1

2
,qi+1,ei+ 1

2
,si+ 1

2
)

1
2
||ei+ 1

2
− ěi+ 1

2
||2C + 1

2
||si+ 1

2
− ši+ 1

2
||2C−1

subject to ei+ 1
2
− e(qi+ 1

2
) = 0,

f (qi+1, si+ 1
2
) = 0,
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5454 GEBHARDT et al.

g(qi+1) = 0,

h(ěi+ 1
2
, ši+ 1

2
) = 0. (27)

Theorem 2. The first-order optimality conditions of the approximate NLP are:

𝛿ěi+ 1
2
∶ −C(ei+ 1

2
− ěi+ 1

2
) +

(
𝜕ěi+ 1

2
h(ěi+ 1

2
, ši+ 1

2
)
)T

𝝃i+ 1
2
= 0,

𝛿ši+ 1
2
∶ −C−1(si+ 1

2
− ši+ 1

2
) +

(
𝜕ši+ 1

2
h(ěi+ 1

2
, ši+ 1

2
)
)T

𝝃i+ 1
2
= 0,

𝛿qi+1 ∶ −1
2

B(qi+ 1
2
)T𝝀i+ 1

2
+ F(si+ 1

2
)T𝝁i + G(qi+1)T𝝂i+1 = 0,

𝛿ei+ 1
2
∶ C(ei+ 1

2
− ẽi+ 1

2
) + 𝝀i+ 1

2
= 0,

𝛿si+ 1
2
∶ C−1(si+ 1

2
− s̃i+ 1

2
) + Δt

2
B(qi+ 1

2
)N(qi)𝝁i = 0,

𝛿𝝀i+ 1
2
∶ ei+ 1

2
− e(qi+ 1

2
) = 0,

𝛿𝝁i ∶ f (qi+1, si+ 1
2
) = 0,

𝛿𝝂i+1 ∶ g(qi+1) = 0,

𝛿𝝃i+ 1
2
∶ h(ěi+ 1

2
, ši+ 1

2
) = 0. (28a)

Proof. The Lagrangian function of the approximate NLP is given by

(ěi+ 1
2
, ši+ 1

2
,qi+1, ei+ 1

2
, si+ 1

2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1, 𝝃i+ 1

2
) = fix(xfix; ěi+ 1

2
, ši+ 1

2
) + 𝝃T

i+ 1
2

h(ěi+ 1
2
, ši+ 1

2
)

= 1
2
||ei+ 1

2
− ěi+ 1

2
||2C + 1

2
||si+ 1

2
− ši+ 1

2
||2C−1

+ 𝝀T
i+ 1

2

(
ei+ 1

2
− e(qi+ 1

2
)
)

+ 𝝁i
Tf (qi+1, si+ 1

2
)

+ 𝝂i+1
Tg(qi+1)

+ 𝝃T
i+ 1

2

h(ěi+ 1
2
, ši+ 1

2
), (29)

where 𝝃i+ 1
2
∈ Rne are Lagrange multipliers that correspond to the enforcement of the strain and stress states to remain on

the constitutive manifold.
To find the first-order optimality conditions, the variation of  is calculated as

𝜕x(x)𝛿x = 𝛿ěT
i+ 1

2

(
C(ěi+ 1

2
− ei+ 1

2
) +

(
𝜕ěi+ 1

2
h(ěi+ 1

2
, ši+ 1

2
)
)T

𝝃i+ 1
2

)

+ 𝛿šT
i+ 1

2

(
C−1(ši+ 1

2
− si+ 1

2
) +

(
𝜕ši+ 1

2
h(ěi+ 1

2
, ši+ 1

2
)
)T

𝝃i+ 1
2

)
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GEBHARDT et al. 5455

+ 𝛿qT
i+1

(
−1

2
B(qi+ 1

2
)T𝝀i+ 1

2
+ F(si+ 1

2
)T𝝁i + G(qi+1)T𝝂i+1

)
+ 𝛿eT

i+ 1
2

(
C(ei+ 1

2
− ẽi+ 1

2
) + 𝝀i+ 1

2

)
+ 𝛿sT

i+ 1
2

(
C−1(si+ 1

2
− s̃i+ 1

2
) + Δt

2
B(qi+ 1

2
)N(qi)𝝁i

)
+ 𝛿𝝀T

i+ 1
2

(
ei+ 1

2
− e(qi+ 1

2
)
)

+ 𝛿𝝁i
Tf (qi+1, si+ 1

2
)

+ 𝛿𝝂i+1
Tg(qi+1)

+ 𝛿𝝃T
i+ 1

2

h(ěi+ 1
2
, ši+ 1

2
), (30)

with

x ∶= (ěT
i+ 1

2
, šT

i+ 1
2
, xT

fix, 𝝃
T
i+ 1

2

)T . (31)

Setting this to zero for any choice of the varied quantities yields the KKT conditions (28). ▪

The linearization of the variation of  can be expressed as

Δ𝛿(x) = 𝛿xTS(ěi+ 1
2
, ši+ 1

2
,qi+1, si+ 1

2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1, 𝝃i+ 1

2
)Δx. (32)

Here the KKT matrix S can be written as

S(ěi+ 1
2
, ši+ 1

2
,qi+1, si+ 1

2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1, 𝝃i+ 1

2
) =

⎡⎢⎢⎢⎢⎣
Sěě(ěi+ 1

2
, ši+ 1

2
, 𝝃i+ 1

2
) Sšě(ěi+ 1

2
, ši+ 1

2
, 𝝃i+ 1

2
)T ST

xě 𝜕ěi+ 1
2

g(ěi+ 1
2
, ši+ 1

2
)T

Sšě(ěi+ 1
2
, ši+ 1

2
, 𝝃i+ 1

2
) Sšš(ěi+ 1

2
, ši+ 1

2
, 𝝃i+ 1

2
) ST

xfix š 𝜕ši+ 1
2

g(ěi+ 1
2
, ši+ 1

2
)T

Sxfix ě Sxfix š Sfix(qi+1, si+ 1
2
,𝝀i+ 1

2
,𝝁i, 𝝂i+1) 0

𝜕ěi+ 1
2

g(ěi+ 1
2
, ši+ 1

2
) 𝜕ši+ 1

2
g(ěi+ 1

2
, ši+ 1

2
) 0 0

⎤⎥⎥⎥⎥⎦
, (33)

with

Sěě(ěi+ 1
2
, ši+ 1

2
, 𝝃i+ 1

2
) ∶= C + 𝜕ěi+ 1

2

(
𝜕ěi+ 1

2
g(ěi+ 1

2
, ši+ 1

2
)T𝝃i+ 1

2

)
= Sěě(ěi+ 1

2
, ši+ 1

2
, 𝝃i+ 1

2
)T , (34a)

Sšě(ěi+ 1
2
, ši+ 1

2
, 𝝃i+ 1

2
) ∶= 𝜕ši+ 1

2

(
𝜕ěi+ 1

2
g(ěi+ 1

2
, ši+ 1

2
)T𝝃i+ 1

2

)
, (34b)

Sšš(ěi+ 1
2
, ši+ 1

2
, 𝝃i+ 1

2
) ∶= C−1 + 𝜕ši+ 1

2

(
𝜕ši+ 1

2
g(ěi+ 1

2
, ši+ 1

2
)T𝝃i+ 1

2

)
= Sšš(ěi+ 1

2
, ši+ 1

2
, 𝝃i+ 1

2
)T , (34c)

Sxfix ě ∶=
[
0 −C 0 0 0

]T
, (34d)
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5456 GEBHARDT et al.

Sxfix š ∶=
[
0 0 −C−1 0 0

]T
. (34e)

Again the KKT matrix S is nonsingular, hence all local minima are strict and the approximate NLP is well solvable.
Since the proposed approach is built upon a generic, but sufficiently smooth, identified/reconstructed consti-

tutive manifold, experimental data have no direct influence on the convergence and precision properties of the
algorithm employed to solve the approximate NLP. The smoothness requirements on the identified/reconstructed
constitutive manifold are those prescribed by the smooth finite-dimensional nonlinear optimization theory. Exper-
imental data have, nevertheless, a direct influence on the offline identification/reconstruction step. The identifica-
tion/reconstruction from experimental data can be, for instance, carried out by means of manifold learning tech-
niques. It entails the appraisal of the inherent dimension and the shape, in an implicit embedding form, of the
low-dimensional intrinsic manifold. Such an underlying manifold is to be described by an atlas of local charts
that warrant the required continuity conditions. Moreover, strain-stress representations may become indeed very
difficult to derive, and in many situations, it is required to artificially complete missing information, which is
not present in the experimental data due to physical limitations of the experimental setting. Even if outside the
scope of the current work, these briefly mentioned points are of highest importance and thus, they should not be
underestimated.

To succinctly ponder on the computational efficiency that can be achieved by an optimal implementation of the
approximate NLP, we can start by determining dim(x), the size of the vector of variables for the corresponding primal-dual
formulation. Therefore, we have that:

• dim(q) = dim(𝝁) + dim(𝝂) = number of nodes × number of nodal variables,
• dim(e) = dim(s) = dim(𝝀) = dim(𝝃) = number of elements × number of elemental variables ×

number of integration points,
• dim(x) = 2 dim(q) + 6 dim(e).

So dim(x) = 2 × number of nodes × number of nodal variables + 6 × number of elements × number of elemental
variables × number of integration points. It is assumed, that the kinematic constraints are enforced at the nodal level,
and that the constitutive ones at the elemental level. Nonstandard finite element formulations that need non-integrable
constraints in time and space, that is, vanishing shear for the Kirchhoff rods26 or vanishing twist for the nonholonomic
rotating rigid body,27 would require further considerations. All involved matrices have a high degree of sparsity and thus,
can be implemented taking advantage of this feature. Special attention has to be paid to the fact that nodal constraints,
which are at most quadratic, and the null-space matrices, which are at most linear, can be computed analytically. This
allows computing the null-space matrix for the whole system very efficiently and the subsequent elimination of multi-
pliers from the balance equation can be computed by a sparse matrix-vector product. Such features are also present in
the underlying finite element approximation (FEM), whose number of unknowns, after removing the Lagrange multi-
pliers is equal to the number of nodes times the number of nodal variables. The elemental variables are obtained directly
from the nodal variables, and thus, they do not increase the dimension of the residuum vector. With optimized imple-
mentations and under the assumption that as usual the computational effort of an iteration is dominated by solving,
respectively, the Newton system (FEM) and the KKT system (approximate NLP), we can say that in general the effort
for the approximate NLP approach is roughly the same as the effort for the FEM approach multiplied by a small con-
stant factor. This is because the Newton system essentially comprises the constraints of the KKT system, except that
the variables (ě, š) and (e, s) are not distinguished. Thus, any extra effort in solving the KKT system is related to its
upper left block, the Hessian matrix of the Lagrangian, since the symmetric block structure of the KKT matrix will be
exploited. The exact value of the small constant factor then depends on the relative dimensions of the blocks and on their
sparsity.

2.3 Differences between the static and dynamic cases

There are important conceptual differences that need to be carefully analyzed when we formulate optimization problems
corresponding to the static and dynamic cases. The static variant can be classified as an extension of the classical boundary
value problem, cf. the standard mechanical setting. The constraint equation related to the balance equation results from
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GEBHARDT et al. 5457

the direct spatial discretization of the weak form of the equilibrium statement. Therefore, the only choices that can be
made are, in principle, the structural elements and the finite element technology to be used for investigating a particular
kind of structure.

In contrast, the dynamic variant can be classified as an extension of the classical initial-boundary value problem, cf. the
standard mechanical setting, and thus, a new dimension of complexity is to be considered. The restriction related to the
equilibrium statement can be approximated for instance by the direct temporal discretization of the continuous balance
equations as done by Kirchdoerfer and Ortiz,11 who employed the Newmark method in an entropy maximizing context.
But it can also be addressed by approximations inspired by discrete variational principles. These are, to the best of our
knowledge, the only suitable structure-preserving approaches in Data-Driven Computational Mechanics since they do
not require the existence of a potential energy function, which means that the discrete internal force and stiffness can
be composed from the evaluation of the continuous terms. Such an approximation has profound consequences when
we define the related nonlinear optimization problems. They should, by design, avoid destroying the order of the time
integration scheme and preserve at the same time the motion-invariant properties, an aspect that plays no role in the
static context.

As already introduced in the previous section, let us consider three successive equidistant time instants, that is,
ti−1, ti, ti+1, and two algorithmic intermediate time instants, that is, ti− 1

2
, ti+ 1

2
. A correct definition of the nonlinear optimiza-

tion problem for the dynamic case requires the cost function, the compatibility equation and the constitutive restriction
to be evaluated at the time instant ti+ 1

2
. The kinematic restrictions are to be computed at the time instant ti+1. Mean-

while, the dynamic equilibrium is to be evaluated at the time instant ti, which requires information from the time instants
ti−1, ti− 1

2
, ti, ti+ 1

2
, ti+1. This means that the nonlinear optimization problem for the static case cannot be recovered from

the nonlinear optimization problem for the dynamic case. Moreover, as the restriction forces are evaluated at the time
instant ti and the kinematic restrictions are evaluated at the time instant ti+1, there is no necessity for computing the
derivatives of the null-space matrix for building the KKT matrix (because this is evaluated at the same instant as the
restriction forces and not in the current configuration at time instant ti+1). From the viewpoint of efficient numerical
methods, this is of highest relevance, since the calculation of the null-space matrix involves the numerical decomposi-
tion of the Jacobian matrix of the constraints and thus, the derivative should be evaluated numerically, which is highly
inefficient. This very favorable feature is not present in the static problem, which requires the calculation of the deriva-
tives of the null-space matrix since the restriction forces are always evaluated at the current configuration. This fact
has also some consequences on the necessary and sufficient optimality conditions. The dynamic solver needs an ini-
tialization step to correctly impose the initial conditions in terms of discrete momenta (see, for instance, the works
on variational integration by Lew et al.14,15), which is achieved as a kinetic restriction and plays again no role for the
static case. Additionally, the dynamic case provides a natural warm-start for the algorithm, which is another feature
that is not present in the static solver, in which homotopy methods can be employed to this end. This missing fea-
ture may lead of course to convergence problems and could require the globalization of the optimization algorithm
employed.

In summary, even provided that the static and dynamic cases can be formulated using the same optimization princi-
ples, the resulting nonlinear optimization problems are different and thus, not equivalent in any form. However, it is very
appealing that several nonequivalent nonlinear optimization problems can be correctly derived by means of the same
optimization principles. In this context, we consider that a principle is a guideline that is to be followed in order to derive
the corresponding governing equations, namely, the KKT conditions for optimality. This is also what we would expect
from a general framework such as the one we are proposing here.

3 SPECIALIZATION OF THE PROPOSED APPROACH

In this section, we describe a structural model that is reformulated within the proposed setting of
Data-Driven Computational Dynamics. The model is a Data-driven Geometrically Exact Beam that is given in a
frame-invariant path-independent finite element formulation. It relies on a kinematically constrained approach, where
the orientation of the cross section is described by means of three vectors that are constrained to be mutually orthonor-
mal. This example has a very favorable mathematical structure that is exploited to derive analytically all the ingredients
related to the finite element formalism.
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5458 GEBHARDT et al.

F I G U R E 1 The geometrically exact beam: evolution
among configurations through the regular motion 𝝋(⋅; t)◦𝝋(⋅; 0)−1

3.1 Data-driven geometrically exact beam (dynamic setting)

The position of any point belonging to the beam shown in Figure 1 can be written as

𝝋(𝜽) = 𝝋0(𝜃3) + 𝜃1d1(𝜃3) + 𝜃2d2(𝜃3) ∈ R
3, (35)

in which 𝝋0 ∈ R3 is the position vector of the beam axis and d1 ∈ S2, d2 ∈ S2 together with d3 ∈ S2 are three mutually
orthonormal directors. The directors can be described by means of the unit sphere, which is a nonlinear, smooth, compact,
two-dimensional manifold that can be embedded in R3 as

S2 ∶= {d ∈ R
3|dTd = 1}. (36)

Special attention must be paid to the fact that this manifold possesses no special algebraic structure, specifically group-like
structure.28 On that basis, the rotation tensor for the cross section is simply obtained as 𝚲 = d1 ⊗ i1 + d2 ⊗ i2 + d3 ⊗ i3 ∈
SO(3), in which {i1, i2, i3} is the dual basis of the ambient space E3 (R3 with the standard Euclidean structure), that is,
the basis of the space of row vectors. The group of rotations is a nonlinear, smooth, compact, three-dimensional manifold
defined as

SO(3) ∶= {𝚲 ∈ R
3×3|𝚲T𝚲 = I, det𝚲 = 1}. (37)

In contrast to the unit sphere, this manifold does possess a group-like structure when considered with the tensor
multiplication operation, hence it is a Lie group.

The set of parameters 𝜽 = (𝜃1, 𝜃2, 𝜃3) is chosen in a way that the vector 𝜽 = 𝜃1d1 + 𝜃2d2 completely describes the cross
section. In the context of geometrically exact beams, the doubly covariant Green-Lagrange strain tensor, E♭(𝝋), can be
simplified by eliminating quadratic strains. Thus, its components are approximated as

Eij ≈ symm(𝛿i3𝛿jk((𝛾k − 𝛾k
ref) − 𝜖k

lm𝜃
l
(𝜔m − 𝜔m

ref))), (38)

where symm(⋅) stands for the symmetrization of the tensor considered. The subindex “ref” indicates the stress-free con-
figuration, 𝛿ij denotes the Kronecker delta, and 𝜖i

jk is the alternating symbol that appears in the computation of the cross
product in three-dimensional Euclidean space. From now on, we set 𝜃3 = 𝜎 to indicate every reference related to the arc
length of the beam. The scalars 𝛾 i are the components of a first deformation vector defined as

𝜸 =
⎛⎜⎜⎝
d1

T𝜕𝜎𝝋0
d2

T𝜕𝜎𝝋0
d3

T𝜕𝜎𝝋0

⎞⎟⎟⎠ . (39)
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GEBHARDT et al. 5459

For shear refer to first and second components, and for elongation refer to the third one. The scalars 𝜔i are the
components of a second deformation vector defined as

𝝎 = 1
2

⎛⎜⎜⎝
d3

T𝜕𝜎d2 − d2
T𝜕𝜎d3

d1
T𝜕𝜎d3 − d3

T𝜕𝜎d1
d2

T𝜕𝜎d1 − d1
T𝜕𝜎d2

⎞⎟⎟⎠ . (40)

For bending refer to first and second components, and for torsion refer to the third one. For sake of compactness, let
us introduce the vector containing all kinematic fields,

q(𝜎) = (𝝋0(𝜎)T ,d1(𝜎)T ,d2(𝜎)T ,d3(𝜎)T)T , (41)

and the vector that gathers the two strain measures obtained from the kinematic field,

e(q) =
(
𝜸(q) − 𝜸ref
𝝎(q) − 𝝎ref

)
. (42)

Additionally, we need to introduce the vector containing all generalized “strain” fields that is going to be tied by the
compatibility equation,

e =
(
𝜸 − 𝜸ref
𝝎 − 𝝎ref

)
, (43)

and the vector containing the two generalized “stress” fields,

s =
(

n
m

)
, (44)

which contains the cross sectional force and moment resultants, that is, three force components and three moment
components.

The operator that relates the variation of the displacement-based strains to the variation of the kinematic fields through
the relation 𝛿e(q) = 𝔅(q)𝛿q has the explicit form

𝔅(q) = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣

2d1
T𝜕𝜎 2𝜕𝜎𝝋0

T 0 0
2d2

T𝜕𝜎 0 2𝜕𝜎𝝋0
T 0

2d3
T𝜕𝜎 0 0 2𝜕𝜎𝝋0

T

0 0 d3
T𝜕𝜎 − 𝜕𝜎d3

T 𝜕𝜎d2
T − d2

T𝜕𝜎
0 𝜕𝜎d3

T − d3
T𝜕𝜎 0 d1

T𝜕𝜎 − 𝜕𝜎d1
T

0 d2
T𝜕𝜎 − 𝜕𝜎d2

T 𝜕𝜎d1
T − d1

T𝜕𝜎 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (45)

The mass matrix per unit of length is given by

M =
⎡⎢⎢⎢⎣
ℰ00I ℰ01I ℰ02I 0
ℰ01I ℰ11I ℰ12I 0
ℰ02I ℰ12I ℰ22I 0

0 0 0 0

⎤⎥⎥⎥⎦ , (46)

where I is the 3 × 3-identity matrix and ℰij is computed by means of ∫0
𝜚0𝜃

i𝜃jd0 for i and j from 0 to 2, with 𝜚0 and
0 representing the mass density per unit volume and the cross sectional area, both at the reference configuration,
correspondingly.

To perform the spatial discretization of the geometrically exact beam into two-node finite elements, we approximate
the kinematic fields as well as their admissible variations with first-order Lagrangian functions. Upon such a discretiza-
tion, we have that𝔅� B. The adopted numerical quadrature for the integration of elemental contributions is the standard
Gauss-Legendre quadrature rule. As usual, the integrals involving internal terms are computed by means of a one-point
integration scheme that avoids shear locking issues. Therefore, the evaluation of the kinematic fields at the single Gauss
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5460 GEBHARDT et al.

point is in fact an average of the nodal values, and their derivatives with respect to the arc length turn out to be the simplest
directed difference of the nodal values. Moreover, even for coarse discretizations, no additional residual stress corrections
are necessary. For an extensive treatment of geometrically exact beams in the non-data-driven finite element setting, see
References 29-33.

Finally and as in Reference 31, the mutual orthonormality condition among the directors is enforced at the nodal level
by means of the internal constraint

g(q) = 1
2

⎛⎜⎜⎜⎜⎜⎝

d1 ⋅ d1 − 1
d2 ⋅ d2 − 1
d3 ⋅ d3 − 1

2d2 ⋅ d3
2d1 ⋅ d3
2d1 ⋅ d2

⎞⎟⎟⎟⎟⎟⎠
. (47)

The associated Jacobian matrix is

G(q) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 d1
T 0 0

0 0 d2
T 0

0 0 0 d3
T

0 0 d3
T d2

T

0 d3
T 0 d1

T

0 d2
T d1

T 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (48)

The null-space projector corresponding to the internal constraint at the nodal level can be built by visual inspection
of the Jacobian matrix as

N(q) =
[

I 0 0 0
0 d̂1 d̂2 d̂3

]T

, (49)

where the algebraic operator (̂⋅) emulates the cross product.
Since the formulation of constraints related to usual boundary conditions, for example, rigid support,

simple support, movable support inter alia, are represented by linear equations in the nodal variables and
thus, their treatment is straightforward, we omit their systematic presentation. For further details, see
References 32,34.

Finally, having at hand all vectors and matrices indicated within this subsection, the construction of the equations
corresponding to the optimality conditions and their derivatives is straightforward.

4 NUMERICAL INVESTIGATIONS

In this section, we present three numerical examples that show the potential of the proposed approximate NLP for
Data-Driven Computational Dynamics. Specifically, we consider its specialization to the geometrically exact beam model.
The first example presents a verification of the proposed formulation, taking the underlying three-director based stan-
dard FE formulation for geometrically exact beams that is combined with an energy-momentum time integration
scheme based on the “average vector field”22 as proposed for slender structures in References 32,33. Such scheme pre-
serves not only the linear momentum, angular momentum and total energy, but also the symmetry of the tangent
stiffness matrix, a feature that is in general unavailable in energy-momentum approaches based on stress formulas
by González,21 Romero,23 and Gebhardt et al.33 We refer to that approach as EM-FEM. Such a reference numerical
model is equipped with the simplest linear constitutive law. In the second example, we investigate the behavior of
our framework for nonsymmetric explicitly-defined nonlinear constitutive laws, namely s = s(e). Finally, we investigate
in the third example the behavior of our framework for nonsymmetric implicitly-defined nonlinear constitutive laws,
namely e = e(s).

The problems considered along the first and second examples can also be addressed by any standard FE formulation in
its dynamic setting. The problem considered along the third one can be easily addressed in the context of our approximate

5460 GEBHARDT ET AL.
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GEBHARDT et al. 5461

F I G U R E 2 Finite element representation of the
beam structure. Circles indicate nodes with internal
constraints only. Blue and red arrows denote forces
along the vertical direction z and in the horizontal
x-y-plane, respectively

-0.1

0

0.1

0.6

z 
[m

]

0.2

0.3

0.4

y [m]

0.2
0.60.5

x [m]

0.40.30 0.20.10-0.1

NLP approach, but not by standard FEM. Whether such a constitutive law is physically feasible or not will be considered
in future works.

All the three examples are built on a curved beam structure whose geometry is described by a quarter of a cir-
cular arc with a total arc length of 1 m, which corresponds to a radius of 2

𝜋
m. The (nonphysical) inertial properties

are ℰ00 = 10 kg/m and ℰ11 = ℰ22 = 20 kgm. The structure is uniformly discretized into 20 two-node finite elements
(ie, a total of 21 nodes) and no further kinematic restrictions than the internal ones (orthonormality condition
among the three directors) are enforced. Figure 2 shows the finite element representation and loads applied. The
first node is located at the position (0, 0, 0)m. The nodes 2 to 4 are loaded with vertical nodal forces (0, 0,−20)N
and horizontal nodal forces (−10, 0, 0)N. For the nodes 8 to 14, we have (0, 0, 15)N and (7.5,−7.5, 0)N. For the
nodes 18 to 20, we have (0, 0,−20)N and (0, 10, 0)N. This setting has been chosen because the action of com-
bined spatial loads creates complex strain-stress states in space and time. Finally, the loads are multiplied with
a function that describes the variation of the external forces over time, which is defined by (50), that is, f ext =
a(t)(f1i1 + f2i2 + f3i3). For all numerical examples, the relative error-based tolerance of 10−12 has been set for the
Newton iteration.

a(t) =

{ 2t for 0 ≤ t < 0.5
2 − 2t for 0.5 ≤ t < 1

0 for t ≥ 1
. (50)

As far as we know, our previous article10 is the only work in the context of Data-Driven Computational Mechan-
ics that handles geometrically exact beams. It considers, however, only the static case. Handling kinematic constrains
to implicitly define the group of rotations SO(3) needs to be complemented by the null-space method, through
which repeated multipliers that would otherwise cause singular KKT matrices are eliminated. The application of the
null-space method differs notably from the static case as explained previously. The behavior of geometrically exact
beams in general elasticity has been studied to some extent, mostly subordinate to the existence of a hyperelastic poten-
tial. Further investigations in a dynamic context remain currently open. In synthesis, the geometrically exact beam
presented here makes full use of the derived mathematical machinery and is thus complex enough from the math-
ematical point of view to test our proposed framework. Our target is to probe the concept, and thus, the simulation
cases were selected to produce intuitive responses and exhibit similar complexity as other standard simulation cases
considering the setting provided by Data-Driven Computational Mechanics, that is, truss and volume elements. In
this initial stage that concerns the development of strategies at the root of the methods, we avoid counter-intuitive
examples.

GEBHARDT ET AL. 5461
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5462 GEBHARDT et al.
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F I G U R E 3 Verification (first
example)—sequence of motion [Colour figure can
be viewed at wileyonlinelibrary.com]

4.1 Verification

As indicated, we first consider the beam structure described above and the simplest linear constitutive law, defined as

(g♯(ěi+ 1
2
, ši+ 1

2
))i = ši − aiiěi = 0 or alternatively as (g♭(ěi+ 1

2
, ši+ 1

2
))i = ěi − aiiši = 0, (51)

with aii = a−1
ii and the (nonphysical) values a11 = a22 = 75 N, a33 = 100 N, a44 = a55 = 100 Nm2 and a66 = 200 Nm2. The

weight matrix C is defined as the identity.
Figure 3 shows a sequence of motion, where the initial configuration plotted in red is located at the topmost

position. It is possible to observe that the structure undergoes large displacements and large changes of curvature.
However, as the geometry of the structure and applied loads are symmetric, and the constitutive law considered is
antisymmetric, the response computed is perfectly symmetric as expected. By starting each subsequent optimization
problem warmly, that is, taking as initial guess the converged solution of the previous optimization problem, the
approximate NLP solver requires three iterations on average to find the solution. Meanwhile, the EM-FEM solver
requires four iterations on average. The adopted EM-FEM warrants the discrete time invariance as well as the sym-
metry of the tangent stiffness matrix and thus, is a little bit harder to solve when compared to variational integrators,
which do not render in general the discrete time invariance, see, for instance, Reference 15. In spite of the addi-
tional iteration, the EM-FEM is always faster in runtime than the approximate NLP solver. By considering the same
mesh, the number of unknowns is smaller for the EM-FEM and in addition, such an approach is already highly
optimized from the implementation point of view. Meanwhile, the implementation of the approximate NLP has not
been yet been fully optimized. Table 1 presents the displacement and directors of the 11th node at t = 4 seconds
for both formulations, namely results corresponding to the EM-FEM versus those corresponding to the approximate
NLP. Table 2 shows comparatively the stationary values for the linear and angular momenta. Both tables demonstrate
that the results obtained with the approximate NLP are in excellent agreement with the results obtained with the
EM-FEM. Figures 4 and 5 present several time histories for the time interval [0, 4] seconds: components of the cross
sectional resultant force per unit length at the eighth element, components of the cross sectional resultant moment
per unit length at the eighth element, components of the linear momentum, and components of the angular momen-
tum. After an initial transient due to the presence of time varying loads, the resultant forces appear to reach a sort
of oscillatory steady state. A similar observation can be made for the resultant moments. The linear and angular
momenta reach, after the initial transient, stationary values that are identically preserved along the remainder of the
simulation.

5462 GEBHARDT ET AL.
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GEBHARDT et al. 5463

T A B L E 1 Verification (first example)—nodal
variables of the 11th node at t = 4 s; EM-FEM (top)
vs approximate NLP (bottom)

𝝋0 d1 d2 d3

comp. (m) (-) (-) (-)

x 4.11665929 0.40215049 0.58161351 0.70711267

y −3.48003891 −0.40215496 −0.58161692 0.70710732

z −2.63091834 0.82252438 −0.56873242 0.00000122

x 4.11667597 0.40214954 0.58161417 0.70711267

y −3.48005560 −0.40215401 −0.58161758 0.70710733

z −2.63093328 0.82252532 −0.56873108 0.00000123

T A B L E 2 Verification (first
example)—linear and angular
momenta; stationary values

l (EM-FEM) l (approx. NLP) j (EM-FEM) j (approx. NLP)

comp. (Kgm/s) (Kgm/s) (Kgm2/s) (Kgm2/s)

x 11.25000000 11.25000000 1.39916065 1.39915722

y 11.25000000 11.25000000 6.17378053 6.17377710

z −7.50000000 −7.50000000 −7.16199129 −7.16199130
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F I G U R E 4 Verification (first example)—resultant force per unit length at the eighth element vs time (left), resultant moment per unit
length at the eighth element vs time (right) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Verification (first example)—linear momentum vs time (left), angular momentum vs time (right) [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 6 Explicit stress definition (second
example)—sequence of motion [Colour figure can be
viewed at wileyonlinelibrary.com]

l (approx. NLP) j (approx. NLP)

comp. (Kgm/s) (Kgm2/s)

x 11.25000000 2.18791717

y 11.25000000 5.90091563

z −7.50000000 −7.37292831

T A B L E 3 Explicit stress definition (second example)—linear and
angular momenta; stationary values

4.2 Explicit stress definition

In this second numerical example, we consider a nonlinear constitutive law given by

(g♯(ěi+ 1
2
, ši+ 1

2
))i = ši − aiiěi −

biii

2
(ěi)2, (52)

where the stress resultants are defined explicitly in terms of the strain measures. For the coefficients aii, we use the same
(nonphysical) values as in the verification example, and in addition, we set biii = 0.6375aii.

Figure 6 shows a sequence of motion, in which we observe that the structure undergoes large displacements and large
changes of curvature. Even, provided that the geometry of the structure and applied loads are symmetric, the response
computed is, as expected due to the nonsymmetric constitutive law considered, nonsymmetric. Figures 7 and 8 present,
as in the previous example, several time histories. After an initial transient due to the presence of time varying loads, the
resultant forces appear to reach no steady state and show some high-frequency content. A similar comment can be made
for the resultant moments. However, no high-frequency content is to be distinguished. As before, the linear and angular
momenta reach, after the initial transient, stationary values that are identically preserved. Table 3 presents the stationary
values for the momenta. As a final comment, we can say that the approximate NLP requires normally three iterations to
converge, when warmly started.

4.3 Implicit stress definition

In this third numerical example, we consider a nonlinear constitutive law given by

(g♭(ěi+ 1
2
, ši+ 1

2
))i = ěi − aiiši − biii

2
(ši)2, (53)
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F I G U R E 7 Explicit stress definition (second example)—resultant force per unit length at the eighth element vs time (left), resultant
moment per unit length at the eighth element vs time (right) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 Explicit stress definition (second example)—linear momentum vs time (left), angular momentum vs time (right) [Colour
figure can be viewed at wileyonlinelibrary.com]

where the stress resultants are defined implicitly in terms of the strain measures. For the coefficients aii, we consider the
same (nonphysical) values as in the verification example, and in addition we set biii = 0.015aii.

Figure 9 presents a sequence of motion, in which we observe that the structure is undergoing large displacements
and large changes of curvature. As in the previous case, the response is nonsymmetric due to the nonsymmetry of the
constitutive law employed. Figures 10 and 11 show several time histories for the same variables that were showed in the
two previous cases. After an initial transient due to the presence of time varying loads, the resultant forces do not appear to
reach a steady state, and in contrast to the previous case, they show no high-frequency content. A similar observation can
be made for the resultant moments, although some high-frequency content is evident. The linear and angular momenta
reach, as expected, stationary values that are preserved along the simulation. Finally, Table 4 presents the stationary values
for the momenta. Once again, the convergence properties are excellent as before.

5 CONCLUDING REMARKS

In this article, we proposed an approximate nonlinear optimization problem for Data-Driven Structural Dynamics that
extends the approach recently proposed by the authors in a purely static context.10 In the dynamic setting, the resulting
new formulation inherits the ability of handling: (i) kinematic constraints; and, (ii) materials whose stress-strain relation-
ship can be implicitly approximated. Thus, the method is not limited by the requirement of some special functional struc-
ture for the definition of the material law. As the chosen dynamic setting is that inspired by a class of structure-preserving
variational integrators, it cannot be reverted to the static approach developed previously, and therefore,
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F I G U R E 9 Implicit stress definition (third
example)—sequence of motion [Colour figure can be
viewed at wileyonlinelibrary.com]

0 0.5 1 1.5 2 2.5 3 3.5 4
time [s]

-40

-20

0

20

40

re
s.

 f
or

ce
 p

er
 u

ni
t l

en
gt

h 
[N

/m
] n

1

n
2
n
3

0 0.5 1 1.5 2 2.5 3 3.5 4
time [s]

-30

-20

-10

0

10

20

30

re
s.

 m
om

en
t p

er
 u

ni
t l

en
gt

h 
[N

]

m
1

m
2

m
3

F I G U R E 10 Implicit stress definition (third example)—resultant force per unit length at the eighth element vs time (left), resultant
moment per unit length at the eighth element vs time (right) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 11 Implicit stress definition (third example)—linear momentum vs time (left), angular momentum vs time (right) [Colour
figure can be viewed at wileyonlinelibrary.com]
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T A B L E 4 Implicit stress definition (third example)—linear and angular
momenta; stationary values

l (approx. NLP) j (approx. NLP)

comp. (Kgm/s) (Kgm2/s)

x 11.25000000 0.85015476

y 11.25000000 6.85601926

z −7.50000000 −6.84807263

it describes a different mathematical problem. For cases without external loads, however, the method preserves linear
and angular momenta and for explicitly defined constitutive laws, it could be reverted to the discrete variational approach
that preserves the underlying symplectic form. This aspect represents one main innovation of the current method.

The mathematical framework for Data-Driven Structural Dynamics was derived in detail and formulated in a
self-contained fashion. To showcase the well-behaved properties of our approach, we specialized the method to the case
of a geometrically exact beam formulation. We would like to emphasize that the extension of the Data-Driven Structural
Dynamics paradigm to geometrically exact beam elements is another main innovation of the current work. For the
numerical examples considered in this work, the convergence behavior was observed to be excellent. Moreover, our
dynamic approach fully inherits the robustness, efficiency, and versatility properties of its static counterpart.

The results of the presented numerical examples clearly demonstrated that the proposed method represents a solid
basis for further research. Possible research targets are the specialization to other structural models, for example, shells
and solids, the extension to solving dynamic problems in multiple time scales, the inclusion of nonlinear optimiza-
tion algorithms that can deal with inequalities and globalization techniques to warrant global convergence properties,
inter alia.
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