
Vol.:(0123456789)1 3

Production Engineering (2021) 15:35–43
https://doi.org/10.1007/s11740-020-01000-8

PRODUCTION MANAGEMENT

A deep q‑learning‑based optimization of the inventory control
in a linear process chain

M.‑A. Dittrich1 · S. Fohlmeister1

Received: 30 July 2020 / Accepted: 6 November 2020 / Published online: 23 November 2020
© The Author(s) 2020

Abstract
Due to growing globalized markets and the resulting globalization of production networks across different companies,
inventory and order optimization is becoming increasingly important in the context of process chains. Thus, an adaptive and
continuously self-optimizing inventory control on a global level is necessary to overcome the resulting challenges. Advances
in sensor and communication technology allow companies to realize a global data exchange to achieve a holistic inventory
control. Based on deep q-learning, a method for a self-optimizing inventory control is developed. Here, the decision process
is based on an artificial neural network. Its input is modeled as a state vector that describes the current stocks and orders
within the process chain. The output represents a control vector that controls orders for each individual station. Further-
more, a reward function, which is based on the resulting storage and late order costs, is implemented for simulations-based
decision optimization. One of the main challenges of implementing deep q-learning is the hyperparameter optimization for
the training process, which is investigated in this paper. The results show a significant sensitivity for the leaning rate α and
the exploration rate ε. Based on optimized hyperparameters, the potential of the developed methodology could be shown
by significantly reducing the total costs compared to the initial state and by achieving stable control behavior for a process
chain containing up to 10 stations.

Keywords Inventory control · Deep q-learning · Process chain · Self-optimizing control · Learning parameters

List of symbols
� Learning rate
�d Decay of the learning rate
arandom With possibility ε randomly chosen action at

time t
at Action at time t chosen by the agent
Clate Late order costs
Cs,n Storage costs of station n
cvdim Dimension of the control vector/number of the

neurons of the output layer
emax Number of training episodes per training
� Exploration rate
�d Decay of the learning rate
fc Total cost factor
flate Late order cost factor
fsc Storage cost factor
� Discount factor

id(…) Identity function
m Number of simulated time steps per training

episode
MAE Mean absolute error
MDP Markov decision process
n Number of intermediate stations
nwarm−up Number of warm-up episodes
olate,n Number of late orders at station n
on Order placed by station n
oopen,n Number of open orders within a simulated day

at station n
oq Interval of the order quantity
ot Interval of the order distance
Q
(

st, at
)

 Quality of an action during a state s at time t
ReLU Rectifier linear unit
rt Reward at time t
sdis,n Disposable stock at station n
smemory Number of data sets that can be stored in the

replay memory
sph,n Physical stock at station n
st Observed state at time t

 * S. Fohlmeister
 fohlmeister@ifw.uni-hannover.de

1 Institute of Production Engineering and Machine Tools, An
der Universität 2, 30823 Garbsen, Germany

http://orcid.org/0000-0002-5625-3192
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-020-01000-8&domain=pdf

36 Production Engineering (2021) 15:35–43

1 3

svdim Dimension of the state vector/number of the
neurons of the input layer

� Target model update
tij Transportation time from station i to j

1 Introduction

Today, manufacturing companies are confronted with a
multitude of challenges that make cost-efficient production
significantly more difficult. These challenges result from the
increasing globalization of sales markets, to which the actual
production processes must be adapted. To minimize logistics
costs and respond flexibly to the local demand, manufac-
turing processes are becoming increasingly decentralized
through the setup of manufacturing sites along this local
demand [1]. This trend is accompanied by a mass customiza-
tion which leads to an increased customer demand for highly
individualized products within the shortest possible delivery
times [2, 3]. These two trends are leading to the integra-
tion of increasingly complex process chains which in turn
prompts correspondingly intricate material flows both within
a single company and across different companies.

The timely and cost-efficient planning and control of pro-
cess chains must be considered at both a local and a global
level. Local production planning and control of a single
manufacturing system depends on an accurate inventory
and demand planning across multiple factories. This way,
local production capacities can be correctly planned and,
if necessary, rescheduled on short notice [4]. On a global
level, however, there is often the issue that the site-specific
requirements are not known in advance or are insufficiently
clear based on customer demand. As shown in the lower
half of Fig. 1, this leads to the so-called bullwhip effect.
Here, customer-side demand fluctuations along the associ-
ated process chain are overinterpreted and larger inventories
than are necessary for processing the current demand are
built up. This leads to increased capacity requirements at the
local level, which must be controlled accordingly [5]. The
following reasons for the bullwhip effect are listed in the

literature: First, information sharing among different compa-
nies across the process chain is necessary to achieve an opti-
mized inventory control [6]. However, the order and produc-
tion requirements are usually planned decentrally for each
station of the process chain. That means that information for
holistic control is missing and is methodically not integrated
in the used software systems, although this could be possi-
ble due to modern information technology [7]. In addition,
rules for inventory control based on past demands are often
developed, yet they do not correctly reflect future changes
in ordering behavior [8]. Therefore, flexibility is necessary
in current globalized and volatile markets. Although many
control approaches exist, they are either not flexible enough
or consider the process chain to be controlled only at a local
level and cannot therefore implement a holistic inventory
optimization. However, due to technological advances, the
collaboration among distributed sites is possible [9]. There-
fore, the main contribution of this article is a new method
that enables a self-optimizing inventory control of a global
process chain to plan and control local production capacities
efficiently despite fluctuating demands. Compared to exist-
ing methods, it is not necessary to develop a mathematical
model to describe the decision problem. This is especially
important when a continuous adaption to changing cus-
tomer behavior is necessary. Hence, this article presents a
novel approach for a self-optimizing inventory control using
machine learning techniques in Sect. 3, the implementation
in Sects. 4 and 5 and the investigation of the developed
methodology in Sect. 6.

2 Related work

Inventory control in cross-company process chains includes
the order of necessary raw materials or semi-finished prod-
ucts for each station, the actual production process and deliv-
ery to the next processing station. Minimizing the inven-
tory while guaranteeing the capability to deliver is of crucial
importance [10]. This is often done with rule-based algo-
rithms. These rules are derived from past demand patterns
[11]. However, due to their low flexibility, these methods are
not suitable for strongly varying demand patterns.

From a mathematical perspective, the decision problem
in the context of the inventory control of a process chain
can be described as a Markov decision process (MDP).
Accordingly, the probability that a certain subsequent sys-
tem state will occur depends exclusively on the current sys-
tem state. Decision problems of this kind can be modelled
by the method of reinforcement learning [12]. In contrast to
supervised learning, there is no need for a description of the
training data by labels. Instead, control decisions are made
by a software agent and the resulting subsequent state is
evaluated. This evaluation is based on a reward function and

qu
an

tit
y

qu
an

tit
y

qu
an

tit
y

qu
an

tit
y

qu
an

tit
y

t t t t t
bullwhip effect

resource S1 ... Sn client
–

tr,1

cs,1

t1,2

...

...

cs,n

tn-1,n

cs,c

–

order
delivery

Fig. 1 Description of a linear process chain and the bullwhip effect

37Production Engineering (2021) 15:35–43

1 3

the discounted summation of the best possible subsequent
state evaluations. The repeated application of the algorithm
leads to an iteratively adaption of the stored evaluations,
which in turn results in self-optimized decision-making
[13, 14]. The reinforcement learning approach was applied
by Giannoccaro et al. to control a process chain. The deci-
sion problems were modelled as an MDP and solved by a
SMART algorithm [15]. Similar approaches were inves-
tigated by Valluri et al. and Mortazavi et al. They imple-
mented a q-learning agent for local elements of the process
chain, which controlled the inventory of the respective sta-
tion by triggering orders based on a cost-oriented reward
function. In both cases, the complexity of the resulting deci-
sion problem could only be handled to a limited extent. Even
after 150,000 training episodes, Valluri et al. did not achieve
sufficient learning progress to ensure a stable control behav-
ior by the agent [16]. This problem was solved by Mortazavi
et al. [17] by limiting the state space for the local agent to
eight possible system states. The corresponding action space
was limited to seven possible control decisions. In these two
approaches, the limits of previous reinforcement learning
attempts regarding the control of complex process chains
have become clear.

Through the approach of deep q-learning, a converging
learning behavior can also be realized for more complex
decision problems [18]. The characteristic feature of this
approach is a replay memory. As shown in Fig. 2, for each
learning sequence a random data set consisting of the cur-
rent system state st, the selected action at, as well as the
resulting subsequent state st+1 and the calculated reward rt
is selected [19]. As a consequence, data sets of successive
and thus strongly correlating states are not used in subse-
quent learning steps. That way, an over-adaptation of the
algorithm for the respective decision situation is avoided

[20]. Furthermore, the function approximator is not imple-
mented by a single artificial neural network as in previous
approaches. Instead, an action network is used to approxi-
mate the action-value function. In the next step, a second tar-
get network specifies the target value for the gradient descent
step within the optimization. This network is derived with a
factor τ from the action network. This ensures stable target
values and thus a stable learning behavior for complex deci-
sion problems. As shown in Fig. 2, the selection of an action
at is mainly based on the action network. However, to avoid
local optimization, an ε-greedy policy is implemented. Thus,
actions are selected randomly with probability ε to explore
previously unknown solutions [18].

Oroojlooyjadid et al. [21] have used the deep q-learning
algorithm to implement a self-optimizing method for the
inventory control of a single station within a linear process
chain. The remaining stations were controlled by predefined
rules. They were able to show that deep q-learning is suitable
for achieving convergent learning behavior even for complex
systems. However, the disadvantage of this approach is that
control optimization is methodically only provided locally
for a single station. The possibility to acquire operating data
over the entire process chain and thus, optimize the inven-
tory of the entire process chain is not provided.

The presented methods show that it is possible to control
the inventory of a linear cross-company process chain. How-
ever, due to current requirements caused by globalized and
volatile markets, a holistic and flexible method for inventory
control, which can efficiently model and solve complex sys-
tem states, is necessary.

3 Methodology for self‑optimizing
inventory control

The overall method designed for a self-optimizing inventory
control based on a deep q-learning agent is shown in Fig. 3.

The developed method is initially divided into four sub-
steps. During initialization, the control agent is linked to
the corresponding process chain by parameterizing the state
and control vectors as well as the reward function according
to the respective application and by setting up the function
approximator as described in Sect. 3.1. Before the actual
training phase, in the warm-up phase, nwarm-up episodes are
performed without using the implemented learning behavior.
Instead, random control decisions are chosen. The resulting
data of the respective system states are used to initially fill
the replay memory.

The actual training phase is subdivided into e succes-
sive training episodes. A training episode describes a cycle
in which control decisions are made and implemented
repeatedly while considering the resulting stock levels and
costs. As a result, each training episode begins with the Fig. 2 Methodology of the deep q-learning

38 Production Engineering (2021) 15:35–43

1 3

same initial system state s0. This also ensures that long-
term control decisions are considered by the developed
method. If a training episode only included one control
decision and its direct effects, the decision-making would
be optimized based on the control decisions which would
lead to the best possible subsequent state st+1 without con-
sidering the resulting subsequent system states st+2 to sm.

Depending on the specific use case, a training episode is
subdivided into m time steps. On each of these time steps,
n control iterations are performed according to the number
of intermediate stations in the process chain. This ensures
that a control decision can be made within one time step
for each processing station. Alternatively, it would have
been possible to parameterize an output layer whose neu-
rons describe a set of control decisions for each of the sta-
tions. However, for complex process chains in particular,
this procedure would lead to a correspondingly complex
function approximator and consequently to significantly
increased computing time. In each of these iterations, the
actual learning process is integrated, after which a control
decision is selected and executed. The recorded operat-
ing data of the state of the process chain is stored in the
replay memory in the same way as during the warm-up
phase. Subsequently, a random data set is selected from
the replay memory, based on which the action network is
adapted using the gradient descent optimization following
the optimization process described in Sect. 3.2.

The final step of the method is the test and application
of the previously trained deep q-learning agent. A further
training episode is simulated in the same way as the proce-
dure in the previous step. The difference is that no further
optimization of the decision-making process is conducted.
Instead, the optimized control behavior is investigated over
a longer period so that conclusions can be drawn about the
optimization quality with regard to the bullwhip effect.
Regarding a practical application of the developed method,
this procedure allows the control network to be trained on
a simulation basis in the first step. It is then applied for the
control of the real system without the danger of an unwanted
change in the decision behavior due to a further adjustment
of the action network.

3.1 Parameterization of the control agent

Figure 4 displays the artificial neural network that is used
as the function approximator within the framework of the
implemented deep q-learning algorithm. The input neurons
of the artificial neural network represent the state vector,
which describes the current state of the process chain as
a basis for decision-making. The observation vector quan-
tifies the physical and disposable stock sph,n and sdis,n for
each station regarding the costs and the open and late orders
oopen,n and olate,n for the orders for each of the intermedi-
ate stations. Thus, the dimension of the observation vec-
tor depends on the number of intermediate stations within
the process chain. In addition, the open and backorders of
the customer are quantified. Since a direct utilization of the
order is assumed, no storage costs are considered methodi-
cally for the customer. The dimension of the input vector
and thus the number of input neurons of the artificial neural
network are calculated according to the following equation:

(1)svdim = 4 ⋅ n + 2

Fig. 3 Overall method for self-optimizing inventory control

Fig. 4 Function approximator for self-optimizing control decisions

39Production Engineering (2021) 15:35–43

1 3

The output neurons represent the control vector. This
describes the set of all possible decisions that can be made
by the self-optimizing process chain control method based
on the observation vector. The set of possible decisions con-
tains the orders that can be placed by each of the stations.
In addition, there is the possibility that none of the stations
triggers an order. Accordingly, the number of output neurons
or the dimension of the control vector is calculated accord-
ing to the following equation:

The methodical linking of the observation and control
vectors is done by three hidden layers, which are linked by
a fully connected and feed forward structure across all lay-
ers. This structure was chosen due to its high approximation
capability for pattern recognition and decision-making [22,
23]. More intricate structures like convolutional layers are
not necessary because of the lower complexity of the input
data compared to, for instance, image recognition. In par-
ticular, complex structure recognition is not necessary. The
dimension of each hidden layer is identical to the dimension
of the input layer.

A rectifier linear unit (ReLU) was selected as the activa-
tion function for both the input layer and the following hid-
den layers. The reason for this is the high robustness towards
the vanishing gradient problem [24]. In contrast, the softmax
function was selected for the output neurons of the action
vector to obtain result values normalized to the interval [0;1]
for a high comparability.

3.2 Optimization of the decision process
for inventory control

The optimization of the decision behavior during inven-
tory control is achieved by the systematic adaptation of the
edge weights of the artificial neural network. The necessary
basis for optimization is formalized by the following error
function:

The value Q(st,at) is calculated by the control network.
Q′(st+1,a′t) is the corresponding result of the target network.
The central element of reinforcement learning is the feedback
on the consequences of a control decision for the observed
environment. For this reason, the definition of a reward func-
tion rt is of particular importance. The decision criterion for
controlling the existing process chain is formed by the result-
ing costs. These are subdivided into storage and backorder
costs. The storage costs result from existing stocks due to
excessive order quantities at the intermediate stations. The
backlog costs, in turn, result from insufficient order quanti-
ties. Too prevent an over-stimulation of the learning algorithm,

(2)cvdim = n + 1

(3)error = rt + � max
a

Q�
(

st+1, a
�

t

)

− Q
(

st, at
)

.

the interval of the value of the reward function is limited to
[− 1;1]. This is achieved by the following function:

According to this function, the value of the reward at a time
t is calculated as a function of the storage and backlog costs Cs
and Clate. Using the weighting factors fsc and flate, the relative
weights of these two variables can be varied as a function of
the observed learning behavior and the case-specific target var-
iables. Depending on the size of the system, the total costs are
calculated using the total cost factor fc so that they lie within
the defined interval of the reward function. In addition, fc can
be used to adjust the weighting of the reward function within
the gradient descent optimization by considering higher costs
to a greater or lesser extent. For the optimization process, sto-
chastic gradient descent (SGD) was selected as the optimizer
and the error was calculated as the mean average error (MAE).

4 Experimental setup

For the purpose of validation, the developed method was
implemented by software. First, the linear process chain was
modelled according to the underlying model assumptions. For
this purpose, SimPy, a framework for a discrete-event simula-
tion, was used. The exact parameters and characteristics are
shown in the bottom part of Figs. 5, 6, 7, 8.

The actual deep q-learning agent was implemented in the
TensorFlow framework using the Keras-rl library as part of the
Keras programming interface. The algorithm was realized in
the Python programming language, which ensured maximum
compatibility. The learning parameters of the algorithm are
again displayed in Figs. 5, 6, 7, 8. The interface between the
deep q-learning agent and the environment is based on the
standardized OpenAI Gym platform to ensure the compatibil-
ity to different reinforcement learning algorithms. A second
agent was also implemented for the purpose of validating the
developed method. After the training phase, the optimized
edge weights of the control network are transferred to the agent
to test the optimized control behavior over a long-term period.

For the calculation of the reward, the late order and storage
costs are weighted equally with fsc = flate = 1 and the overall
costs are weighted with fc = 0.02 for all conducted experiments.

5 System description

For experimental investigation, a linear process chain based
on the MIT beer distribution game [25] is considered,
which is subdivided into the elements resource, customer
and intermediate stations. Only one resource and one cus-
tomer, but any number of intermediate stations, are allowed.
The material flow is always linear from the resource via the

(4)rt = max
[

−1;1 − fc ⋅
(

fsc ⋅ Cs + flate ⋅ Clate

)]

40 Production Engineering (2021) 15:35–43

1 3

intermediate stations to the customer. The information flow
in the form of a purchase order is reversed. The individual
process chain elements are described in their behavior using
the following characteristics: The customer triggers orders
at evenly distributed time intervals ot. The order quantity is
also evenly distributed in a specified interval oq. For rand-
omization, a fixed seed is used for the triggered orders. To
avoid overfitting, each episode is assigned a specific seed
based on the identity function id so that seed = id(e). The
resource provides the raw material and is not dependent on
upstream manufacturing processes. The intermediate sta-
tions receive purchase orders from the upstream element and
forward derived purchase orders to the downstream element.
For this, fixed order quantities of 5 units are considered.

A transport time tij = 1 day is assumed for the transpor-
tation of the orders between the stations. At the stations,
unlimited quantities of orders can be stored temporarily,
raising storage costs based on a cost factor cs,n = 1 monetary
unit per unit and day during this time. The state of the pro-
cess chain follows directly from the number of currently
open and backorders of each intermediate station and of the
customer. The value of the respective orders can be used
to calculate the storage and backlog costs for each station
individually and across the entire process chain. The under-
lying model of the process chain is shown in the upper part
of Fig. 1.

6 Experimental results

As shown in Fig. 5, a converging learning behavior can
be realized for a process chain of four stations. The upper
left part clearly shows the plateau of the warm-up phase.
According to the developed method, no optimization of the
decision-making process is conducted during these episodes.
The actual training phase then begins in episode 6. After
about 14 episodes, the agent develops a control behavior
that reproducibly leads to low normalized overall costs.
Especially the storage costs are almost completely reduced.
Accordingly, as shown in the lower part of Fig. 5, autono-
mous inventory control of the process chain is possible in
the subsequent test phase. The initial increase of late orders
results from the fact that the process chain is not filled at the
beginning of the simulation and therefore the first orders
cannot be processed directly.

6.1 Sensitivity analysis towards changing system
behavior

An increase in system complexity of up to seven stations
leads to a correspondingly more complex control vector.
To avoid the formation of local optima, a random control

decision is made with probability � to find previously
unknown solutions. The influence of ε on inventory optimi-
zation is shown in Fig. 6. In particular for higher values of
ε = 0.1 and ε = 0.15 the achieved total costs diverge clearly.
It is obvious that random control decisions are selected too
often, which do not lead to an improvement of the control

Fig. 5 Learning behavior and test application within a process chain
of four stations

Fig. 6 Influence of the exploration rate ε

41Production Engineering (2021) 15:35–43

1 3

behavior. This results in a lack of a suitable optimization
data basis for the control agent to keep the inventory as low
as possible. The best result was achieved with ε = 0.05. Here,
enough random control decisions were made to develop new
control strategies, and on the other hand, only so many that
a sufficiently constant learning basis was provided.

To evaluate the sensitivity of the developed method
regarding stochastic changes in the behavior of the process
chain, the intervals of the allowed order quantities oq and
times ot by the customer were increased to [10, 30] and [0,
20]. As shown in Fig. 7, the previously used value of the

learning rate α = 1 × 10–5 leads to a diverging learning behav-
ior. The reason for this is the overestimation of individual
outliers in the customer’s ordering behavior. A convergent
learning behavior can only be achieved by reducing the
learning rate to α = 5 × 10–6.

6.2 Investigation of the system stability

To demonstrate the suitability of the developed method for
more complex process chains, a linear process chain with
eight intermediate stations was implemented. Figure 8 shows
the learning progress of the control agent. Due to the higher
system complexity, the number of simulated days per train-
ing episode m was increased to 2000 days. In addition, the
size of the replay memory and thus the number of warm-
up episodes was adjusted. Overall, the number of necessary
training episodes further increased to about 125 episodes.
After the total costs could be kept constantly low for about
200 training episodes, a significant increase in backlog costs
could be observed from episode 320 onwards. This could
be reduced again after about 100 episodes. The reason for
this could be an insufficient decay of the exploration rate
εd. Because of that, a relatively large number of exploration
steps are still carried out even after 300 episodes and thus
control decisions are realized that do not correspond to the
actually found optimum.

One of the biggest challenges in controlling the inven-
tory in such a complex linear supply chain is to avoid the
bullwhip effect. To validate the stability of the control
method, Fig. 9 shows the physical stock sph,n for the eight
intermediate stations of the supply chain and the customer’s
late orders over a simulated period of 1000 days during
the test phase. Here, too, an increase in the late orders of
the customer olate,c can be observed, which is reduced after
about 100 days. Subsequently, a constantly low level of late
orders can be maintained. At the same time, the stocks of
the intermediate stations are kept at a constantly low level.
At stations 1, 3 and 8, a clear increase in stocks can be seen
after about 700 days, but these are reduced again within a
maximum of 100 days. One explanation could be the rela-
tively high number of late orders at the customer for a longer
period after about 600 days. Thus, it has been shown that the
method can efficiently reduce the bullwhip effect despite
fluctuating customer demand and keep stocks low or reduce
them after a temporal increase within the system.

7 Conclusion and outlook

Increasing globalization and volatile markets with fluctuat-
ing demand pose high requirements for the inventory con-
trol of cross-company process chains. Hence, in this paper,
a method was presented for the self-optimizing control

Fig. 7 Adaption of the learning rate α due to a higher uncertainty
regarding order quantity and time

Fig. 8 Learning behavior within a process chain of 10 stations

42 Production Engineering (2021) 15:35–43

1 3

of a linear process chain based on the deep q-learning
algorithm. For this purpose, state and control vectors and
a reward function were parameterized based on the result-
ing costs within the process chain. The developed method
was validated based on simulation using various complex
linear process chains. Consequently, it has been shown
that the control of complex process chains with up to ten
elements is possible. For this, the correct parameterization
of the learning parameters is crucial to ensure convergent
learning behavior.

Based on the presented results, future work will focus
on the comparison to conventional methods for inventory
control and the adaptation of the developed method for more
complex use cases. This applies in particular to nonlinear
process chains within a local production system, as they
usually occur in job shop production. Furthermore, it will
be investigated how the method can be designed in such a
way that transfer learning can be realized. On this basis, a
simulation-based learning environment can be developed,
which will enable the training of the control method and
then its transfer to the actual production system. In addition,
the approach will be applied to a real use case to investi-
gate the learning and control behavior under these different
conditions.

Funding Open Access funding enabled and organized by Projekt
DEAL. The presented investigations were conducted within the
research project DE 447/181-1. We would like to thank the German
Research Foundation (DFG) for the support of this project. In addition,
we would like to thank Prof. Dr.-Ing. Berend Denkena for his valuable
comments and his support.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Mourtzis D, Doukas M, Psarommatis F (2013) Design and oper-
ation of manufacturing networks for mass customisation. CIRP
Ann Manuf Technol 62(1):467–470. https ://doi.org/10.1016/j.
proci r.2014.05.004

 2. Daaboul J, Da Cunha CM, Bernard A, Laroche F (2011)
Design for mass customization: Product variety vs. process
variety. CIRP Ann Manuf Technol 60(1):169–174. https ://doi.
org/10.1016/j.cirp.2011.03.093

Fig. 9 Development of the stock size and late orders during the test application

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.procir.2014.05.004
https://doi.org/10.1016/j.procir.2014.05.004
https://doi.org/10.1016/j.cirp.2011.03.093
https://doi.org/10.1016/j.cirp.2011.03.093

43Production Engineering (2021) 15:35–43

1 3

 3. ElMaraghy H, Schuh G, ElMaraghy W, Piller F, Schönsleben
P, Tseng M et al (2013) Product variety management. CIRP
Ann Manuf Technol 62(2):629–652. https ://doi.org/10.1016/j.
cirp.2013.05.007

 4. Pinedo ML (2012) Scheduling—theory, algorithms, and sys-
tems, 4th edn. Springer, New York

 5. Forrester J (1961) Industrial dynamics. MIT Press, Cambridge
 6. Cachon GP, Fischer M (2000) Supply chain inven-

tory management and the value of shared information.
Manage Sci 46(8):1032–1048. https ://doi.org/10.1287/
mnsc.46.8.1032.12029

 7. Monostori L, Kádár B, Bauernhansl T, Kondoh S, Kumara S,
Reinhart G et al (2016) Cyber-physical systems in manufac-
turing. CIRP Ann Manuf Technol 65(2):621–641. https ://doi.
org/10.1016/j.cirp.2016.06.005

 8. Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in
supply chains. Sloan Manag Rev 38:93–102

 9. Lanza G, Ferdows K, Kara S, Mourtzis D, Schuh G, Váncza J et al
(2019) Global production networks: design and operation. CIRP
Ann Manuf Technol 68(2):823–841. https ://doi.org/10.1016/j.
cirp.2019.05.008

 10. Lödding H (2013) Handbook of manufacturing control—funda-
mentals, description, configuration. Springer, Heidelberg

 11. Sethupathi PVR, Rajendran C, Ziegler H (2013) A comparative
study of periodic-review order-up-to (T, S) policy and continuous-
review (s, S) policy in a serial supply chain over a finite planning
horizon. In: Pisarenko VF, Ramanathan R, Rmanathan U (eds)
Supply chain strategies. Springer Issues and Models, London, pp
113–152

 12. Alpaydin E (2009) Introduction to machine learning. MIT press,
Cambridge

 13. Sutton RS, Barto AG (1998) Reinforcement learning: an introduc-
tion. The MIT Press, Cambridge

 14. Watkins C, Dayan P (1992) Q-Learning. Mach Learn 8:279–292.
https ://doi.org/10.1007/BF009 92698

 15. Giannoccaro I, Pontrandolfo P (2002) Inventory management in
supply chains: a reinforcement learning approach. Int J Prod Econ
78:153–161. https ://doi.org/10.1016/S0925 -5273(00)00156 -0

 16. Valluri A, North MJ, Macal CM (2009) Reinforcement learning
in supply chains. Int J Neural Syst 19(5):331–344. https ://doi.
org/10.1142/S0129 06570 90020 63

 17. Mortazavi A, Khamseh AA, Azimi P (2015) Designing of an
intelligent self-adaptive model for supply chain ordering man-
agement system. Eng Appl Artif Intell 37:207–220. https ://doi.
org/10.1016/j.engap pai.2014.09.004

 18. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG et al (2015) Human-level control through deep reinforcement
learning. Nature 518:529–533. https ://doi.org/10.1038/natur e1423
6

 19. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D et al (2013) Playing Atari with deep reinforcement learning.
DeepMind Technologies

 20. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017)
A brief survey of deep reinforcement learning. IEEE Signal Pro-
cess Mag. https ://doi.org/10.1109/MSP.2017.27432 40

 21. Oroojlooyjadid A, Nazari M, Snyder L, Takáč MA (2017) Deep
Q-network for the beer game: a reinforcement learning algorithm
to solve inventory optimization problems. In: Neural information
process systems (NIPS), deep reinforcement learning symposium

 22. Hornik K (1991) Approximation capabilities of multilayer
feedforward networks. Neural Netw 4(2):251–257. https ://doi.
org/10.1016/0893-6080(91)90009 -T

 23. Yang J, Ma JA (2016) Structure optimization framework for
feed-forward neural networks using sparse representation.
Knowl-Based Syst 109:61–70. https ://doi.org/10.1016/j.knosy
s.2016.06.026

 24. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural
networks. In: Proceedings of the 14th international conference
on artificial intelligence and statistics (AISTATS), vol 15, pp
315–323

 25. Sterman JD (1989) Modeling managerial behavior: mispercep-
tions of feedback in a dynamic decision making experiment. Man-
age Sci 35(3):321–339

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cirp.2013.05.007
https://doi.org/10.1016/j.cirp.2013.05.007
https://doi.org/10.1287/mnsc.46.8.1032.12029
https://doi.org/10.1287/mnsc.46.8.1032.12029
https://doi.org/10.1016/j.cirp.2016.06.005
https://doi.org/10.1016/j.cirp.2016.06.005
https://doi.org/10.1016/j.cirp.2019.05.008
https://doi.org/10.1016/j.cirp.2019.05.008
https://doi.org/10.1007/BF00992698
https://doi.org/10.1016/S0925-5273(00)00156-0
https://doi.org/10.1142/S0129065709002063
https://doi.org/10.1142/S0129065709002063
https://doi.org/10.1016/j.engappai.2014.09.004
https://doi.org/10.1016/j.engappai.2014.09.004
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.knosys.2016.06.026
https://doi.org/10.1016/j.knosys.2016.06.026

	A deep q-learning-based optimization of the inventory control in a linear process chain
	Abstract
	1 Introduction
	2 Related work
	3 Methodology for self-optimizing inventory control
	3.1 Parameterization of the control agent
	3.2 Optimization of the decision process for inventory control

	4 Experimental setup
	5 System description
	6 Experimental results
	6.1 Sensitivity analysis towards changing system behavior
	6.2 Investigation of the system stability

	7 Conclusion and outlook
	References

