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Abstract
Due to growing globalized markets and the resulting globalization of production networks across different companies, 
inventory and order optimization is becoming increasingly important in the context of process chains. Thus, an adaptive and 
continuously self-optimizing inventory control on a global level is necessary to overcome the resulting challenges. Advances 
in sensor and communication technology allow companies to realize a global data exchange to achieve a holistic inventory 
control. Based on deep q-learning, a method for a self-optimizing inventory control is developed. Here, the decision process 
is based on an artificial neural network. Its input is modeled as a state vector that describes the current stocks and orders 
within the process chain. The output represents a control vector that controls orders for each individual station. Further-
more, a reward function, which is based on the resulting storage and late order costs, is implemented for simulations-based 
decision optimization. One of the main challenges of implementing deep q-learning is the hyperparameter optimization for 
the training process, which is investigated in this paper. The results show a significant sensitivity for the leaning rate α and 
the exploration rate ε. Based on optimized hyperparameters, the potential of the developed methodology could be shown 
by significantly reducing the total costs compared to the initial state and by achieving stable control behavior for a process 
chain containing up to 10 stations.
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List of symbols
�  Learning rate
�d  Decay of the learning rate
arandom  With possibility ε randomly chosen action at 

time t
at  Action at time t chosen by the agent
Clate  Late order costs
Cs,n  Storage costs of station n
cvdim  Dimension of the control vector/number of the 

neurons of the output layer
emax  Number of training episodes per training
�  Exploration rate
�d  Decay of the learning rate
fc  Total cost factor
flate  Late order cost factor
fsc  Storage cost factor
�  Discount factor

id(…)  Identity function
m  Number of simulated time steps per training 

episode
MAE  Mean absolute error
MDP  Markov decision process
n  Number of intermediate stations
nwarm−up  Number of warm-up episodes
olate,n  Number of late orders at station n
on  Order placed by station n
oopen,n  Number of open orders within a simulated day 

at station n
oq  Interval of the order quantity
ot  Interval of the order distance
Q
(

st, at
)

  Quality of an action during a state s at time t
ReLU  Rectifier linear unit
rt  Reward at time t
sdis,n  Disposable stock at station n
smemory  Number of data sets that can be stored in the 

replay memory
sph,n  Physical stock at station n
st  Observed state at time t
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svdim  Dimension of the state vector/number of the 
neurons of the input layer

�  Target model update
tij   Transportation time from station i to j

1 Introduction

Today, manufacturing companies are confronted with a 
multitude of challenges that make cost-efficient production 
significantly more difficult. These challenges result from the 
increasing globalization of sales markets, to which the actual 
production processes must be adapted. To minimize logistics 
costs and respond flexibly to the local demand, manufac-
turing processes are becoming increasingly decentralized 
through the setup of manufacturing sites along this local 
demand [1]. This trend is accompanied by a mass customiza-
tion which leads to an increased customer demand for highly 
individualized products within the shortest possible delivery 
times [2, 3]. These two trends are leading to the integra-
tion of increasingly complex process chains which in turn 
prompts correspondingly intricate material flows both within 
a single company and across different companies.

The timely and cost-efficient planning and control of pro-
cess chains must be considered at both a local and a global 
level. Local production planning and control of a single 
manufacturing system depends on an accurate inventory 
and demand planning across multiple factories. This way, 
local production capacities can be correctly planned and, 
if necessary, rescheduled on short notice [4]. On a global 
level, however, there is often the issue that the site-specific 
requirements are not known in advance or are insufficiently 
clear based on customer demand. As shown in the lower 
half of Fig. 1, this leads to the so-called bullwhip effect. 
Here, customer-side demand fluctuations along the associ-
ated process chain are overinterpreted and larger inventories 
than are necessary for processing the current demand are 
built up. This leads to increased capacity requirements at the 
local level, which must be controlled accordingly [5]. The 
following reasons for the bullwhip effect are listed in the 

literature: First, information sharing among different compa-
nies across the process chain is necessary to achieve an opti-
mized inventory control [6]. However, the order and produc-
tion requirements are usually planned decentrally for each 
station of the process chain. That means that information for 
holistic control is missing and is methodically not integrated 
in the used software systems, although this could be possi-
ble due to modern information technology [7]. In addition, 
rules for inventory control based on past demands are often 
developed, yet they do not correctly reflect future changes 
in ordering behavior [8]. Therefore, flexibility is necessary 
in current globalized and volatile markets. Although many 
control approaches exist, they are either not flexible enough 
or consider the process chain to be controlled only at a local 
level and cannot therefore implement a holistic inventory 
optimization. However, due to technological advances, the 
collaboration among distributed sites is possible [9]. There-
fore, the main contribution of this article is a new method 
that enables a self-optimizing inventory control of a global 
process chain to plan and control local production capacities 
efficiently despite fluctuating demands. Compared to exist-
ing methods, it is not necessary to develop a mathematical 
model to describe the decision problem. This is especially 
important when a continuous adaption to changing cus-
tomer behavior is necessary. Hence, this article presents a 
novel approach for a self-optimizing inventory control using 
machine learning techniques in Sect. 3, the implementation 
in Sects. 4 and 5 and the investigation of the developed 
methodology in Sect. 6.

2  Related work

Inventory control in cross-company process chains includes 
the order of necessary raw materials or semi-finished prod-
ucts for each station, the actual production process and deliv-
ery to the next processing station. Minimizing the inven-
tory while guaranteeing the capability to deliver is of crucial 
importance [10]. This is often done with rule-based algo-
rithms. These rules are derived from past demand patterns 
[11]. However, due to their low flexibility, these methods are 
not suitable for strongly varying demand patterns.

From a mathematical perspective, the decision problem 
in the context of the inventory control of a process chain 
can be described as a Markov decision process (MDP). 
Accordingly, the probability that a certain subsequent sys-
tem state will occur depends exclusively on the current sys-
tem state. Decision problems of this kind can be modelled 
by the method of reinforcement learning [12]. In contrast to 
supervised learning, there is no need for a description of the 
training data by labels. Instead, control decisions are made 
by a software agent and the resulting subsequent state is 
evaluated. This evaluation is based on a reward function and 
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Fig. 1  Description of a linear process chain and the bullwhip effect
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the discounted summation of the best possible subsequent 
state evaluations. The repeated application of the algorithm 
leads to an iteratively adaption of the stored evaluations, 
which in turn results in self-optimized decision-making 
[13, 14]. The reinforcement learning approach was applied 
by Giannoccaro et al. to control a process chain. The deci-
sion problems were modelled as an MDP and solved by a 
SMART algorithm [15]. Similar approaches were inves-
tigated by Valluri et al. and Mortazavi et al. They imple-
mented a q-learning agent for local elements of the process 
chain, which controlled the inventory of the respective sta-
tion by triggering orders based on a cost-oriented reward 
function. In both cases, the complexity of the resulting deci-
sion problem could only be handled to a limited extent. Even 
after 150,000 training episodes, Valluri et al. did not achieve 
sufficient learning progress to ensure a stable control behav-
ior by the agent [16]. This problem was solved by Mortazavi 
et al. [17] by limiting the state space for the local agent to 
eight possible system states. The corresponding action space 
was limited to seven possible control decisions. In these two 
approaches, the limits of previous reinforcement learning 
attempts regarding the control of complex process chains 
have become clear.

Through the approach of deep q-learning, a converging 
learning behavior can also be realized for more complex 
decision problems [18]. The characteristic feature of this 
approach is a replay memory. As shown in Fig. 2, for each 
learning sequence a random data set consisting of the cur-
rent system state st, the selected action at, as well as the 
resulting subsequent state st+1 and the calculated reward rt 
is selected [19]. As a consequence, data sets of successive 
and thus strongly correlating states are not used in subse-
quent learning steps. That way, an over-adaptation of the 
algorithm for the respective decision situation is avoided 

[20]. Furthermore, the function approximator is not imple-
mented by a single artificial neural network as in previous 
approaches. Instead, an action network is used to approxi-
mate the action-value function. In the next step, a second tar-
get network specifies the target value for the gradient descent 
step within the optimization. This network is derived with a 
factor τ from the action network. This ensures stable target 
values and thus a stable learning behavior for complex deci-
sion problems. As shown in Fig. 2, the selection of an action 
at is mainly based on the action network. However, to avoid 
local optimization, an ε-greedy policy is implemented. Thus, 
actions are selected randomly with probability ε to explore 
previously unknown solutions [18].

Oroojlooyjadid et al. [21] have used the deep q-learning 
algorithm to implement a self-optimizing method for the 
inventory control of a single station within a linear process 
chain. The remaining stations were controlled by predefined 
rules. They were able to show that deep q-learning is suitable 
for achieving convergent learning behavior even for complex 
systems. However, the disadvantage of this approach is that 
control optimization is methodically only provided locally 
for a single station. The possibility to acquire operating data 
over the entire process chain and thus, optimize the inven-
tory of the entire process chain is not provided.

The presented methods show that it is possible to control 
the inventory of a linear cross-company process chain. How-
ever, due to current requirements caused by globalized and 
volatile markets, a holistic and flexible method for inventory 
control, which can efficiently model and solve complex sys-
tem states, is necessary.

3  Methodology for self‑optimizing 
inventory control

The overall method designed for a self-optimizing inventory 
control based on a deep q-learning agent is shown in Fig. 3.

The developed method is initially divided into four sub-
steps. During initialization, the control agent is linked to 
the corresponding process chain by parameterizing the state 
and control vectors as well as the reward function according 
to the respective application and by setting up the function 
approximator as described in Sect. 3.1. Before the actual 
training phase, in the warm-up phase, nwarm-up episodes are 
performed without using the implemented learning behavior. 
Instead, random control decisions are chosen. The resulting 
data of the respective system states are used to initially fill 
the replay memory.

The actual training phase is subdivided into e succes-
sive training episodes. A training episode describes a cycle 
in which control decisions are made and implemented 
repeatedly while considering the resulting stock levels and 
costs. As a result, each training episode begins with the Fig. 2  Methodology of the deep q-learning
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same initial system state s0. This also ensures that long-
term control decisions are considered by the developed 
method. If a training episode only included one control 
decision and its direct effects, the decision-making would 
be optimized based on the control decisions which would 
lead to the best possible subsequent state st+1 without con-
sidering the resulting subsequent system states st+2 to sm.

Depending on the specific use case, a training episode is 
subdivided into m time steps. On each of these time steps, 
n control iterations are performed according to the number 
of intermediate stations in the process chain. This ensures 
that a control decision can be made within one time step 
for each processing station. Alternatively, it would have 
been possible to parameterize an output layer whose neu-
rons describe a set of control decisions for each of the sta-
tions. However, for complex process chains in particular, 
this procedure would lead to a correspondingly complex 
function approximator and consequently to significantly 
increased computing time. In each of these iterations, the 
actual learning process is integrated, after which a control 
decision is selected and executed. The recorded operat-
ing data of the state of the process chain is stored in the 
replay memory in the same way as during the warm-up 
phase. Subsequently, a random data set is selected from 
the replay memory, based on which the action network is 
adapted using the gradient descent optimization following 
the optimization process described in Sect. 3.2.

The final step of the method is the test and application 
of the previously trained deep q-learning agent. A further 
training episode is simulated in the same way as the proce-
dure in the previous step. The difference is that no further 
optimization of the decision-making process is conducted. 
Instead, the optimized control behavior is investigated over 
a longer period so that conclusions can be drawn about the 
optimization quality with regard to the bullwhip effect. 
Regarding a practical application of the developed method, 
this procedure allows the control network to be trained on 
a simulation basis in the first step. It is then applied for the 
control of the real system without the danger of an unwanted 
change in the decision behavior due to a further adjustment 
of the action network.

3.1  Parameterization of the control agent

Figure 4 displays the artificial neural network that is used 
as the function approximator within the framework of the 
implemented deep q-learning algorithm. The input neurons 
of the artificial neural network represent the state vector, 
which describes the current state of the process chain as 
a basis for decision-making. The observation vector quan-
tifies the physical and disposable stock sph,n and sdis,n for 
each station regarding the costs and the open and late orders 
oopen,n and olate,n for the orders for each of the intermedi-
ate stations. Thus, the dimension of the observation vec-
tor depends on the number of intermediate stations within 
the process chain. In addition, the open and backorders of 
the customer are quantified. Since a direct utilization of the 
order is assumed, no storage costs are considered methodi-
cally for the customer. The dimension of the input vector 
and thus the number of input neurons of the artificial neural 
network are calculated according to the following equation:

(1)svdim = 4 ⋅ n + 2

Fig. 3  Overall method for self-optimizing inventory control

Fig. 4  Function approximator for self-optimizing control decisions
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The output neurons represent the control vector. This 
describes the set of all possible decisions that can be made 
by the self-optimizing process chain control method based 
on the observation vector. The set of possible decisions con-
tains the orders that can be placed by each of the stations. 
In addition, there is the possibility that none of the stations 
triggers an order. Accordingly, the number of output neurons 
or the dimension of the control vector is calculated accord-
ing to the following equation:

The methodical linking of the observation and control 
vectors is done by three hidden layers, which are linked by 
a fully connected and feed forward structure across all lay-
ers. This structure was chosen due to its high approximation 
capability for pattern recognition and decision-making [22, 
23]. More intricate structures like convolutional layers are 
not necessary because of the lower complexity of the input 
data compared to, for instance, image recognition. In par-
ticular, complex structure recognition is not necessary. The 
dimension of each hidden layer is identical to the dimension 
of the input layer.

A rectifier linear unit (ReLU) was selected as the activa-
tion function for both the input layer and the following hid-
den layers. The reason for this is the high robustness towards 
the vanishing gradient problem [24]. In contrast, the softmax 
function was selected for the output neurons of the action 
vector to obtain result values normalized to the interval [0;1] 
for a high comparability.

3.2  Optimization of the decision process 
for inventory control

The optimization of the decision behavior during inven-
tory control is achieved by the systematic adaptation of the 
edge weights of the artificial neural network. The necessary 
basis for optimization is formalized by the following error 
function:

The value Q(st,at) is calculated by the control network. 
Q′(st+1,a′t) is the corresponding result of the target network. 
The central element of reinforcement learning is the feedback 
on the consequences of a control decision for the observed 
environment. For this reason, the definition of a reward func-
tion rt is of particular importance. The decision criterion for 
controlling the existing process chain is formed by the result-
ing costs. These are subdivided into storage and backorder 
costs. The storage costs result from existing stocks due to 
excessive order quantities at the intermediate stations. The 
backlog costs, in turn, result from insufficient order quanti-
ties. Too prevent an over-stimulation of the learning algorithm, 

(2)cvdim = n + 1

(3)error = rt + � max
a

Q�
(

st+1, a
�

t

)

− Q
(

st, at
)

.

the interval of the value of the reward function is limited to 
[− 1;1]. This is achieved by the following function:

According to this function, the value of the reward at a time 
t is calculated as a function of the storage and backlog costs Cs 
and Clate. Using the weighting factors fsc and flate, the relative 
weights of these two variables can be varied as a function of 
the observed learning behavior and the case-specific target var-
iables. Depending on the size of the system, the total costs are 
calculated using the total cost factor fc so that they lie within 
the defined interval of the reward function. In addition, fc can 
be used to adjust the weighting of the reward function within 
the gradient descent optimization by considering higher costs 
to a greater or lesser extent. For the optimization process, sto-
chastic gradient descent (SGD) was selected as the optimizer 
and the error was calculated as the mean average error (MAE).

4  Experimental setup

For the purpose of validation, the developed method was 
implemented by software. First, the linear process chain was 
modelled according to the underlying model assumptions. For 
this purpose, SimPy, a framework for a discrete-event simula-
tion, was used. The exact parameters and characteristics are 
shown in the bottom part of Figs. 5, 6, 7, 8.

The actual deep q-learning agent was implemented in the 
TensorFlow framework using the Keras-rl library as part of the 
Keras programming interface. The algorithm was realized in 
the Python programming language, which ensured maximum 
compatibility. The learning parameters of the algorithm are 
again displayed in Figs. 5, 6, 7, 8. The interface between the 
deep q-learning agent and the environment is based on the 
standardized OpenAI Gym platform to ensure the compatibil-
ity to different reinforcement learning algorithms. A second 
agent was also implemented for the purpose of validating the 
developed method. After the training phase, the optimized 
edge weights of the control network are transferred to the agent 
to test the optimized control behavior over a long-term period.

For the calculation of the reward, the late order and storage 
costs are weighted equally with fsc = flate = 1 and the overall 
costs are weighted with fc = 0.02 for all conducted experiments.

5  System description

For experimental investigation, a linear process chain based 
on the MIT beer distribution game [25] is considered, 
which is subdivided into the elements resource, customer 
and intermediate stations. Only one resource and one cus-
tomer, but any number of intermediate stations, are allowed. 
The material flow is always linear from the resource via the 

(4)rt = max
[

−1;1 − fc ⋅
(

fsc ⋅ Cs + flate ⋅ Clate

)]
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intermediate stations to the customer. The information flow 
in the form of a purchase order is reversed. The individual 
process chain elements are described in their behavior using 
the following characteristics: The customer triggers orders 
at evenly distributed time intervals ot. The order quantity is 
also evenly distributed in a specified interval oq. For rand-
omization, a fixed seed is used for the triggered orders. To 
avoid overfitting, each episode is assigned a specific seed 
based on the identity function id so that seed = id(e). The 
resource provides the raw material and is not dependent on 
upstream manufacturing processes. The intermediate sta-
tions receive purchase orders from the upstream element and 
forward derived purchase orders to the downstream element. 
For this, fixed order quantities of 5 units are considered.

A transport time tij = 1 day is assumed for the transpor-
tation of the orders between the stations. At the stations, 
unlimited quantities of orders can be stored temporarily, 
raising storage costs based on a cost factor cs,n = 1 monetary 
unit per unit and day during this time. The state of the pro-
cess chain follows directly from the number of currently 
open and backorders of each intermediate station and of the 
customer. The value of the respective orders can be used 
to calculate the storage and backlog costs for each station 
individually and across the entire process chain. The under-
lying model of the process chain is shown in the upper part 
of Fig. 1.

6  Experimental results

As shown in Fig. 5, a converging learning behavior can 
be realized for a process chain of four stations. The upper 
left part clearly shows the plateau of the warm-up phase. 
According to the developed method, no optimization of the 
decision-making process is conducted during these episodes. 
The actual training phase then begins in episode 6. After 
about 14 episodes, the agent develops a control behavior 
that reproducibly leads to low normalized overall costs. 
Especially the storage costs are almost completely reduced. 
Accordingly, as shown in the lower part of Fig. 5, autono-
mous inventory control of the process chain is possible in 
the subsequent test phase. The initial increase of late orders 
results from the fact that the process chain is not filled at the 
beginning of the simulation and therefore the first orders 
cannot be processed directly.

6.1  Sensitivity analysis towards changing system 
behavior

An increase in system complexity of up to seven stations 
leads to a correspondingly more complex control vector. 
To avoid the formation of local optima, a random control 

decision is made with probability � to find previously 
unknown solutions. The influence of ε on inventory optimi-
zation is shown in Fig. 6. In particular for higher values of 
ε = 0.1 and ε = 0.15 the achieved total costs diverge clearly. 
It is obvious that random control decisions are selected too 
often, which do not lead to an improvement of the control 

Fig. 5  Learning behavior and test application within a process chain 
of four stations

Fig. 6  Influence of the exploration rate ε 
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behavior. This results in a lack of a suitable optimization 
data basis for the control agent to keep the inventory as low 
as possible. The best result was achieved with ε = 0.05. Here, 
enough random control decisions were made to develop new 
control strategies, and on the other hand, only so many that 
a sufficiently constant learning basis was provided.

To evaluate the sensitivity of the developed method 
regarding stochastic changes in the behavior of the process 
chain, the intervals of the allowed order quantities oq and 
times ot by the customer were increased to [10, 30] and [0, 
20]. As shown in Fig. 7, the previously used value of the 

learning rate α = 1 × 10–5 leads to a diverging learning behav-
ior. The reason for this is the overestimation of individual 
outliers in the customer’s ordering behavior. A convergent 
learning behavior can only be achieved by reducing the 
learning rate to α = 5 × 10–6.

6.2  Investigation of the system stability

To demonstrate the suitability of the developed method for 
more complex process chains, a linear process chain with 
eight intermediate stations was implemented. Figure 8 shows 
the learning progress of the control agent. Due to the higher 
system complexity, the number of simulated days per train-
ing episode m was increased to 2000 days. In addition, the 
size of the replay memory and thus the number of warm-
up episodes was adjusted. Overall, the number of necessary 
training episodes further increased to about 125 episodes. 
After the total costs could be kept constantly low for about 
200 training episodes, a significant increase in backlog costs 
could be observed from episode 320 onwards. This could 
be reduced again after about 100 episodes. The reason for 
this could be an insufficient decay of the exploration rate 
εd. Because of that, a relatively large number of exploration 
steps are still carried out even after 300 episodes and thus 
control decisions are realized that do not correspond to the 
actually found optimum.

One of the biggest challenges in controlling the inven-
tory in such a complex linear supply chain is to avoid the 
bullwhip effect. To validate the stability of the control 
method, Fig. 9 shows the physical stock sph,n for the eight 
intermediate stations of the supply chain and the customer’s 
late orders over a simulated period of 1000 days during 
the test phase. Here, too, an increase in the late orders of 
the customer olate,c can be observed, which is reduced after 
about 100 days. Subsequently, a constantly low level of late 
orders can be maintained. At the same time, the stocks of 
the intermediate stations are kept at a constantly low level. 
At stations 1, 3 and 8, a clear increase in stocks can be seen 
after about 700 days, but these are reduced again within a 
maximum of 100 days. One explanation could be the rela-
tively high number of late orders at the customer for a longer 
period after about 600 days. Thus, it has been shown that the 
method can efficiently reduce the bullwhip effect despite 
fluctuating customer demand and keep stocks low or reduce 
them after a temporal increase within the system.

7  Conclusion and outlook

Increasing globalization and volatile markets with fluctuat-
ing demand pose high requirements for the inventory con-
trol of cross-company process chains. Hence, in this paper, 
a method was presented for the self-optimizing control 

Fig. 7  Adaption of the learning rate α due to a higher uncertainty 
regarding order quantity and time

Fig. 8  Learning behavior within a process chain of 10 stations
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of a linear process chain based on the deep q-learning 
algorithm. For this purpose, state and control vectors and 
a reward function were parameterized based on the result-
ing costs within the process chain. The developed method 
was validated based on simulation using various complex 
linear process chains. Consequently, it has been shown 
that the control of complex process chains with up to ten 
elements is possible. For this, the correct parameterization 
of the learning parameters is crucial to ensure convergent 
learning behavior.

Based on the presented results, future work will focus 
on the comparison to conventional methods for inventory 
control and the adaptation of the developed method for more 
complex use cases. This applies in particular to nonlinear 
process chains within a local production system, as they 
usually occur in job shop production. Furthermore, it will 
be investigated how the method can be designed in such a 
way that transfer learning can be realized. On this basis, a 
simulation-based learning environment can be developed, 
which will enable the training of the control method and 
then its transfer to the actual production system. In addition, 
the approach will be applied to a real use case to investi-
gate the learning and control behavior under these different 
conditions.
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