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Abstract
We show that the homogeneous and the 2-lobe Delaunay tori in the 3-sphere provide the 
only isothermic constrained Willmore tori in 3-space with Willmore energy below 8�. In 
particular, every constrained Willmore torus with Willmore energy below 8� and non-rec-
tangular conformal class is non-degenerated.

Keywords Constrained Willmore tori · Spectral curve · Quaternionic Plücker estimate · 
Isothermic surface

1 Introduction

The Willmore functional of an immersions f ∶ M → S3 from a oriented surface M into the 
3-sphere is given by

where H is the mean curvature and dA is the induced area form of f. Geometrically speak-
ing, W measures the roundness of a surface, physically the degree of bending, and in biol-
ogy, W appears as a special instance of the Helfrich energy for cell membranes. The Will-
more functional is invariant under Möbius transformations (conformal transformations of 
the 3-sphere with its standard conformal structure). Critical points of the Willmore func-
tional are Willmore surfaces. Examples are given by minimal surfaces in the Riemannian 
subgeometries of constant curvature of the conformal 3-sphere.

W(f ) = ∫M

(H2 + 1)dA
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If M is equipped with a Riemann surface structure, it is natural to consider only confor-
mal immersions f ∶ M → S3 , i.e. the complex structure is given by rotating tangent vectors 
by �

2
 in the 3-space. Critical points of the Willmore functional restricted to a given confor-

mal class are called constrained Willmore surfaces. The conformal constraint augments the 
Euler–Lagrange equation by a holomorphic quadratic differential � ∈ H0(K2

M
) paired with 

the trace-free second fundamental form ̊A of the immersion

see [7, 27]. The first examples of these constrained Willmore tori are given by those of 
constant mean curvature (CMC) in a 3-dimensional space form.

It is well known (and obvious by the holomorphicity of the Hopf differential) that CMC 
(constant mean curvature) surfaces admit conformal curvature line parametrizations away 
from their umbilical points. Surfaces with this property are called isothermic. Isothermic 
surfaces play an important role in conformal surface geometry, see [10, 11], since the 
notion is independent of the specific metric in the conformal class of the ambient manifold. 
For a compact surface M, there is a natural map from the space of immersions into the 
3-space to the Teichmüller space

where ground is the round metric on S3, and [.] denotes the conformal class in the Teichmül-
ler space. The map � is a submersion except at isothermic immersions, see [7]. Hence, the 
Lagrange multiplier for isothermic constrained Willmore surfaces—the holomorphic quad-
ratic differential—is no longer uniquely determined by the immersion.

In this paper, we restrict to compact Riemann surfaces of genus 1. We classify isother-
mic constrained Willmore tori with Willmore energy below 8�. Our main theorem is the 
following one (see also Fig. 1).

Theorem  1 Isothermic constrained Willmore tori in the conformal 3-sphere with Will-
more energy below 8� are CMC surfaces in the round 3-sphere.

1.1  Strategy of proof

Richter [26] shows that isothermic constrained Willmore tori in the conformal 3-sphere are 
locally of constant mean curvature in a 3-dimensional space form. The solution of the Law-
son and Pinkall-Sterling conjectures by Brendle [8] and Andrews-Li [2] further gives that 
embedded CMC tori in the 3-sphere are rotationally symmetric and thus consist only of the 
families of k-lobed Delaunay tori [19]. Moreover, the Willmore energy along every embed-
ded family is monotonically increasing in the conformal class b. Thus, since for k ≥ 3 the 
k-lobes bifurcates from the homogenous tori with Willmore energy above 8� , the 2-lobed 
family is the CMC-family with minimal Willmore energy in their respective conformal 
classes. The aim is to exclude the existence of constrained Willmore surfaces of constant 
mean curvature in ℝ3 or hyperbolic 3-space H3 that can be compactified to a torus in S3 
with Willmore energy below 8�. By Li and Yau [21] these surfaces must be embedded.

The Alexandrov maximum principle [1] shows that there are no closed CMC tori 
with Willmore energy below 8� in ℝ3 or H3 . The only non-closed CMC surfaces in 
ℝ

3 that can be compactified to conformal embeddings in S3 are minimal surfaces with 
planar ends ( H ≠ 0 is excluded by local analysis [20]), which have quantized energy 

△H + 2H(H2 + 1 − K) =< 𝜔, ̊A >,

� ∶ f ∈ Imm(M, S3) ↦ [f ∗ground] ∈ Teich(M),
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4�k, with k ≥ 2 being the number of ends. Thus, those surfaces have Willmore energy 
≥ 8� . Similar arguments work for constant mean curvature surfaces in H3 with mean 
curvature H = 1 giving quantized Willmore energy W = 4�k, where k ∈ ℕ denotes the 
number of ends see [6] and one-punctured CMC 1 torus in H3 does not exist by [23].

To prove Theorem 1, it is thus sufficient to show that isothermic constrained Will-
more tori in S3 , whose intersection with H3

⊂ S3 is of constant mean curvature, can-
not have Willmore energy below 8� . Those surfaces intersect the infinity boundary of 
H

3
⊂ S3 —a round 2-sphere—with an angle � satisfying ℂos(�) = H. In particular, the 

constant mean curvature must satisfy |H| < 1 or the surface is entirely contained in H3, 
and therefore cannot be embedded by maximum principle. It hence remains to show 
that CMC surfaces in H3 with mean curvature |H| < 1 and Willmore energy below 8� 
cannot be embedded, see Theorem 3.

We will call isothermic constrained Willmore tori into S3 which are CMC in H3 
with |H| < 1 on the intersection with the two hyperbolic balls Babich–Bobenko tori 
in the following. The first examples have been constructed by Babich and Bobenko 
[3] in the case of H = 0 . The main idea of the proof is now to use the quaternionic 
Plücker estimate [13], which links lower bounds of the Willmore energy to the dimen-
sion of holomorphic sections of a certain quaternionic holomorphic vector bundle. 
This dimension is then related to the (necessarily odd) genus g of the spectral curve for 
Babich–Bobenko tori.

The paper is organized as follows: In Sect.  2, we study the spectral curve of 
Babich–Bobenko tori in detail. In Sect. 3, we use the special structure of the spectral 
curve to apply the Plücker estimate which yields a proof of Theorem 3.

Fig. 1  The vertical stalk repre-
sents the family of homogenous 
tori, starting with the Clifford 
torus at the bottom. Along this 
stalk are bifurcation points at 
which the embedded Delaunay 
tori appear along the horizontal 
lines. The rectangles indicate 
the conformal types. Images by 
Nicholas Schmitt
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2  The constrained Willmore spectral curves of Babich–Bobenko tori

We consider two different approaches to the spectral curve theory of Babich–Bobenko tori. 
The aim of this section is to show that these two approaches towards the spectral curve 
are in fact equivalent. The lightcone model one is used to show that the spectral curve 
of a Babich–Bobenko torus—the Riemann surface parametrizing the eigenlines of dλ

q
—is 

hyper-elliptic, while the Plücker estimate uses the multiplier spectral curve, which by [4] 
corresponds to the spectral curve of ∇� from the quaternionic approach. Subtleties arise 
from the non-uniqueness of the Lagrange multipliers.

2.1  Quaternionic geometry

The spectral curve theory for conformal immersions f from a 2-torus T2 into the conformal 
4-sphere has been developed in [9], where S4 is considered as the quaternionic projective 
space ℍP1 . To every conformal immersion f, the quaternionic line bundle

given by the pull-back of the tautological bundle T  of ℍP1 is associated. Another quater-
nionic line bundle associated to f is V/L,  where V = T2 × ℍ

2. On V/L there exists a natural 
quaternionic holomorphic structure D (see [4, 9] for a detailed definition and discussion) 
by demanding the projections of the constant sections (0, 1) and (1, 0) of V to be holomor-
phic. The immersion f is then recovered (up to conformal transformations) by

The (multiplier) spectral curve Σ of a conformally immersed torus f is the normalization of 
the Riemann surface parametrizing all holomorphic sections of V/L with (complex) mono-
dromy, i.e. every point of the spectral curve corresponds to a holomorphic section with 
monodromy [5]. Therefore, we can define maps from Σ to ℂ—so-called monodromy maps 
�i—by assigning to every point in Σ the monodromy of the underlying holomorphic section 
along generators �i of the fundamental group �1(T2).

Bohle [4] gives an alternative approach to the spectral curve for constrained Willmore 
tori. For constrained Willmore surfaces f ∶ M ⟶ S3 ⊂ S4 , Bohle defined the following 
ℂ∗-family of flat SL(4,ℂ)-connections

Here, d is the trivial connection on the trivial ℍ2-bundle considered as a ℂ4-bundle,

where A is the Hopf field of the conformal immersion and q is the Lagrange multiplier 
of the constrained Willmore Euler–Lagrange equation (which is not unique for isothermic 
surfaces). He showed that the flatness of an associated ℂ∗-family ∇� of SL(4,ℂ)-connec-
tions defined on the trivial bundle V, considered as a ℂ4-bundle, is equivalent to f being 
constrained Willmore. The (holonomy) spectral curve is then given by the Riemann surface 
parametrizing the eigenlines of the holonomy of ∇�. Bohle [4] showed that the (holonomy) 
spectral curve is always of finite genus and that both approaches to the spectral curve coin-
cide. To be more precise, Bohle showed that ∇�-parallel sections with monodromy are the 

L = f ∗T ⊂ T2 × ℍ
2

[0, 1] = −[1, 0]f .

(1)∇� = d + (� − 1)A
ℂ
irc1,0 + (�−1 − 1)A

ℂ
irc0,1.

A
ℂ
irc = A+ ∗ �
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unique prolongations of the holomorphic sections with monodromy of the quaternionic 
holomorphic line bundle (V/L,  D) to V. The genus g of the associated spectral curve is 
called the spectral genus of the immersion f.

Remark 1 In the case of f mapping into the 3-sphere S3 ⊂ S4 , the spectral curve Σ admits 
an additional involution � , see [16, Lemma 1]. Another involution � on � arises from the 
quaternionic construction, i.e. by an appropriate multiplication by j. If the quotient Σ∕� is 
biholomorphic to ℂP1 , there are two cases to distinguish depending on whether the real 
involution �ℂirc� has fix points or not. In the first case the surface is of constant mean cur-
vature in ℝ3, S3 or H3 (with mean curvature |H| > 1 ). If �ℂirc� has no fixed points, then the 
corresponding immersion is of Babich–Bobenko type. We want to show the converse, i.e. 
that Σ∕�ℂongℂP1 for Babich–Bobenko tori.

2.2  The light cone model

CMC surfaces in 3-dimensional space forms can also be described by associated families of 
flat SL(2,ℂ)-connections ∇λ, λ ∈ ℂ∗ , on a rank 2 bundle ̃V → M [3, 18]. In the case of tori, 
these families of flat connections can be described by (algebraic–geometric) spectral data con-
sisting of a (compact) hyper-elliptic curve Σ̃ (the spectral curve), two meromorphic differen-
tials and a holomorphic line bundle. In the case of Babich–Bobenko tori [3] Σ̃ is the spectral 
curve of a finite gap solution of the Cosh–Gordon equation and admits a real involution cov-
ering λ ↦ −̄λ−1 . Therefore, Σ̃ hyper-elliptic and of odd genus. In this alternate approach the 
light cone model as developed in [10, 11] is used. Its relation to quaternionic holomorphic 
geometry can be found in [12, §5], details of the computations is also included in the thesis of 
Quintino [24] and in [25]. We only recall the main constructions here. The Plücker estimate 
cannot be applied to this approach directly, since ∇̃λ have singularities on M, corresponding to 
the intersection of the surface with the infinity boundary of H3, see [17].

As in [12] we start with ℂ4 equipped with a quaternionic structure, i.e. a complex anti-
linear map

with j2 = −1 and identify ℂ4
ℂongℍ2. Moreover, we choose a determinant det ∈ �

4(ℂ4)∗ 
with

and

for {e1, e2, e3 ∶= je1, e4 ∶= je2} being the standard basis of ℂ4. The quaternionic structure 
induces a real structure on �2

ℂ
4 (also denoted by j by abuse of notation) via

and the determinant induces an inner product ⟨., .⟩ on �2
ℂ

4 by

The 6-dimensional real subspace V is spanned by

j ∶ ℂ
4
→ ℂ

4

j∗ det = det

det(e1, e2, je1, je2) = 1

v ∧ w ↦ jv ∧ jw,

⟨�, �⟩ = det(� ∧ �).
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Restricted to V the inner product ⟨., .⟩ is of signature (5, 1).
For a general (n + 2)-dimensional real vector space V with inner product of signature 

(n + 1, 1) , the n-sphere can be naturally identified with projectivation ℙL of the light cone

Moreover, ℙL is equipped with a natural conformal structure: For a lift l of � ∶ L → ℙL 
the Riemannian metric gl is defined as

The space of orientation preserving conformal transformations—the Möbius group—can 
be identified with

For V being the real subspace of �2
ℂ

4 , a real nonzero lightlike vector of V is given by a 
complex 2-plane in ℂ4 (nullity) invariant under j (reality), i.e. it gives rise to a quaternionic 
line in (ℂ4, j). This identifies the 4-sphere with the quaternionic projective line ℍP1 , and 
relates the quaternionic holomorphic geometry to the lightcone model, see [12, §4].

Constant curvature subgeometries of the Möbius geometry (ℙL, SO(5, 1)+) are specified 
by a choice v∞ ∈ V ⧵ {0}. Such a choice provides a natural lift l of ℙL onto the subset

and the induced Riemannian metric gl defined in (2) is of constant sectional curvature 
−⟨v∞, v∞⟩. The corresponding group of orientation preserving isometries of the subgeom-
etry is then given by

and is isomorphic to SO(5) if ⟨v∞, v∞⟩ < 0 and isomorphic to SO(4, 1) if ⟨v∞, v∞⟩ > 0.

To define the associated family of connections, we need the mean curvature sphere con-
gruence S for the immersion f ∶ M → S4 . This is a map S from M into the space of oriented 
2-spheres in S4, such that at every p ∈ M the corresponding 2-sphere S(p), touches the immer-
sion at f(p) and has the same oriented tangent plane, and the same mean curvature. An ori-
ented 2-sphere S ⊂ ℙL is determined by an oriented (real) 4-dimensional vector space VS ⊂ V  
of signature (3, 1) via S = ℙVS ∩ ℙL. This space is uniquely determined by its orthogonal 
complement, VN ∶= V⟂

S
, which is a oriented real 2-plane with positive definite inner product, 

and therefore admits a unique compatible complex structure

A conformal immersion f ∶ M → ℙL is naturally equipped with the real rank 4 subbundle

v1 =e1 ∧ e3,

v2 =e2 ∧ e4,

v3 =e1 ∧ e2 + e3 ∧ e4,

v4 =ie1 ∧ e2 − ie3 ∧ e4,

v5 =e1 ∧ e4 + e2 ∧ e3,

v6 =ie1 ∧ e4 − ie2 ∧ e3.

L = {v ∈ V ∣ ⟨v, v⟩ = 0}.

(2)gl(X, Y) ∶= ⟨dl(X), dl(Y)⟩.

SO(n + 1, 1)+ ∶= {g ∈ SO(n + 1, 1) ∣ ⟨g(v), v⟩ < 0 if ⟨v, v⟩ < 0}.

(3)S∞ ∶= {[x] ∈ ℙL ∣ ⟨x, v∞⟩ = −1},

SO(5, 1)+
∞
= {g ∈ SO(5, 1)+ ∣ g(v∞) = v∞},

JN ∶ VN → VN , J2
N
= −id.
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of the trivial rank 6 bundle V, with complexification locally given by

for some local lift ̂f ∶ U ⊂ M → L (and where fz =
�f

�z
 , etc.), see [10–12]. The bundle VS 

has induced signature (3, 1) and a natural orientation. Therefore, VS gives rise to a sphere 
congruence, i.e. to a smooth map into the space of oriented 2-spheres in S4. It can be com-
puted (see [10, 11]) that the sphere congruence VS is the mean curvature sphere congru-
ence, i.e. (VS)p is the unique oriented 2-sphere in S4 which touches (with orientation) the 
surface at f(p) to second order. Analogous to the classical case of surface geometry in 
Euclidean 3-space ℝ3 , we consider the induced splitting of the trivial connection d with 
respect to

where VN ∶= V⟂
S

 given by

into diagonal part D and off-diagonal part N. While D is a connection, N  is tensorial.
Another related vector bundle Z is the bundle of skew-symmetric maps of (V , ⟨., .⟩) 

which map ℝ̂f  to span{̂f , ̂fz, ̂fz̄} and vice versa vanishing on other components.
With these notations, we list a few further important properties of the mean curvature 

sphere congruence:

• (see [10]) f is isothermic if and only if there exists � ∈ �
1(M,Z) with 

• (see [11]) the Willmore energy of f is given by 

 where ∗ dz = idz, ∗ dz̄ = −idz̄;
• (see [7, 10, 11]) a surface is Willmore if and only if 

 and constrained Willmore if and only if there exists a q ∈ �
1(M,Z) satisfying dDq = 0 

and 

q is called the Lagrange multiplier of f;
• (see [10] or [12, §3.3]) a surface f has parallel mean curvature vector H in the con-

stant sectional curvature subgeometry S∞ of ℙL defined by v∞ in (3) if and only if 

VS ⟶ M

VS ⊗ ℂ = span{̂f , ̂fz,
̂fz̄,

̂fz,z̄}

V = VS ⊕ VN ,

d = D +N

d� = dD� + [N ∧ �] = 0;

W(f ) = −
1

4 ∫M

tr(∗ N ∧N)

dD ∗ N = 0,

dD ∗ N = 2[q∧ ∗ N];

Dv⟂
∞
= 0,
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 where v⟂
∞

 is the projection to VN = V⟂
S
; in particular, f is minimal in S∞ if and only if 

v⟂
∞
= 0;

• a surface with parallel mean curvature vector H in S∞ is constrained Willmore with 
Lagrange multiplier q which is determined by 

 where v⟂
∞
= (v⟂

∞
)+ + (v⟂

∞
)− is with respect to the decomposition of the normal bundle 

VN ⊗ ℂ = V+
N
⊕ V−

N
, see [24, §7.2.2].

In particular, the Lagrange multiplier q of a constrained Willmore surface f is unique if and 
only if f is non-isothermic, as for two Lagrange multipliers q1, q2 the 1-form

solves d� = 0.

The following theorem reduces the constrained Willmore property of a given immersion 
f to the flatness of an associated family of flat connections in the language of the light cone 
model.

Proposition 1 [10, 11] The surface f ∶ M → ℙL is constrained Willmore with Lagrange 
multiplier q ∈ �

1(M,Z) if and only if

is flat for all λ ∈ ℂ
∗, where (1, 0) and (0, 1) are the complex linear and complex anti-linear 

parts of a 1-form.

2.3  Compatibility of the quaternionic and the lightcone theory

The two approaches, the quaternionic and the lightcone one, towards the associated family 
of flat connections are in fact equivalent, as both associated families are gauge equivalent, 
when choosing suitable parameters. In order to provide a link between these families, we 
need to relate the two different ways to obtain the mean curvature sphere congruence S.

Oriented 2-spheres in quaternionic geometry are given by complex structures ̃S of 
V = M × ℍ

2 . To be more precise, a 2-sphere is a map

On the other hand, an oriented 2-sphere S ⊂ ℙL is determined by an oriented 4-dimen-
sional vector space VS ⊂ V  of signature (3, 1) via S = ℙVS ∩ ℙL. Moreover, VN ∶= V⟂

S
 is a 

oriented real 2-plane with positive definite inner product, and therefore admits a compat-
ible complex structure

We therefore obtain a decomposition

such that

q1,0v⟂
∞
∶= −N1,0(v⟂

∞
)+,

� =∗ q1− ∗ q2 ∈ �
1(M,Z)

dλ
q
∶= D + λ−1N(1,0) + λN(0,1) + (λ−2 − 1)q(1,0) + (λ2 − 1)q(0,1)

̃S ∈ SL(4,ℂ) satisfying ̃S2 = −id.

JN ∶ VN → VN , J2
N
= −id.

𝛬
2
ℂ

4 = V ⊗ ℂ = VS ⊗ ℂ⊕ V+
N
⊕ V−

N
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are complex null lines that are complex conjugated to each other, i.e.

In particular, V±
N

 gives rise to complex planes W± in ℂ4 satisfying

Hence, there exists a unique ̃S ∈ SL(4,ℂ) with

which is a 2-sphere in ℍP1 in the quaternionic sense.
Conversely, every quaternionic 2-sphere ̃S determines its ±i eigenspaces W±

̃S
 which are 

interchanged via j. They define complex null-lines V±
N

 satisfying jV±
N
= V∓

N
, and therefore 

define a real oriented 2-plane of signature (2, 0). Its orthogonal complement in V is a real 
oriented vector space VS of signature (3, 1), hence a 2-sphere in ℙL.

In the quaternionic description of f ∶ M → S4 ⊂ ℍP1 , we consider the quaternionic line 
bundle L = f ∗T, the pull-back of the tautological bundle T  of ℍP1 , which can be viewed 
as a M-family of j-invariant complex 2-planes in ℂ4 determined by f ∶ M → ℙL. Its mean 
curvature sphere congruence

is determined by the above identifications. We consider the bundle decomposition

into the ±i-eigenbundles of ̃Sf  , and the decomposition of the trivial connection d as

into ̃Sf  commuting and anti-commuting parts, i.e. D̃S
̃Sf = 0 and ÑS

̃Sf = −̃SfÑS. Again 
D̃S is a connection and ÑS is tensorial. Moreover, D̃S induces D on �2

ℂ
4 , and ÑS acts 

as N ∈ �
1(M, ��(�2

ℂ
4, det)) . Note that reality of ÑS is equivalent to anti-commutation 

with Sf  , For details, see [12, § 4.5]. The Lagrange multiplier q ∈ �
1(M,Z) is then given by 

� ∈ �
1(M, ��(4,ℂ)) satisfying

and the Euler–Lagrange equation of a CW surface with Lagrange multiplier � is

Consequently, a surface is constrained Willmore in the 4-sphere if and only if the 
connections

are flat for all λ ∈ ℂ
∗. Moreover, the induced family of flat connections on �2

ℂ
4 satisfies

V±
N
= {v ∈ VN ⊗ ℂ ∣ JNv = ±iv}

jV±
N
= V∓

N
.

ℂ
4 = W+

⊕W−.

(4)̃S2 = −id, ̃S∣W± = ±i and ̃Sj = j̃S,

S̃f ∶ M → {S̃ ∈ SL(4,ℂ) ∣ S̃ satisfies (4)}

ℂ
4 = W+

⊕W−

d = DS̃ +NS̃

image(𝜂) ⊂ L ⊂ ker(𝜂) dDS̃
𝜂 = 0

dDS̃ ∗ ÑS = 2[𝜂∧ ∗ ÑS].

(5)dλ
𝜂,̃S

∶= DS̃ + λ−1N1,0

S̃
+ λN0,1

S̃
+ (λ−2 − 1)𝜂1,0 + (λ2 − 1)𝜂0,1
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for � corresponding to q under the above identifications.
The following Proposition is proven in [24, § 9], and is used below to determine the 

structure of the spectral curves of the Babich–Bobenko tori:

Proposition 2 The family of SL(4,ℂ)-connections ∇� as in (1) is gauge equivalent to dλ
𝜂,̃S

 
for � = λ2.

2.4  The structure of the spectral curve of a Babich–Bobenko torus

The aim of this section is to show the holonomy spectral curve of a Babich–Bobenko torus 
defined by the rank 4 family ∇� has the same properties as the Cosh–Gordon spectral curve 
by taking the Lagrange multiplier � corresponding to q∞ as defined in [24, page 130]. Note 
that we consider the immersions maps into S3 ⊂ S4ℂongℍP1 (to make the relation to qua-
ternionic holomorphic surface geometry transparent). We first study the structure of the 
spectral curve for the case of H = 0 , which is equivalent to the vanishing of the Lagrange 
multiplier � =̂ q = 0 . The case 0 < |H| < 1 is morally the same, though the details are 
slightly different, see Sect. 2.5. The application of the Plücker estimate in Sect. 3 works 
totally analogous in both cases.

Proposition 3 For a Babich–Bobenko torus f ∶ M ⟶ S3 with H = 0 , the associated 
constrained Willmore family of flat connections ∇� is gauge equivalent to a ℂ∗-family of flat 
SL(4,ℂ)-connections ∇̃λ of the form

with � = λ2 through a λ-dependent family of complex gauge transformations, where

with ∗ �±1 = ±i�±1.

Moreover,

are gauge equivalent for all λ ∈ ℂ
∗ , and the monodromies of d + �(−λ) along non-trivial 

elements of the first fundamental group have neither unimodular nor real eigenvalues for 
generic λ ∈ S1.

Proof Let f ∶ M → S3 ⊂ ℙL be a Babich–Bobenko torus with mean curvature H = 0. 
Then, the family of connections

as defined in (5) with Lagrange multiplier � = 0 is flat for all λ ∈ ℂ∗.

Because the Babich–Bobenko surface is minimal in the intersection with the hyperbolic 
space S∞ , the parallel vector v∞ is space-like and is contained in the mean curvature sphere 

(6)𝛬
2dλ

𝜂,̃S
= dλ

q

∇̃λ = d +

(
𝜔(λ) 0

0 𝜔(̄λ−1)

)

(7)�(λ) = λ−1�−1 + �0 + λ�1 ∈ �
1(M, ��(2,ℂ))

d + 𝜔(−λ) and d + 𝜔(̄λ−1)

∇̃λ = dλ
0,S
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bundle V for all p ∈ M. In particular, we have N(v∞) = 0 . Hence, by Proposition 1 and 
(6) together with q = 0 v∞ is parallel with respect to 𝛬2∇̃λ for all λ ∈ ℂ

∗ . Recall that the 
3-sphere S3 ⊂ S4 is determined by a space-like vector v via

Thus, v is contained in VN for all p ∈ M and hence v is also parallel with respect to 𝛬2∇̃λ 
for all λ ∈ ℂ

∗ . Note also that v and v∞ are perpendicular. There exists a conformal trans-
formation of S4 given by a real element of SO(�2

ℂ
4, det) which transforms the (real and 

space-like) 2-vectors v and v∞ (which are perpendicular to each other as they define per-
pendicular 3-spheres in the 4-sphere) as follows.

Hence, we can assume without loss of generality that v = ṽ and v∞ = ṽ∞ are parallel for all 
λ ∈ ℂ

∗. For a connection d + A with A ∈ �
1(M, ��(4,ℂ)) , the 2-vectors v,w ∈ � (M,�2

ℂ
4) 

are parallel if and only if it e1 ∧ e2 and e3 ∧ e4 are parallel. This is equivalent to A being of 
the form

for A1,A2 ∈ �
1(M, ��(2,ℂ)) as can be seen as follows: for A = (ai,j) we get

which vanishes if and only if

and similarly for A(e3 ∧ e4). Moreover, if A commutes with j or equivalently �2(d + A) is 
real, then A2 = A1 ∶ in fact,

and

and similarly for e2.
Hence, with q=̂� = 0 we see that ∇̃λ has the form

where �(λ) is as stated in (7). By [24, Lemma 9.14] and [4, Equation (2.11)], ∇̃λ is gauge 
equivalent to ∇� as defined in (1) (with � = λ2).

If the monodromies of d + �(−λ) along non-trivial elements �i of �1(M) would have 
either unimodular or real eigenvalues for generic λ ∈ S1 , then [4, Proposition 3.2] shows 
that the eigenvalues of ∇� must be all equal to 1 for all � ∈ ℂ∗ and therefore this case can 
be excluded by [4, Theorem 5.1].

It remains to prove that d + �(−λ) and d + 𝜔(̄λ−1) are gauge equivalent for all λ ∈ ℂ
∗. 

We make use of the fact that ∇̃λ and ∇̃−λ are gauge equivalent (as both are gauge equivalent 

S3 = {[x] ∈ ℙL ∣ ⟨x, v⟩ = 0}.

v ↦ ṽ ∶= e1 ∧ e2 + e3 ∧ e4, v∞ ↦ ṽ∞ ∶= ie1 ∧ e2 − ie3 ∧ e4.

A =

(
A1 0

0 A2

)

A(e1 ∧ e2) = (Ae1) ∧ e2 + e1 ∧ (Ae2) = (a3,1e3 + a4,1e4) ∧ e2 + e1 ∧ (a3,2e3 + a4,2e4)

a3,1 = a3,2 = a4,1 = a4,2 = 0,

j(d + A)(e1) = jA1(e1) = j(a1,1e1 + a2,1e2) = a1,1je1 + a2,1je2 = a1,1e3 + a2,1e4

(d + A)(je1) = a3,3e3 + a4,3e3,

∇̃λ = d +

(
𝜔(λ) 0

0 𝜔(̄λ−1)

)
,
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to ∇�=λ2 ), and want to determine the gauge as explicit as possible. Consider first the case 
that at some point p ∈ M

is (twice) the oriented normal of f at p. Then, S+
p
 is the 2-plane determined by

and S−
p
 is the 2-plane determined by

i.e.

and

By [12, §3.2 ] or [24, Lemma 9.14],

where H ∶ ℂ
4
→ ℂ

4 is determined by

Using the standard basis of ℂ4, Hp is given by

Now, let (twice) the normal of f at the point q ∈ M be arbitrary, i.e. Nq is in the real part of 
�

2
ℂ

4 perpendicular to ṽ and ṽ∞ and of length 2. There is a conformal transformation �q of 
S4 which fixes the 3-sphere and the sphere at infinity, and maps Np to w. It must be (consid-
ered as a SL(4,ℂ)-matrix commuting with j) of the form

where Pq is a 2 by 2 matrix of unimodular determinant. Denote

Then,

Because the space of SL(4,ℂ) matrices commuting with j and fixing

w = (e1 ∧ e3 − e2 ∧ e4)

w + i ̃v∞ = (e1 − e4) ∧ (e3 − e2)

w − i ̃v∞ = (e1 + e4) ∧ (e2 + e3),

S+
p
= span(e1 − e4, e3 − e2)

S−
p
= span(e1 + e4, e2 + e3).

∇̃−λ = ∇̃λ.H,

H(s±) = ±is± for s± ∈ S±.

Hp =

⎛⎜⎜⎜⎝

0 0 0 − i

0 0 − i 0

0 − i 0 0

−i 0 0 0

⎞⎟⎟⎟⎠
.

𝛹q =

(
Pq 0

0 ̄Pq

)

K =
(
0 −iπ 0

)
.

Hq =

(
P−1
q

0

0 ̄P−1
q

)(
0 K

K 0

)(
Pq 0

0 ̄Pq

)
=

(
0 P−1

q
K ̄Pq

̄P−1
q
KPq 0

)
.
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is given by

where where a, b ∈ ℂ , � ∈ S1 with

Pq is unique up to

Note that

As P can be locally chosen to be smooth on M we find a well-defined global gauge 
transformation

with unimodular determinant which is locally given by

and satisfies

Moreover, due to the quadratic factor �2, one can deduce that g can actually be chosen to be 
SL(2,ℂ)-valued.   ◻

As an immediate corollary, the spectral curve Σ has the same properties as a 
Cosh–Gordon spectral curve.

Corollary 1 The spectral curve Σ of a Babich–Bobenko torus (with H = 0 ) considered as 
a Willmore torus, i.e. as the Riemann surface parametrizing the eigenlines of ∇�, is given 
by a double covering of λ ∶ Σ ⟶ ℂP1 with λ2 = � satisfying:

• λ is branched over λ = 0 and λ = ∞
• there exist two holomorphic functions—the monodromy maps—

such that the hyper-elliptic involution � satisfies

ṽ, ̃v∞ and e1∧e3 − e2∧e4

⎛
⎜⎜⎜⎝

𝛼a 𝛼b 0 0

𝛼
̄b 𝛼ā 0 0

0 0 𝛼
−1ā 𝛼

−1 ̄b

0 0 𝛼
−1b 𝛼

−1a

⎞
⎟⎟⎟⎠
,

a ̄a − bb̄ = 1,

Pq ⟼ 𝛼

(
a b
̄b ā

)
.

�̄�
−1

(
ā − ̄b

−b a

)
K𝛼

(
a b
̄b ā

)
= 𝛼

2K.

g ∶ M → GL(2,ℂ)

gq = P̄−1
q
KPq

(d + 𝜔(λ)).g = d + 𝜔(̄λ−1).

�1, �2 ∶ Σ ⧵ {0,∞} ⟶ ℂ
∗
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• Σ has an anti-holomorphic involution � covering λ ↦ −̄λ−1 with 

• � ∶ Σ ⟶ ℂP1 is a fourfold covering, i.e. for generic � ∈ ℂ∗ the connection ∇� has 4 
distinct eigenvalues along the generators �k k = 1, 2 of �1(T2) given by the four ele-
ments of the set

Proof By the previous proposition, the spectral curve Σ is given by the holonomy spectral 
curve of the family of flat connections ∇̂λ = d + 𝜔(λ). Since ∇̂λ is SL(2,ℂ), the hyper-ellip-
tic involution � maps an eigenvalue of the monodromy to its inverse. The other involution 
� is induced by the quaternionic multiplication j, which covers λ ↦ −̄λ−1 and (complex) 
conjugates the eigenvalues of the monodromy. Moreover, the parameter covering � = λ2 is 
unbranched over ℂ∗ . Thus, the quotient Σ∕� is biholomorphic to ℂP1.   ◻

2.5  Non‑minimal Babich–Bobenko tori

We show a modified version of Corollary 1 for Babich–Bobenko surfaces

with mean curvature H ≠ 0 (and |H| < 1 ) in the hyperbolic space H3
⊂ S3 . Again we use 

the notations as introduced in Sect. 2.3 (or [24] for more details) and consider the ℂ∗-asso-
ciated family of flat connections

on the trivial ℂ4-bundle for the Lagrange multiplier � given by

where �∞ is defined in [24, Theorem 8.16]. For further references, see [11, 12, 25]. The 
connections dλ

�,S
 induce the family of flat connections

on the �2
ℂ

4 with Lagrange multiplier � . By [24, Lemma 9.14] and [4, Equation (2.11)] 
the connections dλ

�,S
 and the constrained Willmore associated family of flat connections ∇� 

defined in (1) are gauge equivalent for � = λ2.
The surface f is an isothermic constrained Willmore torus by assumption and admits 

a conserved quantity [24, Proposition 8.20]. Since we are considering surfaces in 
S3 ⊂ S4 , there is for every λ ∈ ℂ

∗ a complex 2-dimensional subspace of �2
ℂ

4 on which 
dλ
�
 acts trivially, see (6). Applying a suitable SL(4,ℂ)-transformation (depending on λ 

and p ∈ M ), we can assume without loss of generality that the invariant subspace is 
spanned by

�
∗
�i =

1

�i

, for i = 1, 2

𝜌
∗
𝜈i = �̄�i, for i = 1, 2

{�k(�) ∣ � ∈ Σ ∶ � = (λ(�))2}.

f ∶ M ⟶ S3

dλ
�,S

� = H�∞,

dλ
�
= D + λ−1N(1,0) + λN(0,1) + (λ−2 − 1)�(1,0) + (λ2 − 1)�(0,1),
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A short computation as in Sect. 2.4 shows that dλ
�,S

 is of the form

for A(λ),B(λ) ∈ �
1(M, ��(2,ℂ)) (with respect to the chosen λ-dependent frame). Recall 

that the reality condition implies that dλ
�
 reduces to a SO(3, 1)-connection for every λ ∈ S1 . 

This implies

Remark 2 For CMC surfaces in S3 , the connection dλ
�
 reduces to a SO(4)-connection with 

reality condition − ̄AT = A and − ̄BT = B.

Proposition 4 The spectral curve of a Babich–Bobenko torus f ∶ T2 ⟶ S3 (corre-
sponding to the Lagrange multiplier � defined in [24, Theorem 8.16]) is a hyper-elliptic 
surface

with an anti-holomorphic involution � covering λ ↦ −̄λ−1. Moreover, Σ is endowed with 
two meromorphic differentials �1, �2 of the second kind satisfying

where � is the hyper-elliptic involution and two holomorphic functions 
�1, �2 ∶ Σ ⧵ λ−1{0,∞} with d log �k = �k.

The functions �i parametrizes the eigenvalues of ∇� along the generator �k, of the first 
fundamental group of T2. The (generically) four eigenvalues of ∇� are given by

Proof Let Σ̃ be the constrained Willmore spectral curve given as the parametrization of 
the (generically 4 distinct) eigenvalues of ∇�. Since ∇� is gauge equivalent to (8), it is the 
direct sum of two flat SL(2,ℂ)-connections

for λ2 = �. Let h be an eigenvalue of the monodromy of ∇� . We assume without loss of 
generality that it is an eigenvalue of d + A(λ) . Since d + A(λ) is a SL(2,ℂ)-connection, h−1 
is also an eigenvalue of d + A(λ). Thus we can define an involution

(note that � holomorphically extends to � = 0,∞ and therefore is well defined on Σ ). Since 
the decomposition into blocks is valid for all � ∈ ℂ

∗ , the quotient Σ∕� is ℂP1. The remain-
ing properties can be easily proved using [4, Proposition 3.1] together with the reality con-
dition ̄A = B.   ◻

v = e1 ∧ e2, e3 ∧ e4.

(8)d +

(
A(λ) 0

0 B(λ)

)

̄A(λ) = B(λ) for λ ∈ S1.

λ ∶ Σ ⟶ ℂP1

𝜎
∗
𝜃k = −𝜃k, 𝜌

∗
𝜃k = �̄�k,

{�k(�) ∣ k = 1, 2 and � ∈ Σ ∶ � = (λ(�))2}.

d + A(λ) and d + B(λ)

� ∶ Σ ⟶ Σ, h ⟼ h−1
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Remark 3 Note that for H ≠ 0 , the connections dλ
�,S

 and the connections given by (8) are 
gauge equivalent by a λ-dependent gauge transformation. Thus, the map λ ∶ Σ ⟶ Σ∕� is 
not necessarily branched over 0 and ∞ as in the H = 0 case.

3  Plücker estimates

We show that all isothermic constrained Willmore tori of Babich–Bobenko type have Will-
more energy above 8�. The following Plücker estimate is relating the dimension of the 
holomorphic sections of V/L (without monodromy) to the Willmore energy of the corre-
sponding immersion.

Theorem  2 [13, Theorem  4.12] Let f ∶ T2 ⟶ S3 be a conformal immersion and 
(V/L, D) be the quaternionic holomorphic line bundle associated to it. Let k ∈ ℕ be the 
dimension of H0(T2,V∕L) (with trivial monodromy). Then, a lower bound for the Willmore 
energy of f is given by

Remark 4 For every immersion into S3 , the sections [1, 0] and [0, 1] are holomorphic sec-
tions without monodromy. Thus, H0(V∕L) is at least 2-dimensional. The most relevant 
cases in the following are: if there exists a third quaternionic linearly independent holo-
morphic section, then the Willmore energy of f is at least 8� , if there exists a fourth quater-
nionic linearly independent holomorphic section, the lower bound is 16�.

Remark 5 We have shown in Sects. 2.4 and 2.5 that the associated family of flat connec-
tions ∇� of a Babich–Bobenko torus has four distinct eigenvalues for generic � ∈ ℂ∗ . Thus, 
by Bohle [4] ̂L =KerA

ℂ
irc is a non-constant quaternionic line subbundle of V.

Lemma 1 Let f ∶ T2 ⟶ S3 be a Babich–Bobenko torus with Willmore energy below 
8�. Then every branch point of the spectral curve λ ∶ Σ ⟶ Σ∕�ℂongℂP1 except those 
over λ = 0 and λ = ∞ corresponds to a non-constant holomorphic section of V/L with ℤ2

-monodromy.

Proof The spectral curve Σ is the surface parametrizing the eigenlines of ∇�—the con-
strained Willmore associated family of flat connections. It admits two involutions: � and �. 
While the involution � corresponds to the quaternionic multiplication by j and is fixpoint 
free, the involution � maps a holomorphic section � with monodromy h to a holomorphic 
section with monodromy h−1 . Therefore, the branch points of Σ correspond to those ∇�-par-
allel sections � of V with ℤ2-monodromy, i.e. prolongations of holomorphic sections of 
V/L with ℤ2-monodromy. It is thus crucial to show that these � are non-constant sections 
of V, which clearly holds whenever the monodromy of the section � is non-trivial. Thus, 
we restrict to the case where � has trivial monodromy.

Let λ0 be a branch point of Σ and �0 be the ∇�0-parallel section of V without monodromy 
associated to λ0 where �0 = λ2

0
 . If �0 ≠ 1 then � must be non-constant, since � being con-

stant would imply that �̃� ∈ 𝛤 (KerA
ℂ
irc) and then ̂L =KerA

ℂ
irc would be constant in con-

tradiction to [4, Theorem 5.3].

W(f ) ≥
{

�k2 k even

�(k2 − 1) k odd.
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It remains to show that also for the case �0 = λ2
0
= 1 there exists a non-constant sec-

tion �̃� , given by a prolongation of a holomorphic section of V/L,  with trivial monodromy. 
Let ∇� be the CW associated family, and �0 = 1 be a branch point of the spectral curve 
Σ . Because of the �-symmetry (interchanging the two points over �0 = 1 ) Σ is not totally 
branched at �0 , i.e. we can use a local coordinate � on Σ with �2 = � − 1. Assume that 
the Willmore energy is below 8�. By [5, Theorem 4.3 (iii)], there is a smooth family of 
∇�(�)-parallel sections �� parametrized on an open subset of Σ around � = 0 depending 
smoothly on � , i.e. we have

Differentiating this equation with respect to � (denoted by ()� ) at � = 0 (and therefore � = 1 ) 
gives

where � = �
�=0 is constant in z ∈ T2(as ∇�=1 = d ). Differentiating once more and evaluat-

ing at � = 0 thus gives

Since (−2A
ℂ
irc1,0 + 2A

ℂ
irc0,1)� is contained in L = f ∗T = Im (A

ℂ
irc) , d� ′′ is contained 

in L as well showing that � ′′ is the prolongation of a (locally) holomorphic section of V/L. 
Since the monodromy takes the value 1 with at least second order (because the monodromy 
is trivial at the branch point � = 1 ), � ′′ has also trivial monodromy. If � ′′ would be con-
stant then

which yields that KerA
ℂ
irc is constant giving a contradiction.   ◻

Lemma 2 Two holomorphic sections of V/L with non-trivial ℤ2-monodromy correspond-
ing to different branch points of λ ∶ Σ → Σ∕� = ℂP1 not lying over 0 or ∞ , which are not 
interchanged by the involution �, are quaternionic linear independent.

Proof Let �̃�1 and �̃�2 be two holomorphic sections of V/L with ℤ2-monodromy. If these sec-
tions have different ℤ2-monodromies, then they are clearly quaternionic linear independent. 
Thus, let the �i have the same non-trivial ℤ2-monodromy in the following.

Due to [4, Section  2.5] and the fact that their monodromy is non-trivial on T2 , it is 
enough to prove that their prolongations �1 and �2 , which are parallel sections with respect 
to ∇�1 and ∇�2 (corresponding to the branch points λ1 and λ2 of Σ ⟶ Σ∕� ), are linear inde-
pendent. If �1 = �2 , it follows from Proposition 3 that �1 and �2 are (quaternionic) linear 
independent since �1 ≠ �2 and �1 ≠ �(�2).

If �1 ≠ �2 , we obtain that �̃�1 and �̃�2 are complex linear independent. Assume that they 
are not independent as quaternionic sections, then we would have w.l.o.g.

for some a, b ∈ ℂ. Moreover, from

∇�(�)
�

� = 0.

0 = (∇�(x))�� + d� � =

(
d�(�)

d� ∣�=0

A
ℂ
irc1,0 +

d�−1(�)

d� ∣�=0

A
ℂ
irc0,1

)
� + d� � = d� �,

0 = (∇�(x))��� + 2(∇�(x))�� � + d� �� = (−2A
ℂ
irc1,0 + 2A

ℂ
irc0,1)� + d� ��.

0 = (−2A
ℂ
irc1,0 + 2A

ℂ
irc0,1)� ,

�̃�1 = a�̃�2 + b�̃�2j
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we obtain

By type decomposition (see [13, Section 2.1]), we obtain A
ℂ
irc�2 = 0 . Since �2 is ∇�2-par-

allel this implies �2 being constant, which is a contradiction by [4, Theorem 5.3]   ◻

Lemma 3 Let f ∶ T2 ⟶ S3 be a constrained Willmore torus of Babich–Bobenko type with 
spectral genus g ≥ 3 . Then, either one of the branch points of the spectral curve over the 
unit disc D ⊂ ℂ corresponds to the trivial monodromy or at least two of the branch points 
of the spectral curve on the punctured unit disc D∗ correspond to the same (non-trivial) ℤ2

-monodromy.

Proof For g > 3 , we have at least 5 branch points over the punctured unit disc

The claim follows from the fact that there exist only 3 different non-trivial spin structures 
of the torus.

It remains to show the lemma in the case of g = 3 , where we have 4 branch points over 
the unit disc (that are not interchanged by � ). Assume that none of the 4 branch points on 
the unit disc corresponds to the trivial spin structure and moreover, for � ≠ 0 the other 3 
branch points correspond to different spin structures. Then, the spin structure at � = 0 must 
coincide with the one at Pk for a k ∈ {1, 2, 3} , since there exist only 3 different non-trivial 
spin structures of a torus. Without loss of generality we can assume k = 1 . We want to 
show that the spin structures corresponding to P2 and P3 must then coincide.

In this case, the closed non-trivial curve, the green curve in Fig. 2, through the branch 
points P2 and P3 denoted by �23 , is homologous to the difference of the closed (red) curve 
�S through the Sym-points S1 and S2 and the closed (blue) curve �01 connecting 0 and P1 . 

∇𝜇1
�̃�1 = 0; ∇𝜇2

�̃�2 = 0 ∇�̄�
−1
2 �̃�2j = 0

(9)

0 = (𝜇−1
1

− 𝜇
−1
2
)A

ℂ
irc1,0a�̃�2

+ (𝜇−1
1

− �̄�2)Aℂ
irc1,0a�̃�2j

+ (𝜇1 − 𝜇2)Aℂ
irc0,1a�̃�2

+ (𝜇1 − �̄�
−1
2
)A

ℂ
irc1,0a�̃�2j.

D ∶= {λ ∈ ℂ ∣ 0 < |λ| ≤ 1}.

0 P

P

P

S
S

01 23
S

2

1

3

1

2

Fig. 2  A spectral curve of genus 3, with branch points and certain cycles
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Let �i = d log �i ( i = 1, 2 ) be the logarithmic differentials of the monodromy maps �i and 
consider integrals of �i along these curves. Using the hyper-elliptic symmetry, we want to 
show that

Since 0 and P1 correspond to the same spin structure by assumption, we first show that

for k = 1, 2 . As �k has trivial residue, we can interpret the above integral as the integral of 
�k along any curve homotopic to �01 which does not pass through 0 ∈ Σ.

In order to analyse the integral, we apply a renormalization: For k = 1, 2 , there exists 
a closed 1-form �k on Σ ⧵ {0} with support in a small neighbourhood of 0 which satisfies 
�
∗
�k = −�k and such that

extends smoothly through 0,  compare with the limiting analysis of [18, Proposition 3.10]. 
Note that ∫

�01
�k = 0 . Using an analogous computation as in [18, Proposition 3.10] again, 

we can associate to 0 ∈ Σ renormalized eigenvalues �̃�1 and �̃�2 which take values in {±1} and 
encode the spin structure of the surface. The sign is encoded in the parity of the constant 
part of the expansion in [18, Proposition 3.10]. Then, we obtain

where �+
01

 is given by a part of �01 which goes from 0 to P1 , and the last equality follows 
from the fact that the values �k(0) and �k(P1) coincide as 0 and P1 correspond to the same 
spin structure.

Thus it remains to prove that the integral of �i along the red curve �S satisfies

This follows from the �-symmetry of the spectral data: the integral of �k along the red curve 
�S is twice the integral along the curve �̃� which is defined to be the part of �S from the point 
S1 lying over the Sym point �1 to the point S2 lying over −�̄�−1

1
 , i.e.

where the last equality uses the fact that the integral takes imaginary values. The well-
definedness of f then gives ∫

�̃�
𝜃k ∈ 2𝜋iℤ proving the claim.   ◻

Theorem  3 The Willmore energy of a constrained Willmore torus f ∶ T2 ⟶ S3 of 
Babich–Bobenko type is at least 8�.

2∫
P3

P2

�i = ∫
�23

�i ∈ 4�iℤ.

∫
�01

�k ∈ 4�iℤ

�k + �k

∫
�01

�k = ∫
�01

�k + �k = 2∫
�
+
01

�k + �k ∈ 4�iℤ,

∫
�S

�k ∈ 4�iℤ.

∫
𝛾S

𝜃k = ∫
�̃�

𝜃k + ∫
𝜎ℂirc𝜌(�̃�)

𝜃k = ∫
�̃�

𝜃k − ∫
�̃�

𝜃k = 2∫
�̃�

𝜃k,
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Proof Since the spectral curve Σ admits an involution � covering λ ↦ −̄λ−1 , it must be of 
odd genus g, or λ is unbranched. For g ∈ {0, 1} the surface f is equivariant, see [15]. For 
g = 0 the surface must be homogenous. This case cannot appear, since it would be a sur-
face entirely contained in hyperbolic 3-space. For g = 1 , the surface is rotational symmetric 
and obtained by rotating a closed wavelike elastic curve in the hyperbolic plane H2 around 
the infinity boundary of H2. The only periodic solution in this class is the family of elastic 
figure-8 curves in H2 . These surfaces are non-embedded, see for example [14] or [28], and 
therefore they have Willmore energy above 8� by [21].

Let g ≥ 3 . By Lemma 1, we can associate to every branch point of Σ a holomorphic sec-
tion � with ℤ2-monodromy of V/L. There exist exactly 4 possible ℤ2-monodromies for � 
arising from the 4 different spin structures of T2 . To be more concrete, the two monodromy 
maps �i of � satisfies:

Every � with ±1 monodromy gives rise to a proper holomorphic section of V/L considered 
as a bundle over a suitable double cover ̃T2 of T2. Thus the theorem follows from the previ-
ous Lemma by applying the Plücker estimate (Theorem 2). If the trivial monodromy arises 
over λ = 0 , the immersion f has trivial spin structure and by [22] the surface cannot be 
embedded and hence its Willmore energy is at least 8� .   ◻
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