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Abstract
We describe the construction of CMC surfaces with symmetries in S

3 and R
3 using

a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The
fundamental piece is constructed by the generalized Weierstrass representation using
a geometric flow on the space of potentials.

Keywords CMC surface · Flat connections · DPW method · Tesselations

Mathematics Subject Classification (2010) 53A10 · 53C42 · 53C43

1 Introduction

Surfaces with constant mean curvature (CMC) in euclidean 3-space and in the round
3-sphere can be investigated by methods of integrable systems. Their Gauss equation
is the elliptic sinh-Gordon equation

�u + sinh u = 0 , (1.1)

which is one of the basic examples of integrable equations. Similar to minimal sur-
faces in euclidean 3-space, CMC surfaces possess 1-parameter (denoted usually by λ)
families of isometric associated surfaces obtained by rotating their Hopf differential.
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This allows CMC surfaces to be described in terms of loop groups [4], so that
analytic methods of the theory of integrable systems can be applied. One of the pow-
erful methods of the construction of CMC surfaces is the generalized Weierstrass
representation (DPW) by Dorfmeister-Pedit-Wu [6]. It starts with an analytic dif-
ferential equation for the holomorphic frame �z = �ξ with a meromorphic DPW
potential ξ(z, λ) and the subsequent loop group factorization of �, leading to immer-
sion formulas for the CMC surfaces. Control of the monodromy of the holomorphic
frame is of crucial importance for the construction of CMC surfaces with non-trivial
topology and symmetries.

A particularly important class of potentials is given by Fuchsian systems ξ(z),
those with only simple poles. In the simplest case of three singularities it reduces to
the hypergeometric equation (see, for example, [7]), whose monodromy group can
be described explicitly from the local residues. This leads to CMC surfaces based on
fundamental triangles [25]. From the geometric point of view, CMC surfaces con-
structed from fundamental quadrilaterals are more natural, since they come from the
curvature line parametrization. But for Fuchsian systems with more then three singu-
larities the monodromy cannot be computed explicitly in terms of the coefficients of
the system, introducing accessory parameters. Then the simplest holomorphic frame
equation is a Fuchsian system with four singularities on the Riemann sphere

�z = �

3∑

k=0

Ak

z − zk

. (1.2)

In Section 5 of this paper we show how all periodic and compact surfaces based on
fundamental quadrilaterals can be constructed from the system (1.2). Our construc-
tions make explicit use of this Fuchsian DPW form. The relation of the monodromy
and the coefficients of the Fuchsian system is the famous Hilbert’s 21st problem,
which was intensely studied [1]. There exist many important partial results in the sim-
plest non-trivial case of four singularities. This case was investigated mostly within
the theory of isomonodromic deformations [7] and the Painlevé VI equation, where
the problem is to describe the coefficients Ak as functions of the poles zj when the
monodromy group is preserved. The holomorphic frame �(z, λ) of a CMC surface
lies in a loop group, and the main analytic problem is to construct solutions whose
monodromy group is unitary on the unit circle |λ| = 1, giving global solutions of the
Gauss equation on the four-punctured sphere.

In general, it is a hard problem to control the intrinsic and extrinsic closing condi-
tions to obtain closed surfaces or surfaces with prescribed global properties. In recent
years, important progress has been made using a flow of DPW potentials [13, 27, 28]
or similar methods on spectral data [12]. By the very nature of these techniques, only
surfaces which are small perturbations of spheres or tori have been reached [13].

In [18] Lawson constructed the first compact minimal surfaces in the round 3-
sphere of genus g � 2. A fundamental piece of a Lawson surface is obtained by
the Plateau solution of a specific geodesic polygon. The compact surface is then
built from the fundamental 4-gon by the finite group generated by rotations around
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the geodesic edges of the polygon. Later, Karcher-Pinkall-Sterling [16] constructed
new minimal surfaces in the 3-sphere by starting with a tessellation of the 3-sphere
into tetrahedra. The minimal surfaces are obtained from fundamental minimal 4-gons
within such a tetrahedron which reflect across the geodesic boundaries. Constant
mean curvature (CMC) surfaces in R

3 have been constructed by adapting these
methods [8]; see also [10, 22] for related computer experiments.

This paper constructs such fundamental patches of surfaces (Section 4) based
on the deformation of DPW potentials. In this paper the following new surfaces
are numerically constructed: triply periodic surfaces (Figs. 1b and 2a) and doubly
periodic surfaces (Figs. 16b, 17b and 18), new doubly periodic surfaces with Delau-
nay ends (Fig. 21), new surfaces with Delaunay ends of positive genus (Figs. 28,
29, 30 and 42) as well as new KPS-type surfaces (Fig. 38). We also reconstruct by
these methods previously constructed surfaces based on doubly-periodic hexagonal,
square and triangular tilings of the plane, triply periodic cubic examples, cylinders
with ends [8, 9], and the Lawson and KPS surfaces [16, 18] (Figs. 3, 4, 5, 6, 7, 8, 9,
10, 11, 12 and 13).

The 3D-data of the surfaces constructed in this paper are available in the DGD Gallery [5].

2 Geometric Construction

2.1 The Construction

This paper reports on the experimental construction of CMC surfaces in R
3 with

non-trivial topology with and without Delaunay ends via the generalized Weierstrass

Fig. 1 Triply periodic CMC surfaces in R
3
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representation (DPW) [6]. The construction starts with a tetrahedron in R
3

as shown which tessellates R3 by the group generated by the reflections in
the four planes containing its faces. Each of the six edges of the tetrahedron
is marked with an integer n ∈ N�1 ∪ {∞} specifying that the internal dihedral
angle between the two planes meeting at that edge is π/n. The tetrahedron can be
degenerate in the following ways:

• vertex at ∞
• parallel planes, with opposite outward normals: the edge of the tetrahedron

between the two planes is marked with ∞
• coincident planes, with the same outward normal: the edge of the tetrahedron

between the two planes is marked with 1.

In this tetrahedron construct a CMC quadrilateral as shown, such that

• each of the four edges of the quadrilateral lies in a plane of the
tetrahedron, and the surface reflects smoothly across this plane

• at each of the four vertices of the quadrilateral, application of the tessellation
group results in a surface with either an immersed point of the surface or a once-
wrapped Delaunay end at the vertex.

Then the surface constructed by application of the tessellation group is a CMC
immersion with optional Delaunay ends and the symmetries of that group. Its genus
is finite if the tessellation group is finite, and infinite if the group is infinite. These
surfaces are described in detail at the end of this section.

Fig. 2 Triply periodic CMC surfaces in R
3
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The quadrilateral is constructed via a Fuchsian DPW potential on CP1 with four
simple poles on S

1 (Section 4.1) and a reflection symmetry across S1. The unit disk is
the domain of a CMC quadrilateral which reflects in planes containing its boundaries.
The simple poles with constant or Delaunay residue eigenvalues insure that each
vertex of the quadrilateral after reflection is either immersed or a Delaunay end.
The four dihedral angles of the tetrahedron at the corners of the quadrilateral are
controlled by the four local monodromies of the potential, and the two remaining
dihedral angles by two global monodromies.

The potential has two accessory parameters which are computed by the unitary
flow (Section 4.3). Starting with an initial surface (Section 4.2) which satisfies the
intrinsic closing condition (unitary monodromy on S

1
λ), the unitary flow, which pre-

serves this condition, is run through the space of potentials until the dihedral angles of
the planes reach the values prescribed by the tessellation. The dihedral angles are con-
trolled by certain monodromy traces at the evaluation point. The unitary flow is not
known in general to exist, but short time existence can be shown in some cases [12].
Hence we construct the surfaces numerically, giving evidence that the unitary flow
has long time existence.

The Lawson surfaces [18] (Figs. 33 and 34) and the surfaces of Karcher-Pinkall-
Sterling [16] (Figs. 35, 36, 37, 38, 39, 40 and 41) have been constructed by solutions
of Plateau problems. The cubic lattice and some of the 2-dimensional lattices were
shown to exist by similar methods [8].

2.2 Tetrahedral Tessellations

The following theorem classifies the tetrahedral tessellation of S3 (which are compact)
and of R3 (which are compact, paracompact or degenerate). The tetrahedral tessellation
of H3, which can be determined by the same methods, are omitted for simplicity.

Theorem 2.1 (1) The tetrahedral tessellations of S3 are as follows:
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(2) The tetrahedral tessellations of R3 are as follows:

Proof Necessary conditions that a compact tetrahedron tessellates one of the space-
forms S3, R3 or H3 are the following.

• Each edge of the tetrahedron is marked with an integer n ∈ N�2 denoting that
the internal dihedral angle between the two faces meeting at that edge is π/n.

• At each vertex of the tetrahedron, the three integers marking the three edges
meeting at the vertex are (2, 2, n), n ∈ N�2 or (2, 3, k), k ∈ {3, 4, 5}.

• The Gram matrix T ∈ Mn×n(R) defined by Tij = − cos π/nij has signature
(δ, 1, 1, 1), where δ = 1, 0 or −1 for S3, R3 and H

3 respectively.

The compact tetrahedra in S
3, R3 and H

3 are the following:

with identifications Aba = Aab, Bba = Bab, Dba = Dab and

A23 = B22 , A33 = D22 , B23 = C2 , B33 = D23 . (2.1)
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To see this, first consider those tetrahedra with at least one edge marked with 4 or 5.
Then at each of the vertices at the endpoints of that edge, the other two edges meeting
the vertex must be marked with 2 and 3. Hence all such tetrahedra with at least one 4
or 5 is one of the four types Aab, Bab, Ca or Dab. The remaining tetrahedra have only
2 or 3 at each face. There are seven of these, namely A22, A23 = B22, B23 = C2, C3,
A33 = D22, B33 = D23 and D33.

Since its Gram matrix has positive determinant, the tetrahedron Aab is in S
3. The

spaceforms for the other tetrahedra Bab, Ca and Dab are determined by the signs of
the determinant of the Gram matrix as follows:

B 2 3 4 5
2 [+] + + +
3 + + +
4 0 −
5 −

C 2 3 4 5
[+] + 0 −

D 2 3 4 5
2 [+] [+] + −
3 0 − −
4 − −
5 −

(2.2)

The [+] in the above tables denotes entries which are redundant due to the identifi-
cations (2.1)

Hence the tetrahedra which tessellate S
3 are Aab and the seven tetrahedra B23,

B24, B25, B33, B34, B35 and D24. These tessellate S
3 because they tessellate either a

sphere or a n-cell, which in turn tessellates S3.
The compact tetrahedra which tessellate R

3 are the three tetrahedra B44, C4 and
D33. The first two tessellate a cube and the third tessellates a rhombic dodecahedron,
each of which in turn tessellates R3.

The paracompact tetrahedral tessellations of R3 are classified similarly except that
the integer triple at each vertex is as in the compact case or one of (3, 3, 3), (2, 4, 4)

or (2, 3, 6).
The degenerate tetrahedral tessellations of R3 are classified similarly except that

the integer triple at each vertex is as in the paracompact case or one of (2, 2, ∞) or
(1, n, n), n ∈ N�1 ∪ {∞}.

2.3 The surfaces

This section describes the experimentally constructed minimal surfaces in S
3 and

CMC surfaces in R
3. They are of the types:

In R
3:

• triply periodic CMC surfaces R3 without ends (Figs. 1, 2, 14 and 15)
• doubly periodic CMC surfaces R3 without ends (e.g. Figs. 16, 17, 18, 19 and 20)
• doubly periodic CMC surfaces R3 with ends (Fig. 21)
• single periodic CMC surfaces in R

3 with Delaunay ends (cylinders, Figs. 22
and 23)

• CMC surfaces in R
3 with dihedral symmetry and Delaunay ends (tori, Figs. 24,

25, 26 and 27)
• CMC surfaces in R

3 with Platonic symmetries and Delaunay ends (Figs. 28, 29,
30 and 31)

• CMC spheres in R
3 with four Delaunay ends (fournoids, Figs. 30 and 32).
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In S
3:

• Lawson surfaces ξab in S
3 (Figs. 33 and 34)

• minimal surfaces in S
3 with Platonic symmetries (Figs. 35, 36, 37 and 38)

• minimal surfaces in S
3 with n-cell symmetries (Figs. 39, 40, and 41)

• minimal tori in S
3 with Delaunay ends (Fig. 42).

In all shown figures the lines on the surfaces are curvature lines. The surfaces in S
3

are stereographically projected to R
3.

Triply periodic surfaces inR3 The simplest triply periodic surfaces can be thought of
as tubes along the edges of the standard cubic lattice in R

3 (Fig. 4). The genus of
those surfaces modulo translation is 3.

The triply periodic surfaces are constructed from the three compact tetrahedra
which tessellate R3. Since the CMC quadrilateral can be situated in each tetrahedron
in three ways, this gives nine different configurations, of which two are redundant
due to symmetry (Fig. 3).

Of these, a3 and b2 are not possible under our symmetry constraints (compare
with (4.2)), c1 seems to devolve to a1, and the flow for c2 degenerates (Figs. 2, 14,
15 and 16).

Fig. 3 The tetrahedra for the seven possible triply periodic examples

Fig. 4 The simplest triply periodic surface and its tetrahedron

Fig. 5 Left: tetrahedron for doubly periodic surface, where (a, b, c) is a permutation of (3, 3, 3), (2, 3,
6) or (2, 4, 4). Middle: table of 2-dimensional lattices. The genus listed in the table is that of the surface
modulo translations. Right: fundamental piece for a 2-dimensional lattice
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Fig. 6 The six 2-dimensional lattices

Doubly periodic surfaces in R
3 The doubly periodic surfaces can be thought of

as tubes along the edges of a triangle tessellations of R
2. The six 2-dimensional

lattices are constructed with the tetrahedron below where (a, b, c) are the indices of
a triangle tessellation of R2, that is, a permutation of (3, 3, 3), (2, 4, 4) or (2, 3, 6)

(Figs. 16, 17, 18, 19 and 20).

Doubly periodic surfaces in R
3 with Delaunay ends The doubly periodic surfaces

with Delaunay ends are obtained from triangle tessellations of R
2. Additional

freedom is given by the choice of vertices corresponding to Delaunay ends (Fig. 21).

Cylinders in R
3 with ends Cylinders with Delaunay ends can be constructed from

a degenerate tetrahedron with two parallel planes. Of course, the same construction
without Delaunay ends give the classical rotational symmetric periodic surfaces, i.e.,
Delaunay cylinders (Figs. 22 and 23).

Tori inR3 with Delaunay ends The torus with n ends is constructed via the diagram
below (Figs. 24, 25, 26 and 27). For large n, existence of those tori can be shown by
growing Delaunay ends in equidistance on one side of a cylinder.

Surfaces inR3 with Platonic symmetry and Delaunay ends Given a triangle tessella-
tions of S2, the surface is the orbit of a tube along one edge of the triangle with a
Delaunay end at a vertex of the triangle. Equivalently, the surface is built from tubes
along the edges of one of the five Platonic solids, with ends emanating from the ver-
tices. The five tetrahedra are as in the diagram below, with (a, b, c) a permutation
of (2, 3, k), k ∈ {3, 4, 5} (Figs. 28, 29 and 30).

Fig. 7 Left: tetrahedron for a torus in R
3 with n Delaunay ends and order n cyclic symmetry and n ends.

Right: fundamental piece of this torus
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Fig. 8 Left: Tetrahedron for Platonic surfaces in R
3, where (a, b, c) is a permutation of (2, 3, k). Right:

fundamental piece of the surfaces with Platonic symmetry and Delaunay ends

Lawson surfaces Classically, the Lawson surfaces [18] are constructed from Plateau
solutions of a geodesic polygon by reflection. The tetrahedron Aab and its inscribed
fundamental piece admit a rotational order 2 symmetry around a geodesic through
the vertices labeled by a and b. The geodesic arc is contained in the fundamental
piece. This observation relates the original construction with the construction carried
out in the present work, see also [16] (Figs. 33 and 34).

Surfaces in S3 with Platonic symmetries Minimal surfaces in S
3 with Platonic sym-

metries have been constructed by Karcher-Pinkall-Sterling [16]. These surfaces can
be thought of as tubes along one edge of a triangle which tessellates S2. Note that [16]
does not list all possible surfaces, e.g. the alternate octahedron of genus 11 and the
alternate icosahedron of genus 29 are missing (Figs. 35, 36, 37 and 38).

Fig. 9 Tetrahedron for Lawson surface ζa−1,b−1

Fig. 10 Left: tetrahedron for surfaces in S
3 with Platonic symmetries. Right: table of these surfaces
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Fig. 11 Triangle tessellations of S
2. Left to right: cyclic of order 5, dihedral of order 10, tetrahedral,

octahedral and icosahedra

Fig. 12 Left: tetrahedron for surfaces in S
3 with n-cell symmetries. Right: table of these surfaces

Fig. 13 The 5-, 8-, 16-, 24-, 120- and 600-cell tessellations of S3, stereographically projected to R
3

Surfaces in S3 with n-cell symmetries For each of the n-cell tessellations of S3 there
is a surface which can be thought of as tubes along the edges of the cells. These
minimal surfaces have also been constructed by Karcher-Pinkall-Sterling [16]
(Figs. 39, 40 and 41).

3 CMC Polygons via the DPWMethod

3.1 The generalizedWeierstrass representation (DPW)

Define the following loop groups (see [24] for details):

	 = smooth maps (loops) from S
1
λ to SL2C

	u = the subgroup loops in 	 which are in SU2 on S
1

	+ = the subgroup loops in 	 which extend to the interior unit disk in CP1
λ

	− = the subgroup of loops in 	 which extend to the exterior unit disk in CP1
λ
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	̊− = the subgroup of g ∈ 	–1 such that g(0) is upper triangular with diagonal
in R

+.

These can be generalized to loops on a circle of radius r ∈ (0, 1); see [20].
A DPW potential ξ on a Riemann surface 
 is a 	sl(2, C) valued holomorphic

differential form on 
 with ξ = ∑∞
k=–1 ξkλ

k , det ξ–1 = 0. A meromorphic DPW
potential is defined analogously.

A CMC surface is constructed from a DPW potential as follows. Let � be the
holomorphic frame solving d� = �ξ ; � generally has monodromy. Let � = FB ∈
	u	̊+ be the Iwasawa factorization into the unitary frame F and positive part B

(see [24]); for our case of SU2 this factorization always exists. The CMC surface is
constructed via the formulas first obtained in [4]:

S
3 : f (λ0, λ1) = F(λ0)F

–1(λ1) , λ0, λ1 ∈ S
1 (3.1a)

H
3 : f (λ0, λ1) = F(λ0)F

–1(λ1) , λ1 = λ–1
0 ∈ C \ S1 (3.1b)

R
3 : f (λ0) = – 2

H
Ḟ (λ0)F (λ0)

–1 , λ0 = 1 or –1 (3.1c)

where in the case of R3 the dot denotes the derivative with respect to θ , λ = eiθ .
The unitary frame F yields a unitary potential μ = F−1dF which is well-defined on
the (Riemann) surface as opposed to F which is well-defined only on the universal
covering. The unitary potential is also known as the associated family of flat
connections, see [14] and the literature therein.

A DPW potential ξ = ∑∞
k=–1 ξkλ

k is adapted if ξ–1 is upper triangular (and hence
has zero diagonal because det ξ–1 = 0). For adapted DPW potentials, the Hopf dif-
ferential is Q = 〈ξ–1, ξ0〉. For non-adapted potentials, the formula for Q is more
complicated.

Fig. 14 Triply periodic CMC surfaces in R
3
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If ξ is holomorphic at z0, the induced CMC surface is immersed at z0 if and only
if ξ–1 does not vanish at z0.

This representation differs from the original representation [6] in that the potential
and loops are not twisted. It is slightly looser than the representation [25] in that it
does not require the DPW potential to be adapted.

3.2 Delaunay ends

A Delaunay eigenvalue is

ν = 1
2

√
1 + λ–1(λ − λ0)(λ − λ1)w . (3.2)

where the evaluation points λ0, λ1 and the end weight w ∈ R
× chosen so that ν is

real on S
1. A DPW potential with a simple pole, unitary monodromy, and Delau-

nay eigenvalues of the residue induces a surface asymptotic to a half Delaunay
cylinder [17].

To construct surfaces, two types of closing conditions must be satisfied by a DPW
potential:

• The intrinsic closing condition is the condition that the monodromy group is
unitarizable on S

1 (or more generally, r-unitarizable on an circle of radius r ∈
(0, 1)). For the Fuchsian DPW potentials, this condition is not directly satisfiable
except in the case of 3 or 2 geometric poles; more than 3 requires the unitary
flow, which by definition preserves the intrinsic closing condition.

• The extrinsic closing conditions are conditions on the DPW potential on the mon-
odromy at the evaluation points, chosen to control the desired geometry of the
surface via (3.1). For surfaces constructed via tessellations these conditions are
given in Theorem 3.3.

Fig. 15 Triply periodic CMC surfaces in R
3
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3.3 Gauge

Consider a holomorphic DPW potential ξ and a holomorphic map g : 
 → 	. The
gauge action is

ξ �→ g–1ξg + g–1dg . (3.3)

The point of the gauge action is that if d� = �ξ then d(�g) = (�g)(ξ .g). We allow
gauges to have monodromy ±1 along paths; such multivalued gauges nevertheless
map single-values potentials to single-valued potentials.

A DPW gauge is one which maps DPW potentials to DPW potentials, that is,
g : 
 → 	+ is holomorphic in λ. If ξ is a DPW potential and g is DPW gauge, then
ξ and ξ .g induce the same surface in the sense that � and �g do. A DPW gauge g is
adapted if it preserves adapted DPW potentials, that is, g|λ=0 is upper triangular.

Let ξ be a holomorphic DPW potential on 
. A meromorphic DPW gauge is
given by a meromorphic map g : 
 → 	+. Then, ξ .g is a meromorphic DPW poten-
tial with so-called apparent singularities at the singular points of g. In general, the
singularities of a meromorphic DPW potential are not apparent.

3.4 Spin

For a DPW gauge g define the group homomorphism

spin : H1(
) → Z2 = {±1} , (3.4a)

spin
γ

g =
{

+1 if g has monodromy +1 along γ

−1 if g has monodromy −1 along γ
(3.4b)

Fig. 16 Doubly periodic CMC surfaces in R
3
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that is, spinγ g = +1 (resp. –1) if g returns to itself (resp. its negative) along γ . Then
spinγ gh = spinγ g · spinγ h.

To define spin for DPW potentials consider the double cover

C
2 \ {0} → {x ∈ sl(2, C) \ {0} | det x = 0} ,

[
u
v

] �→ [
u
v

][
–v u

]
. (3.5)

For a DPW potential ξ on a Riemann surface 
, let ξ–1 be its λ–1 coefficient. Define
the group homomorphism

spin : H1(
) → Z2 = {±1} , (3.6a)

spin
γ

ξ =
{

+1 if the lift of ξ–1 along γ is a closed cuvve

−1 otherwise
(3.6b)

That is, spinγ ξ is +1 (resp. –1) if the lift of ξ–1 returns to itself (resp. its negative)
along γ . Then spinγ ξ .g = spinγ ξ · spinγ g.

The spin can similarly be defined for unitary potentials using the lift of the coef-
ficient of λ–1. If � = FB is the holomorphic frame with potential ξ , and F is
the corresponding unitary frame with potential η, then spin η = spin ξ because
spin B|λ=0 = 1 since B|λ=0 ∈ 	̊+.

A geometric interpretation for the spin of a potential can be given in terms of a
coordinate frame, that is, a unitary frame G satisfying

N = Ge0G
–1 , fx/v = Ge1G

–1 , fy/v = Ge2G
–1 (3.7)

where e0, e1, e2 is a positively oriented orthonormal basis for su2, f is the CMC
immersion, v is the metric of f , and N is its normal. Then spin ξ = spin u, where
u = F –1G is the gauge between the unitary frame F and a coordinate frame G.

Fig. 17 Doubly periodic CMC surfaces in R
3
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Consider a meromorphic DPW potential ξ on 
. For z ∈ 
 write spinz ξ to mean
spinγ ξ along a small circle γ encircling z. If ξ is regular at z then spinz ξ = 1. For a
DPW potential ξ on CP1 with finitely many singularities we have the total spin

∏

z∈CP1

spin
z

ξ = 1 . (3.8)

As an application of spin, when we construct CMC polygons whose boundaries
reflect in planes in Section 3.6, the spin is used to distinguish the internal and external
dihedral angles of the planes.

3.5 Symmetry

The following theorem and lemma detail how a symmetry of the potential descends
to a symmetry of the meromorphic frame, the unitary frame, and the CMC immersion
via (3.1).

Theorem 3.1 Let ξ be a DPW potential.

1. If for a holomorphic automorphism τ of the domain, τ∗ξ = ξ .g, then τ ∗� =
R�g for some R ∈ 	. If R is unitary, then the CMC immersion has the
orientation preserving symmetry

S
3 and H3 : τ ∗f = Rf R–1 (3.9a)

R
3 : τ ∗f = Rf R–1 − 2

H
ṘR , (3.9b)

where in the case of R3 the dot denotes the derivative with respect to θ , λ = eiθ .

Fig. 18 Doubly periodic CMC surfaces in R
3
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2. If for an antiholomorphic automorphism τ of the domain, τ ∗ξ(λ) = ξ(λ).g, then

τ ∗�(λ) = R�(λ)g for some R ∈ 	. If R is unitary, then the CMC immersion
has the orientation reversing symmetry

S
3 and H3 : τ ∗f (λ0, λ1) = Rf (λ0, λ1)R

–1 , (3.10a)

R
3 : τ ∗f (λ0) = −Rf (λ0)R

–1 − 2
H

ṘR . (3.10b)

In the orientation reversing case of the above theorem, the symmetry (3.10) relates
two associate CMC surfaces, which are the same surface if λ1 = λ0 (for S3), λ0 ∈ R

and λ1 ∈ R (for H3) and λ0 ∈ {±1} (for R3).
Theorem 3.1 is of limited use without the knowledge that R in that theorem is

unitary. One necessary condition that R is unitary is given in the following lemma:

Lemma 3.2 If ξ in Theorem 3.1 extends to S
1
λ and has irreducible unitary mon-

odromy, then R in that theorem is unitary.

Proof Let f : U → 
 be the universal cover, and τ a lift of τ to the universal cover,
so f τ = τ ◦ f . Let σ be a deck transformation, so f σ = f . Then f τστ –1 = f

implying that τστ –1 is a deck transformation.
Let Mσ the monodromy of � with respect to σ . and spinσ 1 ∈ {±1} the

monodromy of g with respect to σ . For the orientation reversing case,

σ ∗τ ∗� = σ ∗(R�g) = (spin
σ

g)RMσ �g = (spin
σ

g)RMσ R–1τ ∗� (3.11)

so
τ –1∗

σ ∗τ ∗� = (spin
σ

g)RMσ R–1� . (3.12)

Fig. 19 Doubly periodic CMC surfaces in R
3
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Since τστ –1 is a deck transformation, its monodromy is given by Nσ
..=

(spinσ g)RMσ R–1. Since by assumption the monodromy group is irreducible and
unitary, then Nσ ∈ 	u for every deck transformation σ . Using that ξ extends to S

1
λ,

this implies R ∈ 	u.
The proof for the orientation preserving case is the same without the overline.

3.6 CMC Polygons

Let R∪{∞} be divided into n segments s1, . . . , sn at n distinct consecutive points zij

dividing si and sj . Let ξ be a meromorphic DPW potential on CP1 with singularities
at these points zij . With b a basepoint in the upper halfplane, for i, j ∈ {1, . . . , n}
let γij be a simple closed counterclockwise curve based at b which crosses the seg-
ments si and sj , and let Mij , i, j ∈ {1, . . . , n}, i < j be the monodromy along γij .
The n local monodromies are those along paths which enclose one singularity; the
remaining monodromies are called global.

Theorem 3.3 Let ξ be a meromorphic DPW potential satisfying the conditions of
Lemma 3.2 with n singularities on R∪ {∞} as above. Assume ξ admits the reflection

symmetry τ ∗ξ(λ) = ξ(λ) for τ(z) = z. Let θij ∈ [0, π ], i, j ∈ {1, . . . , n}, i < j . If
the monodromies Mij satisfy

1
2 tr Mij |λ0 = –(spin

γij

ξ ) cos θij , i, j ∈ {1, . . . , n} , i < j (3.13)

then the CMC surface induced by ξ with the upper halfplane as domain is a n-
gon whose boundaries reflect in n planes (respectively totally geodesic spheres)
P1, . . . , Pn, with internal dihedral angles θij between Pi and Pj .

Fig. 20 Doubly periodic CMC surfaces in R
3
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Proof Let F be the unitary frame, G a coordinate frame, with respect to a basis ê0,
ê1, ê2 ∈ sl(2, C) and u the unitary λ-independent gauge between them, so F = Gu.
By the proof of Theorem 3.1 (2), τ∗

k F = PkF , k ∈ {1, . . . , n} so

τ ∗
k G = PkGQ–1

k , τ ∗u = Qku . (3.14)

Then with ρij and σij = spinγij
u,

u = τ ∗
k τ ∗

k u = QkQku =⇒ QkQk = 1 (3.15a)

σiju = ρ∗u = τj τiu = QjQ
–1
i u =⇒ Qj = σijQi . (3.15b)

With pk a fixed point of τk , define uk = u(pk) so uk = Qkuk . Then for i, j ∈
{1, . . . , n}, i �= j , uj = Qjuj = σijQiuj . Thus u–1

i uj = σiju
–1
i uj . so

σij = 1 : u–1
i uj = u–1

i uj =⇒ u–1
i uj e1 = e1u

–1
i uj (3.16a)

σij = –1 : u–1
i uj = −u–1

i uj =⇒ u–1
i uj e1 = −e1u

–1
i uj . (3.16b)

Hence u–1
i uj = σij e1u

–1
i uj so uj e1u

–1
j = σijuie1u

–1
i .

Let e1 = [
0 1
–1 0

]
. Since G is a coordinate frame, we have (fy)k = Gkê2G

–1
k .

Define σk ∈ {±1} by Pke1 = σk(fy)k . Then

Nk
..= Pke1 = FkF

–1
k e1 = Fke1F

–1
k = Gkuke1u

–1
k G–1

k = σkGkê2G
–1
k (3.17)

so
uke1u

–1
k = σkê2 . (3.18)

Hence σiσj = σij .
Since d

dy
is pointing into the upper half plane, (fy)k is an internal normal to the

plane. Thus σk = 1 if Nk is internal, and σk = –1 if Nk is external. Thus σij =

Fig. 21 Doubly periodic CMC surfaces in R
3 with Delaunay ends
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σiσj = 1 if and only if Ni and Nj are both internal or both internal, and σij =
σiσj = –1 if and only if one of Ni and Nj is internal and one external.

This means
〈Ni, Nj 〉 = −σij cos θij (3.19)

where θij is the internal angle between planes i and j . Since Mij = PjP
–1
i , then

1
2 tr Mij |λ=λ0 = 〈Ni, Nj 〉 = −σij cos θij . (3.20)

Remark 3.4 Planes with dihedral angle θij = π are parallel. Constraining the planes
to coincide (for example, for the CMC torus with ends in R

3) requires that the
extrinsic conditions of Theorem 3.3 be augmented with the additional condition

d
dλ

Mij |λ=λ0 = 0 . (3.21)

It remains to control the vertices of the CMC polygon constructed in Theorem 3.3.
For this we use a DPW potential with simple poles:

Theorem 3.5 Let ξ a DPW potential as in Theorem 3.3, zk a simple pole of ξ on R,
and ν the eigenvalue of resz=zk

ξ .

(1) If ν = 1/(2n) or ν = 1
2 − 1/(2n), n ∈ N�2, and ξ−1 has a simple pole at zk ,

then the CMC surface constructed from ξ with 2n reflections around the vertex
is immersed at the vertex.

(2) If ν = νDel/n, n ∈ N�2, where νDel is a Delaunay eigenvalue (3.2), then
the CMC surface constructed from ξ with 2n reflections around the vertex is a
once-wrapped Delaunay end.

Fig. 22 CMC cylinders in R
3 with Delaunay ends
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Proof Assuming zk = 0, write ξ = A–1dz/z+A0dz+. . . . The pullback with respect
to the local covering map f (w) = wn is

f ∗ξ = nA–1dw/w + nA0w
n−1dw + . . . . (3.22)

Proof of Eq. 3.5: Since by assumption A−1 has a pole at λ = 0, by a z-independent
local gauge of ξ it may be assumed

A–1 =
[

1/(2n) λ–1

0 –1/(2n)

]
. (3.23)

Then the local gauge g = diag(w–1/2, w1/2) removes the simple pole of f ∗ξ at
w = 0, and

(f ∗ξ).g =
[

0 nλ−1

0 1

]
dw + . . . . (3.24)

Since (f ∗ξ).g is holomorphic at w = 0 and its λ−1 coefficient does not vanish at
w = 0, then the CMC surface induced by (f ∗ξ).g is immersed at w = 0. The proof
for ν = 1

2 − 1/(2n) is analogous.
Proof of Eq. 3.5: Since the eigenvalue of A–1 is νDel/n, then the eigenvalue of

nA–1 is νDel, Unitary monodromy implies this is a once-wrapped Delaunay end.

4 Symmetric CMC Surfaces with Non-Trivial Topology

4.1 The potential

By applying a Möbius transformation we assume that the singular points of the CMC
polygon are on the unit circle. As the fundamental piece is a CMC quadrilateral, we

Fig. 23 CMC cylinders in R
3 with Delaunay ends
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restrict to the 4-punctured sphere in the following. We will see in Section 5 that, at
least for surfaces without Delaunay ends, we can restrict without loss of generality to
a Fuchsian DPW potential of the 4-punctured sphere. The means it has four simple
poles and no pole at z = ∞, and is of the form

ξ =
3∑

k=0

Ak

z − zk

dz (4.1)

as follows:

• The poles are z0 ∈ S
1 in the open first quadrant, and (z1, z2, z3) is a permutation

of (1/z0, −z0, −1/z0).
• The residues are

A0 =
[

y λ−1p
λ(ν2

0−y2)

p
−y

]
, A2 =

[
−y

(ν2
1−y2)

x

x y

]
, (4.2a)

A1 = σA0σ
−1 , A3 = σA2σ

−1 , σ = diag(i, −i) . (4.2b)

• For surfaces without Delaunay ends, the eigenvalue ν0 of A0 and A1 and ν1
of A2 and A3 are constants in (0, 1/2). For surfaces with Delaunay ends, ν0
is of the form cνDel with c ∈ (0, 1) and νDel is the eigenvalue of a Delaunay
unduloid

νDel = 1
2

√
1 + 1

4λ–1(λ − 1)2w , w ∈ (0, 1] . (4.3)

Fig. 24 CMC tori in R
3 with Delaunay ends
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• The accessory parameters x and y are holomorphic functions of λ on an open
disk Dr of radius r > 0 centered at the origin satisfying x(λ) = x(λ) and
y(λ) = y(λ). The function p is a monic polynomial in λ satisfying p(λ) = p(λ).

• The quotients λ(ν2
0 − y2)/p and (ν2

1 − y2)/x are holomorphic functions of λ on
Dr .

The need for the last condition is as follows. The unitary flow, which preserves the
unitarizability of the monodromy of ξ , is implemented by evaluating the monodromy
of ξ directly on the unit circle, and not by the numerically more problematic proce-
dure of computing the monodromy on an r < 1 circle and then extending it to the
unit circle.

Let Mk (k ∈ {0, . . . , 3}) be the local monodromy around zk based at z = 1.
The surfaces are constructed by running the unitary flow (see Section 4.3 below)

so that at the end of the flow for k = 0, 1

ν0|λ=λk
= 1

2n0
, ν1|λ=λk

= 1
2 − 1

2n1
, (4.4a)

tr M0M1|λ=λk
= − cos 2π

r
, 1

2 tr M1M2|λ=λk
= cos π

s
. (4.4b)

Then, by Theorem 3.3 and 3.5, the unit z-disk maps to a CMC quadrilateral whose
edges reflect in planes (respectively geodesic 2-spheres) with internal
dihedral angles specified by the figure at right, and whose vertices after
these reflections are either immersed points or once-wrapped Delaunay
ends.

Fig. 25 CMC tori in R
3 with Delaunay ends
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In the special case ν0 +ν1 = 1
2 , the surfaces are constructed by running the unitary

flow so that at the end of the flow for k = 0, 1

ν0|λ=λk
= 1

2n0
, ν1|λ=λk

= 1
2 − 1

2n0
, (4.5a)

tr M0M1|λ=λk
= − cos 2π

r
, 1

2 tr M1M2|λ=λk
= cos 2π

s
(4.5b)

Then the quarter disk in the first quadrant maps to a CMC quadrilateral
whose edges reflect in planes with internal dihedral angles specified by the
figure at right, and whose vertices after these reflections are immersed.

4.2 The initial condition

4.2.1 The initial condition

The initial condition for the unitary flow is a potential ξ0 of the form in Section 4.1
with eigenvalues ν0 = ν1 = 1

4 with unitary monodromy on S
1 which induces a

Delaunay surface.

Lemma 4.1 (1) For CMC tori of spectral genus 0 the spectral curve π : CP1 →
CP1 can be chosen to be π(ξ) = ξ2. The involutions are

σ(ξ) = −ξ , ρ(ξ) = ξ
−1

, κ(ξ) = ξ . (4.6)

Fig. 26 CMC tori in R
3 with Delaunay ends
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The monodromy eigenvalues of the vacuum are exp(±ν1 + 2iπZ), exp(±ν2 +
2iπZ) where

ν1(ξ) ..= iπ
ξ − ξ−1

ξ0 − ξ−1
0

, ν2(ξ) ..= iπ
ξ + ξ−1

ξ0 + ξ−1
0

(4.7)

and π(±ξ0), π(±ξ−1
0 ) ∈ S

1 are the evaluation points.
(2) For some �, m ∈ Z

+ the monodromy eigenvalues of a Delaunay cylinder are
exp(±ν1 + 2iπZ), exp(±ν2 + 2iπZ) where

ν1(u) ..= iπ
f1(u) − f2(u)

f1(u0) − f2(u0)
, (4.8a)

ν2(u) = 1
2�(f1(u) + f2(u)) , ν2(u0) = iπm , (4.8b)

where π(±u0), π(±u0 + 1
2ω1) ∈ S

1 are the evaluation points, and f1, f2 are
as in Eq. 4.9.

On the torus C/(Z + τZ), Let ℘ be the Weierstrass function and let ζ ..= − ∫
℘.

Let {ω1, ω2, ω3} = { 1
2 , 1

2 + τ
2 , τ

2 }.
Define on some torus with modulus τspec

h1(u) ..= η1u − ω1ζ(u) , h2(u) ..= f1(u − 1
2ω1) . (4.9)

The theta function

θ(x, τ ) ..=
∑

k∈Z
exp

(
2iπ( 1

2n2τ + n(x − ω2)
)

(4.10)

Fig. 27 CMC tori in R
3 with Delaunay ends
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is an entire function C → C with simple zeros at lattice points Z + τZ and no other
zeros, satisfying

θ(x + 1) = θ(x) , θ(x + τ) = − exp(−2iπx)θ(x) , θ(τ − x) = θ(x) (4.11)

for all x ∈ C. Define

1
2g0(

1
2x) = θ ′(x)

θ(x)
− 2θ ′( 1

2x)

θ( 1
2x)

+ iπ , (4.12a)

1
2gk(

1
2x) = exp

(
2iπx

ωk−ωk

τ−τ

)θ(x + ωk)θ
′(0)

θ(x)θ(ωk)
, k ∈ {1, 2, 3} . (4.12b)

The initial condition is the potential in Section 4.1 with

x = λ(y + ν0)(y + ν1)
1 − u

1 + u
, y(b, a) = −

2iπ
τ−τ

(b + a) + f0(b)

2g2(
1
2b)

(4.13a)

u(b) = −g1(
1
2b)

g3(
1
2b)

, v(b, a) =
2iπ
τ−τ

(b + a) + f0(b)

g2(
1
2b)

(4.13b)

a = 2iπ
τ−τ

1
2h1 , b = 2iπ

τ−τ
1
2h2 (4.13c)

ν0 = ν1 = 1
4 , [z0, z1, z2, z3] = u(ω2)

2 , p = 1 . (4.13d)

The initial condition is computed numerically from Eq. 4.13a as Laurent series on S
1

by computing its Fourier coefficients. The initial data can be computed from Lemma
(4.1) using results from [11]

Fig. 28 CMC surfaces in R
3 with Platonic symmetry and Delaunay ends
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4.2.2 Configurations of the initial condition

Permuting the lattice generators in the initial condition creates different arrangements
of residues of the DPW potential on the Delaunay cylinder. For the configurations
used in this report, the two circle arcs (z0, z1) and (z2, z3) are mapped to semicircles
(resp. profile curves) on the Delaunay surface, while the other two circle arcs (z1, z2)

and (z3, z0) are mapped to profile curves (resp. semicircles) on the Delaunay surface.
The first of these configurations is used to compute the 2-dimensional lattices and the
cubic lattices; the second is used to compute the tori and Platonic surfaces with ends.

4.2.3 Neck and bulge

For the initial potential ξ0 above, the poles of the Fuchsian DPW potential are at necks
of the Delaunay surface. The initial potential with poles at bulges is constructed as a
gauge of ξ0 by the gauge diag((λ − λ0)

−1/2, (λ − λ0)
1/2), where the λ0 is a common

zero of x and y2 − 1/16. This gauge is not a DPW gauge, but a so-called dressing
transformation.

4.3 The unitary flow

4.3.1 The unitary flow

The unitary flow is a flow through the space of potentials of Section 4.1 preserv-
ing the intrinsic closing condition. It starts at a potential in the space with unitary
monodromy, and flows until the monodromy at the evaluation points reach some
desired extrinsic closing conditions.

Fig. 29 CMC surfaces in R
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Given a smooth function F = F(t, �x) : R1+n → R
n encoding n conditions on

a flow parameter t ∈ [0, 1] and n variables �x, if det dF
dx

�= 0, then x(t) satisfying
F(t, x(t)) = 0 can be computed by the implicit ODE dF

dt
+ dF

dx
dx
dt

= 0. The solution
for the infinite case can be computed numerically by truncating to F : R1+n → R

m,
m � n, and solving the resulting finite dimensional ODE by least squares methods.

The variables �x parametrizing the potential consists of:

• the conformal type [z0, z1, z2, z3]
• the local eigenvalues ν0|λ=1 and ν1|λ=1
• the end weight w0
• the polynomial p
• the accessory parameters x and y.

The accessory parameters, which are holomorphic functions of λ, are approx-
imated by truncating their power series at λ = 0. We always assume that these
functions extend to a disc Dr with r > 1 so that the first bullet point below can be
checked directly on the unit circle.

The constraints F = 0 are of two types:

• the intrinsic closing conditions: the halftraces tij = 1
2 tr MiMj , i, j ∈ {0, . . . , 3},

i < j are real on S
1. This is a necessary condition by Theorem 4.4.

• geometric constraints which choose a path through the space of geometric
parameters to reach the desired extrinsic closing conditions at the end of the flow.

By Theorem 4.4 the monodromy is unitarizable if all halftraces along the unit circle
are real and of absolute value less or equal to 1. As the components of irreducible

Fig. 30 CMC surfaces in R
3 with Platonic symmetry and Delaunay ends
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SL(2,C)-representations of the 4-punctured sphere with real traces consists entirely
of either SL(2,R) or SU(2) representations, and since ξ0 is unitarizable, we can
ignore the condition that all traces are of absolute value less or equal to 1 during the
unitary flow.

The intrinsic closing conditions on S
1
λ are approximated by evaluation at finitely

many equally spaced sample points on S
1
λ. In the following we describe the other

constraints in more detail:

4.3.2 Geometric constraints

The simplest configuration of the geometric constraints are as follows. The two local
and two global eigenvalues depend linearly on the flow parameter t to reach the
desired values at t = 1. If the surface has no ends, the end weight w0 is set to 0;
otherwise it depends linearly on t starting at 0 and reaching a heuristically chosen
value at t = 1. In this configuration the conformal type is fixed during the flow.

It is possible that the flow with this simple configuration breaks down, in which
case the path must be modified in some heuristically determined way, for example
by making the conformal type depend on the flow parameter.

In practice each geometric parameter is of one of three types:

• fixed during the flow
• depending linearly on the flow parameter t
• free (unconstrained).

Then the fixed variables, and the variables depending on t , being computable from t ,
can be omitted from �x.

Fig. 31 CMC spheres in R
3 with Delaunay ends
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4.4 Irreducibility and unitarizability

For a subgroup G ⊂ SL2C generated by three elements, this section proves

• a necessary and sufficient condition for the irreducibility of G, and
• a necessary condition for the SU2 unitarizability of G, assuming G is irreducible.

Here, a group G is reducible if all elements have a common eigenline, and is SU2
unitarizable if there exists C ∈ SL2C such that CGC–1 ⊂ SU2. The methods used in
the proofs can be generalized to any finitely generated group.

The proof depends on the following Lemma 4.2, which determines to what extend
three elements of C3 are determined by their standard C

3 inner products.
With 〈−, −〉 the standard inner product on C

3, let L = {v ∈ C
3 |〈v, v〉 = 0}.

Let X = (x0, x1, x2) ∈ M3×3C, with columns x0, x1, x2 ∈ C
3. Let W = X�X ∈

SymnC, so Wij = 〈xi, xj 〉.

Lemma 4.2 With X and W as above,

(1) ker X� ∩ L = {0} if and only if rank W � 2.
(2) Assuming (a), if for some Y ∈ M3×3C, X�X = Y�Y and det X = det Y , then

there exists a unique S ∈ SO3C such that Y = SX.

Proof By the rank-nullity theorem applied to X�|image X,

rank X = dim(ker X� ∩ image X) + rank W (4.14)

from which it follows that rank X � rank W , and rank W = 3 if rank X = 3.

Fig. 32 CMC spheres in R
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Moreover, if rank X � 2, then

ker X� ∩ image X = ker X� ∩ L . (4.15)

To prove (4.2), assume rank W � 2, so rank X = 2. By Eq. 4.14, dim(ker X� ∩
image X) = 0. By Eq. 4.15, ker X� ∩ L = {0}.

Conversely, assume ker X� ∩ L = {0}. Then rank X � 2 because every 2-
dimensional subspace of C3 intersects L. By Eq. 4.15, ker X�∩L = {0}. By Eq. 4.14,
rank W = rank X � 2.

To prove (4.2) in the case rank W = 3, since rank X = rank Y = 3, define S ..=
YX−1. Then S ∈ SO3C by X�X = Y�Y and det X = det Y .

To prove (4.2) in the case rank W = 2, let xa, xb be two independent columns of
X and let X̂ = (xa, xb, xa ×xb) and Ŷ = (ya, yb, ya ×yb). Since xa ×xb ∈ ker X�,
then by the assumption and Lemma 4.2 (4.2), xa × xb �∈ L. Then det X̂ = 〈xa ×
xb, xa ×xb〉 �= 0 so rank X̂ = 3. Moreover, since 〈xa ×xb, xa ×xb〉 = 〈ya ×yb, ya ×
yb〉, then X̂�X̂ = Ŷ�Ŷ . Then S ..= Ŷ X̂−1 is in SO3C, and Y = SX.

Identify C
4 with gl(2, C) by identifying the standard basis E0, E1, E2, E3 with

1, e0, e1, e2, where

e0
..= [

i 0
0 –i

]
, e1

..= [
0 1−1 0

]
, e2

..= [
0 i
–i 0

]
. (4.16)

Under this identification, the standard inner product on C
4 is

〈x, y〉 = 1
2 tr x adj(y) , adj

[
a b
c d

] ..= [
d −b−c a

]
(4.17)

Fig. 33 Minimal Lawson surfaces in S
3
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and SU2 ⊂ SL2C is identified with R
4 ⊂ C

4. In particular, for X, Y ∈ sl(2, C) it
holds 〈x, y〉 = − 1

2 tr xy.
In order to treat irreducibility, the following lemma translates the notion of

eigenline to a more convenient form. With
[

a
b

]⊥ ..= [ −b a ] consider the double cover

x̂ ∈ C
2 \ {0} → {x ∈ sl(2, C) | det x = 0} , x̂ �→ x = x̂x̂⊥ . (4.18)

Lemma 4.3 � ∈ C
2 \ {0} is an eigenvector of the invertible matrix x ∈ SL2C if and

only if 〈x, ��⊥〉 = 0.

Proof For any p, q ∈ C
2 \ {0},

tr qp⊥ = p⊥q = det(p, q) . (4.19)

So with p = �, q = x�, and y = ��⊥

2〈x, y〉 = 2〈x, ��⊥〉 = det(x�, �) (4.20)

so 〈x, y〉 = 0 if and only if x� and � are dependent, that is, if and only if � is an
eigenline of x.

Let P be the group generated by P0 = 1, P1, P2, P3 ∈ SL2C. Under the above
identification C

4 ∼= gl(2, C) let P = (P0, P1, P2, P3) ∈ M4×4C be a matrix with
columns Pk ∈ C

4. Let T = P �P ∈ Sym4C, so Tij = 〈Pi, Pj 〉.
Theorem 4.4 With P and T as above,

(1) P is irreducible if and only if rank T � 3.

Fig. 34 Minimal Lawson surface in S
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(2) Assuming (4.4), P is SU2 unitarizable if and only if T is real positive semidefi-
nite.

Proof We have the factorization

T =
[
1 0

V � 1

] [
1 0
0 X�

] [
1 0
0 X

] [
1 V

0 1

]
, P =

[
1 V

0 X

]
. (4.21)

To prove (4.4), let X = (x0, x1, x2) ∈ M3×3C be the lower right 3 × 3 submatrix
of P , that is the matrix with columns given by the tracefree parts of P1, P2, P3, and
let Y ..= X�X. By Lemma 4.3, P is irreducible if and only if ker X� ∩ L = {0}. By
Lemma 4.2 this is if and only if rank Y � 2. Since rank T = 1 + rank Y , this is if and
only if rank T � 3.

To prove (4.4), if P is SU2 unitarizable, it may be assumed without loss of gen-
erality that P ⊂ SU2. Then P ∈ M4×4R, so T = T �T ∈ Sym4R is real positive
semidefinite.

Conversely, if T is real positive semidefinite, then W = X�X = Y�Y for some
Y ∈ M3×3R. Replacing Y �→ –Y if necessary, then det X = det Y , so by Lemma 4.2
(4.2), there exists S ∈ SO3C such that X = SY . Let C ∈ SL2C be a lift of S via the
double cover SL2C �→ SO3C defined with respect to 1, e1, e2, e3. Note that this
double cover is given by conjugation on sl(2, C) ∼= C

3. Then C unitarizes P .

4.5 Constructing the surface

Once the potential for a surface is obtained via the unitary flow, the surface is
constructed as follows:

Fig. 35 Minimal surface in S
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• Compute the unitarizer of the monodromy.
• Compute curvature lines.
• Compute the fundamental piece of the surface via the DPW construction
• Build the surface from the fundamental piece by reflections.

4.5.1 The unitarizer

Due to the symmetry (4.2) of the potential and of the monodromies with basepoint
z = 1 the unitarizer is diagonal and can be computed as follows. With the notation

a∗(λ) = a(1/λ) write

M0 =
[
a b

c a∗
]

. (4.22)

By the unitarizability of M0 by a diagonal loop, p ..= −c∗/b = −c/b∗ takes values
in R+ along S

1 away from its zeros and poles, which are even. Let f = ∏
(λ −

α)/
∏

(λ − β) so that f ∗f has the same zeros and poles as p. Then q = p/(f ∗f )

takes values in R+ along S
1 without zeros or poles. Let y∗y = q be the scalar GL1C

Birkhoff factorization, so y is holomorphic in the unit disk. Then with x = fy the
loop diag(x1/2, x−1/2) is the required unitarizer, holomorphic on the open unit disk.

4.5.2 Curvature lines

Let Q = q(z)dz2 the Hopf differential of the CMC surface. The curvature line coor-
dinate v satisfies dv2 = Q(z)dz2. Curvature line coordinates can be computed by
computing

∫√
Q(z) dz over the domain.

Fig. 36 Minimal surfaces in S
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The surface is computed numerically by dividing the domain into polygons (trian-
gles or quadrilaterals) and mapping via the CMC immersion these triangles to R

3. In
the computation of curvature lines described above, the polygon edges are unrelated
to the curvature lines.

Quadrilaterals whose edges are along curvature lines can be computed as follows.
Divide the domain into quadrilaterals whose edges are curvature lines and such that
the umbilics are at corners of the quadrilaterals. For each quadrilateral, pull back the
potential to curvature line coordinates.

This computation is complicated by the fact that the maps from curvature lines
rectangles to the domain are singular at the umbilics, and the potential is singular
at the umbilics. The potential can be desingularized locally at an umbilic z0 by a
coordinate change of the form z = z0 + wn and a gauge.

4.5.3 Building the surface

In general the position of the surface in space is not controlled, so to build the surface
it must first be put into a standard position, where a group of standard reflections
can be applied. To do so, compute the four generating reflections Rk in the isometry
group IsoR3 of R3. Conjugate them to standard reflections Sk via CRkC

−1 = Sk .
Then the surface after being moved via x �→ Cx has the standard reflections Sk as
symmetries.

4.5.4 The bulge count for families of CMC surfaces

The surfaces constructed in this paper allow for non-trivial 1-parameter deformations
within the space of CMC surfaces with the same combinatorics. A natural question,

Fig. 37 Minimal surfaces in S
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also considered by [8], is whether different surfaces with the same combinatorics, but
which swap neck and bulge, belong to the same family of CMC surfaces, for example
Figs. 1a, b and 16a, b. It turns out that these examples belong to different families.
We denote by a leg of the surface a cylindrical piece obtained from the trajectories
of the Hopf differential, that is from the curvature line parametrisation. Although the
images are labeled according to whether there are bulges or necks where the legs
meet, in this section we rather count the number of bulges on each leg.

We show that this number is an invariant in the case of surfaces without ends. Note
that in this case, there is a covering 
 → CP1 by a compact Riemann surface 


on which the pullback of the DPW potential has only apparent singularities. Phrased
differently, 
 is the surface on which the first and second fundamental forms are
well-defined and smooth, that is for compact CMC surfaces in the 3-sphere, 
 is just
the underlying Riemann surface, and in the case of periodic CMC surfaces in R

3, 


is the Riemann surface quotient of the CMC surface by the translational symmetries.
We construct surfaces starting from Delaunay cylinders by deforming the eigen-

values νi . In the case of cylinders without umbilics, all four eigenvalues are νi = 1
4 .

At the starting point, 
 is a torus and the relevant moduli space of flat connections
∇ on 
 has only reducible points. The underlying holomorphic bundles (equipped

with the (0, 1)-parts ∂̄
∇

of the connections) are semistable, i.e. if they admit holomor-
phic line subbundles of degree 0. A holomorphic structure (on a rank 2 bundle over
a compact Riemann surface of degree 0) is called unstable if there exist a holomor-
phic line subbundle of positive degree and they are called stable if every holomorphic
line subbundle has negative degree. This notion is relevant to us since an unstable
holomorphic structure does not admit a flat unitary connection. Spectral parameters
λ at which the holomorphic structure is unstable are isolated in the spectral plane.

Fig. 38 Minimal surfaces in S
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Moreover, for CMC surfaces based on quadrilaterals, the number of those values of
spectral parameters within a bounded region is always finite and can only change
during a deformation by values crossing the boundary of that region. Values of the
spectral parameter at which the holomorphic structure is unstable cannot cross the
unit circle, as the connections on the unit circle are unitary. For the initial torus
the bundle is semistable for all spectral values. The number of values at which the
holomorphic bundle becomes unstable within infinitesimal deformation of the eigen-
values νi can be identified with the number of bulges on the leg of the initial Delaunay
cylinder; for more details see [12]. Actually this number coincides with the num-
ber of zeros of the holomorphic function x in Eq. 4.2 inside the unit circle; see also
[11, 15]

5 Fuchsian DPW potentials

The aim of this section is to prove the existence of Fuchsian DPW potentials of
the form Eq. 4.1 for CMC quadrilaterals without Delaunay ends. This generalizes
previous work by the second author [14] for the Lawson genus 2 surface. Similar
results have been obtained by Manca [19]. Our arguments are more geometric and
prove the existence of a Fuchsian potential on a 4-punctured sphere for all surfaces
obtained by CMC quadrilaterals.

5.1 Setup

Let f : 
 → M (where M ∈ {S3,R3}) be a complete CMC surface without Delau-
nay ends. Assume that f is build from a fundamental piece P by the group G

generated by the reflections across totally geodesic subspaces along geodesic arcs
contained in P . Assume that P has the topology of a (closed) disc.

The surface f is equivariant with respect to the (discrete) group G acting on 


by conformal transformations and on the ambient space M by a representation ρ into
the space of isometries. Let Go ⊂ G be the subgroup of orientation preserving (i.e.
holomorphic) symmetries on 
.

5.2 Local theory

The first step in our derivation of a Fuchsian DPW potential is the converse of Theo-
rem 3.5. This means that at fixed points of a rotational symmetry there always exists
DPW potentials with Fuchsian singularity on the quotient.

Let p ∈ 
 be a fixed point of some rotation given by an element in Go. Then there
exists k ∈ N and g ∈ Go of order k such that g(p) = p and such that for any h ∈ Go

with h(p) = p there exists l ∈ N with gl = h.

Lemma 5.1 There exists D ∈ SU2 of order 2k and a local DPW potential η for f

on an open g-invariant neighbourhood of p such that

g∗η = DηD−1 . (5.1)
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Proof Consider Dorfmeister’s normalized potential (see for example [29]) which
takes the form

ηnor =
[

0 λ−1f (z, 0)
q

f (z,0)
0

]
dz (5.2)

where z is a local holomorphic coordinate centered in p such that g∗z = e
2πi
k z,

Q = q(dz)2 is the Hopf differential and f (z, w) is a holomorphic function such that

f (z, z̄)dzdz̄ is the induced metric of the surface. As g∗dz = e
2πi
k dz and g∗dz̄ =

e
2πi
k dz̄ the result follows.

Proposition 5.2 There exists a local meromorphic DPW potential of f on 
/Go

with a Fuchsian singularity at p mod Go. The eigenvalues of the residue are ± 1
2k

,

independently of λ, where k is the order of the stabilizer group of p.
Likewise, there exists a local meromorphic DPW potential of f on 
/Go with

Fuchsian singularity at p mod Go such that the eigenvalues of the residue are
± k−1

2k
.

Proof Consider w = zk which is a holomorphic coordinate centered at p mod Go ∈

/Go. Consider the positive gauge e = diag

(√
z, 1√

z

)
of spin −1. Then

(d + ηnor ).e = d + e−1de + e−1ηnore (5.3)

is a well-defined meromorphic DPW potential with apparent Fuchsian singularity at
p. As this potential is clearly invariant under pull-back by g we have proven the first
part of the proposition.

Fig. 39 Minimal surfaces in S
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For the second part and k = 2l + 1 consider the gauge ẽ = diag (z−l , zl) while for

k = 2l consider the gauge ẽ = diag (z
−l+ 1

2 , z
l− 1

2 ), and proceed as in the first part of
the proof.

5.3 Global theory

Our aim is to construct a DPW potential on the 
/Go. Recall that by assumption the
fundamental piece P of the Riemann surface 
 is of the topological type of a disc.

Lemma 5.3 The Riemann surface 
/Go is the projective line.

Proof By the Riemann mapping theorem there exists a holomorphic map from
P to the unit disc. Schwarzian reflection yields a holomorphic map from 
 to
CP1, branched at the fixed points of Go. By its construction, this map is invariant
under Go.

For simplicity of the arguments, we will assume that n is even in the following.

Lemma 5.4 Let n be even. There exists a unitary potential μ on the n-punctured
Riemann sphere such that

• μ is singular exactly at the branch values of 
 → 
/Go = CP1;
• the pull-back of μ generates f on the covering 
.

Proof Let {z1, . . . , zn} ⊂ CP1 be the branch values of 
 → 
/Go = CP1 and
S ⊂ 
 its preimage. Denote the reflection planes of the fundamental piece by

Fig. 40 Minimal surfaces in S
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P0, . . . , Pn−1, with outward oriented unit normals N0, . . . , Nn−1, respectively, such
that

zm ∈ Pm−1 ∩ Pm ∀m ∈ {1, . . . , n} . (5.4)

Denote by gm the compositions of the reflection across Pm−1 and Pm. Then G0 is
generated by {gm | m ∈ {1, . . . , n}}.

Let M be euclidean 3-space or the 3-sphere, and let d = 3 and d = 4 accordingly,
so that Iso(M) = SO4R or Iso(M) = SO3R� R

3.
Consider the group

H ⊂ Spinn×Iso(M) (5.5)

generated by the elements

ĝm := (Nm · Nm−1, gm), m = 1, . . . , n (5.6)

where · denotes Clifford multiplication. This gives a group extension

{id} → Z2 → H → G0 → {id} . (5.7)

Note that ĝm has order 2k if gm has order k. Similarly, since n is even, the product
ĝn . . . ĝ1 is trivial. Consequently, we have a representation

h : π1(CP1 \ {z1, . . . , zn}, ∗) → H . (5.8)

As

 \ S → CP1 \ {z1, . . . , zn} (5.9)

is a (unbranched) covering, the fundamental group of 
 \ S (with appropriate base
point) is a subgroup of the first fundamental group of CP1 \ {z1, . . . , zn} with corre-
sponding base point. By construction, the induced representation of π1(
 \ S, ∗) →
G0 is trivial, and the induced representation of h takes values in

Z2 = Z2 × {id} ⊂ Spind×Iso(M) (5.10)

Fig. 41 Minimal surfaces in S
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such that a simple closed curve around any one of the points in S is mapped to the
non-trivial element in Z2.

By Riemann surface covering theory, we obtain a 2-fold covering


̂ → 
 , (5.11)

branched over the points in S, with an action of H by holomorphic automorphisms
on 
̂ such that


̂ → 
̂/H = CP1 (5.12)

is branched over {z1, . . . , zn}. Denote its preimage of S by Ŝ ⊂ 
̂. Note that H acts
faithfully on 
̂ \ Ŝ.

Consider the pull-back ω on 
̂ of the unitary potential η = F−1dF of f . Note
that, for minimal f : 
 → S

3 the unitary potential is given by

η = λ−1� + � − �∗ − λ�∗ (5.13)

where
� = 1

2 (f −1df )1,0 and �∗ = 1
2 (f −1df )0,1 (5.14)

and similarly for CMC surfaces f : 
 → R
3. Let π : H → SU2 be the projection

to the rotational part of the symmetry. From the construction (5.13) of the unitary
potential,

h∗ηλ = ηλ.π(h) (5.15)

for a holomorphic automorphism h ∈ H (where, on the right hand side, the gauge
action of the constant matrix π(h) is given by conjugation).

Consider the free action of H on 
̂ \ Ŝ × C
2 given by

(p, v).h = (p.h, π(h−1)(v)) . (5.16)

Fig. 42 Minimal torus in S
3 with Delaunay ends
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The quotient
V = (
̂ \ Ŝ × C

2)/H (5.17)

is a trivial smooth vector bundle of rank 2 over CP1 \ {z1, . . . , zn}. We claim that the
unitary potential ω yields a well-defined potential μ on this vector bundle: in fact,
the connection 1-form acts on [p, v] ∈ (
̂ \ Ŝ × C

2)/H as

[p, ωp(v)] (5.18)

which is well-defined since

(p, ωp(v)).h = (ph, h−1ωphh−1(v)) = (ph, ωph(h
−1v)) . (5.19)

Proposition 5.5 Let n be even. There exist a meromorphic DPW potential ξ on CP1

with simple poles at z1, . . . , zn and possible apparent singularity at z = ∞.

Proof From Lemma 5.4 we obtain a unitary potential μ on the n-punctured sphere.
Let l ∈ {1, . . . , n}. By Proposition 5.2 there exist a DPW gauge locally well-defined
on a punctured disc around zl which gauges μ into a meromorphic potential with a
Fuchsian singularity at zl . Of course, the holomorphic structures (i.e. the (0, 1)-part)
of a meromorphic potential extends to the singular points. Note that these gauges are
well-defined (i.e. have spin 1) as we have chosen the representation s : π1(
 \S,Z2)

to have local monodromy −1 around every point in S.
Using these gauges as cocycles, we obtain a holomorphic C∗-family of flat SL2C-

connections d + μ̂ with the following properties:

• the induced family of holomorphic structures extends to λ = 0 to give a
holomorphic rank 2 bundle E0 → CP1 with trivial holomorphic determinant;

• the connections d + μ̂ have Fuchsian singularities with λ-independent eigenval-
ues ± 1

2k
;

• the complex linear part of the family of connections has a first order pole at
λ = 0, i.e., λ �→ λ(μ̂)1,0(λ) extends to λ = 0.

Note that all bundles have trivial determinant. Hence, by the Birkhoff-Grothendieck
theorem, the bundle type of E0 is O(d) ⊕ O(−d) for some d ∈ N.

First consider the case d = 0. Then, the bundle type Eλ is locally constant on an
open disc near λ = 0. In particular, there exists a smooth positive family of gauge
transformations gλ (holomorphic in λ) such that

((d + μ̂).gλ)
0,1 = d0,1 (5.20)

is the trivial holomorphic structure on the rank 2 vector bundle C
2 → CP1. Thus

d + ξ := (d + μ̂).gλ (5.21)

is the meromorphic DPW potential which has only Fuchsian singularities and no
apparent singularity at ∞.

Let d > 0. Let z : CP1 \ {∞} → C be an affine holomorphic coordinate and
assume without loss of generality that zl �= ∞ ∀ l ∈ {1, . . . , n}. There exists an
integer 0 � s � d such that on a punctured disc D \ {0} around λ = 0 all bundles
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are of the holomorphic type O(s) ⊕ O(−s). By the family version of Birkhoff-
Grothendieck, there exists a holomorphic function r : D → C with r(0) = 0
such that the holomorphic bundle ((d + μ̂).gλ)

0,1 has the cocycle (for the covering
U+ := C,U− := CP 1 \ {∞} of CP1)

[
z−d zsr(λ)

0 zd

]
=

[
r(λ)zs 0

zd 1
r(λ)

z−s

] [ 1
r(λ)

z−d−s 1
−1 0

]
, (5.22)

where the equality obviously holds only for r(λ) �= 0. Again, there exists a DPW
gauge gλ which gauges Eλ into the above form Eq. 5.22. This means that there
exists a pair (g+

λ , g−
λ ) of DPW gauges on U+ respectively U− which differ by the

gauge (5.22) and gauge (d + μ̂)0,1 on U± to the trivial holomorphic structure on
C

2 → U±. Then,
(d + μ̂).g+

λ =: d + ξ (5.23)

yields the meromorphic potential ξ with Fuchsian singularities at zk and an apparent
singularity at ∞.

5.3.1 CMC quadrilaterals

Finally, we consider the case of CMC quadrilaterals, i.e., n = 4. We show that
these are always determined by a Fuchsian DPW potential (4.1), which, assuming an
additional symmetry, is of the form (4.2).

Lemma 5.6 For n = 4 the bundle type of E0 is either trivial or O(1) ⊕ O(−1) →
CP1.

Proof Assume the bundle type at λ = 0 is O(d) ⊕ O(−d) → CP1 for some d > 1.
The Higgs field � := resλ=0ξ is a meromorphic section of the bundle

K ⊗ End0(E0) → CP1 (5.24)

where K = O(−2) is the canonical bundle of CP1 and End0(E0) denotes the trace-
free endomorphisms of E0. Moreover, � is nilpotent as the immersion is conformal,
has at most simple poles at z1, . . . , z4 by construction and does not vanish on CP1 as
f is an immersion. Using the decomposition E0 = O(d) ⊕ O(−d) the Higgs field is
of the form

� =
[
a b

c −a

]
(5.25)

where a, b, c are meromorphic sections in O(−2), O(−2+2d),O(−2−2d), respec-
tively, with at most simple poles at z1, . . . , z4. Hence c = 0. As � is nilpotent a = 0
as well. For d > 1, −2 + 2d > 0 and b would have a zero contradicting the fact that
� is nowhere vanishing.

Theorem 5.7 Let f be a complete CMC surface without Delaunay ends in S3 or R3.
If f is built from a CMC quadrilateral in a fundamental tetrahedron of a tessellation
of the ambient space then it is obtained from a Fuchsian DPW potential (4.1) on the
4-punctured sphere.
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Proof We give a proof by contradiction. Assume that the bundle type at λ = 0 is

E0 = O(−1) ⊕ O(1) . (5.26)

By the proof of Proposition 5.2 the nilpotent λ−1-part � = ξ−1 of the meromorphic
potential has no zeros, and poles of order 1 at the 4 branch points z1, . . . , z4. Thus,
with respect to Eq. 5.26, it must be of the form

� =
[

0 s−D

0 0

]
(5.27)

where s−D ∈ M(CP1,O(−4)) is the unique meromorphic section (up to scaling)
with simple poles at D = z1 + · · · + z4. Moreover, the positive eigenvalues νi of the
residues of the connections are contained in the respective kernels of the residues of
ξ−1. This equips E0 with a parabolic structure (see for example [3, 11, 21, 23, 26] for
definitions and further references) which is unstable. We denote the parabolic bundle
also by E0. The pair (E0, �) is a stable strongly parabolic Higgs pair. Note that

∑

i

νi < 1 . (5.28)

It is easy to see (compare with [11]) that (E0, �) is the only stable strongly parabolic
Higgs pair with nilpotent Higgs field on the 4-punctured sphere with unstable under-
lying parabolic bundle. Consider the compact Riemann surface X → CP1 on which
the rotational symmetry is trivial. Its Fuchsian monodromy (given by uniformization)
corresponds by the Hitchin-Kobayashi correspondence to a stable nilpotent Higgs
pair (

S∗ ⊕ S ,

[
0 1
0 0

])
, (5.29)

where S2 = KX. Its underlying holomorphic structure is unstable. As the rotational
symmetries act on X we obtain, in the same manner as for f , an strongly parabolic
nilpotent Higgs pair with underlying parabolic structure. As the holomorphic struc-
ture is unstable, the parabolic structure must be unstable as well; see [2], and hence
it must be (E0, �). Thus, the holomorphic Higgs pair of f , i.e., (∂∇ , �) would be
gauge equivalent to (S∗ ⊕ S,

[
0 1
0 0

]
). This is only possible if the Hopf differential of

the minimal (respectively CMC) surface vanishes (compare with [14, sections 2 and
3]), which gives a contradiction.

Finally, we show under which conditions the Fuchsian DPW potential ξ can be
gauged into the form (4.2).

Note that a Fuchsian potential for a CMC quadrilateral defining a compact embed-
ded CMC surface cannot be adapted if all the 4 positive eigenvalues of the residues
are contained in (0, 1

4 ).

Corollary 5.8 Assume that the potential of Corollary 5.7 has equal pairs of eigen-
values. Then, there exist a coordinate change and a gauge such that the potential is
of the form (4.2).
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Proof We only sketch the proof. Assume that the eigenvalues at z0 and z1, respec-
tively z2 and z3 are equal. First, apply a so-called flip gauge which flips the
eigenvalues at z2 and z3 by adding ∓ 1

2 . This can be achieved by conjugating the
potential by a DPW gauge which is constant in z such that the residues at z2 and z3

are lower respectively upper triangular, and then gauge with diag
(√

z−z2
z−z3

,
√

z−z3
z−z2

)
.

Denote the residues of the potential ξ̃ obtained in this way by Rk, and find T such
that R3 = T D−1T −1R2T DT −1. Then, T −1ξ̃T turns out to be of the form (4.2).
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