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ABSTRACT Integrating computation resources with networking technologies is an hot research topic
targeting the optimization of containers deployment on a set of host machines interconnected by a network
infrastructure. Particularly, next generation edge nodes will offer significant advantages leveraging on inte-
grated computation resources and networking awareness, enabling configurable, granular and monitorable
quality of service to different micro-services, applications and tenants, especially in terms of bounded end-
to-end latency. In this regard, SDN is a key technology enabling network telemetry and traffic switching with
the granularity of the single traffic flow. However, currently available solutions are based on legacy SDN
techniques, not enabling the matching of tunneled traffic, and thus require a tricky integration inside the hosts
where containers are deployed. This work considers Kubernetes clusters deployed on next generation edge
micro data center platforms and proposes an innovative SDN solution exploiting the P4 technology to gain
visibility inside tunnelled traffic exchanged among pods. This way, the integration is achieved at the control
plane level through the communication between Kubernetes and the SDN controller. The proposed solution
is experimentally validated including a comprehensive framework enabling effective traffic switching and
in-band telemetry at pod level. The major paper contributions consist in the design and the development of:
(i) the networking applications at SDN control plane level; (ii) the P4 switch pipeline at the data plane level;
(iii) the monitoring system used to collect, aggregate and elaborate the telemetry data.

INDEX TERMS SDN, P4, telemetry, micro data center, kubernetes.

I. INTRODUCTION
The relation between computation and networking technolo-
gies has become stronger and stronger especially in the cloud
environment where each application is a composition of
micro-services potentially running on different machines [1],
[2]. Moreover, since the services are moving toward the
network edge (e.g., due to stringent latency requirements),
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where limited resources are typically available, the joint
optimization of computational and networking resources is
currently a crucial challenge [3], [4]. To solve this issue both
centralized and distributed approaches have been proposed in
literature [5].

Focusing on computational resources orchestration,
Kubernetes has recently become the de-facto framework to
orchestrate containers in both data-centers and edge-cloud
environments [6]. Kubernetes is built on the concept of
pod (i.e., a deployment unit) consisting of one or more
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containers running on the same host machine. Only high
level indications are provided by the Kubernetes community
about the way in which pod networking should be imple-
mented, i.e., regarding pod-to-pod communication the only
specified requirement is that each pod can communicate with
all other pods on any other node without Network Address
Translation(NAT) [7]. However, the actual networking imple-
mentation is delegated to third-party plugins, i.e., the Con-
tainer Network Interface (CNI) plugins, which may adopt
different configuration of the pods network interfaces for
providing pod-to-pod connectivity (e.g., adopting different
tunneling technologies). Moreover, CNI plugins typically do
not account for network constraints in terms, for example,
of required bandwidth or bounded latency. For this rea-
son, deploying Kubernetes in edge computing environments
requires specifically designed and comprehensive solutions
able to provide flexible network control and traffic teleme-
try. This is especially true in the case Quality of service
(QoS)-critical applications have to be supported and the
cluster machines are distributed at different locations, e.g.,
over a metropolitan area network [8], [9].

The introduction of Software Defined Networking (SDN)
provided the opportunity to enable effective network-
ing resources control. Nowadays P4 (i.e., Programming
Protocol-Independent Packet Processors) is the SDN solution
enabling the most advanced programmability of the forward-
ing plane [10], also enabling innovative in-network function
offloading [11]. P4 provides many additional features with
respect to previous SDN solutions (e.g., OpenFlow [12]):
(1) it defines a standard language to specify custom data
plane pipelines; (2) it allows to define and manipulate custom
packet headers through the definition of dedicated packet
parsers; (3) it supports the utilization of registers enabling
the development of stateful functionalities; (4) it provides
improved network visibility, e.g., using In-band Network
Telemetry (INT) [13]. Moreover, P4 is supported by sev-
eral kind of targets, e.g., bare metal or software switches,
smart-NICs, NetFPGAs. Thus, P4 enables advanced traffic
telemetry in passive mode, with no need of dedicated probing
packets. Three different INT techniques are proposed in the
specification [14], highlighting the main technical details.
In the three schemes, report packets are directly built in the
data plane and sent toward a telemetry collection point, that
can be used to perform the per-flow traffic analysis.

Considering all the aforementioned features, we believe
that P4 offers a flexible framework for enabling effective
integration of computational resources, orchestration tools
and networking resources. Recently, OpenFlow has been con-
sidered for such integration [15], [16], [17]. However, since
OpenFlow cannot have visibility inside the tunnels created
by the CNI plugins, the proposed solutions require a deep
integration with the plugins deploying dedicated software
applications in all host machines composing the Kubernetes
cluster. Conversely, exploiting P4 it is possible to define
a dedicated packet parser, gaining visibility on pod-to-pod
traffic flows inside the tunnels. This enables the deployment

of fine granularity traffic engineering and telemetry tech-
niques without direct interaction with the data plane of the
Kubernetes pod network. Thus, and this is our proposal,
the orchestration can be implemented through interactions
at the control plane level exploiting proper interfaces between
Kubernetes and the SDN controller. To enable this, we pro-
posed a specific P4 pipeline to match and monitor each pod-
to-pod traffic flow encapsulated in a tunnel by a CNI plugin.
The design of the pipeline is generic, while the parser is
specific for the Flannel CNI plugin, however it could be easily
extended to support other plugins.

To achieve the aforementioned targets, P4 devices should
be effectively controlled by the SDN controller. Regarding
this point, the P4 consortium defined an interface called
P4Runtime [18], suitable to configure and control P4 devices
(e.g., to install pipelines and flow rules). However, in the real
world, P4 compatible devices do not mandatory include a
P4Runtime agent. Indeed, several P4 use-cases do not rely
on the utilization of an SDN controller. Therefore, another
important contribution of this work is the implementation
of an application, at the SDN controller side, to config-
ure and control P4 devices, including the specific parsers
and pipelines that we have designed for enabling visibility
inside tunnels established by the CNI plugins. Specifically,
we have considered the SDN controller developed by Open
Networking Foundation(ONF), i.e., the Open Network Oper-
ating System (ONOS) [19], that is characterized by an active
development community.

Finally, the work goes beyond the integration of Kuber-
netes with the network connecting the worker nodes, imple-
menting also a closed-loop control where telemetry data
is used to detect possible Service Level Agreement (SLA)
degradation that could be recovered providing a feedback to
the SDN controller or directly to the applications generating
the traffic. Specifically, this last contribution consists of a P4
pipeline supporting in-band telemetry, a Telemetry Collector
used to aggregate generated telemetry data and a dedicated
Telemetry and Monitoring Platform to elaborate collected
telemetry data.

A preliminary version of this work has been presented
as a practical demonstration in [20]. In addition, this work
includes: (i) the detailed research background; (ii) the overall
architecture of Edge Micro Data Center nodes as designed
within the BRAINE project; (iii) the extended version of
the ONOS NetApps to support matching of traffic generated
inside/outside Kubernetes pods; (iv) a wide set of experimen-
tal results.

II. BACKGROUND AND RELATED WORK
The joint optimization of IT and networking resources is
a well established research topic as demonstrated by the
wide survey reported in [5] where both centralized and dis-
tributed solutions are resumed. The former approach exploits
a central element collecting resource information (e.g., inter-
acting with the cloud orchestrator and the network con-
troller) and typically provides improved solutions introducing
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a coordination overhead layer. Differently, the distributed
approach is more flexible and adaptive to dynamic environ-
ments, however typically provides less effective solutions.
For instance, the work in [21] proposes a distributed approach
to partition a pool of computational resources among mul-
tiple applications using a dynamic agreement. On the other
hand, centralized approaches have recently gained attention
because they can more easily leverage on Machine Learning
(ML) techniques. In [22] a ML platform is developed for
effective management of both computational and networking
resources in a 5G mobile environment, where data are col-
lected from both the Kubernetes orchestrator and the SDN
controller.

The actual networking implementation in Kubernetes
clusters is delegated to third-party CNI plugins. The most
considered ones are Flannel, Calico, and Kube-router [23].
As explained in [24], Flannel provides a layer-3 IPv4 net-
work among multiple nodes within the cluster, i.e., it does
not control how pods are networked to the host machine.
Several back-end mechanisms are supported (i.e., VXLAN,
UDP, host-gw and additional experimental mechanisms) but
VXLAN is recommended (see Sec.III for details). With
respect to Flannel, Calico [25] also provides security and
policy enforcement between pods supporting a wide range
of deployment options. Kube-router [26] is a specific solu-
tion for Kubernetes pods networking with the aim of pro-
viding operational simplicity and high performance. Recent
research has focused on CNI plugins performance compar-
ison in different scenarios. In [27] the performance of the
most popular plugins are compared in terms of latency and
average TCP throughput. The results show that Flannel and
Kube-router outperform in terms of latency, while for all the
plugins the TCP average throughput is close to bare-metal
capacity.

Regarding network programmability, the work in [28]
reports a comparison using OpenFlow and P4 for the imple-
mentation of equivalent functionalities (e.g, packet header
manipulation), showing similar results in terms of through-
put. However, the major potential of P4 is its suitability for
a variety of use cases. In [29], a new pipeline is deployed
for providing stateful traffic engineering and cyber-security
on an edge node designed for a multi-layer IP over opti-
cal network. Moreover, augmented firewalling capabilities
are envisioned for mitigating Distributed Denial-of-Service
(DDoS) cyber attack. Additional P4 use cases for multi-layer
networks are reported in [30], including the telemetry of end-
to-end optical performance indicators exchanged between
packet-optical nodes and P4-defined neural networks target-
ing online cyber-security. In [31] programmable switches
are leveraged for deploying a multi-purpose ML-based secu-
rity applications. It collects the packet length/inter-packet
timing frequency distributions, classifying the traffic flows
directly on the switches. P4 can be also used for deploy-
ing an open source framework that combines the flexibility
of software-based traffic generation with the accuracy of

hardware packet time-stamping, as presented in [32]. In [33],
P4 is leveraged for providing Bit Index Explicit Replication
(BIER), proposed by Internet Engineering Task Force (IETF)
for efficient transport of Internet Protocol (IP) multicast traf-
fic [34]. The work in [35] presents an use case of P4 registers
to store stateful information achieving autonomous forward-
ing and low-latency path discovery. Finally, [36] proposes
solutions for providing network slicing in different network-
ing environments.

In addition to the previous use cases, in-band network
telemetry is a key feature enabled by P4 that is achieved
thanks to improved visibility on networks events provided by
the P4 language [13]. The specification [14] proposes three
different techniques, i.e., INT-XD, INT-MX, and INT-MD.
In the INT-XD technique (also known as Postcard-based
Telemetry (PBT)), the node directly exports, for each mon-
itored packet, metadata from the data-plane to the monitor-
ing system, based on the instructions configured in local
flow tables. Collected metadata is inserted in a new packet
called report, that is forwarded to the monitoring system.
No packet modification is applied on the traffic packets.
In INT-MX (INT-MD) instructions (andmetadata) are written
into traffic packets, adding a specific header (i.e, the INT
header). The report packets are generated at each traversed
node in the INT-MX technique, while in the INT-MD tech-
nique metadata are accumulated in the INT header while the
packet is travelling in the network and report packets are
generated only by sink nodes. The work in [37] provides a
surveys of several INT implementations using different target
devices and INT header encapsulation. Among them, it is
worth to mention [38], the first implementation including the
dynamic control of the monitored network using the ONOS
controller. Specifically, such work proposed extensions to
ONOS for supporting INT that later have been included
in the ONOS official distribution. More recently, the work
in [39], focused on 5G networks, proposes the extension of
the INT-MD technique up to the user equipment to enable
the evaluation of fully end-to-end (e2e) latency. In general,
INT telemetry features the generation of a report packet
for each data plane packet. However, this approach may use-
lessly overload the telemetry system. Thus, the work in [40]
and [41] proposes two different approaches for reducing the
amount of generated telemetry data. In [40], an event detec-
tion framework is used to generate report packets only
when certain events are detected in the network. In [41] a
flexible sampling mechanism is implemented so that only a
configurable fraction of data plane packets actually generates
a report packet.
The use of an SDN controller over a P4-based network

(e.g., exploiting the P4Runtime interface) allows to take fully
advantage of P4 capabilities. Several solutions are currently
available to deploy a P4Runtime interface in a physical P4
device. The Bmv2 software switch [42] is a tool for emulating
P4-based devices that implements also the P4Runtime inter-
face. It is typically used for developing, testing and debugging
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the P4 data plane and the related network applications to be
used at the SDN controller. However, many commercially
available P4 devices do not provide a P4Runtime interface.
To deal with this issue the Stratum [43], [44] and PINS
(P4 Integrated Network Stack) [45] open-source projects are
currently on-going to provide a P4Runtime interface deploy-
able on P4-based devices equipped with a Network Oper-
ating System (NOS). In particular, Stratum can run on top
of a Debian-based NOS (and on top of the Bmv2 software
switch), whereas PINS can run on top of the SONiC (i.e.,
Software for Open Networking in the Cloud [46]) NOS.
Few works in literature use P4Runtime to control P4-based
devices, most of them leverage on Bmv2 and ONOS SDN
controller. The work in [47] demonstrates the compatibility
of P4Runtime and Openflow devices operating in the same
network under the control of the single SDN controller,
guaranteeing performance isolation among multiple network
slices. The work in [48] implements a benchmarking tool for
P4Runtime-based controllers and applies the tool to evaluate
the performance of the ONOS controller running in both
OpenFlow and P4Runtime mode. The work in [49] proposes
the extension of P4Runtime to supportmulti-tenant service on
a switch and evaluates the solution in an international exper-
imental P4 network. Finally, within the ONF community, the
SD-Fabric [50] project is a full stack application, i.e., involv-
ing both data and control planes, that implements a P4
pipeline for the Industry 4.0. The proposed P4 pipeline sup-
ports basic L2/L3 forwarding capabilities, 4G/5Gmobile user
plane, and in-band telemetry, whereas at the control side an
ONOS application is provided for managing and controlling
the P4 devices using P4Runtime.

Regarding the integration of Kubernetes with advanced
networking, to the best of our knowledge we did not find
solutions exploiting P4. Some research studies propose
OpenFlow-based SDN solutions integrated with Kubernetes,
providing basic networking features. In [15] a framework is
proposed to create network slices on-demand among con-
tainers, connected by an OpenFlow-based software switch
(i.e., Open vSwitch, OVS) in the host machine, being pro-
grammed by the SDN controller. The work in [16] proposes
to contemporaneously deploy two CNI plugins, i.e., Calico
to maintain the connectivity between pods and the Kuber-
netes master, and Multus that defines additional interfaces
for attaching each pod to the network avoiding tunneling
techniques, i.e., it maps each pod on a specific IP/MAC
addresses pair so that the SDN controller can locate each
pod. In [17] a CNI plugin is developed to expose a virtual
network to pods and configure network tunnels among them
using the SDN controller. Finally, the work in [51] proposes
a tool (i.e., Host-INT) enabling end-to-end monitoring of
traffic flows within a Kubernetes cluster. Host-INT leverages
on extended Berkeley Packet Filter (eBPF) [52] to extend the
Linux network stack of host machines introducing the support
of the INT header, that is then used to collect information
related to the traffic flows (e.g., packet loss and latency). The

work in [53] proposes the implementation of a load balancer
for P4-based Network Interface Controllers (NICs) towards
services deployed with Kubernetes; however, it does not con-
sider the fact that pod-to-pod traffic may be encapsulated in
a tunnel.

The aforementioned work confirms that end-to-end mon-
itoring is required in Kubernetes clusters, especially if host
machines are deployed in different locations in a fog envi-
ronment. However, using OpenFlow is impossible to match
on packet fields encapsulated within a tunnel, thus all
the proposed solutions require a deep integration with the
Kubernetes cluster at the data plane level (e.g., installation
of dedicated software in the host machines). Conversely, our
proposal considers the utilization of P4 enabling thematching
of pod-to-pod traffic throughout the traversed network with-
out modifying the Kubernetes deployment.

III. BRAINE ARCHITECTURE
This work has been conducted in the context of the Big data
pRocessing and Artificial Intelligence at the Network Edge
(BRAINE) project. Thus, this section provides an overview
of the BRAINE architecture to better contextualize the pro-
posed integration between Kubernetes and the P4-based pro-
grammable network.

The BRANE project targets the development of an energy
efficient Edge Micro Data Center (EMDC) exploiting a
modular architecture (e.g., including heterogeneous hardware
such as Central Processing Units(CPU), Graphics Processing
UnitS(GPU),and Field-Programmable Gate Arrays(FPGA)
to offer computing, acceleration, storage, and 5G Network
Function Virtualization(VNF)) at the network edge. The
project involves many industrial partners and works in several
fields, including design and fabrication of hardware boards
and development of the software framework to be deployed
on top of the EMDC for cluster resource orchestration.

Within the scope of this paper, the BRAINE EMDC node
includes a set of CPU boards, providing the cluster com-
putational resources (with one of these boards dedicated
to the hosting of orchestration tools), and dedicated boards
exploiting the Spectrum chipset, made by Mellanox/Nvidia,
implementing the SDN programmable P4-based switches
to provide the connectivity among CPU boards. Besides a
representation of the EMDC physical infrastructure, Fig. 1
reports the main components of the software framework
as currently designed by BRAINE, where Kubernetes and
ONOS have been respectively selected to orchestrate the
computational resources and to control the programmable
switches aiming to connect pods deployed on different CPU
boards.

The following sections detail the BRAINE components
that have been integrated in this work to implement a
closed-loop automation where pods are deployed on different
CPU boards of the same EMDC node or even on different
EMDC nodes inter-connected by an SDN-enabled network
devices.
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FIGURE 1. BRAINE EMDC main components and closed-loop telemetry workflow.

A. SERVICE MANAGER USER INTERFACE
The Service Manager User Interface (SMUI) is the
north-bound interface of the EMDC node and provides a set
of features to the users such as the unified view of services
execution state through semantic knowledge graphs.

The SMUI is a containerized web-based application that
can be deployed in the cloud or run locally on the EMDC [54].
It is built upon Kubernetes and Docker concepts such as
images, containers, pods, worker nodes, services, workflows
and their metadata. For instance, SMUI allows the user to
identify the best node for running, training, or testing an
Artificial intelligence (AI),service, with the possibility to
choose the desirable execution architecture (e.g., CPU or
GPU). Moreover, it enables the evaluation of resources avail-
ability across the system. With the collected running meta-
data, it is possible to check the presence of failures, the data
accesses and further execution metadata.

More in detail, in the BRAINE data model, pods, services,
and workflows are defined in a declarative way through
Kubernetes definition language, using manifest files in YAML
format, with the addition of the workflow data-type. The
SMUI front-end enables service and workflow measure-
ment/monitoring by accessing global and individual views on
the multiple agents involved in the execution, while promptly
taking corrective actions in case of failures such as redeploy-
ing the service to another node.

B. KUBERNETES SCHEDULER
The workloads defined using the SMUI are submitted to the
EMDC by means of Kubernetes pods. A pod is the smallest
execution unit in Kubernetes. Pods can contain one or more

FIGURE 2. Inter-pod networking based on Flannel CNI using the VXLAN
tunneling.

containers to run on a target worker node(s), all of the con-
tainers in a pod share the same IP address. Each service is
a composition of pods that can claim different life-cycles as
well as resources. For example, a service is provided by a
number of pods identified by a cluster-wide Domain Name
System (DNS), name, while the actual pods that compose the
service may change during the execution, the clients of the
service will still refer to the same endpoint.

Kubernetes is in charge of managing the pods. Upon
admission of a pod, it runs mutation hooks, providing oppor-
tunities to validate, complete, and/or manipulate the pod
according to the cluster’s policies, e.g., replacing all container
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FIGURE 3. Protocol stack packets traveling from pod A1 to pod B2 (only
meaningful fields are reported).

images with their latest version counterpart, or checking if
they are hosted on a trusted image repository. Afterward,
Kubernetes sends the pods into the scheduling pipeline,
which consists of sorting, filtering, and scheduling. All these
steps are plugin-based and can be extended or customized.

At the sorting stage, Kubernetes provides options to priori-
tize the pods. At the filtering step, Kubernetes checks whether
the pod requirements could be fulfilled by the available
worker nodes, and if so, it lists the matching nodes as feasible
nodes. During the scheduling phase, Kubernetes runs the pod
through a set of plugins asking them to score the feasible
nodes. The node with the highest score will be nominated for
binding, that is the process of shipping the pod to the selected
worker node and asking it to accept and run the workload.
This is organized via communication between Kubernetes
and an agent (i.e., Kubelet) running on every worker node that
updates and reports the pods status after each event (e.g., pod
admission, termination, resource change). The status updates
are received, aggregated, and collected by Kubernetes and
maintained in a distributed key/value database called etcd.
This information is used during filtering and scheduling
steps, and by every other plugins requiring information about
deployed pods.

C. FLANNEL-BASED KUBERNETES NETWORKING
In BRAINE, Kubernetes works with the Flannel CNI plugin
running in VXLAN mode. Within the cluster, Flannel essen-
tially solves two problems: duplication of pod IP addresses
and inter-node pod networking (i.e., inter-board pod network-
ing inside a single EMDC). The VXLAN method is the
most used, due to the low introduced latency (i.e., traffic
encapsulation and forwarding operations are performed in
the Linux kernel) and because, exploiting tunneling based on
IP reachability, it can be used to assure communication also
among worker nodes interconnected by a routed IP network
(e.g., among two separate EMDC nodes).

With reference to Fig. 2, Flannel creates a VXLAN net-
work card named flannel.1 on each node that acts
as VXLAN Tunnel End Point (VTEP). Such interface is

attached to the bridge cni0 that works as IP gateway for all
the pods in the node. The daemon flanneld configures the
UDP port 8472 as default for VXLAN on the flannel.1
interface.When a new node joins the cluster, flanneld exploits
the information stored in the etcd to: i) create a routing entry
in the local node to route the traffic addressed to pods running
in the new detected node toward flannel.1 interface;
ii) add the IP of the new node to the ARP cache mapping it
on theMAC address of flannel.1 interface of the detected
node.

Thus, for instance, once an IP packet is generated in pod
A1 (10.244.1.2), located at node A, and is destined to pod B2
(10.244.4.3), located at node B, the packet is sent to cni0 in
node A (i.e., 10.244.1.1) through the routing table of pod A1.
Then at cni0 the packet is sent to the flannel.1 inter-
face. As a VTEP device, flannel.1 receives the message,
according to the VTEP configuration the flanneld deamon
knows that the destination pod 10.244.4.3 belongs to node
B and it knows the IP address of flannel.1 interface on
node B from etcd, moreover through the forwarding table
in node A, it knows the MAC of the VTEP of node B. Thus,
it performs VXLAN packet encapsulation according to the
configured parameters (e.g., local IP, port) and sends the
packet through the physical interface ens160. The resulting
protocol stack for packets traveling from pod A1 to pod
B2 when exiting the interface ens160 is illustrated in Fig. 3.

At node B, the VXLAN packet reaches the interface
ens160 via port 8472, the VXLAN packet is forwarded
to the VTEP device flannel.1 for decapsulation. The
unpacked IP packet matches the routing table (10.244.4.0)
in node B, and is therefore forwarded to cni0 that, in turn,
forwards it to pod B2.

D. SDN CONTROLLER
The BRAINE SDN network controller is based on
ONOS [19]. Fig. 4 represents the components specifically
developed for BRAINE and utilized in this work to imple-
ment traffic forwarding and in-band telemetry, i.e., the
BRAINE app and the BRAINE P4 app.

ONOS implements the concept of intent-based network-
ing [55], where intents generalize the concept of connectivity
ensuring that target policies are met by enabling automatic
reconfiguration as a consequence of network changes (i.e.,
reacting to network events following a Finite State Machine
(FSM)-based implementation). Since the intent is expected
to be the base connectivity request submitted to the SDN
controller, we developed our SDN applications on top of the
ONOS intent service. This way all the implemented solutions
are automatically managed by the intent FSM. For instance,
in case of network failures all affected traffic flows are auto-
matically moved to an alternate path.

1) THE BRAINE APP
This application implements a set of functionalities
exposed through REST APIs, enabling the interaction with
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FIGURE 4. Internal architecture of the ONOS apps developed for the BRAINE project, including relations with ONOS core services, drivers
and protocols. Red connectors represent relations implemented within this work, blue connectors represent relations already present in
the ONOS core.

Kubernetes, and the SMUI. Also, the same functionalities
can be manually accessed through a set of CLI commands.
Moreover, the application utilizes the ONOS core services
to enable the deployment of point-to-point connections
between pods running in different worker nodes of the cluster.
The two main functionalities supported at the data plane
by the BRAINE app are: i) connection management (i.e.,
add/delete/modify), where each created connection can be
specified up to the transport level (i.e., TCP/UDP ports); ii)
activation of telemetry on selected active connection(s).

To support the aforementioned features, the BRAINE app
is composed of several components (see left side of Fig. 4).
In particular the application includes: i) two databases where
connection and link state information is stored; ii) a routing
module that performs redundant routing of requested con-
nections and interacts with the ONOS intent service; iii) an
intent listener that allows the application to react in case
of network events affecting established connections; iv) a
logger for tracing and debugging. Moreover, the BRAINE
app supports a set of accessories features to facilitate the
interaction with the network and the gathering of network
state information. Specifically, the features supported by the
app can be grouped in four categories: connections related
commands, device related commands, host related commands
and link related commands.

2) THE BRAINE P4 APP
The companion BRAINE P4 application has been developed
to program the specific P4 pipeline to be used in the data plane
switches. This application has two main roles: i) enabling the
match of header field encapsulated within VXLAN tunnels;
ii) activating the postcard telemetry on specific traffic flows.

The first objective is achieved through the implementation
of a dedicated pipeline (described in Sec. V). For the lat-
ter objective, the application exposes a REST API that is
dynamically consumed by the BRAINE appwhen a telemetry
activation request is received from the orchestrator.

The internal architecture of the BRAINE P4 application is
represented on the right side of Fig. 4. It includes the pipeline
loader component which loads the P4 pipeline description
via the P4Runtime protocol upon the discovery of P4-based
switches. Once the request to activate a new postcard teleme-
try on a specific traffic is received through the REST inter-
face, the Postcard telemetry manager identifies the devices
traversed by the flow and sends them the flow rules to enable
the postcard via the pipeline interpreter. Since the pipeline
interpreter is the only component that is aware of the pipeline
structure (e.g., number of tables and supported matching
fields per table) it is also used for translating into flow rules
the output of the intent service created to forward traffic. The
statistic discovery component collects traffic related infor-
mation from the P4-based devices to be visualized in the
ONOS GUI (e.g., counters associated to flow rules). Finally,
the logger component facilitates tracing and debug.

Both applications then rely on the Bmv2 P4 driver included
in the master ONOSmaster distribution that has been demon-
strated to be fully functional to perform the connection to P4
devices and to install all the required flow rules using the P4
Runtime protocol.

E. TELEMETRY COLLECTOR
The telemetry collector is the module in charge of receiving
the telemetry report packets generated by the P4 switches.
Typically, report packets are generated in a 1:1 ratio, with
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FIGURE 5. Telemetry Collector module: operation, internal architecture and Report packet format.

respect to the traffic packets belonging to telemetry-enabled
flows, where each report provides metadata information
(e.g., the latency experienced in the switch) related to a spe-
cific traffic packet. However, when the traffic rate increases,
it is not possible for scalability reasons to populate the
telemetry databases through direct processing of the report
packets. Therefore, the telemetry collector module has been
introduced for sampling the reports and providing low-rate
telemetry statistics to the telemetry database. Such module
classifies and aggregates the telemetry information at rates
sustainable by the database layer, specific rates can be con-
figured for different traffic flows through direct interaction
with the SDN controller thus considering specific require-
ments of each flow (see Fig. 1). The aggregated per-flow and
per-switch data samples are then sent to the telemetry time
series database formonitoring purposes. Details regarding the
implementation of a P4-based telemetry collector enabling
full collector functionality at wire speed can be found in our
previous work [56];

Fig. 5 shows the telemetry collector operation and its inter-
nal architecture. The different monitored traffic flows (i.e., F1
and F2 in the figure) generate the related telemetry report
packets. The figure also details the report packet format
showing the key fields utilized by the collector. In particular,
the switch_id (Sx) field identifies the physical P4 switch
x generating the report, while the flow_id (Fy) field dis-
criminates the traffic flow y. The former field is defined in the
P4 INT specifications [14], while the latter has been proposed
as protocol extension in our previous work [57], in which the
SDN controller computes and assigns the flow_id univo-
cally and provides it along with the flow rules in the telemetry
activation flow entry.

In this work, the consideredmetadata information retrieved
by the programmable P4 switch is the intra-switch packet
latency (i.e., the time spent by a packet in the switch queue).

Each switch generates one report packets for each moni-
tored flow packet, thus the report rate is equal to the flow
rate. The collector receives and processes the report pack-
ets using specific internal modules. The dissector module
extracts and stores the metadata of each report within dif-
ferent memory buffer arrays. The statistics extractor performs
the aggregation of metadata samples in a pre-defined time
window, computing the average (avg) and the maximum
(max) latency experienced by packets belonging to flow y
when crossing switch x. Specifically, the telemetry collec-
tor deployed in the experiments performs average and max
latency value computation over the last 1000 report packets
on a per-flow and per-switch basis.

The result is passed to the InfluxDB client API, that com-
putes the overall statistics timestamp, and sends a REST
POSTmessage to the central InfluxDB database with the new
time series sample. This way, specific latency analysis are
possible at the BRAINE Telemetry and Monitoring Platform
for each monitored flow at different switches.

F. TELEMETRY AND MONITORING PLATFORM
The telemetry and monitoring platform is a containerized
application composed of the following open-source tools:
InfluxDB [58], Prometheus [59], Node Exporter [60], and
Grafana [61].

Specifically, the application collects from theworker nodes
a set of metrics (e.g., CPU and RAM utilization) via Node
Exporter and other custom-built exporters (e.g., the Telemetry
Collector acts as a network resources exporter). Collected
metrics are then harvested by Prometheus, which in turn,
pushes them to the InfluxDB for storage. InfluxDB is an
open-source time series database management system for
the storage of metrics during the retention period. Moreover,
it makes the collected metrics available for querying by other
components of the system. InfluxDB can be queried via
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FIGURE 6. Proposed pipeline architecture for traffic forwarding and telemetry: a) Parser; b) Ingress pipeline; c) Egress pipeline.

external tools or its own REST APIs. Grafana is used as
the default client of the database to provide a visual and
interactive representation of the metric time series. However,
there are other clients in the system that can interact with
InfluxDB to obtain metric data. For instance, in BRAINE
an important role is played by the the SLA Broker, that
monitors the incoming metrics and validates them against the
agreed SLA terms, to take proper corrective action in case of
violations, i.e., activating the responsible actuators (e.g., the
SDN controller).

In the BRAINE project, the InfluxDB is utilized as
the single-point-of-truth metric database that persists the
recorded data via Kubernetes volumes and provides a ser-
vice endpoint for interacting with other components of
the infrastructure. For instance, as described above, the
telemetry collector pushes data directly to InfluxDB via the
built-in APIs.

IV. TELEMETRY WORKFLOW
This work integrates the aforementioned BRAINE compo-
nents in a closed-loop telemetry workflow. Specifically, the
idea is to establish a connectivity between a pair of pods
deployed on different worker nodes belonging to the same

Kubernetes cluster, thus passing through a network composed
of P4-based switches. The traffic flow exchanged between
the two pods is then monitored activating in-band telemetry.
When a latency degradation is detected along the path, the
SDN controller is notified to find an alternative path, e.g.,
avoiding the switch that is introducing excessive delay.

The steps of the implemented telemetry workflow are
represented in Fig. 1. Step 1: upon the trigger from the
SMUI, Kubernetes places a number of pods with their own
requirements on different worker nodes. Step 2: Kubernetes
retrieves the network parameters of the deployed pods within
the etcd. Step 3: Kubernetes submits a connectivity request
to the SDN controller using the REST APIs provided by
the ONOS BRAINE app including the network parame-
ters of the deployed pods (i.e., the request typically con-
tains MAC and IP addresses and TCP/UDP ports). Step 4:
The SDN controller performs the configuration of the con-
nectivity, sending the required flow rules to the involved
P4-based devices (using P4-Runtime protocol), in the same
step the SDN controller activates the postcard telemetry
for the specific traffic flow, relying on the BRAINE P4
app that is dynamically queried by the BRAINE app (the
telemetry could be also started/stopped in a subsequent step).
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Step 5: Once the connectivity is configured, the traffic starts
to flow into the network. Step 6: The related postcard teleme-
try is generated toward the Telemetry Collector. Step 7:When
the Telemetry andMonitoring Platform detects a service level
degradation (e.g., increased latency in a specific P4-based
switch) it triggers a service upgrade request to the SDN
controller using a dedicated method of the BRAINE app
REST APIs. Step 8: The SDN controller modifies the net-
work connectivity parameters in accordance with the received
request (e.g., modify the traffic routing avoiding the degraded
switch).

V. P4 PIPELINE IMPLEMENTATION
The developed P4 program is written in P416 for the target
architecture v1model [62] that includes a parser and two
pipelines (ingress and egress). With the proposed approach
the P4 device can be programmed by the SDN controller
to forward both traffic exchanged among pods (i.e., encap-
sulated using VXLAN) and traffic exchanged among host
machines (i.e., not encapsulated). Moreover, the controller
can activate in-band telemetry (i.e., postcard telemetry,
INT-XD) on selected traffic flows, that can be specified up
to transport layer details (i.e., TCP/UDP ports).

The proposed architecture is working only in conjunction
with the Flannel plugin operating in the VXLAN mode.
However, it is easily extensible to other tunneling techniques
applied by different CNI plugins only requiring the upgrade
of the parser module. For instance, the parser can be extended
to support Calico operating with the IP in IP overlay network-
ing by adding a specific check during the parsing of the IP
header, i.e., to recognize the IP protocol code 0 × 04. Thus,
a parser supporting multiple tunneling techniques could be
deployed on the same network infrastructure.

Each pipeline is composed by a number of tables, oper-
ating with a match/action policy. Each table supports a
specific set of keys and actions. In each table, a ternary
match policy is used where the selected mask allows to
ignore a key (i.e.,0 × 0000) or apply an exact match (i.e.,
0xffff).) All keys are defined using custom metadata
(i.e., local_metadata.*) that are initialized loading the
proper packet header fields during the parsing procedure.
This way, depending on the detected tunneling technique, dif-
ferent packet fields can be copied in themetadata enabling the
support of multiple CNI plugins. For the traffic not exploiting
a tunnel, e.g., traffic among host machines or pod traffic
generated in a cluster adopting flat networking (e.g., using the
Calico default behaviour), metadata are filled considering the
most external packet header.

A. P4-BASED MATCHING OF POD-TO-POD TRAFFIC
The parser, detailed in Fig. 6(a), is the first module of the
ingress pipeline, as shown in Fig. 6(b). While the packet
passes through the parser stages, the metadata fields are
gradually filled. The first stage of the parser writes the ingress
port index into the specific metadata field. Then, the Parse
Packet IO stage is executed only for packets received from the

CPU port (i.e., P4 Runtimepacket_outmessages received
from the controller) to retrieve the packet_out header.
The Parse Eth stage extracts the Ethernet header and fills the
corresponding metadata fields with the MAC source, MAC
destination and Ethernet type fields values. Then, in case of
IP packets, the Parse IPv4 stage parses the IPv4 header and
fills the corresponding metadata fields with the IP source,
IP destination and IP protocol fields value. Subsequently, the
packet is sent to one of the Parse TCP/UDP stages where the
metadata fields local_metadata.l4_src_port and
local_metadata.l4_dst_port are filled.

If the UDP destination port is 8472, it means that the
packet belongs to a pod-to-pod traffic flow encapsulated
within a VXLAN tunnel by Flannel (see Fig. 3). In this
case, the Parse VXLAN stage is executed parsing VXLAN
header, subsequently IP and TCP/UDP headers are parsed
by Parse Internal stages. During these stages, the aforemen-
tioned local_metadata.*fields are overwritten with the
corresponding fields enclosed in the internal headers. This
way, if the packet is encapsulated in a VXLAN tunnel, the
ingress pipeline will match the internal header fields, thus
enabling pod-to-pod traffic forwarding.

As illustrated in Fig. 6(b), after parsing, the packets are
forwarded to the ingress pipeline and processed by table0
where the egress port is assigned based on the flow rules
installed by the SDN controller. The actions supported in
this table are: i) set_egress_port, ii) send_to_cpu
and iii) drop. The set_egress_port action is typically
applied to packets matching a forwarding flow rule and
assigns the output port on which the packet will be transmit-
ted. Action send_to_cpu is used to forward packets to the
SDN controller through the control plane port (e.g., it is used
for LLDP packets matching specific flow rules); finally, the
default drop action is applied to packets not matching any
flow rules.

B. P4-BASED POSTCARD TELEMETRY IMPLEMENTATION
The subsequent tables in both the ingress and the egress
pipelines are used to implement the postcard telemetry.
The Postcard_Telemetry table, see Fig. 6(b), matches on
metadata fields and is intended to contain flow rules
for matching each traffic flow requiring postcard teleme-
try. Two actions are supported: activate_postcard
and nop. The action activate_postcard is exe-
cuted for each matching packet (i.e., to packets belonging
to traffic flows for which the SDN controller has acti-
vated the telemetry), setting a specific metadata field
(i.e., postcard_meta_activate_postcard) that is
later evaluated by an if condition to clone the packet
using the cloneI2E external feature. If a packet is not
matched, the default action nop is executed resulting
in the packet forwarded to the egress pipeline without
cloning. The cloned packet will be manipulated in the egress
pipeline to generate a report packet. Cloning the packet is
mandatory because P4 devices cannot create packets from
scratch [10].
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FIGURE 7. Experimental testbed encompassing computational and networking resources.

FIGURE 8. Wireshark capture of ICMP traffic between two pods.

The egress pipeline is illustrated in Fig. 6(c). All the meta-
data fields local_metadata.* must be re-initialized
because P4 does not allow the propagation of custom
metadata from the ingress pipeline to the egress pipeline.
No actions are applied to the original packet that leaves the
switch through the port assigned in table0. Instead, the cloned
packet is processed by the two tables: int_insert and
generate_report. The former table, with a null default
action (i.e., nop), applies the action init_metadata to
matching packets. This action is the one that actually retrieves
the information to be included in the report message that is
written in the local_metadata.postcard_* fields.
The latter table generates the in-band telemetry report

message using the action do_report_encapsulation
manipulating the cloned packet. More in detail, the header of

the cloned packet is modified as following. The Ethernet and
IP source addresses are set to the local switch values, while
the destination addresses are set to the telemetry collector
values. The UDP source and destination ports are set to a spe-
cific values to easily recognize report packets at the telemetry
collector. Finally, the report header is added as UDP payload
that includes the metadata retrieved in the previous table,
i.e., switch_id, flow_id and all other metadata required
by the SDN controller using the instruction_mask as
defined in [14].

C. APPLICABILITY TO HARDWARE P4-BASED DEVICES
The proposed P4 pipeline is suitable for switches adopt-
ing the Protocol Independent Switch Architecture (PISA),
e.g., the Tofino chipset is based on PISA. However, different
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PISA-based switches can be characterized by different acces-
sory features, e.g., externs. Specifically, the key P4 capabil-
ities needed to run our proposed pipeline are extra header
processing, timestamp metadata support, and the extern used
to clone packets from the ingress to egress pipeline. All of
them are available on most of the currently commercialized
PISA-based switches.

In addition, an estimation of the maximum number of
installable flow rules can be performed considering the typ-
ical size of the memory modules in commercial switches
and the flow rule structure defined in Sec.V-A. Specifically,
hardware switches are typically composed by the following
modules: Static Random Access Memory (SRAM), Ternary
Content Addressable Memory (TCAM), Hash, Arithmetic
Logical Units (ALU) and stateful ALUs. The TCAM, used to
implement ternary match, is the most expensive and flexible
module and is therefore the scarcest resource. The P4 pipeline
implemented in our work uses ternary match only for Table0,
while other tables, applying exact match, can be mapped on
the less critical SRAM. Thus, considering the fields to be
matched (illustrated in Fig. 6(b)), each flow rule occupies
about 300 bits. A Table0 with 1000 rules occupies 300 Kbits
(i.e., about 40 KBytes). Since modern switches have a TCAM
size in the order of 1 MByte, they can typically contain
25.000 flow-rules.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
The experimental testbed encompasses both computing and
networking resources. Computing resources are deployed on
two dedicated servers, i.e., EMDC1 and EMDC2 in Fig. 7.
The hardware of both servers is a DELL PowerEdge R740,
56 CPUs Intel Xeon Gold 6238R@ 2.20GHz, 256 GB RAM.
Three virtual machines (VMs) are deployed in EMDC1,
while two VMs are deployed in EMDC2. One of the VMs
deployed on EMDC1 hosts the management and control
software including the Kubernetes master, the ONOS SDN
controller, the telemetry collector and the telemetry and mon-
itoring platform. The other VMs act as Kubernetes worker
nodes, where each node runs a number of pods (i.e., each
pod encompasses a plain Ubuntu 20.04 distributionwith basic
networking tools).The Telemetry and Monitoring platform
includes the telemetry database deployed into an influxdB
container, and the SLA Broker, implemented as a set of con-
figurable queries and threshold-based alarms through dedi-
cated Grafana panels.

Networking resources encompass five P4-based switches,
all of them emulated using Bmv2. Since we are using emu-
lated devices, measured latency values are expected to sig-
nificantly reduce using hardware devices. However, this is
not relevant for our purpose, since our work does not target
to improve the achievable latency, it only targets to measure
the latency and triggers a network reconfiguration when a
certain threshold is crossed. Switches S1, S2, S3, S4 are
emulated on a dedicatedDELL server (Intel Xeon E5-2643 v3
6-core 3.40 GHz clock, 32 GBRAM) using physical Ethernet

FIGURE 9. ONOS view of rules installed on switch S1.

interfaces. Switch S5 is emulated by deploying a dockerized
Bmv2 on a Mellanox/Nvidia SN2010, running SONiC. In
particular, the Mellanox/Nvidia SN2010 is a switch exploit-
ing the Spectrum chipset, where it is possible to install the
SONiC NOS. In turn, SONiC enables the deployment of the
dockerized Bmv2 switch within in the SN2010.

The traffic report generated by the network nodes is
received by the Telemetry Collector, hosted by the Kuber-
netes master node. As depicted in Fig. 5 the report
packet contains: the switch_id field that identifies
the switch, the flow_id field that discriminates traffic
flows,Ingress_Timestamp andEgress_Timestamp
needed to evaluate the hop latency.

B. EXPERIMENTAL RESULTS
1) POD TRAFFIC FORWARDING VALIDATION
This section functionally validates the proposed solution to
process the traffic exchanged between a pair of Kubernetes
pods. Specifically, the traffic is generated between two pods
respectively deployed on node EMDC1 and EMDC2, thus
traversing the P4-based network.

Fig. 8 illustrates the Wireshark capture, including
the VXLAN encapsulation and the protocol stacking as
shown in Fig. 3. Specifically, the ping application is
used to generate ICMP request/reply messages between
pod 10.244.1.2 deployed on worker node 1 and pod
10.244.4.2 deployed on worker node 4. The packets are
captured in VM Worker 1 on interface 192.168.42.2. The
presence of both ICMP request and reply proves that packets
are correctly switched by the network in both directions. The
experienced round-trip time is around 5 milliseconds.

Fig. 9 shows a screenshot of the ONOS web GUI illus-
trating the flow rules installed in switch S1 where the rules
counters show that the traffic exchanged between the two
pods is correctly matched.
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FIGURE 10. Telemetry and Monitoring Platform: view of switch latency for traffic flows 250 and 123. Latency [ns] as a
function of experiment time.

FIGURE 11. Flow bitrate: (a) flow 250; (b) flow 123. Mbps as a function of experiment time.

2) POD TRAFFIC TELEMETRY VALIDATION
This section functionally validates the whole telemetry work-
flow as described in Fig. 1. Specifically, two separate traffic
flows are activated between two different pairs of pods: flow
IDs 250 and 123. The two flows consist of five parallel TCP
sessions generated with the iperf3 application. Telemetry is
active in both flows; however, the SLA Broker is configured
to generate the feedback to ONOS (step 8 in Fig. 1) only for
flow 250.

Fig. 10 reports the latency data as collected by the SLA
Broker panels during the network reconfiguration. Both flows
are initially routed along the path S1, S3, S4, S2, thus both
plots report four latency lines, one per traversed switch.
At time t0 switch S3 transmission rate is manually degraded,
thus increasing the switch latency for both flows. The SLA

Broker performs a threshold-based control over the per switch
latency of flow 250 and triggers an alert if the degradation
persists for 4 seconds. This behaviour is reflected in the SLA
Broker panel as depicted in Fig. 10.

In the actual experiment, degradation is detected at t1 and
the alert is triggered back to ONOS at t2. As described
in the previous sections, ONOS reacts by rerouting the
affected flow (i.e., flow 250) on path S1, S5, S2, i.e.,
after t2, Fig. 10 reports the latency of those switches. It is
worth noting that S5 is characterized by a higher latency
compared to other switches; indeed, S5 is emulated on
less performance hardware. Conversely, flow 123 is not
involved in the reconfiguration, showing that the imple-
mented framework is able to select the single traffic
flow.
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FIGURE 12. Auxiliary panel view of switch latency for traffic flows 250 experiencing network failure recovery excluding the
Telemetry and Monitoring Platform. Latency [ns] as a function of experiment time.

The telemetry workflow experiment has been repeated
10 times collecting also the achieved end-to-end bit-rate of
both flows. The results are illustrated in Fig. 11, including ten
cyan lines reporting the specific result for each experiment
and a single red line reporting the average trend. Specifically,
Fig. 11(a) is related to traffic flow 250, it shows that after
t0 the rate is degraded, then it is partially recovered at time
t2 when the traffic is switched on the alternate path. It is
worth noting that rerouting the traffic does not guarantee the
recovery of the overall bit-rate. In fact, the recovery path
includes switch S5 emulated on a less performing hardware
with limited traffic capabilities. Fig. 11(b) is related to traffic
flow 123 that is not involved in the reconfiguration, thus after
t0 the bit-rate results to be degraded and never recovered.
Fig. 11(a) shows that the whole workflow takes about

6 seconds to be performed (i.e., t2 − t0). However, most of
this time is expended within the telemetry and monitoring
platform (i.e., SLA Broker) as a result of our configuration
to trigger the alert. This time could be reduced by config-
uring the SLA Broker with higher SLA checking rates on
the InfluxDB filled by the Telemetry Collector. Therefore,
to better evaluate the achievable performance of the system,
we have measured the re-configuration time excluding the
telemetry and monitoring platform from the workflow, i.e.,
the feedback to the ONOS controller is directly generated by
the Telemetry Collector.

Fig. 12 reports the latency data collected by an auxiliary
Grafana panel during the network reconfiguration, when the
reconfiguration is triggered directly by the Telemetry Collec-
tor (i.e., thus excluding the influxdB and the SLA Broker).
The experiment has been repeated 10 times and the aver-
age time for performing the reconfiguration is 1.95 seconds
that includes: the detection of the latency degradation at the
Telemetry Collector, all control plane procedures performed
in ONOS (e.g., computation of an alternate path), and P4
Runtime message exchange towards the involved switches.

VII. CONCLUSION AND FUTURE DIRECTIONS
The integration between IT and networking technologies
is fundamental for effective micro-services deployment
on next generation edge nodes interconnected by a

network infrastructure. However, currently available solu-
tions considering Kubernetes orchestrated clusters and pro-
grammable networks are based on legacy SDN techniques
and thus require deep integration at the data plane level.

In this work we proposed a P4-based solution able to
gain visibility inside tunnelled traffic, and thus enabling such
integration at the control plane level through communication
between the Kubernetes orchestrator and the ONOS SDN
controller. Also we experimentally demonstrated the first
comprehensive framework enabling effective traffic teleme-
try, at pod level, building upon a closed-loopworkflow among
(i) the Kubernetes orchestrator, (ii) the ONOS SDN Con-
troller, (iii) the enhanced P4-based data plane, and (iv) the
telemetry system. The integrated system is able to orchestrate
Kubernetes micro-service chains and automatic P4 switch
configuration including configurable telemetry. Moreover,
the closed-loop BRAINE telemetry and monitoring system is
able to enforce automatic network recovery of specific flows
violating latency SLA in less than 2 seconds.

The proposed framework paves the way toward even more
advanced closed-loop strategies for the dynamic reconfigura-
tion of flows (e.g., traffic prioritization, control of generated
traffic rates at the application level, etc.) depending on the
performance measured on the network.
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