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ABSTRACT A recently developed application of computer vision is pathfinding in self-driving cars.
Semantic scene understanding and semantic segmentation, as subfields of computer vision, are widely used
in autonomous driving. Semantic segmentation for pathfinding uses deep learning methods and various large
sample datasets to train a proper model. Due to the importance of this task, accurate and robust models should
be trained to perform properly in different lighting and weather conditions and in the presence of noisy input
data. In this paper, we propose a novel learning method for semantic segmentation called layer-wise training
and evaluate it on a light efficient structure called an efficient neural network (ENet). The results of the
proposed learning method are compared with the classic learning approaches, including mloU performance,
network robustness to noise, and the possibility of reducing the size of the structure on two RGB image
datasets on the road (CamVid) and off-road (Freiburg Forest) paths. Using this method partially eliminates
the need for Transfer Learning. It also improves network performance when input is noisy.

INDEX TERMS Autonomous cars, layer-wise trains, computer vision, convolution neural networks,

semantic segmentation.

I. INTRODUCTION

Image semantic segmentation is based on pixel-level classifi-
cation and is used widely for image or scene understanding.
In this kind of segmentation, there is no difference between
various objects of the same class which is common in instance
segmentation. Segmentation can extract vital information
from a given image pixel by pixel; therefore, it is widely used
when the shape of objects is not known exactly and it can vary
in different scenes. In this method, a final label will not be
generated for the given image, on the contrary, each pixel has
its label at the end of the process. Many computer vision tasks
like self-driving cars, augmented reality wearables, home-
automation devices [1], etc., need scene perception at a very
low level, such as the pixel level.
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Convolutional Neural Networks (CNNs) can detect and
localize each object of a specific class in the given image
and label each pixel. In recent years, large labeled datasets
alongside powerful computers have helped Deep Convolu-
tional Neural Networks (DCNNs) outperform many common
computer vision algorithms [1]. For these reasons, various
architectures of CNNss for segmentation approaches, such as
Alexnet [2], ResNet [3], VGGnet [4], and GoogleNet [5]
have been applied in many types of research [6]. For this,
a well-pre-trained architecture is used as a base model to
achieve higher accuracy [6], [7]. Then, the existing model
is fine-tuned with the destination dataset by using Transfer
Learning (TL) and making some changes to the pre-trained
model in some cases.

Outdoor perception is more challenging due to dynamic
and complex situations such as light, color, and weather
conditions in different time slots. Even in structured out-
door environments, such as urban roads, there are still
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several challenges for rare object detection, like puddles [8].
Autonomous driving needs rich and robust information about
scene understanding for the segmentation process [6]. Image
segmentation has been frequently used in autonomous driving
on both road and off-road paths. Several labeled datasets for
road and off-road path segmentation for supervised learning
exist. Most existing labeled datasets for semantic segmen-
tation are mainly based on RGB cameras. Also, there are
low sample datasets based on RGB-D, LiDAR, near-infrared
sensors, etc. [8].

In this paper, we use an effective well-designed DCNN
called ENet [1] with layer-wise training to boost the training
phase in time and compact the so-called DCNN without
significant loss of accuracy. The main advantage of this
method is determined when our input data is noisy. { The main
contributions of the proposed training method can be listed as
follow:

o r-wise training requires no Transfer Learning and is only
trained on the target dataset.

« Adding noise to the input images can produce robust
results since the features have been extracted more accu-
rately through layer-wise training.

« Training epochs for the final training can be significantly
reduced.

o A layer-wise training method can reduce the model’s
size by removing some encoder layers without signifi-
cantly affecting IoU.

We use the DCNN architecture for two well-defined
datasets called CamVid and Freiburg Forest that cover both
urban and off-road areas. First, we review some of the existing
methods and datasets in Section II. In section III, we discuss
the ENet structure and our approach for layer-wise training.
Then, in Section IV, we evaluate the performance of our pro-
posed learning method using two different datasets. Finally,
we summarize the information and results in Section V.

Il. PRIOR ART

In this section, we will discuss semantic segmentation
and different prior semantic segmentation methods in
autonomous driving. In the first part, there is a short review
of existing datasets in road segmentation with varying sensors
for both road and off-road paths. In the second part, methods
based on road segmentation are discussed.

Image semantic segmentation is a fundamental task
in the field of computer vision with wide usage from
three-dimensional reconstruction [9] to self-driving cars.
Image semantic segmentation is a pixel-level classification
task, so at the end of the process, each pixel is labeled in a
specific class. This algorithm recognizes each category, labels
pixels according to the recognized category, and provides
location information about given categories [9]. Considering
these advantages, it is used in road scene understanding appli-
cations that require the ability to recognize different forms
and understand the spatial information between classes [10].
In typical road scenes, most pixels belong to large classes,
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TABLE 1. Road and off-road track datasets based on RGB and/or LiDAR
sensor data.

Data Type

Name RGB LiDAR Type
Freiburg Forest [11] v Off-road track
Yamaha-CMU [12] v Off-road track
RELLIS-3D [13] v v' Off-road track
Off-Road Terrain [14] Off-road track
RUGD [15] v Off-road track
KITTI[16] v v Road track
CamVid [17] v Road track
CityScapes [18] v Road track
Mapillary [19] v Road track

such as roads, and objects in the background, such as sky and
buildings, so the network must produce smooth segmentation
to achieve appropriate accuracy for smaller-size classes [10].

A. DATASETS

Several labeled datasets gathered from different types of sen-
sors for road, and off-road path segmentation for supervised
learning exist. For path detection, sensors, such as RGB
cameras, RGB-D, light detection and ranging (LiDAR), and
near-infrared sensors are mainly used [8]. But most existing
labeled datasets for path semantic segmentation are usually
based on RGB cameras and LiDAR sensors. A quick review
of some of the existing datasets based on RGB and, or LIDAR
sensor data is gathered in Table 1.

In the following, we will discuss several CNN architectures
proposed for semantic segmentation tasks in autonomous
driving. Autonomous driving on different paths relies heavily
on computer vision for detecting paths and avoiding moving
and still objects, such as pedestrians, bicyclists, other vehi-
cles, obstacles, etc. So far, semantic segmentation with large
sample datasets is used to acquire robust models for road
segmentation tasks.

B. ROAD SEMANTIC SEGMENTATION METHODS

For DCNNSs, a suitable and sufficient amount of data is
needed. There are datasets with relatively high volume data
and accurate labeling for path detection in urban areas. But
there are a few datasets for off-road path detection, which
are much smaller than the datasets in urban areas, and their
labeling has been done with less accuracy. In supervised
learning, for a precision prediction, the amount of data must
be large and their labels must be accurate. Therefore, due
to the existence of small datasets for off-road areas, many
researchers use TL.
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Some studies [10], [20], and [1] wused different
encoder-decoder architectures for semantic segmentation.
These architectures extract multi-level feature maps in
the encoder part, then recover spatial information step by
step in the decoder part. For pixel-wise classification pur-
poses, the decoder network performs non-linear upsampling
on the low-resolution encoder feature maps and transfers
them to full input-resolution feature maps. Encoder and
decoder parts can be the same, or the structure of their
layers can be completely different. Using residual blocks
or reusing features can facilitate feature exploration in the
encoder part. However, applying them in the decoder part
causes feature map explosion, so they are not beneficial in
decoders.

In [10], a novel and practical deep fully CNN architecture,
called SegNet, is presented. SegNet has an encoder part sim-
ilar to the VGG16 network with 13 convolutional layers, fol-
lowed by a corresponding decoder network with a pixel-wise
classification layer at the end. This model has been evaluated
on the CamVid and SUN RGB-D [21] datasets. In [20],
the orthogonal concepts for encoder-decoder architectures are
combined, called Dual-Path Dense-Block Networks (DPDB-
Net). The dense block incorporates feature reuse only for
the encoder. The proposed architecture was evaluated on the
Freiburg Forest and CamVid datasets. In [1], a novel efficient
deep neural network architecture named ENet is proposed for
tasks that require low-latency operations. This method is up to
18 times faster, requires 75 times fewer FLOPs, has 79 times
fewer parameters, and provides similar or better accuracy to
existing models such as SegNet. This model was evaluated
on the CamVid, Cityscapes, and SUN datasets and compared
the trade-offs between the network’s accuracy and processing
time between ENet and other state-of-the-art models. So,
in this paper ENet is used as a base model.

Other approaches used by the papers are of mixed methods
for robust segmentation. Learning from fused representations
is one of them. For example, the article [22] proposed a novel
semantic segmentation architecture and the Convoluted Mix-
ture of Deep Experts (CMoDE) fusion techniques. CMoDE
enables a multi-stream Deep Neural Network (DNN) to
learn features from complementary modalities and spectra.
The model comparatively evaluates class-specific features of
expert networks based on the scene condition to learn fused
representations. This model is evaluated on three publicly
available datasets: Synthia [23], Cityscapes, and Freiburg
Forest. Using a multi-task approach to share a common
latent space is another way for robust segmentation. In [24],
a multi-task approach is proposed by supplementing the
semantic segmentation task with edge detection, semantic
contour, and distance transform tasks. The complementary
tasks can produce more robust representations that enhance
semantic labels by sharing a common latent space. Also, the
influence of contour-based tasks on latent space and their
impact on the final results of semantic segmentation were
explored. The effectiveness of learning in a multi-task set-
ting for hourglass models in the Cityscapes, CamVid, and
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Freiburg Forest datasets was demonstrated by improving the
state-of-the-art without any refinement on post-processing.
Another advantageous method is using the TL approach.
In [6], a TL-based semantic segmentation of off-road driv-
ing environments is presented. First, a pre-trained segmen-
tation network called DeconvNet is trained on Pascal VOC
datasets. Because of the large size of DeconvNet, a smaller
network, called the lightweight network, was proposed and
then fine-tuned on the Freiburg Forest dataset. Also, to pro-
vide more accurate results, synthetic datasets that simulate the
off-road driving environment (considering real-world varia-
tions) were used as the intermediate domain before training
with real-world off-road driving data. The Freiburg Forest
dataset was considered a real-world off-road driving dataset.
Regardless of the architecture, in some research [8],
multimodal input or data fusion is used. The network can
achieve faster convergence and accommodate more textual
information while using multimodal images in segmentation.
In [8], an attempt has been made to find the appropriate
exploitation of different imaging methods for road scene
segmentation versus using an RGB modality. A novel multi-
level feature fusion network was proposed by exploring deep
learning-based early and later fusion patterns for semantic
segmentation. Using polarized cameras is a sensory enhance-
ment that can significantly increase image perception abilities
to detect highly reflective areas such as glass and water. The
proposed multimodal fusion network outperforms unimodal
networks and two typical fusion architectures. The model was
evaluated on the Freiburg Multispectral Forest dataset.

1Iil. PROPOSED METHOD

A. INTRODUCTION TO ENet

According to [1], anovel, fast, and efficient DNN architecture
named ENet is proposed. A quick review of this network is
shown in Figure 1.

Different internal components of the block are shown in
Figure 2 with their input and output dimensions. As seen,
in the defined blocks, there are three sequential convolution
layers. Therefore, we are dealing with a deep structure where
no matter how much we go towards using activation func-
tions, such as ReLU and its derivatives to prevent gradient
vanishing, the effect of the error on the final layers (decoder)
is more than the initial layers (encoder). The encoder section
is responsible for feature extraction and is the first layer that
the input passes through. Therefore, it is essential to extract
the correct and appropriate features and transfer them to the
next layer. The weaker the features extracted in the initial
layers of the network are, the less reliable the output of the
network is in the decoder layers. These layers decode the
extracted features and provide them to the full convolution
part so that it can make decisions about semantic segmenta-
tion and appropriately label each pixel. As a result, the lack
of proper training of the initial layers, as they are the input
passage to the next layers, causes a decrease in the final
performance of the network. The very proper training of
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FIGURE 2. Different block structures used in ENet. B, C, H, and W
represent the batch size, the number of channels/feature maps, height,
and width respectively.

the final layers, which includes the decoder section, cannot
correct the deficiencies and mistakes that occurred in the
initial layers. The output of the network deteriorates when
there is noise in the input data.

Based on the problems raised, we proposed the following
training method, which can ensure that the primary layers are
trained and perform the function of feature extraction.

B. LAYER-WISE TRAINING
As explained in Section III-A, the primary layers of the
semantic segmentation network are responsible for feature
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extraction from the input images. In order to make sure that
this part of the encoder is trained, we can train the initial part
of the network individually. For this, it is enough to separate
the layers of the encoder that we want to train separately from
the overall structure and return them to the structure after
training. In this way, the weights of these layers are changed
during the separately explained training process to reach their
desired value for feature extraction purposes. We call this
method the layer-wise training approach.

This training process can be done independently of the
available labels. Therefore, we used the unsupervised learn-
ing method. Our training was based on the Autoencoder (AE)
training approach. Thus, we separate the desired part of the
encoder section and add a completely distinct decoder part at
the end of the available encoder part. We used sigmoid, linear,
ReLU, and Tanh as decoder activation functions and the sig
activation function provides more accurate results for overall
network performance. Therefore, all results obtained in the
following are based on the sig activation function. Now, this
shallowly constructed network is an AE. We used the training
set to feed the constructed AE, and it must predict the given
inputs. Based on the unsupervised learning method, the net-
work error was calculated by comparing the network outputs
to the network inputs. Because the constructed network is not
deep, it is possible to train all the initial layers of the network.
Therefore, gradient vanishing is no longer a concern.

First, we separate a portion of the initial encoder layers
from the original model, i.e., ENet, and put it as an encoder
part, in the new AE. This portion is shown as Block A in
Figure 1 as an example of the selected portion for the encoder
part. To create the AE structure, we add the decoder part,
which includes transposed conv, batch normalization, and an
activation function for the structure after the encoder part.
We added only one layer to the decoder part of the proposed
AE network in order to keep the proposed network from
becoming too deep and to train the encoder layers well.
Choosing how many layers to separate from the original
structure for layer-wise training depends on us. An example
of the process of layer-wise training of Block A is shown in
Figure 3.
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FIGURE 3. ENet layer-wise training for Block A. The red square is shown
as the added distinct decoder part.
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FIGURE 4. ENet layer-wise training for Block B. The red square is shown
as the added distinct decoder part.

The constructed AE is trained using unsupervised learning.
Then, the trained encoder part (Block A) is separated from the
constructed AE and returned to the original structure. In this
way, the separated encoder layer-wise training is completed.
This process can be repeated for the following encoder blocks
several times. For example, to use layer-wise training for the
next layers of the encoder, i.e., Block B, we keep the part of
the trained encoder, i.e., Block A, and remove the correspond-
ing decoder for Block A. Then we separate the following
block sequence of the encoder section from the main structure
(Block B), and add it to the constructed structure after Block
A. Then add a distinct decoder section matching the newly
added encoder. This time the output of the decoder must be
compared with the input of the newly added encoder, i.e.,
Block B. For only the weights of Block B to be trained, we can
fix the weights of the previous block(s), i.e., Block A, so that
their weights are not updated in the training process, and only
the weights of the newly added sections in the constructed
AE are trained and updated. In this way, we train the recently
added encoder locally. The process of layer-wise training of
Block B is shown in Figure 4.

Choosing blocks for layer-wise training can be done in
different ways. An example of selecting the blocks for layer
training is shown in Figure 1 and called Block A, Block B,
and Block C. In this paper, this process is repeated three times
for different block sequences of the encoder section totally.
For training the first encoder, the Binary Cross Entropy loss
was used, and for the rest of the two encoders’ blocks, the
MSE loss was applied. At the end of the layer-wise training
process, the added decoder sections are removed completely,
and the encoder part returns to its original structure. During
the final classic training of the network, it is possible to enable
or disable the training of the encoder’s trained weights.

If we add the trained encoders in layer-wise training to
their correspondence decoders, we can reconstruct the given
images. There are some results of the reconstruction images
after complete layer-wise training in Figure 5. The original
image and the generated image share a great deal of similarity.
Image details are well restored, and the only difference is that
the reconstructed images are slightly redder than the original
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FIGURE 6. Results of ENet layer-wise training for noisy input.

images. We also provide an example for noisy input and
the result for corresponding reconstructed output shown in
Figure 6.

IV. SIMULATIONS

In this section, we evaluate our proposed model and compare
its results with state-of-the-art models on Freiburg Forest and
Camvid datasets.

A. DATASET DESCRIPTION

We performed experiments with two different datasets for the
road semantic segmentation task. First, we use a real-world
off-road autonomous vehicle dataset called the Freiburg
Forest dataset. The second dataset is a real-world road
scene understanding dataset for semantic segmentation tasks
for urban areas called Camvid. In the following section,
we describe each of them briefly.

1) FREIBURG FOREST

It is a dataset on forests scene with six classes: sky, road, tree,
grass, vegetation, and obstacle. Off-road environments are
unstructured (e.g., trails), unlike urban scenes that are highly
structured (rigid and geometric objects, e.g., buildings) [24].
The dataset has 230 and 136 samples for training and test
sets, respectively [20]. Images were collected at 20 Hz with
a resolution of 1024 x 768 pixels on three different days to
obtain the variability of data due to lighting conditions. All
used samples are RGB images and fully labeled. Like [6],
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FIGURE 7. Result of the proposed learning method compared to the classic learning method for the Freiburg Forest dataset.

TABLE 2. Comparing layer-wise training vs classic training using ENet on
the Freiburg Forest test set (loU).

TABLE 3. Comparing layer-wise training vs classic training using ENet on
the Freiburg Forest test set (loU).

Models/Labels Road Grass Vegetation Sky Obstacle mIoU Models/Labels Road Grass Vegetation Sky Obstacle mloU Total Acc
ENet 8743 8535 91.05 9245 157 7157 SegNet [24] 88.04 88.04  90.61 9268 4622 8112
ENet + noise 52.16 53.68 8555 89.59 0.0 5620 CGBNet [24] 87.59 87.62  90.63 92.78 46.58 81.04
ENet-light 87.54 8522 9023 91.76 0.0  60.95 SegNet+MTL [24] 35.04 88.04 9061 9268 4622 7458
Layer-wise ENet 88.29 85.71 9097 9226 17.79 75.0 CGBNet+MTL [24] 8759 87.62  90.63 9278 4658 77.89
Layer-wise ENet + noise 88 62 85.61  90.96 9205 0.16 71.48 AdapNet [22] $8.25
Layer-wise ENet-light 88.49 8429 9049 9239 0.0 7113 FCN8-LBPs 7[25] 720 782 840 873 166 564
Layer-wise ENet (freeze- FCN8-RGB [25] 84.6 85.7 88.1 91.0 200 616

layer) 89.23 8560 9059 9219 5.14 7255

Layer-wise ENet (freeze-

layer) + noise 87.19 82.84 8947 9211 864 7205

Layer-wise ENet-light

(freeze-layer) 86.63 81.86  89.24 9234 0.0 7001

we merged tree and vegetation classes into a single class and
use five classes instead of six classes in training.

2) CamVid

It is a real-world road scene understanding dataset for seman-
tic segmentation that contains 12 classes: building, tree, sky,
car, sign, road, pedestrian, fence, pole, sidewalk, cyclist, and
unlabeled [24]. The dataset has 367, 101, and 233 samples
for training, validation, and test sets, respectively [24]. All
used samples are RGB images and fully labeled. We use
the original image size, which is 360 x 480. For another
experiment on this dataset, we use data augmentation and
apply some transformations such as scaling (0.5, 1, 1.5),
horizontal flipping, and rotating (0 to 30 degrees with a step
of 5 degrees). Data augmentation has been applied only to the
training set, and it has led to 15414 train samples. The final
results are reported on the original test set.
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FCN8-RGB-LBPs 7[25] 850 862 874 907 274 623

Layer-wise ENet (OUR) 8829 8571  90.97 9226 17.79 750  94.63

DPDB-Net - Full [20] 87.28 87.8  90.14 923 89.4
ParseNet [20] 81.82 852 852  87.78 85

M-Net [20] 82.41 8493 887  89.26 86.3
Fast-Net [20] 84.51 8672  90.66  90.46 88

GCN [20] 86.29 8644 8873 91.94 88.3
CMnet(RGB) [8] 77.18 73.47  89.78  80.66 79.87  73.65
CMnet(RGB+LIDAR) [8] 81.01 76.55  90.64  83.25 81.64  6.62
Layer-wise ENet (OUR) 8745 85.01  90.66  92.36 88.87  97.15
B. RESULTS

To compare the newly developed learning method with the
conventional method, we measured the performance of these
two methods in several ways. First, we evaluated the per-
formance of both learning methods on the selected model
(ENet). Then by adding random gaussian noise to the input
data, only the training dataset, we assessed the performance
of both learning methods. In this way, we compared the two
training methods by changing the input training set without

46325



IEEE Access

S. Shashaani et al.: Using Layer-Wise Training for Road Semantic Segmentation in Autonomous Cars

TABLE 4. Comparing layer-wise training vs classic training using ENet on the CamVid test set (loU).
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applying any changes to the test set. The models trained by
adding noise to their input are shown as (model name +
noise) in Table 2 and Table 4. In the next step, we made some
changes to the structure and made a comparison. This way,
we removed the part marked as encoder 3 from the ENet
structure and called it ENet-light in Table 2 and Table 4.
So, we reduced the number of parameters and confined the
feature extraction part to measure the performance of both
training methods and determine whether or not the training of
the initial layers influences the output. For classic and layer-
wise training, the number of epochs is set to 300 and 200,
respectively.

Results of the ENet with layer-wise training compared with
different conditions compared to classic training are shown
in Table 2 for the Freiburg Forest dataset. As we can see,
for detecting the road and grass classes, layer-wise training
has been able to perform better than classic training. For
detecting the vegetation and sky classes, layer-wise training
has a relatively similar performance with a slight difference.
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The obstacle class has a much smaller number of pixels than
the other classes and is also very similar to the vegetation
class. The performance of both methods in this class is very
poor, and with the help of the layer-wise training method,
we were able to improve the result a little. In general, the
use of layer-wise training has improved the results for this
dataset.

We also examined the performance of this method from
two other perspectives. First, we added noise to the input
data. With this, the result mIoU (mean intersection of unit)
of the classic method drops by about 15%, while with the
revised method, we have had a 3% and 0.5% drop in accuracy,
for the all-layer-train and freeze-layer options, respectively.
This test demonstrates an increase in the model’s resistance to
noise. Second, by using ENet-light, the accuracy of the model
has been measured in both methods. In both methods, the
detection rate of the obstacle class is significantly reduced,
and the mloU result of both methods is very close to each
other.
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ENet-light

layer-wised layer-wised layer-wised layer-wised layer-wised layer-wised
training ENet training ENet training ENet — training ENet training ENet- training ENet-
(noise added) freeze-layer (noise added) - light light — freeze-
freeze-layer layer
FIGURE 8. Result of the proposed learning method compared to the classic learning method for the CamVid dataset.
TABLE 5. CamVid test set results with sigmoid activation function for the layer-wise training in decoders.
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Results of the proposed model compared with other meth-
ods are shown in Table 3 for the Freiburg Forest. As we can
see in the first dataset, for detecting the road class, which is
very important, our model has been able to perform better
than other methods. Identifying other classes, our model
has nearly the same precision as other methods. The main
difference is that our model performs poorly in identifying
the obstacle class. One of the reasons for this low accuracy
for the obstacle class is the high similarity of the obstacles
with the tree (vegetation) class in the test data set.

Results of the ENet with layer-wise training compared
with different conditions compared to classic training are
shown in Table 4 for the CamVid dataset. Unlike the previous
dataset, the use of the new training method could not improve
the result. Only identifying the road class, which is of high
importance, and the sky class improved. For other classes, the
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output of both methods was almost the same. The proposed
method obtained poor results for classes with a small number
of pixels in the dataset, such as the pole, fence, and bicyclist
classes.

Similar to the previous dataset, we measured the new
method with the two described approaches. By adding noise
to the data, the final IoU of layer-wise training was higher
than the classical method, and the result mIoU of the clas-
sic method dropped by about 16%, while with the revised
method, we have had a 3% and 5% drop in mloU, for the
all-layer-train and freeze-layer options respectively. Then,
by using ENet-light, in both methods, the mloU result
was reduced. In this approach, the final result mloU of
the classic method dropped by about 4%, while with the
layer-wise training method, we have had a 2% and 5% drop
in mloU, for the all-layer-train and freeze-layer options,
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respectively. By using an augmented train set, the final mloU
of both methods increased significantly, and in this way, the
layer-wise training method outperform the classic training
method.

Results of the proposed model compared with other meth-
ods are shown in Table 5 for the Camvid dataset. For this
dataset, the use of an efficient model such as ENet and the use
of the usual training method cannot surpass other introduced
methods. Also, the newly introduced training method has not
improved the final performance of the network compared
to other methods. But if we use data augmentation, we can
improve the IoU of the network for the classes that had poor
performance. This will bring our results closer to the results
of the presented papers.

The results of the proposed learning method compared to
the classic learning method for both datasets are shown in
Figure 7 and Figure 8.

V. CONCLUSION

In general, layer-wise training makes feature learning happen
in the first and middle layers of encoders more effectively, and
this makes the trained model more robust. We have shown this
robustness by adding noise to the input, which has increased
the final accuracy in comparison to classic training because
the features have been extracted better in starter layers. Also,
by adding layer-wise training to the training process, the
training time may increase in general, but the number of
final model training epochs can be reduced significantly.
In addition, by adding layer-wise training, the model can
become smaller by removing some encoder layers without
much change in IoU.

Also, the idea of Transfer Learning has been used in most
datasets with a small amount of data, such as Freiburg Forest.
The network should be trained on a larger dataset in this
method first. Then, the network should be trained again on
the target dataset with changes to the network layers and
sometimes without changing them. This task has a longer
training time and requires a larger dataset. This means that
layer-wise training requires no Transfer Learning, and only
the target data set is used to train the network. Due to limited
training data without Transfer Learning, the proposed learn-
ing method has not reduced the network detection ability,
and as shown, the layer-wise trained networks are resistant
to noisy data.
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