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In many pharmaceutical and biomedical applications
such as assay validation, assessment of historical control
data, or the detection of anti-drug antibodies, the calcu-
lation and interpretation of prediction intervals (PI) is of
interest. The present study provides two novel methods
for the calculation of prediction intervals based on linear
random effects models and restricted maximum likeli-
hood (REML) estimation. Unlike other REML-based PI
found in the literature, both intervals reflect the uncer-
tainty related with the estimation of the prediction vari-
ance. The first PI is based on Satterthwaite approxima-
tion. For the other PI, a bootstrap calibration approach
that we will call quantile-calibration was used. Due to
the calibration process this PI can be easily computed
for more than one future observation and based on bal-
anced and unbalanced data as well. In order to compare
the coverage probabilities of the proposed PI with those
of four intervals found in the literature, Monte Carlo
simulations were run for two relatively complex ran-
dom effects models and a broad range of parameter
settings. The quantile-calibrated PI was implemented in
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the statistical software R and is available in the predint
package.

K E Y W O R D S

anti-drug antibody, assay qualification, bootstrap calibration,
historical control data, Satterthwaite approximation

1 INTRODUCTION

Prediction intervals (PI) are statistical intervals that are computed based on an observed sample
in order to contain one ore more future observations with a given degree of confidence. Usu-
ally, it is assumed that the observed sample as well as the future observation(s) descent from the
same data-generating process. Hahn and Meeker (1991) and Hahn, Meeker and Escobar (2017)
give a detailed review about methods for the computation of different PI based on one sam-
ple in which the observations vary around the mean. These different PI should contain either
one future observation, the future mean, all of M ≥ 1 future observations or K out of M future
observations.

PI can be applied to several statistical problems and are of use in many scientific fields.
In the context of pharmaceutical applications, Francq, Lin and Hoyer (2020) used PI for assay
qualification. More examples for the usage of PI for process validation are given by Hahn and
Meeker (1991) or in the context of gauge repeatability and reproducability experiments (Lin
& Liao, 2008). Also in preclinical statistics and toxicology, PI can be useful. In this field
of research, the verification of an actual control group by the use of historical control data
(HCD) is heavily discussed (Elmore & Peddada, 2009; Greim, Gelbke, Reuter, Thielmann,
& Edler, 2003). Nevertheless, the methods proposed for that purpose (e.g. historical range
or historical mean plus minus SD) are rather naive and many authors are not aware, that
PI for one or more future observations (depending on the purpose) can be applied to that
problem. Therefore, Menssen and Schaarschmidt (2019) proposed the use of PI on HCD
that is assumed to be overdispersed binomial. Nevertheless, the literature lacks methods for
the computation and application of PI to other models in that research area. Another field
of application occurs in early phases of drug development such as the detection of anti-drug
antibodies (ADA) (Hoffman & Berger, 2011; Jaki, Allacher, & Horling, 2016). In such a bioas-
say, the antibody reaction is evaluated for a set of nonresponders as well as for patients with
unclear status. Following Schaarschmidt, Hofmann, Jaki, Gruen, and Hothorn (2015) upper
prediction limits can be computed for a sample of putative nonresponders in order to com-
pare this limit with the outcome of the patients with unclear status. If the ADA-reaction for
such a patient falls above the limit, the patient might have developed anti-drug antibodies
(Hoffman & Berger, 2011).

For all the applications mentioned above, the sampling is usually done based on several
factors that may influence the outcome of the study (e.g. many patients are analyzed by differ-
ent experimenters in different hospitals). Since, in such applications inference is made on the
level of the observations, rather than for the factors influencing them, a natural approach is the
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calculation of PI based on random effects models (Francq et al., 2020; Hoffman & Berger, 2011;
Schaarschmidt et al., 2015). The idea of the computation of PI based on random effects models
dates back to 1941. In that year Satterthwaite (1941) gave an example how to calculate "confidence
limits within which we may expect an additional item" based on a one-way random effects
model.

Since then, several authors worked on PI based on random effects models, but mainly focused
on special cases or balanced models that are too simple for many practical applications (Jeske
& Harville, 1988; Lin & Liao, 2008; Wang, 1992). A research area in which the use of PI based
on complex random effects models is proposed is plant breeding. Anyhow, in this area random
effects predicted by the best linear unbiased predictions are of interest (Al-Sarraj, von Brömssen,
& Forkmann, 2019; Forkmann & Piepho, 2013), rather than the prediction of one or more future
observations.

In the context of random effects models, PI can be computed based on mean squares (MSQ),
based on generalized pivotal quantities (GPQ) or based on parameter estimates that are estimated
via restricted maximum likelihood (REML). Since the estimation of variance components based
on MSQ was already utilized by Satterthwaite (1941), it is the standard method to which almost all
intervals that are based on more advanced methods are compared with. GPQ-based methods for
the calculation of PI for M ≥ 1 future observations were proposed by Lin and Liao (2008) for bal-
anced data. Up to now, REML-based PI got less attention. Al-Sarraj et al. (2019) used a PI for which
the variance components were estimated via REML but treated as known, following the approach
of Pawitan (2001) by using a standard normal quantile. Francq, Lin, and Hoyer (2019) proposed a
REML-based prediction interval for one future observation (M = 1) that is applicable to balanced
and unbalanced data as well. However, this interval accounts only for the uncertainty of the esti-
mated variance of the historical data but not for the prediction variance (variance of the historical
data plus variance for the mean) that is used for the calculation of the corresponding PI (details are
given below).

In the following sections, a REML-based approach that takes the uncertainty of the pre-
diction into account is proposed and used for the calculation for PI for one future obser-
vation (M = 1). For this purpose, the degrees of freedom were approximated using the
Generalized Satterthwaite method following van den Heuvel (2010). Furthermore, a boot-
strap calibrated prediction interval for all of M ≥ 1 future observations is proposed. This
interval can be applied to balanced and unbalanced data as well. The coverage proba-
bilities for the two proposed intervals, as well as for the PI of Satterthwaite (1941), Lin
and Liao (2008) and Francq et al. (2019) are simulated based on two relatively com-
plex random effects models (two-way cross-classified with interaction and two-way hier-
archical) compared to the simple one-way model other simulations are based on (Lin &
Liao, 2008) . Furthermore, a detailed overview about the experimental designs that occur
in the research areas mentioned above is given and the PI were applied to real-life data.
A user-friendly implementation of the bootstrap calibrated PI is provided by the R-package
predint (Menssen, 2021).

2 REAL-LIFE DATA

Random effects models can be applied to a wide range of experimental designs. Hence, many
different designs are reported in the literature regarding assay qualification, early phase drug
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development such as ADA detection or the usage of HCD. For validation, a bioassay might
be carried out by several experimenters on different days using samples obtained from dif-
ferent individuals resulting in cross-classified or hierarchical designs (Francq et al., 2020).
For ADA cut point estimation, samples of several individuals may be processed by dif-
ferent experimenters on different plates on several days, resulting in designs that range
from a simple one-way layout to complex designs with some random factors crossed and
some nested (Hoffman & Berger, 2011; Jaki et al., 2016; Shen & Dai, 2021; Zhang, Zhang,
Kubiak, & Yang, 2013). Data about historical controls regarding rats and mice obtained from
long-time carcinogenicity studies are provided on the homepage of the National Toxicol-
ogy Program (NTP, 2021). Since the compound of interest can be applied by using several
different pathways and studies are carried out by several laboratories, HCD can be either
cross-classified or hierarchical. Contrary to data obtained from assay qualification or used
for ADA cut point estimation, HCD data can be heavily unbalanced, since different stud-
ies in which different pathways might be used are carried out over the years by different
laboratories.

2.1 Motivating examples

2.1.1 ADA cut point estimation

In the context of ADA cut point estimation, Hoffman and Berger (2011) published a data
set resulting from an electroluminescence assay in which blood plasma of 20 drug-naive
mice were analyzed in three different experimental runs. In each run each plasma sam-
ple was duplicated. Hence a natural approach for modeling would be a cross-classified
random effects model with an interaction term between the runs and the mice. How-
ever, since the duplicates are averaged in the reported dataset, only a cross-classified model
without an interaction term can be fit to the data. Since this dataset is balanced, it will
be used in order to demonstrate the calculation of PI using all six methods described
below.

2.1.2 Historical control data abouth the maximum mean weekly body
weight of female mice

A dataset containing HCD about the maximum mean weekly body weight (mmwbw) of
female mice (strain B6C3F1) is given in Table 1. It contains the reported mmwbw from
NTP Historical Controls Reports between 2016 and 2021 (NTP, 2021) for two labora-
tories (Battelle Northwest and Battelle Columbus) and six pathways. Since the pathway
inhalation air was used by the Battelle Northwest laboratory only and the five remain-
ing pathways were utilized by Battelle Columbus, PI have to be calculated based on a
model with pathways nested in the laboratories. Two more studies using the same strain
of mice were carried out by the IIT and the Southern Research Institute for which the
mmwbw of females is given in Table 2. The outcome of these two further control groups
should be validated simultaneously by the data obtained from Battele Northwest and Batelle
Columbus.
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T A B L E 1 Historical control data for female B6C3F1 mice

Study number Laboratory Pathway
Maximum mean weekly
body weight

52060104 Battelle Northwest inhalation_air 54.10

52072504 Battelle Northwest inhalation_air 51.00

52051504 Battelle Northwest inhalation_air 59.20

52052304 Battelle Northwest inhalation_air 57.90

51047204 Battelle Northwest inhalation_air 55.90

56031106 Battelle Northwest inhalation_air 54.30

52000604 Battelle Columbus gavage_corn oil 66.60

52032004 Battelle Columbus gavage_corn oil 66.50

51098702 Battelle Columbus oral_feed 51.50

51026002 Battelle Columbus oral_feed 54.70

52071204 Battelle Columbus oral_feed 51.90

50005804 Battelle Columbus gavage_methylcellulose 58.80

52032306 Battelle Columbus gavage_methylcellulose 58.80

52020304 Battelle Columbus gavage_water 62.90

50303804 Battelle Columbus oral_water 61.60

59601406 Battelle Columbus oral_water 63.50

T A B L E 2 Actual control data for female B6C3F1 mice

Study_number Laboratory Pathway
Maximum mean weekly
body weight

52010578 IIT Research Institute wbe_air 62.60

52020904 Southern Research Institute gavage_corn oil 57.70

3 METHODS

3.1 Random effects models and PI

A general linear random effects model is given by

Y = 1𝜇 + ZU + 𝝐,

where Y = (Y1,… ,YN)T is the vector of random variables that represents N individual obser-
vations. The overall mean is represented by 𝜇. U is a stacked vector containing random effects
subvectors Uc. In this notation, each Uc consists of all levels of a single random factor occurring
in the data. Hence, the index c = 1,… ,C indicates the random factors by which the observations
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288 MENSSEN and SCHAARSCHMIDT

should be modeled (e.g., a main effects factor, an interaction term or a nested factor). The num-
ber of elements of a given random effects vector Uc is denoted by qc. Hence, the total length of
U is qtotal =

∑C
c=1qc. Z is a design matrix and has the dimensions Nx qtotal. The vector 𝝐 repre-

sents the random errors associated with the N observations. The individual random effects can
be represented as ZcUc such that

ZU =
(

Z1 … ZC

)
⎛
⎜
⎜
⎜
⎝

U1

⋮

UC

⎞
⎟
⎟
⎟
⎠

=
C∑

c=1
ZcUc,

with each

Uc =
⎛
⎜
⎜
⎜
⎝

Uc,1

⋮

Uc,qc

⎞
⎟
⎟
⎟
⎠

.

Each of the Uc random effects is considered to be normal distributed with Uc ∼ N(0qc , Iqc𝜎
2
c ) as

well as the error term 𝝐 ∼ N(0N , IN𝜎
2
C+1)with I as an identity matrix of order qc or N, respectively.

Furthermore it is assumed that

cov(𝜇,Uc,qc ) = 0 ∀ c = 1,… ,C + 1
cov(Uc,qc ,Uc′,qc′ ) = 0 ∀ c = 1,… ,C + 1, c′ = 1,…C + 1 ∶ c ≠ c′, (1)

and the variance-covariance matrix of the observations is given by

var(Y) =
C∑

c=1
ZcZT

c 𝜎
2
c + IN𝜎

2
C+1,

with IN as an identity matrix of order N. Further information on the model described above can be
found in McCullagh and Searle (2001, pp. 156–160 ) or in Searle, Casella, and McCulloch (2006,
pp. 233–257).

For prediction, it is assumed that the future random variable Y∗ which is comprised of M ≥ 1
observations and its historical counterpart Y are independent from each other, but descend from
the same random process. Hence, the error margin of the prediction is

D = Y∗ − 1𝜇 ∼ N(0, var(D)), (2)

which implies that

var(D) = var(Y∗ − 1𝜇) = var(Y∗), (3)

with

var(Y∗) =
C∑

c=1
Z∗c Z∗T

c 𝜎
2
c + IM𝜎

2
C+1. (4)
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MENSSEN and SCHAARSCHMIDT 289

Please note that in the univariate case of M = 1, Equation (4) simplifies to var(Y∗) =
∑C+1

c=1 𝜎
2
c .

Based on observed historical data y and the fitted model

y = 1𝜇̂ + Zû + 𝝐,

the estimate for the prediction variance becomes

v̂ar(D) = v̂ar(Y∗ − 1𝜇̂) = v̂ar(Y∗) + v̂ar(1𝜇̂), (5)

with v̂ar(D) being a square matrix of order M. Please note that Equation (5) does not consider the
covariance between the mean and the variance components since Equation (1) implies that

cov(𝜇̂, 𝜎̂2
c ) = 0 ∀ c = 1,… ,C + 1. (6)

Thus, this is the standard assumption on which all methods given below rely.
A prediction interval for M ≥ 1 future observations y∗M with coverage probability Ψ = P(L ≤

y∗M ≤ U) = 1 − 𝛼 is given by

[L,U] = 𝜇̂ ± t1− 𝛼

2
, df , v̂ar(D), (7)

where t1− 𝛼

2
, df , v̂ar(D) is a quantile of the multivariate t-distribution with df degrees of freedom

and v̂ar(D) as the estimated variance-covariance matrix for the prediction error. Please note that
Equation (7) represents a general form for the calculation of a prediction interval for M ≥ 1 future
observations, which in the univariate case M = 1 simplifies to

[L,U] = 𝜇̂ ± t1− 𝛼

2
,df

√
√
√
√v̂ar(𝜇̂) +

C+1∑

c=1
𝜎̂

2
c .

with v̂ar(𝜇̂) +
∑C+1

c=1 𝜎̂
2
c = v̂ar(D). Hence v̂ar(D) denotes the variance-covariance matrix that is

associated with M > 1 future observations and v̂ar(D) represents the prediction variance if a PI
for M = 1 future observation is calculated.

3.2 Calculation of PI

3.2.1 PI for M = 1 future observation based on MSQ

The estimation of PI for M = 1 one future observation based on MSQ was firstly described in
1941 by Satterthwaite (1941). Assuming a balanced design, var(D) is estimated by v̂ar(D)Sat =
∑C+1

c=1 𝜔
Sat
c MSSat

c and the prediction interval is given by

[L,U]Sat = y ± t1− 𝛼

2
,df Sat

√
v̂ar(D)Sat,
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290 MENSSEN and SCHAARSCHMIDT

with y as the arithmetic mean of y. In this approach t1− 𝛼

2
,df Sat is the 1 − 𝛼

2
quantile from the t

distribution with approximate degrees of freedom

df Sat =

(∑C+1
c=1 𝜔

Sat
c MSSat

c

)2

∑C+1
c=1

(𝜔Sat
c MSSat

c )2

dfc

,

and dfc as the individual degrees of freedom according to the c = 1,… ,C + 1 random effects.
Formulas for the calculation of weights𝜔Sat

c , MSQ MSSat
c and individual degrees of freedom dfc

are given in Tables 3 and 4 for a hierarchical as well as for a cross-classified design. In the following
sections, especially in Figures 1 and 2 this interval will be referred to as Satterthwaite 1941.

3.2.2 PI for M = 1 future observation based on REML

This method is based on parameter estimates that are estimated using the REML approach. Gen-
erally, the degrees of freedom associated with variance components estimated via REML can be
approximated by using the Generalized Satterthwaite method (Schuetzenmeister & Dufey, 2019;
van den Heuvel, 2010) which is based on the estimated variance component 𝜎̂2

c as well as on its
estimated standard error ŜE(𝜎̂2

c ). The individual degrees of freedom can be approximated as

df 𝜎̂
2
c = 2

(
𝜎̂

2
c

ŜE(𝜎̂2
c )

)2

= 2 𝜎̂
4
c

v̂ar(𝜎̂2
c )
. (8)

For linear mixed models as well as for random effects models the estimates used in
Equation (8) can be obtained by using the R package VCA (Schuetzenmeister & Dufey, 2019).
This package provides degrees of freedom and standard errors for the individual variance
components 𝜎̂2

c and their sum.
Recently, Francq et al. (2019) proposed a REML based PI for M = 1 future observation, that

was applied in an assay qualification study (Francq et al., 2020). For this interval, the degrees
of freedom are approximated based on the Generalized Satterthwaite method and hence, it is
applicable to balanced and unbalanced data as well their. In the following sections, especially in
Figures 1 and 2 this PI will be referred to as Francq et al. 2019. However, for this interval, Francq
et al. (2019) approximated the degrees of freedom based on v̂ar(Y∗) =

∑C+1
c=1 𝜎̂

2
c , rather than on the

prediction variance v̂ar(D) = v̂ar(𝜇) + v̂ar(Y∗). Hence, the degrees of freedom used for interval
calculation are

df v̂ar(Y∗) = 2

(∑C+1
c=1 𝜎̂

2
c

)2

v̂ar
(∑C+1

c=1 𝜎̂
2
c

) .

Consequently, the interval of Francq et al. (2019) is given by

[L,U]Franq = 𝜇̂ ± t1− 𝛼

2
,df v̂ar(Y∗)

√

v̂ar(𝜇̂) + v̂ar(Y∗). (9)
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MENSSEN and SCHAARSCHMIDT 291

In order to account for the degrees of freedom associated with the whole prediction vari-
ance, the approximation given in equation 18 of van den Heuvel (2010) can be utilized and
therefore, the corresponding PI will be called van den Heuvel (2010) in the results section. The
approximation was originally published for the calculation of confidence intervals but can be
easily applied for other purposes. For balanced designs the variance of the prediction can be
calculated by

v̂ar(D) = v̂ar(𝜇̂) + v̂ar(Y∗) =
C+1∑

c=1
𝜔

REML
c 𝜎̂

2
c

and the variance of the prediction variance can be estimated by

v̂ar[v̂ar(D)] =
C+1∑

c=1
(𝜔REML

c )2v̂ar(𝜎̂2
c ).

Then, the approximated degrees of freedom are

df Pred = 2 v̂ar(D)2

v̂ar[v̂ar(D)]
df v̂ar(D) = max[1,min(N − 1, df Pred)]

with N as the total number of historical observations. The prediction interval is given by

[L,U]vdH = 𝜇̂ ± t1− 𝛼

2
,df v̂ar(D)

√
v̂ar(D). (10)

Formulas for the weights 𝜔REML
c are given in Tables 3 and 4 for a hierarchical as well as for a

cross-classified design.
The main difference between the two REML-based intervals mentioned above are the vari-

ance terms for which the df-approximation is done. Because the approximation used by Francq
et al. (2019) is based on v̂ar(Y∗) rather than on the whole prediction variance v̂ar(D) = v̂ar(𝜇) +
v̂ar(Y∗), the degrees of freedom used for the calculation of [L,U]Franq are on average higher
than the degrees of freedom on which [L,U]vdH is based on (see Figure A1). Consequently the
PI of Francq et al. (2019) is expected to be less wide than the PI given in Equation (10) in
most of the cases and hence, should yield lower coverage probabilities. This effect is strongest
if a relatively large variance component has few replications for estimation and is therefore
associated with small dfc, but decreases with an increase of the number of observations (and
higher df ) due to the convergence of the t-distribution against the standard normal distribution
(see Figures 1 and 2).

3.2.3 PI for M ≥ 1 future observations based on GPQ

The theoretical background on which this interval is based on, is given by Lin and Liao (2008).
Following Lin and Liao, the interval can be calculated for M ≥ 1 future observations y∗ based on
balanced designs. Their approach grounds on the finding of a GPQ for the expected MSQ. Hence,
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292 MENSSEN and SCHAARSCHMIDT

the algorithm given below, makes use of the relationship between expected mean squares EMSc
and variance components 𝜎2

c which is described in many textbooks regarding ANOVA methods
such as Sahai and Ageel (2000).

Following Lin and Liao, a GPQ for the expected mean squares EMSc is given by

GPQ(EMSc) =
s2

c

Rc

with s2
c as the observed sum of squares and Rc ∼ 𝜒2

dfc
. A GPQ-based prediction interval can be

obtained using the following algorithm:

1. For each of the C + 1 random factors, sample H = 10,000 mutually independent realizations
Rc,1,… ,Rc,H from the 𝜒2-distribution with degrees of freedom dfc.

2. Calculate GPQ(EMSc)h =
s2

c
Rc,h

.
3. Calculate GPQ(𝜎2

c )h based on GPQ(EMSc)h. The formulas used for this step depend on the
experimental design. Examples are given in Sections 3.3.1 and 3.3.2.

4. Calculate GPQs for the variance-covariance matrix GPQ(var(D))h by substituting GPQ(𝜎2
c )h

into v̂ar(D). Please note that further formulas for the calculation of v̂ar(D) are given below in
Sections 3.3.1 and 3.3.2.

5. Based on GPQ(var(D))h, compute H qunatiles from the corresponding multivariate normal
distributions, such that qh = z1−𝛼∕2,0,GPQ(var(D))h .

6. Calculate GPQ(D) = median(qh)
7. The corresponding prediction interval is given by [L,U]GPQ−M1 = y ± GPQ(D)

For both, a two-way-hierarchical and a two-way cross-classified model with interaction,
GPQ(𝜎2

c )h can be obtained if the EMSc used in Equations (16) to (18) and (21) to (24) are
substituted by GPQ(EMSc)h. GPQ(var(D))h can be obtained if 𝜎2

c is substituted by GPQ(𝜎2
c )h in

Equation (15) and Equation (20).
This approach, which Lin and Liao called Method 1, is based on the the calculation of

H = 10,000 quantiles from the multivariate-normal distribution z1−𝛼∕2, 0, GPQ(var(D))h . Since the
calculation of a multivariate-normal quantile is computationally intensive (Genz & Bretz, 2009),
this approach will take too much computing time to be useful in practical applications or Monte
Carlo simulations (it took around 13 min on a MacBook Pro to calculate a PI for eight future
observations based on a cross-classified model).

Hence Lin and Liao gave an alternative approach which was called Method 3 in their
paper: Calculate step 1–4 as described above. Then, calculate the means for the elements of
GPQ(var(D))h, such that

GPQ(var(D)) =
∑K

h=1GPQ(var(D))h
H

. (11)

The corresponding prediction interval is given by

[L,U]GPQ−M3 = y ± z1−𝛼∕2,0,GPQ(var(D)),

treating GPQ(var(D)) as known. Since the quantile of the multivariate-normal distribu-
tion has to be calculated only once, this approach reduces the computing time down
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MENSSEN and SCHAARSCHMIDT 293

to a manageable level. Anyhow, if a prediction interval for only M = 1 future observa-
tion is needed var(D) reduces to var(𝜇) + var(Y∗). Hence, the corresponding quantile is
drawn from a univariate normal distribution. This approach is far less computational
intensive, such that in this special case both methods are applicable in Monte Carlo
simulations.

3.2.4 Quantile calibrated PI for M ≥ 1 future observations

This method is also based on REML estimates, but the quantile used for the calcula-
tion of the PI is approximated by a bootstrap procedure. This idea is related to the idea
of 𝛼-calibration (Efron & Tibshirani, 1993), but, instead of calibrating the 𝛼 with which
the interval is calculated, the whole quantile that is used for the calculation of the pre-
diction interval is approximated. Hence, no assumption regarding a multivariate distribu-
tion or the variance-covariance matrix of the future observations is needed. Therefore, the
quantile-calibrated PI can be easily calculated for more than one future observation and
based on many different experimental layouts as well as for balanced and unbalanced
data.

The first step of the quantile-calibration is to fit a random effects model to the initial
dataset y. Then, based on the estimated model parameters b = 1,…B new bootstrap datasets
y∗b of same sample size and structure as the original data set are drawn. Then, m = 1,… ,M
observations per bootstrap data set are randomly sampled from y∗b without replacement, result-
ing in a reduced set y∗bm. From this M sampled future observations the minimum and the
maximum

min∗b = min(y∗bm)

max∗b = max(y∗bm),

will serve for the calibration in the further steps.
Then, draw B further bootstrap samples y∗∗b . Fit the initial model to y∗∗b in order to obtain

estimates for the variance components 𝜎̂2
bc as well as for the variance of the estimated mean

v̂ar(𝜇̂b).
The second step is the calibration conditionally on min∗b and max∗b in order to find the coeffi-

cient 𝜆calib that results in an interval with coverage probability as close as possible to the nominal
Ψ = 1 − 𝛼. For that purpose, a bisection algorithm is used, that minimizes the distance between
the observed coverage probability Ψ̂g andΨ based on g = 1,… ,G calibration values 𝜆g. The bisec-
tion is stopped if the observed coverage probability falls into a tolerable area around the nominal
coverage probability Ψ ± s such that |Ψ − Ψ̂g| ≤ s and the corresponding 𝜆g is set to be 𝜆calib and
hence used for the calculation of the interval.

In each of the G bisection steps, the PI is calculated for each of the B bootstrap samples such
that

[
lbg,ubg

]
= 𝜇̂g ± 𝜆g

√
v̂ar(𝜇̂b) + v̂ar(y∗∗b ).

The coverage probability of the particular 𝜆g based intervals is estimated to be
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294 MENSSEN and SCHAARSCHMIDT

𝜓̂g =
∑B

b=1Ibg

B
, with

Ibg = 1 if (lbg ≤ min∗b and max∗b ≤ ubg)

Ibg = 0 if (lbg > min∗b or max∗b > ubg).

The algorithm starts by defining the start values 𝜆1 and 𝜆2 in a way that the corresponding Ψ̂1
is smaller than the nominal Ψ = (1 − 𝛼) (due to a small 𝜆1) and the corresponding Ψ̂2 is greater
than Ψ (due to a high 𝜆2). Then the midpoint of the search interval is

𝜆3 =
𝜆1 + 𝜆2

2
. (12)

and the coverage probability Ψ̂3 is calculated based on 𝜆3. IfΨ − Ψ̂3 is positive, 𝜆4 is calculated by
replacing 𝜆1 in Equation (12) by 𝜆3 such that

𝜆4 =
𝜆2 + 𝜆3

2
.

If Ψ − Ψ3 is negative, 𝜆4 is calculated by replacing 𝜆2 in Equation (12) by 𝜆3 such that

𝜆4 =
𝜆1 + 𝜆3

2
.

This iteration process is run until |Ψ − Ψg| ≤ s and the corresponding 𝜆g is set to be 𝜆calib.
The last step is the calculation of the quantile-calibrated interval based on the estimates of the

initial model together with 𝜆calib

[
l,u

]
= 𝜇̂ ± 𝜆calib

√
√
√
√v̂ar(𝜇̂) +

C+1∑

c=1
𝜎̂

2
.

3.3 Simulation study

The coverage probabilities of the six different PI described above, were assessed by Monte Carlo
simulations based on two different random effects models: A two-way-hierarchical design (h2)
and a two-way cross-classified layout with interaction (c2). This two models were chosen since
they are applied in real-life situations (as mentioned above) and they reflect a certain degree of
complexity. On the other hand they are not too complex and hence, the computing time for the
simulations were kept to a manageable level. In the following sections these models are explained
in the context of patients that are analyzed in different laboratories, but of course the models can
be applied to any experimental setup that fits into the scheme.

3.3.1 Two-way hierarchical model (h2)

The h2 random effects model is given by
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MENSSEN and SCHAARSCHMIDT 295

yijk = 𝜇 + ai + bj(i) + ek(ij)

ai ∼ N(0, 𝜎2
a), i = 1,… , I

bj(i) ∼ N(0, 𝜎2
b), j(i) = 1,… ,nj(i)

ek(ij) ∼ N(0, 𝜎2
e ), k(ij) = 1,… ,nk(ij), (13)

in which a random sample of
∑I

i=1nj(i) patients is analyzed in i = 1,… , I laboratories, such
that in an unbalanced design different subsets of nj(i) patients are analyzed per laboratory
with n(ij) observations for each of the j(i) patients, for example, due to obtaining n(ij) tech-
nical replicates from each patient j(i). In the balanced case, the total number of patients is
IJ with J = nj(i) ∀j(i) = 1(i),… ,nj(i) and the total number of observations is N = IJK with
K = nk(ij) ∀k(ji) = 1(ji),… ,nk(ij).

In the model given above 𝜇 is the overall mean, ai are the random effects for the lab-
oratories, bj(i) are the random effects for the patients within the laboratories and ek(ij) are
the residuals. Please note that ai, bj(i), and ek(ij) are assumed to be independent from each
other.

Mean squares and weights for the calculation of the PI based on the h2 model are given
in Table 3. In analogy to Lin and Liao, the variance-covariance matrix used for the calculation
of the GPQ-based PI for M = I∗J∗K∗ future observations obtained from a balanced design is
given by

v̂ar(Y∗) = 𝜎̂2
a(II∗ ⊗ JJ∗ ⊗ JK∗ ) + 𝜎̂2

b(II∗ ⊗ IJ∗ ⊗ JK∗ ) + 𝜎̂2
e (II∗ ⊗ II∗ ⊗ IK∗ ) (14)

v̂ar(D) = v̂ar(Y∗) + v̂ar(𝜇)(II∗ ⊗ JJ∗ ⊗ JK∗ ), (15)

with v̂ar(𝜇) = 1
IJK
(JK𝜎̂2

a + K𝜎̂2
b + 𝜎̂

2
e ), II∗ as the identity matrix of order I∗ and JJ∗ as a square

matrix of order J∗ with all entries set to one and ⊗ as the Kronecker product. According to Sahai
and Ageel (2000) the variance components can be expressed as

𝜎
2
a =

1
JK
(EMSa − EMSb(a)). (16)

𝜎
2
b(a) =

1
K
(EMSb(a) − EMSe). (17)

𝜎
2
e = EMSe. (18)

T A B L E 3 Model h2 (balanced): Formulas for the calculation of prediction intervals

Effect c dfc MSSat
c 𝝎

Sat
c 𝝎

REML
c

ai 1 I − 1
∑

i(yi..−y…)2

I−1
1 + 1∕I 1 + 1∕I

bj(i) 2 IJ − I
∑

i
∑

j (yij.−yi..)2

IJ−I
1 − 1∕J 1 + 1∕IJ

ek(ij) 3 IJK − IJ
∑

i
∑

j
∑

k (yijk−yij.)2

IJK−IJ
1 − 1∕K 1 + 1∕IJK
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296 MENSSEN and SCHAARSCHMIDT

3.3.2 Two-way cross-classified model with replication (c2)

The model for the two-way cross-classified layout with replication is given by

yijk = 𝜇 + ai + bj + abij + ek(ij)

ai ∼ N(0, 𝜎2
a), i = 1,… , I

bj ∼ N(0, 𝜎2
b), j = 1,… , J

abij ∼ N(0, 𝜎2
ab), ij = (11,… , IJ)

ek(ij) ∼ N(0, 𝜎2
e ), k(ij) = 1,… ,nk(ij).

Usually this setup is balanced such that I patients are analyzed in J laboratories
exactly K = nk(ij) ∀k(ij) = 1(ij),… ,nk(ij) times. Unbalancedness occurs if some of the
possible IJ combinations of patient and laboratory are missing in the data such that
n(ij) = 0 for that particular interaction term or some of the K repetitions per combina-
tion are missing (K ≠ nk(ij) ∃k(ij) ≠ 1(ij),… ,nk(ij)). The total number of observations is
N =

∑
i
∑

j
∑

k nk(ij).
In the model given above 𝜇 is the overall mean, ai are the random effects for the patients,

bj are the random effects for the laboratories, abij is the interaction term and ek(ij) are the
residuals. Please note that ai, bj, abij, and ek(ij) are assumed to be independent from each
other.

MSQ and weights for the calculation of PI based on the c2 model are given in
Table 4. The variance-covariance matrix used for the calculation of the GPQ-based
PI for M = I∗J∗K∗ future observations obtained from a balanced design is given by
Lin and Liao

v̂ar(Y∗) = 𝜎̂2
a(II∗ ⊗ JJ∗ ⊗ JK∗ ) + 𝜎̂2

b(JI∗ ⊗ IJ∗ ⊗ JK∗ ) + 𝜎̂2
ab(II∗ ⊗ IJ∗ ⊗ JK∗ )

+ 𝜎̂2
e (II∗ ⊗ II∗ ⊗ IK∗ ), (19)

v̂ar(D) = v̂ar(Y∗) + v̂ar(𝜇)JM , (20)

with v̂ar(𝜇) = 1
IJK
(JK𝜎̂2

a + IK𝜎̂2
b + K𝜎̂2

ab + 𝜎̂
2
e ), II∗ as the identity matrix of order I∗ and JJ∗ as a

square matrix of order J∗ with all entries set to one. Following Lin and Liao (2008), the variance
components are given by

𝜎
2
a =

1
JK
(EMSa − EMSab), (21)

𝜎
2
b =

1
IK
(EMSb − EMSab), (22)

𝜎
2
ab =

1
K
(EMSab − EMSe), (23)

𝜎
2
e = MSe, (24)

using the weights given in Table 4.
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MENSSEN and SCHAARSCHMIDT 297

T A B L E 4 Model c2 (balanced): Formulas for the calculation of prediction intervals

Effect c dfc MSSat
c 𝝎

Sat
c 𝝎

REML
c

ai 1 I − 1
∑

i (yi..−y…)2

I−1
1 + 1∕I 1 + 1∕I

bj 2 J − 1
∑

j (y.j.−y…)2

J−1
1 − 1∕J 1 + 1∕J

abij 3 (I − 1)(J − 1)
∑

i
∑

j (yij.−(yi..+y
.j.−y…))2

(I−1)(J−1)
1 − 1∕I − 1∕J − 1∕IJ 1 + 1∕IJ

e(ij) 4 IJ(K − 1)
∑

i
∑

j
∑

k (yijk−yij.)2

IJ(K−1)
1 − 1∕K 1 + 1∕IJK

3.3.3 Simulation settings

In order to assess the coverage probabilities of the six different PI, Monte Carlo simulations were
run. For that purpose, the two models described above (h2, c2) were utilized. All simulations were
run independently from each other.

For the h2 model simulations were run for the h = 1,… , 162 different combinations of I =
{5, 10, 15}, J = {2, 5, 10}, K = {2, 10}, 𝜎2

a = {20, 2, 0.2}, 𝜎2
b = {20, 2, 0.2} and 𝜎2

e = 2 for all three
methods.

The simulation setting for the c2 model was comprised of h = 1,… , 486 combinations of
I = {5, 10, 15}, J = {2, 5, 10}, K = {2, 10}, 𝜎2

a = {20, 2, 0.2}, 𝜎2
b = {20, 2, 0.2} 𝜎2

ab = {20, 2, 0.2} and
𝜎

2
e = 2 for the two simple PI. But, due to the extensive computing time, this setting was reduced

for the df-calibrated PI. The parameters I, J,K, and 𝜎e were the same as before, but the simulations
were run either with 𝜎2

a = {20, 2}, 𝜎2
b = {20, 2} 𝜎2

ab = {20, 2} or with 𝜎2
a = {20, 0.2}, 𝜎2

b = {20, 0.2}
𝜎

2
ab = {20, 0.2}.

In the simulations regarding the quantile-calibrated PI, the number of bootstraps was set
to B = 1000, 𝜆1 = 1 𝜆2 = 20, the maximum number of bisection-steps was D = 30 and the tol-
erance was set to s = 0.001. If after 30 bisection steps |𝜓 − 𝜓d| was higher than the tolerance,
𝜆30 was used for the calculation of that particular PI. The relatively low number of B=1000
bootstrap samples was chosen to keep the computing time of the simulation on a manageable
level.

The performance of PI for one future observation (M = 1) was assessed for all six meth-
ods based on balanced data as well as for M = 8 (with I∗ = 2, J∗ = 2, K∗ = 2) using the
GPQ-based (Method 3) and the bootstrap-calibrated PI. Furthermore, coverage probabili-
ties of the bootstrap calibrated interval were also simulated for M = 5 future observations
based on unbalanced data. In this setting, the sampling of the simulation data sets was
done as described before, but single observations on the lowest hierarchical level (ek(ij))
were dropped out following a Bernoulli distribution with proportion set to 0.3. In a next
step observations were dropped out on the level of the interaction terms (bj(i), abij) fol-
lowing a Bernoulli distribution with proportion set to 0.1. This approach was done in
order to generate data that is heavily unbalanced on both of the possible hierarchical
levels.

For each of the simulation settings r = 1,… , 5,000 historical data sets were drawn. Similarly
another dataset was sampled from which M observations were randomly chosen to be the actual
observations y∗hr. For each of the historical data sets one prediction interval [l,u]hr was computed
and the coverage probability 𝜓h was estimated to be
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298 MENSSEN and SCHAARSCHMIDT

𝜓̂h =
∑R

s=1Ihr

R
with

Ihr = 1 if y∗hr ∈ [l,u]hr

Ihr = 0 if y∗hr ∉ [l,u]hr.

It has to be noted that the lmer() function threw warning messages regarding the conver-
gence of the model for up to almost 50% of the sampled data sets (using R 3.6.2 and lme4 1.1.23
on Windows 10). Hence, the datasets on which lmer() threw a warning were tracked and the
coverage probability was also computed based on the simulated datasets that did not result in a
warning. But, since the coverage probability did not change depending on inclusion or exclusion
of cases with warnings the results given below depend on all simulated datasets rather than on
the datasets that do not result in a warning only.

However, due to the sampling process of unbalanced data, it was possible that in rare cases the
sampled data was such small, that the model failed to converge if I = 5 (less than 1% per setting).
In this case the coverage probabilities were computed based on the reduced set of the simulated
data.

4 RESULTS

The simulated coverage probabilities 𝜓̂h are given in Figures 1–4 which depend on the number
of replications (I, J) for the random effects. Two additional quantities are displayed to focus on
settings with extreme ratios between variance components and total variance as well as between
variance components and their corresponding degrees of freedom. These quantities are denoted as

Ωh = max

(
𝜎

2
ch

∑
c 𝜎

2
ch

)

and

𝜏h = max

[
𝜎

2
a,h

𝜎
2
ab,h

∕
dfa,h

dfab,h
,

𝜎
2
b,h

𝜎
2
ab,h

∕
dfb,h

dfab,h
,

𝜎
2
ab,h

𝜎
2
e,h

∕
dfab,h

dfe,h

]

.

Please note, that in the h2 model 𝜏h contains only the ratios
𝜎

2
a,h

𝜎
2
ab,h
∕ dfa,h

dfab,h
and

𝜎
2
ab,h

𝜎
2
e,h
∕ dfab,h

dfe,h
due

to the given hierarchical order of the observations. In the simulation, the minimum 𝜏h was
0.01 and the maximum 𝜏h was 900 for the h2 model and 0.04 and 1400 for the c2 model,
respectively.

In this setting,Ωh represents the maximum ratio of the variance components to the total vari-
ance, meaning that the higher Ωh becomes, the more one single variance component plays a
dominant role in the data and vice versa (size of the dots in Figures 1–4). As described above,
𝜏h indicates the maximum ratio of the variance-components of higher hierarchical order to the
variance-component one hierarchical level below compared to the ratio of their corresponding
degrees of freedom. Hence, 𝜏h = 1 means that the ratio between variance components equals the
ratio of their corresponding degrees of freedom. If the variance components of higher hierarchi-
cal order are estimated to be high compared to the components one level below, but are estimated
with relatively small degrees of freedom, 𝜏h will be > 1, resulting in coverage probabilities below
the nominal 95% (red dots in the figures). Contrary, 𝜏h will be < 1 if the variance components
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MENSSEN and SCHAARSCHMIDT 299

F I G U R E 1 Coverage probabilities of prediction intervals for one future observation for the balanced h2
design. The nominal coverage probability 𝜓 = 0.95 is indicated by the black line. The grey area indicates
𝜓 ± 2se(𝜓). The six different prediction intervals are represented by the panels

of higher hierarchical order are small compared to the components one level below, but are esti-
mated with relatively high degrees of freedom. This results in coverage probabilities above the
nominal 95% (blue dots in Figures 1–4).

The nominal coverage probability of 𝜓 = 0.95 is given by the black horizontal lines. The grey
area represents 𝜓 ± 2se(𝜓) with se(𝜓) =

√
(0.95 ⋅ 0.05)∕5,000. Therefore an estimated coverage

probability that falls into the grey area can not be treated to be different from the nominal 0.95.

4.1 Coverage probabilities of PI for one future observation

The simulated coverage probabilities of PI for one future observation based on balanced h2
models are given in Figure 1. For all six methods, the coverage probabilities depend mainly
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300 MENSSEN and SCHAARSCHMIDT

F I G U R E 2 Coverage probabilities of prediction intervals for one future observation for the balanced c2
design. The nominal coverage probability 𝜓 = 0.95 is indicated by the black line. The grey area indicates
𝜓 ± 2se(𝜓). The six different prediction intervals are represented by the panels

on the numbers of observations for each random effect. For the MSQ- and REML-based inter-
vals, the simulated coverage probabilities approach the nominal 0.95 up to a satisfactory level
for almost all combinations of Ωh and 𝜏h, if I > 5 and J(I) > 2. Furthermore, if the number
of observations for the random effect of highest hierarchical order is high (I is at least 10),
the bootstrap-calibrated PI and the PI of Francq et al. (2019) approach the nominal level even
for J(I) = 2.

The GPQ-based interval following Method 1 remains liberal if 𝜏h is high, even for higher I and
J. The GPQ-based prediction interval following Method 3 is the only interval that approaches the
coverage probabilities from above. Anyhow, especially for small 𝜏h, the interval remains slightly
too conservative even if I > 5 and J(I) > 2.

For I = 5 the coverage probabilities of the MSQ based PI following Satterthwaite (1941) are
too low if the variance component 𝜎2

a is relatively high, but estimated based on a low number of
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MENSSEN and SCHAARSCHMIDT 301

F I G U R E 3 Coverage probabilities of prediction intervals for more than one future observation for the
balanced h2 design. The nominal coverage probability 𝜓 = 0.95 is indicated by the black line. The grey area
indicates 𝜓 ± 2se(𝜓)

F I G U R E 4 Coverage probabilities of prediction intervals for more than one future observation for the
balanced h2 design. The nominal coverage probability 𝜓 = 0.95 is indicated by the black line. The grey area
indicates 𝜓 ± 2se(𝜓)

observations (high 𝜏h, red dots) and too high if 𝜎2
a is relatively low, but estimated based on a high

number of observations (low 𝜏h, blue dots).
The coverage probabilities of the PI for one future observation based on balanced c2 models

are given in Figure 2. Regardless of the number of observations per random effect (I and J), both
GPQ-based methods do not approach the nominal coverage probability of 0.95 to a satisfactory
level for most of the simulated settings. The PI based of GPQ-Method 1 remains liberal if 𝜏h is high,
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302 MENSSEN and SCHAARSCHMIDT

even for high I and J. Contrary, the PI calculated with GPQ-Method 3 remains conservative J = 2
the simulated coverage probabilities are close to one and even for high numbers of observations
per random effect (I = 15 and J = 10) many observed coverage probabilities remain above the
nominal level.

If both I and J are at least 5, most of the coverage probabilities all three REML-based intervals
are close to 0.95 and hence approach the nominal coverage probability up to a satisfactory level.
The MSQ-based PI of Satterthwaite (1941) approaches the nominal level only if I and J are at least
10, since for high 𝜏h the coverage probability remains liberal for smaller numbers of observations
for the random effects.

4.2 Coverage probabilities of PI for several future observations

Coverage probabilities of PI for M = 8 future observations were computed for the GPQ-based
PI following Method 3 of Lin and Liao (2008) as well as for the bootstrap-calibrated PI. The
coverage probabilities of the GPQ-based PI are slightly higher than for the PI for M = 1, if
𝜏h is small (blue dots in the left panel of Figures 3 and 4) or slightly lower if 𝜏h is high (red
dots). In the settings were the the PI for one future observation approaches the nominal 0.95
(I > 5 and J > 2 for the h2-model or I ≥ 5 and J ≥ 2 in thec2-model) the coverage probabili-
ties of the bootstrap-calibrated PI approach the nominal level or remain slightly above (middle
panel of Figures 3 and 4). Contrary, the coverage probabilities reach the nominal level or remain
slightly below if the bootstrap-calibrated PI is calculated based on unbalanced data (right panel
of Figures 3 and 4).

5 COMPUTATIONAL DETAILS

Except for the quantile calibrated interval, none of the methods described above are publicly
available in R (R Core Team, 2019) in a user friendly form, neither as a code script that works
without adaption nor as an add on package. Hence, the existing methods were implemented
by hand. ANOVA-based statistics such as sum of squares or degrees of freedom used for the
calculation of the intervals given by Satterthwaite (1941) and Lin and Liao (2008) were calcu-
lated using the aov() function from the stats package (R Core Team, 2019). The estimates
v̂ar(𝜎̂2

c ) and v̂ar(v̂ar(y)) used for the calculation of the uncalibrated REML-based intervals were
obtained from the remlMM() function of the VCA package (Schuetzenmeister & Dufey, 2019).
The bootstrap-calibrated PI can be applied using the lmer_pi() function from the predint
package (Menssen, 2021).

5.1 Quantile-calibrated PI with the predint package

As mentioned before, the predint::lmer_pi() function provides a user-friendly implemen-
tation of the bootstrap-calibrated prediction interval given in Section 3.2.4. Its arguments and the
variables that are described by them are given in Table 5. PI as well as upper or lower prediction
limits (argument alternative) can be computed based on a random effects model (argument
model) fit to the historical data usinglme4::lmer() (Bates, Maechler, Bolker, & Walker, 2015).
If a dataset containing actual data is provided via newdat, predint::lmer_pi()
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MENSSEN and SCHAARSCHMIDT 303

T A B L E 5 Arguments of the lmer_pi() function and their description

Argument Variable Description

model Random effects model fit with lme4::lmer()

newdat y∗ Data set with new observations

m M Number of future observations

alternative Prediction interval, lower prediction limit or
upper prediction limit

alpha 𝛼 Defines the nominel coverage probability 1 − 𝛼

nboot B Number of bootstraps

lambda_min 𝜆1 Lower start value for bisection

lambda_max 𝜆2 Upper start value for bisection

traceplot Graphical overview about the bisection process

n_bisec D Maximum number of bisection steps

automatically marks the observations that are not covered by the interval. Alternatively, only the
number of future observations for which the PI should be computed can be specified using the
argument m.

The start values for the bisection process are given by lambda_min and lambda_max. In
rare cases it might happen, that the default values (0.01, 10) for lambda_min and lambda_max
result in bootstrapped coverage probabilities lower or higher than the nominal level for both start
values. If the coverage is too low, the PI will be computed based on lambda_max. In contrary,
the PI will be computed based on lambda_min, if the coverage is too high. Anyhow, in this cases
predint::lmer_pi() gives a warning such that the user can define the start values by hand.

Sincepredint::lmer_pi() relies on random effects models fit withlme4::lmer() and
lme4::bootMer() for bootstrapping, it can be applied to all data formats, regardless if they are
balanced or unbalanced. Another feature that makes predint::lmer_pi() easy to apply is
the fact that no variance-covariance matrix for the future observations have to be provided. The
application of predint::lmer_pi() to real-life data is demonstrated in the following section.
For a detailed description of the predint package and its other functions and fields of application,
see https://cran.r-project.org/web/packages/predint/readme/README.html.

6 APPLICATION OF PI TO REAL-LIFE DATA

As already described above, all methods were implemented by hand (except for the bootstrap
calibrated PI for which the predint package was used). In order to make the application of all six
PI as reproducible as possible, the R-code used for the calculation of the PI given in Tables 6 and
7 is available on GitHub under https://github.com/MaxMenssen/menssen_schaarschmidt_2021.

6.1 ADA cut point estimation

For all six methods, predcition intervals for one future observation were calculated for the data
set given by Hoffman and Berger (2011) which is comprised of data from a bioassay in which
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T A B L E 6 Prediction intervals based on the data set of Hoffmann and Berger (2011)

Method L U Comp. time (s)

Satterthwaite (1941) 0.7556553 1.5512672 0.002

Lin and Liao (2008), M1 0.7637171 1.5348919 0.034

Lin and Liao (2008), M3 0.3139889 3.7333264 0.030

Franq et al. (2019) 0.749874 1.563227 0.049

van den Heuvel (2010) 0.7359454 1.5928128 0.049

bs-calibrated 0.7562869 1.549972 248.7

T A B L E 7 Prediction interval for the historical control data
Maximum mean
weekly body weight Laboratory Pathway Lower Upper Cover

62.60 IIT Research Institute wbe_air 43.91 75.46 TRUE

57.70 Southern Research Institute gavage_corn oil 43.91 75.46 TRUE

electroluminescence signals (normalized mean RU) of 20 drug-naive mice were analyzed in three
experimental runs. Since the normalized mean RU values are skewed, they were ln-transformed
(following Hoffmann and Berger) such that

ln(yij) = 𝜇 + ai + bj + eij

ai ∼ N(0, 𝜎2
a), i = 1,… , I

bj ∼ N(0, 𝜎2
b), j = 1,… , J

eij ∼ N(0, 𝜎2
e ),

with ln(yij) as the ln-transformed normalized mean RUs, ai as the random effects associated with
the runs, bj as the random effects associated with the mice and eij as the residuals. The result-
ing PI for all six methods are given in Table 6. Please note that these intervals are already back
transformed to the response scale (normalized mean RU).

Except for the GPQ-based interval calculated with Method 3 of Lin and Liao which is the
widest PI by far, all PI are relatively close to each other. These findings are in line with the results
obtained from the simulation studies (Figures 1 and 2) where the GPQ-based PI following Method
3 appears to be conservative.

This behavior can be explained by the fact, that the GPQ(var(D)k) are averaged to yield one
single estimate for the prediction variance GPQ(var(D)) (see Equation 11), but the distribution
of GPQ(𝜎2

ck) used for the calculation of GPQ(var(D)) is heavily right skewed. Hence the estimate
GPQ(var(D)) has a positive bias. Because the estimate for the variance-covariance matrix of the
error margin GPQ(var(D)) is treated as known, naturally one would assume that this interval
shows coverage probabilities below the nominal level. Anyhow, the bias of GPQ(var(D)) is strong
enough to contradict this effect.
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6.2 Historical control data about the maximum mean weekly
bodyweight of female mice

Since the dataset containing historical controls regarding the mmwbw of mice is heavily unbal-
anced (Table 1), a prediction interval was calculated based on the quantile-calibrated PI only.
For this purpose the lmer_pi() function from the predint package was used. A random effects
model in which the pathways were nested in the two different laboratories (see Equation 13)
was fitted to the data using the lmer() function from the lme4 package. Then, this model was
handed over to lmer_pi() using the model argument. The two actual control groups given in
Table 2 were provided by the newdat argument, such that a prediction interval for M = 2 future
observations was calculated. The resulting output of lmer_pi() is given in Table 7. Since the
prediction interval [L,U] = [43.91, 75.46] covers the two actual observations, it can be assumed
that they are in line with the historical mmwbws.

7 DISCUSSION

In the sections above, two methods for the calculation of PI based on random effects models were
proposed and compared to four PI that are already published. Due to the fact that MSQ-based PI
occur in literature since 80 years (Satterthwaite, 1941) most of the previous research was done on
that topic. Anyhow, only a few studies that use other methods than MSQ, obtained from the clas-
sical ANOVA tables, are available. Two GPQ-based methods for PI for M ≥ 1 future observations
were proposed by Lin and Liao (2008). Despite the fact, that the estimation of model parameters in
random and mixed effects models via REML is available since the 1970s (Corbeil & Searle, 1976)
and has become a standard method for estimation since then, only a few studies about PI that are
based on REML estimates could be found in literature: Al-Sarraj et al. (2019) used a REML-based
PI originally published by Pawitan (2001) and Francq et al. (2019) published a PI that is applicable
to balanced or unbalanced mixed and random effects models. Anyhow, both approaches do not
consider the uncertainty of the estimated prediction variance: Pawitan (2001) treats the estimated
prediction variance as known and uses a standard normal quantile for the interval calculation.
The interval of Francq et al. (2019) is based on a t-quantile for which the degrees of freedom are
approximated based on the variance of the historical data and not on the prediction variance itself
and hence neglecting a source of uncertainty (the estimated variance of the mean). Furthermore
the literature lacks REML-based PI for more than one future observation.

The two proposed methods for the calculation of PI address the shortcomings mentioned
above: A PI that takes the whole uncertainty that is associated with the prediction variance into
account was computed by applying the df -approximation given by van den Heuvel (2010). But,
with the weights presented here, this PI is only applicable to balanced data.

Furthermore, a bootstrap calibrated PI was proposed for which the whole quantile used for
interval calculation was approximated. Classically, bootstrap calibration is based on the 𝛼 by
which the quantile used for interval calculation is defined (usually t1−𝛼∕2,df or 𝜒2

1−𝛼∕2,df ). In this
approach, the 𝛼 that is used for interval calculation is alternated by a bootstrap procedure until
a value 𝛼calib is found, such that the calibrated interval calculated with t1−𝛼calib∕2,df (or 𝜒2

1−𝛼calib∕2,df )
has coverage close to the nominal level 1 − 𝛼. This approach was developed in the early 1990s
and was described by Efron & Tibshirani (1993) in detail. Therefore, 𝛼-calibration was applied
by several authors for different purposes, such as tolerance limits (Hoffman, 2010), confidence
intervals (Lee & Liao, 2012; Lee & Liao, 2014) or PI for overdispersed binomial data (Menssen
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306 MENSSEN and SCHAARSCHMIDT

& Schaarschmidt, 2019). Anyhow, the idea of calibration can be also applied for other purposes
such as the approximation of quantiles. Due to the approximation of the whole quantile (rather
than a calibration of 𝛼), no assumption regarding its corresponding distribution has to be made.
This circumstance makes the quantile-calibrated prediction interval easy to apply, especially
if an interval for more than one future observation is needed because the formulation of the
variance-covariance matrix for future observations is unnecessary. Since the bootstrap is drawn
from a model fitted based on the REML approach, it does not matter if the data is balanced or
unbalanced which makes the interval usable for a broad range of practical applications.

Furthermore, it has to be noted, that none of the existing methods is implemented in R (except
for the quantile-calibrated PI). Hence, their application needs implementation by hand which is
far beyond the scope of most applicants who are not trained in advanced programming. As far as
the authors know, the quantile-calibrated PI is the only method for the calculation of PI based on
random effects model, that is implemented in R and available in a general way. It could be shown,
that the empirical coverage probabilities of the quantile-calibrated PI are slightly closer to the
nominal level than that of the existing methods in most of the simulation settings. Anyhow, the
simulated coverage probabilities do not approach the nominal level if the numbers of observations
per random effect is lower than five.

Since the bootstrap calibration does not make any assumption regarding the distribution from
which the quantile used for interval calculation is drawn, it can be applied to many other prob-
lems and models as long as the variance used for interval calculation can be computed. Therefore,
the calibration process given above is also applicable for PI based on overdispersed binomial and
count data. Further details regarding the implementation of this models can be found in the
vignette of the predint package. A topic for future research that remains, is the application of the
quantile calibration bootstrap to (generalized) linear mixed models.
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APPENDIX A. COMPARISONS BETWEEN THE DEGREES OF FREEDOM
ESTIMATED WITH THE TWO VERSIONS OF THE GENERALIZED
SATTERTHWAITE METHOD

In Figure A1, the average of the approximated degrees of freedom associated with the total vari-
ance of the historical data (approach of Francq et al. 2019) is compared to the degrees of freedom
approximated for the prediction variance following van den Heuvel 2010. The errorbars indicate
the observed minimum and maximum degrees of freedom for both methods. For each of the sim-
ulation settings the average degrees of freedom are higher for the approach of Francq et al. 2010.
If the approximated degrees of freedom are low (squares in Figure A1), the difference between
the two methods has an influence on the width of the corresponding PI. With rising degrees of
freedom (bigger datasets) this effect becomes smaller and can be neglected for degrees of freedom
higher than say 30, due to the convergence of the t-distribution against the standard normal.

F I G U R E A1 Simulated average degrees of freedom: df Francq versus df vdH . The black line indicates a 1:1
relationship. The grey errorbars represent the corresponding minimum and maximum obtained in the
simulation. Squares indicate observations were df vdH

< 30
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