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Abstract
Near-duplicate detection in a dataset involves finding the elements that are closest to a new query element according to a
given similarity function and proximity threshold. The brute force approach is very computationally intensive as it evaluates
the similarity between the queried item and all items in the dataset. The potential application domain is an image sharing
website that checks for plagiarismor piracy every time a new image is uploaded.Among the various approaches, near-duplicate
detection was effectively addressed by SimPair LSH (Fisichella et al., in Decker, Lhotská, Link, Spies, Wagner (eds) Database
and expert systems applications, Springer, 2014). As the name suggests, SimPair LSH uses locality sensitive hashing (LSH)
and computes and stores in advance a small set of near-duplicate pairs present in the dataset and uses them to reduce the
candidate set returned for a given query using the Triangle inequality.We develop an algorithm that predicts how the candidate
set will be reduced. We also develop a new efficient method for near-duplicate image detection using a deep Siamese coding
neural network that is able to extract effective features from images useful for building LSH indices. Extensive experiments
on two benchmark datasets confirm the effectiveness of our deep Siamese coding network and prediction algorithm.

Keywords Indexing methods · Deep features extraction · Near-duplicate image detection · Locality sensitive hashing ·
High-dimensional datasets

1 Introduction

In the last two decades, with the proliferation of digital
devices, especially mobile phones, the amount of digi-
tal images has increased tremendously. Near-duplicates are
altered versions of an original image after various possible
operations:Compression, cropping, geometricmanipulation,
contamination by noise, blurring, etc. This may result from
illegal activities such as piracy or plagiarism and is a waste
of network resources.

The problem of near-duplicate detection can be formu-
lated as follows: Given an image query, find all the images in
the collection that are most similar. Images are usually rep-
resented by a set of features stored as a feature vector. Each
vector, also known as the embedding of the image, is used
as a multidimensional vector representation to compute the
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similarity between two images. The similarity is expressed
using a metric defined over the feature space.

The problem of near-duplicate detection has applications
in several areas, such as textual retrieval [5,6,10], natural
language text retrieval [9], and in this work, image retrieval.
In general, this has been studied for a long time, but it is
still considered a difficult task. The main reason for this
is the well-known course of dimensionality [4]. It has been
shown that the computational complexity of near-duplicate
detection increases exponentially with the number of point
dimensions [2]. There are two major challenges in this task:
(i) extracting effective image features to improve the recog-
nition accuracy; (ii) improving the recognition efficiency by
reducing the similarity computations between the elements
in the dataset.

Among the various approaches, near-duplicate detection
was effectively addressed by SimPair LSH [11]. SimPair
LSH builds on locality sensitive hashing (LSH) and com-
putes and stores in advance a small set of near-duplicate pairs
present in the dataset and uses them to reduce the candidate
set returned for a given query using the Triangle inequality.
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The main contributions of this work are summarized
below:

• We present an algorithm that predicts a lower bound on
the number of elements that will be removed from the
candidate set by SimPair LSH. This can be used to predict
whether the computational cost imposed by SimPair LSH
is worth the number of elements removed.

• We describe an efficient method for maintaining and
updating information about similar pairs.

• We develop a new efficient method for detecting near-
duplicate images using a deep Siamese coding neural
network, which is able to extract effective features from
images useful for building LSH indices.

• We perform extensive experiments on two benchmark
datasets that confirm the effectiveness of our deep
Siamese coding network and prediction algorithm.

The rest of this article is as follows. Section 2 first intro-
duces Locality SensitiveHashing. Section 3 describes related
work, and sect. 4 recalls the basic behavior of SimPair LSH,
as it will be used as a starting point in the rest of the article.
Section 5 proposes an algorithm to predict a lower bound on
the number of elements pruned by SimPair LSH. Section 6
describes how efficiently the SimPair LSH algorithm keeps
information about similar pairs in memory. Since both our
proposed SimPair LSH method and the original LSH work
with feature vectors extracted from objects, Sect. 7 presents
the features extracted using a Siamese network for images. In
addition, Sect. 8 describes the three methods used to extract
features from images and create their vector representations:
(i) dense color histograms; (ii) color descriptor SIFT; (iii)
indexing construction from Siamese network. Section 9 eval-
uates our work on different real datasets and under different
evaluation criteria. Finally, Sect. 10 provides general com-
ments and conclusions.

2 Preliminaries: locality sensitive hashing

Locality sensitive hashing (LSH) [13,17] was proposed by
Indyk and Motwani and has applications in various fields,
including multimedia near-duplicate detection (e.g., [7,24]).
LSH was first applied to indexing high-dimensional points
for the Hamming distance [13] and later extended to the L p

distance [8], where L2 is the Euclidean distance used in this
work.

LSH uses certain hash functions to map each multidimen-
sional point into a scalar. The hash functions used have the
property that similar points have a higher probability of being
mapped together than dissimilar points.When LSH is used to
index a group of points to speed up the similarity search, the
procedure is as follows: (i) randomly and uniformly select k

hash functions h from an LSH hash function family H and
create L hash tables, hereafter called buckets; (ii) create an
index (a hash table) by grouping all points p in dataset P
into different buckets based on their hash values; (iii) when
a query point q arrives, use the same set of hash functions to
map q into L buckets, one from each hash table; (iv) retrieve
all points p from the L buckets, collect them in a candidate
set C , and remove duplicate points in C ; (v) for each point p
in C , compute its distance from q and output the points that
are similar to q.

In LSH, the probability that two points p1 and p2 are
hashed into the same bucket is proportional to their distance
c and can be computed as follows:

p (c) = Pr [h (p1) = h (p2)]

=
∫ r

0

(
1

c

)
f

(
t

c

)(
1 − t

r

)
dt (1)

where f (t) is the probability density function of the abso-
lute value of the normal distribution. We can now use p(c)
to compute the collision probability, i.e., the success proba-
bility, under H :

P(c) = Pr[H(p1) = H(p2)] = 1 − (1 − p(c)k)L (2)

3 Related work

Since its proposal, LSH has been extended in several direc-
tions, as reported in the survey on Locality Sensitive Hashing
Algorithms and their Applications by the authors in [18].

Multi-Probe-LSH was introduced by [22] and the authors
have experimentally shown that it significantly reduces the
space cost with the same search quality and similar time
efficiency compared to LSH. The key idea of Multi-Probe
LSH is that the algorithm not only searches for the near-
duplicates in the buckets where the query point q is hashed,
but also searches the buckets where the near-duplicates have
a slightly lower probability of occurring. The advantage is
that each hash table can be better utilized since more than
one bucket of a hash table is checked, reducing the number
of hash tables. However, multi-probe LSH does not provide
the important search quality guarantee as LSH.

In [2], the authors note that despite decades of research,
current solutions still suffer from the “curse of dimension-
ality,” i.e., either an exponential amount of space or query
time is required in dimensionality d to guarantee an accurate
result. For a sufficiently large dimensionality, current solu-
tions offer little improvement over a linear brute force search
of the entire dataset, both in theory and in practice. To over-
come this limitation, Indyk et al. [3] developed a two-stage
hashing algorithm in one of their recent works. The outer
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hash table divides the datasets into ranges of bounded diam-
eter. Then, for each range, they build the inner hash table
using the center of the smallest enclosing ball of points in
the range as the center. The authors claim that they achieve
better query time and smaller space requirement with this
approach than with their previous work [17].

Boundary-expanding locality sensitive hashing [25]
focuses on the problem of nearest neighbors hashed into
different buckets because located on the boundaries. The
research challenge is addressed by expanding the boundaries
of each bucket and increasing the probability that neighbors
collide.

QALSH [16] implements special query-oriented hash func-
tions that consider the location of the query with respect to
the buckets: If the query is near the bucket boundaries, its
near neighbors may be split into another bucket. Therefore,
QALSH considers the query point as a link between buck-
ets. By using B+-trees for each hash function, the method is
able to make range queries more efficient and reduce loop
time. An extension of QALSH is proposed by [16], where
the authors suggest a heuristic with two-level indexing and
KD-tree structure to speed up the search process.

I-LSH [20] explores an incremental way for radius expan-
sion, where the search radius is expanded in the projections
to capture near neighbors in the proximity buckets of the
query point. By incrementally increasing the radius, I-LSH
can prevent reading unnecessary buckets, resulting in fewer
disk I/O operations. However, this results in a higher com-
putational cost.

PM-LSH [27] propose to improve query processing time by
using PM-trees as the indexing structure for the data. For
more accurate distance estimation leading to better accuracy,
the method uses adjustable confidence intervals.

A new approach, namely R2LSH, is proposed by the
authors in [21], where one-dimensional projections are
replaced by two-dimensional projections. During the index
creationphase,B+-trees are created for each two-dimensional
projection. In the second phase of query processing, R2LSH
employs a query-centric ball to explore the query neighbor-
hood. This results in fewer I/O operations.

Finally, it is important to note that SimPairLSH is orthogo-
nal to LSHand other LSHvariants described above and,more
importantly, can be applied in these scenarios by leveraging
the improvements obtained in this work.

4 SimPair LSH

In this section, we discuss the behavior of SimPair LSH,
since it will be used as a starting point in the rest of the

paper. In what follows, the term LSH refers to the original
LSH indexing method, unless otherwise stated.

4.1 Problem definition (incremental range search)

Near–duplicate Given a point q ∈ R
d , any point p ∈ R

d

such that d (q, p) < τ is a near-duplicate of q, where τ ∈ R

is a similarity threshold. Among the available distance func-
tions d that can be used, Euclidean distance was chosen in
thiswork since it iswidely used in various applications.How-
ever, SimPair LSH can be easily extended to other distance
functions, e.g., L1 and Hamming distance, since LSH can be
applied in these cases as well.

Incremental range search Given a point q ∈ R
d and a set

P of n points pi ∈ R
d , find all near-duplicates of q in P

according to a given distance function d (·, ·) and a given
similarity threshold τ before q is inserted into P .

4.2 The SimPair LSH algorithm

The main intuition behind SimPair LSH lies in how LSH
works. Given a query point q and a set of points p, LSH fills
a candidate set C for q with all the points p stored in the
same buckets where q was hashed. The near-duplicates of q
are then found by comparing them to all points in C . This
approach suffers from two facts. First, a large number of hash
tablesmust be created to increase the probability that all near-
duplicates of q are contained in C . This can lead to a higher
number of points in C , which in turn means a higher num-
ber of comparisons. Second, for high-dimensional points,
the number of operations required to compare two points
increases. SimPair LSH speeds up the search by precomput-
ing a certain number of pairwise similar points in the dataset
and storing them in memory. These are used at query time to
prune the candidate set C , resulting in fewer comparisons.

Formally, the SimPair LSH algorithm works as follows.
Given a set P of n points pi ∈ R

d , SimPair LSH creates L
buckets as in LSH. Moreover, for a given similarity thresh-
old θ , the set SP of similar pairs ( p1, p2) : d( p1, p2) < θ

is formed and stored along with the computed distances
d( p1, p2). Whenever a query point q ∈ R

d , SimPair LSH
retrieves all points in the buckets to which q is hashed. Let
this set of points be the candidate set C . Instead of linearly
searching all points p in C and computing their distances
to q as LSH does, SimPair LSH checks the precomputed
similar pair set SP for each distance computation d(q, p).
Depending on the value of d(q, p) and on the value of a
given similarity threshold τ , SimPair LSH can behave in 2
different ways:

• If d(q, p) <= τ , then SimPair LSH searches SP for all
points p′ : d( p, p′) ≤ τ −d(q, p). It is checked whether
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p′ is in the candidate set C or not: if so, then it marks p′
as a near-duplicate of q without computing the distance
d( p′, q).

• If d(q, p) > τ , SimPair LSH searches in SP for all the
points p′ : d( p, p′) < d(q, p) − τ . It checks whether
p′ is in the candidate set C or not. If yes, then it removes
p′ from C without the distance computation.

For the detailed description, see Algorithm 1.

Algorithm 1 SimPair LSH
Require: A set P with n d-dimensional points; L in-memory hash

tables created by LSH; a set SP storing all similar pairs in P whose
pair-wise distances are smaller than θ ; a distance threshold τ defining
near neighbors; and a query point q.

Ensure: All near neighbors of q in P .
1: Check the L buckets q hashed to and retrieve all the points in those

buckets as in LSH;
2: Put all the points into a candidate set C ;
3: for each point p in C do
4: Compute the distance between q and p, i.e., d(q, p);
5: if d(q, p) <= τ then
6: Output p as a near neighbor of q;
7: Search in SP for all the points p′ which satisfies d(p, p′) <

τ − d(q, p);
8: for each point p′ found in SP do
9: Check if p′ in C or not;
10: if found then
11: Output p′ as a near-neighbor of q and remove it from

C ;
12: end if
13: end for
14: end if
15: if d(q, p) > τ then
16: Search in SP for all the points p′ which satisfies d(p, p′) <

d(q, p) − τ ;
17: for each point p′ found in SP do
18: Check if p′ in C or not;
19: if found then
20: Remove p′ from C ;
21: end if
22: end for
23: end if
24: end for

The algorithm that constructs the LSH buckets is the same
one used in the original LSH.

4.3 Algorithm effectiveness

The advantage of SimPair LSH over LSH is that the points
in the candidate set returned by LSH are pruned by check-
ing the list of similar pairs SP without distance calculations.
Therefore, it is important to analyze the number of omis-
sions generated by SimPair. To get the advantage, SimPair
LSH needs to search SP and C for the points to prune, which
may take time, although hash indexes can be created to speed

up each search to O(1) time. Next, we analyze the factors
that affect the gain and cost.

Analysis of pruning To generate a prune from a point p in C ,
SimPair must first find a point p′ that is close enough to p
from SP, where close enough or not close enough depends
on |d(q, p)−τ |. If |d(q, p)−τ | is large, SimPair LSH has a
higher chance of finding a p′. Another factor that can affect
the chance of finding p′ from SP is the size of SP. It is clear
that a large set of SP increases the chance of finding p′ of p.

Finding p′ of p does not necessarily lead to a prune.
The condition for a prune to occur is that p′ occurs in C .
According to the property of LSH hash functions, points
near q have a higher probability of appearing in C . In
other words, d(q, p′) determines the chance of generating
a prune. Although d(q, p′) is not precisely known, a bound
on this distance can be derived from d(q, p) and the threshold
|d(q, p) − τ | for “close enough.”
Cost analysis To achieve pruning, SimPair LSH must incur
certain costs, including time and space costs. The time cost
mainly comes from the searches: find the points that are
close enough to p in SP and check whether these points
are included in C or not. By constructing hash indices for
SP, searching for p in SP takes only O(1) time; construct-
ing hash indices for SP also takes O(1) time for each object.
When a candidate set C of points is retrieved for query q, all
points in the dataset belonging to C are marked in both LSH
and SimPair LSH; This is possible because each point in the
dataset has a Boolean attribute that indicates whether or not
the point is included in C . The purpose of this attribute is to
remove duplicate points when C is created. Duplicates may
appear inC because a pointmay appear inmultiple LSHhash
buckets. Note that after the search is complete, the Boolean
attributes must be cleared (for both LSH and SimPair LSH),
which takes O(|C |) time if all points inC are alsomaintained
in a linked list. Pruning requires another Boolean attribute for
each point, indicating whether the point has been pruned or
not. With the Boolean attributes, searching for p′ in C takes
O(1) time. The time cost is mainly due to the searching for
p′ in C , since for each p there may be multiple p′ and thus
multiple searches in C .

In addition to the time cost, SimPair LSH also incurs an
additional space cost for storing SP compared to LSH. This
cost is limited by the available memory. In our approach, we
always limit the size of SP based on two constraints: (i) the
similarity threshold θ (for the similar point pairs stored in
SP) is limited to the range (0, τ ]; (ii) the size of SP must not
exceed a constant fraction of the index size (e.g., 10%).
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5 Pruning prediction

In this section, we propose an algorithm to predict a lower
bound on the number of elements pruned by SimPair LSH
compared to LSH. As we saw in Sect. 3, SimPair LSH
requires maintenance and access to SP. This leads to a
computational cost that could be compensated by pruning
elements in the candidate set. Finally, by predicting pruning
in advance, we can know whether the overhead is worth it.

5.1 The intuition

According to the pruning analysis presented in [11], a lower
bound on the number of prunes given a query q can be esti-
mated. The key idea is as follows: take some sample points
p from C and compute d(q, p) for each p. Based on the
sample, estimate the distribution of the different d(q, p) for
all p in C . From d(q, p) we can derive an upper bound of
d(q, p′) according to the triangle inequality. Thus, we can
estimate a lower bound on the probability that p′ occurs inC ,
and correspondingly a lower bound on the number of prunes.

Again, using the small fraction of sample points from C ,
SimPair LSHcan check SP andfind out if there is any point p′
that is close enough to p such that d( p′, p) < |d(q, p)− τ |.
Since the distance d(q, p) is known, an upper bound of
d(q, p′) can be derived according to the triangle inequal-
ity. Knowing d(q, p′), one can know the probability that p′
occurs in C , leading to a prune.

5.2 The pruning prediction algorithm

The algorithm for predicting a lower bound on the number
of prunes is described in Algorithm 16. Let us first consider
the probability that two points p1 and p2 are hashed into
the same bucket. Such a probability is proportional to its
distance d( p1, p2) by Eq. (1), which will be simply denoted
as d in the rest of the section. Second, in our algorithm,
the entire range of distances is divided into several intervals.
Given a distance value d, we can then use the function I (d) to
determinewhich interval d falls into. The counterCount[] is a
histogram for storing the number of points in a given interval.
The interval is determined by the collision probabilities of
the pairwise distances. For a fixed parameter r in Eq. (1),
the collision probability P(d) decreases monotonically with
d = || p1 − p2||l , where l in our case where we consider the
Gaussian distribution, is 2. The optimal value for r depends
on the dataset and the query point. However, in [8] it was
suggested that r = 4 gives good results and therefore we
currently use the value r = 4 in our implementation.

With this setting of the hash function, there is not much
difference for the intervals d within the range [0, 1] in terms
of the collision probability of the hash function. Thus, we use
fewer intervals. In contrast, the hash collision probabilities

Algorithm 2 Prediction of the number of prunes.
Require: A set C with n d-dimensional points p; a distance function

d(·, ·); a distance threshold τ defining near–duplicates; a query point
q; a distance interval function I (d); the set of similar point pairs SP.

Ensure: Number of prunes PruneNumber.
1: Construct a sample set S by selecting s points from C uniformly at

random;
2: for each point p in S do
3: Compute the distance d(q, p);
4: Search for p′ in SP where d( p′, p) < |d(q, p) − τ |;
5: for each p′ found do
6: increment the counter Count[I (d(q, p) + |d(q, p) − τ |)] by

1;
7: end for
8: end for
9: Scale up the nonzero elements in the counter by a factor of |C |/|S|

and store them back to Count[];
10: PruneNumber = 0;
11: for each nonzero element in Count[i] do
12: Let di be the maximum distance of interval i ;
13: Let P(di ) be the probability that 2 points with distance di are

hashed to the same value, according to Equation 1;
14: PruneNumber += Count[i] · P(di );
15: end for
16: Output PruneNumber;

differ significantly for distances within the range [1, 2.5]. We
use more intervals for this range of distances.

The policy we use to divide a distance range into inter-
vals is defined as follows. First, set the number of intervals
(e.g., 100); assign one interval for range [0, x1] and one for
range [x2,∞] within which the hash collision probabilities
are similar; assign the remaining intervals to range [x1, x2]
by dividing the range evenly. Since the function I (d) is deter-
mined only by the hash function, cutting the intervals can be
done offline before processing the dataset.

5.3 Sampling accuracy

SimPair LSH takes only a small fraction (e.g., 10%) of the
points from C . If you increase the number of points in the
sample whose distances from q are within an interval, and
estimate the value in C , some errors arise.

Theorem 1 Auniform randomsample gives anunbiased esti-
mate for the number of points with certain property, and
the relative accuracy is inversely proportional to the num-
ber of points, and proportional to the sample size and to the
true number being estimated. The standard deviation of the

ratio between the estimate and the true value is
√

n
R

( 1
x − 1

n

)
,

where n is the total number of points to be sampled, R is the
sample size and x is the true value to be estimated, i.e., the
number of points with the property.

Proof Let us assume that R different points are randomly
taken into the sample, and each point with the property has
a probability x

n to stay in the sample. Let Xi be an indicator
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random variable indicating if the i-th point being sampled is
with the property or not. That is,

Xi =
{
1, if the sampled point has the property

0, otherwise

It can be easily shown that Pr(Xi = 1) = x
n and Pr(Xi =

0) = 1− x
n . Given the observed value Y = n

R

∑R
i=1 Xi , since

E[Y ] = n
R

∑R
i=1 E[Xi ] = x then it is possible to deduce that

Y is an unbiased estimate. Thus, we can conclude that:

VAR[Y ] = n2

R2VAR

[
R∑

i=1

Xi

]
= n

R
x

(
1 − x

n

)

��

6 Similar pair maintenance and updating

Since the advantage of SimPair LSH is that information about
similar pairs (i.e., SP) is stored in memory, it is important to
manage that properly and efficiently.

6.1 Maintenance

Data structure The set SP can be implemented as a two-
dimensional linked list. The first dimension is a list of points;
the near-duplicates of each point q in the first dimension list
are stored in another linked list (i.e., the second dimension),
ordered by distances from q. Then, a hash index is created
over the linked list of the first dimension to speed up lookup
operations.

Limit the size of SP Since the total number of all similar pairs
for a dataset of n objects can be O(n2), the question is how
to bound the size of SP. To this end, we set θ (the similarity
threshold for the similar point pairs stored in SP) to τ (the
similarity threshold for the similarity search). However, if the
dataset is very large, SP may be too large to fit in memory.
Therefore, we impose a second constraint on the size of SP:
it cannot be larger than a constant fraction of the index size
(e.g., 10%). To satisfy the last constraint, we can decrease
the value of θ within the range (0, τ ]. Clearly, a larger value
of θ generates a larger amount of SP, which increases the
probability of finding p′ of p in C , triggering a prune. Note
that these operations do not require real-time updates.

6.2 Update

Point insertions In a continuous-query scenario, each point
q triggers a query before being inserted into the database.
That is, all near-duplicates of each newly added point must

be found before the new point updates SP. So to get the list
of similar pairs, we only need to insert the near-duplicates of
q that we just found into SP. To insert the near-duplicates of
q into SP, we first sort the near-duplicates by their distances
from q and store them in a linked list. Then, we insert q and
the linked list into SP and update the hash index of SP in the
meantime. Also, we need to search for each near-duplicate of
q and insert q into the corresponding linked lists of its near-
duplicates. Within the linked list where q is to be inserted,
we use a linear search to find the correct position for q based
on the distance between q and the near-duplicate. Note that
we could have also created indexes for the linked lists of the
second dimension, but this would have increased the space
cost. Moreover, updates to SP in real time are not necessary,
unlike query answering. We can cache the new similar pairs
and insert them into SP when the data arrival rate is lower.

Point deletions When a point q needs to be deleted from the
dataset, we need to update SP. First, we search for all near-
duplicates of q in SP and remove q from each of the linked
lists of the second dimension of near-duplicates. Then we
need to remove the linked second dimension list of q from
SP.

Buffering SP updates The data arrival rate is indeed irregular,
i.e., there may be a large number of queries at one time and
very few queries at another time. As mentioned earlier, the
updates of SP (inserting a point and decreasing the size) can
be buffered and processed at a later time when the proces-
sor is not overloaded due to the irregular data arrival rate.
This buffering mechanism guarantees a real-time response
to the similarity search. Note that deleting a point cannot be
buffered, as this may lead to inconsistent results.

7 Siamese network

Both our proposed method SimPair LSH and the original
LSH work with feature vectors extracted from objects. In
this section,wepresent the features extracted using aSiamese
network for images.

7.1 Network structure

The architecture of the Siamese neural network is shown in
Fig. 1 and is designed for input image pairs. The specific
architecture consists of two symmetric CNNs with identical
architectures andparameters. EachCNNfollows theAlexNet
architecture with eight layers; the first five are convolutional
layers and the last three are fully connected layers. The last
layer, namely the FC8 layer, is a dense layer with d = 510
dimensions and is used to obtain the feature vector represen-
tation for the input image, as described in Sect. 8.3. Thus,
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Fig. 1 The Siamese network

this workflow generates two different representations of the
dense layer, i.e., the feature vectors, of length d for each
image of the input pair. The two feature vectors are then used
to compute a loss, which is used in backpropagation for the
learning process described below. Although the two feature
vectors d are learned differently for the two input images,
the particular architecture of the Siamese network enforces
that the weights of the two separate AlexNet branches are
the same. In Fig. 1, we indicate the weight coupling by the
central box containing weights, which represents a common
set of weights.

7.2 Network training

Each CNN of the Siamese network follows the AlexNet
architecture and its parameters are the initial values of the
original AlexNet trained on 1000 classes of the ImageNet
dataset. We exclude the top of the network and add our own
dense layer FC8 with d neurons. We freeze the weights of
all pre-trained layers of the model up to layer FC7. This is
important so as not to affect the weights that the model has
already learned.

The last layer of AlexNet, i.e., FC8, is a dense layer with
d = 510 dimensions. Each of the two CNNs outputs two
separate vectors of length d from FC8, which are used as
representations for the input images ii and i j . These vectors
are denoted as oi and o j in this paper, respectively, for each
input image of the input pair, as described in Sect. 8.3. We
train the Siamese network by determining the Euclidean dis-
tance between the two output image representations oi and
o j . We use the standard formulation for contrastive loss [15]
as follows:

Loss(oi , o j )

=
{

(ED(oi , o j ))
2 if [oi , o j ] ∈ NN

(max{0, 1.0 − ED(oi , o j )})2 if [oi , o j ] ∈ DP
(3)

where we denote by ED(oi , o j ) the Euclidean distance
between two image embeddings oi and o j . NN denotes a
set of image pairs each containing two similar images, the
near neighbors; in such a case, the loss is the square of
the Euclidean distance, i.e., the deviation from the expected
value. For dissimilar images contained in the dissimilar pairs
setDP, we expect the distance to be as far as possible, ideally
at a distance of 1.0 or more. In Sect. 9.3, the creation of the
near-neighbor NN-set is illustrated. The Siamese network is
trained simply by inputting pairs of images and backpropa-
gating the losses through the layers.

8 Embedding

In this section, we will describe the three methods used to
extract features from images and create their vector repre-
sentations: (i) dense color histograms; (ii) color descriptor
SIFT; (iii) indexing construction from Siamese network.

8.1 Dense color histogram

Each image within the dataset is converted to a 510-
dimensional vector using the standard HSV histogram
method [14]. At the beginning, the color image is divided
into three different color channels, each with a length of 170.
Then for each channel the histogram is calculated and nor-
malized. The last step is to concatenate each histogram into
a compact fixed length feature vector. In the end, each ele-
ment of the vector represents the percentage of pixels within
a given HSV interval.

8.2 Color descriptor SIFT

The descriptor SIFT is based on the extraction of scale-
invariant keypoints [26] through each of the three color
channels of the image. It is robust to image transforma-
tions since it describes local spatial information in the image
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matrix.Weused a powerful keypoint extractionmethod using
the Harris affine point detector [23]. The color descriptor
SIFT is created by concatenating the SIFT descriptors com-
puted for each channel. The result is a vector of length 510.

8.3 Indexes Construction from the Siamese network

The Siamese network is used as a method for learning the
representation of the input images: The input image dataset
I = {i1, i2, . . . , in} is transformed into a dataset in a vector
space R

d , where d is set as a hyperparameter by the user.
Formally:

{i1, i2, . . . , in} representation−−−−−−−→
learn

{o1, o2, . . . , on} (4)

where oi ∈ R
d is a vector space representation of the image

ii . In principle, it is desirable that the output dataset, denoted
O , retains the similarity property of the image dataset in the
input. In particular, it is desirable that pairs of images that
both belong to the same class and are nearly identical are, on
average, closer to each other than pairs of dissimilar images
that belong to different classes. For this purpose, the features
for the images are extracted from the last dense layer FC8
of the trained Siamese network: We choose a branch of the
network consisting of an AlexNet and pass each image of
the initial image dataset through it, then extract the vector of
length 1000 from FC8. The extracted image vector represen-
tations are indexed using LSH-based indexes construction.
Given an image query iq , a set of candidate images in the
vicinity, denoted as set C , is retrieved based on the con-
structed indexes. Specifically, let oq and oi be the FC8 layer
feature vectors of the query image iq and the ith candidate
image iCc . The distance between iq and iCc is the Euclidean
distance ||oq − oi ||2. If the distance between oq and oi is
small, the probability that the two images are near neighbors
is high. The top k near neighbor images are retrieved. The
input of our Siamese network is similar and dissimilar image
pairs and their vector representations are suitable for finding
near duplicates of images.

9 Experiments and evaluations

We evaluated our work on different real datasets and under
different evaluation criteria. In the following sections, we
describe the datasets, the criteria, and results of our evalua-
tion.

Experiments were performed on a 2.6 GHz 6-core Intel
Core i7 computer, 18 GB DDR4 memory running macOS
Catalina 10.15.7. Both data points and LSH indexes were
loaded into main memory. The source code of the original
LSH was obtained from E2LSH [1] and used without any
modification.

Fig. 2 Near neighbor examples in CIFAR-10

9.1 Datasets

We test the effectiveness of SimPair LSH on the two datasets
summarized below.

9.2 Network structure

• CIFAR-10: It contains 60,000 color images of 32x32
pixels evenly divided into 10 classes. The classes are
completely mutually exclusive [19]. Images of the same
class are treated as near neighbors; in Fig. 2, for example,
the near neighbors for four different classes are given per
line.

• Flickr: We sent 26 random queries to Flickr [12] and
retrieved all images within the result set. After removing
all results with less than 150 pixels, we obtained about
14,000 images. We then created 3 nearly identical ver-
sions for each image using image compression, scaling,
noise blurring, and image encoding format conversion.
Figure 3 shows the generated near neighbors for an exam-
ple image. In total, this gave us 56,000 images.

For all the image datasets described above, we used the
three embedding methodologies reported in Sect. 8.

9.3 Training dataset construction

The Siamese network depicted in Fig. 1 is trained using two
image pairs sets.

• InCIFAR-10, images of the same class are treated as near
neighbors and inserted into NN. To distinguish images
of different classes, we choose x random images from
one class and pair them with x random images from the

Fig. 3 Near neighbors for an example image in Flickr
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remaining classes. The resulting pairs are included inDP,
the dissimilar pairs set.

• In Flickr, each image is already connected to 3 near
neighbors. We select y near neighbor image pairs and
record them in NN. To create DP, we select y random
images and pair them with random images that do not
belong to their near duplicates.

9.4 Evaluation criteria

In this section, we describe the criteria that we use to evaluate
the performance of our approach.

Predicted prunes In order to validate the pruning prediction
algorithm presented in Sect. 5, we counted the percentage of
elements pruned with different values of similar pair thresh-
old τ .

Accuracy For accuracy assessment, we used the mean Rel-
evance Precision (mRP). The search algorithm returns k
images, sorted by their Euclidean distance from the query.
The mRP is defined as:

mRP(k) = 1

k

k∑
i=1

Rel(i) (5)

withRel(i) equal to 1 if the i-th candidate is a near neighbor of
the queried image, and 0 otherwise. This is an absolute mea-
sure of accuracy. In the CIFAR-10 dataset, we experimented
with different values of k. In the Flickr dataset, we fixed k
to 4, since for each query there are at most 4 near neighbors,
one of which is the exact copy of the query image.

Acceleration factorGiven an image query and a dataset with
a total number of images given by n, an exhaustive search
goes through all n elements to compute and retrieve the near
neighbors of the query. Considering another search algorithm
that retrieves nr image candidates, where nr ≤ n, the accel-
eration factor is defined as n/nr and represents the estimate
of the detection efficiency relative to the exhaustive search.

9.5 Results

In this section,we report and discuss the results of our evalua-
tion. In order to validate our approach, we randomly selected
100 objects from each dataset as query objects.We tried other
values for the number of queries, from 100 to 1000, without
noting any change in performances. Thus, we kept it to 100
in the following experiments.

The results presented in the rest of this section represent
values averaged over the query objects.

Unless explicitly stated, the results that we report in the
rest of this section were achieved setting the parameters as

Fig. 4 Avg. percentage of pruned points by similar pair threshold τ per
embedding method

follows: distance threshold for near–duplicates τ = 0.1,
distance threshold used for filling the similar pair list SP
θ = τ = 0.1, number of LSH functions L = 136, each with
size k = 12, and success probability λ = 90%.

9.5.1 Pruning prediction

We test our pruning prediction algorithm (Sect. 5) by pre-
dicting the number of prunes with different values of similar
pair threshold τ .

In Fig. 4, we report the average percentage of pruned ele-
ments for different values of the threshold τ for each of
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the three embedding methods for both datasets. It can be
observed that the pruning prediction (dashed lines) always
underestimates the actual number of pruned points (solid
lines), thus providing a reliable lower bound. The higher per-
centage of pruned points at τ = 0.05 is due to the fact that
the size of the candidate set is small and the variance of the
percentage is higher. Moreover, the difference between the
lower bound and the actual number of pruned points is almost
constant (between 5 and 10%), especially for low values of τ .
This means that the trend of the prediction resembles the real
profile of the pruned points: Apart from a scale value (i.e., the
difference between prediction and real number), the actual
number of pruned points can be estimated fairly accurately.
This is less true for higher values of τ , where the difference
between the lower bound prediction and the actual number
of pruned points varies more. Another consideration relates
to the fact that we have a higher percentage of pruned ele-
ments with HSV and SIFT than with the Siamese network
embedding. This is due to the fact that SimPair LSH using
the new embedding gives more accurate results, i.e., fewer
false positives than the other two methods, as can be seen
in the next Sect. 9.5.2. This analysis motivates us to choose
τ = 0.1 for the remaining experiments.

9.5.2 Accuracy and acceleration factor

As an absolute measure of accuracy we used the mean Rel-
evance Precision mRP (Eq. 5), which is a function of the
parameter k. If the number of duplicates per query is known,
the parameter k can be chosen using a greedy approach that
lets the parameter take a value that is an order of magni-
tude lower than the number of duplicates per query and then
increases to the exact number. The more similar the dupli-
cates are to the original images, e.g., due to the specific
method used to generate them, the more the k parameter can
approach the exact number of neighborswithout significantly
affecting performance.

In CIFAR-10 dataset, we experimented with different val-
ues of k. Figure 5 shows the values of mRP for different
embedding methods as the number of top k returned images
changes. It can be seen that the curves are quite stable over
k. Our new method based on Siamese network embedding
gives more accurate results than the other methods based on
HSV and SIFT embeddings. This experiment motivates us to
choose k = 200 for the following analysis.

LSH can speed up the retrieval of near-duplicate images
by increasing the number of hash tables, i.e., increasing the
parameters k and L . This has an immediate effect on increas-
ing the acceleration factor. Figure 6 shows the curves of
mRP(200) versus the acceleration factors for each embed-
ding method, both when using the original LSH and our
proposed SimPair LSH. Each point of the curves, starting

Fig. 5 Mean relevance precision (mRP) with different values of k per
embedding method

Fig. 6 Mean relevance precision (mRP) with k = 200 and acceleration
factor for LSH and our proposed SimPair LSH per embedding method

from left to right, corresponds to the following k and L param-
eter pairs:

k 10 12 14 16 18 20
L 78 136 210 351 561 908

Using the same embedding method, the curves of the
original LSH and the SimPair LSH (e.g., Siamese LSH and
Siamese SimPair) obtain the same mRP values correspond-
ing to the same k and L parameters. This is due to the fact that
SimPair LSH is based on LSH and cannot improve its mRP,
only the acceleration factor.As canbeobserved, our approach
based on SimPair LSH with Siamese network embeddings
outperforms all other methods.

In Flickr dataset, we fixed k to 4, since for each query
there are at most 4 near neighbors, one of which is the exact
copy of the query image. The k parameter can be set to the
exact number of near neighbors because the method used
to generate them produces nearly identical versions through
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Fig. 7 Mean relevance precision (mRP) with k = 4 and acceleration
factor for LSH and our proposed SimPair LSH per embedding method

image compression, scaling, noise blurring, and format con-
version of the image encoding. Figure 7 reports the values of
mRP(4) versus the acceleration factors for each embedding
method, using both the original LSH and our proposed Sim-
Pair LSH. Each point on the curves applies to the same k and
L parameter pairs as adopted for the CIFAR-10 dataset.

In summary, our approach based on SimPair LSH with
Siamese network embeddings also performs better than all
other methods for Flickr images, as already observed for
CIFAR-10. However, for Flickr, the mRPs range from 0.78
to 0.95, while for CIFAR-10 we have a wider range from
0.39 to 0.87. This is due to the different constructions of the
datasets. For Flickr, the near duplicates are an extended ver-
sion of the same image, while for CIFAR-10 we use different
images from the same class as near neighbors. Specifically
for CIFAR-10, our approach based on SimPair LSH with
Siamese network is able to identify image features that are
characteristic of the same class, while HSV and SIFT fall
short in this regard.

9.5.3 Memory analysis

The amount of memory required by LSH can be derived
from L . Since each hash table stores the identifiers of all n
points in the dataset, each of which occupies 12 bytes (as
implemented by Andoni and Indyk [2]), the LSH space cost
is equal to 12nL .

SimPair LSH incurs an additional space cost for storing
SP compared to LSH. This cost is bounded by the available
memory. In our approach, we limit the size of SP based on
two constraints: (i) the similarity threshold θ (for the similar
point pairs stored in SP) was set equal to τ ; (ii) the size
of SP must not exceed a constant fraction of the index size
(i.e., 10%). To limit the size of SP, we considered the lowest
value for parameter L , i.e., 78. So for CIFAR-10, we had
an upper bound of SP = 10% (12 ∗ 60, 000 ∗ 78), which

resulted in 5.6 MB. For Flickr, we had an upper bound of
SP = 10% (12 ∗ 56, 000 ∗ 78), which yielded 5.2 MB.

10 Conclusions

In this paper, we study the problem of range search in an
incremental way based on a well-known technique, locality
sensitive hashing (LSH). We propose SimPair LSH, a new
approach to improve the running time of LSH by exploit-
ing a certain number of existing similar point pairs. SimPair
LSH speeds up the search by precomputing a certain num-
ber of pairwise similar points in the dataset and storing them
in memory. These are used at query time to reduce the can-
didate set of points C retrieved by LSH, resulting in fewer
comparisons.

We also present an algorithm to predict a lower bound on
the number of items pruned by SimPair LSH. In our exper-
iments, the pruning prediction algorithm always provides a
reliable lower bound for the actual number of pruned points.
Moreover, the difference between the lower bound and the
actual number of pruned points is almost constant for a sub-
set of setups, which means that the profile of the prediction
is similar to the actual profile of pruned points except for one
scale value. Finally, we describe the procedure for maintain-
ing and updating the information about similar pairs.

Since both our proposed method SimPair LSH and the
original LSH work with feature vectors extracted from
objects, we experiment with three methods used to extract
features from images and create their vector representa-
tions: (i) dense HSV color histograms; (ii) color descriptor
SIFT; (iii) indexing construction from Siamese network. In
summary, our SimPair LSH-based approach using Siamese
network- based feature vectors (namely embeddings) per-
forms better than all other settings on both the Flicker image
and CIFAR-10 datasets.

In the future, we plan to investigate other neural network
architectures for feature vector extraction.
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