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Abstract: Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high
precision and spatial resolution. These scanners are used for applications as diverse as modeling
architectural or engineering structures, but also high-resolution mapping of terrain. The noise of
the observations cannot be assumed to be strictly corresponding to white noise: besides being
heteroscedastic, correlations between observations are likely to appear due to the high scanning
rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical
considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory
to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection
of deformation between scans recorded at different epochs using statistical testing strategies. The
TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–
Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize
the squared distance between the observations and the approximated surfaces in order to estimate
parameters, such as normal vector or control points. In this contribution, we will show how the
residuals of the surface approximation can be used to derive the correlation structure of the noise of
the observations. We will estimate the correlation parameters using the Whittle maximum likelihood
and use comparable simulations and real data to validate our methodology. Using the least-squares
adjustment as a “filter of the geometry” paves the way for the determination of a correlation model
for many sensors recording 3D point clouds.

Keywords: correlation; Hurst exponent; Whittle maximum likelihood; least-squares; T-splines;
surface approximation

1. Introduction

The widespread use of three-dimensional (3D) laser-scanning technology offers var-
ious possibilities to digitize real-world objects (see, e.g., [1]). For instance, the latest
generation of terrestrial laser scanners (TLS) is able to record millions of points during
a short time period, allowing various applications from standard deformation monitor-
ing [2] to agricultural uses [3]. The noise of the observations is often characterized as
being normally distributed; temporal correlations are neglected. This disregard can affect
the computation of distances between point clouds recorded at different epochs, as well
as test statistics for deformation [4]. Furthermore, the deeper study of correlations can
provide precious information about the sensor noise with the aim to decrease its level, and
innovative applications such as an analysis of the turbulent atmosphere traveled by the
electromagnetic signals (see [5] for an application with GPS observations).

The study of correlations is linked with the filtering of noise from the point cloud,
which has been the topic of various publications (see, e.g., [6] for a review). Most of the
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strategies cannot ensure that the filtered counterpart—also called residuals—will reflect
the statistical property of the observation noise. For example, the wavelet chosen will
affect the point cloud mode decomposition and, potentially, the correlation structure of
the residuals. This is not the case for the least-squares (LS) approximation, provided that
the model linking the observations with some parameters to estimate is optimal. In this
contribution, we will make use of this property and filter the geometry of a point cloud
with the aim of studying the stochasticity of the underlying sensor noise. The surface
fitting will be performed with T-splines [7]. This method uses iterative local refinement,
as in [8]; it is a powerful and computationally efficient strategy to approximate a point
cloud [9], as it is not restricted to predefined forms such as circles or ellipses [10]. Both
simulated and real data will highlight the feasibility and potential of our methodology
to derive the correlation structure of the underlying noise from the LS residuals. We will
focus on correlations modeled as a fractional Gaussian noise (fGn, [11]).

The remainder of the paper is as follows: In the second section, we will present the
mathematical background of LS and surface fitting. The third section presents the results
of simulations and real data. The fourth section concludes this contribution.

2. Mathematical Background
2.1. Least-Squares

In the following section, we assume that a linear or linearized functional model
describes our observations:

I = Ax + v (1)

where I is the n× 1 observation vector, A is the non-stochastic n× u design matrix with
full column rank, x the u× 1 parameter vector to be estimated, and v the n× 1 observation
noise vector. The error term has zero mean and is normally distributed with E

(
vvT) = Σvv,

where Σvv is the n× n positive definite fully populated variance covariance matrix of the
error term. E(.) denotes the mathematical expectation.

The system is overdetermined. A solution can be given by minimizing the sum of the

squares of the residuals. In that case, the generalized LS estimator
^
x reads:

^
x =

(
ATΣ−1

vv A
)−1

ATΣ−1
vv y (2)

We call
^
v = y−A

^
x the estimated n× 1 residual vector of the LS adjustment and Σ^

v
^
v

its variance–covariance matrix. We have [12]:

Σ^
v

^
v
= Σvv −A

(
ATΣ−1

vv A
)−1

AT = Σvv − Σvv_est (3)

In many applications, as, for example, in surface approximation, Σvv is often replaced
with the identity matrix, assuming equal variances for the observations. From (3) we have
access to the variance and covariance of the noise observations from the residuals of the
approximation, if we assume that the terms contained in Σvv_est are much smaller than
those of Σvv. The knowledge of Σ^

v
^
v

allows us to avoid an overestimation of the precision
of the LS estimator and potentially biased statistical tests. It can be used to describe and
quantify the sources of correlations: the cables, the atmosphere, or the processing at the
receiver level. Such information provides precious data for stochastic modeling.

2.2. Surface Approximation Using T-Splines
2.2.1. General Principle of Surface Approximation

In this paper, we focus on the residuals of surface approximation from scattered data
using a mesh optimization approach. In the following, we only provide a short introduction
on that topic; interested readers should refer to other publications [7,13].
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From now on, we consider the observations to be the Cartesian coordinates of a 3D
point cloud, recorded by, for example, a TLS. We assume the point cloud to have been
parametrized in advance and the observations to be temporally sorted. We use the T-splines
surface approximation to estimate a net of control points-sometimes called vertices. The
denser the net, the closest the approximation will be to the noisy measurements. We
minimize the squared distance between the noisy points and the mathematical surface and
focus on the stochasticity of the residuals.

2.2.2. T-Splines Surface

A T-splines surface is defined as ST(s, t) =
m
∑

i=1
di Ni(si, ti), with Ni(s, t) = N3

i,Ub(s)N3
i,Vb(t)

and N3
i,Ub(s) as the cubic blending basis functions defined by a recurrence relationship

and associated with a knot quintuple Ub = [ui,0, ui,1, ui,2, ui,3, ui,4]; N3
j,Vb(s) is defined

similarly [7]. We call x = {di} the vector matrix, containing the nt control points to be
estimated iteratively. The main element of the T-splines surface is the T-mesh, which
consists of control points connected by several straight lines. Figure 1 (right) shows an
example for the surface under consideration in this paper, depicted in Figure 1 (left).
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Figure 1. Reference surface under consideration and the corresponding T-mesh after the 6th iteration;
threshold (TH) 0.002.

The surface approximation is performed iteratively via LS optimization, and usually
starts with a basic rectangular and regular mesh structure. The parameters to be estimated
are the nt control points from the T-mesh. The optimization problem can be written
in matrix form as Ax=B, where A is an (nt, nt) matrix that contains the estimation of

blending functions at the parameter location: agi =
n
∑

j=1
N3

g,Ub
(
sj
)

N3
g,Vb

(
tj
)
, g = 1 . . . nt.

Matrix A depends on the underlying T-mesh via the two local knot vectors Ub, Vb. We

further define B =
{

bg
}

, bg =
nt
∑

i=1
l(si, ti)Ni(si, ti). With this notation, we have a unique

solution
^
x = A−1B which corresponds to (2) by taking Σvv as the identity matrix. The

residuals of the approximation can be computed for each parametrized observation as
ei=‖ŜT(si, ti)− l(si, ti)‖2, i = 1 . . . n. We defined TH as being a user-defined threshold.
If ei > TH, the cells containing the corresponding data points are refined following the
algorithm proposed in [14]. The local refinement allows an economic surface approximation
in terms of the parameters to estimate. A wise choice of TH further reduced the risk of
overfitting, i.e., fitting the noise of the observations rather than the underlying surface.
We propose to set TH ≈ 2σZ, with σZ the variance in the Z-direction, to prevent such
unnecessary refinement. The refinement is ended if the errors do not exceed TH or after a
given number of iterations.

2.2.3. Residual Analysis

Once the surface approximation is performed, the residuals can be further analyzed.
In this paper, we concentrate on the Z-direction only, as the vertical component is known



Eng. Proc. 2021, 5, 59 4 of 8

to be noisier than the horizontal ones [10]. The observations are sorted temporally so that
the residuals can be seen as a time series (1D) rather than as a surface (2D).

From physical considerations, it is justifiable to assume the noise to be an fGn, or
a combination of them: the high rate of measurements of most sensors induces a long
dependency between the observations. More specifically, we are predisposed to think that
flicker and white noise (WN, coming from the electronic component and the processing
of the raw observations), or atmospheric noise (from the propagation of the signal) will
be present. Although they will be found in different bandwidths, a global correlation
parameter can be estimated using the WhiE as proposed by [15]. The fGn is fully described
by its bounded variance and Hurst exponent H, which is related to the slope of the psd.
Following [16], an unbiased likelihood is given by:

lW(H) = − ∑
ω∈Ω

[
log
(

f̃ (ω, H)
)
+

I(ω)

f̃ (ω, H)

]
(4)

with Ω the set of discrete Fourier frequencies, f̃ (ω, H) the continuous-time process spectral

density and I(ω) the periodogram I(ω)∞
N
∑

j=1

∣∣XH,je−ijω
∣∣2. The Hurst exponent can be

estimated as Ĥ = argmax(lW(H)). The slope of the psd β is given by H = β + 1/2. In this
paper, we use the WhiE as implemented in MATLAB by [17]; this function has the main
advantage of allowing the estimation of the Hurst parameter when the psd saturates at
low frequencies (the so-called Matérn covariance model [18]).

The methodology used in this contribution to derive the analysis of the observation
noise from the LS residuals is summarized in a flowchart form in Figure 2.
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Figure 2. Flowchart explaining the methodology to extract the geometry of a point cloud to analyze
the correlation structure of the residuals.

3. Data Analysis

In this section, we will validate the methodology presented in Section 2 to derive
the correlation structure of the measurement noise from the residuals of the LS surface
approximation. Comparable simulated and real data will be used to highlight the potential
of the method.

3.1. Simulated Point Clouds
3.1.1. Reference Point Cloud

We simulated 4000 Terrestrial Laser Scanner observations in Cartesian coordinates
from a surface corresponding to Figure 1. This reference surface contains different shapes:
it mimics a dam in the middle, a mountain in its side, and a wave structure on the top part
of it.

3.1.2. Noise Generation

The reference surface is noised by adding:

• to the X- and Y-components: a Gaussian noise with a standard deviation of 1 × 10−4

m–generated with the Matlab function randn;
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• to the Z-component: an fGn or a combination of fGn and WN. We use the MATLAB
function ffgn [19].

Two noise vectors are generated: a pure flicker noise (case 1) with H ≈ 0.9, and a
combination of 30% white and 70% flicker noise (case 2). The standard deviation of both
is set to σZ = 1 × 10−3 m, with the aim of approximating the reality of the noise of a TLS
sensor [10].

3.1.3. Surface Approximation

The approximation is performed with T-splines using the concept presented in Section
2. We use TH = 2σZ. 6 iterations were performed until the error term did not exceed the
threshold. The final T-mesh is shown in Figure 1 (right).

3.1.4. Residual Analysis

The residuals of the approximation are shown for case 1 as an example in Figure 3
(top, red line), together with their power spectral density (psd, Figure 3, bottom). A few
outliers caused by the mesh approximation are visible when compared with the reference
noise vector (Figure 3, blue line). Fortunately, the shape of the original noise vector is still
preserved, which highlights the goodness of the surface approximation. To validate that
the correlation structure of the residuals is the same as the one of the measurement noise,
we propose to justify empirically that Σvv_est can be discounted (see [3]). To that end, we
firstly assume an equal variance of 1 for the error term in the surface approximation. In
Figure 3, we plot the diagonal values and the first 100 lines of Σvv_est: the diagonal values
are more than 5 times smaller than 1; the sparsity of the matrix is evident. The mean value
of Σvv_est is found to be of the order of 1 × 10−3 << 1: this justifies discounting Σvv_est as its
impact will be small. The psd of the residuals (Figure 3, right bottom) confirms the validity
of this assumption; the slopes of the reference noise psd and the residuals are similar (see
Table 1 for the corresponding estimates using the WhiE). This result is valid for cases 1
and 2. We mention that the additional WN component acts to decrease the estimated
global slope (0.88 instead of 0.9); This is expected, since the WN was not filtered out. We
further point out that low frequencies are deleted in the residuals, which can be interpreted
intuitively by considering the T-mesh as a high-pass filter (see Figure 1). Fortunately, the
WhiE is not affected by the loss of power at low frequencies, as shown in Table 1. The
variance estimated from the residuals is slightly underestimated, which may be due to the
aforementioned effect.
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Table 1. Results of the residual analysis for case 1 (no WN) and case 2 (30% WN): slope of the psd
and standard deviation (abbreviated as std).

Slope/std [m] Case 1 Case 2

Original noise 0.9/1 × 10−3 0.88/1 × 10−3

Residuals 0.89/0.95 × 10−4 0.86/0.91 × 10−4
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3.2. Real Data Set
3.2.1. Using a 3D Printer

The simulated surface generated in Section 3.1 was created with a high-quality 3D
printer (see Figure 4a). To that end, the reference surface was firstly approximated with
T-splines to serve as a basis for the printing. To generate a 3D-printable plane from a
point cloud, this latter was converted into a solid. A surface model was first created from
the points using Delaunay triangulation, and a solid was finally generated by uniformly
thickening this model. The final export to a 3D printer-compatible file, such as the .stl
format, makes the surface generated from a point cloud 3D-printable. This latter was
printed using plastic and stabilized. Grey paint was used in order to avoid strong reflections
during the scanning process with a TLS. The additional WN generated by the scanner to
generate the surface is considered to be below 1 mm from manufacturer specifications.
Consecutively, the printed surface is not exactly the reference one but is superimposed
with WN. As the residuals are computed with respect to the generated surface and not the
true one, this will have no impact on our conclusions about the correlation structure.

3.2.2. Scanning

The 3D-printed surface was scanned using a phase TLS Zoller+Fröhlich Imager 5016.
The scanning configuration was optimal (no angle of incidence, and a surface aligned
centrally at the height of the tilting axis of the TLS). The measurements took place indoors
at the measuring laboratory of the Geodetic Institute in Hannover (see Figure 4a).

The panel was observed from a total of four standpoints, with distances between 2
and 6 m. No over-radiation occurred. In this contribution, we selected as an example
the distance of 2 m, scanned with the angle resolution “high” and the scanning duration
“high quality”, resulting in a total of 143,490 points. The point cloud was parametrized
and approximated with a T-splines surface with TH = 0.001, i.e., we assumed a standard
deviation of the noise of about 0.5 mm, following the manufacturer specification. The
obtained residuals and their psd are depicted in Figure 4 (r, top) and Figure 5, respectively.

3.2.3. Results

The psd of the whole residuals of the approximation is physically barely interpretable
(Figure 5, blue line), i.e., it depicts effects coming from the functional model or T-mesh
which acts by adding high frequencies—or identically down-weighting low frequencies,
see Section 3.1—yielding a serrated psd. For a better understanding of the correlation
structure, we thus selected 5000 epochs of the residuals, which are shown in Figure 4
(right, bottom). Other parts were selected: the same results were comparable and are not
presented here for the sake of brevity. We eliminated outliers with the mean absolution
deviation method [20] and performed a low-pass Butterworth filter of the first order with a
normalized cutoff frequency of 0.05, to further eliminate the WN component following the
methodology proposed in [21] (see Figures 4 and 5, red line). As expected from [22], we
can identify different noises present in different bandwidths: a strong WN component at
high frequencies, an fGn with a slope close to −8/3, followed by an fGn with a slope close
to −2/3 and a saturation at low frequencies. The lack of power at low frequencies is to be
interpreted following the results of the simulation, and comes from the T-splines surface
approximation. The global slope estimated with the WhiE for the non-filtered residuals
was found to be −0.8 due to the WN component and close to −2.8 for the filtered residuals.
Atmospheric turbulence affects optical signals traveling through a random medium close
to the earth’s surface and acts to correlate the measurements. This slope is close to the
one that is expected from the turbulence theory [21]. The variance of the non-filtered
residuals after outlier elimination was 5.8 × 10−4, and is close to the expected value from
the manufacturer specification.
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4. Conclusions

With the continuous increase of the data rate, the measurement noise of sensors is more
likely to become strongly temporally correlated. In this contribution, we have demonstrated
how the residuals of the LS approximation can be used to analyze the temporal correlation
structure of measurement noise from a TLS. As an example, we performed the extraction of
the geometry of a TLS point cloud using an LS approximation with a T-splines surface. This
latter has the main advantage of being computationally efficient; it provides an optimal
functional model for the further analysis of the correlation structure of the residuals of
the approximation. Simulations were set up to validate the methodology with a noised
reference surface. We used the unbiased WhiE to estimate the slope parameter of the
psd. The same surface was printed in 3D and scanned with a TLS. The residuals could be
successfully interpreted based on the results of the simulations. The psd of the real data
analysis showed noises present in different bandwidths. Besides a WN component, some of
them were identified as coming from the propagation of optical signals through a turbulent
medium. This analysis is a validation of the potential of the LS surface approximation to
quantify and analyze the correlation structure of sensor noise. Further investigations will
focus on its modelization, as well as the impact of functional mismodeling on the spectral
decomposition of the residuals.
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