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Abstract

Atom interferometers are versatile instruments offering great accuracy and stability, suit-
able for fundamental science and practical applications. In usual setups, the sensitivity
of the sensor to inertial forces including gravitational signals scales with the spatial sep-
aration of two atomic wave packets. Consequently, increasing this separation using large
momentum transfer (LMT) promises to enhance the performance of today’s devices by or-
ders of magnitude. To date, despite several proof-of-principle experiments, only a handful
of Bragg diffraction-based LMT implementations have yielded actual metrological gain.
Hence, in this thesis we investigate the current sensitivity limits of Bragg interferometers
resulting from the insufficient control of the atom-light interaction in two parts.

In the first part we develop an analytical theory for Bragg pulses based on the pivotal
insight that the elastic scattering of atoms from time-dependent optical lattices can be ac-
curately described using the adiabatic theorem. We show that efficient Bragg operations
can be realized with any smooth pulse shape, suggesting that adiabaticity may be a nec-
essary requirement. Moreover, we find that high-quality Gaussian pulses are exclusively
adiabatic. Our model incorporates corrections to the adiabatic evolution due to Landau-
Zener processes, as well as the effects of a finite atomic velocity distribution. We verify its
accuracy by comparison with exact numerical descriptions of Gaussian pulses transferring
four, six, eight, and ten photon recoils (ℏk). We then extend our formalism to study the rich
phenomenology of Bragg interferometers, which is quite different from that of a standard
two-mode interferometer. We confirm the accuracy of our analysis through extensive nu-
merical simulations for the example of a Mach-Zehnder interferometer. In particular, we
determine the atomic projection noise limit of the interferometer and provide the means to
saturate it. Furthermore, we evaluate the systematic errors intrinsic to the Bragg diffraction
process, commonly known as the diffraction phase. We demonstrate their suppression by
two orders of magnitude down to a few µrad using appropriate pulse parameters.

In the second part of this thesis, we present twin-lattice interferometry based on sym-
metric Bragg diffraction and Bloch oscillations combined with slowly expanding Bose-
Einstein condensates. This method promises to address many of the constraints of previous
LMT implementations enabling unprecedented momentum separations of up to 408 ℏk in
the QUANTUS-1 experiment. We model the experimental contrast decay with increasing
momentum transfer and conclude that in particular the interaction of the atomic ensemble
with a distorted laser beam leads to spatial decoherence and to contrast loss. The results
presented in this thesis indicate that technical imperfections currently limit the scalability
of the experiment and our theoretical analysis will be highly instrumental in the design of
future sensors with momentum separations of up to one thousand photon recoils or more.

Keywords: Atom interferometry, Bragg diffraction, Large momentum transfer, Adia-
batic theorem, Diffraction phase, Twin-lattice interferometry





Zusammenfassung

Atominterferometer sind vielseitige Instrumente mit hoher Genauigkeit und Stabilität, die
sich sowohl für die Grundlagenforschung als auch für praktische Anwendungen eignen. In
typischen Aufbauten skaliert die Sensitivität dieser Sensoren gegenüber Trägheitskräften,
einschließlich Gravitationssignalen, mit dem räumlichen Abstand zwischen zwei atomaren
Wellenpaketen. Folglich verspricht die Vergrößerung dieser Separation mittels großer Im-
pulsüberträge erhebliche Leistungssteigerungen. Allerdings konnten bisher nur wenige
auf Bragg-Streuung basierende Experimente einen messtechnischen Nutzen nachweisen.
Gegenstand dieser Arbeit sind daher die derzeitigen Limitierungen von Bragg-Interferome-
tern, die aus der Atom-Licht-Wechselwirkung resultieren.

Basierend auf dem adiabatische Theorem entwickeln wir zunächst eine Beschreibung
der elastischen Bragg-Streuung an zeitabhängigen optischen Gittern. Unsere Untersuchung
legt nahe, dass Adiabatizität für stetig-differenzierbare Pulsformen eine notwendige Be-
dingung darstellt, und wir zeigen, dass dies für Gauß-Pulse der Fall ist. Unser Modell
berücksichtigt nichtadiabatische Korrekturen aufgrund von Landau-Zener-Prozessen sowie
die Auswirkungen einer endlichen atomaren Geschwindigkeitsverteilung und zeigt große
Übereinstimmung mit exakten numerischen Lösungen für Gauß-Pulse, die vier, sechs,
acht und zehn Photonenrückstöße (ℏk) übertragen. Anschließend untersuchen wir die
Phänomenologie von Bragg-Interferometern, die sich deutlich von der eines Zweimoden-
Interferometers unterscheidet. Wir bestätigen die Genauigkeit unserer Analyse durch um-
fangreiche numerische Simulationen am Beispiel eines Mach-Zehnder-Interferometers. Ins-
besondere quantifizieren wir das atomaren Projektionsrauschen des Interferometers und
zeigen, wie diese fundamentale Schranke erreicht werden kann. Außerdem evaluieren wir
die systematischen Fehler, die aus der Bragg-Streuung resultieren und allgemein als Streu-
phase ("diffraction phase") bekannt sind. Wir demonstrieren deren Unterdrückung um zwei
Größenordnungen bis zu einigen µrad mittels geeigneter Pulsparameter.

Im zweiten Teil der Arbeit stellen wir das Prinzip der Doppelgitter-Interferometrie
vor, die auf symmetrischer Bragg-Beugung und Bloch-Oszillationen in Kombination mit
kollimierten Bose-Einstein-Kondensaten basiert. Dies verspricht, viele der Einschränkun-
gen bisheriger LMT-Implementierungen zu überwinden und ermöglicht im QUANTUS-1-
Experiment Impulsseparationen von bis zu 408 ℏk. Unsere Analyse zeigt, dass insbeson-
dere die Wechselwirkung des atomaren Ensembles mit einem gestörten Lichtfeld zu räum-
licher Dekohärenz und zu Kontrastverlust führt. Daher liegt es nahe, dass technische Un-
zulänglichkeiten derzeit die Skalierbarkeit des Experiments einschränken. In Zukunft wird
die hier vorgestellte theoretische Analyse einen entscheidenden Beitrag zur Entwicklung
neuartiger Sensoren mit Impulsüberträgen von bis zu 1000 ℏk oder mehr leisten.

Schlagwörter: Atominterferometrie, Bragg-Streuung, Großimpulsübertragung, Adia-
batisches Theorem, Streuphase, Doppelgitter-Interferometrie
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1
Introduction

In 1923 L. de Broglie [1], formulated the foundational principle of matter-wave interferom-
etry: A particle with mass M moving with velocity v can be described as a wave with an
associated wavelength, λdB = h/Mv, that is proportional to the Planck constant h. Until this
seminal discovery, the prevailing view was that wave-like properties could be associated
with light but not matter. This was based on classical optics, where beam splitters and mir-
rors were used to separate and recombine light beams in interferometry experiments. The
argument of de Broglie to apply this concept to matter waves in the first half of the 20th
century was therefore nothing less than a revolution. Following the electron diffraction
experiments of C. Davisson and L. H. Germer [2], as well as G. P. Thomson [3], to date
matter-wave interferometry has been performed with electrons, neutrons [4,5], atoms [6–9],
and molecules [10, 11].

Although delocalization and interference of massive particles are hallmarks of their
quantum wave nature, they remain seemingly strange concepts that do not match observa-
tions in our mostly classical everyday life. For the wave properties of a particle to play a
significant role, its wavelength λdB must reach a considerable size. This requires the par-
ticle to be slowed down, since λdB ∝ v−1 scales inversely proportional to its velocity. At
room temperature, the thermal velocity of the particles, e.g., as part of an atomic cloud is
in the order of m/s, translating into de Broglie wavelengths of a few tens of picometers, so
that it is hardly possible to detect signs of the wave nature of matter [12].

In this context, the advent of atom optics began with the invention of the laser in the
1960s [13] and subsequent technological advances in stable monochromatic light sources.
Decades of pioneering work followed with the goal of cooling and trapping atomic vapors
with light at temperatures near absolute zero [14–16]. Since then, the suspension of neutral
atoms in a vacuum and the ability to precisely control their internal and external degrees of
freedom have paved the way for an incredible number of new scientific achievements. One
of these is a distinctive demonstration of a particular state of matter: The Bose-Einstein
condensate (BEC) was first realized in 1995 [17, 18] and is named after S. Bose and A.
Einstein, who already predicted its existence in 1914 [19, 20]. It is reached when the tem-
perature of a trapped cloud of bosonic atoms is sufficiently low so that the particles’ de

1
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Broglie wave length reaches the same order of magnitude as the average interparticle dis-
tance. As the matter waves start overlapping, the ensemble enters the so-called regime of
quantum degeneracy.

These and similar advances in technology and fundamental science have opened the
floodgates to the development of numerous new and increasingly precise measurements in
recent decades. From a metrological point of view, atoms represent the ideal test particles,
since two atoms of the same kind are indistinguishable and most of the atomic species
used for experiments (alkali and alkaline earth metals) are relatively easy to handle and
abundant on Earth. As massive particles with electromagnetic moments, they extend the
possibilities of electrons and neutrons by coupling to all known (and potentially unknown)
natural forces. This allows to probe a variety of effects with high controllability, rendering
atom interferometry one of the most striking and versatile scientific innovations in atom
optics.

Consequently, atom interferometery [21] has proven to be a powerful approach to test
fundamental theories such as quantum electrodynamics [22–24]: To date, atom interfer-
ometers measuring the atomic recoil provide the most accurate determination of the fine
structure constant [23, 24]. The inertial mass of the atoms makes these devices uniquely
situated to probe the very interface between quantum particles and gravity [25]. This al-
lows for some of the most rigorous constraints on quantum theory and general relativity,
e.g., via complementary measurements of Newton’s gravitational constant [26] as well as
tests of the equivalence principle [27–32]. Moreover, future devices may detect infrasound
gravitational waves [33–40], realize quantum clocks [41–45] and contribute to the search
for ultra-light dark matter [40, 46, 47]. Atom interferometers, however, not only provide
answers to pressing questions in fundamental physics, but are also prime candidates for
real-world applications [48] such as gravimetry [49, 50], gravity cartography [51], and in-
ertial navigation [52, 53].

All these advances directly exploit the interferometers’ ability to perform absolute mea-
surements of inertial forces with high precision and accuracy [54]. This is ultimately lim-
ited by the degree of control over their elementary atom optical elements. Some of the
first interferometers were based on fixed gratings [7] or slits [6] to separate and recombine
beams of cold atoms. But the success of atom interferometery is based on the high level of
accuracy and stability provided by the realization of beam splitters or mirrors using pulsed
counterpropagating laser beams [8, 9]. The goal of this thesis is to provide new theoretical
insights into the interaction between light and matter in order to improve the performance
of atom interferometric sensors.
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1.1 Example of an Inertial Matter-wave Sensor

For this purpose, the principle of an inertial sensor is briefly explained. Any massive object
can be accelerated by inertial forces such as gravity and the resulting motion generates a
signal allowing to infer the force accelerating the object. Here, we assume a constant linear
acceleration a. The sensitivity of the device with respect to this force derives from the abil-
ity to track the relative motion of a freely falling test mass with respect to its environment
for the duration of the measurement. For example, a freely falling test mass could be used
to infer the acceleration of the experimental apparatus mounted on a ship or aircraft. Con-
versely, a stationary experimental unit on the ground could track the acceleration of the test
mass in free fall to measure gravity. In both cases, the signal is encoded in the relative mo-
tion between the test mass and its environment. Measuring this signal can be accomplished
by accurately tracking its relative position due to acceleration as a function of time in in-
ertial sensors, and should be repeatable many times to ensure the statistical significance of
the result. Inertial sensors based on atom interferometry are unique in that the atoms are
free from manufacturing defects and mechanical wear, guaranteeing outstanding long-term
stability. In addition, the spatial reference is typically an optical lattice implemented by
counterpropagating laser beams, which promises a high degree of control and flexibility.

Figure 1.1(a) shows the example of a typical light-pulse atom interferometer in the stan-
dard Mach-Zehnder (MZ) configuration, consisting of two beam splitters and mirror pulse.
Between pulses, the atoms move freely along the two paths reminiscent of an optical MZ
interferometer. In this case, the incoming atomic wave packet is separated and recombined
by via the interaction with the laser potential at three time points, which promotes transi-
tions between two atomic states via stimulated emission and absorption of photons. The
simplest form that the temporal profile of the laser intensity can take is that of a box pulse,
in which the laser is abruptly switched on and off again. Figure. 1.1(b), on the other hand,
shows a series of Gaussian light pulses, which we consider throughout this thesis. The dif-
ference of the center-of-mass momentum p between two atomic states corresponds to the
total photon recoil transferred during the atom-light interaction, |1,p⟩ ←→ |2,p + ℏkeff⟩,
where we have introduced the effective wave vector keff and the reduced Planck constant
ℏ = h/2π. Ideally, the pulses transfer either half (beam splitter, also called "π/2-pulse")
or the entire population between the two states (mirror, also called "π-pulse") and ensure
that the trajectories of the two clouds perfectly overlap at the last pulse at t = 2T . Since
the atoms interact with the optical lattice several times during the measurement cycle, each
interaction imprints a phase on the atoms that depends on their position and consequently
encodes their motion relative to the spatial structure of the lattice. The interferometer is
therefore designed to derive the phase difference ϕ accumulated by the two atomic wave
packets propagating along the two separate paths in Fig. 1.1(a). The measurement of ϕ is
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Figure 1.1: Space-time diagram of a three-pulse Mach-Zehnder (MZ) matter wave
interferometer. (a) We show the center-of-mass trajectories of an incoming atomic wave
packet in the freely falling frame. The wave packet is split, redirected and recombined
via the interaction with three successive laser pulses at times t = 0,T, 2T . The atom-light
interaction promotes transitions between the atomic states |1,p⟩ (blue) and |2,p + ℏkeff⟩
(violet), where the effective momentum ℏkeff is transferred only to one part of the superpo-
sition. Here, ℏ = h/2π is the reduced Planck constant. Because the phase imprinted during
each interaction depends on the position of the wave packet with respect to the light fields,
the relative phase ϕ accumulated along the two trajectories in Eq. (1.1) is proportional to
the space-time areaA (gray shaded area) [55–57]. In this thesis, we consider laser intensi-
ties with a Gaussian time profile, as shown in (b).

made possible by the last pulse, which converts this relative phase into a population dif-
ference between the two states |1,p⟩ and |2,p + ℏkeff⟩. The last beam splitter in a light
interferometer plays a similar role, as it converts the relative phase between the two electric
fields propagating along the two arms into an intensity difference between the two output
ports.

1.1.1 Sensitivity to Linear Acceleration

The relative phase accumulated due to a linear acceleration a by the two wave packets
propagating along the two trajectories in Fig. 1.1(a) after a time 2T is given by [55–57]

ϕ =
M
ℏ

a · A = a · keffT 2. (1.1)

It is a function of the space-time area enclosed by the two arms of the interferometer,
A = ℏkeffT 2/M, which we highlight in the figure (gray shaded area). Consequently,A de-
pends on the atomic mass M and scales linearly with the momentum separation keff as well
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as quadratically with the separation time T 2. Therefore, A serves as an amplifier, since
the larger A is, the more a change in acceleration affects the phase ϕ. The measurement
of populations of quantum states is a probabilistic process, which is a key characteristic of
quantum mechanics postulated by Born’s rule. Hence, any estimate of ϕ will be subject
to a statistical uncertainty, ∆ϕ≥ 1/

√
Natoms, where Natoms is the number of atoms taking

part in the interferometer in one realization (also referred to as a "shot"). The scaling with
1/
√

Natoms is a consequence of the fundamental uncertainty associated with the projective
measurement in a two-level system for a fixed number of atoms and is therefore often re-
ferred to as atomic projection noise or shot noise [58]. If ∆ϕ = 1/

√
Natoms the measurement

is only limited by the fundamental shot-noise and technical noise sources are negligible.
Accordingly, the scale factor in Eq. (1.1), keffT 2, translates this into a corresponding

statistical uncertainty in the measurement of a, which is typically referred to as the sen-
sitivity, ∆a. Assuming that both the force and the wave vector are aligned in parallel,
a · keff = |a| |keff | C a keff , so that the sensitivity of an interferometer with an ideal signal-
to-noise ratio combined with an atomic source that produces Natoms uncorrelated atoms per
second becomes (see, e.g., [59])

∆a =
∆ϕ

keffT 2 ≥
1√

NatomskeffT 2
. (1.2)

Improving the inertial sensitivity, either by increasing the atomic flux or the space-time
region enclosed by the two arms, or both, has been the focus of tremendous efforts that
have decisively shaped the field of atom interferometry over the past decade.

In the remainder of this introduction, we will briefly discuss some important devel-
opments that have already influenced the design of many of today’s instruments, but will
certainly prove to be groundbreaking for future generations. For a more comprehensive
overview of the state of the art in this field, with a special focus on inertial sensing, we rec-
ommend the reader to refer to the recent reviews by R. Geiger et al. [54] and F. A. Narducci
et al. [60] as well as the references therein.

1.1.2 Cold Atom Sources

If a measurement is shot-noise limited, increasing the atomic flux immediately improves
the statistical significance of a single measurement run, as Eq. (1.2) suggests. This may re-
duce the total number of measurements required for a targeted level of sensitivity. Modern
sources of laser-cooled atomic clouds produce circa 109 atoms/s [61], while thermal atomic
beams can achieve an even larger flux [62], pushing the theoretical projection noise limit
well below the mrad-level, ∆ϕ< 100 µrad. Meanwhile, the flux of the best current BEC
sources is still orders of magnitude below that of thermal atoms [63]. However, comparing
the two also requires taking into account the considerably larger expansion velocities of
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thermal ensembles compared to condensed ones (see, e.g., Ref. [64, 65]), which can cause
systematic errors in the interferometer [66–68] as well as lead to significant losses due to
velocity sensitivity [69]. Moreover, the flux of BEC sources may be improved considerably
in the intermediate future by the successful implementation of the atom laser [70, 71]. In
addition, condensed ensembles offer the exciting prospect of using correlations between
particles for improved scaling of ∆ϕ with Natoms [72,73] up to the Heisenberg limit [74,75],
1/Natoms.

Naturally, the development of compact and robust atomic sources has become an impor-
tant focus [63,76–78], as it is essential for the transition from laboratory-based experiments
to portable devices that can be used in the real world [48]. In addition, extensive efforts
have been made to better control the kinematic properties of the atomic source, which has
sparked particular interest in BEC interferometry [79]. The reason is that small uncertain-
ties in the position of the atomic clouds and a low expansion rate are indispensable when
aiming for higher sensitivities by pushing the pulse separation time T and/or increasing the
relative momentum ℏkeff between the wave packets [see Eq. (1.2)].

1.1.3 Large Separation Times T

In conventional light-pulse interferometers, the atoms are in free fall between pulses, and
the duration T is limited by the finite dimensions of the experimental apparatus. To prevent
the atoms from falling out of the experiment, the free-fall time can be extended either in an
atomic fountain, allowing up to 2T = 2.3 s in 10 m setups on Earth, or by performing the
experiment in a microgravity environment [52, 80–83], which promises a nearly force-free
interrogation for the duration of several seconds [82, 83]. Alternatively, experiments have
explored the possibility of suspending atoms via an external force [84–88], and although
this method requires extremely good control over the quality of the levitating potential, the
method has recently enabled coherence times of up to one minute [88].

Either approach has its own use case and presents a number of challenges, but they both
require extremely low expansion rates of the atomic ensemble to avoid detrimental system-
atic effects stemming from the finite dimensions of the laser beams used to interrogate the
atoms [88,89]. The need for ultracold atomic ensembles makes BECs particularly interest-
ing because of their inherently small cloud sizes and the ability to achieve expansion rates
of less than 100 µm/s [65].

Developing inertial sensors based on condensed ensembles that can be deployed in ex-
treme environments such as sounding rockets [90] or space [83] to perform matter-wave in-
terferometry in microgravity has been a long standing goal of the QUANTUS (Quantengase
unter Schwerelosigkeit) consortium [91]. This collaboration between several German uni-
versities and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt,
DLR [92]) has a strong focus on interferometry in microgravity environments [80, 81, 83,
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90, 93], but also contributes to the innovation of the field of BEC interferometry in gen-
eral [94, 95]. Most recently, the first-generation experiment QUANTUS-1 demonstrated
the state of the art in splitting beams with large momenta [96].

1.1.4 Large Momentum Transfer (LMT)

Large-momentum-transfer (LMT) beam splitting takes advantage of the improved scaling
of interferometer sensitivity with the momentum separation ℏkeff of the coherent superpo-
sition of matter waves, as seen in Eq. (1.2). Several proof-of-principle experiments have
demonstrated record-breaking separations [96–99] using various beam splitting techniques.

The first light-pulse atom interferometers used counterpropagating light fields to couple
the hyperfine states of laser cooled atoms via Raman transitions [8,9]. This makes the atom-
light interaction insensitive to the relatively large velocity spread of the atomic ensembles
available at the time1, and enables selective detection of the two different electronic states.
However, this limits the momentum splitting to ℏkeff = 2 ℏk, where k is the wave number
of the optical lattice. Advances in laser cooling technology and BEC production, leading
to atomic ensembles with momentum widths corresponding to a fraction of the photon
recoil [64,65], have brought into focus the utility of Bragg scattering of atoms from optical
lattice potentials [101, 102] for atom interferometry.

Today, Bragg diffraction is at the heart of many elementary atom-optical operations
in modern atom interferometry because it allows multiple photon recoils to be imparted
to the atomic wave packets while precisely controlling the diffracted populations without
changing the internal state of the atoms [64, 94, 96–98, 103–105]. The price to pay is the
relatively strong velocity selectivity of the diffraction process [69] due to the relatively
small energy splitting of the involved momentum states, which is in the order of the recoil
frequency, ωr = ℏk2/2M (∼kHz). Nevertheless, Bragg diffraction enabled benchmark ex-
periments to drive higher-order transitions up to 24 ℏk [103] and allowed for momentum
separations of more than 100 photon recoils via sequential Bragg pulses [97]. In partic-
ular, high-fidelity Bragg pulses, often in conjunction with other methods such as Bloch
oscillations (BO) [96, 106–111], are an indispensable tool for LMT atom interferome-
try [64, 94, 96–98, 103, 104, 109, 111]. Recently, the QUANTUS-1 experiment reported
record-breaking momentum separation in an atom interferometer. Using "twin-lattice in-
terferometry" the experiment combined a BEC source with two counterpropagating lattices
to perform symmetric Bragg diffraction as well as BO, realizing MZ-type interferometers
with at the time unprecedented momentum separations of more than 400 ℏk [96]. Since
then the authors T. Wilkason et al. [99] have achieved comparable momentum separations
combining inelastic scattering with methods of quantum control.

1Because the detuning between the involved hyperfine states is typically in the GHz range, e.g., see the
D2-line data for 87Rb in Ref. [100].
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1.1.5 Accuracy Limits: Diffraction Phases

Given these groundbreaking developments and several successful proof-of-principle ex-
periments, it may seem counterintuitive that only a handful of atom interferometers have
so far demonstrated a metrological gain implementing LMT beam splitters for matter
waves [23,32,112,113], all of which rely on Bragg diffraction. Moreover, most sensitive in-
ertial sensors are currently based on thermal atomic ensembles interrogated via two-photon
Raman transitions [54]. The main reason for this is that current metrological tests of inertial
forces are not necessarily bounded by the statistical uncertainty in Eq. (1.2). Instead, they
suffer from inertial noise [24, 114] or, more fundamentally, their accuracy is limited due to
insufficient control over elementary atom-optical elements such as beam splitters or mir-
rors, often related to inhomogeneities of the light field acting on the atoms [85, 86, 88, 96].
These imperfections are associated with the phase profile of the laser and are described as
wavefront aberrations [66–68]. When they are related to the intensity distribution or the
temporal pulse shape of the laser, they are often called "diffraction phases" [115–121]. In
both cases, they lead to shifts in the relative phase in Eq. (1.1) contributing dominantly to
the error budget of state-of-the-art experiments, e.g., see Refs. [23, 24, 68, 122].

Since these imperfections are ultimately related to the relative motion of atoms in the
laser beam caused by the finite size of the atomic ensemble and residual expansion, both
Bragg and Raman interferometers face very similar challenges in this regard. However,
the fact that Bragg diffraction inherently requires ultracold atomic ensembles with low
expansion rates helps to mitigate some of these issues [54,89,123], albeit at the cost of sig-
nificantly reduced atom numbers, as we have explained above. Furthermore, all the short-
comings caused by the inhomogeneities of the laser are further amplified when multiple
photons are transferred either via Bragg transitions [98, 103, 124] or BO [84–86, 88, 118].
For this reason, lattice-depth-dependent phase shifts [116, 119, 120] lead to stringent re-
quirements for experimental control of light field intensity in the context of Bragg diffrac-
tion and require appropriate mitigation strategies in the case of asymmetric momentum
transfer [112, 119, 124]. Using single, multiphoton Bragg diffraction beam splitting pulses
relaxes these requirements, but so far at the expense of smaller separations [103].

More importantly, in the case of Bragg scattering, the presence of multiple nearby tran-
sitions causes diffraction phases even under the assumption of a perfectly homogeneous
light field in the form of a plane wave [116–121]. This makes it arguably more difficult
to accurately determine the resulting diffraction phase shifts in Bragg interferometers com-
pared to their Raman counterparts.
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1.2 Thesis Outline

The inability to accurately estimate the systematic effects resulting from the atom-light in-
teraction is a key factor limiting the sensitivity of modern LMT atom interferometers based
on Bragg diffraction. A precise theoretical understanding of the atom optical elements is
therefore essential to realize the full potential of interferometry with enhanced scale factors.

In the first part of this thesis, comprising the following two chapters, we present an
analytical model for the signal from LMT Bragg atom interferometers using higher order
Bragg diffraction in one dimension. Our treatment takes into account the multilevel prop-
erties of Bragg diffraction, which allows estimation of subsequent systematic effects and
provides insight into appropriate mitigation strategies. These results provide the basis for
future work to develop an analytical description of the interplay between three-dimensional
Bragg atom interferometer geometries and the effects of realistic laser potentials, including
wavefront errors and spatial laser intensity fluctuations. In the second part of this thesis,
we investigate the limitations of current state-of-the-art LMT atom interferometers imple-
mented in the QUANTUS-1 experiment focusing on the interaction between the atoms and
the laser potentials.

This thesis is organized as follows. Chapter 2 starts with a short overview of already
existing theoretical descriptions of Bragg pulses. Motivated by the key insight that the
dynamics of these pulses can be captured very accurately based on the adiabatic theorem,
this is followed by a novel formulation of the problem within the framework of scattering
theory. In the following, the measure of the pulse fidelity is introduced to compare the
analytical predictions with exact numerical solutions of the dynamics of Bragg beam split-
ters and mirrors with Gaussian temporal pulse envelopes. This serves as a foundation for
Chapter 3, which relates the metrological characteristics of Bragg interferometers to the
multiport properties of the individual pulses. Using the popular Mach-Zehnder geometry as
an example, it is shown that the physics of Bragg interferometers deviates significantly from
the standard two-mode mode picture, leading to systematic errors and changing the stan-
dard shot-noise limit. Finally, ways to control and suppress intrinsic systematic errors by
two orders of magnitude are presented. Chapter 4 introduces the key ingredients to twin-
lattice interferometery: Bose-Einstein condensates, symmetric (double) Bragg diffraction,
and Bloch oscillations. After a brief description of the realization in the QUANTUS-1 ex-
periment, the concepts of atom loss, open interferometer, and dephasing are discussed as
the main causes of fringe contrast loss in the large-momentum-transfer atom interferometer.
A theoretical model based on these aspects and tailored to the experiment is then compared
with the measured data. Chapter 5 summarizes these findings and concludes this thesis.
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2
Theory for Bragg Atom
Interferometry Based on the
Adiabatic Theorem

2.1 Motivation and Research Problem

Bragg diffraction of atoms from optical lattice potentials [101, 102] is a cornerstone of
light-pulse atom interferometry [125]. It is at the heart of most elementary atom optical
operations in modern atom interferometry aimed at transferring several photon recoils and
precisely controlling the diffracted populations without changing the internal state of the
atom [64, 94, 96–98, 103–105]. In particular, high-fidelity Bragg pulses, often in conjunc-
tion with other methods, such as Bloch oscillations [96,106–111], are an indispensable tool
for LMT atom interferometry [64, 94, 96–98, 103, 104, 109, 111].

Theoretical models for Bragg diffraction of matter waves from light crystals have first
covered the two limiting cases of short and intense as well as faint and long light pulses
referred to as the Raman-Nath [126–128] or deep-Bragg regime [101, 102] respectively.
Especially for rectangular pulses, both yield simple analytic solutions of the Schrödinger
equation and thus provide compact descriptions of elementary atom optical operations and
interferometers composed of them. However, neither allows for efficient LMT operations
as desired for ultrasensitive atom interferometry. It has been found that efficient LMT
operations can be achieved in between the two limiting cases of the Raman-Nath and deep-
Bragg regime, in the so-called quasi-Bragg regime. As a result, LMT Bragg pulses in
state-of-the-art atom interferometer experiments predominantly operate in the quasi-Bragg
regime [23, 94, 96–98, 103–105, 109, 111]. In this regime, the approximations that led to
analytic solutions in the previous cases are not applicable, and no simple analytic descrip-
tion of the Schrödinger dynamics generated by quasi-Bragg pulses with time-dependent
envelopes has been known so far. As a matter of fact, for lack of manageable analytic de-
scriptions, measured data in experiments are usually compared against numerical solutions
of the Schrödinger equation [23, 94, 98].

11
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The main focus of this chapter is to develop a comprehensive and relatively simple
analytic theory for Bragg atom interferometers. The key insight of the work presented in
the following is that the dynamics in the quasi-Bragg regime can, in fact, be captured very
accurately by a model based on the adiabatic theorem [129]. We show that any smooth
and adiabatic (in the sense of the adiabatic theorem) Bragg pulse can give rise to efficient
atom optical operations. For the specific but widely used case of a Gaussian pulse we also
show the reverse: Efficient beam splitter or mirror operations are generated exclusively by
adiabatic pulses. Whether this is generally true, i.e., whether nonadiabatic Bragg pulses
generating diabatic dynamics can lead to high-performance atom-optical operations at all,
does not seem obvious to us based on the description developed in this chapter.

Before proceeding to formulate the problem of Bragg diffraction within the framework
of scattering theory, in Sec. 2.2 we first briefly introduce the existing theoretical descrip-
tions based on diabatic time evolution and point out the conceptual differences with our
approach. The following Secs. 2.3 and 2.4 contain the formal derivation of the scattering
matrix, where we exploit the symmetries of the Bragg Hamiltonian, apply the adiabatic the-
orem, and calculate first-order corrections to it. They take the form of Landau-Zener (LZ)
losses and LZ phases as well as first-order Doppler shifts to perturbatively account for the
finite momentum widths of atom wave packets. We summarize our findings in Sec. 2.5
and formulate the two-mode Bragg scattering matrix as a result. On this basis we study in
Sec. 2.6 the fidelities of single Bragg beam splitter and mirror operations achievable with
Gaussian pulses and show that our analytical model accurately reproduces the rich phe-
nomenology exhibited by the numerical solutions of the Schrödinger equation. To improve
accessibility of the results presented in this chapter and to facilitate further research all of
the codes used to generate these results are available [120]. Finally, and in anticipation of
Chapter 3 we extend our formalism in order to also describe the coherent coupling to unde-
sired diffraction orders during higher-order Bragg processes in Sec. 2.7, while the outlook
of this chapter indicates additional extensions and generalizations of the results developed
in this thesis.

2.2 Review: Theory of Bragg Diffraction from Light Crys-
tals

We start with a brief introduction of the Hamiltonian governing the dynamics of Bragg
diffraction. For a more detailed derivation of the interaction of an atom with a classical
radiation field, we recommend the textbook by P. Meystre [12] and would like to draw
attention to the presentation of the individual contributions towards a better understanding
of the diffraction of matter waves from optical lattices by H. Müller et al. [130].
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2.2.1 Bragg Hamiltonian

Consider an atom (mass M) in a state which is localized in momentum space at an average
momentum Mv0 with a characteristic spread σp≪ ℏk. Here, k ≡ k1 ≈ − k2 is the wave
number of two counterpropagating light fields with a laser phase ϕL forming the optical
lattice as sketched in Fig. 2.1(a),

E(x̂, t) = E0(x̂, t)ε {cos (k1ẑ − ω1t + ϕL) + cos (k2ẑ − ω2t − ϕL)}
= 2E0(x̂, t)ε {cos (kẑ − δt + ϕL) · cos (ωLt)} . (2.1)

For simplicity we assume identical polarization vectors ε and homogeneous electric field
amplitudes E0(x̂, t) = E0(t) for both plane waves, so that E(x̂, t) = E(ẑ, t). Moreover, in the
second equality we have used the assumption that the frequency difference 2δ ≡ ω1 − ω2 is
typically small compared to laser frequencies 2ωL ≈ω1+ω2, i.e., δ≪ωL, and employed the
trigonometric relation cos (x) + cos (y) = 2 cos ( x+y

2 ) cos ( x−y
2 ). Note, that in this chapter we

assume δ(t) = δ but treat time-dependent detunings δ(t) later in Chapter 4. Since δ(t)≪ωL,
we can assume throughout this thesis thatωL(t) = ωL. In case of a two-level atom consisting
of a ground state |g⟩ and a single excited state |e⟩, its interaction with the electric field can
be effectively described via a dipole potential contributing to the Hamiltonian

Hdip =
p̂2

2M
+ ℏωg |g⟩⟨g| + ℏωe |e⟩⟨e| − d̂ · Ê(x̂, t). (2.2)

Operators x̂ and p̂ denote the centre-of-mass position and momentum operators for the
atom that satisfy the commutation relations [xm, p j] = iℏδm j. Since the operator d̂ = −e x̂e

accounts for the dipole moment of a single electron with charge e at position x̂e relative
to the atom’s center of mass, the dipole approximation is most accurate for hydrogen-like
species such as alkali atoms. The dipole coupling due to the one-dimensional light-field in
Eq. (2.1) simplifies to

−d̂ · Ê(ẑ, t) = ℏΩeg(t) cos (kẑ − δt + ϕL)
(
eiωLt |e⟩⟨g| + e−iωLt |e⟩⟨g| + H.c.

)
, (2.3)

where we have introduce the coupling strength in terms of the Rabi frequency

Ωeg(t) = −E0(t)
ℏ

(deg · ε). (2.4)

It depends on the amplitude as well as the polarization of the electric field relative to the
quantization axis of the atomic dipole given by the transition dipole moment deg. Since
the dynamics of Bragg diffraction is dictated by two very different time scales in the form
of δ (≈ 103 − 105 Hz) and ωL (≈ 1015 Hz) according to the Hamiltonian in Eq. (2.2), it is
convenient to change to a frame rotating at the laser frequency ωL. This is achieved by
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writing Hdip = Hdip
0 +Hdip

I and moving to an interaction picture, where the operators absorb
the time evolution generated by

Û = exp
{(
− i
ℏ

Hdip
0 t

)}
, with Hdip

0 = ℏωg |g⟩⟨g| + ℏ(ωe − ∆) |e⟩⟨e| . (2.5)

Here, we have introduced the detuning of the laser from the transition frequency separating
the two atomic levels ∆ = (ωe − ωg) − ωL. To suppress spontaneous emission during the
Bragg interaction the detuning from the atomic resonance typically satisfies Γnat≪∆≪ωL,
where Γnat denotes the natural line width of the atomic transition. This permits us to neglect
the effect of spontaneous emission for now, but we will comment on its role for Bragg
diffraction later.

We describe the evolution of the states solving the Schrödinger equation after trans-
forming the residual terms,

Hdip
I =

p̂2

2M
+ ℏ∆ |e⟩⟨e| + ℏΩeg(t) cos (kẑ − δt + ϕL)

(
eiωLt |e⟩⟨g| + e−iωLt |e⟩⟨g| + H.c.

)
, (2.6)

into the interaction picture according to

Hdip
I → Û†Hdip

I Û =
p̂2

2M
+ ℏ∆ |e⟩⟨e| + ℏΩeg(t) cos (kẑ − δt + ϕL) ( |e⟩⟨g| + H.c.) (2.7)

In this last step, we have dropped fast oscillating terms with twice the laser frequency
exp(±2iωLt) in the spirit of the rotating wave approximation since their dynamics is in-
significant, e.g., on the time scale of a Bragg pulse.

Choosing detunings much larger than the Rabi frequency as well as the atomic recoil
frequency, ∆≫Ωeg(t), ωr = ℏk2/2M affords another simplification by adiabatically elimi-
nating the excited state’s time evolution, e.g., see chapter 4 in Ref. [12]. Under this assump-
tion the dynamic of the ground state |g⟩ decouples and a time-dependent ac Stark potential
drives the elastic Bragg scattering process of the atom remaining in |g⟩. This gives rise to
the Bragg Hamiltonian in the laboratory frame

HLF(t) = K + 2ℏΩ(t) cos2 (kẑ − δt + ϕL) , K = p̂2

2M
. (2.8)

The two-photon Rabi frequency Ω(t) = Ω2
eg(t)/2∆ determines the strength of the optical

lattice potential in Eq. (2.8). Both Ω(t) and ϕL may have a time dependence which is
controlled through the intensities and phases of the two applied fields. The laser phase ϕL,
however, is assumed to be constant throughout our analysis and we will comment in the
end of this chapter on the case of a time-dependent tuning of the laser phase. We assume
a pulsed light pulses so that the Rabi frequency vanishes asymptotically, limt→±∞Ω(t) = 0,
and is nonzero only for a time interval on the order of τ around t = 0. In Sec. 2.6, we will
consider the widely used Gaussian pulse as a concrete example

Ω(t) = Ω e−
t2

2τ2 , (2.9)
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because the choice of a smooth envelope reduces populations of unwanted states and para-
sitic phase shifts [130]. In the following, we will explicitly state, wheneverΩ(t) is assumed
to be Gaussian function with a peak Rabi frequency of Ω.

As a result of nth-order Bragg diffraction a momentum 2n ℏk shall be gained by the
atom so that it is transferred to a final state with momentum Mv1 = Mv0 + 2n ℏk, or, just as
well, into an arbitrary superposition state of momenta Mv0 and Mv1. If this is possible, the
time-reversed process can be applied to any incoming superposition of momenta Mv0 and
Mv1 too. Thus, for reasons of concreteness and without loss of generality, we can assume
an incoming wave packet with average momentum Mv0 as an initial condition. To transfer
momentum efficiently the frequencies of the counterpropagating light fields depicted in
Fig. 2.1(a) must be detuned with respect to each other so that

δ = k (v0 +
n ℏk
M

) = kv0 + 2nωr. (2.10)

|g⟩

∼ p2

2M |g⟩

|e⟩

∆

ω2ω1 ω1 ω2

p

E/ℏ

|g⟩
|e⟩ Atom

ω1, k1 ω2, k2

(a)

(b)

−2 ℏk 2 ℏk

Figure 2.1: Single Bragg diffraction setup. (a) Schematic of an atom subjected to two
counterpropagating light fields as in Eq. (2.1) with frequencies ωL ≈ω1 ≈ω2 and wave
numbers k ≡ k1 ≈ − k2. The light forms an optical lattice that can be pulsed and de-
pending on the relative momentum between the atom and the optical lattice, the atom
can undergo multiple 2n-photon transitions via stimulated absorption and emission, im-
parting 2n-photon recoils ℏk on the atom. The dispersion relation in the inertial frame
comoving with the optical lattice (b) schematically shows the resonant coupling between
the momenta ±n ℏk (here, n = 2) via a multiphoton transition satisfying energy and mo-
mentum conservation. A prerequisite for this process is a large detuning of the laser fre-
quency from the atomic resonance compared to the relative detuning of the light fields, i.e.,
|∆| = |(ωe − ωg) − ωL| ≫ |ω1 − ω2| .
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Figure 2.1(b) schematically represents the atomic energy levels and frequencies in the
form of a dispersion relation in an inertial frame that moves with the lattice potential.
This is useful for illustrating the so-called Bragg condition for matter waves, which in
principle favors certain 2n-photon transitions over others due to the conservation of energy
and momentum. This will be discussed in more detail in the next section. For the moment,
suffice it to say that our chosen lattice velocity vL = δ/k according to Eq. (2.10) ensures
resonant Bragg diffraction between momenta ±n ℏk. We formally transfer Eq. (2.8) to the
comoving frame and absorb a global phase Φ caused by the average ac Stark potential
as well as a shift in kinetic energy in the process. The corresponding transformation is
achieved by a unitary operator G(t) = exp

(−i(ẑ − p̂t/M)MvL/ℏ + iΦG(t)
)
, where Φ̇G(t) =

Ω(t) + Mv2
L/2ℏ. The HamiltonianHMF = iℏĠG† + GHLFG† in the moving frame is

HMF(t) = K + ℏΩ(t)
2

(
e2i(kẑ+ϕL) + e−2i(kẑ+ϕL)

)
. (2.11)

In this frame the incoming atomic wave packet is initially composed of momentum com-
ponents around an average momentum M(v0 − vL) = −n ℏk, and the target momentum in
nth-order Bragg diffraction is M(v1−vL) = n ℏk. The Hamiltonian in Eq. (2.11) is the usual
starting point to describe Bragg pulses [12, 119, 130–132].

2.2.2 Diabatic Descriptions of Bragg Diffraction

The Fourier composition of the potential in Eq. (2.11) reveals the well-known property of
the optical lattice potential to change the momentum of the atom only by a multiple of 2 ℏk.
If in the initial wave packet n is an even (odd) number, then at a later point in time it will
only consist of momentum components that are an even (odd) multiple of ℏk. Therefore,
the usual approach to solve the unitary time evolution as described by the Schrödinger
equation for the electronic ground state wave function,

iℏψ̇g(z, t) = − ℏ
2

2M
∂2ψg(z, t)
∂z2 +

ℏΩ(t)
2

(
e2i(kz+ϕL) + e−2i(kz+ϕL)

)
ψg(z, t), (2.12)

stated here in position space, is to describe the Bragg diffraction process as diabatic transi-
tions between different momentum components by expanding ψg in a basis of plane waves,

ψg(z, t) =
∞∑

m=−∞
cm(t)eimkz. (2.13)

This procedure transforms Eq. (2.12) into an infinite set of ordinary differential equations1,

iċm = m2ωr cm +
Ω(t)

2

(
e2iϕLcm+2 + e−2iϕLcm−2

)
, (2.14)

1We note that the form of Eq. (2.14) implicitly assumes that the initial atomic wave packet can be approx-
imated by a plane wave and would like to refer the reader to [133] for an extended derivation of the diabatic
theory of Bragg scattering including finite velocity distributions.
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which in the past has been the basis for numerous studies of Bragg diffraction in the context
of atom interferometry, both analytically and numerically [69, 94, 118, 130, 132, 134–136].
In the following, we briefly discuss the known analytical solutions of Eq. (2.14) in the
Raman-Nath as well as in the deep-Bragg regime and summarize the previous work to
extend these methods to the quasi-Bragg regime.

The Raman-Nath Regime

The Raman-Nath regime is characterized by high laser intensities and short pulse dura-
tions. If the energy uncertainty is sufficiently large, i.e., τ≪ 1/

√
2Ωωr with the peak Rabi

frequency Ω B maxtΩ(t), it is possible to neglect the kinetic energy term in Eq. (2.14).
The resulting set of equations has a simple solution in form of the Bessel functions [130]

c2m(t) = −(i)mJm

(∫ t

0
dt′Ω(t′)

)
, (2.15)

assuming a plane wave with zero momentum initially. While interferometry with Raman-
Nath pulses has been demonstrated [98,127] and this regime holds the potential for interest-
ing applications such as multimode interferometry [137], the strong coupling to multiple
diffraction orders makes it unsuitable for high efficiency beam splitter and mirror opera-
tions.

The deep-Bragg Regime

This is in stark contrast to the so-called Bragg or deep-Bragg regime, which in principle
allows lossless operations of two-mode beam splitters and mirrors, even taking into account
multiphoton transition, i.e., higher-order Bragg diffraction. The key idea is that, for longer
pulse durations the kinetic energy giving rise to the quadratic dispersion relation shown
in Fig. 2.1(b) plays a crucial role as energy and momentum must be conserved during
the Bragg pulse. It is straightforward to illustrate in the inertial frame of the lattice, that
only couplings to momentum states with the same kinetic energy as the initial state can
be resonantly driven, which leads to an effective two-level system if the Bragg pulse is
sufficiently long. In this regime, Eq. (2.14) can be formally reduced to two differential
equations which, in the case of an initial momentum distribution centered around ±n ℏk,
take the form

iġ−n =
1
2
Ωeff(t)e2inϕL gn as well as iġn =

1
2
Ωeff(t)e−2inϕL g−n. (2.16)

After all other states in Eq. (2.14) have been adiabatically eliminated (n > 1) they are
coupled by an effective 2n-photon Rabi frequency

Ωeff(t) =
Ωn(t)

(8ωr)n−1

1
[(n − 1)!]2 . (2.17)
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States with larger absolute momenta naturally become off-resonant as the difference in ki-
netic energy from the initial and target states grows quadratically. To also average over
the dynamics of the intermediate states, one needs to constrain the 2-photon Rabi fre-
quency [130, 133]

Ω

2
≪ 4(n − 1)ωr, (2.18)

which immediately restricts the range of effective 2n-photon Rabi frequencies,

Ωeff≪ 8(n − 1)nωr

[(n − 1)!]2 , (2.19)

where similar to before Ωeff B maxtΩeff(t). This limitation of Ωeff as a result of the
adiabatic elimination of off-resonant states is the reason why LMT pulses in the deep-
Bragg regime require prohibitively long pulse durations even for ultracold atomic en-
sembles [64, 65]. This can be understood by studying the well-known Pendellösung of
Eqs. (2.16),

g−n(t) = cos
(
1
2

∫ t

−∞
Ωeff(t′) dt′

)
, and gn(t) = −i sin

(
1
2

∫ t

−∞
Ωeff(t′) dt′

)
. (2.20)

To realize a beam splitter or a mirror pulse, the integral in Eqs. (2.20) must at least evaluate
to the value of π/2 or π respectively. This means that the laser intensities constrained
due to Eq. (2.19) must be compensated for over the pulse duration, which in the case of
a Gaussian pulse shape is characterized by τ. However, very long interaction times lead
to Bragg diffraction pulses being extremely velocity selective and thus inefficient due to
Doppler shifts resulting from the finite velocity distribution of the atom [69]. These effects
were previously modeled numerically in the work published by S. S. Szigeti et al. [69],
and analytically for the more complex case of double Bragg diffraction pulses involving
a second optical lattice [94, 105] by E. Giese et al. [132]. In summary, the shortcomings
of the deep-Bragg regime motivate the adoption of Bragg diffraction in the quasi-Bragg
regime in the context of LMT atom interferometery.

Extension to the quasi-Bragg Regime

In particular, in combination with smooth (e.g., Gaussian) temporal pulse envelopes [130,
131] quasi-Bragg pulses are characterized by weak couplings to off-resonant states com-
parable to the Bragg diffraction regime while relaxing its requirement of long interac-
tion times, which greatly improves diffraction efficiency with ultracold atomic ensem-
bles [69, 130]. A rough estimate for typical 2-photon Rabi frequencies in the quasi-Bragg
regime can be derived from Eq. (2.18)

Ω(t)
2
≲ 4(n − 1)ωr. (2.21)
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Unfortunately, however, the residual couplings to off-resonant states significantly compli-
cate the search for analytical solutions to the Schrödinger equation (2.12) in this regime,
especially in case of time-dependent pulse shapes Ω(t). Existing approaches attempt to
transfer the logic of deep-Bragg pulses to this intermediate regime by solving the effective
dynamics of a two-level system after adiabatically eliminating all off-resonant couplings.
In one of the most sophisticated descriptions along this line H. Müller et al. [130] arrive at
an expression for the effective Rabi frequency Ωeff(t) as a power series expansion in Ω(t)
and Ω̇(t) in Eq. (48) of [130]. They achieve this by systematically deriving an effective
two-level Hamiltonian including Ωeff(t) in a series expansion via the eigenvalues of the
Mathieu equation. The Mathieu equation had already been used prior to that to describe
the dynamics of an atom in a nonresonant standing light wave [138,139]. This result, how-
ever, requires in particular to either numerically calculate the eigenvalues an and bn of the
Mathieu equation and to ensure their convergence for the desired orders in Ω(t) or to find
closed expressions for these parameters (see Appendix B in Ref. [130]). Notwithstanding
its accuracy, this series expansion results in rather cumbersome formulas for practically
relevant parameters.

2.2.3 Bloch-band Picture

An alternative ansatz to describe the diffraction of an atom from a light crystal is to employ
Bloch states. The picture of Bloch bands in optical lattices, which are the eigenenergies
of the Hamiltonian in Eq. (2.11), is the natural framework to treat matter wave diffraction
via Bloch oscillations [106–108]. This approach has previously been shown to provide
analytical expressions for diffraction amplitudes [140] and phases [116] adequate in the
weak lattice limit (Ω(t)≲ 2ωr). Recently, Gochnauer et al. [119] have used the Bloch so-
lutions to analyze quasi-Bragg pulses, which agree well with experimental results for the
specific pulse shapes studied in their case. To do that, they numerically extract the Bloch
energy bands by diagonalizing the Hamiltonian in Eq. (2.11) without restricting the poten-
tial depth. Since the Bloch-band picture is closely related to the formalism we develop in
this chapter, it is worth summarizing its connection to quasi-Bragg diffraction as outlined
in [119] at this point.

Figure 2.2 shows the lowest-energy bands EnB,qB(Ω) (nB = 0, 1, . . . , 5) of the Hamilto-
nian in Eq. (2.11) in the first Brillouin zone for quasimomenta qB ∈ ]−k, k] and for different
fixed values of the Rabi frequency increasing from Ω = 0 to 30ωr. For a free atom, that is,
for Ω = 0, a narrow wave packet with mean momentum −n ℏk (in the rest frame of the lat-
tice) consists of a superposition of Bloch states around the points of degeneracy of the n-th
and the (n− 1)-th band in the Bloch spectrum. For odd n this degeneracy occurs at a quasi-
momentum qB = ±k, and for even n at qB = 0 (see panel for Ω = 0 in Fig. 2.2). When the
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Figure 2.2: Bloch energy bands. The lowest six energy bands EnB,qB(Ω) (nB = 0, 1, . . . , 5)
in the first Brillouin zone for Bloch-band quasimomenta qB ∈ [−k, k] and different values
of the Rabi frequency Ω. They are obtained by diagonalizing the Hamiltonian in Eq. (2.11)
after truncating orders n > 5. In the case ofΩ = 0, always two energy bands are degenerate
either at the edges (qB = ±1k) or the center (qB = 0) of the Brillouin zone. For nonzero
values of Ω the degeneracy is lifted and the bands separate. Figure adapted from J.-N.
Siemss et al., Phys. Rev. A 102, 033709 (2020), Copyright 2022, American Physical
Society (Ref. [120]).

optical lattice is ramped up adiabatically2, the atom remains in the superposition of states
in the n-th and the (n− 1)-th band the degeneracy of which will now be lifted (see panels in
Fig. 2.2 for Ω > 0). Based on this picture Gochnauer et al. [119] explain that the band gap
is equivalent to the effective Rabi frequency for oscillations between the states in Eq. (2.16),
i.e., the momentum eigenstates |±n ℏk⟩ coupled by the Bragg pulse. This explanation was
confirmed by a comparison of numerically calculated band gaps and experimentally de-
termined Rabi frequencies measured at constant potential depth. Gochnauer et al. also
show that the Bragg diffraction is accompanied by a global phase (diffraction phase) which
corresponds to the energetic shift of the center of the band gap with respect to the position
of the degeneracy point at vanishing potential. Despite not directly producing analytical
results, this study clearly shows that the Bloch-band picture offers important insight into
the functioning of quasi-Bragg diffraction.

2Here, adiabaticity refers to the temporal slope of the Rabi frequency Ω(t). The criterion for a Gaussian
pulse duration given in [119], τ≫ [4(n − 1)ωr]−1, is derived considering the energy separation to the states
closest in energy similarly to Eq. (2.21), but now compared to the rate of change of the potential depth.
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2.2.4 Adiabatic Time Evolution

However, we emphasize that the very concept of an effective Rabi frequency alludes to the
idea of diabatic dynamics described by an effective Hamiltonian. We hope that the results
presented in this chapter will convince the reader that it is much more economic and ap-
propriate to analytically describe Bragg diffraction in the sense of the adiabatic theorem.
Before deriving our analytical theory, we would like to explain why applying the adia-
batic theorem is natural and provides an intuitive picture of the physics of an atom being
elastically scattered from a pulsed optical lattice. If the atom is exposed to two counter-
propagating light fields as shown in Fig. 2.1(a) with δ chosen according to Eq. (2.10) and if
we idealize both the initial and the final state of the atom, being Bragg diffracted, as plane
waves, we can write them as

e−inkz = cos (nkz) − i sin (nkz)

e+inkz = cos (nkz) + i sin (nkz).
(2.22)

Previously, we have argued that the states in Eq. (2.22) are degenerate in kinetic energy in
the inertial frame of the lattice potential, and that the resonant coupling of these states via
2n-photon transitions is therefore allowed in terms of energy and momentum conservation
[see Fig. 2.1(b)]. Moreover, the expansion of the initial and final momentum eigenstates
based on their symmetric (cos (nkz)) and antisymmetric (sin (nkz)) components according
to Eq. (2.22) reveals that a Bragg pulse ideally imprints a differential phase between these
basis states. This differential phase is exactly π for a mirror pulse and π/2 for a beam
splitting pulse.

In the following sections, we demonstrate that the evolution of this differential phase
over the course of the pulse can be well understood by calculating the evolution of the
eigenenergies associated with the states (2.22) according to the adiabatic theorem,

Θdyn =
1
ℏ

∫ ∞

−∞
dt (En+(t) − En−(t)) . (2.23)

The phase Θdyn can be seen as the equivalent of the time integral over the effective Rabi fre-
quency [see Eqs. (2.20)], typically referred to as the "pulse area". However, before we are
able to show that the eigenenergies in equation (2.23) can be easily calculated by diagonal-
izing finite-dimensional Hamiltonians, we need to decompose the Hilbert space associated
with the Bragg Hamiltonian (2.11) into its symmetric and antisymmetric components, sim-
ilar to equation (2.22), and formulate the Bragg diffraction process in terms of a scattering
problem.
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2.3 Bragg Diffraction as a Scattering Problem

We use the adiabatic theorem [129] in combination with analytic methods from scattering
theory to determine the transfer or scattering matrix for single quasi-Bragg pulses. To
understand and describe Bragg diffraction as a scattering process it is suitable to assume
an asymptotic initial condition for the state of the atom. This means that for t → −∞ we
require that the incoming atomic wave packet |ψ(t)⟩ satisfies

|ψ(t)⟩ t→−∞−→ e−iK t/ℏ |ψin⟩ , (2.24)

and |ψin⟩ is chosen to match the initial conditions discussed in Sec. 2.2.1. In an interaction
picture with respect to the kinetic energy K the asymptotic initial condition assumes the
simpler form

∣∣∣ψI(t)
〉
= exp(iK t/ℏ) |ψ(t)⟩ t→−∞−→ |ψin⟩.

The problem we are going to address in this section is to solve the Schrödinger equation
for the time evolution operatorU(t, t0) in the interaction picture,

iℏ
d
dt
U(t, t0) = H I(t)U(t, t0), (2.25a)

H I(t) =
ℏΩ(t)

2
e−iK t/ℏ

(
e2i(kẑ+ϕL) + e−2i(kẑ+ϕL)

)
eiK t/ℏ, (2.25b)

from which we construct the scattering (or transfer) matrix corresponding to the Bragg
pulse:

S = lim
t→∞

t0→−∞
U(t, t0). (2.26)

In order for the limits in Eq. (2.26) to be well defined, it is important to consider the time
evolution in the interaction picture, where the Hamiltonian (2.25b) vanishes asymptotically
for t → ±∞. The Bragg scattering matrix maps asymptotic incoming onto asymptotic
outgoing wave packets:

|ψout⟩ = S |ψin⟩ . (2.27)

In Sec. 2.3 we will derive the general structure of the Bragg scattering matrix without
making any further assumption regarding the pulse shape Ω(t). We will then determine
the specific shape that the scattering matrix takes, when the Rabi frequency is changed
adiabatically. Moreover, we show that for efficient Gaussian Bragg pulses as in Eq. (2.9)
adiabaticity is a necessary condition. To solve the equation of motion (2.25a) we will
first use symmetries of the Hamiltonian (2.11) to divide it into sub-blocks, enabling the
application of the adiabatic theorem in the first place. In addition, this greatly reduces
the complexity of the problem of Bragg diffraction as a whole and will allow us to make
quite general statements without assuming much about the specific shape Ω(t) of the Bragg
pulse, and whether it operates in a diabatic or an adiabatic regime.
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2.3.1 Hamiltonian in the Momentum Basis

First, we exploit the aforementioned property of the optical lattice potential to change the
momentum of the atom only by a multiple of 2 ℏk. The observation that, depending on
whether n is an even (odd) number, a Bragg pulse maps a wave packet originally cen-
tered about −n ℏk to even (odd) momentum components only is formally reflected by ex-
panding the Hamiltonian (2.11) in the momentum basis. In doing so, we group the mo-
mentum eigenstates |m ℏk + p⟩ into bins with m ∈ Z and introduce the (quasi)momentum
p ∈ [−ℏk/2, ℏk/2]. From now on, the momentum variable p is always limited to this in-
terval. Since efficient Bragg diffraction of atomic wave packets crucially depends on its
narrow momentum width σp≪ ℏk [69] we can further constrain the (quasi)momenta p by
assuming

ϵ(p) =
p
ℏk
, (2.28)

to be a small parameter. This will allow us to solve the dynamics of the Bragg pulse for
p = 0 and take into account first-order corrections in p perturbatively. The Hamiltonian in
Eq. (2.11) then decomposes into blocks,

HMF =

∫ ℏk/2

−ℏk/2
dp

{
HMF

e (p) +HMF
o (p)

}
, (2.29)

where the components HMF
α (p) act on disjunct subspaces Hpα = span{|m ℏk + p⟩}m∈Zα

corresponding to even and odd momentum states for α = e, o, respectively. We denote the
set of even and odd integers by Ze = 2Z and Zo = 2Z + 1. The total Hilbert space is
H = ⊕pαHpα. Depending on whether n of the initial mean momentum is even or odd, the
dynamics of the (m ℏk+ p)-momentum components of the wave-packet are governed either
by H MF

e (p) or H MF
o (p). We will see that these Hamiltonians have a very similar structure,

but still feature important differences. With the notation

σ̂m, j(p) B |m ℏk + p⟩⟨ j ℏk + p|, (2.30)

m, j ∈ Z, the components of the Hamiltonian in subspace Hpα can be expressed as

HMF =

∫ ∞

−∞
dp

{
p2

2M
|p⟩⟨p| + ℏΩ(t)

2

(
e2iϕL |p + 2 ℏk⟩⟨p| + H.c.

)}
(2.31)

=

∫ ℏk/2

−ℏk/2
dp

∞∑
m=−∞

{
(m ℏk + p)2

2M
|m ℏk + p⟩⟨m ℏk + p| (2.32)

+
ℏΩ(t)

2

(
e2iϕL |(m + 2) ℏk + p⟩⟨m ℏk + p| + H.c.

)}
(2.33)

=

∫ ℏk/2

−ℏk/2
dp

{
HMF

e (p) +HMF
o (p)

}
, (2.34)
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where

HMF
α (p) = Kα(p) +

∑
m∈Zα

ℏΩ(t)
2

(
e2iϕLσ̂m+2,m(p) + H.c.

)
, (2.35)

Kα(p) =
∑

m∈Zα

(m ℏk + p)2

2M
σ̂m,m(p), (2.36)

for α ∈ {e, o}. The summation in these equations is defined over even or odd numbers Ze or
Zo, respectively. We note that the symbols in Eq. (2.30) were already used by Shankar et
al. [141] in the context of atomic optics. We also would like to point out to the reader that
(quasi)momentum variable p is not identical, but closely related, to the quasimomentum
qB in the sense of the Bloch theorem introduced in Sec. 2.2.3. Our choice is motivated by
the fact that it naturally provides us with the decomposition of the Hilbert space into even
and odd momentum bins in Eq. (2.29) and allows us to describe the dynamics of even and
odd diffraction orders equally. It will be useful to expand the kinetic energy in two terms,
Kα(p) = Lα(p)+Mα(p), where the last term collects the components of the kinetic energy
which are linear and quadratic in the (quasi)momentum variable p. That is,

Lα(p) =
∑

m∈Zα

ℏωrm2σ̂m,m(p), (2.37)

Mα(p) =
∑

m∈Zα

(
2ℏωrmϵ(p) +

p2

2M

)
σ̂m,m(p), (2.38)

where we have expressed the kinetic energy in terms of the atomic recoil frequency ωr and
we have used ϵ(p) introduced in Eq. (2.28). We now move to an interaction picture with
respect to the term Mα(p). In this picture the asymptotic initial condition in Eq. (2.24)
becomes

|ψ(t)⟩ t→−∞−→ eiMα(p)t/ℏe−iK t/ℏ |ψin⟩ = e−in2ωrt |ψin⟩ . (2.39)

Here, we leverage that the initial state |ψin⟩ is localized in the momentum bin around −n ℏk.
The Hamiltonian in this interaction picture is

Hα(p) =
∑

m∈Zα

ℏωrm2σ̂m,m(p) +
ℏΩ(t)

2

(
e2i(ϕL+2ϵ(p)ωrt)σ̂m+2,m(p) + H.c.

)
. (2.40)

The time dependence in the lattice potential reflects the Doppler shift of the two counter-
propagating lattice beams seen by the components of the wave packet with (quasi)momentum
p in Hpα. It is straightforward to check that if the unitary operator Vα(p, t, t0) on the sub-
space Hpα is a solution of

iℏ
d
dt
Vα(p, t, t0) = Hα(p, t)Vα(p, t, t0), (2.41)
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then the time evolution operator solving Eq. (2.25a) on the same subspace is

Uα(p, t, t0) = exp (iLα(p)(t − t0)/ℏ)Vα(p, t, t0). (2.42)

Our strategy will be to solve Eq. (2.41), and use this solution to construct the scattering
matrix (2.26) using Eq. (2.42). So far, no approximation has been made. We now ex-
ploit the fact that the initial state is a narrow wave packet with a momentum spread σp≪ ℏk
which amounts to |ϵ(p)|≪ 1 for all (quasi)momentum components of the wave packet. Fur-
thermore, we assume now that for the duration τ of the Bragg pulse we have nωrτσp≪ ℏk
for nth-order Bragg scattering, which is readily fulfilled when describing the coupling of
atomic ensembles with narrow momentum widths in the quasi-Bragg regime. With this
assumption we can expand the time-dependent phase in Eq. (2.40) to first order in ϵ(p).
Performing a Taylor expansion ϵ(p) and collecting the terms of zeroth and first order in
ϵ(p) one finds

Hα(p) = Hα(p) + ϵ(p)Vα(p), (2.43)

where

Hα(p) =
∑

m∈Zα

{
ℏωrm2σ̂m,m(p) +

ℏΩ(t)
2

(
e2iϕLσ̂m+2,m(p) + H.c.

)}
, (2.44a)

Vα(p) = i2ℏΩ(t)ωrt
∑

m∈Zα

(
e2iϕLσ̂m+2,m(p) − H.c.

)
. (2.44b)

We recall that the Hamiltonian Hα(p) acts on the subspace Hpα. Its components Hα(p)
and Vα(p) in Eqs. (2.44) are structurally identical for all (quasi)momentum p. It is just the
strength ϵ(p) of the perturbation Vα(p) in Eq. (2.43) due to the Doppler shift which has a
nontrivial dependence on the (quasi)momentum p. In the next sections we will consider
only the zeroth-order Hamiltonian (2.44a). The perturbation (2.44b) will be treated later
on in Sec. 2.4.4.

2.3.2 Hamiltonian in the Basis of Symmetric and Antisymmetric States

Within each subspace Hpα we introduce a new basis which consists of (anti)symmetric
states |p,m,±⟩ defined by

|p,m,±⟩ B 1√
2

(
eimϕL |m ℏk + p⟩ ± e−imϕL | − m ℏk + p⟩

)
, (2.45a)

for m ∈ N/0. We recall that ϕL is the laser phase. For m = 0 there is a single state in Hpe:

|p, 0,+⟩ B |p⟩. (2.45b)
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The total Hilbert space is H = ⊕pα±Hpα±, where Hpα± = span{|p,m,±⟩}m∈Zα
are the

subspaces of symmetric and antisymmetric states in Hpα. When the Hamiltonian Hα in
Eq. (2.44a) is expressed in this new basis it decomposes further into a sum of two terms,

Hα = Hα+ + Hα−, (2.46)

which act on the disjunct spaces Hpα±. Before we explicitly construct the components Hα±
we give an argument for why Hα has to be block diagonal in the basis of (anti)symmetric
states. Consider the Hermitian operator

Π B
∑
α=e,o

∫ ℏk/2

−ℏk/2
dp Πα(p), (2.47)

Πα(p) =
∑

m∈Zα

e2miϕLσ̂m,−m(p), (2.48)

which fulfills Π2 = 1. Its eigenvalues are ±1, and the corresponding eigenvectors are
the (anti)symmetric states, Π |p,m,±⟩ = ± |p,m,±⟩. It can be easily shown that Hα in
Eq. (2.44a) is invariant under conjugation with Π, that is, ΠHαΠ = Hα. Therefore, the
commutator of these two operators vanishes, [Π,Hα] = 0, and Hα cannot couple states
corresponding to different eigenvalues with respect to Π. In other words, Hα has to be
block diagonal as in Eq. (2.46). We note that Π is connected to reflections in momentum
space, but is not equivalent to the parity operator. Setting the laser phase to zero, ϕL = 0,
the operators Πα(p) generate reflections in momentum space about (quasi)momentum p
in Hpα. The symmetry we are exploiting here will ultimately be broken by the Doppler
detuning (2.44b). However, it will be almost conserved for sufficiently narrow initial wave
packets and perturbation theory will be well suited to account for the effects of Doppler-
induced breaking of this symmetry. We note that the basis of (anti)symmetric states in
Eqs. (2.45) has been used recently also to analyze Bloch oscillations [142].

In order to identify the components Hα± of the Hamiltonian in Eq. (2.46) we define, in
correspondence to (2.30),

σ̂±m, j(p) B |p,m,±⟩ ⟨p, j,±| . (2.49)

Here, m and j are nonnegative integers and the operator σ̂−m, j(p) acting on the antisymmetric
subspace is defined only for m, j , 0. The change to the basis of (anti)symmetric states
and the transformation of the Hamiltonian (2.43) are straightforward given a few useful
relations:

σ̂m,m + σ̂−m,−m = σ̂
+
m,m + σ̂

−
m,m, (m > 0), (2.50)

σ̂0,0 = σ̂
+
0,0, (2.51)
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and for the case n ≥ 2

e2iϕL(σ̂m+2,m + σ̂−m,−(m+2)) + H.c. = σ̂+m+2,m + σ̂
−
m+2,m + H.c., (2.52)

as well as

e2iϕL(σ̂2,0 + σ̂0,−2) + H.c. =
√

2
(
σ̂+2,0 + H.c.

)
, (2.53)

e2iϕLσ̂1,−1 + H.c. = σ̂+1,1 − σ̂−1,1. (2.54)

The result of this transformation is different for the Hamiltonian acting on the even and
the odd subspace, i.e., for Bragg scattering of even or odd order n. One finds for the
Hamiltonians acting on the even subspaces Hpe±

He− =
∑

m∈Ne
m,0

{
ℏωrm2σ̂−m,m +

ℏΩ(t)
2

(
σ̂−m+2,m + H.c.

)}

He+ =
∑

m∈Ne
m,0

{
ℏωrm2σ̂+m,m +

ℏΩ(t)
2

(
σ̂+m+2,m + H.c.

)}
+
ℏΩ(t)√

2

(
σ̂+2,0 + H.c.

)
,

(2.55a)

and one finds for the Hamiltonians acting on the odd subspace Hpo±

Ho± =
∑

m∈No

{
ℏωrm2σ̂±m,m +

ℏΩ(t)
2

(
σ̂±m+2,m + H.c.

)}
± ℏΩ(t)

2
σ̂±1,1. (2.55b)

Thus, in both even and odd subspaces Hpα the symmetric and antisymmetric subspaces
Hpα± decouple in zeroth order of the Doppler detuning, as expected. In writing the Hamil-
tonians (2.55) we have suppressed the (quasi)momentum p in all arguments. This can be
done without loss of information, since all these Hamiltonians, just like the Hamiltonian of
zeroth order in Eq. (2.44a), are structurally identical for all (quasi)momenta p. To simplify
the notation, we therefore adhere to the following convention in this and all subsequent sec-
tions dealing exclusively with the zeroth-order Hamiltonian: The argument of σ̂±m, j and σ̂m, j

– as well as of all operators composed thereof – is p everywhere, unless stated otherwise.
We will also suppress the momentum p in writing the basis vectors

|p,m,±⟩ ≡ |m,±⟩ , (2.56)

and explicitly state the momentum p as an argument again, when we treat Doppler detuning
in Sec. 2.4.4. In both even and odd subspaces the Hamiltonians in Eqs. (2.55a) and (2.55b)
for the symmetric and antisymmetric subspace are very similar, but still show important
differences: In the even subspace Hpe the symmetric (+) subspace contains the state |0,+⟩,
while no such state exists for the antisymmetric (−) subspace. As a consequence, the Rabi
frequency of the coupling between the states |0,+⟩ and |2,+⟩ [see last term in Eq. (2.55a)] is
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enhanced by a factor of
√

2 compared to the coupling of other levels |2m,±⟩ ↔ |2m + 2,±⟩
for m > 0. In order to make this more transparent, and for later reference, we give here a
truncated representation of the Hamiltonians in the basis (|6,−⟩ , |4,−⟩ , |2,−⟩) for He−, and
(|6,+⟩ , |4,+⟩ , |2,+⟩ , |0,+⟩) for He+:

He− = ℏωr

36 w 0
w 16 w
0 w 4

 , He+ = ℏωr


36 w 0 0
w 16 w 0
0 w 4

√
2w

0 0
√

2w 0

 , (2.57a)

where we introduced w ≡ w(t) B Ω(t)/2ωr. In the odd subspace Hpo the levels |1,±⟩ have
energies ℏωr ± ℏΩ(t)

2 shifted proportionally to the Rabi frequency in opposite directions for
the symmetric and the antisymmetric subspace [see last term in Eq. (2.55b)]. The energies
of higher lying levels |2m + 1,±⟩ for m > 0 are independent of the Rabi frequency. In a
truncated basis (|7,±⟩ , |5,±⟩ , |3,±⟩ , |1,±⟩) one finds,

Ho± = ℏωr


49 w 0 0
w 25 w 0
0 w 9 w
0 0 w 1 ± w

 . (2.57b)

After transforming the Hamiltonian to the basis of (anti)symmetric states we also have
to consider, how the initial condition in Eq. (2.39) reads in this basis. An initial wave
packet |ψin⟩ composed of momentum states around an average momentum −n ℏk corre-
sponds to an odd superposition of states in the symmetric and the antisymmetric subspace,
|−n ℏk + p⟩ = exp(inϕL)(|p, n,+⟩ − |p, n,−⟩)/√2. If we were to perform, e.g., a mirror
pulse transferring a momentum 2n ℏk to the atom, the challenge is to change this state into
the even superposition exp(−inϕL)(|p, n,+⟩ + |p, n,−⟩)/√2 = |n ℏk + p⟩. This is expressed
more formally in terms of the scattering matrix.

2.3.3 General Structure of the Bragg Scattering Matrix

Based on the decomposition of the Bragg Hamiltonian into its sub-blocks (2.55) we will
now determine the scattering matrix (2.26) for a Bragg pulse. To zeroth order in the
Doppler detuning, the dynamics in the subspace Hpα is governed by the Hamiltonian Hα(t)
in Eq. (2.46) which is block-diagonal in the subspaces Hpα±. Therefore, the unitary evolu-
tion operator will be of the form

Uα(t, t0) = Uα+(t, t0) + Uα−(t, t0), (2.58)

where Uα±(t, t0) acts on Hpα± only, and fulfills the Schrödinger equation

iℏ
d
dt

Uα±(t, t0) = Hα±(t)Uα±(t, t0). (2.59)
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In zeroth order of Doppler detuning, i.e., in zeroth order of ϵ(p), the formal solution (2.58)
provides already the solution to Eq. (2.41). Using Vα(t, t0) = Uα(t, t0) in Eq. (2.42), we
find that the Bragg scattering matrix from Eq. (2.26) on the subspace Hpα is

Sα = lim
t→∞

t0→−∞
exp (iLα(t − t0)/ℏ) Uα(t, t0) = Sα+ + Sα−. (2.60)

The block diagonal structure of the formal solution (2.58) and the diagonal form of Lα [cf.
Eq. (2.37)] imply that the scattering matrix is also block diagonal in the (anti)symmetric
basis.

Single nth-order Bragg diffraction pulses are supposed to couple the momentum eigen-
states in the incoming wave packet |−n ℏk + p⟩ ←→ |n ℏk + p⟩ (for n > 0), and ideally
execute π/2 or π pulses in this two-dimensional subspace. What ultimately enters in an
interferometer sequence is not the full Bragg scattering matrix of Eq. (2.60), but rather its
projection into this two-dimensional subspace. In terms of the basis of (anti)symmetric
states this subspace is spanned by the states |n,±⟩, see Eq. (2.45a). Due to the block-
diagonal structure, the projection of the scattering matrix in (2.60) yields a diagonal matrix
in the basis (|n,+⟩ , |n,−⟩):

Sα =
∑

s,s′=±
S ss′ |n, s⟩ ⟨n, s′| ,

S =
(
e−iθn+−γn+ 0

0 e−iθn−−γn−

)
, (2.61)

where

e−iθn±−γn± = ⟨n,±| Sα± |n,±⟩ = lim
t→∞

t0→−∞
ein2ωr(t−t0) ⟨n,±|Uα±(t, t0) |n,±⟩ . (2.62)

The parameters θn± and γn± describe scattering phases and population loss from the states
|n,±⟩. Since the scattering matrices Sα± are unitary in the idealized lossless case, we
have γn± ≥ 0. It is important to note that the general form of the scattering matrix S
applies regardless of the exact shape Ω(t) of the Bragg pulse. Moreover, it is instruc-
tive to write the projected Bragg scattering matrix (2.61) in the basis of momentum states
(|+n ℏk + p⟩ , |−n ℏk + p⟩). The transformation from the (anti)symmetric states |n,±⟩ to mo-
mentum states can be read off from Eqs. (2.45):

T =
1√
2

(
einϕL e−inϕL

einϕL −e−inϕL

)
. (2.63)

With Eq. (2.61) one finds the projected Bragg scattering matrix in the momentum basis,
B B T †S T , yielding

B(Φn − iΓ,Θn − iγ) = e−iΦn−iΓ
2

 cos
(
Θn−iγ

2

)
−ie−i2nϕL sin

(
Θn−iγ

2

)
−ie+i2nϕL sin

(
Θn−iγ

2

)
cos

(
Θn−iγ

2

) . (2.64)
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We define the differential phase between the symmetric and the antisymmetric state |n,±⟩
and the global phase imprinted on this subspace,

Θn = θn+ − θn−, Φn = θn+ + θn−, (2.65)

and the corresponding parameters characterizing differential and total loss:

γ = γn+ − γn−, Γ = γn+ + γn−. (2.66)

We remind the reader that ϕL denotes the relative laser phase between the two light fields
generating the optical lattice. We also note that the global phase Φ should not be confused
with the global phase ΦG which includes the average ac Stark shift and has been gauged
out in the picture of the fundamental Hamiltonian (2.11).

Comparison to Ideal Bragg Operations

Comparison of the scattering matrix in Eq. (2.64) to the one corresponding to an ideal
nth-order Bragg pulse, the form of which is well known (see, e.g., [125]),

Sideal
Θn
=

∫ ℏk/2

−ℏk/2
dp

∑
s,s′=±

[BΘn]ss′ |s n ℏk + p⟩ ⟨s′n ℏk + p| , (2.67)

allows us to identify conditions to achieve high-quality pulse operations. For a beam splitter
pulse (Θn = π/2) the matrix BΘn in Eq. (2.67) takes the form

Bπ/2 =
1√
2

(
1 −ie−i2nϕL

−ie+i2nϕL 1

)
, (2.68a)

and for a mirror pulse (Θn = π),

Bπ =

(
0 −ie−i2nϕL

−ie+i2nϕL 0

)
. (2.68b)

This should also be true for the matrix in Eq. (2.64), albeit only in an ideal hypothetical
limit. To achieve this, the differential phase collected between symmetric and asymmetric
subspace needs to be tuned toΘn = π/2 for a beam splitter and toΘn = π for a mirror pulse.
Hence, it can be seen that the differential phase Θn is identical to what is usually referred
to as the pulse area. The global phase Φn does not necessarily have to be nulled in order
to achieve a good pulse quality, but it must be controlled and included in the phase budget
of an interferometer (cf. [98, 116, 119, 135]). Finally, to maintain the population in the
subspace |n,±⟩ and avoid losses to other momentum states, ideally the condition γn± = 0
should be fulfilled. In view of Eq. (2.62) this is tantamount to

lim
t→∞

t0→−∞
| ⟨n,±|Uα±(t, t0) |n,±⟩ | = 1, (2.69)
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where the unitaries Uα±(t, t0) are the solutions to the Schrödinger Eqs. (2.59). Thus, in both
the symmetric and the antisymmetric subspace an initial population of |n,±⟩ ultimately has
to return to this state. This presents a highly nontrivial constraint in view of the fact that the
Hamiltonians Hα±(t) in these two subspaces differ structurally but are controlled through
the same Rabi frequency Ω(t).

The challenge is to identify a pulse Ω(t) that meets all of these requirements. As we
will establish in the next section, a sufficient condition on Ω(t) for achieving this is that
the Rabi frequency is tuned adiabatically in the sense of the adiabatic theorem: thereby
the initial population of |n,±⟩ is maintained at all times in a corresponding instantaneous
energy eigenstate of Hα±(t), and is thus perfectly restored to |n,±⟩ at the end of the pulse,
satisfying Eq. (2.69). As an ideal adiabatic tuning requires infinitely long pulse durations,
it is important to consider also effects of nonadiabaticity, and to determine the impact of a
finite pulse duration on the Bragg pulses. We do so in Secs. 2.4.1 and 2.4.3. In Sec. 2.6
we will show for the specific but most relevant case of a Gaussian pulse [see Eq. (2.9)]
that each pair of peak Rabi frequencies Ω and pulse durations τ leading to a high-quality
Bragg π/2- or π-pulse with losses at an acceptable level does indeed correspond to adiabatic
dynamics with first-order nonadiabatic corrections. Thus, for Gaussian pulses adiabaticity
in the sense of the adiabatic theorem is a necessary and sufficient condition. It is interesting,
but beyond the scope of this thesis, to ponder, whether a nonadiabatic Bragg pulseΩ(t), i.e.,
a pulse that produces real transitions among the instantaneous energy eigenstates of Hα±(t),
can at all give rise to high-quality atom optics operations.

2.3.4 Scattering Matrix for Adiabatic Bragg Pulses

We now consider the important special case of an adiabatic tuning of the Rabi frequency
Ω(t). As shown in Fig. 2.3, the energy spectrum of the Hamiltonians Hα± is nondegener-
ate for any fixed value of Ω, and no level crossing occurs. This means that the quantum
numbers labeling the eigenstates |m,±⟩ corresponding to eigenenergies m2ℏωr for vanish-
ing Rabi frequency, Ω = 0, remain good quantum numbers also for Ω , 0. Here, we note
that this is only the case because we are working in an interaction picture with respect to
the Doppler shift term in Eq. (2.38). For a time-dependent Rabi frequency Ω(t) we denote
the instantaneous eigenstates and eigenenergies by

Hα±(t) |m,±; t⟩ = Em±(t) |m,±; t⟩ . (2.70a)

with m ∈ Nα and m > 0. For α = e and m = 0 there is only one eigenstate,

He+(t) |0,+; t⟩ = E0+(t) |0,+; t⟩ . (2.70b)
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In the asymptotic limits, where limt→±∞Ω(t) = 0, we have

lim
t→±∞

|m,±; t⟩ = |m,±⟩ . (2.71)

The instantaneous eigenstates and eigenenergies can be calculated from Eqs. (2.55a) and
(2.55b) for a given Rabi frequency Ω(t) with a suitable truncation of the Hilbert space. Due
to the block decomposition of the Hamiltonian excellent results can be achieved for a rela-
tively low order of truncation, as will be seen in Sec. 2.6. In the following, we will express
all the results in a form that requires only the numerical calculation of the instantaneous
energy eigenvalues, which is an efficient subroutine. The much more involved calculation
of energy eigenstates can be avoided by suitable approximations.
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Figure 2.3: Eigenenergies of the Bragg Hamiltonian. Spectra of the lowest-energy eigen-
states of the Hamiltonians in the (anti)symmetric subspaces vs constant Rabi frequenciesΩ
in (a) the even subspace, He± in Eq. (2.55a), and (b) the odd subspace, Ho± in Eq. (2.55b),
with truncations mmax,e = 8 and mmax,o = 11, respectively. The range for Ω includes Rabi
frequencies required for high-fidelity quasi-Bragg pulses up to order n = 5, which will be
shown in Sec. 2.6. Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102, 033709
(2020), Copyright 2022, American Physical Society (Ref. [120]).

The adiabatic theorem states that for an infinitely slow tuning, that is, for an infinitely
long pulse τ → ∞, no transitions among the energy eigenstates of Hα(t) occur. Thus, the
ideal adiabatic solution to Eq. (2.59) is

Uα±(t, t0) =
∑

m∈Nα

e−iθm±(t,t0) |m,±; t⟩ ⟨m,±; t0| , (2.72a)

with dynamic phases

θm±(t, t0) =
1
ℏ

∫ t

t0
dt1Em±(t1). (2.72b)
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In the present case, since the Hamiltonian depends on time only through a single parameter
Ω(t), no geometric phase can occur. In the ideal adiabatic regime and to zeroth order in
Doppler detuning, Bragg diffraction simply imprints phases on the (anti)symmetric states
|m,±⟩. With Eqs. (2.72) and (2.71) the limit in Eq. (2.62) yields a unitary scattering matrix
S with γn± = 0 and dynamic scattering phases θn± = θ

dyn
n± with

θ
dyn
n± =

1
ℏ

∫ ∞

−∞
dt

(
En±(t) − ℏωrn2

)
. (2.73)

From the structure of the Hamiltonians (2.55) it is clear that any differential phase be-
tween symmetric and antisymmetric subspace can only arise by coupling the incoming
momentum states |n,±⟩ to the lowest states in the spectrum of Hα±, since these Hamil-
tonians differ only there. From the spectrum shown in Fig. 2.3, it is also evident that a
suitable energy splitting between the states |n,±⟩ for practical Rabi frequenciesΩ(t) is only
possible for low orders of Bragg diffraction. While the logic developed here is applica-
ble to arbitrary Bragg orders n, the figure demonstrates the power requirements of higher
Bragg diffraction orders. For example, for Ω ≲ 40ωr, one can expect Bragg diffraction
to be efficient only up to n ≤ 5, which we confirm by numerical simulations in Sec. 2.6.
S. S. Szigeti et al. [69] showed that Bragg pulses of orders n > 5 suffer from substantial
atom loss due to spontaneous emission rendering them unsuitable for state-of-the-art light
pulse atom interferometers that rely on high-fidelity atom optics. Consequentially, LMT
atom interferometry experiments have in the past either employed single Bragg pulses of
orders n ≤ 5 [64, 94, 97, 98, 104, 109, 111] or combined several "low-order" pulses sequen-
tially [64,94,96–98]. For these reasons, we restrict our study to the experimentally relevant
cases n ≤ 5. For later purposes, it will be useful to rewrite the dynamic phase as

θ
dyn
n± = τωrxn±(Ω), (2.74)

xn±(Ω) =
∫ ∞

−∞
dζ

(
En±(ζτ)
ℏωr

− n2
)
, (2.75)

where xn±(Ω) is a dimensionless quantity that generally depends on the exact pulse form
Ω(t) and in particular on the peak Rabi frequency Ω = max{t}Ω(t), which we display in
Fig. 2.4(a)-(d). Moreover, we introduce a dimensionless time ζ = t/τ for a characteristic
pulse duration τ. We will see that the dynamic phases (2.74) largely capture the physics of
the Bragg pulses, but not with the precision we want to achieve here. In the next section
we will therefore treat corrections beyond the ideal adiabatic limit.

2.4 Nonadiabatic Corrections and Doppler Detuning

Corrections beyond the ideal adiabatic limit are two-fold. First, nonadiabatic transitions
from |n,±⟩ to other states in the respective subspace Hpα± result in losses of population,
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Figure 2.4: Dimensionless Bragg diffraction parameters. The parameters are linked to
the dynamics phase xn,± (2.75) [top row, panels (a)-(d)], the LZ phase yn,± (2.90), and the
Doppler detuning zn,Θn (A.9) [bottom row, panels (e)-(h)] for Bragg orders n = 2, 3, 4, 5
(left to right). These are plotted as functions of the peak Rabi frequency Ω and assuming
a Gaussian temporal pulse shape. The width of the pulse is fixed by Eq. (2.92). Note that
for large values Ω the blue dash-dotted lines representing zn, π2 (bottom row) break off as
solutions of Eq. (2.92) become imaginary. Such short pulse durations require additional
higher-order corrections in τ−1 that we do not consider in Eq. (2.89), since this regime
is not relevant for high-fidelity beam splitter pulses with Gaussian envelopes, as we will
show in Sec. 2.6. Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102, 033709
(2020), Copyright 2022, American Physical Society (Ref. [120]).

γn± , 0. We describe these losses by LZ theory in Sec. 2.4.3. Second, by nonadiabatic
off-resonant coupling of the states |n,±⟩ to other states within Hpα± a further phase is gen-
erated, which in addition to the dynamic phase contributes in order τ−1 to the net scattering
phase of the states |n,±⟩. We refer to this contribution as LZ phases θLZ

n± . We will now illus-
trate how the LZ phases and loss parameters can be calculated, at least approximately, from
the Hamiltonians in Eqs. (2.55) and their eigenenergies in Eq. (2.70). As mentioned above,
we will focus on Bragg diffraction of order n ≤ 5 (corresponding to a momentum trans-
fer of at most 10 ℏk), and demonstrate that both LZ phases and losses can be understood
largely in terms of two-level physics.

2.4.1 Nonadiabatic Corrections: Landau-Zener (LZ) Phases

To cover the LZ phases, we look for a solution of Eq. (2.59) that is nondiagonal in the basis
of instantaneous energy eigenstates, i.e.,

Uαβ(t, t0) =
∑

m, j∈Nα

e−iθmβ(t,t0)c βm j(t) |β,m, p; t⟩⟨β, j, p; t0|. (2.76)
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In the ideal adiabatic limit we have c βm j(t) = δm j. Beyond the adiabatic limit we are par-
ticularly interested in the corrections to the coefficients c βnn(t) as these enter the scattering
matrix (2.61). Inserting the ansatz for Uαβ(t, t0) from Eq. (2.76) into the equation of motion
(2.59), using ∂tθlβ(t, t0) = Elβ(t)/ℏ, and taking the matrix element ⟨β,m, p; t| . . . |β, j, p; t0⟩
one finds

ċ βm j(t) = −
∑
l∈Nα

e−i[θlβ(t,t0)−θmβ(t,t0)]G β
ml(t)c

β
l j(t), (2.77)

where G β
ml(t) = ⟨β,m, p; t| ∂t |β, l, p; t⟩. As usual in the analysis of LZ dynamics, it is con-

venient to impose the gauge condition of parallel transport, where G β
mm(t) = 0 (see [143]).

The set of equations (2.77) should be solved with initial condition c βm j(0) = δm j. For the
relevant coefficient c βnn(t) one finds

ċ βnn(t) = −
∑
l∈Nα
l,n

e−i[θlβ(t,t0)−θnβ(t,t0)]G β
nl(t)c

β
ln(t), (2.78)

ċ βln(t) = −e−i[θnβ(t,t0)−θlβ(t,t0)]G β
ln(t)c βnn(t). (2.79)

In the last equation, we kept only the leading term in the sum. The adiabatic solution to the
last equation is

c βln(t) = −iℏ e−i[θnβ(t,t0)−θlβ(t,t0)] G β
ln(t)

Enβ(t) − Elβ(t)
c βnn(t). (2.80)

Inserting this into Eq. (2.78) and renaming the index l→ m for consistency yields

ċ βnn(t) = iℏ
∑
m∈Nα
m,n

∣∣∣G β
mn(t)

∣∣∣2
Enβ(t) − Emβ(t)

c βnn(t). (2.81)

Solving the resulting equation and taking the limit for final or initial times to ±∞, respec-
tively, we obtain c βnn = exp

(
iθLZ

nβ

)
, where the LZ phase is given by

θLZ
nβ = ℏ

∫ ∞

−∞
dt

∑
m∈Nα
m,n

|G β
mn(t)| 2

Enβ(t) − Emβ(t)
, (2.82)

θLZ
n± = ℏ

∫ ∞

−∞
dt

∑
m∈Nα
m,n

|⟨m,±; t| ∂t |n,±; t⟩| 2
En±(t) − Em±(t)

. (2.83)

According to Eq. (2.83), the LZ phases are acquired by the states |n,±⟩ due to their off-
resonant nonadiabatic coupling to other states in Hpα±. These phases are given by a rather
intuitive expression resulting from a standard application of perturbation theory beyond
the adiabatic approximation. The result (2.83) is correct to first order in the adiabaticity
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parameter |⟨m,±; t| ∂t |n,±; t⟩| /(En±(t)−Em±(t)) and is similar in spirit to corrections derived
in Ref. [144]. As it stands, the expression for the LZ phases is not very suitable for making
quantitative statements. The reason being that the sum runs over all states in Hpα± which
are different from |n,±⟩, and also that it is cumbersome to calculate the matrix elements in
the numerator of the integrand.

Two-level Approximation for Bragg Order n = 2

Both of these difficulties can be remedied by invoking an appropriate two-level approxi-
mation. The idea is to restrict the sum in Eq. (2.83) to its dominant term, which describes
the coupling of the state |n,±⟩ to the energetically closest state |n − 2,±⟩3. While the state
|n + 2,±⟩ also is energetically close, the coupling to it becomes relevant only for Rabi fre-
quencies Ω(t) that turn out to be prohibitive for high-fidelity Bragg diffraction. We will see
later in Sec. 2.6.3 that the Bragg condition can no longer be perfectly satisfied anymore in
the case of a Gaussian pulse shape, since nonadiabatic phase contributions occur for these
parameters in addition to large losses to other diffraction orders (see also Sec. 2.4.3). If
we combine the simplified sum in Eq. (2.83) with a suitable truncation of the Hamiltonian
(2.55) to the two-dimensional subspace composed of |n,±⟩ and |n − 2,±⟩, the matrix el-
ement in the numerator on the right-hand side of Eq. (2.83) can be evaluated exactly. In
Sec. 2.6.2 we will show that this approximation indeed gives excellent agreement when
compared to the numerical results.

In order to explain this idea in more detail, we consider Bragg diffraction of order n = 2
as a concrete example. In this case, in the symmetric subspace the level closest to |2,+⟩
is |0,+⟩ [see Hamiltonian (2.57a)]. The coupling of |2,+⟩ to the higher-lying state |4,+⟩
is discarded. The Hamiltonian (2.57a) restricted to the two-level subspace (|2,+⟩ , |0,+⟩)
reads

H(2)
e,+(t) = ℏωr

(
4

√
2w√

2w 0

)
, (2.84)

where we use again w = Ω(t)/2ωr. In the antisymmetric subspace the state |2,−⟩ has no
lower-lying partner, and its coupling to the higher-lying state |4,−⟩ is of the same order as
the coupling already discarded in the symmetric subspace. Thus, the truncated Hamiltonian
is trivial, H(2)

e,− = 4ℏωr, and the state |2,−⟩ will not acquire a LZ phase in the order consid-
ered. For the truncated Hamiltonian (2.84) eigenenergies and state overlaps in Eq. (2.83)
can be evaluated analytically. The corresponding LZ phase can then be expressed as a
simple time integral which must be evaluated numerically for a given pulse shape Ω(t).

3This is true for the higher order Bragg diffraction n ≥ 2. In the case of n = 1, the energetically closest
states are |n + 2,±⟩ = |3,±⟩. However, since the two-level Hamiltonians derived in this section are identical,
the obtained correction value is the same.
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Two-level Approximation for Bragg Orders n = 3, 4, 5

Bragg diffraction of higher order can be treated in a similar way with minor complications
due to ac Stark shifts. For n = 3 one gets from Eq. (2.57b)

H(3)
o,± = ℏωr

(
9 w
w 1 ± w

)
. (2.85)

For the other relevant cases n = 4 and 5 a similar truncation can be performed, but will
produce worse results, since now also lower-lying states (|+, 0, p⟩ for n = 4, and |±, 1, p⟩ for
n = 5) are neglected, which are of great importance for the spectrum of the Hamiltonians in
Eqs. (2.57). This is clearly visible in the avoided crossings in Fig. 2.3. In order to reduce the
truncation error it is appropriate to perform a pre-diagonalization of the lower two levels.
For n = 4 this requires us to diagonalize H(2)

e,+(t) in Eq.(2.84) to compute the eigenstates and
eigenvalues in the dressed basis. We discard the dressed state with the lower eigenenergy
and assume that the second eigenstate and the state corresponding to n = 4 form a new
effective two-level system. This procedure yields for n = 4 and n = 5

H(4)
e,± = ℏωr

(
16 q4±w

q4±w e4±(w)

)
, H(5)

o,± = ℏωr

(
25 q5±w

q5±w e5±(w)

)
, (2.86)

where e4− = 4, e4+(w) = 2 +
√

4 + 2w2, and e5±(w) = 5 ± w/2 +
√

16 ∓ 4w + 5w2/4 are
the larger eigenenergies resulting from the diagonalization of H(2)

e,+(t) and H(3)
o,±, respectively.

The expressions for e4+ and e5± correspond to the larger eigenvalues of H(2)
e,+ and H(3)

o,±,
respectively. The off-diagonal elements in the Hamiltonians (2.86) are as well affected by
the pre-diagonalization and in principle have a more complicated w dependence. In effect,
the coupling will be somewhat smaller than w on average. We account for this by including
a parameter qnβ which we fit to numerical data. Thus, truncated Hamiltonians in all cases

n β qnβ enβ(w)

2 +
√

2 0
2 - 0 0
3 + 1 1 + w
3 - 1 1 − w
4 + 0.58 2 +

√
4 + 2w2

4 - 1 4
5 + 0.45 5 + w/2 +

√
16 − 4w + 5w2/4

5 - 1 5 − w/2 +
√

16 + 4w + 5w2/4

Table 2.1: Parameters to determine the LZ phases.
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n = 2, 3, 4, 5 can be written in the form

Hn
α,β = ℏωr

(
n2 qnβw

qnβw enβ(w)

)
, (2.87)

where the parameters qnβ and functions enβ(w) are summarized in Table 2.1. Let the nor-
malized eigenvectors and eigenvalues of this matrix be |v j⟩ and E j for j = 1, 2. One can
check that (E1 > E2)

ℏωr
| ⟨v1| ∂w |v2⟩ |2

E1 − E2
=

q2
nβ
[
n2 − enβ(w) + w∂wenβ(w)

]2{[
n2 − enβ(w)

]2
+ 4q2

nβw2
}5/2 . (2.88)

The second ratio on the right-hand side tends to q2/64(n−1)3 for w→ 0, and vanishes (not
necessarily monotonically) for w→ ∞.

Effective Two-level LZ Phases

Using this general result and substituting it into Eq. (2.83), the effective LZ phases in all
cases n ≤ 5 can be expressed as

θLZ
n± =

1
ωr

∫ ∞

−∞
dt

(
dw(t)

dt

)2 | ⟨v1| ∂w |v2⟩ |2
E1 − E2

=
yn±(Ω)

256(n − 1)3

Ω2

ω3
r τ
, (2.89)

where

yn±(Ω) =
∫ ∞

−∞
dζ

(
∂ζΩ(ζ)
Ω

)2 64q2
n±(n − 1)3[n2 − en±(w) + w∂wen±(w)

]2{[
(n2 − en±(w)

]2
+ 4q2

n±w2
}5/2 . (2.90)

Here, w(ζ) = Ω(ζ)/2ωr and ζ = t/τ is a dimensionless time scaled to the (effective) pulse
duration τ and Ω = max{ζ}Ω(ζ) is the peak Rabi frequency. The parameter ynβ is dimen-
sionless as well, absorbs the time integral in Eq. (2.89), and is constructed to be of order
one. For the particular example of a Gaussian pulse, we present the dependence on n, ± and
the peak Rabi frequency Ω in Fig. 2.4(e)-(h). Eq. (2.89) clearly depicts that the LZ phase
is a first-order correction in τ−1, the weight of which relative to the dynamic phase will be-
come more important for short pulses. As we will see, this approximation gives excellent
results for all relevant orders of Bragg diffraction with Gaussian pulses. In summary, the
net scattering phase of the state |n,±⟩ entering Eq. (2.65) is

θn± = θ
dyn
n± + θ

LZ
n± . (2.91)

The dynamic phase is given by Eq. (2.74) and the correction due to the LZ phase is given
by Eq. (2.89). Generally, both can be evaluated numerically for any given pulse form Ω(t)
by means of the time integrals in Eqs. (2.75) and (2.90) for xn±(Ω) and yn±(Ω), respectively.



2.4. Nonadiabatic Corrections and Doppler Detuning 39

2.4.2 Bragg Pulse Area Condition

It is important to note that the findings in the previous section provide a (quasi)analytic
expression for the condition on the Bragg pulse area linking the pulse duration τ and the
peak Rabi frequency Ω. With the help of the now known dependence of the dynamic and
LZ phases on the peak Rabi frequency and pulse duration we can determine for a given Ω
the pulse duration τ necessary to attain a desired differential phase Θn (such as Θn = π/2
or π). Computing the total scattering phases in Eq. (2.91) by means of the dynamic phases
in Eq. (2.74) as well as the LZ phases in Eq. (2.89), and inserting the result into the first of
Eqs. (2.65), yields a quadratic equation for τ. The physically relevant solution is the one
corresponding to a longer pulse duration, and is given by

τ(Θn,Ω) =
Θn

2xn(Ω)ωr

1 +
√

1 − xn(Ω)yn(Ω)Ω2

64(n − 1)3Θ2
nω

2
r

 , (2.92)

where xn(Ω) = xn+(Ω) − xn−(Ω) and yn(Ω) = yn+(Ω) − yn−(Ω). In this solution the dynamic
phase makes the dominant contribution, while the LZ phase is a correction that becomes
relevant only for large peak Rabi frequency and, correspondingly, short pulses. In the
other (formal) solution for τ this relation is inverted and the LZ phase makes the dominant
contribution. In this regime, however, higher-order corrections to Eq. (2.83) as well as LZ
losses become significant and impede high-quality Bragg pulses.

In the following, we will use Eq.(2.92) to predict Gaussian pulse parameters that enable
Bragg operations with high efficiencies. We denote the resulting beam splitter parameters
according to ΩBS, τBS B Ω, τ(π/2,Ω) and write ΩM, τM B Ω, τ(π,Ω) in case of a Bragg
mirror pulse and will test their validity in Sec. 2.6.

2.4.3 Nonadiabatic Corrections: LZ Losses

The second kind of nonadiabatic corrections we consider are LZ losses from the states
|n,±⟩ to other states in their respective subspace Hpα±. As with the LZ phase, it is to
be expected that the dominant loss can again be attributed to the state closest in energy.
With the same logic and approximations applied in Sec. 2.4.1 the problem is thus reduced
to the determination of LZ losses in a two-level system. For the simplest case of n = 2
the coupling in the symmetric subspace of |2,+⟩ to |0,+⟩ is still given by the truncated
Hamiltonian in Eq. (2.84). Now, in principle LZ theory can be used to determine for a
certain pulse form Ω(t) the population loss from level |2,+⟩ to |0,+⟩. For the particular
Hamiltonian (2.84) and Gaussian pulses as in Eq. (2.9) G. S. Vasilev and N. V. Vitanov [145]
derived an approximate analytic formula for the LZ loss, which reads in our notation

γ̃2+ = −1
2

ln
1 − 2

sin
(
aΘn(Ω, τ)

)2

cosh
(
bΘn(Ω, τ)

)2

. (2.93)
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Here, aΘn(Ω, τ) and bΘn(Ω, τ) are analytical functions of the peak Rabi frequency and pulse
duration the explicit form of which is rather cumbersome and therefore included in Ap-
pendix A.1 [see Eqs. (A.1)]. In Appendix A.1 the Θn-dependence of these functions is
explained as well, which we drop for γ̃2+ (2.93) in the interest of readability. We neglect
the LZ loss in the antisymmetric subspace, i.e., γ2− = 0, in analogy to the two-level ap-
proximation we have performed in the context of the LZ phases in Sec. 2.4.1 for n = 2. In
Sec. 2.6.3, we will see that these expressions match very well with the numerical results.
Most notably, the harmonic modulation of the LZ losses due to the sine function in the
numerator on the right-hand side of Eq. (2.93) will be clearly visible. For higher orders
of Bragg diffraction n = 3, 4, 5 the problem of LZ losses can still be reduced to two-level
physics. However, the relevant truncated Hamiltonians given in Sec. 2.4.1 involve time-
dependent ac Stark shifts not covered by the work of G. S. Vasilev and N. V. Vitanov in
Ref. [145]. The same authors reported an extension of their work to account for a linear
sweep in time of energy levels [146], but this is still very different from the present case,
where the relevant ac Stark shift is proportional to Ω(t)2. An extension of LZ theory to this
case would be very desirable, but is beyond the scope of this thesis. From the numerical
results presented in Sec. 2.6.3 for the cases n = 3, 4, 5, it will become clear that the relevant
physics still corresponds to LZ dynamics in a two-level system, and that one can expect
that a formula very similar to Eq. (2.93) also holds for loss parameters γn± in higher-order
Bragg diffraction.

Determination of LZ Parameters from Population Data

Despite the lack of an analytical formula similar to Eq. (2.93) for higher-order Bragg pulses,
we can nevertheless show that also for these orders LZ losses are dominated by two-level
dynamics. To see this we infer values for γ2,+ and γn,±, for orders n = 3, 4, 5 from the
numerical solution of the Schrödinger equation in an equivalent two-level approximation
(cf. Sec 2.4.1). We omit the tilde to distinguish the numerically inferred quantities γn,±
from the analytical result γ̃2,+ and numerically calculate the LZ populations in zeroth order
of the quasi-momentum p via

Nnum
m,± = | ⟨m,±|ψout

num⟩| 2. (2.94)

The state |ψout
num⟩ is obtained by numerically solving the Schrödinger equation for Hamilto-

nians (2.55) in the (anti)symmetric basis using

|ψin⟩ = |−n ℏk⟩ = 1√
2

einϕL (|n,+⟩ − |n,−⟩) (2.95)

as the initial condition (see Sec. 2.3.2). We focus on the states |n − 2,±⟩, that are energet-
ically closest to the main modes |n,±⟩ (for n = 2, only |0,+⟩ with Nnum

0,+ turns out to be
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relevant). In accordance with the two-level approximation we assume the amplitude loss
parameters to be defined entirely by these populations:

γ2,+ = −1
2

ln
(
1 − 2Nnum

0,+

)
, (2.96a)

γ3,± = −1
2

ln
(
1 − 2Nnum

1,±
)
. (2.96b)

We remark that, as pointed out in Sec. 2.4.1 in the context of the LZ phase, the spectra of
the Hamiltonians make it necessary in the cases of n = 4 and 5 to include the coupling to
the states |n − 4,±⟩

γn,± = −1
2

ln
(
1 − 2(Nnum

n−2,± + Nnum
n−4,±)

)
. (2.96c)

We evaluate these quantities for pulse parameters enabling high-fidelity Bragg beam splitter
and mirror operations using Gaussian pulse shapes in Sec. 2.6.3.

2.4.4 Doppler Detuning

As a last step, we will further generalize the shape of the scattering matrix (2.64) by also
taking into account the effect of first-order Doppler detuning. To this end, we have to
consider the Hamiltonian Hα(p) in Eq. (2.43), which contains the Doppler shift term Vα

from Eq. (2.44b). In contrast to Eq. (2.59), we now need to construct a solution of Eq. (2.41)
on the subspace Hpα, which is valid to first order in the Doppler detuning. In particular,
we aim to solve

iℏ
d
dt
Vα(p, t, t0) =

(
Hα(t) + ϵ(p)Vα(t)

)
Vα(p, t, t0), (2.97)

to first order in ϵ(p). Using the fact that Uα(t, t0) in Eq. (2.72a) solves Eq. (2.59) one finds

Vα(p, t, t0) = Uα(t, t0)
(
1 − iϵ(p)Zα(t, t0)

)
, (2.98a)

Zα(t, t0) =
1
ℏ

∫ t

t0
dt1U†α(t1, t0)Vα(t1)Uα(t1, t0). (2.98b)

We can now take the limit

lim
t→∞

t0→−∞
exp (iLα(t − t0)/ℏ)Vα(t, t0) = Sα

(
1 − iϵ(p)Zα

)
, (2.99)

recalling the zeroth-order scattering matrix Sα (2.60). With respect to the first-order correc-
tion Zα, it is simplest to consider directly the relevant matrix elements in the (anti)symmetric
basis |n,±⟩ from Eq. (2.98b). This is consistent with the statement made in Sec. 2.3.3,
where we also focus on the action of the Bragg pulse within the two-dimensional sub-
space spanned by |n,±⟩. We show in Appendix A.2 that the diagonal elements vanish,
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⟨n,±|Zα |n,±⟩ = 0, and the off-diagonal elements ⟨n,−|Zα |n,+⟩ = ⟨n,+|Zα |n,−⟩∗ are
nonzero. This reflects the fact that Doppler detuning breaks the decoupling of symmet-
ric and antisymmetric subspace. One finds

⟨n,+|Zα |n,−⟩ = 2nτ2ω2
r eiΘn/2zn,Θn(Ω), (2.100)

where Θn is the differential phase from Eq. (2.65) and zn,Θn(Ω) is a positive real parameter
of order unity given in Eq. (A.9). It absorbs a time integral of overlaps of instantaneous
energy eigenstates and is shown in Fig. 2.4(e)-(h) up to order n ≤ 5. Overall, we find that
the scattering matrix, projected into the subspace |±n ℏk + p⟩ and written in the basis of
(anti)symmetric states (|p, n,+⟩ , |p, n,−⟩) is

S (p) =
(
e−iθn+−γn+ 0

0 e−iθn−−γn−

) (
1 iη(p)eiΘn/2

iη(p)e−iΘn/2 1

)
. (2.101)

From here on we explicitly write again the dependence on the (quasi)momentum p and
have introduced in Eq. (2.101) the dimensionless Doppler parameter

η(p) = −2nτ2ω2
r zn,Θn(Ω)

p
ℏk
. (2.102)

Eq. (2.101) incorporates Doppler detuning to first order and therefore generalizes Eq. (2.61).
Thus, we have seen that the Doppler detuning causes a mixing of the (anti)symmetric states
|p, n,±⟩, but no real loss out of this subspace unlike the LZ losses. As it stands, the pro-
jected scattering matrix is nonunitary due to the two effects of Doppler detuning and LZ
losses, since

tr
(
S †(p)S (p)

)
= (1 + η(p)2)(e−2γn+ + e−2γn−). (2.103)

However, the nonunitarity due to the Doppler effect is an artifact of the perturbation series
expansion adopted here. Whereas, the nonuniformity due to LZ losses is due to actual
losses from the relevant subspace. It is important to make this distinction by renormalizing
the scattering matrix in order to remove the artificial nonunitarity due to the Doppler shift.
This can be achieved by exchanging S (p)→ S (p)/

√
1 + η(p)2. Finally, the transformation

of the scattering matrix (2.101) from the (anti)symmetric basis to the basis of momentum
eigenstates |±n ℏk + p⟩ is again achieved by means of T in Eq. (2.63) and B(p) = T †S (p)T .
The result is given in the next section in Eq. (2.104b).

2.5 Two-mode Bragg Scattering Matrix

In the previous section, we have formulated a comprehensive and relatively simple ana-
lytic model of single Bragg diffraction based on the application of the adiabatic theorem.
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We have identified nonadiabatic corrections like LZ phases and LZ losses, as well as cor-
rections due to Doppler detuning, which play an important role for the dynamics of the
Bragg pulse. Together, these quantities determine the scattering matrix for nth-order Bragg
diffraction:

S(Ω, τ, ϕL) =

ℏk/2∫
−ℏk/2

dp
∑

s,s′=∓

[
B(p,Ω, τ)

]
ss′ |s n ℏk + p⟩ ⟨s′n ℏk + p| , (2.104a)

where

B(p,Ω, τ, ϕL) =
exp

(
−iΦn−iΓ

2

)
√

1 + η(p)2

 cos
(
Θn−iγ

2

)
−ie−i2nϕL sin

(
Θn−iγ

2

)
−iei2nϕL sin

(
Θn−iγ

2

)
cos

(
Θn−iγ

2

) 
×

 1 + iη(p) cos
(
Θn
2

)
e−i2nϕLη(p) sin

(
Θn
2

)
−ei2nϕLη(p) sin

(
Θn
2

)
1 − iη(p) cos

(
Θn
2

) 
B

(
B−− B−+
B+− B++

)
.

(2.104b)

The scattering matrix for single Bragg diffraction links the products of this elastic-scattering
process and the experimental parameters of the Bragg pulse via intuitive analytical expres-
sions for any order n. Table 2.2 summarizes all parameters that enter Eq. (2.104b). We
also provide references to their respective definitions, linking them to the Rabi frequency
Ω(t) and, for the special case of a Gaussian pulse, to the peak Rabi frequency Ω and the
pulse width τ. The general structure of the scattering matrix (2.104b) holds for arbitrary
pulse forms Ω(t) and accounts for Doppler detuning (to first order in |p|/ℏk≪ 1) as well as
for population loss out of the subspace (|n ℏk + p⟩ , |−n ℏk + p⟩). The formulas presented
in Table 2.2 assume an adiabatic tuning of Ω(t), and include the dominant nonadiabatic
corrections due to LZ processes. For Gaussian pulses we will see in the next section that
high-quality quasi-Bragg pulses do indeed always fall within this regime.

In the hypothetical case of vanishing LZ losses (Γ = γ = 0), vanishing Doppler detuning
(η(p) = 0), and zero global phase (Φn = 0) the scattering matrix in Eq. (2.104b) assumes
familiar forms if the pulse Ω(t) is tuned in such a way that the differential phase Θn takes
on specific values: Choosing Θn = π/2 provides a beam splitter operation, whereas Θn = π

yields a mirror pulse as given in Eqs. (2.68). The scattering matrix (2.104b) provides a
systematic generalization to account for nonideal phases Θn as well as unavoidable global
phases, population losses, and Doppler shifts. Our model gives a microscopic explanation
and analytic characterization for all of these effects in leading order (except for LZ losses in
Bragg diffraction of higher order n> 2). The approach taken here provides also a systematic
framework for deriving higher-order corrections. An important insight that can be gained
from our analytic characterization of the differential phase concerns the so-called Bragg
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Parameter Symbol defined by Equation

Global phase Φ Φ = θn+ + θn− (2.65)
Global LZ loss Γ Γ = γn+ + γn− (2.66)
Differential phase Θn Θn = θn+ − θn− (2.65)
Differential LZ loss γ γ = γn+ − γn− (2.66)
Doppler shift η(p) (2.102)
Laser phase ϕL (2.11)
Total phase of |p, n,±⟩ θn± θn± = θ

dyn
n± + θLZ

n± (2.91)

Dynamic phase θ
dyn
n± (2.74)

LZ phase θLZ
n± (2.89)

LZ loss from |p, n,±⟩ γn± (2.93),(2.96)

Table 2.2: Bragg scattering matrix parameters, [see Eq. (2.104)].

condition: For a Gaussian pulse the requirement to achieve a desired phase Θn links Ω
to τ. Thus, the pulse duration τ(Θn,Ω) can be expressed as a function of the peak Rabi
frequency for a given differential phase [see Eq. (2.92)]. For a desired operation, such as
a beam splitter (Θn = π/2) or a mirror (Θn = π) pulse, this leaves a single free parameter,
Ω, which fully determines the scattering matrix (2.104). What is left is to choose the
peak Rabi frequency to balance the dominant imperfections: LZ losses will become large
for short pulses, i.e., for a large Rabi frequency. The effects of Doppler detuning will be
stronger for long, spectrally narrow pulses with correspondingly small Rabi frequencies.
We demonstrate in Sec. 2.6.3 that the trade-off implied by this is very well covered by our
analytic model.

2.6 Comparison to Numerical Simulations

In this section, we gauge the accuracy of our analytical model. With this purpose in
mind, we employ the notion of pulse fidelities to compare the predictions of our model
with numerical solutions of the Schrödinger equation given the full Bragg Hamiltonian in
Eq. (2.11). As explained in Sec. 2.3.3, the loss of atoms by spontaneous emission provides
an effective limit to the Rabi frequency, which imposes a certain threshold above which
losses cannot be tolerated [69]. For this reason, we restrict our study to the experimentally
relevant cases n ≤ 5. Furthermore, in the following we consider pulses with Gaussian
temporal pulse shapes Ω(t) (2.9) characterized by peak Rabi frequencies Ω and widths τ.
Details of the numerical treatment are given in Appendix A.3 and the MATHEMATICA
code at the basis of the comparisons presented in this section is available [120].
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2.6.1 Quality of Bragg Operations

For the concrete case of an incoming atomic wave packet with average momentum −n ℏk
and a narrow Gaussian envelope of width σp≪ ℏk centered at p = 0,

|ψin⟩ =
∫ ℏk/2

−ℏk/2
dp g(p, σp) |−n ℏk + p⟩ , (2.105)

with

g(p, σp) = (2πσ2
p )−1/4e

− p2

4σ2
p , (2.106)

the ideal outgoing state is accordingly |ψout
ideal,Θn

⟩ = Sideal,Θn |ψin⟩. The true outgoing state
is |ψout⟩ = S(Ω, τ) |ψin⟩ while the general scattering matrix S(Ω, τ) denotes the limit in
Eq. (2.26) for the given pulse shape. Here, we set ϕL = 0 and therefore omit the formal
dependence on the phase of the laser for the moment. We quantify the quality of aΘn-Bragg
pulse by the fidelity between the ideal state and the true output state

FΘn,σp(Ω, τ) =
∣∣∣⟨ψout

ideal,Θn
|ψout⟩

∣∣∣2 . (2.107a)

In the limit of an infinitely narrow atomic wave packet,

FΘn,0(Ω, τ) = lim
σp→0

FΘn,σp(Ω, τ), (2.107b)

we can infer the fidelity for the central momentum component p = 0. Ultimately, the ana-
lytic approximation for the scattering matrix S(Ω, τ, ϕL) derived in Secs. 2.3 and 2.4 will be
gauged by comparing the corresponding analytic predictions for the fidelities (2.107) to the
values Fnum

Θn,σp
(Ω, τ) and Fnum

Θn,0
(Ω, τ) inferred from numerical integration of the Schrödinger

equation. We display in anticipation the numerically determined fidelity Fnum
Θn,0

(Ω, τ) for
beam splitter (Θn = π/2) [Fig. 2.5(a)-(d)] and mirror (Θn = π) [Fig. 2.5(e)-(h)] pulses for
the Bragg orders n = 2, 3, 4, 5 in Fig. 2.5. We will see that the landscapes depicted in
Fig. 2.5 can be very well explained by our analytical model and their dependence on the
pulse parameters can be readily understood by means of the quantities summarized in the
previous section. We emphasize that the fidelity is only used here as a figure of merit to
demonstrate the quality of our approximation for the Bragg scattering matrix, and will turn
to a discussion of signals of Bragg atom interferometers in Chapter 3.

Analytical Fidelities

With the analytic form of the scattering matrix in Eq. (2.104) we can evaluate the fidelity
from Eq. (2.107a) to

FΘn,σp(Ω, τ) =
∣∣∣⟨ψout

ideal,Θn
|ψout(Ω, τ)⟩

∣∣∣2 = ∫ ℏk/2

−ℏk/2
dp |g(p, σp)|2

∣∣∣∣[B†Θn
B(p,Ω, τ)

]
11

∣∣∣∣2 . (2.108)
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Figure 2.5: Nonnormalized Bragg diffraction fidelities. Numerically determined fideli-
ties according to Eq. (2.107b) of a single Gaussian quasi-Bragg pulse (2.9) in case of a
wave packet with vanishing momentum spread as a function of the peak Rabi frequency
Ω and the temporal pulse width τ. Fidelities are depicted for beam splitters [top row, pan-
els (a)-(d)] and mirrors [bottom row, panels (e)-(h)] of order n = 2, 3, 4, 5 (from left to
right). Orders n > 5 are not suitable for high-fidelity Bragg diffraction due to atom loss, as
mentioned in the main text. The parameters (Ω, τ) have been chosen to optimize the plot
range for the pulse fidelities while maintaining experimentally relevant pulse durations for
atomic clouds with finite momentum spread (see Sec. 2.6.3). Quasi-Bragg beam splitting
pulses feature a rich phenomenology that can be explained by LZ physics as we show in
Sec. 2.6.3. For the mirror pulses with longer pulse durations, such features are less visible.
Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102, 033709 (2020), Copyright 2022,
American Physical Society (Ref. [120]).

We can express the squared modulus of the top-left element of the matrix B†
Θn

B(p,Ω, τ)
explicitly assuming Θn = π/2∣∣∣∣∣[B†π2 B(p,Ω, τ)

]
11

∣∣∣∣∣2 = e−Γ

2[1 + η2(p)]

{
1 + [1 + η2(p)] cosh (γ) +

√
2η(p) sinh (γ)

}
≃ e−Γ

2

[
1 + cosh (γ) − η2

0, π2

( p
ℏk

)2
+
√

2η0, π2

p
ℏk

sinh (γ)
] (2.109)

or Θn = π∣∣∣∣[B†πB(p,Ω, τ)
]

11

∣∣∣∣2 = e−Γ

2[1 + η2(p)]

{
1 − η2(p) + [1 + η2(p)] cosh (γ) + 2η(p) sinh (γ)

}
≃ e−Γ

2

[
1 + cosh (γ) − 2η2

0,π

( p
ℏk

)2
+ 2η0,π

p
ℏk

sinh (γ)
]
.

(2.110)
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To obtain the last lines in these two equations we introduced the dimensionless parameter

η0,Θn B −2nτ2ω2
r zn,Θn(Ω), (2.111)

and performed an expansion up to order O[p]3. Assuming an atomic wave packet with a
Gaussian momentum distribution g(p, σp), we can immediately execute the integration in
Eq. (2.108) giving us the averaged beam splitter

F π
2 ,σp(Ω, τ) ≃ e−Γ

2

 η2
0, π2
σp

√
2πℏk

e−
1
8 (σpℏk )

−2

+

[
1 + cosh (γ) − η2

0, π2

(σp

ℏk

)2
]

erf
(

1

2
√

2

(σp

ℏk

)−1
)

(2.112a)

and mirror fidelity

Fπ,σp(Ω, τ) ≃ e−Γ
 η2

0,πσp√
2πℏk

e−
1
8 (σpℏk )

−2

+

[
1
2

[
1 + cosh (γ)

] − η2
0,π

(σp

ℏk

)2
]

erf
(

1

2
√

2

(σp

ℏk

)−1
) .

(2.112b)

It is useful to also consider the fidelity (2.107b) for the hypothetical situation of an infinitely
narrow atomic wave packet with no Doppler effects:

FΘn,0(Ω, τ) = lim
σp→0

FΘn,σp(Ω, τ) =
∣∣∣∣[B†Θn

B(0,Ω, τ)
]

11

∣∣∣∣2 = e−Γ

2
(1 + cosh (γ)). (2.112c)

This can also be considered as the fidelity achieved for the center component with momen-
tum p = 0 of a finite atomic wave packet, or equivalently as the fidelity attained within
each subspace (|−n ℏk + p⟩ , |n ℏk + p⟩) in zeroth order of the Doppler detuning.

Numerical Fidelities

These approximate analytic expressions for the fidelities can be compared to the fidelities
inferred from the numerical solution of the Schrödinger equation |ψout

num(Ω, τ)⟩ for given
pulse parameters. We denote the numerical fidelities that we will be comparing to the ones
in Eqs. (2.112) by

Fnum
Θn,σp

(Ω, τ) =
∣∣∣⟨ψout

ideal,Θn
|ψout

num(Ω, τ)⟩
∣∣∣2 , (2.113a)

Fnum
Θn,0(Ω, τ) = lim

σp→0
Fnum
Θn,σp

(Ω, τ). (2.113b)

The fidelity (2.113b) is shown in Fig. 2.5 for beam splitter (Θn = π/2) [Fig. 2.5(a)-(d)] and
mirror (Θn = π) [Fig. 2.5)(e)-(h)] pulses of Bragg diffraction orders n = 2, 3, 4, 5, corre-
sponding to momentum transfers of 4 ℏk, 6 ℏk, 8 ℏk, 10 ℏk, respectively. One last figure of
merit that will be useful in the following discussion is a fidelity where both the Doppler
effect and the LZ losses are masked out. This can be achieved by considering the fidelity
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for the central p = 0 momentum component of the wave packet from Eq. (2.112c) but
calculating it with respect to the normalized state |ψout

num(Ω, τ)⟩/
∥∥∥|ψout

num(Ω, τ)⟩
∥∥∥. This vector

describes the state of atoms conditioned on the fact that they actually remain in the cor-
rect (|±n ℏk⟩)-subspace. When Doppler effect and LZ losses are ignored in this way, the
conditional fidelity for the conditional, normalized state is

F num
Θn,0 (Ω, τ) =

Fnum
Θn,0

(Ω, τ)∥∥∥|ψout
num(Ω, τ)⟩

∥∥∥ . (2.114)

It will be reduced below 1 only if the pulse parameters (Ω, τ) do not yield the desired
differential phase Θn. Thus, F num

Θn,0
(Ω, τ) is an appropriate figure of merit to benchmark the

analytic formula for the prediction of the pulse duration (2.92) τ(Θn,Ω) required to achieve
a desired differential phase Θn.

2.6.2 Bragg Pulse Area Condition
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Figure 2.6: Normalized Bragg diffraction fidelities. Similar to Fig. 2.5. Here, we plot
the normalized beam splitter [top row, panels (a)-(d)] and mirror [bottom row, panels (e)-
(h)] fidelities (2.114) of a single Gaussian quasi-Bragg pulse in case of a wave packet
with vanishing momentum spread. The results are shown as functions of the peak Rabi
frequency Ω and the temporal pulse width τ for diffraction orders n = 2, 3, 4, 5 (from left
to right). The red lines represent the calculated temporal pulse width τ(Θn,Ω) in Eq. (2.92)
with (dashed) and without (dotted) the phase contribution from LZ physics. In contrast
to Fig. 2.5(a)-(d), beam splitter fidelities possess a simplified structure as LZ losses from
the subspace |±n ℏk⟩ are blanked out in the conditional fidelity F num

Θn,0
. Figure adapted from

J.-N. Siemss et al., Phys. Rev. A 102, 033709 (2020), Copyright 2022, American Physical
Society (Ref. [120]).
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Figure 2.6 shows the conditional fidelity F num
Θn,0

(Ω, τ) introduced in Eq. (2.114) for Bragg
beam splitters and mirrors. These plots are similar to the ones shown in Fig. 2.5 but blank
out the effects of LZ losses. We immediately observe that the rich fidelity landscapes
showcased in Fig. 2.5 simplify considerably when evaluating this fidelity instead of the
unconditional fidelity Fnum

Θn,0
(Ω, τ) (2.113b). Considering first the numerical data represented

by the shaded regions in Fig. 2.6, one clearly recognizes the condition on the Bragg pulse
area (cf. Eqs. (2.20) and Sec. 2.4.2): The shorter the temporal width τ of the pulse is,
the stronger its coupling must be to achieve Bragg operations of decent quality. It is also
visible, that for sufficiently large parameters (Ω, τ) one can realize an efficient beam splitter
(mirror) with a differential phase of Θn = π/2 + m 2π (Θn = π + m 2π) with m ∈ N. More
importantly, the numerical data highlight the fact that for all Bragg orders depicted, even
when disregarding LZ losses, there exists a minimal temporal pulse width beyond which
fidelities degrade quickly. Rising nonadiabatic couplings such as the LZ phase introduced
in Sec. 2.4.1 and higher-order corrections to the adiabatic theorem make it impossible to
perfectly match the Bragg condition with Gaussian pulses featuring pulse widths shorter
than that.

This condition on the Bragg pulse parameters can now be compared to the predictions
our analytic model provides regarding the pulse timings τ(Θn,Ω) (2.92). We show the pulse
timings including (red dashed line) and excluding (red dotted line) the contribution of the
LZ phase to the differential phase, i.e., with and without the second term under the square
root in Eq. (2.92), respectively. Clearly, Eq. (2.92) provides an excellent approximation
for the necessary pulse duration in all regimes, where it is even possible to perform a
high-quality operation. Thus, for Gaussian pulses adiabaticity is indeed a necessary and
sufficient condition for performing efficient Bragg diffraction. From Fig. 2.6 it is also
evident that the LZ phase delivers a significant contribution to the Bragg pulse evolution
even if the LZ losses themselves have been re-normalized. Naturally, these corrections
are less important when operating with small peak Rabi frequencies and accordingly long
pulse durations, i.e., for more adiabatic pulses. Following the same logic, it is easy to
see that the corrections to the differential phase due to LZ physics are suppressed in the
case of a mirror pulse compared to a beam splitting pulse: For the same value of Ω the
latter operates with half the temporal width of the former. That is why for Bragg mirror
operations the mismatch in differential phase when considering only the dynamic phase is
reduced, which is visible in Fig. 2.6(e)-(h). Nonetheless, the figure makes it fairly obvious
that using the full Eq. (2.92) instead of just the dynamic phase contribution considerably
improves predictions for both operations and especially in the case of a beam splitter.

In fact, from the weight of the LZ-phase term in Eq. (2.92) we can deduce the adiabatic-
ity of the Bragg diffraction process for a given Rabi frequency. This is considerably more
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accurate4 than the usual adiabaticity criterion derived from the separation of the n-th and
(n−1)-th energy levels mentioned in Secs. 2.2.2 and 2.2.3, as well as the estimations done in
Sec. V A of [130]. The discrepancy between the numerically determined pulse parameters
(Ω, τ) maximizing the fidelity and the results of the full Eq. (2.92) for values τωr < 0.2 is
a consequence of the rising nonadiabaticity and the limitation of perturbation theory devel-
oped in Sec. 2.4.1. Since Bragg pulses implemented in state-of-the-art atom interferometry
experiments typically aim at efficiencies approaching unity [96–98], this regime can be,
however, considered unsuitable for high-performance quasi-Bragg beam splitters and mir-
rors as fidelities quickly degrade. In the following section we return to the unconditional
fidelities in Eqs. (2.113), which include losses from the subspace |±n ℏk + p⟩, and identify
them as product of LZ processes that give rise to the features observed in Fig. 2.5.

2.6.3 Bragg Beam Splitters and Mirrors

Gaussian Beam Splitter Pulses

We start by discussing the Bragg beam splitter pulse (Θn = π/2) in Fig. 2.7 for diffraction
orders n = 2, 3, 4, 5. We consider first the lowest order n = 2. In Fig. 2.7(a) we present the
result of our approximate analytic formula for τ(Θn,Ω) in Eq. (2.92) on top of the numer-
ically inferred fidelities Eq. (2.113b) in the (Ω, τ)-plane assuming a vanishing momentum
width. The figure shows good agreement between our model and the peak fidelities over
the relevant range of peak Rabi frequencies. In addition, it illustrates that pulse parameters
generating a differential phase Θn = π/2 between the states |±n ℏk⟩ (red dashed line, cf.
Fig. 2.6) are subject to losses with an intricate dependency on the peak Rabi frequency
Ω. To demonstrate that this dependency can be understood applying LZ theory, Fig. 2.7(e)
depicts the fidelity loss for pulse parameters ΩBS, τBS highlighted by the dashed red line in
Fig. 2.7(a). The blue circles are obtained evaluating Eq. (2.113b) numerically. The cor-
responding analytic fidelity (2.112c) is a function of the LZ loss parameters Γ and γ (see
Table 2.2) that we derived in Sec. 2.4.3. Within our approximation both are entirely deter-
mined by γ̃2,+, the loss of amplitude from the symmetric state |0, 2,+⟩, hence the superscript
F γ̃2,+
Θn,0

. We insert γ̃2,+ (2.93) into Eq. (2.112c) and plot the dashed blue line in Fig. 2.7(e).
The analytic results exactly mirror the functional dependence of the numerical data on Ω.
Both analytics and numerics show an exponential increase of losses towards large values
of Ω that is harmonically modulated as showcased in Eq. (2.93). On top of that, we find
good quantitative agreement up to Rabi frequencies of Ω < 5ωr. Towards larger Ω, time-
dependent ac Stark shifts proportional to Ω2(t) become increasingly significant. These are

4This statement refers to the fact that the adiabaticity criterion for the temporal slopes of the pulse,
τ≫ [4(n − 1)ωr]−1, provides at best a rough estimate with varying quality depending on the Bragg order
n. Moreover, the considerations done in Sec. V A of Ref. [130] underestimate the losses by at least one order
of magnitude.
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not taken into account in the LZ rates defined in Appendix A.1. Still, for relevant values
of the Rabi frequency, formula (2.93) gives remarkably good results in light of the fact that
it is based on a simple two-level approximation accounting for losses to the energetically
closest-lying level only. Unfortunately, we lack equivalent expressions for the higher-order
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Figure 2.7: Bragg beam splitter fidelity. Top row: Pulse duration (2.92) (red dashed
line) on top of the numerically determined beam splitter fidelities (2.113b) introduced in
Fig. 2.5(a)-(d). Middle row: Fidelity loss as a function of peak Rabi frequency Ω and pulse
durations computed via Eq. (2.92). Beam splitter fidelities were determined numerically
(blue disks), via Eq. (2.112c) with values (2.96) (solid line). The dashed line in panel
(e) for n = 2 is obtained by inserting γ̃2,+ (2.93) into Eq. (2.112c) and denoted F γ̃2,+

π
2 ,0

in
the legend on the right. Bottom row: Fidelity loss extracted from numerics (squares &
triangles) is again compared to analytic results (solid & dashed lines) similar to the middle
row. Fidelities (2.113a) are now averaged over a wave packet with finite momentum width
σp = 0.01 ℏk (purple squares and lines) and σp = 0.1 ℏk (green triangles and lines). The
values for γn,± were obtained via Eq. (2.96) (solid lines) or for γ̃2,+ using Eq. (2.93) (dashed
lines) in the panel (i). Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102, 033709
(2020), Copyright 2022, American Physical Society (Ref. [120]).

Bragg pulses, since this would require an adaptation of the LZ theory in Ref. [145] as out-
lined in Sec. 2.4.3, which is beyond the scope of this thesis. Nevertheless, Fig. 2.7(e)-(h)
makes it clear that the dominant loss from the subspace |±n ℏk⟩ can be associated with
two-level dynamics for all Bragg orders treated here. The solid blue lines representing the
fidelity loss 1−FΘn,0 [see Eq. (2.112c)] in Fig. 2.7(e)-(h) and Fig. 2.8(e)-(h) are in excellent
agreement with the numerically determined loss of fidelity based on Eq. (2.113b). Note,
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that we evaluate Eq. (2.112c) with the values γn,± (2.96) for n = 2, 3, 4, 5 based on numer-
ically determined population data and therefore have no superscript to differentiate them
from the solutions of F γ̃2,+

Θn,0
using γ̃2,+ (2.93).

In Fig. 2.7(i), we extend our discussion of the pulse parameters indicated by the dashed
red line in Fig. 2.7(a) to the experimentally more relevant case of an atomic wave packet
with finite momentum width. Here, we contrast the results of Eq. (2.113a) (squares and tri-
angles) with our analytic fidelity (2.108) assuming a Gaussian momentum distribution with
widths σp = 0.01 ℏk and 0.1 ℏk. Again, we find good agreement between numerics and an-
alytics using either the numerically extracted LZ loss [solid lines, see Eq. (2.96a)] and the
fully analytic expression [dashed lines, see Eq. (2.93)]. The Doppler detuning drives tran-
sitions between the (anti)symmetric states |p, n,±⟩, which affects the fidelity in Fig. 2.7(i)
compared to Fig. 2.7(e). Thus, in the limiting case of small Ω and long pulse durations,
the fidelity is reduced by the velocity filter effect due to the Doppler detuning determined
by parameter η(p) ∝ τ2 [see Eq. (2.102)]. As expected, the velocity filter effect decreases
rapidly toward shorter pulse widths, especially for the σp = 0.01 ℏk wave packet. Consider-
ing values Ω ⪆ 3ωr, the LZ physics we have already discussed for p = 0 visibly dominates
the pulse fidelities. Nevertheless, it becomes also clear that averaging over a larger uncer-
tainty in momentum σp = 0.1 ℏk blurs the LZ features considerably. The remaining panels
of Fig. 2.7 confirm that our analytic model equally applies to Gaussian Bragg pulses of
orders n = 3, 4, 5. As before, we select the pulse parameters represented by the red dashed
lines in Fig. 2.7(b)-(d) for pulses investigated in Fig. 2.7(f)-(h) and 2.7(j)-(l). Figure 2.7(f)-
(h) shows that also for these higher orders the fidelity is reduced due to transitions to the
closest state in energy |n − 2,±⟩ (hybridized level of |n − 2,±⟩ and |n − 4,±⟩ for n = 4, 5).
Despite the fact that our perturbative model for the Doppler detuning underestimates the
magnitude of the velocity filter for σp = 0.1 ℏk and overestimates it for σp = 0.01 ℏk in case
of a finite momentum width, we still find good qualitative agreement in Fig. 2.7(j)-(l) with
regards to the numerics.

Gaussian Mirror Pulses

In the case of Bragg mirrors (Θn = π) for diffraction orders n = 2, 3, 4, 5, correspond-
ing to momentum transfers of 4 ℏk, 6 ℏk, 8 ℏk, 10 ℏk, respectively, Fig. 2.8 paints a picture
very similar to the discussion of the beam splitter. Yet, Fig. 2.8(e)-(h) shows that unlike
the beam-splitter case, the longer pulse widths for ΩM, τM (for the same peak Rabi fre-
quency, ΩBS = ΩM) suppress nonadiabatic losses. For the same reason, the fidelity loss
in Fig. 2.8(e)-(h) is significantly lower in direct comparison with Fig. 2.7(e)-(h). Still,
following the same logic as before, the results confirm that LZ transitions to the closest
state in energy are responsible for losses in amplitude during the Bragg mirror process.
Moreover, it can be seen in Fig. 2.8(i)-(l) that our perturbative treatment of the Doppler
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Figure 2.8: Bragg mirror fidelity. Top row: Pulse duration (2.92) (red dashed line) on
top of the numerically determined mirror fidelities (2.113b) introduced in Fig. 2.5(e)-(h).
Middle row: Fidelity loss as a function of peak Rabi frequency Ω and pulse durations
computed via Eq. (2.92). Mirror fidelity loss was determined numerically (blue disks),
via Eq. (2.112c) with values (2.96) (solid line). The dashed line in panel (e) for n = 2
is obtained by inserting γ̃2,+ (2.93) into Eq. (2.112c) and denoted F γ̃2,+

π,0 in the legend on
the right. Bottom row: Fidelity loss extracted from numerical calculations (squares &
triangles) is again compared to analytic results (solid & dashed lines) similar to the middle
row. Fidelities (2.113a) are now averaged over a wave packet with finite momentum width
σp = 0.01 ℏk (purple squares and lines) and σp = 0.1 ℏk (green triangles and lines). The
values for γn,± were obtained again via Eq. (2.96) (solid lines) or for γ̃2,+ using Eq. (2.93)
(dashed lines) in the panel (i). Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102,
033709 (2020), Copyright 2022, American Physical Society (Ref. [120]).

detuning accurately models the velocity filtering properties of a Bragg mirror on a quan-
titative level for all orders considered here. Due to the fact that temporal mirror pulse
widths are about twice the ones for beam splitters for the same Ω, the acceptance is re-
duced for off-resonant momentum classes visible in Fig. 2.8(i)-(l), which exhibit fidelity
losses in the limit of small peak Rabi frequencies near unity. Indeed, when performing a
Gaussian quasi-Bragg pulse of order n = 2, 3, 4, 5 for wave packets with finite momentum
widths, the results demonstrate that there are optimal combinations of parameters Ω, τ for
Bragg beam splitting pulses [see Fig. 2.7(i)-(l)] and mirror pulses [see Fig. 2.8(i)-(l)] that
minimize nonadiabatic losses as well as the impact of the velocity filter.
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2.7 Four-mode Bragg Scattering Matrix

Comparison with numerical calculations in the previous section emphasizes the accuracy
of our model in describing the main diffraction order of Bragg beam splitters and mirror
pulses. Nevertheless, there is experimental evidence of parasitic interferometry paths af-
fecting the metrological properties of atom interferometers, and which are populated by
scattering to additional states [118, 135, 147]. However, the inclusion of these states in our
model requires the expansion of the scattering matrix in Eq. (2.104). To this end, and in an-
ticipation of the discussion of the role played by the multi-port aspects of Bragg diffraction
in atom interferometers in the next chapter, we include the dominant parasitic diffraction
order arising from the LZ losses by extending the state space in this section as follows.
According to Sec. 2.4.1, the (anti)symmetric states we need to consider are

|s j(p)⟩ ∈ { |p, 2,±⟩ , |p, 0,+⟩ } (n = 2),

|s j(p)⟩ ∈ { |p, n,±⟩ , |p, n − 2,±⟩ } (n ≥ 3),
(2.115a)

and similarly in the momentum eigenbasis we find

|q j(p)⟩ ∈ {|±2 ℏk + p⟩ , |p⟩} (n = 2),

|q j(p)⟩ ∈
{
|±n ℏk + p⟩ , |±(n − 2) ℏk + p⟩

}
(n ≥ 3).

(2.115b)

Interestingly, the state spaces for first-order and third-order Bragg diffraction are identical.
Therefore, for the discussion of n = 1, one can simply use the latter case with minor mod-
ifications.5 Thus, all the following formulas assume n ≥ 3, as we reproduce the relevant
expressions for the unique case n = 2 with only a single LZ state |p⟩ in the Appendix A.4.
The objective of this section is to derive a transfer matrix coupling the states in Eq. (2.115b),

B(p,Ω, τ, ϕL) =


B−n,−n B−n,−(n−2) B−n,+(n−2) B−n,+n

B−(n−2),−n B−(n−2),−(n−2) B−(n−2),+(n−2) B−(n−2),+n

B+(n−2),−n B+(n−2),−(n−2) B+(n−2),+(n−2) B+(n−2),+n

B+n,−n B+n,−(n−2) B+n,+(n−2) B+n,+n


. (2.116)

We indicate the sub-blocks of the transfer matrix related to the main diffraction order (de-
noted by black symbols) and parasitic order (blue symbols). As before, the matrix elements
B j,l are functions of the pulse parameters Ω, τ as well as the (quasi)momentum p and in-
clude the phase of the laser ϕL. To derive analytic expressions for these functions, we first
generalize the projection of the scattering matrix in the (anti)symmetric basis, Sα (2.61).
We find

Sα =
∑

j,l

S jl |s j⟩⟨sl| , (2.117)

5To apply the analytical expressions derived for n = 3 to the case of n = 1, one must substitute n→ n + 2
and n − 2→ n.



2.7. Four-mode Bragg Scattering Matrix 55

where we define S as the product matrix

S = S LZ · S ad, (2.118a)

composed of

S ad =


e−iθn+ 0 0 0

0 e−iθ(n−2)+ 0 0
0 0 e−iθ(n−2)− 0
0 0 0 e−iθn−

 , (2.118b)

and

S LZ =


e−γn+ −eiξ+

√
1 − e−2γn+ 0 0

e−iξ+
√

1 − e−2γn+ e−γn+ 0 0
0 0 e−γn− e−iξ−

√
1 − e−2γn−

0 0 −eiξ−
√

1 − e−2γn− e−γn−

 .
(2.118c)

The entries of the product matrix S are again matrix elements of the time evolution oper-
ator in the asymptotic limit, lim

t→∞
t0→−∞

Uα±(t, t0), analogous to Eq. (2.62) and, as expected, S

retains its block-diagonal structure in zeroth order of p. Furthermore, the generalized S
contains new transition elements such as ⟨n,±| Sα± |n − 2,±⟩. It is important to emphasize
at this point, that unlike Eq. (2.61), we have defined S (2.118) to be unitary with single
parameters γn± ≥ 0 coupling the subspaces |n,±⟩ ↔ |n − 2,±⟩ respectively. This not only
yields simple off-diagonal elements of S LZ, but is also useful in describing complete in-
terferometer sequences, as we will see in the next chapter. At the same time, requiring
S S † = S †S = 1 does not uniquely determine the order of the matrix multiplication in
Eq. (2.118a). Below we explain, how we confirm the order using numerical solutions of
the Schrödinger equation and how we use the same numerics to extract the newly intro-
duced LZ transition phases ξ±. Meanwhile, we reintroduce the perturbative effects of a
nonvanishing (quasi)momentum p mixing symmetric and antisymmetric subspaces only
for the main diffraction order,

S (p) = S · 1√
1 + η2(p)


1 0 0 iη(p)eiΘn/2

0
√

1 + η2(p) 0 0
0 0

√
1 + η2(p) 0

iη(p)e−iΘn/2 0 0 1

 . (2.119)

S (p) represents a generalized version of the scattering matrix defined in Eq. (2.101),
but does not incorporate corrections to the dynamics of the |n − 2,±⟩ states with respect to
p. We recall the assumption p/ ℏk≪ 1, which is at the core of our perturbative treatment
of the (quasi)momentum and, as we have demonstrated in previous sections, justified when
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describing wave packets with momentum widthsσp < 0.1 ℏk. Accordingly, we ignore terms
of order O[ p

ℏkγn±], which is also motivated by the observation that the LZ parameters γn±
grow for intense and short Bragg pulses, whereas the Doppler detuning effects are strongest
towards long pulse durations. The transformation to the basis of momentum eigenstates is
straightforward using

T =
1√
2


einϕL 0 0 e−inϕL

0 ei(n−2)ϕL e−i(n−2)ϕL 0
0 ei(n−2)ϕL −e−i(n−2)ϕL 0

einϕL 0 0 −e−inϕL

 , (2.120)

which provides us with the analytic transfer matrix for the extended state space in Eq. (2.115b),

B(p,Ω, τ, ϕL) B T †S (p)T =M(Ω, τ, ϕL) · N(p,Ω, τ, ϕL). (2.121a)

Here, we have exploited the product form of S (p) as well as the property TT † = 1. In
zeroth order of the (quasi)momentum p, the dynamics of the momentum eigenstates in
Eq. (2.115b) that are coupled by Bragg diffraction is described by the matrixM(Ω, τ, ϕL)
asymptotically. Meanwhile, N(p,Ω, τ, ϕL) accounts for its first-order correction due to
Doppler effects for the main diffraction order n. In addition to the entries in each corner
being the same as in the case of the two-mode scattering matrix, the former,
M(Ω, τ, ϕL) =

e
−i
2 (Φn−iΓ) cos

(
Θn−iγ

2

) −1
2 e
−i
2 (Θn−2+Φn−2+4ϕL)×(

eiξ+h1(Γ,γ)+ei(Θn−2+ξ−)h2(Γ,γ)
) −1

2 e
−i
2 (Θn−2+Φn−2+4(n−1)ϕL)×(

eiξ+h1(Γ,γ)−ei(Θn−2+ξ−)h2(Γ,γ)
) −ie−i2nϕLe

−i
2 (Φn−iΓ) sin

(
Θn−iγ

2

)
1
2 e
−i
2 (Θn+2(ξ−+ξ+)+Φn−4ϕL)×(

eiξ−h1(Γ,γ)+ei(Θn+ξ+)h2(Γ,γ)
) e

−i
2 (Φn−2−iΓ) cos

(
Θn−2−iγ

2

)
−ie−i2(n−2)ϕL e

−i
2 (Φn−2−iΓ) sin

(
Θn−2−iγ

2

) 1
2 e
−i
2 (Θn+2(ξ−+ξ+)+Φn+4(n−1)ϕL)×(

eiξ−h1(Γ,γ)−ei(Θn+ξ+)h2(Γ,γ)
)

1
2 e
−i
2 (Θn+2(ξ−+ξ+)+Φn−4(n−1)ϕL)×(

eiξ−h1(Γ,γ)−ei(Θn+ξ+)h2(Γ,γ)
) −iei2(n−2)ϕL e

−i
2 (Φn−2−iΓ) sin

(
Θn−2−iγ

2

)
e
−i
2 (Φn−2−iΓ) cos

(
Θn−2−iγ

2

) 1
2 e
−i
2 (Θn+2(ξ−+ξ+)+Φn+4ϕL)×(

eiξ−h1(Γ,γ)+ei(Θn+ξ+)h2(Γ,γ)
)

−iei2nϕLe
−i
2 (Φn−iΓ) sin

(
Θn−iγ

2

) −1
2 e
−i
2 (Θn−2+Φn−2−4(n−1)ϕL)×(

eiξ+h1(Γ,γ)−ei(Θn−2+ξ−)h2(Γ,γ)
) −1

2 e
−i
2 (Θn−2+Φn−2−4ϕL)×(

eiξ+h1(Γ,γ)+ei(Θn−2+ξ−)h2(Γ,γ)
) e

−i
2 (Φn−iΓ) cos

(
Θn−iγ

2

)



,

(2.121b)

contains a very similar (2 × 2)-submatrix in its center describing the dynamics in the
|±(n − 2) ℏk⟩-subspace. The matrix elements in blue at the edges couple both diffraction
orders. In order to keep the notation clean, we have defined the functions h2(Γ, γ) B√

1 − e(γ−Γ) and h1(Γ, γ) B
√

1 − cosh (γ + Γ) + sinh (γ + Γ). As a result of neglecting the
influence of the (quasi)momentum beyond the main diffraction order, the resulting correc-
tions are the same as in the two-mode case,

N(p,Ω, τ, ϕL) =



1+iη(p) cos (Θn/2)√
1+η2(p)

0 ie−i2nϕL iη(p) sin (Θn/2)√
1+η2(p)

0 1 0

− ie+i2nϕL iη(p) sin (Θn/2)√
1+η2(p)

0 1−iη(p) cos (Θn/2)√
1+η2(p)


. (2.121c)
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In the following chapter, we apply our perturbative description of the (quasi)momentum
to study its effects on Bragg mirrors in the context of atom interferometer sequences. At
the same time, we neglect effects of finite velocity effects during beam splitting for the fol-
lowing investigation, i.e., we set N(p,ΩBS, τBS) = 1. This avoids possible artifacts arising
from the fact that our perturbative description of the (quasi)momentum overestimates the
strength of velocity filters in the case of Bragg beam splitters. This concerns in particular
higher Bragg orders as we show in Fig. 2.7. Furthermore, velocity filtering is generally
stronger during the mirror pulse due to the longer interaction times (see Fig. 2.6), whereas
the more dominant role of LZ losses during beam splitter results mainly in terms of the
order O[ p

ℏkγn±], which we discard as explained above.
Equations (2.121) represent the building blocks of the scattering matrix that describes

nth-order Bragg diffraction including the coherent coupling to the dominant LZ states,

S(Ω, τ, ϕL) =

ℏk/2∫
−ℏk/2

dp
∑

j,l

[
B(p,Ω, τ, ϕL)

]
jl |q j(p)⟩⟨ql(p)| , (2.122)

where |q j(p)⟩ are elements of the state space defined in Eq. (2.115b). Except for the laser
phase ϕL, the choice of Bragg pulse parameters Ω, τ in the experiment determines all quan-
tities in the transfer matrix B(p,Ω, τ, ϕL), most of which have already been introduced in
previous sections and can be found in Tab. 2.2. At this stage, it is certainly useful to recall
the idealized lossless case [cf. Eqs. (2.68)], in which the perfect choice of pulse parameters
yields

Bideal
BS =


1/
√

2 0 −ie−i2nϕL/
√

2

0 B±(n−2) 0

− ie+i2nϕL/
√

2 0 1/
√

2

 , Bideal
M =


0 0 −ie−i2nϕL

0 B±(n−2) 0

− ie+i2nϕL 0 0


.

(2.123)

These matrices represent, respectively, perfect beam splitter and mirror operations for a
wave packet initially prepared with mean momentum −n ℏk or n ℏk in the limit of a vanish-
ing velocity width. In this idealized two-mode limit the parasitic diffraction orders decouple
from the main ones. In the following, we point out some novel aspects regarding the pa-
rameters of the four-mode Bragg scattering matrix before discussing the newly introduced
transition phases ξ± and verifying the assumptions we made for the construction of the scat-
tering matrix. For this purpose, we compare our analytical model with numerical solutions
of the Schrödinger equation.
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2.7.1 LZ Loss Parameters: γ,Γ

We have seen that γ,Γ represent corrections to the adiabatic dynamics of the Bragg pulse
by characterizing the global and differential LZ losses from the main states |±n ℏk + p⟩.
In addition, they now determine the transition amplitudes between those and the LZ states
|±(n − 2) ℏk + p⟩. Similarly, γn± couple the corresponding states in the even(+) and odd(−)
subspaces, as the form of S LZ (2.118c) makes clear, where we recall the relations Γ =
γn+ + γn− and γ = γn+ − γn− (see Tab. 2.2). Thus, the fact that the transition matrix
B(p,Ω, τ, ϕL) (2.121) is unitary by design ultimately requires that all atoms lost from
the main diffraction order n are transferred to the (n − 2)-subspace. Yet, this is at odds
with some of the observations we made in Sec. 2.4.3. There, we argued that, e.g., in the
cases of n = 4, 5 for some parameters Ω, τ it is necessary to consider also losses to states
|±(n − 4) ℏk + p⟩. One way to correct this inconsistency would be to introduce two sets of
parameters that describe transitions within the extended state spaces (2.115) and losses to
other states separately. This would of course mean that B(p,Ω, τ, ϕL) is no longer unitary.
Alternatively, one could further generalize the scattering matrix (2.117) to include all states
populated by the Bragg pulse. Both approaches would significantly complicate the form
of the scattering matrices and our analytical model as a whole, and are therefore beyond
the scope of this thesis. Furthermore, we demonstrate in the next chapter that the model
in Eq. (2.118) provides accurate and valuable insights into the workings of Bragg atom
interferometers.

In the remainder of this section, we instead explain how to navigate the intricacies of
our model and how to avoid potential errors resulting from its assumptions. In Sec. 2.4.3,
we state that in the absence of analytical formulas for n > 3, the parameters γ and Γmust be
inferred from population data after numerically solving the Schrödinger equation. Assum-
ing there are no LZ losses outside of the four-mode state space, we find [cf. Eqs. (2.96)]

γn,± = −1
2

ln
(
1 − 2Nnum

n−2,±
)
. (2.124)

In this way, accurate coupling strengths to the parasitic states |n − 2,±⟩ are obtained via
Eq. (2.118c) and to |±(n − 2) ℏk⟩ via Eq. (2.121b), but at the same time this may under-
estimate the losses from the main diffraction modes, especially for Bragg orders n > 3.
Alternatively, we can account for losses from the main diffraction order n to all other rele-
vant states,

γn,± = −1
2

ln
(
1 − 2(Nnum

n−2,± + Nnum
n−4,± + Nnum

n+2,±)
)
, (2.125)

which overestimate the population transferred to the (n − 2)-subspace, when inserted into
the scattering matrices. Note, that compared to Eq. (2.96c) we have also included the pop-
ulation of the energetically higher-lying states |±(n + 2) ℏk⟩. Indeed, Fig. 2.9(a) illustrates
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that population is dominantly lost to the modes |±3 ℏk⟩ in the case of a fifth-order Gaussian
Bragg beam splitting pulse. Assuming the input state in Eq. (2.105) we evaluate and plot

Nnum
−m ℏk + Nnum

m ℏk = lim
σp→0

∫ ℏk/2

−ℏk/2
dp

(∣∣∣∣〈−m ℏk + p
∣∣∣ψout

num

〉∣∣∣∣2 + ∣∣∣∣〈+m ℏk + p
∣∣∣ψout

num

〉∣∣∣∣2) , (2.126)

after numerically solving the Schrödinger equation with respect to the Hamiltonian in
Eq. (2.44a) for parameters ΩBS, τBS [see Eq. (2.92)]. The results confirm that the scat-
tering process also couples states |±1 ℏk⟩ (= |±(n − 4) ℏk⟩). Interestingly, however, in prox-
imity of the LZ minimum the population of the energetically higher-lying states, |±7 ℏk⟩
(= |±(n + 2) ℏk⟩), is in fact comparable to |±3 ℏk⟩. For the same Bragg pulse parameters
Fig. 2.9(b) illustrates the quantitative difference in the global and differential LZ param-
eters γ,Γ, when taking into account different numbers of modes. It is evident, that the
number of modes especially affects γ and that states |±(n + 2) ℏk⟩ play an important role
as well due to the intriguing property of the LZ minimum. We can verify that Eq. (2.125)
includes all relevant modes if we extract γn,± directly from population data obtained on
the basis of momentum eigenstates as opposed to the (anti)symmetric basis. For this pur-
pose, we need to numerically solve the dynamics generated by the momentum eigenstate
Hamiltonian (2.44a) with different initial conditions,

|ψin
± ⟩ =

∫ ℏk/2

−ℏk/2
dp

g(p, σp)√
2

(|−n ℏk + p⟩ ± |n ℏk + p⟩) . (2.127)

The application of either the scattering matrix in Eq. (2.104) or its generalized version in
Eq. (2.122) gives the output state, |ψout

± (Ω, τ, ϕL)⟩ = S(Ω, τ, ϕL) |ψin
± ⟩, which in combination

with the assumption ϕL = (2c + 1)π/2 for c ∈ Z6, we can directly connect γn± to the output
population of a Bragg beam splitter,

N−n ℏk + Nn ℏk = lim
σp→0

∫ ℏk/2

−ℏk/2
dp

(∣∣∣∣〈−n ℏk + p
∣∣∣ψout
± (Ω, τ, ϕL)

〉∣∣∣∣2 + ∣∣∣∣〈+n ℏk + p
∣∣∣ψout
± (Ω, τ, ϕL)

〉∣∣∣∣2)
= e−2γn,± .

(2.128)

Inserting numerical population data Nnum
±n ℏk and solving this equation for γn± (0 < γn± < 1)

allows us to find perfect agreement with the results based on Eq. (2.125), which becomes
clear from Fig. 2.9(b). We will see in the next chapter that in the context of the full Bragg
atom interferometer sequences, the differential loss from the main states |±n ℏk + p⟩ and the
resulting LZ loss parameters play a major role and therefore must be determined accurately.
In this context, it is hence necessary to use Eq. (2.125).

6We note that Eq. (2.128) also holds in case ϕL = c π with c ∈ Z if we make the substitution γ± → γ∓.
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Figure 2.9: Spurious beam splitter population and LZ amplitudes for Bragg order
n = 5. (a) We determine the population of the LZ states using Eq. (2.126). Although
population is mainly lost to states |±(n − 2) ℏk⟩ (thick blue line), the data highlight that for
some parameters ΩBS, τBS their population is comparable to the one of |±(n + 2) ℏk⟩ (thin
violet line) because of the existence of the LZ minimum. (b) The global (upper panel) and
differential (lower panel) LZ parameters clearly depends on the truncation of state space.
Comparison with the results from Eq. (2.128) (thick light blue line) shows that for the
parameters considered here the truncation made in Eq. (2.125) is sufficient for fifth-order
Bragg diffraction beam splitters at the µrad-level.

2.7.2 Phases

Energetic Phases: Θn,Θn−2, Φn,Φn−2

As a result of the adiabatic theory of Bragg diffraction derived in this section, we have
seen that Θn,Θn−2,Φn,Φn−2 are determined by energetic phases acquired during adiabatic
dynamics plus their nonadiabatic corrections [see Eq. (2.65) and Eq. (2.91)]. The phase
Θn−2 plays a role analogous to that of Θn, but within the subspace of parasitic states
|±(n − 2) ℏk + p⟩. We will demonstrate in the next chapter, how the insight into the Bragg
pulse dynamics within both subspaces can be used in Bragg atom interferometers to ma-
nipulate undesired interferometry paths. Φn as well as Φn−2 denote phases imprinted on the
different modes during the Bragg pulse.

Landau-Zener Transition Phases: ξ+, ξ−

Apart from the coupling strength to the LZ states |n,±⟩, the off-diagonal matrix elements
of the scattering matrix (2.118c) also include transition phases ξ+, ξ−. Those phases affect
the matrix elements of B(p,Ω, τ, ϕL), which couple the (n − 2)-states to the main Bragg
order n and vice versa, and will therefore be important for the understanding of atom in-
terferometers including parasitic trajectories. Comparison with numerical solutions of the
Schrödinger equation in this case not only allows us to extract the numerical values for
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ξ+, ξ−, but in addition gives us the opportunity to verify the form of the scattering matrices
in Eq. (2.118a) and in Eq. (2.121b). We can determine the transition phases for given pulse
parameters Ω, τ by solving the time evolution either in the (anti)symmetric basis or in the
basis of momentum eigenstates. First, we consider

|ψin⟩ = lim
σp→0

∫ ℏk/2

−ℏk/2
dp

g(p, σp)√
2

(|n ℏk + p⟩) = 1√
2

(|n,+⟩ + |n,−⟩) (2.129)

as the initial condition for the dynamics in the (anti)symmetric basis, where the use of
|n ℏk + p⟩ instead of |−n ℏk + p⟩ simply avoids a phase shift of π in the following calcula-
tion. Applying the scattering matrix S to this state in the (anti)symmetric basis representa-
tion, we find an analytic expression for the diffracted state,

|ψout(Ω, τ)⟩ = S (Ω, τ) |ψin⟩
=

1√
2

{
e−γ+−iθn+ , e−i(θn++ξ+)

√
1 − e−γ+ , e−i(θn−+ξ−)

√
1 − e−γ− , e−γ−−iθn−

}T
.

(2.130)

We can now compare this result with the complex amplitudes of numerically determined
output states and confirm that the form of S (2.118a) is indeed correct, as well as obtain
ξ+, ξ− this way, i.e., |ψout

num(Ω, τ)⟩ !
= S (Ω, τ) |ψin⟩. While we recall that the energetic phases

θn± can be obtained using Eq. (2.91), to remain self-consistent and as an initial step we
extract the energetic phases from the numerics7 writing θn±

!
= − Im

{
ln

(〈±, n∣∣∣ψnum
out (Ω, τ)

〉)}
.

In the same manner, we extract the combined phases θn± + ξ± and find

ξ± = − Im
{
ln

〈
±, n − 2

∣∣∣ψout
num(Ω, τ)

〉}
+ Im

{
ln

〈
±, n

∣∣∣ψout
num(Ω, τ)

〉}
. (2.131)

To check if this is indeed correct, we can exploit the analytic form of the scattering ma-
trix (2.122) for momentum eigenstates, this time using the input state in Eq. (2.105). We
find an analytical expression for the diffracted LZ populations of a nth-order Bragg pulse
via |ψout(Ω, τ, ϕL)⟩ = S(Ω, τ, ϕL) |ψin⟩, which reads in the limit for vanishing velocity width,

N∓(n−2) ℏk = lim
σp→0

∫ ℏk/2

−ℏk/2
dp

∣∣∣∣〈∓(n − 2)ℏk + p
∣∣∣ψout(Ω, τ, ϕL)

〉∣∣∣∣2
=

1
2

e−Γ
(
eΓ − cosh (γ) ± cos (Θn + ξ+ − ξ−)

√
1 + e2Γ − 2eΓ cosh (γ)

)
.

(2.132)

Inserting the phases ξ+, ξ− from above in addition to Γ, γ, which we extract on the basis
of Eq. (2.124) to avoid overestimating the population of these states as explained before,
we can compare this result to numerical solutions of the Schrödinger equation Nnum

∓(n−2) ℏk

[cf. Eq. (2.126)]. We give an example with Fig. 2.10, where we depict the population

7Extracting the correct phases from numerically determined states |ψnum
out (Ω, τ)⟩ requires solving the

Schrödinger equation in interaction picture introduced in Eq. (2.39). Otherwise, it is necessary to account for
phase evolution due to the kinetic energy.
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of the parasitic diffraction order n − 2 = 3 that is dominantly coupled by the fifth-order
beam splitting pulse, again assuming parameters ΩBS, τBS (see Sec. (2.4.2)). The per-
fect agreement between the numerical data and Eq. (2.132) demonstrates that the extended
transfer matrix B(Ω, τ, ϕL) accurately describes the dynamics of the dominant diffraction
orders |±(n − 2) ℏk + p⟩, at least in zeroth order of the (quasi)momentum p. We recall that
terms of order O[γ p

ℏk ] will be small and are therefore neglected in our description. Note,
that agreement is conditional on using Eq. (2.124) to calculate the values for Γ and γ, which
we plug into Eq. (2.132). Interestingly, Fig. 2.10 provides further evidence of higher-order
corrections to the differential energetic phase of the main diffraction order, Θn. Examining
N+(n−2) ℏk, one clearly recognizes, that the assumption Θn = π/2 toward shorter pulse dura-
tions breaks down due to corrections not included in τ(π/2,Ω) (2.92). Instead, for given
ΩBS, τBS we determine Nnum

∓n ℏk and solve

N∓n ℏk = lim
σp→0

∫ ℏk/2

−ℏk/2
dp

∣∣∣∣〈∓nℏk + p
∣∣∣ψout(Ω, τ, ϕL)

〉∣∣∣∣2 = 1
2

e−Γ (cosh (γ) ± cos (Θn)) (2.133)

for the exact value of Θn. But to obtain accurate results, we need to use Eq. (2.125) in this
context to avoid underestimating the losses from the main diffraction orders n. As men-
tioned earlier, this is an artifact of our definition of B(p,Ω, τ, ϕL). Furthermore, Fig. 2.10
confirms our accurate knowledge of the phases ξ+ and ξ− inserted in Eq. (2.132).

It is worth mentioning that Eq. (2.133) provides a second way to extract the phase
difference ξ+ − ξ−. Still, it is much simpler to use Eq. (2.131) to extract the individual
transition phases on the basis of numerical population data. Although it would certainly
be of interest to derive analytical expressions for these transition phases in analogy to the
nonadiabatic corrections to the energetic phase evolution discussed in Sec. 2.4.1, this is
beyond the scope of this work. Moreover, as the main result of this section, we would like to
highlight the analytical form of the transfer matrix B(Ω, τ, ϕL), which accurately describes
the coherent coupling to the dominant perturbative diffraction orders. This result serves as
the foundation for the following discussions of complete Bragg atom interferometers.

2.8 Conclusion and Comparison to Existing Theory

The comprehensive comparison with numerical calculations in the previous section demon-
strates that our scattering matrix accurately describes the dynamics of Gaussian Bragg
pulses in the so-called quasi-Bragg regime. The general form of the Bragg scattering matrix
applies to adiabatic but otherwise arbitrary pulses of any order with constant laser phase.
We would like to emphasize that the logic developed in this chapter also covers Bragg or-
ders n > 5. Note, though, that losses due to spontaneous emission are not included in our
analysis, although, as mentioned earlier, these losses significantly limit the range of Rabi
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Figure 2.10: Dominant spurious beam splitter population for Bragg order n = 5. In
comparison to Fig. (2.9)(a), we plot the occupation numbers for both dominant parasitic
states, |±(n − 2) ℏk⟩ (= |±3 ℏk⟩), separately to highlight their differences. The predictions
using Eq. (2.132) (thin lines) are in perfect agreement with the numerical data (thick lines),
which validates our result for the four-mode scattering matrix and Eq. (2.131). The dashed
lines assume an ideal differential Bragg phase, Θn = π/2, for all pulse parameters ΩBS, τBS,
leading to visible deviations for |(n − 2) ℏk⟩ (= |+3 ℏk⟩) from the numerics. Our model
does not include the next-order nonadiabatic corrections to Θn that become increasingly
important for very short pulses, which explains the visible differences in the population.

frequencies useful for performing high-fidelity Bragg pulses. In their study, S. S. Szigeti
et al. [69] conclude that for the example of 87Rb atoms, viable Bragg orders are limited to
n ≤ 5 due to the effects of spontaneous emission, justifying our focus on this range.

The Bragg scattering matrix (2.58) depends on dynamic (energetic) phases and non-
adiabatic first-order (in inverse pulse duration) corrections corresponding to LZ losses and
LZ phases. First-order Doppler shifts are included systematically in terms of perturbation
theory to account for finite momentum widths of atom wave packets. We provide simple
formulas highlighting the analytic dependence of these quantities on the parameters of the
Bragg pulse such as its peak intensity, duration and envelope [see Table (2.2)]. Although,
with regards to the LZ losses we only give such a formula for the diffraction order n = 2, our
analysis leaves little doubt that the logic of nonadiabatic losses within a two-level system
can be extended to diffraction orders n > 2. A suitable adaptation of theoretical treatments
as in [145, 146, 148, 149] may therefore give good analytic descriptions for more general
cases.

In summary, the theory of Bragg scattering developed in the previous sections allows for
exciting perspectives on Bragg pulses that serve as a basis for analytic models of complete
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interferometry sequences. This foundation promises significant insights when investigating
systematic effects related to the shortcomings of the diffraction process. In the next chapter,
we therefore proceed by extending our analytical treatment and investigate how the prop-
erties of the Bragg pulses operating in the quasi-Bragg regime affect the characteristics of
atom interferometers, as this will have immediate practical implications for the design and
operation of such devices. We remark that the fidelities introduced in Sec. 2.6.1 for bench-
marking our analytic theory against the numerical integration of the Schrödinger equation
are indeed of limited value for experiments because it is not easy to derive statements, e.g.,
about the metrological performance of a Bragg interferometer. Before proceeding to a dis-
cussion of the signal of atom interferometers, however, we put our model in a clear context
with the preceding theory, which we seek to complement.

2.8.1 Diabatic Dynamics Described by an Effective Hamiltonian

As outlined in Sec. 2.2, the majority of existing descriptions aim at transferring the concept
of a two-level system being diabatically coupled by a Rabi frequency, which is valid in
the limit of asymptotically long pulse durations, i.e., in the deep-Bragg regime, to quasi-
Bragg pulses. We would like to emphasize once again the conceptual differences between
the application of the adiabatic theorem in our model and the adiabatic elimination of off-
resonant states. Specifically, our findings are based on the realization that it is far more
useful to understand the evolution of the atom interacting with the pulsed optical lattice
in terms of the adiabatic theorem, rather than assuming diabatic transitions in between the
levels of an effective two-level system. This allows the formulation of a comprehensive
and relatively simple analytic model that accurately captures the dynamics of single Bragg
diffraction. In doing so, we have successfully applied the adiabatic theorem to describe
single Bragg diffraction of arbitrary order n with smooth temporal pulse shapes. As a result,
we arrive at intuitive analytical expressions linking the products of this elastic scattering
process and the experimental parameters of the Bragg pulse. In particular, our formulas
for dynamic and LZ phases provide simple expressions for the so-called Bragg condition
on the pulse area (i.e., the combination of pulse duration and peak intensity) in the quasi-
Bragg regime. In our formalism, this replaces the concept of the effective Rabi frequency,
which has been used in earlier descriptions to formulate this condition on the Bragg pulse
parameters [101, 102, 125, 130].

In this context, we stress foremost the efficiency of our approach when increasing the
Bragg order n. Since our formalism only requires us to calculate eigenenergies of finite-
dimensional Hamiltonians to obtain the phases in Eq. (2.104b), taking into account more
states does not significantly increase the complexity of computing the quantities in Ta-
ble 2.2, whereas the adiabatic elimination of additional states that become relevant when
increasing the Bragg order n is more complicated. In direct comparison to Ref. [130], our
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solution for the differential dynamic phase (2.73) can be also expanded in orders of Ω(t)
and Ω̇(t), and we expect to be able to reproduce Eq. (48) in [130] with similar or even
higher accuracy. This is conceivable since our formalism allows us to obtain the neces-
sary eigenvalues by diagonalizing finite-dimensional matrices, which can be achieved by
efficient and accurate numerical routines even for high truncation orders. Furthermore, our
model for smooth Bragg pulses applies to atoms with velocity distributions that are nar-
row on the scale of the photon recoil of the Bragg lattice as we include linear Doppler
shifts via perturbation theory up to first order. The reduction in transfer efficiencies due to
velocity selectivity was primarily modeled using numerical simulations [69, 135], but the
authors E. Giese et al. [132] provided an analytical description for the case, where wave
packets featuring a narrow momentum spread, σp≪ ℏk, interact with double Bragg pulses
with rectangular pulse shapes.

2.8.2 Bloch-band Picture

In Sec. 2.2.3 we argue that the concept of describing Bragg diffraction as adiabatic dynam-
ics is closely related to the Bloch-band picture. We hope to have convinced the reader
that all the important observations that can be derived from this picture are fully con-
firmed by our analytic model and complemented by further insights. It is certain that
Gochnauer et al. anticipated the application of the adiabatic theorem to Bragg diffrac-
tion in their work [119]. Figure 2.11 highlights the relationship between the Bloch bands
and the spectra of the Hamiltonians derived in this thesis for Bragg scattering of even and
odd order, as shown in Fig. 2.3. They correspond exactly to cuts through the Bloch spec-
tra for a fixed constant quasimomentum, qB = ±k and = 0 (see Fig. 2.11(a) and 2.11(c)
and their connection to Fig. 2.11(b) indicated by the vertical dashed grey lines). Thus,
instead of solving the entire Bloch-band structure for arbitrary Rabi frequencies and all
possible (quasi)momenta p, we reduce the problem to diagonalization of low-dimensional
Hamiltonians only for p=0. The decomposition of the Hamiltonians into their symmet-
ric and antisymmetric components allows us to determine the energy gap very accurately
already for low truncation orders, and avoids the need to numerically determine Bloch
spectra for variable potential depths. Our procedure leads to analytical expressions such as
Eq. (2.73), which are both instructive and efficient, giving us excellent agreement with the
numerical calculations in the experimentally most relevant regime of quasi-Bragg pulses
with Gaussian envelopes [130, 131]. In our formalism, a nonvanishing (quasi)momentum
p couples the (in zeroth order of p) disjoint (anti)symmetric Hilbert spaces Hpα± [see
Eq. (2.46)]. According to the theory presented here, this coupling influences the differen-
tial phase (2.65), corresponding to an effectively reduced Rabi frequency, and results in a
velocity filter that depends on the (quasi)momentum p. Our expression for the net differen-
tial dynamic phase Θdyn = θ

dyn
n+ −θdyn

n− , with θdyn
n± given in Eq. (2.73), is of course nothing else
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than what Gochnauer et al. refer to as the integrated effective Rabi frequency. It should be
evident by now that it is much more economical and appropriate to consider this phase as
a differential dynamic phase in terms of the adiabatic theorem. After all, it is this interpre-
tation of the phase that allows us to systematically determine corrections beyond the ideal
adiabatic limit. The application of the adiabatic theorem to Bragg diffraction together with
the first-order corrections for the LZ phases, LZ losses, and Doppler shifts yields, in fact,
an exhaustive analytical description of all high-quality Bragg pulses.

In the next chapter we illuminate the impact the diffraction processes have on the signal
of atom interferometers. A better understanding of the so-called diffraction phases [116]
is paramount to facilitate the development of new as well as the improvement of exist-
ing mitigation strategies [98, 117–119, 150]. A comprehensive study of these phenomena
requires the inclusion of realistic three-dimensional light pulses considering as well the ef-
fects of the profile of the laser beam. Even though such efforts are beyond the scope of this
thesis and though we have restricted ourselves to the case of one-dimensional scattering,
the introduction of a position dependence into the amplitude and phase of the laser will
allow for a systematic discussion of diffraction processes with realistic optical lattices on a
microscopic level.
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Figure 2.11: Bloch energy bands and eigenenergies of the Bragg Hamiltonian. (b) is
identical to Fig. 2.2. (a,c) show cuts along the Ω axis at the edge (qB = −1k) and the center
(qB = 0) of the Brillouin zone, respectively. The energies of the Bloch spectrum in (a) [(c)]
are identical to the spectra of the Bragg Hamiltonians in Eqs. (2.55) displayed in Fig. 2.3(a)
[Fig. 2.3(b)]. Figure adapted from J.-N. Siemss et al., Phys. Rev. A 102, 033709 (2020),
Copyright 2022, American Physical Society (Ref. [120]).
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3
LMT Bragg Atom
Interferometers with
µrad-Accuracy

3.1 Motivation and Research Question

At the time of writing this thesis, all atom interferometers demonstrating metrological gain
from LMT separations [23, 32, 112, 113] use beam splitters based on the elastic scattering
of atoms from time-dependent optical lattice potentials, i.e., Bragg diffraction [101, 151].
Yet, a comprehensive analytical model of Bragg interferometers is still missing.

We have seen in the previous chapter how higher-order Bragg pulses with Gaussian
temporal envelopes can be used to realize efficient matter wave beam splitters and mirrors.
Light-pulse atom interferometry combines several of those atom optics elements to create
and recombine spatial atomic superpositions [125].

Bragg pulses can be used to generate and recombine multiple copies of different mo-
menta from a single incoming wave packet, as we show in Fig. 3.1(a), where a mirror pulse
in between two identical beam splitters forms a MZ interferometer [9]. For these devices,
the interrogation time T between the pulses is typically much larger than the duration of
the individual pulse.

Using the example of an inertial sensor, we have explained in Sec. 1.1 that any force
coupling to the atomic degrees of freedom during that time may cause a differential phase
evolution between the components of the atomic superposition due to their spatial sepa-
ration. In particular, atom interferometers are uniquely sensitive to inertial effects such as
local accelerations and rotations because of the inertia of the atomic test masses [54]. Since
the laser interactions track the relative motion between the atoms and the wavefronts of the
light field, the acceleration of the atoms by the force, which depends on the trajectory,
can in principle be detected via a differential Doppler shift. The resulting relative phase
ϕ is a linear function of the light phases that are transferred onto the diffracted parts of

69
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the superposition during each pulse [e.g., see Eqs. (2.104)]. In the case of a MZ interfe-
rometer realized by nth-order Bragg pulses and assuming linear gravity g acting along the
propagation direction of the optical lattice, the phase shift is given by [55, 56]

nϕ = 2n (kgT 2 + ϕL,1.BS − 2ϕL,M + ϕL,2.BS). (3.1)

Here, the ϕL are the Bragg laser phases that we have defined in the previous chapter and the
scaling with 2n results from multiple pairs of photons being absorbed and emitted during
each pulse. The relative phase ϕ must then be inferred indirectly from measurements of the
interferometer signal that are performed after the final beam splitter. A common method to
record the signal is counting atoms in the output ports of the atom interferometer. In some
experiments, though, the information about the phase is obtained via spatial interference
images by resolving the local density distribution of the atomic ensemble [98, 152]. In
both cases, detection is typically achieved either through fluorescence detection [153] or
absorption imaging [154].
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Figure 3.1: Space-time diagram of a three-pulse MZ interferometer and sample inter-
ference signal.(a) Three Gaussian nth-order Bragg pulses separated by the time T realize
the interferometer. The resulting trajectories are shown in the inertial frame of the optical
lattice. Typically, beam splitters and mirrors are considered two-mode operations populat-
ing the two main trajectories (solid black lines) that are detected in ports a and b. Scattering
to undesired diffraction orders causes spurious trajectories and output ports (dashed grey
lines). We study their implications for the phase measurement, which we illustrate in (b)
based on the MZ signal (3.2) with P0 =

1
2 = A in port a at mid-fringe Pa(ϕ)≈ 0.5. The noisy

signal (assuming Gaussian noise, thin green line) represents statistically distributed mea-
surement outcomes µa at particular ϕ with a mean µ̄a (solid blue line) and variance (∆µa)2

(shaded blue region). The phase sensitivity ∆ϕest can be obtained via error propagation (see
main text). If ∆µa does not depend on the phase, ∆ϕest is minimal at those positions, where
the signal slope ∂ϕµ̄a is maximized.

In this work, we consider atom counting. The two detectors a and b in Fig. 3.1(a)
record the number of atoms exiting the interferometer, Na and Nb, to calculate the transition
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probabilities µa(b) B Na(b)/(Na + Nb). In atom interferometry, the measurement of relative
populations µa(b) ideally suppresses the statistical fluctuations of the atom number entering
the interferometer between realizations. Since µa(b) = µa(b)(ϕ), it is possible to infer the
value of the phase ϕ from the measurement results and thus, e.g., the magnitude of the
gravitational acceleration g in Eq. (3.1). Before we discuss in the next section the concepts
of parameter estimation theory that provide us with the tools to estimate ϕ, let us briefly
outline the known basics of how ϕ is measured in an atom interferometer.

For any two-mode interferometer, the functional relationship between the measurement
results µa(b)(ϕ) and ϕ can be described by a simple model in terms of a finite Fourier series,

Pa(b)(ϕ) = P0 ± A cos (nϕ). (3.2)

The amplitudes are defined as 0 ≤ P0, A ≤ 1
2 , so that probability is conserved and in the

ideal case Pa(ϕ) + Pb(ϕ) = 1. We see that Pa(b)(ϕ) depends on the relative phase nϕ accu-
mulated between the two arms of the interferometer during the complete interrogation time
2T . The standard two-mode model in Eq. (3.2) enables efficient phase estimation based
on the collective properties of the measurement statistics in many experiments, making it
a powerful tool. In Fig. 3.1(b), we give an example for the signal measured in port a of
the MZ interferometer as we show in Fig. 3.1(a). Assuming normally distributed phase-
fluctuations, we also indicate the first statistical moments of measurement data, namely the
average values µ̄a(ϕ) and the variances ∆µa(ϕ). To do so, the analytical function Pa(ϕ) must
be calibrated using a series of measurements for different values of ϕ, which can be scanned
via the Bragg laser phases ϕL according to Eq. (3.1). Fitting Pa(ϕ) to the statistical aver-
ages of the recorded data µ̄a(ϕ) determines the amplitudes P0 and A so that µ̄a(ϕ) = Pa(ϕ).
Subsequently, inverting the calibrated function yields the estimate

ϕest ≡ P−1
a ( µ̄a|ϕ0

), (3.3a)

which ideally corresponds to the true value of ϕ0 that would produce the measured average
value µ̄a. Here, ϕ0 corresponds to a value of the phase for which the inversion of Pa(ϕ)
exists. It is worth noting that this, in combination with Eq. (3.1) and the fact that the
wave number k and the interrogation time T can be controlled with high accuracy and
stability in modern experiments [54], allows absolute measurements of inertial forces such
as g. The statistical uncertainty of the phase estimate, which is typically inferred via error
propagation, is also determined via Pa(ϕ) and the measurement statistics,

∆ϕest(ϕ0) =
1√

Natoms

∆µa(ϕ0)
|∂ϕµ̄a|

∣∣∣
ϕ0

=
1√

Natoms

∆µa(ϕ0)
|∂ϕPa(ϕ)|

∣∣∣
ϕ0

. (3.3b)

Thus, the statistical uncertainty of the phase estimate scales inversely with the slope of the
signal and therefore with the Bragg order n according to Eq. (3.2). The subsequent gain in
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sensitivity towards variations of ϕ motivates the use of higher-order Bragg pulses and other
LMT techniques. Assuming uncorrelated atoms, the uncertainty also scales inversely with
the square root of the number of atoms, Natoms, contributing to the signal of the atom inter-
ferometer in a single realization. Finally, the nominator of ∆ϕest(ϕ0) is determined by the
uncertainty in the measurement data ∆µa(ϕ0), which generally comprises technical noise as
well as quantum fluctuations. Since the estimation strategy characterized by Eqs. (3.3) is
determined by the first and second moments of the distribution of measurement outcomes,
it is often referred to as the "method of moments" [155].

From the above summary, it is clear that both the accuracy and the statistical uncertainty
of the phase measurement hinge on the quality of the model Pa(ϕ). However, we have seen
in the previous chapter that efficient higher-order Bragg processes must be operated in the
quasi-Bragg regime and will as a result coherently populate undesired diffraction orders in
contrast to idealized two-mode atom optics. It is therefore unsurprising that the physics
of Bragg atom interferometers can deviate significantly from the standard two-mode inter-
ferometer picture in Eq. (3.2). For instance, parasitic couplings not taken into account in
Eq. (3.3a) have been known to cause systematic uncertainties on the mrad-level referred to
as diffraction phases [54,60,98,116,117]. Thus, the objective of the following sections is to
derive a generalized model Pa(ϕ) that takes into account the multiport as well as multipath
physics of Bragg diffraction. By extending the scattering matrix formalism that we have
introduced in the previous chapter, we aim to accurately describe the metrological proper-
ties of Bragg atom interferometers. Moreover, our goal is to formulate an efficient phase
estimation strategy that is, ideally, as practical to implement experimentally as Eq. (3.2).

With that in mind, we begin this chapter with a review of the basic concepts of parameter-
estimation theory in Sec. 3.2, which we have only briefly outlined so far. In this context,
we formally introduce the method of moments and justify the usefulness of this strategy,
although it is not necessarily optimal. Optimal estimation strategies feature a minimal sta-
tistical phase uncertainty and thus saturate the Cramér-Rao bound (CRB) [156–158]. We
introduce the CRB and the more general quantum Cramér-Rao bound (QCRB) [159], which
represent the fundamental limits to the sensitivity of any interferometric measurement and
hence are key results of parameter-estimation theory. Nonetheless, and despite the fact that
they modify the standard-quantum limit, neither has been determined for Bragg atom in-
terferometers at the time of writing. In Secs. 3.3 and 3.4, we extend the scattering matrix
formalism for elementary Bragg operations from the previous chapter to entire interfero-
meter sequences. Using the popular MZ geometry as an example, we develop a scattering
matrix for higher-order Bragg atom interferometers including the population of dominant
parasitic paths and ports. The result is an analytical expression for the signal of such inter-
ferometers, which yields unique insight into its dependence on the individual Bragg pulse
parameters. In particular, this reveals that spurious contributions to the interferometric
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phase shift up to several mrad are determined by the LZ parameter γ introduced previ-
ously, since they originate from the multiport nature of the Bragg beam splitters [117,118].
Moreover, in Sec. 3.5 we generalize the two-mode model (3.2) and quantify the accuracy
of our adapted estimation strategy using simulations of the MZ interferometer realized by
fifth-order Bragg diffraction pulses in numerical experiments in Sec. 3.6. Based on these
results, we present a conceptually straightforward way to suppress the systematic error of
the phase estimate also known as diffraction phase below the mrad-level simply by identify-
ing a suitable choice of parameters for the Bragg mirror pulse. In addition to the discussion
of systematic effects, we also study the implications parasitic diffraction orders have on the
statistical uncertainty of the measurement in Sec. 3.7. Based on our scattering matrix de-
scription we calculate the (Q)CRB and show that it exhibits a nontrivial dependence on the
inevitable atom loss associated with Bragg diffraction. Moreover, we demonstrate that the
phase estimation strategies we present in this work allow saturation of these fundamental
bounds. Finally, we give an overview of future possibilities offered by our analytical theory
for Bragg atom interferometers.

3.2 Review: Concepts of Phase Estimation

The purpose of this section is to embed the rough description of phase measurements
in atom interferometry given above, and in particular models such as Eq. (3.2), into the
proper framework provided by classical parameter estimation theory. In addition, we rely
on methods from quantum theory of phase estimation to make general statements about
the metrological properties of the quantum state at the output of the interferometer. For in-
stance, they enable us to formulate fundamental bounds on the minimal uncertainty when
measuring the phase. For a detailed overview of these concepts, we recommend the reader
the work of L. Pezzè et al. in Ref. [155], on which we base in this section, or to a review
focused on interferometry with photons by R. Demkowicz-Dobrzański et al. [160].

3.2.1 Generalized Measurements

In interferometry, phase shifts are inferred indirectly from measurements of quantum me-
chanical observables. Here, we consider the detection of relative number of atoms, e.g.,
recorded at the output port a of the MZ interferometer Fig. 3.1(a), which we describe by
the corresponding operator

P̂a =
â†â

â†â + b̂†b̂
. (3.4)

To simplify the notation in this chapter, the operators and functions associated with the out-
put port a of the interferometer are representative of those that apply to port b, unless stated
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otherwise. The relative number operator in Eq. (3.4) is defined by the annihilation and
creation operators in each port, and its average value ⟨P̂a⟩ (ϕ) and its variance (∆P̂a)2(ϕ)
are functions of the phase ϕ. This is due to the quantum state at the output of the interfero-
meter ρout(ϕ) being ϕ-dependent. For now, we continue our discussion considering single
particle states, so that ρout(ϕ) = |ψout(ϕ)⟩⟨ψout(ϕ)| represents the density operator of a pure
state |ψout(ϕ)⟩ after the final beam splitter.

In general, estimation of an a priori unknown phase shift ϕ requires performing a series
of independent measurements of P̂a with probabilistic outcomes µa B {µ1

a, µ
2
a, . . . , µ

m
a }.

Generally, the conditional probabilities associated with the jth outcome can be calculated
evaluating

P( j)(µ j
a|ϕ) = tr{P̂( j)

a ρout
( j) (ϕ)}, (3.5)

where P̂( j)
a describes the jth measurement operation and ρout

( j) (ϕ) represents the density op-
erator of the jth subsystem, so that in the case of independent measurements

ρout(ϕ) = ρout
(1) (ϕ) ⊗ ρout

(2) (ϕ) ⊗ · · · ⊗ ρout
(m)(ϕ). (3.6)

The measurement statistics is determined by the combined probability distribution, the so-
called "likelihood",

P(µa|ϕ) =
m∏

j=1

P( j)(µ j
a|ϕ) = tr{P̂a ρ

out(ϕ)}, (3.7)

with P̂a = P̂(1)
a ⊗ P̂(2)

a ⊗ · · · ⊗ P̂(m)
a , representing the statistically independent measurements.

The likelihood, P(µa|ϕ), is unique for a given experimental realization and generally in-
cludes, e.g., the effects of any technical noise processes, which we do not consider in this
work. In contrast, we illustrate in Fig. 3.1(b) that the expression in Eq. (3.2) is a simple
model for the functional relationship between the average values of the measured data,
µ̄a = (1/m)

∑m
j=1 µ

j
a, and the phase ϕ in two-mode atom interferometers. As for the estima-

tion of the phase based on the measured data, in principle any function, ϕest : µ → ϕ, i.e.,
ϕest = ϕest(µ), associating the measurement outcome µ with a phase value ϕ can be consid-
ered as an estimator. Since such a map is defined on sets of the probabilistic outcomes (of
measurements µa(b) in ports a and b) the estimator itself is a statistical quantity with a mean

ϕ̄est =
∑
l=a,b

P(µl|ϕ) ϕest(µl) (3.8a)

and a variance

(∆ϕest)2 =
∑
l=a,b

P(µl|ϕ) (ϕest(µl) − ϕ̄est)2. (3.8b)
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For metrological application, it is desirable that the mean of the estimator approaches the
true value of ϕ for sufficiently large samples sizes, m≫ 1, and that its statistical uncertainty
is minimal. Hence, a useful estimator needs to be at least locally unbiased, i.e., ϕ̄est = ϕ

and ∂ϕ̄est/∂ϕ = 1. If an estimator in addition features a minimal variance it is considered
optimal. However, without knowledge of the full probability distributions P(µa(b)|ϕ) spe-
cific to the experiment, it is not clear what the optimal estimator looks like for a given
type of measurement. Furthermore, extracting P(µa(b)|ϕ) is often challenging as it requires
comprehensive theoretical modelling including imperfections or extensive calibration of
the experiment.

Method of Moments

Instead, it is often more economical to use an estimation strategy that requires the knowl-
edge of only the first and the second moments of the measured data. This is referred to as
the method of moments, which is based on two central ideas. First, not only the individual
measurement outcomes but also their collective properties such as the mean µ̄a depend on
ϕ, see Fig. 3.1(b). Second, according to the law of large numbers, the sample mean µ̄a

converges to the mean of the underlying probability distribution, i.e., µ̄a = ⟨P̂a⟩ (ϕ) in the
limit m → ∞. In addition, in this limit, the probability distribution for the sample aver-
age, P(µ̄a|ϕ), is described by a normal distribution with a mean ⟨P̂a⟩ (ϕ) and a variance
(∆P̂a)2(ϕ), which provides a constructive way to find an estimator that is unbiased [161].
It requires formulating a function Pa(ϕ) that satisfies µ̄a = Pa(ϕ). For phases ϕ = ϕ0, for
which the function Pa(ϕ) is a bijection and can therefore be inverted, P−1

a (ϕ0), we obtain

ϕest = P−1
a ( µ̄a|ϕ0

). (3.9a)

This is Eq. (3.3a) from above and explains the utility of the standard two-mode model (3.2)
for interferometry experiments. Instead of retrieving the probability distribution of the
single measurement results, it allows the estimation of ϕ0 via the collective properties of
the measurement samples. Moreover, the uncertainty of this estimator can be calculated
directly via error propagation

∆ϕest(ϕ0) =
∆P̂a(ϕ0)√

Natoms |∂ϕ ⟨P̂a⟩|
∣∣∣
ϕ0

=
1√

Natoms

∆µa(ϕ0)
|∂ϕPa(ϕ)|

∣∣∣
ϕ0

, (3.9b)

which is identical to Eq. (3.3b). Here, we have substituted the number of independent sam-
ples m with the number of uncorrelated particles Natoms contributing to the signal of the
interferometer in a single shot. If the uncertainty of the measurement statistics is indepen-
dent of the phase, ∆µa(ϕ0) = ∆µa, the sensitivity of the phase estimate can be optimized by
maximizing the slope |∂ϕPa(ϕ)|

∣∣∣
ϕ0

. With respect to the two-mode model in Eq. (3.2), this is
the case at the so-called mid-fringe position, i.e., Pa(ϕ0) = 0.5, where ϕ0 = (2m+1) ·π/(2n)
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with m ∈ Z. At these operating points, and considering the measurement is only subject to
quantum projection noise, we obtain the standard quantum limit for an ideal two-mode MZ
Bragg interferometer

∆ϕest(ϕ0) =
√

P0(1 − P0)
n A
√

Natoms
, (3.10)

where P0, A are defined as in Eq. (3.2) and where the favorable scaling with n−1 due to the
implementation of higher-order Bragg pulses is immediately visible.

In Sec. 3.5, we formulate estimation strategies Pa(ϕ) describing realistic Bragg atom
interferometers including spurious paths and ports indicated as in Fig. 3.1(a). We evaluate
their performance via Eqs. (3.9), when applied to numerical experiments, which mimics
their application in the real-world and gives us absolute control over the true value of ϕ0

to test the accuracy of ϕest. In this context, the result in Eq. (3.10) serves as an important
benchmark.

3.2.2 Cramér-Rao Bound (CRB)

The CRB [156–158] serves as a lower bound on the statistical uncertainty of any unbiased
estimator and therefore represents another important benchmark for the phase uncertainty
∆ϕest,

∆ϕest ≥ ∆ϕCRB =
1√

Natoms

1√
F(ϕ)

. (3.11)

The CRB is determined by the Fisher information [74],

F(ϕ) =
∑
l=a,b

(∂ϕP(µl|ϕ))2

P(µl|ϕ)
≥ 1

(∆µa(b)(ϕ0))2

(
dµ̄a(b)

dϕ

∣∣∣∣∣
ϕ0

)2

, (3.12)

which quantifies how sensitive the conditional probabilities P(µa(b)|ϕ) are to variations of
the parameter ϕ. In consequence, the Fisher information is larger or equal to the rate
of change of the first moments of these distributions with ϕ (because the full probability
distribution contains potentially more information), which gives rise to the inequalities in
Eqs. (3.11) and (3.12). In other words, if an estimator satisfies the CRB it means that its
statistical uncertainty is as low as possible given the chosen observable, in our case P̂a.

3.2.3 Quantum Cramér-Rao Bound (QCRB)

Quantum estimation theory provides the tools to answer an even more fundamental ques-
tion: What is the best possible sensitivity (lowest uncertainty) for a given quantum state
ρout(ϕ)? The answer to this question is provided by the QCRB. Its definition requires the
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notion of a positive-operator-valued measure (POVM), describing a complete set of posi-
tive Hermitian measurement operators {Ê(µ)} parameterized by the outcomes µ. POVMs
include the most general measurement operations, and the observable P̂a discussed in this
work represents only one element in the class of the well-known projective von Neumann
measurements. Operators {Ê(µ)} must have the properties Ê(µ) ≥ 0 and

∑
µ Ê(µ) = 1 so

that P(µ|ϕ) ≥ 0 as well as
∑
µP(µ|ϕ) = 1. The QCRB is formally obtained by maximiz-

ing the Fisher information over all elements of the POVM, FQ[ρout(ϕ)] = maxÊ F(ϕ) and
as such represents the ultimate lower bound for the statistical uncertainty of any unbiased
phase estimator,

∆ϕest ≥ ∆ϕCRB ≥ ∆ϕQCRB =
1√

Natoms

1√
FQ

. (3.13)

Therefore, while the attainable sensitivity when estimating ϕ for a particular measurement
choice is limited by the CRB, the QCRB generalizes this limit by optimizing over all pos-
sible measurements. Unfortunately, the definition of neither bound is constructive in the
sense that it does not provide practical means to construct an estimator capable of reaching
it1. Nevertheless, in the following we calculate the analytical CRB and QCRB to compare
them to the local sensitivity ∆ϕest. We obtain the latter by applying the method of moments
to relative atom number measurements of numerically simulated Bragg atom interferome-
ters. Here, we take advantage of the fact that computing the quantum Fisher information
FQ is straightforward when ρout(ϕ) is a pure state [155],

FQ = 4
(
⟨ψ̇out|ψ̇out⟩ − | ⟨ψ̇out|ψout⟩| 2

)
, where |ψ̇out⟩ ≡ d |ψout⟩

dϕ
. (3.14)

Since the quantum Fisher information is fully determined by the final state ρout(ϕ), it can
also be used to quantify the precision enhancements offered by non-classical states [155,
160]. Our detailed study of the atomic projection noise of efficient Bragg interferometers in
Sec. 3.7 considers tensor product states suitable to describe, e.g., a BEC (see Sec. 4.2) and
thus crucially establishes important design criteria for operating these devices at or below
the standard quantum limit [141, 162–164].

3.3 Scattering Matrix for Bragg Interferometers

In this section, we extend the formalism for Bragg pulses to study Bragg atom interfer-
ometers potentially including multiple paths and ports. Experiments have shown that their

1Note that least asymptotically, i.e., in the limit m→ ∞, the CRB can always be saturated by the so-called
maximal likelihood estimator. However, the definition of this unbiased estimator requires full knowledge of
P(µ|ϕ), e.g., see Sec. B.5 in Ref. [155], which is not feasible in many cases.
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contributions to the interferometer signal can be significant [117, 118, 135, 147]. Our ob-
jective is to find an analytic expression for the interferometer signal that provides crucial
insight into its structural dependence on the Bragg operations. This includes the role of
the individual pulse parameters as well as that of the momentum width of the atomic wave
packet. These findings serve as the basis for generalizing the two-mode model in Eq. (3.2)
to account for both multiport and multipath features of Bragg diffraction. As already men-
tioned at the beginning of this chapter, in Bragg interferometry a matter wave is brought
into spatial superposition of at least two different momenta following separate trajectories.
In the MZ geometry depicted in Fig. 3.1(a), the different momentum modes are coupled by
the atom-light interaction at three distinct moments in time, which we model via the Bragg
transfer matrices defined in Sec. 2.5 and Sec. 2.7. Before we define a scattering matrix de-
scribing complete interferometer sequences, we first need to outline two key assumptions.

First, we remind the reader that the scattering matrix S is the asymptotic limit of the
time evolution operator, see Eq. (2.26). It maps the input state incoming from the very dis-
tant past (t = −∞) to the output state of the Bragg scattering event in the very distant future
(t = +∞). In the case of a Gaussian pulse, the relevant time scale is set by the temporal
width τ. Consequently, we consider pulse durations to be much shorter than the time scale
of the interferometer given by the pulse separation time, τ≪T . In this limit, the effects of
finite pulse durations on the phase evolution can be neglected [165]. Second, we require
that the assignment of momentum modes to different spatial trajectories in Fig. (3.1)(a) is
unambiguous. Thus, we can define every interferometer on a finite basis of unique trajec-
tories with associated momentum modes |q j=1,2,...,r⟩ [in analogy to Eq. (2.115b)]. Here, r
represents the total number of trajectories, which depends on both the dimensionality of the
Bragg transfer matrices and the geometry of the interferometer. This second assumption
is readily fulfilled using ultra-cold atomic ensembles with momentum widths σp≪ ℏk that
lead to comparatively small expansion velocities [64,65]. As a result, trajectories separated
by 2 ℏk or more can be measured individually after a sufficiently long time of flight. Under
this assumption and without loss of generality, we assign the incoming wave packet with
average momentum −n ℏk the trajectory |q1⟩ = |q1(p)⟩,

|ψin(σp)⟩ =
∫ ℏk/2

−ℏk/2
dp c1(p) |q1(p)⟩in,1 =

∫ ℏk/2

−ℏk/2
dp g(p, σp) | − nℏk + p⟩ . (3.15)

As before, it is characterized by a Gaussian momentum distribution g(p, σp) [see Eq. (2.105)]
featuring a momentum width well below the lattice recoilσp≪ ℏk. We remark that |ψin(σp)⟩
represents a single-particle state, which is sufficient at this point to describe the dynamics
of Bragg interferometers, especially since we are not considering particle-particle interac-
tions. Later in Sec. 3.7.2, we discuss the implications of the input state consisting of many
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uncorrelated atoms following a Poissonian distribution of the total atom number. The scat-
tering matrix that describes the action of arbitrary Bragg interferometer sequences on the
input state can also be expanded in the basis of modes |q j⟩,

S =
∫ ℏk/2

−ℏk/2
dp

r∑
j,l=1

[I(p)] jl |q j⟩out, j in,l⟨ql| . (3.16)

The matrix I(p) is unique to a particular interferometer scheme. It is composed of several
transfer matrices that account for the diffraction operations as well as for the free propaga-
tion in between. In addition to the pulse parameters, the scattering matrix in Eq. (3.16) also
depends on a metrological phase ϕ to be measured. We will define I(p) for the concrete
example of the MZ geometry in the next section and calculate the corresponding output
state,

|ψout⟩ = S |ψin(σp)⟩ =
∫ ℏk/2

−ℏk/2
dp g(p, σp)

r∑
j=1

[I(p)] j1 |q j⟩out, j. (3.17)

3.4 Mach-Zehnder (MZ) interferometer

In the MZ interferometer, several undesired diffraction orders coupled by higher-order
Bragg pulses can populate parasitic interferometer paths and open output ports to vary-
ing degrees depending on the pulse parameters. We show some of these spurious paths
and ports in Fig. 3.1(a) and include the dominant ones populated by nth-order Bragg pulses
focusing on n ≥ 3. Therefore, each Bragg operation is described by a transfer matrix
B(p,Ω, τ, ϕL) acting on the four-dimensional subspace of momentum states that we have
introduced in Sec. 2.7,

|q j(p)⟩ ∈
{
|±n ℏk + p⟩ , |±(n − 2) ℏk + p⟩

}
(n ≥ 3). (3.18)

Regarding the cases n = 1, 2, we refer the reader to Sec. 2.7 for further information, since
they can be treated analogously with adjusted state spaces,

{ |±1 ℏk + p⟩ , |±3 ℏk + p⟩ } and{ |±2 ℏk + p⟩ , |p⟩}. In the following, we will suppress the explicit dependence of |q j⟩ on
the (quasi)momentum p for the sake of clarity and reintroduce it when appropriate.

3.4.1 MZ Scattering Matrix

With this in mind, Fig. 3.2 depicts all trajectories in a MZ interferometer that are populated
by fifth-order Bragg beam splitters and mirrors. The total number of trajectories, r = 36,
is representative for Bragg orders n > 3 considering our truncation. We note that in reality,
diffraction beyond the truncated state space in Eq. (3.18) may result in additional, less
strongly populated parasitic interferometers, which we neglect in our description. However,
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if the state space includes all unwanted diffraction orders that are smaller than the targeted
Bragg order, m ≤ n, this number is determined by the more general relation r = d · (2d−1).
It is a product of the dimensionality of the state space d, which determines the number of
output ports per interaction, and the number of unique intersections zones (2d − 1) at time
t = 2T , which results from the symmetry of the MZ geometry. Thus, assuming n = 3 and
including the dominant parasitic modes |±1 ℏk + p⟩ yields r = 28.

0 T 2T Time t

Po
si

tio
n

z a (17)

b (20)

1 2
34 5 6

789 10
1112

13 14
1516 18

1921 22
23

24

25 26
2728 29 30

313233 34
3536

Figure 3.2: Space-time diagram of the MZ geometry showing dominant parasitic paths
of Bragg orders n≥ 3. Besides the main (solid black lines) and the parasitic (dashed blue
lines) interferometry paths loss, channels coupled by the mirror and final beam splitter
interaction are displayed as well (dotted gray lines). The definition of the scattering ma-
trix in Eq. (3.16) includes the 36 trajectories for all times t even if they are unpopulated
(solid light-gray lines) using the initial state |ψin⟩ = c1 |q1⟩in,1 defined in Eq. (3.15). We re-
gard coupling to output ports other than a(17), 18, 19, and b(20) as incoherent atom losses.
Furthermore, we neglect the visual deformation of the trajectories due to the gravitational
potential (see main text).

Formally, one can construct the scattering matrix for the interferometer by composing
I(p) in Eq. (3.16) from individual transfer matrices representing the different elements of
the sequence

IMZ(p) = B2.BS · U(T ) · BM · U(T ) · B1.BS. (3.19)

The Bragg matricesBΛ ≡ B(p,ΩΛ, τΛ, ϕL,Λ) describe the coupling of individual trajectories
due to the atom-light interaction during the two beam splitters and the mirror pulse. The
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subscript Λ = 1.BS, 2.BS,M denotes the different choices of pulse parameters ΩΛ, τΛ and
laser phase ϕL,Λ. Figure 3.2 shows that more than half of the trajectories are populated only
after the final beam splitter when a single input path is considered, which is why we define
these matrices as sparse,

BΛ = [BΛ] j,l=1,...,36 =


[BΛ]ν1,ν2 , if j = [LΛ]s,ν1 and l = [LΛ]s,ν2

1, if j = l < LΛ
0, otherwise

(3.20)

with non-zero entries [BΛ]ν1,ν2 being elements of the transfer matrices defined in Eqs. (2.121).
The LΛ are two-dimensional index lists of trajectories |q j⟩ j being coupled as a result of the
diffraction processes. Looking at Fig. 3.2 one finds (for n > 3)

L1.BS = [L1.BS]s = 1
ν = 1, . . . , 4

=

9 · ν, if ν > 2
9 · ν − 8, otherwise.

= {{1, 10, 27, 36}},

LM = [LM]s = 1, . . . , 4
ν = 1, . . . , 4

= ν + 4(ν + s − 2) +


0, if s, ν ≤ 2
8, if s, ν > 2
4, otherwise.

(3.21)

= {{1, 6, 15, 20}, {5, 10, 19, 24}, . . . , {17, 22, 31, 36}},
L2.BS = [L2.BS]s = 1, . . . , 9

ν = 1, . . . , 4
= ν + 4(s − 1) = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {33, 34, 35, 36}}.

Up to this point, we have only considered the interaction of the atom with the optical
lattice based on the analytical description developed in Chapter 2. Since we regard this
interaction as instantaneous, the phase evolution takes place during the free propagation
time T and is described by the matricesU(T ) in Eq. (3.19). Most importantly, their action
on the quantum state gives rise to the metrological phase ϕ. For simplicity, we assume
that the phase evolution is caused by a potential V = MgLabẑ due to a linear gravitational
acceleration in the laboratory frame gLab. Naturally, the linear acceleration caused by the
gravitational potential will affect the atomic trajectories when the atom interferometer is
operated in free fall. This is not considered in Fig. 3.2 because to avoid detrimental Doppler
effects in experiments, the frequencies of the laser light fields are typically adjusted by
introducing a tunable frequency difference δ = δ(t) [see Eqs. (2.8) and (2.10)] to accelerate
the optical lattice. When the optical lattice is almost comoving with the free-falling atoms,
experiments measure the effective acceleration g B gLab − aL with |g| ≪ ℏk/(MT ) and
aL =

1
k

dδ(t)
dt .

To find the explicit form of the matrix U(T ), we follow Ref. [166], and describe the
evolution of the quantum state |ψ(t)⟩ = Û(t) |ψ⟩ via the time evolution operator

Û(t) = exp
[
− it
ℏ

(
p̂2

2M
+ Mgẑ

)]
, (3.22)
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featuring the kinetic energy term and a linear potential. Ideally, we expect this operator to
give rise to a relative phase of the form in Eq. (3.1). The state evolving according toU(T )
during free propagation can be readily calculated (see Appendix B):

|ψ(T )⟩ = U(T )
36∑
j=1

c j (p) |q j⟩ j =

36∑
j=1

c j(p) eiϑ(g,T,q j) |q j − MgT ⟩ j . (3.23)

Given that the change in momentum caused by the gravitational acceleration is small, we
neglect its visual representation, e.g., in Fig. 3.2. Most importantly, the time evolution
described by the scattering matrixU imprints a path-dependent propagation phase

ϑ(g,T, q j) = M
g2T 3

3ℏ
− gT 2

2ℏ
q j − T

2Mℏ
(q j − MgT )2. (3.24)

Here, we assume that the effective wave vector of the light fields is aligned parallel to the
z direction and use the fact that |q j⟩ j are eigenstates of the momentum operator. Expanded
in this basis, the scattering matrixU in Eq. (3.25) is hence diagonal,

U(T ) = [U(T )] j,l=1,...,36 =

eiϑ(g,T,q j), if j = l,
0, otherwise.

(3.25)

Finally, by substituting I(p) into S, we are able to compute the output state |ψout⟩ in
Eq. (3.17) for the MZ interferometer sequence depicted in Fig. 3.2.

3.4.2 Atom Number Signals

Using the Bragg scattering matrix developed in the previous section, we arrive at an ana-
lytical expression for the quantum state after the final beam splitter interaction of the MZ
interferometer2

|ψout(ϕ,T,ΩBS, τBS,ΩM, τM, σp)⟩ = SMZ |ψin(σp)⟩ =
∫ ℏk/2

−ℏk/2
dp g(p, σp)

36∑
j=1

[IMZ(p)] j1 |q j⟩out, j.

(3.26)

We note that we are primarily considering the use of identical parameters ΩBS, τBS for
both beam splitters and comment below on the primary effects of possible asymmetry on
the interferometer signal. Furthermore, we absorb the Bragg lasers phase in ϕ, which we
define in analogy to Eq. (3.1) for the remainder of this chapter as

ϕ B 2(kgT 2 + ϕL,1.BS − 2ϕL,M + ϕL,2.BS). (3.27)

2Strictly speaking, the momenta of the individual trajectories are as well affected by gravity, i.e., one
should expect |q j⟩out, j = |q j − 2MgT ⟩in, j. Since we assume this change to be negligible on the scale of the
photon recoil, we omit it here.



3.4. Mach-Zehnder (MZ) interferometer 83

The knowledge of |ψout⟩ enables us to derive analytical expressions for the interferome-
ter signal, Pa(ϕ) = Na(ϕ)/ (Na(ϕ) + Nb(ϕ)) [analogous for port b (see Fig. 3.2)], which is
recorded in terms of relative atom numbers in the detected ports. Nevertheless, it is instruc-
tive to first discuss the absolute atom numbers recorded at the individual output ports,

N j(ϕ) B N j(ϕ,T,ΩBS, τBS,ΩM, τM, σp) = Natoms

∫ ℏk/2

−ℏk/2
dp | ⟨ψout|q j⟩ j| 2. (3.28)

As Eq. (3.17) describes only a single-particle output state, we have included the number of
atoms entering the interferometer Natoms in the definition of N j(ϕ) assuming uncorrelated
atoms and no interparticle interactions. A more nuanced discussion of Poissonian statistics
in the initial atom number and its implications will be given in Sec. 3.7.2. Including the
dominant undesired diffraction order for the MZ interferometer, we obtain the following
absolute atom numbers in the main output ports

Na(ϕ) = Pa,0 + Aa,1 cos
(
ϕ + φa,1

)
+ Aa,2 cos

(
(n − 2)ϕ + φa,2

)
+ Aa,3 cos

(
(n − 1)ϕ + φa,3

)
+ Aa,4 cos

(
nϕ + φa,4

)
,

(3.29a)

Nb(ϕ) = P0,b + Ab,1 cos
(
ϕ + φb,1

)
+ Ab,2 cos

(
(n − 2)ϕ + φb,2

)
+ Ab,3 cos

(
(n − 1)ϕ + φb,3

)
+ Ab,4 cos

(
nϕ + φ4,b

)
,

(3.29b)

represented as Fourier series of the phase ϕ in their amplitude-phase form. This is consis-
tent with the existing experimental evidence of undesired additional Fourier components
contributing to the signal found in Refs. [118, 135, 147]. By definition, the amplitudes and
phases in Eqs. (3.29) are functions of the parameters in Eqs. (2.121), which characterize
the beam splitter and mirror interactions. However, stating their explicit forms is not useful
at this point as they are too unwieldy. Nevertheless, it is still worthwhile to discuss the
phenomenology of these expressions, which consists of sums of interference terms that can
be identified with the trajectories that spatially overlap at the time of the final beam splitter
t = 2T (17, 18, 19, and 20 in the case of Fig. 3.2), since we can map the different Fourier
components to pairs of trajectories via their separation in momentum in the inertial frame
of the optical lattice. Meanwhile, the amplitude offset P0,a(b) collects the self-interference
terms and is therefore independent of ϕ. In the case of third-order Bragg diffraction (n = 3),
Eqs. (3.29) will contain only three Fourier components, namely ϕ, 2ϕ and 3ϕ.

As expected, the main interferometer arms represented by the solid black lines in
Fig. 3.2 yield the largest Fourier component nϕ. Therefore, in the idealized two-mode limit
we find limγ,Γ,σp→0 Na(b)(ϕ) = Natoms(1

2 ± 1
2 cos (nϕ)). In particular, this limit requires perfect

50/50 beam splitting ratios (ΘBS,n = π/2) and a lossless mirror pulse (ΘM,n = π), meaning
in turn that the diffraction angles ΘBS/M have a direct influence on the amplitudes P0,a(b) and
A4,a(b) even in the absence of LZ losses. We have seen in Sec. 2.6.3 that velocity-dependent
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detunings reduce the beam splitting ratio as well as the reflectivity of the Bragg mirror
pulses. Thus, a finite momentum width σp has a very similar effect on the amplitude of this
principal Fourier component as the Bragg diffraction angles. As pointed out in Sec. 2.7,
in this study we restrict the finite velocity effects to the Bragg mirrors, which contributes
to the loss of atoms from the main trajectories. As a result, velocity filtering reduces all
amplitudes except A2,a(b), which depends only on the parasitic trajectories represented by
the blue dashed lines in Fig. 3.2. Most notably, the main Fourier component features an
asymmetric phase shift φ4,a(b), when comparing the signals in ports a and b. While there is
no shift in port a, in port b it is a function of the γ-parameter that describes the differential
LZ loss in the (anti)symmetric subspaces during the beam splitting process (see Tab. 2.2),

φa,4 = 0,

φb,4 = −π + 2γ + O[γ]3.
(3.30)

It is a spurious phase shift caused by the multiport physics of the Bragg beam splitters,
which vanishes for the signal in the output port with the same average momentum −n ℏk as
the input port (see Fig. 3.2) due to the symmetry of the MZ geometry, cf. Ref. [117]. If we
were to assume two sets of generic beam splitter parameters Ω1.BS, τ1.BS and Ω2.BS, τ2.BS,
we would obtain the more general expressions

φa,4 = γ1.BS − γ2.BS + O[γ1.BS/2.BS]3,

φb,4 = − π + γ1.BS + γ2.BS + O[γ1.BS/2.BS]3.

Despite the fact that the use of different beam splitting pulses will reduce the amplitudes
of the main Fourier components and thus negatively affects signal contrast, it is certainly
interesting to investigate such asymmetries further in the future. We focus on the discussion
of the phases in Eq. (3.30) and show below that it leads to a phase-dependent total atom
number Na(ϕ) + Nb(ϕ).

In the MZ geometry, LZ losses during the initial beam splitting pulse also give rise
to a second MZ interferometer with reduced Bragg order (n − 2) (see blue dashed lines in
Fig. 3.2) and to two more contributions due to interference with the main trajectories. These
describe interferometers with smaller space-time areas. For sufficiently adiabatic pulse pa-
rameters, the relative weight of these terms is comparatively small, i.e., A j,a(b) < A4,a(b),
with j = 1, 2, 3. Nevertheless, we will show in the following sections that they can cause
phase estimation errors in the order of several mrad if ignored. In doing so, we are going
to exploit the fact that the absolute atom numbers as well as the signal of a multipath MZ
interferometer are functions of the pulse separation time T . In their MZ interferometer,
Altin et al. [147] observed that contrast was lost due to destructive interference of multi-
ple interferometry paths but saw a periodic reappearing of the fringe visibility separated
by intervals of δT ≈ π/(4ωr). The severity of the effect in this experiment can be linked
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to the choice of non-adiabatic Bragg beam splitting pulses featuring large LZ populations
leading to many competing Fourier components contributing to the signal as a result. This
was done in part to account for the fact that the atomic source was a thermal cloud of 87Rb
atoms with a relatively large momentum width σp ≈ 1 ℏk, placing this particular experiment
outside the parameter range considered in our calculations. Nevertheless, our analytical de-
scription confirms that the Fourier components can interfere constructively, if the kinematic
propagation phases of all trajectories

ϕr B 8ωrT · l = 4 ℏk2

M
T · l with l ∈ N, (3.31)

are multiples of 2π. Phases ϕr arise from the term in Eq. (3.24) that is quadratic in momen-
tum q j. In the context of the asymmetric Ramsey-Bordé atom interferometer, they allow
the most precise measurements of the recoil frequency ωr at the time of writing [23, 24].
Meanwhile, their contributions to the MZ signal typically vanish due to the symmetry of
the momentum transfer. Still, the spurious amplitudes and phases (A1,a(b), φ1,a(b) as well
as A3,a(b), φ3,a(b)) in Eqs. (3.29) depend on ϕr and thereby on T because they arise from
the interference between the main and the parasitic interferometer arms featuring differ-
ent kinetic energies (see Fig. 3.2). Specifically, we find that these quantities are periodic
functions of the phase difference δϕr = (n − 1)ωrT as a result of our analytical calculation,
which is consistent with the predictions based on Eq. (4) in Ref. [147]. In a later part of
this study, we will be confirming this by comparison with numerical simulations of the MZ
atom interferometer.

In summary, the detected atom numbers Na(b)(ϕ) are complex functions of the phase
ϕ, the pulse separation time T , and the parameters of the Bragg pulses because of the
multipath, multiport properties of the MZ interferometer. Looking at Fig. 3.2, the mirror
pulse plays a unique role in this context. Not only does it ensure that the main trajectories
overlap spatially at time t = 2T , but is also responsible for the LZ losses during the initial
beam splitting pulse forming parasitic interferometers. In consequence, the amplitudes and
phases of all spurious Fourier components in Eqs. (3.29) depend on the diffraction angle
ΘM,n−2 via sin (ΘM,n−2/2), originating from the matrix elements B∓(n−2),±(n−2) in Eq. (2.121).
In Sec. 3.4.4, we demonstrate by the example of fifth-order Bragg diffraction that this
allows for a simple way to efficiently suppress interference with the dominant parasitic
paths in the MZ geometry by finding pulse parameters ΩM, τM providing ΘM,n−2 = m · 2π,
with m ∈ Z while we ensure ΘM,n = π.

Suppression of Parasitic Interferometers

Before confirming our ability to suppress parasitic interferometers using the mirror pulse
in numerical experiments, we first assess the impact of this adapted mirror pulse on the
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interferometer signal. To do that, we assume the mirror pulse is transparent with respect to
the undesired diffraction orders, and therefore set ΘM,n−2 = 0 in our analytical model. This
leaves the absolute atom numbers in the main ports with only a single Fourier component
stemming from interference of the main interferometer arms,

Na(ϕ) = Pa,0 + Aa,4 cos (nϕ), (3.32a)

Nb(ϕ) = P0,b + Ab,4 cos (nϕ − π + 2γ + O[γ]3). (3.32b)

We note that the amplitudes in these equations are generally different from the ones in
Eqs. (3.29), but emphasize that the asymmetric phase shift that is a function of the LZ
parameters γ remains unchanged. Since it is a result of spurious phases imprinted by the
multiport Bragg beam splitters, it renders the combined atom number in the detected ports
a and b phase-dependent, Na(ϕ) + Nb(ϕ) = Natoms − Nopen(ϕ), even in the absence of any
parasitic interferometers. Here, Nopen(ϕ) denotes the population of all undetected (open)
output ports, see Fig. 3.2. Accordingly, the relative atom numbers Pa(b)(ϕ) will always be a
ratio of ϕ-dependent functions. We show this explicitly in the limit of vanishing momentum
width assuming ΘBS,n = π/2 and ΘM,n = π, and by suppressing the parasitic interference
terms (ΘM,n−2 = 0), which yields

lim
σp→0

Nopen(ϕ) = Natoms (γ2 + 2(Γ − 1)Γ + γ2 cos (nϕ) + (γ − 2γΓ) sin (nϕ)) + O[γ,Γ]3.

(3.33)

This expression depends on the LZ parameters of the Bragg beam splitters γ,Γ (we neglect
LZ losses for the mirror pulse as they are largely suppressed by the generally longer inter-
action times, see Sec. 2.6.3), and can be separated into two different contributions. The first
one accounts for the atoms scattered to the dominant undesired diffraction orders during the
initial beam splitting. It is independent of ϕ because at time t = 2T there is no spatial over-
lap with the main interferometers arms if sin (ΘM,n−2

2 ) = 0. Secondly, the final beam splitting
pulse coherently populates additional output ports as we show in Fig. 3.2. Because LZ
populations are relatively small and therefore typically go undetected (cf. [118, 135, 147]),
they cause phase-dependent contribution to Nopen(ϕ). Using Eqs. (3.32) and (3.33), we can
study the relative atom numbers in the main ports, µa(b)(ϕ)(ϕ) = Na(b)(ϕ)/(Natoms−Nopen(ϕ)),
predicted by our analytical model (making the same assumptions as before)

µa(b)(ϕ) ≈ 1
2
± 1

8
(4 − γ2) sin

(
nϕ + γ +

π

2

)
± γ

4
sin

(
2
(
nϕ + γ +

π

2

))
± γ

2

8
sin

(
3
(
(nϕ + γ +

π

2

))
+ O[γ]3.

(3.34)

In general, µa(b)(ϕ) are complicated functions of ϕ that must be represented by infinite
Fourier series, however, as we are interested in highly efficient LMT Bragg atom inter-
ferometers with small off-resonant population (|γ| < 0.1), we interpret µa(b)(ϕ) as a series
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expansions in the open-port population Nopen(ϕ). Equation (3.34) demonstrates that the re-
sulting MZ signal is determined by a single Fourier component and its harmonics, when
suppressing the parasitic interferometers3. It is independent of the global LZ loss parameter
Γ and the velocity filtering effects of the mirror pulses describing the population loss out-
side of the interferometer trajectories, as one would expect due to the normalization. Yet,
all harmonics feature a common phase shift determined by the differential LZ parameter
γ, which exclusively depends on the beam splitter parameters ΩBS, τBS. We conclude that
the physics of the MZ interferometer realized by multiport Bragg beam splitter and mirror
pulses deviates substantially from the simple two-mode picture in Eq. (3.2). It is therefore
obvious that our scattering matrix description provides valuable insight into the different
contributions to the signal of interferometers. Specifically, we have seen that it features
several different Fourier components and their harmonics, potentially causing significant
deviations from the idealized sinusoidal signal in Bragg atom interferometry previously
referred to as signal distortions [118, 135, 147].

3.4.3 Tensorial Signal Calculus

In the following, we will briefly explain the principles of a tensorial approach for calculat-
ing the signals of atom interferometers based on our scattering matrix formalism. It was
developed in collaboration with R. Bösche and K. Hammerer, and is reported in the Master
thesis of R. Bösche [167].

We have seen in the previous section, that the absolute atom numbers N j(ϕ) in Eq. (3.28)
can be expressed as a finite Fourier series of the relative phases between the interferometer
arms, as one would expect based on the superposition principle. Therefore, in the most
general case of N Fourier components contributing to the signal of the interferometer, we
can write

N j(ϕ) = Natoms

∫ ℏk/2

−ℏk/2
dp | ⟨ψout|q j⟩ j| 2 = P j,0 +

N∑
l=1

A j,l cos (lϕ + φ j,l). (3.35)

This result implies that it is also possible to express the quantum state at the end of the
interferometer as a finite Fourier series, i.e., |ψout⟩ in Eq. (3.26) takes the form

|ψout⟩ !
=

r∑
j=1

N∑
l=−N

[C] j,l eilϕ. (3.36)

In the case of the MZ interferometer discussed in this work, where N j(ϕ) is a Fourier series
of a single component ϕ, C B C j,l(T,ΩBS, τBS,ΩM, τM, σp) with C ∈ Cr×(2N+1) is a tensor of
order two. Generally, depending on the interferometer topology, the interferometer signal

3Note, that our analytical model does not include noise processes, resulting in µ̄a(b)(ϕ) = µa(b)(ϕ).
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can be significantly more complex and C can be of higher order. In any case, we have seen
that when calculating |ψout⟩ as prescribed in the previous section [cf. Eq. (3.26)], finding
manageable expressions in the forms of Eqs. (3.35) and (3.36) is rather challenging and
tedious. This is true even in the case of the MZ interferometer, which includes only the
dominant spurious interferometry paths. Therefore, it is preferable to directly evaluate the
action of the atom interferometer on the input state ψin in the form of Eq. (3.36). However,
this requires prior knowledge of the relevant basis elements of the Fourier series, e.g., by
calculating the relative phase of the interferometer using standard methods [55–57].

The main idea of the tensorial approach is to write the input state of the interferometer
as

|ψin⟩ =
r∑

j=1

N∑
l=−N

[C] j,l eilϕ = C · êϕ, (3.37)

where we have introduced the basis vector containing the Fourier components,

êϕ = (e−iNϕ, e−i(N−1)ϕ, . . . , 1, . . . , ei(N−1)ϕ, eiNϕ)T. (3.38)

In case of the input state in Eq. (3.15), the only nonvanishing component of the tensor C is

[C]1,0 =

∫ ℏk/2

−ℏk/2
dp g(p, σp) | − nℏk + p⟩ . (3.39)

Our goal is to propagate |ψin⟩ preserving its form in Eq. (3.37), which will immediately
produce the desired result. Unfortunately, in this case, the effect of the scattering matrix
of the atom interferometer, |ψout⟩ = S |ψin⟩, can no longer be described by a simple matrix
multiplication [cf. Eq. (3.19)]. We will illustrate this using the previous example of the
Mach-Zehnder interferometer, for which the matrix representation of the interferometer is
composed of the same matrices describing the atom-light interaction as well as the free
propagation as previously outlined,

IMZ = B2.BS U(T ) BM U(T ) B1.BS. (3.40)

Let us briefly explain, how to propagate a general state |ψin⟩ of the form in Eq. (3.37) step
by step. First, we describe the actions of the Bragg matrices,

|ψout⟩ = BΛ |ψin⟩ = BΛ · C · êϕ C C̃Λ · êϕ, (3.41)

through a straightforward matrix multiplication, C̃Λ = BΛ · C. Here, the different Bragg
operations in Eq. (3.40) are again denoted by the index Λ = 1.BS, 2.BS,M as before. Ac-
counting for the free propagation, on the other hand, is more complicated. Let us first recall,
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that according to Appendix B, the matrix U(T ) is diagonal in the basis of the individual
trajectories,

U(T ) =
r∑

j=1

exp
(
i(θ j + m jϕ)

)
|q j − MgT ⟩ j l⟨ql| . (3.42)

Furthermore, this equation shows that free propagation imprints a multiple of the phase
m jϕ, where the value of m j ∈ Z depends on q j, as we demonstrate in the appendix. Using
the result in Eq. (3.42), we can solve the free propagation by writing

|ψout⟩ = U(T ) |ψin⟩ =
r∑

j=1

N∑
l=−N

eiθ j[C] j,l︸   ︷︷   ︸
[C̃] j,l

ei(l+m j)ϕ

=

r∑
j=1

N∑
ν=−N

[C̃] j,ν−m j eiνϕ C C̃(T ) · êϕ,
(3.43)

where, in the second line, we introduce the index ν = l + m j and use the fact that we can
choose N large enough, so that N + m j ≈N . Moreover, we have performed an index shift
in the second line of Eq. (3.43) that is only well defined ifN is sufficiently large, such that
the coefficients at the edges of the interval vanish, i.e., [C̃] j,±N = 0 ∀ j.

Performing these two operations according to the sequence of the atom interferometer
[see, e.g. Eq. (3.40)] we can obtain the output state

|ψout⟩ =
r∑

j=1

N∑
l=−N

[C] j,l eilϕ, with C = C j,l(T,ΩBS, τBS,ΩM, τM, σp). (3.44)

To derive the absolute number of atoms in the jth port in its amplitude-phase form as in
Eq.(3.35), we must transform the expression

N j(ϕ) =
N∑

l=−N

N∑
l′=−N

[C] j,l[C]∗j,l′e
i(l−l′)ϕ. (3.45)

To rewrite this equation as a Fourier series, we perform the substitution L B l − l′. This
permits us to write

N j(ϕ) =
2N∑

L=−2N

N∑
l′=−N

[C] j,L+l′[C]∗j,l′︸                 ︷︷                 ︸
C̃ j,L

eiLϕ =

2N∑
L=−2N

C̃ j,LeiLϕ,
(3.46)

where we have used the assumption that effectively N → ∞, meaning we can treat the
sums in this equation as infinite sums. Finally, having expressed the absolute atom numbers
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N j(ϕ) in a Fourier series, we can simply find the amplitude-phase form in Eq. (3.35) using
the relations

A j,l =

√
4[C̃] j,l[C̃] j,−l and φ j,l = arccos

 [C̃] j,l + [C̃] j,−l

A j,l

, (3.47)

as well as P0, j = [C̃] j,0.
Finally, it is worth noting that the sums in Eq. (3.46) can run over millions of sum-

mands depending on the number of trajectories and on the order of the tensor C. However,
most of these entries vanish, which is why an efficient implementation of the above steps is
paramount. One example of such a program written by R. Bösche using MATHEMATICA
can be found in Appendix C of Ref. [167], where it was successfully used to analyze the
signal of the conjugated Ramsey-Bordé interferometer [168]. This implementation demon-
strates that the tensorial generalization of the scattering matrix formalism developed in this
thesis provides an efficient and versatile approach to describing most atom interferometer
topologies based on Bragg diffraction.

3.4.4 Pulse Parameters for Fifth-order Bragg Diffraction

Up to this point, we have analyzed the signals of MZ interferometers without making spe-
cific assumptions about the parameters of the Bragg pulses, other than the expectation that
the LZ losses of high-fidelity Bragg operations are comparatively small, i.e., γ,Γ ≤ 0.1.
However, the discussion in the previous section raises the question, particularly with re-
spect to the Bragg mirror, of which pulse parameters achieve good reflectivity while sup-
pressing parasitic interferometers. One of the main results of the previous chapter is the
observation that parameters enabling efficient Bragg beam splitter and mirror operations
can be predicted analytically using the adiabatic theorem. Figure 3.3(a) shows the selec-
tion of parameters for fifth-order Bragg diffraction that we have obtained using Eq. (2.92)
and already discussed in the context of Sec. 2.6. As we have explained previously, the
experimentally relevant diffraction orders are restricted to n ≤ 5, mainly due to the in-
creasing power requirements of higher orders and subsequent spontaneous emission losses
(cf. [69]). Therefore, we focus on n = 5 specifically in the following sections. The tu-
ples ΩBS, τBS and ΩM, τM shown in Fig. 3.3(a) satisfy the condition on the Bragg pulse
area, i.e., ΘBS,n =

π
2 and ΘM,n = π respectively, and we have restricted their range to bal-

ance velocity filtering towards long pulse durations, as well as the diffraction losses of the
Bragg beam splitters. In addition, Fig. 3.3(b) shows the analytical and numerical solutions
for the reflectivity |B∓(n−2),±(n−2)| 2 in Eq. (2.121) for parameters ΩM, τM ensuring ΘM,n = π

[see light blue line in Fig. 3.3(a)]. Both solutions are in excellent agreement and allow
us to systematically identify two minima for the given set, only one of which produces
the desired suppression, i.e., ensuring sin (ΘM,n−2

2 ) = 0, while being compatible with atomic



3.4. Mach-Zehnder (MZ) interferometer 91

ensembles featuring a finite velocity width [see Fig. 2.8(l)]. We mark this working point
ΩM, τM = 31.8ωr, 0.463ω−1

r for the adapted Bragg mirror pulse via a vertical black bar and
furthermore highlight it in the inset of Fig. 3.3(a).

Our following study of phase estimation in the MZ interferometers will involve two
configurations in terms of pulse parameter selection: In the first scenario (A) we simply set
ΩBS = ΩM, whereas in the second scenario (B) we ensure that the Bragg mirror is trans-
parent for the dominant parasitic diffraction order (ΘM,n−2 = 0) to suppress the closure of
parasitic interferometry paths, while maintaining high reflectivity for the main interferom-
etry paths (ΘM,n = π). In general, it is also worth noting that the description of realistic
Bragg diffraction pulses requires the truncation of the Gaussian temporal envelopes of the
pulses. With regard to our analytical calculation based on the application of the adiabatic
theorem, we choose time intervals t ∈ [−22, 22]ω−1

r that reflect the asymptotic nature of our
scattering theory. On the other hand, in the following sections we will present results from
numerical experiments in which we chose Gaussian pulse durations of t ∈ [−10, 10]ω−1

r to
suppress truncation effects [130].
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Figure 3.3: Pulse parameters and mirror reflectivity for Bragg order n = 5. (a) Ana-
lytically determined pulse parameters ΩBS, τBS and ΩM, τM enabling efficient Bragg beam
splitter and mirror pulses for Bragg order n = 5 via Eq. (2.92) as we have already seen in
Sec. 2.6.3. The green triangles (squares) as well as the dashed (solid) lines mark the param-
eter combinations with ΩBS = ΩM, which we discuss in the following. They indicate the
local minimum (maximum) of the beam splitter losses in Fig. 3.4. We have interchanged
the axes in the inset and highlight the mirror pulse parameters suppressing dominant par-
asitic interferences for n = 5 that we identify in (b). In (b), we compare analytical (solid
light blue line) and numerical (dashed blue line) solutions for the reflectivity of the Bragg
mirror for the dominant parasitic order as a function of the tuples ΩM, τM from (a). The
solid black vertical line highlights the adapted mirror parameters.
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Beam Splitter Losses

Our selection of parameters in Fig. 3.3(a) restricts the population scattered to undesired
diffraction orders to below 10 %, which we show in Fig. 3.4. We define the losses from the
target momentum states |±n ℏk + p⟩ in a single beam splitter as

LBS = 1 − lim
σp→0

∫ ℏk/2

−ℏk/2
dp

(
| ⟨−nℏk + p|ψout

BS⟩| 2 + | ⟨+nℏk + p|ψout
BS⟩| 2

)
(3.48a)

Θn=π/2
= 1 − e−Γ cosh (γ). (3.48b)

Here, |ψout
BS(ΩBS, τBS, σp)⟩ = S (ΩBS, τBS) |ψin(σp)⟩ denotes the quantum state after the

beam splitter and |ψin(σp)⟩ represents our usual Gaussian input. Using the scattering ma-
trix in Eq. (2.121b) and assuming ΘBS,n = π/2, one finds the identity in Eq. (3.48b), which
yields a simple analytic expression for the losses. Note that in order to accurately predict
beam splitter losses by means of this result, one must insert LZ parameters that account
for all losses, e.g., using Eq. (2.128). In this case, we have calculated the data depicted in
Fig. 3.4 by inserting a numerical solution for |ψout

BS⟩ into Eq. (3.48a) as we describe, e.g., in
Sec. 2.7.1. Unsurprisingly, the losses depend on the beam splitter parameters in a similar
way as the corresponding pulse infidelity in Fig. 2.7(h). As a result of the underlying LZ
physics discussed in Sec. 2.4.3, the LZ losses increase exponentially towards shorter pulse
durations and feature a local minimum. In Sec. 2.6.3 we saw that such minima exist for all
orders n > 1 and are a feature predicted by LZ theory. However, the corresponding param-
eters in Fig. 3.4 have been referred to by R. Parker et al. [118] as a "magic" Bragg duration,
which effectively reduces variation of the diffraction phase with the pulse separation time
in the conjugated Ramsey-Bordé interferometer. With this in mind, it will be particularly
interesting to investigate the potential of the LZ minimum in suppressing the diffraction
related phase shifts in the MZ interferometer.

3.5 Analytical Signals of Bragg Atom Interferometers

The analytical description we have derived for Bragg interferometer signals, including their
multipath and multiport characteristics, provides the tools to formulate generalized phase
estimation strategies. In particular, we are interested in formulating models Pa(b)(ϕ) that
accurately predict the transition probabilities µ̄a(b), and that are ideally as practical to use
as Eq. (3.2) in experiments. Comparison with simulations of a MZ interferometer realized
by fifth-order Bragg pulses in numerical experiments allows us to analyze the performance
of a given estimation strategy. Specifically, we investigate the two scenarios (A) and (B)
illustrated in Fig. 3.5, where in (A) the undesired diffraction orders populate parasitic in-
terferometers, potentially causing diffraction phases on the mrad-level. In scenario (B), we
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Figure 3.4: Beam splitter population loss for Bragg order n = 5. We show the
numerically calculated population loss from the main diffraction order |±5 ℏk⟩ after a
single beam splitter pulse. Hence, the curve represents the sum of the data shown in
Fig. 2.9. The results in Fig. 3.6 (Fig. 3.8) were obtained for parameters corresponding
to the visible local maximum (minimum) denoted by the solid (dotted) vertical line with
ΩBS, τBS = 28.5ωr, 0.309ω−1

r (ΩBS, τBS = 30.75ωr, 0.218ω−1
r ). Previously, the minimum

in the LZ losses has been referred to as the "magic" Bragg duration for n = 5 in Ref. [118]
(see main text).

apply the tailored combination of laser intensity and duration of the Bragg mirror pulse
identified in the previous section, which suppresses the closing of parasitic interferome-
ters, as illustrated in Fig. 3.5(B). We have already discussed in Sec. 3.4.2 that the signal
of the MZ interferometer is dramatically simplified as a result, which should affect phase
estimation as well.

3.5.1 Interferometer Including Parasitic Paths

Assuming a generic set of parameters ΩBS, τBS,ΩM, τM, the contributions of the parasitic
paths and open ports can be significant. In the most general case, the signal of the relative
atom number measurements, µ̄a(ϕ), can be modeled using an infinite Fourier series,

Pexact
a (ϕ) = P0 +

∞∑
j=1

A j cos
(

j ϕ + φ j

)
, (3.49)

with amplitudes A j and phases φ j that can be calculated as explained in Sec. 3.4.2. We
contrast this result with the standard model of an nth-order Bragg MZ interferometer in
Eq. (3.2), which is obtained by idealizing the beam splitters and mirror as two-mode oper-
ations. Figure 3.6(a,b) demonstrates good agreement between data from numerical simu-
lations and the analytical signal Pexact

a (ϕ), when taking into account the dominant parasitic
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Figure 3.5: Space-time diagrams of the MZ geometry showing parasitic paths of Bragg
order n = 5. The main trajectories (solid lines) are similar to Fig. 3.1(a), but here we also
highlight the dominant parasitic paths (thick dashed blue lines) resulting from the Bragg
scattering process. Other spurious trajectories (thin dashed gray lines) are not considered in
our analytical description. The lower panel on the left demonstrates the locked peak Rabi
frequencies in scenario (A), whereas in (B) tailored parameters ΩM, τM [see Fig. 3.3(b)]
enable the deflection of undesired paths and thus the suppression of the dominant parasitic
interference effect, see main text. In the following, we will refer to the depicted configura-
tions as MZ types (A) and (B).

paths for n = 5. The simulations are based on one-dimensional descriptions of the complete
matter-wave interferometer in position space as per [169], whereby all diffraction orders
and their potential trajectories (see gray dashed paths in Figs. 3.5) are fully accounted for.
This is achieved by solving the single-particle Schrödinger equation in one dimension via
the split-step method [170].

Because of its widespread application in atom interferometry [54], we assume the use
of 87Rb atoms as atomic species for all numerical experiments presented in this thesis.
Therefore, the Bragg laser potential addresses the D2-line of the alkali atoms with a laser
wavelength set to λ = 780 nm in our simulations, which corresponds to a recoil frequency
ωr ≈ 2π · 3.77 kHz≈ 42.2 µs−1 [100]. To generate the data presented in Fig. 3.6(a,b), we
fix the pulse separation time to T = 10 ms (ensuring τ≪T ) and scan ϕ via the phase of
the final beam splitting pulse, which we control by selecting a value for ϕL,2.BS for each
data point while setting g = 0 = ϕL,1.BS = ϕL,M [see Eq. (3.27)]. Here, we consider a set
of pulses with identical peak Rabi frequency Ω = ΩBS = ΩM (A), and choose to operate
the beam splitters in the local LZ maximum in Fig. 3.4 with about 1.4 % diffraction losses
from the main paths per first beam splitting pulse. Already this amount of scattering to
undesired diffraction orders results in the MZ signal exhibiting a diffraction phase shift of
several mrad with respect to the sinusoidal signal of an ideal two-mode interferometer, as
shown in Fig. 3.6(b). The origin of this shift can be understood as follows:
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Figure 3.6: Signal phase scan of the MZ interferometer. (a,b) Signal of MZ type (A) in
port a scanned via the lattice phase ϕL(t) = ϕL of the final beam splitter for Bragg order
n = 5. We compare numerically simulated data Pmeas

a (ϕ) (circles) to an ideal sinusoidal
signal, Pideal

a (ϕ) ≡ 1/2 · (1 + cos (nϕ)) (gray solid line), and the analytical predictions of
Eqs. (3.49) (orange dashed line) and Eq. (3.50) (green dotted line). Pulse parameters are
Ω, τBS, τM = 28.5ωr, 0.309ω−1

r , 0.681ω−1
r , with ωr = ℏk2/2M being the recoil frequency

of an atom with mass M. Beam splitter diffraction losses of ≈ 1.4 % amplify the signal dis-
tortions. (b) shows a bias phase shift of the ideal sinusoidal signal on the mrad-level around
mid fringe, i.e., Pa(ϕ0)≈ 0.5. In (c) mirror pulse parameters ΩM, τM = 31.8ωr, 0.463ω−1

r
suppress dominant interference effects, as illustrated in Fig. 3.5(B). This provides excellent
agreement between the numerics and both analytical models in Eqs. (3.49) and Eq. (3.50).

(i) As we saw in Sec. (3.4.2), not detecting the spurious output ports of the final beam
splitter transforms the relative atom numbers in a Bragg interferometer, µa(b)(ϕ), into ratios
of ϕ-dependent functions. Consequently, the signals generally contain Fourier components
of arbitrary order. This is in contrast to an ideal two-mode interferometer, where the de-
nominator simply amounts to the total number of atoms contributing to the signal Natoms.
(ii) In addition, we have demonstrated that the functional dependence of the absolute atom
numbers Na(b)(ϕ) [Eq. (3.29)] is also complicated by the occurrence of parasitic interferom-
eters. This causes A j and φ j in Eq. (3.49) to depend on the interrogation time T as a result
of differential kinematic phases ϕr [see Eq. (3.31)]. Notwithstanding its correctness, it will
be challenging to apply the waveform in Eq. (3.49) due to the large number of parameters
involved and the limited control over them.

3.5.2 Interferometer with Suppressed Parasitic Paths

We have suggested a simple way to efficiently suppress interference with the dominant
parasitic paths in the MZ geometry by designing the mirror pulse to be approximately
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transparent to them, as illustrated in Fig. 3.5(B). In Fig. 3.3(b), we provided specific com-
binations ΩM, τM that achieve this for n = 5. Meanwhile, they do exist for all relevant
higher orders of Bragg diffraction, except n = 2. It is straightforward to omit the influence
of parasitic paths in our analytical model and consider only the effects of the open ports
(point (i) above) following the arguments made in Sec. 3.4.2. This simplifies the signal of
the MZ interferometer µ̄a(b)(ϕ), which can than be modeled by

Pa(b)(ϕ) = P0 ±
3∑

j=1

A j sin
(

j ·
(
nϕ + γ +

π

2

))
+ O[γ3], (3.50)

where Pb(ϕ) is shifted by π relative to Pa(ϕ) as one would expect. In general, both functions
must be represented by infinite Fourier series, however, as we are interested in highly effi-
cient LMT Bragg atom interferometers with small off-resonant populations (see Fig. 3.4),
we interpret Pa(b)(ϕ) as a series expansions in the open-port population Nopen(ϕ), so that
the contributions of A j decrease with increasing index j. The models Pa(b)(ϕ) are more
general versions of the expressions in Eq. (3.34). As such, they contain only the har-
monics of a single Fourier component nϕ in addition to the shift phase shift γ, which unlike
Eq. (3.49) applies to all harmonics. For an interferometer with suppressed parasitic paths as
in Fig. 3.5(B), both the exact signal in Eq. (3.49) and the much simpler formula in Eq. (3.50)
are in excellent agreement with the data from a numerical simulation as Fig. 3.6(c) shows.

3.6 Systematic Error: The Diffraction Phase

We proceed to quantify the diffraction phase [117, 118], i.e., the systematic error of the
model in Eq. (3.50) when applied to numerical experiments. Using simulated measure-
ment data for the detected relative atom numbers µ̄a, we compare MZ interferometers
without (A) and with (B) suppression of the dominant parasitic paths. Formally, we de-
fine the diffraction phase as the deviation between the true local phase value ϕ0 and its
estimate ϕest = P−1

a ( µ̄a|ϕ0
),

δϕ = P−1
a ( µ̄a|ϕ0

) − ϕ0 = P−1
a ( µ̄a|ϕ0

)
∣∣∣
γ=0
− γ

n
− ϕ0. (3.51)

Here, we emphasize the fact that γ is a shift common to all Fourier components in Eq. (3.50),
which we have taken advantage of in the second equation. Therefore, the error δϕ is deter-
mined by the knowledge of γ as well as the remaining phase, P−1

a ( µ̄a|ϕ0
)
∣∣∣
γ=0

, which depends
on the accuracy of the analytical model Pa(ϕ) besides the offset with γ. If γ can be inferred
with sufficiently high accuracy for given beam splitter parameters it is the latter contribution
which sets the systematic uncertainty. Furthermore, we highlight that both contributions to
the diffraction phase in Eq. (3.51) will be linearly suppressed by the order n of the Bragg
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pulses as a consequence of the scaling with nϕ in Eq. (3.50). A similar suppression was
noted by the authors of Ref. [117] in the case of the asymmetric Ramsey-Bordé interfero-
meter.

3.6.1 Phase Offset γ/n

Before evaluating δϕ, we discuss the magnitude of the offset γ/n, and analyze how it is
affected by intensity fluctuations. Comparison between Fig. 3.4 and Fig. 3.7 confirms the
close relationship between the linear phase offset in the MZ signals γ/n in Eq. (3.51) and
the LZ losses of the Bragg beam splitters. In particular, the maxima of both curves coin-
cide, but their minima are slightly shifted. This discrepancy, and the fact that γ/n can take
on negative values, is explained by the observation that the LZ parameter describes the
differential population loss between the symmetric and antisymmetric subspaces, which
we explain in Sec. 2.3.3. Most importantly, Fig. 3.7 highlights that even for beam splitter
losses of less than 10 %, the magnitude of the spurious phase shift can amount to several
mrad, and is therefore larger than the atomic projection noise of an ideal two-mode atom
interferometer assuming atom numbers, Natoms, in the order of 106. This implies that suffi-
cient knowledge and suppression of the phase shift γ/n are paramount for accurate phase
estimation in MZ interferometers using higher-order Bragg diffraction, even though it is
not the only contribution to the diffraction phase in Eq. (3.51).

We have demonstrated in Secs. 2.4.3 and 2.7.1 how to extract the LZ parameters from
numerical solutions of the Schrödinger equation both in the (anti)symmetric basis represen-
tation and in the basis of momentum eigenstates. In principle, Eq. (2.128) provides a way
to calculate those parameters based on experimental measurements of beam splitter output
populations. We note that this would require the preparation of the (anti)symmetric input
state in Eq. (2.127) as the initial state for the experiment. Therefore, it may prove more
practical to determine these parameters indirectly by calibrating a theoretical model of the
atom-light interaction to the experimental parameters. In this case, intensity fluctuations
in the experiment may limit the accuracy with which γ/n can be determined. To estimate
their effect, we introduce a statistically fluctuating error in the peak Rabi frequency of the
Bragg beam splitting pulse ΩBS = ΩBS(1 + δΩ) , where δΩ is a random variable following
a normal distribution with zero mean and variance σ2

δΩ,

δΩ(σδΩ) = (2πσ2
δΩ)−1/2 exp

(
− δΩ

2

2σ2
δΩ

)
. (3.52)

The data in Fig. 3.7 illustrate that the mean values γ̄/n are largely unaffected by variations
in the range of one percent and less, whereas the standard deviations of the data can reach
up to one mrad in those cases, where the LZ parameter is comparatively large. Intensity
fluctuations of five percent, on the other hand, can lead to errors of several mrad, which are
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Figure 3.7: Phase offset γ/n introduced in Eq. (3.51) of the MZ interferometer. The
data for Bragg order n = 5 are similar to the lower panel of Fig. 2.9(b) but rescaled by
the Bragg order and with a linear y-axis. Additionally, we introduce a normally distributed
uncertainty in the peak Rabi frequency with variances (σδΩ)2 according to Eq. (3.52). The
average spurious phase shifts can be in the order of several mrad and their maximum coin-
cides with the maximum in the beam splitter loss (solid vertical line). The shaded regions
represent the standard deviations in the data, which reach several hundred µrad considering
fluctuations at the percent level. Larger fluctuations make accurate determination of γ/n
impossible, especially close to the LZ minimum (dotted vertical line). Because γ describes
the difference in loss between the symmetric and the antisymmetric state (see Tab. 2.2), the
offset can become negative.

particularly severe for pulse parameters near the local minimum, where the phase offset is
more sensitive to changes of the peak Rabi frequency.

In summary, our observations indicate that the peak Rabi frequency must be stable on
the level of one percent to avoid diffraction phases of several mrad for all but long beam
splitter pulse durations. Long pulse durations featuring small γ/n are favorable, since they
are much less susceptible to fluctuations of the laser intensity. Their impact is especially
severe for parameters in and around the LZ minimum. Despite these relevant implications,
including the aspect of intensity noise in the following discussion of the diffraction phase
is beyond the scope of this thesis. Therefore, we assume perfect control over the peak Rabi
frequencies for the remainder of this chapter.

3.6.2 Diffraction Phases for Fifth-order Bragg Diffraction

In this section, we extract the diffraction phase δϕ in Eq. (3.51) from MZ signals µ̄a gen-
erated in numerical realizations of the complete interferometer sequence in position space.
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Once converged, we find that the numerical data feature no relevant fluctuations, since we
do not consider noise processes in our calculation. Therefore, we can fit the analytical
model Pa(ϕ) (3.50) directly to single measurement outcomes µ̄a = µa. Figure 3.8 shows the
diffraction phase as a function of the pulse separation time T for interferometers of type (A)
and (B). This highlights, in particular, the contributions of the parasitic interference terms
to the interferometer signal as they vary with the separation time T and are not included
in the model in Eq. (3.50). We again operate at mid-fringe ϕ0 =

3π
2

1
5 selected via the laser

phase of the final Bragg pulse in our numerical simulations and plot the diffraction phase δϕ
for different pulse separation times T ∈ [10.0, 10.017] ms in Fig. 3.8. Despite minimizing
beam splitter losses to about 0.18 % by operating the beam splitters in the LZ minimum,
spurious MZ interference terms cause visible oscillations on the µrad-level for both config-
urations of the MZ geometry. We find oscillation frequencies (5 ± 1) · 8ωr corresponding
to ca. 0.88 µs−1 and 1.32 µs−1, which can be related to the differences in kinematic phases
δϕr in Eq. (3.31) between the main interferometer arms and the parasitic trajectories, which
we have discussed in Sec. 3.4.2. We verify this observation by showing perfect agreement
between the data and a suitable fit model

f (T ) = B0 + B1 cos (4 · 8ωrT + ν1) + B2 cos (6 · 8ωrT + ν2). (3.53)

The recoil frequency is fixed by our choice of laser wavelength λ≈ 780 nm and atomic
species 87Rb, with ωr ≈ 42.2 µs−1. The second phase contribution originates from the in-
terference of the main trajectories with the parasitic paths belonging to momentum modes
|±(n − 4) ℏk + p⟩ with δϕr = (n + 1) · 8ωrT = 6 · 8ωrT , which according to the state space
in Eq. (3.18) we do not consider in our current analytical description4.

Since the amplitudes (and phase shifts) in f (T ) are free parameters, we can use the fit
model to extract the amplitude offset B0 and the peak-to-peak value PP of the oscillations
in the diffraction phase,

PP B |max∀T f (T ) −min∀T f (T )| . (3.54)

For the pulse parameters assumed in Fig. 3.8, the offset B0 ≈ − 27 µrad is the same for
both cases (A) without and (B) with suppression of parasitic paths. This shows that the
inclusion of γ/n≈ 280 µrad in Eq. (3.51) accounts for most of the T -independent shift.
However, PP values of both data sets are very different, lying in the range of 200 µrad for
(A) and about 40 µrad for (B) making them a sensitive measure of the influence of parasitic
interferometers. Indeed, reduction achieved by the adapted Bragg mirror is significant

4The fact that states |±(n + 2) ℏk + p⟩ are irrelevant may seem counter intuitive, when looking only at the
LZ beam splitter populations shown for n = 5 in Fig. 2.9(a). In this context, it is important to remember that
the parasitic trajectories only overlap with the main arms at t = 2T if they are reflected by the mirror pulse.
However, for the parameters ΩM, τM in Fig. 3.3(a) the mirror angle ΘM,n+2 ≈ 0 is essentially zero, which is a
result of the increasing power requirements of higher-order Bragg pulses discussed already in Sec.2.3.4.
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because the net diffraction phase shift can be in the order of the PP value due to insufficient
control over the separation time T at the µs level or, if T is sampled, due to aliasing effects
as pointed out in by R. Parker et al. in Ref. [118]. The authors performed a study similar to
the one discussed here, but experimentally and in the case of the conjugated Ramsey-Bordé
geometry. The results in Fig. 13 of Ref. [118] primarily show that operating the Bragg
beam splitters in the LZ minimum (referred to as "magic" Bragg duration in the reference)
reduces the oscillations as the amplitudes of parasitic interference terms are suppressed.
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Figure 3.8: Phase estimation error for different pulse separation times T . We evaluate
the diffraction phase δϕ in Eq. (3.51) using numerical simulations of MZ interferometers of
types (A) and (B) with n = 5. δϕ is determined at mid fringe ϕ0 =

3π
2

1
5 and beam splitters are

chosen to operate at a so-called "magic" Bragg duration, minimizing individual diffraction
losses to ≈ 0.18 % (see main text). This reduces oscillations in δϕ to the µrad-level while
scanning the pulse separation time T (cf. [118, 147]). The first data set (open circles) was
obtained for parameters Ω, τBS, τM = 30.75ωr, 0.218ω−1

r , 0.519 ω−1
r , where ωr = ℏk2/2M

is the recoil frequency of an atom with mass M. Suppressing dominant parasitic interfer-
ence effects via ΩM, τM = 31.8ωr, 0.463ω−1

r [closed circles, case (B)] further reduces the
oscillation amplitude by a factor of five to < 40 µrad. Solid lines represent fits to the data
explained in the main text, the offset of which, B0 ≈ − 27 µrad (horizontal dotted line), is
identical for both data sets.

In Fig. 3.9, the offset |B0| and the PP value of the oscillations in the diffraction phase
obtained with the same T -interval as before are plotted, but analyzed for the entire param-
eter range given in Fig. 3.3(a). We again compare both Bragg mirror pulse configurations
(A) and (B). Figure 3.9(a) confirms that the inclusion of γ in the model Pa(ϕ) in Eq. (3.50)
reduces the T -independent contribution to the diffraction phase δϕ to at most a few tenths
µrad for both Bragg mirror configurations. At the same time, Fig. 3.9(b) highlights that
the oscillations of δϕ can be in the order of several mrad and are therefore comparable to
γ/n, see Fig. 3.7, when considering pulse parameters with relatively strong couplings to
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undesired diffraction orders. Comparison with Fig. 3.4 highlights that the behavior of both
quantities characterizing δϕ is directly related to the losses of the beam splitter operations.
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Figure 3.9: Suppression of the diffraction phases in the MZ geometry at mid fringe,
ϕ0 =

3π
2

1
5 . Results in (a,b) are obtained from fits to δϕ in Eq. (3.51), which has been

evaluated for numerical MZ signals recorded over scans of T ∈ [10, 10.017] ms as shown
in Fig. 3.8(a) using pulse parameter in Fig. 3.3 and at ϕ0 =

3π
2

1
5 . Closed (open) symbols

represent data with (w/o) suppression of parasitic paths parameterized viaΩ = ΩBS, τBS. (a)
We plot absolute values of the residual offset |B0| ≤ 30 µrad (symbols) independent of the
mirror pulse. (b) The adapted mirror pulse [case (B)] significantly suppresses PP values for
most parameters below 1 mrad and to less than 10 µrad for sufficiently long beam splitter
pulse durations. Lines connecting the data points serve as guides to the eye. Solid (dotted)
vertical line corresponds to the local maximum (minimum) in the beam splitter losses in
Fig. 3.4.

We can infer from these results that the diffraction phase of MZ Bragg interferometers
with n = 5 can be suppressed by means of the Bragg mirror pulse below 1 mrad for most pa-
rameters ΩBS, τBS and even down to a few µrad for sufficiently long beam splitter durations
(τBS ≈ 0.45ω−1

r ). In contrast, without suppression of parasitic paths and without account-
ing for the diffraction phases (including γ) by means of Eq. (3.50), the accuracy would
be limited to more than 0.5 mrad in the same regime, which constitutes an improvement
by two orders of magnitude. The remaining diffraction phase is limited by higher-order
contributions in γ and the finite efficiency in suppressing parasitic paths. We have focused
our discussion around Bragg order n = 5, because it is the largest diffraction order that
can reasonably be realized in experiments in the presence of spontaneous emission (see
related discussion in previous chapter). At the same time, our observations suggest that the
adapted Bragg mirror is most effective when applied to third-order Bragg diffraction. In
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this case, the mirror pulse suppresses parasitic interferometers associated with the modes
|±1 ℏk + p⟩, while the coupling to other diffraction orders |±(n + 2) ℏk + p⟩ with larger ki-
netic energy is inherently low, as we have seen here. Therefore, a dedicated quantitative
study of the performance of the phase estimation strategy in this setup seems certainly
fruitful, but is beyond the scope of this thesis.

Concluding this section, we discuss the observation that realistic signals of interferom-
eters using higher-order Bragg diffraction do not feature the same periodicity as the two-
mode model in Eq. (3.2). In this work, we focus on analyzing the multiport properties of
Bragg atom interferometers in a regime, where the population of undesired diffraction or-
ders is small, unlike, e.g., in Section 5 of Ref. [147]. Hence, the "distortions" [118,135,147]
caused by the spurious Fourier components are difficult to discern for instance by sim-
ply looking at the data in Fig. 3.6. However, they cause the MZ signals in Eq. (3.34)
to exhibit different slopes at mid-fringe positions ϕ0 = (4m + 1) · π/(2n), compared to
ϕ0 = (4m− 1) · π/(2n), with m ∈ Z, even in the absence of parasitic interferometers. More-
over, we demonstrate in Fig. 3.10 that this asymmetry also affects the diffraction phase and
can therefore have significant implications for precision experiments. Here, we evaluate the
diffraction phase for the alternative mid-fringe position ϕ0 =

π
2

1
5 and demonstrate that the

T -independent contributions to δϕ(ϕ0) in Eq. (3.51) remain unchanged. While the adapted
mirror configuration significantly suppresses the PP values by an order of magnitude for
most of the parameters presented, the PP values are increased by about the same amount
overall compared to the previous operating point in Fig. 3.9(b). This is attributed to the
interferometry signal varying greatly with pulse separation time T , which affects the ac-
curacy of the waveform in Eq. (3.50), mainly because, unlike Eq. (3.49), it does not take
into account contributions due to parasitic interferometers. We note that the PP values in
Fig. 3.10(b) are sharply reduced for pulse parameters around the LZ minimum, so that they
are similar for both mid-fringe positions. This is expected since these parameters strongly
suppress LZ couplings to diffraction order n−2 and especially n−4 [see Fig. 2.9(a)], which
is not affected by the adapted Bragg mirror.

In summary, to keep systematic errors on the µrad-level for this alternate mid-fringe
position either adiabatic beam splitter pulse parameters or operation in the LZ minimum
is required. It should be noted, however, that some of the effects observed here, in partic-
ular those contributing to the phase differences between the mean fringe positions, can be
attributed to the higher harmonics occurring in the signal of the atom interferometer, see
Eq. (3.50). If the phase ϕ is fluctuating, e.g., due to laser phase noise caused by vibrations
of the experimental apparatus, the contributions of these higher frequency components po-
tentially average out when recording the data, diminishing their importance (cf. [118]).
Apart from this, the role played by the spurious population of the diffraction order n − 4
in our discussion of δϕ suggests that there may be quantitative advantages in controlling
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Figure 3.10: Suppression of the diffraction phases at the alternative mid-fringe posi-
tion, ϕ0 =

π
2

1
5 . The residual offset |B0| ≤ 30 µrad in (a) is the same as in Fig. 3.9(a) since

we are using identical pulse parameters. We show in (b) that the adapted mirror pulse [case
(B)] still suppresses PP values by about one order of magnitude for most pulse parameters,
but suppression below 1 mrad is achieved only for long pulse durations or for parame-
ters close to the LZ minimum. Here, PP values are comparable to Fig. 3.9(b). The local
differences in the accuracy of the estimator result from the wave form in Eq. (3.50) not
including parasitic interferometer effects, especially because the adapted mirror does not
affect modes with diffraction order n − 4 in the case of fifth-order Bragg pulses (see main
text). Lines connecting the data points serve as guides to the eye.

the diffraction phase if the MZ interferometer is realized with third-order Bragg pulses for
which the states |±(n − 4) ℏk⟩ do not exist.

3.7 Statistical Uncertainty: Phase Sensitivity

Besides systematic effects, the complex contributions of parasitic paths and undetected
open ports also affect the statistical aspects of phase estimation with Bragg atom interfer-
ometers. To complete our analysis of the model in Eq. (3.50), we discuss the statistical
uncertainty of the corresponding estimator ϕest = P−1

a ( µ̄a|ϕ0
) and investigate whether it sat-

urates the projection noise limit set by the CRB and the QCRB, both of which bound the
phase sensitivity of an interferometer from below.
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3.7.1 Sensitivity Bounds for Uncorrelated Particles

Formulating the (Q)CRB is straightforward based on the analytical expression for the quan-
tum state at the output of the MZ interferometer in Eq. (3.26). We evaluate the CRB for
atom number measurements in the main ports a and b of the MZ interferometer. The de-
tection probability P(µa|ϕ) = Na(ϕ)/Natoms can be derived from our analytical model with
the expressions for the absolute atom numbers in Eqs. (3.29). They enable the calcula-
tion of the single-particle Fisher information, which in turn defines the CRB according to
Eq. (3.11),

∆ϕCRB =
1√

Natoms

1√
F(ϕ)

with F(ϕ) =
∑
j=a,b

(∂ϕN j(ϕ)/Natoms)2

N j(ϕ)/Natoms
. (3.55)

Unfortunately, even in the limit of small LZ losses, no simple analytical expression for
F(ϕ) can be found when assuming otherwise general pulse parameters. This is because
the terms in Na(b)(ϕ) describing the interference between the main and the parasitic arms
depend not only on the separation time T via the kinematic phase ϕr, but also on the phases
and diffraction angles we discuss in Sec. 2.7. Nevertheless, it is instructive to analyze
the Fisher information in the limit of a vanishing momentum width and in the absence of
parasitic interferometers, i.e., assuming ΘM,n−2 = 0,

lim
σp→0

F(ϕ) = n2(1 − 2Γ − γ sin (nϕ)) + O[γ,Γ]2. (3.56a)

Scaling with the Bragg order n illustrates the increase in sensitivity due to higher-order
Bragg diffraction, and at the same time this result also shows that LZ losses primarily
reduce the Fisher information [we recall γ ≤ Γ; for n = 5 see Fig. 2.9(b)]. Moreover, F(ϕ)
is a function of the phase ϕ, which in particular gives different results for the two types of
mid-fringe positions we have identified in Sec. 3.6.2,

lim
σp→0

F(ϕ) = n2(1 − 2Γ ∓ γ) + O[γ,Γ]2, if ϕ = (4m ∓ 1) · π/(2n) with m ∈ Z. (3.56b)

As mentioned previously, the signals in Eq. (3.50) exhibit different slopes for these work-
ing points affecting the Fisher information and therefore the CRB. While this difference
is proportional to the differential LZ parameter γ, we learn that the Fisher information for
atom number measurements restricted to the main output ports and with suppressed para-
sitic interferometers decreases overall with increasing population of undesired diffraction
orders. With respect to the finite velocity distribution of the atomic ensemble, we consider
only velocity filtering in the Bragg mirror, which leads to a reduction in the detected atom
number. In Sec. 3.7.3, we use the example of n = 5 to show how this loss of atoms increases
the CRB in a similar way as it reduces the pulse fidelities of the Bragg mirror, which we
have discussed in Sec. 2.6.3.
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Moreover, we derive the QCRB for Bragg MZ interferometers based on the analytical
model developed in this work by calculating the quantum Fisher information in Eq. (3.14)
with respect to the quantum state |ψout⟩ In Eq. (3.26). In doing so, we restrict measure-
ments to the subspace of the four output ports of the final beam splitter in Fig. 3.2 and
treat coupling outside of that due to non-adiabatic transitions or velocity filtering as inco-
herent atom loss. This limitation is motivated by our goal to study multi-mode effects in
the metrologically relevant regime of high diffraction efficiencies, where LZ populations
are small and typically go undetected. In this context the QCRB serves, e.g., as a tool
to quantify the potential benefits of resolving all the output ports of the final beam split-
ter. In contrast, multi-mode interferometry featuring multiple trajectories with comparable
populations is beyond the scope of the work presented here. As one example, the authors
W. D. Li et al. [137] proposed the realization of a multipath atom interferometer via elas-
tic scattering in the Raman-Nath regime (see Sec. 2.2.2) and predict substantial sensitivity
enhancements due to the multi-mode character of such a setup. In our case, we proceed
by formally conditioning the output state |ψout⟩ on those trajectories, which spatially over-
lap with the main interferometer arms at t = 2T . A suitable projection on the respective
subspace D B {a(17), 18, 19, b(20)} is given by

|ψ̃out
D ⟩ = PD |ψout⟩ , where PD =

∫ ℏk/2

−ℏk/2
dp

∑
j∈D

|q j⟩j j⟨q j| . (3.57)

After renormalizing the result, |ψout
D ⟩ B |ψ̃out

D ⟩ /∥ψ̃out
D ∥ , we obtain the single particle quan-

tum Fisher information with respect to the pure state,

FQ B 4 ∥ψ̃out
D ∥ 2 (

⟨ψ̇out
D |ψ̇out

D ⟩ − | ⟨ψ̇out
D |ψout

D ⟩| 2
)

, where |ψ̇out
D ⟩ ≡

d |ψout
D ⟩

dϕ
. (3.58)

Here, we account for the loss of information due to transitions outside of the trajectories
contained in subspace D via the norm ∥ψ̃out

D ∥ ≤ 1. Calculating the QCRB in analogy to
Eq. (3.13), we make use of the additivity of FQ for uncorrelated particles,

∆ϕQCRB =
1√

Natoms

1√
FQ

. (3.59)

In the limit of vanishing momentum width, we find a simple analytical expression for the
quantum Fisher information

lim
σp→0

FQ = n2
[
1 − Γ

2
(1 + cos (ΘM,n−2))

]
− 2Γ(n − 1)(1 − cos (ΘM,n−2)) + O[γ2,Γ2], (3.60)

where we have suppressed higher-order LZ terms. Although this result shows that the
QFI depends on the reflectivity of the mirror pulse for the spurious Bragg order, since
the second term in Eq. (3.60) arises due to inferences with the parasitic arms in case of
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ΘM,n−2 ∈ [0, 2π), modest LZ losses still lead to a decrease in phase sensitivity, regardless
of the chosen measurement type or the working point, ϕ0. This is in contrast to related
statements made in Ref. [147], where the authors suggested that a locally increased signal
slope compared to the two-mode case in Eq. (3.2) could result in a net benefit for phase
estimation. Finite velocity effects, on the other hand, affect the QCRB in the same way as
they affect the CRB via a reduction of the norm ∥ψ̃out

D ∥ .

3.7.2 Statistical Uncertainty ∆ϕest

We proceed with the derivation of the phase estimation uncertainty ∆ϕest(ϕ0). Because we
rely on the method of moments to infer the phase ϕ0 from changes in the statistical proper-
ties of the relative atom number measurements, following Eq.(3.9b), we must evaluate

∆ϕest(ϕ0) =
∆P̂a(ϕ0)√

Natoms |∂ϕ ⟨P̂a⟩|
∣∣∣
ϕ0

=

√
⟨P̂2

a⟩ (ϕ0) − ⟨P̂a⟩2 (ϕ0)
√

Natoms |∂ϕ ⟨P̂a⟩|
∣∣∣
ϕ0

. (3.61)

We restrict the operator P̂a defined in Eq. (3.4) to measurements of states with non-vanishing
occupation numbers in ports a and b respectively. We have explained in Sec. 3.2.1 that the
phase uncertainty is proportional to N−1/2

atoms, but in experiments the number of uncorrelated
particles entering the interferometer is fluctuating from shot to shot [171]. When the atom
numbers Natoms are statistically distributed, losses to modes |q j⟩j not being detected after
the final beam splitter will affect the uncertainty ∆P̂a. We model this by assuming that the
initial state prepared on the input trajectory, j = 1, as shown in Fig. 3.2, is in a Poissonian
mixture of number states |l⟩,

ρin = e−Natoms

∞∑
l=0

(Natoms)l

l!
|l⟩⟨l|in,1 =

1
2π

∫ 2π

0
dθ |

√
Natomseiθ⟩⟨

√
Natomseiθ|in,1 . (3.62)

Here, we have suppressed all other input modes that are assumed to be vacuum modes and
interpret Natoms for the remainder of this chapter as the mean number of atoms entering
the interferometer. In the second equation we have exploited the fact that ρin can also be
written as a phase averaged mixture of coherent states, following the work of S. Haine and
M. T. Johnsson in Ref. [172]. The states | √Natomseiθ⟩ in Eq. (3.62) are Glauber coherent
states [173], |α⟩ ≡ e−|α|

2 ∑
l
αl√

l!
|l⟩, with amplitude α =

√
Natomseiθ.

We remark that when evaluating the statistics of the relative atom number measurement
in Eq. (3.61), the effects of finite velocity detuning must be taken into consideration and
that the experimentally determined atom numbers are averages over the finite Gaussian
momentum spread g(p, σp) of the initial state |ψin⟩ given in Eq. (3.15). We do this by
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expanding the annihilation and creation operators of the input modes in their respective
mode functions depending on the (quasi)-momentum p,

âin,1 =

∫ ℏk/2

−ℏk/2
dp g(p, σp) Ψ̂in,1(p), (3.63)

where [Ψ̂in,1(p), Ψ̂†in,1( p̄)] = δ(p − p̄) and [âin,1, â
†
in,1] = 1. We can describe the action of

the transfer matrix in Eq. (3.19) on this state by first denoting the input-to-output relation
of the operators in Eq. (3.63),

Ψ̂out, j(p) =
[IMZ(p)

]
j,1 Ψ̂in,1(p), (3.64)

which allows us to describe the unitary evolution of the MZ interferometer in the Heisen-
berg picture. Here, we again neglect all unoccupied input modes on the right-hand side of
Eq. (3.64) as they will not contribute to a measurement of the occupation numbers in the
output ports of the interferometer. The propagated and normalized annihilation operator
for measurements in the main output port a then becomes

â j ≡ âout, j =
1
υ j

∫ ℏk/2

−ℏk/2
dp g(p, σp)

[IMZ(p)
]

j,1 Ψ̂in,1(p), (3.65)

with a normalization factor

υ j(ϕ) B
(∫ ℏk/2

−ℏk/2
dp |g(p, σp)| 2 |[IMZ(p)

]
j,1| 2

) 1
2

. (3.66)

In reference to Eq. (3.61) we continue to use the shorthand notation â(†) ≡ â(†)
out,17 and

b̂(†) ≡ â(†)
out,20, when referring to measurements in the main ports a and b as labeled in

Fig. 3.2. With the help of the input-output relation in Eq. (3.65), we obtain the output
density operator for the input in Eqs. (3.62),

ρout = SMZ ρ
in S†MZ =

1
2π

∫ 2π

0
dθ

36⊗
j=1

|υ j(ϕ)
√

Natomseiθ⟩⟨υ j(ϕ)
√

Natomseiθ|out, j , (3.67)

where the normalizations υ j(ϕ) ≡ υ j(ϕ,T,ΩBS, τBS,ΩM, τM, σp) crucially depend on the ma-
trix representation of the MZ interferometer in Eq. (3.19), since they contain dependencies
of the output on the experimental parameters and in particular the interferometric phase
ϕ. We calculate the statistics of the relative atom number measurements in the main ports
according to Eq. (3.65) with respect to this output state by reformulating P̂a in Eq. (3.4) in
the limit of non-vanishing occupation numbers

P̂a =
â†â

â†â + b̂†b̂
=

∫ 1

0
dx

[ ∂
∂x

xâ†â] ⊗ [
xb̂†b̂], (3.68)



108 Chapter 3. LMT Bragg Atom Interferometers with µrad-Accuracy

and similarly for port b. With this and Eq. (3.67) we find

⟨P̂a⟩ (ϕ) = tr{ρout(ϕ)P̂a}

=

∫ 1

0
dx

(
∂

∂x
⟨υa(ϕ)

√
Natoms|xâ†â|υa(ϕ)

√
Natoms⟩

)
⟨υb(ϕ)

√
Natoms|xb̂†b̂|υb(ϕ)

√
Natoms⟩

= Natoms|υa(ϕ)| 2 e−Natoms (|υa(ϕ)|2+|υb(ϕ)|2)
∫ 1

0
dx

(
ex Natoms (|υa(ϕ)|2+|υb(ϕ)|2)

)
,

(3.69)

where we have made use of the relations | ⟨α|0⟩| 2 = e−|α|
2

as well as ⟨α|xâ†â|α⟩ = e−|α|
2
ex|α|2

in the last line. Identifying the absolute atom numbers as defined in Eq. (3.28),

N j(ϕ) = Natoms |υ j(ϕ)| 2 = Natoms

∫ ℏk/2

−ℏk/2
dp |g(p, σp)| 2 |[I∗MZ(p)] j,1| 2 , (3.70)

and taking the limits Natoms|υa(ϕ)| 2,Natoms|υb(ϕ)| 2≫ 1, the statistical quantities with respect
to P̂a in Eq. (3.63) simplify to

⟨P̂a⟩ (ϕ) ≈ Na(ϕ)
Na(ϕ) + Nb(ϕ)

= Pa(ϕ), (3.71a)

⟨P̂2
a⟩ (ϕ) ≈ P2

a(ϕ) +
Pa(ϕ) · Pb(ϕ)
Na(ϕ) + Nb(ϕ)

. (3.71b)

Inserting both results into Eq. (3.61) we arrive at an expression for the statistical uncertainty
of phase estimates performed in port a,

∆ϕest(ϕ0) =

√
⟨P̂2

a⟩ (ϕ0) − ⟨P̂a⟩2 (ϕ0)

|∂ϕ ⟨P̂a⟩|
∣∣∣
ϕ0

=

√
Pa(ϕ0) · Pb(ϕ0)
Na(ϕ0) + Nb(ϕ0)

1
|∂ϕPa(ϕ)|

∣∣∣
ϕ0

. (3.72)

We emphasize that, in general, this result differs significantly from the projection noise of
an ideal two-mode MZ Bragg interferometer. However, as expected, it approaches this case
in the adiabatic limit γ,Γ→ 0.

3.7.3 Phase Uncertainty for Fifth-order Bragg Diffraction

To complete our study of the model for Pa(ϕ) in Eq. (3.50), we benchmark the statisti-
cal uncertainty in Eq. (3.72) comparing it against the CRB and the QCRB. We determine
∆ϕest(ϕ0) by first calibrating the waveform Pa(ϕ) as before to numerical simulations of the
MZ interferometer, and extract the total atom numbers Na(ϕ) + Nb(ϕ) from the numerical
data. It is important to remember that both the phase uncertainty as well as the CRB (3.55)
are local quantities. Therefore, we select the mid-fringe working point ϕ0 =

3π
2

1
5 to opti-

mize performance when we plot both quantities for the MZ interferometer of type (B) in
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Fig. 3.11, while in the inset we show the same information for type (A). For both scenarios
we assume the same range of beam splitter parameters already considered in Fig. 3.9.

First of all, we observe that the phase uncertainty of our model agrees well with the
CRB and the QCRB. The visible deviations are on a level to be expected due to our pertur-
bative treatment of finite velocity effects, cf. the corresponding discussion in Sec. 2.7. We
show the phase sensitivity in Fig. 3.11 scaled to n

√
Natoms, i.e., the shot noise limit given

by the CRB of an ideal two-mode interferometer with P0 = A = 1/2 [see Eq. (3.10)]. This
reveals that the projection noise limit for a Bragg interferometer lies a few percent above
this value as already hinted at by Eqs. (3.56a) and (3.60). The increase of the CRB with
growing momentum spread σp is caused by atom losses due to velocity selectivity of the
scattering process, which become stronger for longer pulse durations, as we have already
seen in Sec. 2.6.3. In addition, as revealed by our two choices of velocity width, velocity
selectivity is reduced for case (B) because of the comparatively short mirror pulse duration
[see the inset of Fig. 3.3(a)]. The loss of sensitivity at shorter beam splitter pulse durations
is due to the increasing non-adiabaticity of Bragg diffraction and the associated diffraction
losses as we show in Fig. 3.4. Interestingly, there is no discernible difference in perfor-
mance between either configuration in this regime despite deliberately deflecting atoms out
of the interferometer in scenario (B), see Fig. 3.5(B). The reason being that Bragg diffrac-
tion losses primarily populate parasitic interferometers with scale factors smaller than the
main diffraction order n = 5 in this case. In consequence, their contributions effectively
decrease the space-time area and thus increase the statistical uncertainty of the phase mea-
surement, which is ultimately confirmed by the quantum Fisher information in Eq. (3.60).
Overall, best sensitivity is achieved at the local minimum of beam splitting losses from the
main diffraction orders ±5 ℏk, cf. Fig. 3.9(c). This sets the fundamental projection noise
limit of a Bragg atom interferometer.

Figure 3.11(b) depicts the same quantities as before but for the alternative mid-fringe
position ϕ0 =

π
2

1
5 . We have already seen that for ϕ0 = (4m + 1) · π/(2n) with m ∈ Z

there is a difference in signal slope, which directly effects the phase sensitivity of the atom
number measurement according to Eqs. (3.56b) and (3.72). This is confirmed by the results
in Fig. 3.11(b), which show that both the phase uncertainty and the CRB perform worse
by several percent, especially near the LZ maximum. Therefore, and in contrast to the
two-mode case (3.10) in the presence of non-negligible scattering to spurious diffraction
orders, the projection noise and the projection noise limit are increased for those mid-fringe
positions. As mentioned before, we remark that this effect is dominated by the appearance
of the higher harmonics in the signal Pa(ϕ) defined in Eq. (3.50). Thus, it could be less
apparent if the signal ϕ is subject to fluctuations such as phase noise of the Bragg lasers,
e.g., caused to vibrations of a retro-reflecting mirror [94].
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Figure 3.11: Sensitivity bound of multiport Bragg interferometers with uncorrelated
particles. We show the QCRB (solid lines), the CRB (dashed lines), as well as the statis-
tical uncertainty ∆ϕest(ϕ0) based on Eq. (3.50) applied to numerical simulations (symbols)
for configuration (B) of a fifth-order Bragg MZ interferometer. Configuration (A) is shown
in both insets respectively. Both the CRB and ∆ϕest(ϕ0) assume mid-fringe positions (a)
ϕ0 =

3π
2

1
5 and (b) ϕ0 =

π
2

1
5 . Upon scanning ΩBS, τBS we suppress the dominant parasitic

interferometry paths using the pulse parameters ΩM, τM = 31.8ωr, 0.463ω−1
r . Both bounds

are shown for the momentum spread σp = 0.01 ℏk (0.05 ℏk) in blue (purple) and multiplied
by the inverse of the projection noise limit of an ideal two-mode MZ, n

√
Natoms. We fix

the time T = 10 ms and we set ϕ0 =
3π
2

1
5 in (a) for both the CRB and for ∆ϕest. Choos-

ing ΩBS = ΩM [case (A)] suffers from increased finite-velocity Doppler effects. In (b) the
CRB and ∆ϕest(ϕ0) demonstrate significant deviations from the phase-independent QCRB.
Notably, for the parameters around the LZ maximum, the reduced signal slope increases
projection noise (see main text).
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3.8 Conclusion and Outlook

In summary, we have presented an analytical model for LMT atom interferometers based
on Bragg diffraction, which permits a thorough understanding of their systematic and sta-
tistical uncertainties and their fundamental sensitivity bounds. Our model provides design
criteria for reaching these bounds and paves the way towards accuracies in the µrad-range
using higher-order Bragg diffraction in combination with ultra-cold atomic sources [64,65].
The operation of LMT interferometers at or near the limit of quantum projection noise is
a critical requirement if they are to be combined with entangled sources [163, 164]. The
methods and techniques developed in this chapter are general and can be applied also to
other interferometer topologies, such as the conjugated Ramsey-Bordé interferometer in
Ref. [23].

Our work contributes to the development of high-precision quantum sensors for fun-
damental tests and towards atom interferometers that benefit from improvements in mo-
mentum separation (scale factor) and, on the other hand, meet the size, weight, and power
(SWaP) requirements of modern real-world applications [54,60], especially in combination
with resonator-enhanced light fields [174].
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4
Atom Interferometry in a Twin
Lattice

4.1 Motivation

The work presented in the previous two chapters is dedicated to developing a deeper under-
standing of the unique properties of atom interferometers employing higher-order single
Bragg diffraction. These and related analyses (cf., e.g., Ref. [135] or Ref. [136] for the
case of a double Bragg interferometer) are essential to convert the advantage in phase sen-
sitivity over the much more common standard Raman interferometers [54] into an actual
metrological gain. At the same time, our study of the spectrum of the Bragg Hamiltonian
(cf. Fig. 2.3 and the surrounding text) provides an intuitive explanation for the increasing
demands on the laser power of multiphoton Bragg diffraction [130]. It is one of the main
reasons why interferometers using this technique have been limited to a momentum sepa-
ration of 24 ℏk [103], which is far from the ambitious goals of future LMT interferometer
designs featuring separations of one thousand photon recoils or more [37, 38, 40, 175].

While we have explained, that sequential Bragg pulse sequences have successfully over-
come this hurdle allowing for separations in the order of 100 ℏk [97, 98], their scalability
is limited in three key areas: Duration of the momentum transfer, efficiency of the transfer
and susceptibility to noise due to an asymmetric momentum transfer. The maximum sepa-
ration of 102 ℏk achieved by S.-w. Chiow et al. [97] was limited by a loss of ∼90 % of the
initial number of atoms despite transferring ∼99 % of the atoms per recoil simply due to the
large number of pulses. The authors B. Plotkin-Swing et al. [98] even achieved a separation
of 112 ℏk in a three-path contrast interferometer, but their results highlight the increasing
demands on the stability of the laser intensity in asymmetric geometries due to the detri-
mental role of diffraction phases caused by intensity fluctuations [98, 116, 119]. In theory,
double diffraction techniques seem to offer an obvious solution to those challenges, since
addressing both arms of the interferometer simultaneously not only doubles the momentum
transfer, but ideally also makes the device more robust against temporal fluctuations of the
light fields. That said, current implementations of double Bragg [94, 105, 132] and double
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Raman diffraction [176, 177] have been limited to separations of eight photon recoils. In
particular, scalability of double Bragg diffraction (DBD) appears to be hampered by cou-
plings to undesired diffraction orders and finite velocity effects, as we have discussed in
the previous two chapters, but to a greater extent than for the single-Bragg implementa-
tion [132, 136]. This places stringent requirements on the atomic source.

Bloch oscillations (BO) [106–108] on the other hand have shown to transfer more than
∼1000 ℏk in interferometers used for state-of-the-art metrology experiments [24], report-
ing efficiencies beyond 99.9 % per recoil with laser-cooled sources [178, 179]. Instead of
pulsing an optical lattice potential moving at a constant velocity relative to the atoms, the
comoving optical potential is first slowly ramped up to trap the atoms and then adiabatically
accelerated. In proof-of-principle experiments where BO were used to levitate a superpo-
sition of atoms against gravity, successful transfer of tens of thousands of photons has
been achieved before coherence was lost in a cavity environment of small volume [87,88].
Symmetric acceleration of both interferometry arms, of course, mitigates this problem to a
considerable extent [180], so that the above and other experiments [23,85,86,109,181,182]
have been able to take advantage of BO albeit without increasing the separation between
the arms. At the time of writing, the achievable momentum separation with an asym-
metric LMT beam splitter combining BO with an initial Bragg pulse has been limited to
80 ℏk [111]. In summary, BO clearly provide scalability for future LMT applications, but
long interaction times with the optical potentials needed for efficient pulse transfer place
even greater demands on the control of differential light shifts [88, 110].

Combining BO with the robustness against temporal laser intensity fluctuations and
phase noise inherent to the double diffraction geometries mentioned above, recent real-
izations of dual-lattice interferometry promise to solve this challenge for next-generation
LMT beam splitting. Z. Pagel et al. [142] demonstrated a pure Bloch-based interferometer
featuring coherent momentum splittings of up to 240 ℏk via two independently controlled
optical lattices. It is particularly intriguing how the authors exploit the momentum par-
ity symmetry of the dual-lattice Hamiltonian1 to successfully split and recombine matter
waves via adiabatic BO. State-of-the-art momentum separation of up to 408 ℏk was recently
achieved in the QUANTUS-1 experiment using twin-lattice interferometry. This achieve-
ment was made possible by three key components [96]: (i) A combination of DBD and BO
that enables efficient transfer of hundreds of photon recoils. (ii) A "twin-lattice" setup with
two identical optical lattice potentials, which counterpropagate horizontally (here in the
y-direction) and whose symmetry ideally suppresses many of the systematic effects men-
tioned earlier. (iii) The use of well-collimated BEC sources [65] improving the efficiency of
the Bragg pulses. Alls of these factors contribute to a high contrast and improve the signal

1The formalism used in Ref. [142] to understand the time evolution in a dual lattice is closely related to
the symmetric and antisymmetric states introduced in Chapter 2 of this work.
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to noise ratio of the LMT atom interferometer [79, 89, 183]. The purpose of this chapter is
to provide insight into the current limitations of the experiment, an understanding of which
is critical to assessing the scalability of this technique to momentum separations in the or-
der of one thousand photon recoils and beyond. In this sense, our results serve to promote
a deeper understanding of coherence loss in dual-lattice interferometery in general and are
already partially contained in Ref. [96]. The theoretical work presented here serves as a
complement to the experimental efforts within the QUANTUS project.

We begin this chapter with an overview of the basic properties of BECs that are used as
an atomic source in the QUANTUS-1 experiment. Then, in Sec. 4.3, we derive the twin-
lattice potential assuming an idealized retroreflective geometry and briefly review the key
beam-splitting techniques, namely DBD and BO, both of which are implemented using the
same optical potential. In this context, we introduce non-adiabatic LZ transitions and spon-
taneous emission as the main sources of atom loss during adiabatic acceleration of atoms in
moving optical lattices. Before analyzing the experimental data, we take a quick look at the
realization of the interferometer in the QUANTUS-1 apparatus in Sec. 4.4, which will give
us valuable insight into the potential experimental imperfections affecting the results. In
Sec. 4.4.2, we commence our analysis by modeling the measured acceleration efficiencies
recorded at the beginning of the beam-splitting sequence, which show significant devia-
tions compared to the predictions of LZ theory for a single lattice. We find that the reason
is not the second lattice, but a spurious standing lattice potential caused by an error in the
polarization of the light fields. By comparing the measurements to numerical solutions of
the Gross-Pitaevskii equation (GPE), we confirm this and determine the magnitude of the
error, which is in line with independent experimental observations. Furthermore, we show
that the generation of a larger initial momentum separation via sequential double Bragg
pulses is an effective mitigation strategy.

After an introduction to the full twin lattice sequence in Sec. 4.4.3 and an assessment of
the potential sensitivity to inertial forces offered by this scheme, we then turn to the main
topic of this chapter: The experimentally observed decay of the interferometric contrast
in Sec. 4.4.4, which is a measure of the loss of coherence with increasing momentum
separations. Our findings, which are the result of theoretical modeling of the contrast
decay in Secs. 4.5 and 4.6, provide strong evidence that its origin is a two-fold one: On
the one hand, contrast is lost due to inefficiencies in the DBD, resulting in the detection
of an incoherent fraction of atoms in the output ports of the interferometer. On the other
hand, local intensity fluctuations, most likely originating from diffraction of the twin-lattice
beam, affect the trajectories of the atoms via the dipole force, causing the interferometer
to not properly close and leading to a dephasing of the ensemble. In Sec. 4.7, our analysis
shows good agreement with the experimental results, suggesting that the scalability of the
twin-lattice interferometer is primarily limited by the imperfection of the light field in the
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current implementation. Therefore, we conclude in Sec. 4.7 that twin-lattice interferometry
is a suitable technology for beyond state-of-the-art atom interferometery separating BECs,
potentially by more than one thousand photon recoils.

4.2 Bose-Einstein Condensates

Before presenting the twin-lattice beam splitter sequence in the next section, it is useful
to take a closer look at the atomic sources whose properties enable higher sensitivities via
LMT or very long interrogation times or both. So far, we have only assumed that the
momentum spread of the atoms in the direction of the optical lattice is small compared
to the photon recoil, σp≪ ℏk, to ensure efficient Bragg operations (cf. Sec. 2). In fact,
however, a small velocity width and the associated low expansion rates offer a number of
advantages, especially when considering realistic three-dimensional laser beams with fi-
nite radii and limited laser power. They range from the ability to perform efficient atom
optics even after seconds of interrogation time [88, 184] to reduced susceptibility to many
systematic effects [89], some of which are due to inhomogeneities of the optical poten-
tials [85, 86, 88, 179].

In recent years, in addition to the development of improved atomic sources based on
laser-cooled atoms [71, 77], efforts have been made to exploit the special properties of
BECs for atom interferometry [79,80,185]. The potential of BECs lies in the fact that they
represent a coherent quantum state of matter that can be described by a single-particle wave
function (see below). Along with their coherence properties [186, 187] comes the ability
to generate ensembles with extremely low momentum widths and small sizes, especially
when combined with lensing techniques such as delta-kick collimation [64, 65, 80, 188].
Moreover, BECs provide the unique opportunity to increase the interferometry sensitivity
by preparing and manipulating non-classical input states [72, 73] to overcome the stan-
dard quantum limit, which scales with the number of uncorrelated atoms N−1/2

atoms due to
atomic projection noise. However, both the generally lower flux of state-of-the-art con-
densed sources [63] and the effect of interparticle interactions [79, 185] have so far pre-
vented widespread adaptation of BECs for atom interferometry (see Tab. I in Ref. [54]).
Nonetheless, BECs play a central role in the development of next-generation atom inter-
ferometers both on Earth [189] and in space [47]. On top of that, the QUANTUS-1 exper-
iment, which we present in more detail in Sec. 4.4, enabled the first realization of BECs
in microgravity during a free fall in a drop tower [93]. With the objective of this chapter
in mind, to understand the current limitations of twin-lattice interferometry realized in the
QUANTUS-1 experiment, it is therefore appropriate to first give a brief overview of BECs
and their mathematical description. For a detailed account of the first realizations of BECs
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and their description, we kindly refer the reader to Refs. [154,190]. In particular, we follow
the work done by C. J. Pethick and H. Smith in their textbook [190].

Bose-Einstein condensation describes the macroscopic occupation of the ground state
of a system that is composed of massive particles with integer spin, also known as bosons.
They are named after the physicist S. Bose, who together with A. Einstein, predicted the
existence of this previously unknown state of matter derived from statistical arguments [19,
20]. Heuristically speaking, this phenomenon occurs in the so-called regime of "quantum
degeneracy", when the temperature T of the thermal ensemble is low enough so that the de
Broglie wavelength,

λdB B

√
2πℏ2

MkBT
, (4.1)

of the particles with mass M, which also depends on the Boltzmann constant kB, approaches
the length scale set by the mean distance between the particles in the atomic gas. In this
regime, the localized wave packets start to spatially overlap and interfere to a single wave
function describing the entire condensate.

Einstein argued that the lowest energy state of a gas consisting of N noninteracting
bosons becomes macroscopically occupied as soon as the temperature T falls below a
critical value TC. His observation was based on the fact that the corresponding average
occupation number, ⟨n0⟩, is determined by the Bose statistics [190],

⟨n j⟩ = 1

e(E j−µ)/kBT − 1
, (4.2)

where E j denotes the energy of the jth state and µ is the chemical potential. In free space
(and in the thermodynamic limit N → ∞) this is marked by a sudden phase transition,
whereas the coherent fraction increases smoothly for trapped ensembles. In addition, both
the occupation numbers ⟨n j⟩ and the critical temperature TC are functions of the trapping
potential as they depend on the density of states of the system.

Beyond Einstein’s arguments for an ideal gas, condensation also occurs in trapped en-
sembles and in the presence of interparticle interactions. In the case of a three-dimensional
harmonic trapping potential

V(x) =
M
2

(ω2
xx2 + ω2

yy2 + ω2
z z2) (4.3)

with trap frequencies ωx j , where x j = x, y, z, the ground state occupation scales like [190]

⟨n0⟩ = N
1 − (

T
TC

)3 , with TC ≈ 0.94
ℏω̄

kB
N1/3. (4.4)

The second equation shows that TC is a function of the geometric mean of the trapping
frequencies ω̄ = (ωxωyωz)1/3.
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A complete theoretical description of BECs is obtained through the language of quan-
tum field theory, to which, e.g., Ref. [191] provides a good introduction. However, intro-
ducing this framework is beyond the scope of this thesis, in particular because in many
cases it is sufficient to approximate the correlations between the particles by a mean-field
theory and neglect fluctuations of the bosonic field [12].

4.2.1 Gross-Pitaevskii Equation (GPE)

The description via a mean-field theory is particularly useful in the limit of a low particle
density ρ, where we have ρ|as|3≪ 1, with the s-wave scattering length as [12]. In this
regime, the average distance between particles is typically much larger than the range of
their effective interaction potential characterized by as. As a result, the interaction between
two particles can be interpreted as two hard spheres scattering off of each other and their
potential becomes contact-like at this point

Vint(x, x′) = gscat δ(x − x′). (4.5)

Here, δ(x − x′) denotes the delta-distribution and the interaction strength between the non-
distinguishable bosons is defined according to gscat = 4πℏ2as/M. The Hamiltonian of the
system including Vint(x, x′) reads

H =
N∑

j=1

[
− ℏ

2

2M
(∇2)x j + V(x j)

]
+ gscat

∑
j<l

δ(x j − xl), (4.6)

with the differential operator ∇ = (∂x, ∂y, ∂z) and an additional trapping potential V(x j). To
find the state vector solving the Schrödinger equation with respect to this Hamiltonian, we
perform the Hartree-Fock approximation, which is motivated by the observation that ideally
all atoms in the BEC occupy the ground state of the system [12]. In this sense, we write the
N-particle state in position representation as the product of identical single-particle wave
functions,

Ψ(x1, x2, . . . , xN) =
N∏

i=1

φ(x j) with
∫

d3x |φ(x)| 2 = 1, (4.7)

where we have abbreviated d3x = dx dy dz. After introducing the condensate wave function
ψ(x) =

√
Nφ(x) with

∫
d3x |ψ(x)| 2 = N, one can find the time-independent non-linear

Schrödinger equation via minimization of the energy E(Ψ) = ⟨Ψ|H|Ψ⟩ / ⟨Ψ|Ψ⟩with respect
to the state in Eq. (4.7) [192],

µψ(x) =
(
− ℏ

2

2M
∇2 + V(x) + gscat |ψ(x)| 2

)
ψ(x). (4.8)
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On the left-hand side of this equation is the chemical potential µ of the system, and the in-
teraction term on the right-hand side is proportional to the density of the condensate wave
function, gscat |ψ(x)| 2, thus providing the coupling to the mean-field potential. Generally,
Eq. (4.8) is known as the time-independent Gross-Pitaevskii equation (GPE) and deter-
mines the stationary state of the condensed ensemble. The time evolution of the BEC, on
the other hand, is determined by the time-dependent GPE

iℏ
∂ψ(x, t)
∂t

=

(
− ℏ

2

2M
∇2 + V(x, t) + gscat |ψ(x, t)| 2

)
ψ(x, t). (4.9)

In case of time-independent Hamiltonians, it is possible to obtain the time-independent
GPE from Eq. (4.9) by making the separation ansatz,

ψ(x, t) = ψ(x)e−iµt/ℏ. (4.10)

Finding solutions ψ(x, t) that solve the GPE and determining the ground state of the
BEC in a given potential via Eq. (4.8) typically requires numerical calculus in form of
the split-operator method [170] and imaginary time propagation. The former is the same
method we have employed to solve the one-dimensional Schrödinger equation with respect
to the Bragg Hamiltonian in Eq. (2.8) for non-interacting particles following Ref. [169] in
the previous chapter.

4.2.2 Effective One-dimensional GPE

However, solving the time-dependent GPE in Eq. (4.9) in three dimensions can quickly be-
come computationally too expensive. This is especially true when interparticle interactions
are important and or if fine spatial structures like the wells of an optical lattice potential
(in the order of the laser wavelength λL) must be resolved (cf. Tab. 1 in Ref. [169]). In
Sec. 4.4.2, we will compare numerical solutions of the dynamics of a BEC being accel-
erated in a twin-lattice potential to the implementation in the QUANTUS-1 experiment.
Since in this context we are primarily interested in the dynamics of the system in the axial
direction of the twin-lattice laser beam, we resort to an effective one-dimensional descrip-
tion [193]. Additionally, this significantly relaxes the computational complexity of the
problem. This method implies that the time scales dominating the dynamics of the problem
differ substantially between the axial and radial directions. This applies, e.g., in the case of
cylindrical traps,

V(x) = V(y, t) +
M
2

(ω2
x(t)x2 + ω2

z (t)z2), (4.11)

when the harmonic confinement in the radial directions characterized by the trap frequen-
cies ωx, ωz differs significantly from the potential in the y-direction. To exploit the resulting
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asymmetry one can make the following separation ansatz for the wave function in three di-
mensions,

ψ(x, t) = φ(y, t) G(x, t;σx(y, t)) G(z, t;σz(y, t)). (4.12)

Here, the G(x j, t;σx j(y, t)), with x j = x, z, represent normalized Gaussian functions whose
width depends on their axial position

G(x j, t;σx j(y, t)) =
1√

2πσx j

e−x2
j/2σ

2
x j

(y,t)
. (4.13)

Usually, this method is applied in situations, where the radial confinement due to the
potential in Eq. (4.11) is much stronger in the radial than in the axial direction (cigar-shaped
trapping potentials). Nonetheless, we find good agreement between the experimental data
and our numerical results using this ansatz in Sec. 4.4.2. It is reasonable to assume, that
this is due to the relatively short interaction times paired with the low expansion rates of
the BEC and the very weak radial confinement provided by the laser beam. Instead of
computing three-dimensional solutions to the time-dependent GPE in Eq. (4.9), we solve a
system of three coupled differential equations. For the axial direction we find an effective
one-dimensional time-dependent GPE [193]

iℏ
∂φ(y, t)
∂t

=

[
− ℏ

2

2M
∂2

∂y2 + V(y, t) +
gscat

2π
σ−1

x (y, t) σ−1
z (y, t) |φ(y, t)| 2

+
ℏ2

4M
(σ−2

x (y, t) + σ−2
z (y, t)) +

M
4

(ω2
x(y, t) σ

2
x(y, t) + ω

2
z (y, t) σ2

z (y, t))
]
φ(y, t),

(4.14a)

while the transverse widths are determined by differential equations coupled via the density,
|φ(y, t)| 2, with

∫
dy |φ(y, t)| 2 = N,

0 =
ℏ2

2M
− M

2
ω2

x(y, t) σ
4
x(y, t) +

gscat

4π
σx(y, t)
σz(y, t)

|φ(y, t)| 2, (4.14b)

0 =
ℏ2

2M
− M

2
ω2

z (y, t) σ4
z (y, t) +

gscat

4π
σz(y, t)
σx(y, t)

|φ(y, t)| 2. (4.14c)

The initial conditions required to solve these coupled differential equations can be derived
for a three-dimensional wave function ψ(x, t0), e.g., describing the ground state of a trapped
ensemble that is subsequently transferred into a potential of the form in Eq. (4.11). The
Gaussian widths at the start of the effective dynamics t = t0 are then linked to the spatial
variances of the wave function in the radial directions so that σx j(y, t0) = σx j(t0), where

σx(t0) =
√〈

x2〉 − ⟨x⟩2 = ∫ d3x x2|ψ(x, t0)|2 −
(∫

d3x x |ψ(x, t0)|2
)21/2

, (4.15a)

σz(t0) =
√〈

z2〉 − ⟨z⟩2 = ∫ d3x z2|ψ(x, t0)|2 −
(∫

d3x z |ψ(x, t0)|2
)21/2

. (4.15b)
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Similarly, the real-valued wave function in the axial direction is the solution of the integral

φ(y, t0) =
(∫

dx dz |ψ(x, t0)|2
)1/2

. (4.16)

4.2.3 Thomas-Fermi Approximation

In general, also the ground state wave function of a BEC in a trap satisfying the time-
independent GPE (4.8) must be calculated numerically, e.g., via imaginary time evolution.
Nevertheless, it is possible to find analytical solutions for the ground state of the BEC that
satisfy Eq. (4.8) in certain limits with regards to the interaction term gscat|ψ(x)| 2, when as-
suming quadratic potentials (4.3). In the weakly-interacting regime, interactions can be
neglected and the GPE simply transforms into the linear time-independent Schrödinger
equation, the ground state of which is given by the solutions of the three-dimensional har-
monic oscillator. At the other extreme there is a situation where the ensemble is thus lo-
calized due to the trapping potential that the interparticle distance is much smaller than the
characteristic length scale defined by the length of the harmonic oscillator aHO =

√
ℏ/Mω̄.

This is the case if

N |as|3
a3

HO

≫ 1, (4.17)

and motivates neglecting the kinetic energy in Eq. (4.8) as it is overpowered by the interac-
tion term

µψ(x) ≈
(
V(x) + gscat |ψ(x)| 2

)
ψ(x). (4.18)

This is the Thomas-Fermi approximation, which provides an algebraic expression for the
spatial density distribution of the BEC,

|ψ(x)|2 =
(µ − V(x)) /gscat if µ ≥ V(x),

0 else.
(4.19)

For the harmonic potential (4.3) the density has the shape of an inverted parabola

|ψ(x)|2 = max

 µ

gscat

1 − x2

R2
x,T F

− y2

R2
y,T F

− z2

R2
z,T F

 , 0
 , (4.20)

where the TF Radii define the distances from the center of the condensate at which the
density vanishes. Thus, they can be expressed as

Rx j,T F =

√
2µ

Mω2
x j

. (4.21)
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Moreover, the normalization condition on the condensate wave function ψ(x) lets us find
an analytical relationship between the chemical potential µ and the number of particles in
the condensate N

µ =
1
2
ℏω̄

(
15Nas

aHO

)2/5

. (4.22)

4.3 Twin-lattice Beam Splitting

In Sec. 2.2.1, we have derived the Hamiltonian for single Bragg diffraction (2.8) assum-
ing two counterpropagating light fields [cf. Eq. (2.1)]. However, many sensors based on
light-pulse atom interferometry rely on two copropagating laser fields and retroreflection
to realize Bragg or Raman pulses [54,114,152]. Deriving the two incident light fields from
the same laser so that they share a common beam path can help to make the system more
robust against temporal fluctuations and spatial inhomogeneities of the laser phase fronts.
On top of that, any relative movement between the atoms and the mirror will be imprinted
during the atom-light interaction, making the mirror the inertial reference. Thus, many
experimental setups exploit the advantages provided by a retroreflective setup as the one
sketched in Fig. 4.1(a).

4.3.1 Ideal Twin-lattice Potential

To form two counterpropagating optical lattices in the retroreflected geometry the incident
laser light must be composed of at least two frequency components, 2ωL ≈ω1 +ω2, whose
sum can be assumed to be constant in time. If we assume similar but now generally time-
dependent detunings as discussed at the start of Chapter 2, i.e., 2δ(t) = ω1(t) − ω2(t) and
k ≡ k1 ≈ k2, we can express the incident and reflected electric fields as

Ein(x, t) = E0(x, t)
[
ε1 cos (ky − θ1(t)) + ε2 cos (ky − θ2(t))

]
,

Eretro(x, t) = E0(x, t)
[
ε2 cos (−ky − θ1(t)) + ε1 cos (−ky − θ2(t))

]
.

(4.23)

For simplicity, we have assumed identical electric field amplitudes E0(x, t) but allow for
general polarization vectors ε1, ε2. The phases of the two running lasers are now deter-
mined via time-integrals θ j(t) =

∫ t

0
dt′ω j(t′) and accumulate the difference

δθ(t) B
θ1(t) − θ2(t)

2
=

∫ t

0
dt′δ(t′). (4.24)

Note that the reflected electric field has switched polarizations because the light passes
twice through the quarter-wave plate shown in Fig. 4.1(a). The total electric field then
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Figure 4.1: Double Bragg diffraction (DBD) setup. (a) A two-level atom exposed to
two laser frequencies ω1(t) and ω2(t) and wave numbers k ≡ k1 ≈ k2 in a retroreflective
setup. Ideally, the choice of linear polarization and with orthogonal alignment of ε1 and
ε2 in combination with the λ/4-plate (quarter-wave plate) results in two optical lattices
propagating in opposite directions. By controlling the lattice power and the frequency dif-
ference, 2δ(t) = ω1(t) − ω2(t), this setup can be used for either DBD or BO. (b) Dispersion
for first-order DBD with fixed δ(t) = 2ωr shown in the inertial frame comoving with the
optical lattice. Compared to the single-Bragg case in Fig. 2.1(b), the atom-light interac-
tion is ideally described as a three-level system. Outside of the deep-Bragg regime, finite
pulse durations give rise to off-resonant couplings modifying the transition probabilities of
DBD [94, 132].

reads

E(x, t) = Ein(x, t) + Eretro(x, t)

= 2E0(x, t) cos (ωLt)
[
ε1 cos (ky − δθ(t)) + ε2 cos (ky + δθ(t))

]
.

(4.25)

In addition, we again move to a frame corotating with the laser frequency ωL and perform
the rotating wave approximation with respect to fast oscillating terms ∝ exp(±2iωLt). This
provides us with an effective dipole potential seen by the atom that is proportional to the
resulting intensity of the light field,

Ĩ(x, t) = |Ẽ(x, t)| 2 = |E0(x, t)| 2
[
|ε1| 2 cos2 (ky − δθ(t)) + |ε2| 2 cos2 (ky + δθ(t))

+2|ε∗1 · ε2| cos (ky − δθ(t)) cos (ky + δθ(t))
]
,

(4.26)

where the effective field in the corresponding interaction picture is2

Ẽ(x, t) = E0(x, t)
[
ε1 cos (ky − δθ(t)) + ε2 cos (ky + δθ(t))

]
. (4.27)

Ideally, the normalized polarization vectors of both frequency components are orthogonal,
i.e., |ε∗1 · ε2| = 0 = |ε∗2 · ε1| , which immediately yields the twin-lattice potential

V twin(x, t) = 2ℏΩ(x, t)
[
cos2 (k(y − yL(t))) + cos2 (k(y + yL(t)))

]
. (4.28)

2The factor 2 in Eq. (4.25) cancels performing the rotating wave approximation, cf. Eq. (2.7).
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Here, we have introduced the time-dependent shift in position

yL(t) =
∫ t

0
dt′vL(t′) = δθ(t)/k, (4.29a)

so that we can write in turn

vL(t) = ẏL(t) =
˙(δθ)(t)
k
=
δ(t)
k
, (4.29b)

using the notation ḟ (t) = d f (t)/dt. From Eq. (4.26) it is clear that the alignment of the
polarization vectors of the light fields plays a crucial role in the effective potential in the
experiment, and we will discuss how imperfect polarization can affect the beam-splitting
sequence in Sec. 4.4.1. Meanwhile, the depth of the optical lattice is a function of the
two-photon Rabi frequency Ω(x, t) = Ω2

eg(x, t)/2∆, which in turn depends on the detun-
ing from the atomic resonance as well as the electric field strength E0(x, t), see Eq. (2.4).
Although the setup in Fig. 4.1(a) gives rise to a twin lattice, it is also generally used in
experiments to perform single diffraction, which is enabled by a suitable constant relative
velocity between atoms and the optical lattices. When the atoms are in free fall in a foun-
tain experiment [95, 114, 152] and possess a velocity v0

3, the Bragg condition with respect
to the relative velocities [cf. Eq. (2.10)], |v0 − δ/k| = n ℏk/M, is only fulfilled for one of the
lattices. This lattice thus drives the nth-order Bragg pulse, as we explain in Chapter 2, while
the Doppler shift for the other one is too large to play a role for the momentum transfer.
Nonetheless, it is possible to realize symmetric momentum transfer with both lattices if the
relative velocity between the atoms and the retroreflective mirror vanishes in the direction
of the lattice beams. This can be achieved, e.g., in a microgravity environment, in horizon-
tal setups on Earth with gravity acting perpendicularly to the direction of the wave vectors
of the light fields or by adding additional frequency components to the light field (see,
e.g., Refs. [142, 177]). The latter is the situation we are going to analyze in the following
sections in the context of the QUANTUS-1 experiment. But first, we give an overview of
the beam splitting techniques employed in the experimental sequence using the twin-lattice
potential in Eq. (4.28), namely DBD and BO.

4.3.2 Brief Review of Double Bragg Diffraction (DBD)

Both single Bragg and double Bragg pulses diffract atoms from time-dependent optical
lattices via multiphoton transitions without changing their internal state. Hence, these
methods share many advantageous characteristics such as a reduced sensitivity to exter-
nal field fluctuations. Unlike single diffraction, however, a double diffraction pulse can

3In this case the setup in Fig. 4.1 is aligned vertically via rotation by ±90◦.
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drive simultaneous transitions between the initial state and two momentum states in oppo-
site directions, as we show in Fig. 4.1(b). In the context of an atom interferometer, this
allows, first, a doubling of the achievable momentum separation per pulse. Second, the in-
herent symmetry of the diffraction process ideally makes this method more robust against
laser phase noise. DBD has first been realized in 2016 [94,105] and an in-depth analysis of
the related studies performed in the QUANTUS-1 experiment can be found in Ref. [194].
In addition, the authors E. Giese et al. [132] were the first to provide a comprehensive
analytical description of the atom-light interaction in their work of which we briefly report
some results in the following.

In contrast to the adiabatic two-level dynamics of single Bragg pulse discussed in Chap-
ter 2, the time evolution of DBD is characterized by diabatic transitions between at least
three momentum eigenstates. We illustrate in Fig. 4.1(b) that a double Bragg pulse dom-
inantly couples those states forming a three-level system. Due to additional off-resonant
transitions this picture is only exact in the deep-Bragg regime, where long pulse dura-
tions lead to sharp resonance conditions. Importantly, the nature of the three-level system
changes the roles of beam splitters and mirrors compared to the single-diffraction case. We
illustrate this briefly for the example of a first-order double Bragg pulse acting on an atom
at rest (in the lab frame) with vanishing momentum width: First, we express the state vector
|ψ(t)⟩ in the three-level system as a linear combination of states |0⟩ , |±2 ℏk⟩,

|ψ(t)⟩ = c−2 ℏk(t) |−2 ℏk⟩ + c0(t) |0⟩ + c2 ℏk(t) |2 ℏk⟩ . (4.30)

Assuming the twin-lattice potential (4.28) is switched on instantaneously with a constant
Rabi frequency Ω(x, t) = Ω at t = 0 and a fixed suitable detuning δ(t) = 2ωr is selected,
the coefficients in Eq. (4.30) obey the equationc−2 ℏk(t)

c0(t)
c2 ℏk(t)

 = ΛDBD(Ω, t)

c−2 ℏk(0)
c0(0)

c2 ℏk(0)

. (4.31)

Accordingly, the time evolution in the deep-Bragg regime is described by the matrix4

ΛDBD(Ω, t) = cos
 √2Ωt

2

1 + 1
2

1 − cos
 √2Ωt

2


 1 0 −1

0 0 0
−1 0 1


+

i√
2

sin
 √2Ωt

2


 0 ei2ϕL 0
e−i2ϕL 0 e−i2ϕL

0 ei2ϕL 0

.
(4.32)

4The matrix takes this form in a suitable interaction picture that includes the kinetic energy p̂2/2M. For
reference see Eq. (31) in Ref. [132], where we note the different definitions of Ω: We define Ω = Ω2

eg/2∆
compared to Ω = Ω2

eg/4∆. The phase ϕL is included in the result given in Eq. (2.27) in Ref. [195], where
ΩDB =

√
2Ω (assuming Ωeg ∈ R).
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At first glance, one sees that the effective Rabi frequency is enhanced by a factor of
√

2
when comparing the arguments of the trigonometric functions with those of the Pendellö-
sung for a first-order single-Bragg pulse in Eq. (2.20). Nevertheless, the duration of double
Bragg pulses is not shorter, but even longer for beam splitters (tBS) and mirrors (tM) than in
the single Bragg case at the same Rabi frequency Ω. This becomes clear when considering
the corresponding forms of the matrix in Eq. (4.32) for these two cases,

ΛDBD(Ω, tBS =
π√
2Ω

) =


1
2

i√
2
ei2ϕL −1

2
i√
2
e−i2ϕL 0 i√

2
e−i2ϕL

−1
2

i√
2
ei2ϕL 1

2

, (4.33a)

ΛDBD(Ω, tM =
2π√
2Ω

) =

 0 0 −1
0 −1 0
−1 0 0

. (4.33b)

Assuming the atom is initially at rest, |ψ(0)⟩ = |0⟩, Eq. (4.33a) shows that in the three-level
system a beam splitter ideally depopulates the state |0⟩,

|0 ℏk⟩ → i√
2

ei2ϕL ( |−2 ℏk⟩ + |2 ℏk⟩) . (4.34)

Thus, in contrast to the single-Bragg equivalent (cf., e.g., Eq. (2.20) with tBS = π/(2Ω)
for n = 1), the interaction time actually increases by

√
2 according to Eq. (4.33a). The

same is true for mirror pulses, making DBD inherently more susceptible to detrimental
Doppler detunings, the effects of which can be inferred from the preceding discussion of
finite velocity widths. In addition, DBD leads to off-resonant couplings of momentum
states, as shown in Fig. 4.1(b). In consequence, the Rabi oscillations exhibit a spurious
modulation at a frequency of 4δ, which can be attributed to the presence of the respective
off-resonant optical lattice, which is not included in the deep-Bragg solution in Eq. (4.32)
(see Ref. [132] for more details). The magnitude of both these off-resonant transitions
as well as the spurious couplings to other momentum states increases when operating in
the experimentally more useful quasi-Bragg regime, since the pulse durations are shorter.
The consequences of both effects on the signal of a double Bragg MZ interferometer were
recently quantified numerically by J. Jenewein et al. [136] in an analysis similar to that
presented in Chapter 3 of this thesis.

Despite these potential complications, double Bragg pulses still provide twice the mo-
mentum separation compared to single diffraction, and do so symmetrically, suppressing
important systematic effects, as shown by the imprint of the laser phase ϕL on both output
ports of an ideal beam splitter in Eq. (4.34). This makes this technique not only desirable
for microgravity environments [81], which naturally provide a vanishing atomic velocity in
the direction of the laser beams. Successful implementation on the ground in a horizontal



4.3. Twin-lattice Beam Splitting 127

configuration [94], with gravitational acceleration acting perpendicularly to the direction
of the Bragg beams, has demonstrated the potential of this technique for LMT atom inter-
ferometry. In the following sections, we will see that the momentum separations reached
with DBD can be dramatically increased, when combined with BO in accelerated optical
lattices.

4.3.3 Coherent Acceleration via Bloch Oscillations (BO)

The key to achieving unprecedented momentum separations in the twin-lattice interfero-
meter is to combine DBD with BO in accelerated optical lattices [106–108] to transfer
hundreds of photon recoils with high efficiencies. Before analyzing the implementation
of such a setup in the QUANTUS-1 experiment, it is therefore crucial to introduce the
fundamental aspects of BO. We will therefore reproduce the most important results of the
pioneering work done by the authors of Refs. [106, 108] in this section considering only a
single one-dimensional lattice potential

V(ŷ, t) = V0 cos2 (k(ŷ − yL(t))). (4.35)

For the sake of clarity we use position and momentum operators in this section, and for
simplicity we consider a one-dimensional optical lattice whose depth is the function of
a constant two-photon Rabi frequency, V0 = 2ℏΩ [see Eq. (4.28)]. Assuming a single
lattice is also justified because the initial momentum separation generated by the DBD
sequence ideally serves to make the optical lattice sequences in each interferometer arm
ideally independent of each other. Perturbative effects due to the respective off-resonant
lattice in the actual experiment are discussed below in Sec. 4.4.2.

Atoms in Optical Lattice Potentials

For now, let us consider a static lattice by setting δ = 0, so that the Hamiltonian describing
the motion of an atom with mass M in the periodic potential V(ŷ + d) = V(ŷ) becomes
time-independent

H0 =
p̂2

2M
+ V0 cos2 (kŷ). (4.36)

The periodicity of the optical potential is determined by the wave number or respectively
the wavelength of the laser d = π/k = λL/2. Defining the one-dimensional translation
operator in position space

T̂d = exp(ip̂d/ℏ), with T̂d f (ŷ) = f (ŷ + d), (4.37)
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and using the form of the momentum operator in position representation, p̂ = −iℏ∂ŷ, we
find that there exists a common eigenbasis between T̂d and the Hamiltonian in Eq. (4.36)
as their commutator vanishes

[H0, T̂d] = 0. (4.38)

This observation is at the heart of Bloch’s theorem [196, 197], which states that the eigen-
states |nB, qB⟩ and eigenenergies EnB(qB) that solve the time-independent Schrödinger equa-
tion,

H0 |nB, qB⟩ = EnB(qB) |nB, qB⟩ , (4.39)

are labeled by a continuous index qB and a discrete band index nB. The former is usu-
ally referred to as the quasimomentum. Both |nB, qB⟩ and EnB(qB) are 2π/d-periodic, i.e.,
EnB(qB + 2π/d) = EnB(qB + 2k) = EnB(qB). The periodicity of the system in Eq. (4.36) mo-
tivates dividing configuration space into so-called Brillouin zones. The discussion of the
dynamics of BO is usually restricted to the first Brillouin zone, which corresponds to the
quasimomentum being confined to the interval qB ∈ ]−π/d, π/d] = ]−k, k] [196, 197]. The
quasimomentum is therefore closely related to the (quasi)momentum p ∈ [−ℏk/2, ℏk/2]
we have introduced in Chapter 2. We show the first five energy bands for a shallow lattice
potential and a considerably deeper one in Fig. 4.2(a) and (b) within the first Brillouin zone.
Except for the ac Stark shift in energy and the factor of 2 between V0 and Ω, these plots
correspond to the individual panels in Figs. 2.2 and 2.11(b). As we have already discussed,
they show that the higher the laser intensity, the more the energy bands deviate from the
dispersion relation of a free particle, as band gaps appear and the bands become increas-
ingly flat. In particular, the band gaps at the edges of the Brillouin zone (qB = ±k), shown
in the lower panel of Fig. 4.2(c), are a crucial factor for the fidelity for the BO. We will
see below that in the regime of modest lattice depths (V0 < 20 Er) the non-adiabatic loss
processes are dominated by LZ transitions between effective two-level systems, and there-
fore the associated energy differences for BO play a role similar to the energy differences
in the Bragg spectra depicted in Fig. 2.3 and Figs. 2.11(a,b) [cf. Eq. (2.83)]. In position
representation, the eigenstates in Eq. (4.39) take the form of delocalized Bloch waves

ψnB,qB(y) = ⟨y|nB, qB⟩ = eiqByunB,qB(y) with unB,qB(y + d) = unB,qB(y). (4.40)

Using the relations

p̂(eiqByunB,qB(y)) = p̂(eiqBy) unB,qB(y) + (eiqBy p̂unB,qB(y)) = eiqBy( p̂ + ℏqB) unB,qB(y), (4.41)
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Figure 4.2: Spectra of the Bloch Hamiltonian. Bloch band energies of the optical lat-
tice Hamiltonian H0 according to Eq. (4.39) depicted in the first Brillouin zone for depths
V0 = 2 Er (a) and V0 = 25 Er (b). In (c) we show the energies as a function of V0 fixing the
quasimomentum to the center (upper panel, qB = 0) or the edge (lower panel, qB = ±k) of
the Brillouin zone. The Bloch energies differ from the eigenenergies of the Bragg Hamil-
tonian in Eq. (2.11) by an ac Stark shift and are otherwise identical to the ones shown in
Figs. 2.2, 2.3 and 2.11.

we can derive a Schrödinger equation for the Bloch functions unB,qB(y) and the associ-
ated states |unB,qB⟩. We find via the position representation of Eq. (4.39) (substituting
|nB, qB⟩ → ⟨y|nB, qB⟩ ) that[

p̂2

2M
+ V(ŷ)

]
eiqBy unB,qB(y) = eiqBy

[
( p̂ + ℏqB)2

2M
+ V(ŷ)

]
unB,qB(y) (4.42)

yielding

HqB unB,qB(y) = EnB(qB) unB,qB(y), (4.43)

where HqB is defined according to

HqB =

[
( p̂ + ℏqB)2

2M
+ V(ŷ)

]
. (4.44)

Atoms in an Accelerated Optical Lattice Potential

To accelerate the atoms trapped in the lattice potential via BO the optical potential must be
set in motion resulting in a time-dependent Hamiltonian in the laboratory frame

HLF =
p̂2

2M
+ V0 cos2 (k(ŷ − yL(t))). (4.45)
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According to Eq. (4.29a) the position of the lattice can experimentally be controlled via
the frequency difference between the light fields. The dynamics of BO is usually derived
in the inertial frame comoving with the optical lattice and the corresponding Hamiltonian
can be found applying a suitable unitary transformation as we have done in Sec. (2.2.1),
HMF = iℏĠG† + GHLFG†. Since the moving frame is accelerated in this case, the unitary
operator assuming that the atom is initially at rest is given by

G(t) = exp
(−i(ŷ − p̂t/M)MvL(t)/ℏ + iΦG(t)

)
, (4.46a)

which yields after some calculation using the Baker–Campbell–Hausdorff formula and the
commutation relation [ŷ, p̂] = iℏ (cf. App. B)

iℏĠG† = MaL(t)ŷ − vL(t) p̂ − ℏΦ̇G(t), (4.46b)

GHLFG† = H0 + vL(t) p̂ +
M
2

v2
L(t). (4.46c)

At this point, we have introduced the lattice acceleration aL(t) = v̇L(t), and if we choose
Φ̇G(t) = Mv2

L(t)/2ℏ, we obtain the standard Hamiltonian in the accelerated frame [108]

HMF =
p̂2

2M
+ V0 cos2 (kŷ) + MaL(t) ŷ. (4.47)

This result implies that the motion of the atoms in the lab frame results in a net inertial
force F = MaL(t) in the comoving frame. We note that the experimental realization of the
transition from a static lattice in Eq. (4.36) to a moving one in Eq. (4.45), i.e., the temporal
shape of the function aL(t), has a significant impact on the dynamics of the atoms and refer
the interested reader, e.g., to Ref. [198] for more information.

While the Bloch states |nB, qB⟩ are no longer energy eigenstates of HMF (those are the
Wannier-Stark states [199]), one can show that the eigenstates of the new Hamiltonian
retain the form in Eq. (4.40). In order to see this, we must first boost HMF to a third frame
referred to as the "solid-state physics" point of view in Ref. [108] via another transformation
HSSP = iℏ ˙̃GG̃† + G̃HMFG̃† using the unitary G̃(t) = exp (iŷMvL(t)/ℏ), which leads to

HSSP =
( p̂ − MvL(t))2

2M
+ V0 cos2 (kŷ). (4.48)

The translation operator also commutes with this Hamiltonian, [HSSP, T̂d] = 0, and thus
both have the same set of time-dependent eigenfunctions

ψ(ŷ, t) = eiqBŷu(ŷ, t) with u(ŷ + d, t) = u(ŷ, t). (4.49)

Using again Eq. (4.41) we can rewrite the Schrödinger equation

iℏ
dψ(ŷ, t)

dt
= HSSP ψ(ŷ, t), (4.50)
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and find that the periodic function u(ŷ, t) solves the differential equation

iℏ
du(ŷ, t)

dt
=

[
( p̂ + ℏqB(t))2

2M
+ V0 cos2 (ky)

]
u(ŷ, t) C HqB(t)u(ŷ, t). (4.51)

Here, we have introduced the time-dependent quasimomentum

qB(t) B qB(0) − M
ℏ

vL(t) = qB(0) − M
ℏ

∫ t

0
dt′aL(t′). (4.52)

Therefore, we can find the solutions of

iℏ
dΨ(ŷ, t)

dt
= HMF Ψ(ŷ, t) (4.53)

via the transformation with G̃†(t) giving

Ψ(ŷ, t) = G̃†(t)ψ(ŷ, t) = eiqB(t)yu(ŷ, t), (4.54)

with a periodic part that evolves according to the Schrödinger equation with respect to the
Hamiltonian in Eq. (4.51),

iℏ
d
dt
|u(t)⟩ = HqB(t) |u(t)⟩ . (4.55)

Assuming that atoms are initially loaded5 into the lowest Bloch band nB = 0 and con-
sidering a weak-enough acceleration starting at t = 0 so that transitions to higher bands are
negligible, we can give an explicit solution for |u(t)⟩,

|u(t)⟩ = exp
(
−i

∫ t

0
dt′

E0(qB(t′))
ℏ

)
|0, qB(t)⟩ . (4.56)

This single-band approximation is based on the assumption of an adiabatic time evolution,
so that the eigenstate of the accelerated system can be expressed as the former Bloch state
|0, qB(t)⟩ plus an accumulated phase. The phase must be obtained via the time integral over
the corresponding eigenenergy E0(qB(t)) of HqB(t) due to the change in quasimomentum
qB(t).

The criterion for the adiabatic approximation we have cited here is very similar to the
one we formulated in our adiabatic theory for the single-Bragg description [cf. Eq. (2.83)].

5Loading atoms into the lattice requires increasing the lattice depth V0(t) = 2ℏΩ(t). The loading ramp
and the relative velocity between lattice and atom determine, whether an atom is loaded into a single band
(adiabatic) or a superposition of bands (nonadiabatic). The criterion to load into the fundamental band reads
| ⟨1, qB|∂tH0|0, qB⟩| ≪ (E1(qB)−E0(qB))2/ℏ [200], and for sufficiently narrow momentum widths of the atomic
cloud σp≪ ℏk it is even possible to target specific quasimomenta qB. For further reference we suggest, e.g.,
Refs. [150, 200, 201].
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In this case, we require that the energy gap ∆En′B,nB(qB) B En′B(qB)−EnB(qB) between bands
n , n′ is much larger than the overlap of the corresponding Bloch states, i.e.,

| ⟨nB, qB| ddt
|n′B, qB⟩| ≪ |∆En′B,nB(qB)| /ℏ. (4.57)

In the limit of a shallow optical lattice V0 ≤ 10 Er, the band gap between the fundamental
and the first excited band is proportional to the depth of the optical lattice, ∆E1,0(qB)∝V0.
Assuming Eq. (4.57) imposes an upper bound for the constant force, F = MaL, to avoid
transitions to higher bands one can derive the relation [108],

|F|d≪ π

8
V2

0

Er
. (4.58)

This result assumes qB = ±k because the band gap ∆E1,0(qB) is narrowest at the edges
of the Brillouin zone due to the curvature of the bands (compare, e.g., Fig. 4.2(a) to (b)
for qB = ±k). Now that we have found an approximate solution for the time evolution in
the accelerated frame in Eq. (4.56), the name "Bloch oscillations" becomes apparent: The
mean velocity of a particle in a Bloch state |nB, qB⟩ is determined by

⟨v⟩nB (qB) =
1
ℏ

dEnB(qB)
dqB

. (4.59)

Here, we recall the periodicity d = π/k = λL/2 of the optical lattice potential, e.g., in
Eq. (4.45). Since the eigenenergies EnB(qB) are periodic in the quasimomentum, so is
⟨v⟩nB (qB) making it an oscillating function with average zero. Again assuming a constant
force F, the period of one oscillation is determined by the periodicity of qB(t) = qB − Ft/ℏ
and is called the "Bloch period",

TB =
2πℏ
|F| d . (4.60)

Figure 4.3 illustrates the dynamics in the inertial frame comoving with the optical lat-
tice. Here we represent the wave packets as individual points moving through the disper-
sion relation of the periodic potential, which is justified in the case of a narrow momentum
width (σp≪ 2 ℏk). As soon as the lattice starts moving, the atoms experience a force in
opposite direction due to their inertia [cf. Eq. (4.47)]. At the edge of the Brillouin zone,
the atoms either transition to a higher band meaning that they do not adiabatically follow
the motion of the lattice, the velocity of which is steadily increasing at a rate |aL| = 2 ℏk

MTB
,

or they remain in the same band. In case of the latter, after one Bloch period, t = TB, the
system is back in its initial state. In the lab frame the atoms undergo a two-photon transi-
tion gaining 2 ℏk in momentum once they reach the edge of the Brillouin zone [108]. In the
next section, we will briefly outline, how to quantify the losses to higher bands using LZ
theory.
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Figure 4.3: Bloch oscillations in the Bloch-band picture. The figure shows the unfolded
Bloch band structure for the lowest energy bands of two neighboring Brillouin zones. Pro-
vided an atom with a narrow momentum width, σp≪ ℏk, has been loaded in the fundamen-
tal band, its quasimomentum qB(t) evolves according to Eq. (4.52) represented by the blue
dots. At the edge of the Brillouin zone interband transitions can occur meaning that the
atom is no longer comoving with the accelerated optical lattice. For sufficiently large band
curvatures (requiring V0 ≲ 20 Er) LZ theory accurately predicts the transition probabilities,
see Eq. (4.61).

4.3.4 Lattice Transport Fidelity

To analyze the experimental results presented in the following section, a basic understand-
ing of the principal loss mechanism in the twin-lattice interferometer is required. We have
already briefly touched on potential shortcomings of DBD in Sec. 4.3.2, but considering the
majority of the photon recoils are transferred via BO, it is very probable that the overall loss
accumulated during the much longer Bloch sequences will impact the signal of the interfe-
rometer much more significantly. Thus, we give a short introduction into the corrections to
the adiabatic dynamics of BO and discuss the aspect of spontaneous emission.

Non-adiabatic LZ Transitions

Beyond the single-band approximation in Eq. (4.56), while the atoms undergo periodic BO
and the quasimomentum qB(t) scans the Brillouin zone, transitions to higher bands occur
with finite probability [202], which we illustrate in Fig. 4.3. As previously mentioned, for
sufficiently shallow lattices, V0 ≤ 20 Er, the curvature of the bands EnB(qB) for different
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qB shown in the figure justifies focusing on a single point in the Brillouin zone, where the
band gap ∆En′B,nB(qB) is smallest. With respect to the fundamental and the first excited
band, ∆E1,0(qB), this is the case at the edges qB = ±k. Using LZ theory one can quantify
the transition probability [108, 202],

Ln′B,nB = exp

− π

4δ̇(t)

(
∆En′B,nB

ℏ

)2 , (4.61)

which depends on the band gap ∆En′B,nB(qB = k) as well as on the force F = Mδ̇(t)/k that is
controlled by the change in detuning, 2δ(t) = ω1(t)−ω2(t), between the light fields. During
our study of the spectra of the Bragg Hamiltonians and their connection to the Bloch bands
shown in Fig. 2.11, we have already seen that ∆En′B,nB decreases for higher band indices at
a given lattice depth V0. This is also clearly visible in both panels of Fig. 4.2(c). According
to Eq. (4.61) this means that once an atom has transitioned from the fundamental to the
first excited band it is most likely to continue to tunnel to higher bands until it is no longer
bound by the optical lattice due to the increasing velocity of the atom in the inertial frame
comoving with the optical lattice. However, it is also possible for atoms to remain in one of
the higher energy bands, which has been demonstrated experimentally by performing what
is called "Stückelberg interferometry" with ultracold atoms in optical lattices [203, 204].

Leaving aside this interference effect, the LZ formula can be used, at least theoretically,
to estimate the fidelity of LMT sequences that transfer 2NB photon recoils, with NB ∈ N.
Assuming that consecutive BO are uncorrelated events, one can simply take the product of
the fidelity of a single BO FLMT = (F0,0)NB B (1 − L1,0)NB . However, as mentioned above,
this is only true for moderate lattice depths (V0 ≤ 20 Er). In practice, LMT sequences
that rely on efficient transfer in the order of a thousand or more photon recoils operate in
the tight-binding limit [24, 175], where the single-band approximation and therefore the
LZ formalism fails as the energy bands become essentially flat [see Fig. 4.2(b)]. Thus the
Bloch picture presented above does prove to be suboptimal in those cases [198]. Instead,
working in a representation of the Wannier-Stark ladders, which are the eigenstates of the
Hamiltonian in Eq. (4.45), provides a more natural description of BO in this regime [199,
205] that can also explain, e.g., the phenomenon of resonantly enhanced tunneling seen in
optical lattice experiments [206]. Despite its potential, a dedicated study of BO from this
perspective is outside of the scope of this thesis.

In Sec. 4.4.2, we compare the prediction of the LZ formula (4.61) with the experi-
mentally measured transfer fidelities for at the beginning of the twin-lattice interferometer
sequence assuming modest V0 < 10 Er. This will help us to better understand the effect of
the off-resonant lattice on the momentum transfer, which is not considered in Eq. (4.36).
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Spontaneous Emission Losses

In the context of single Bragg diffraction, we have not explicitly treated spontaneous emis-
sion. However, in our discussions in the previous two chapters, we have considered Bragg
orders n ≤ 5, mainly because of the increasing demands on the laser power at higher diffrac-
tion order leading to detrimental losses due to spontaneous scattering (cf. Ref. [69]). In
comparison, many experiments realizing LMT via BO require much higher lattice depths,
∼ 70 Er, for longer durations of several ms [24, 179, 207], since the acceleration fidelity
improves at deeper optical potential and for longer acceleration times [corresponding to a
reduced force, cf. (4.61)]. Thus, we have to take into account losses due to random scatter-
ing during BO.

For our analysis of the twin-lattice interferometer, we simply assume spontaneous emis-
sion to reduce the number of atoms coherently contributing to the signal (cf. Sec. 5.2 in
Ref [208]). In this sense, the surviving fraction decays exponentially as a function of the
interaction time with the optical potential and the rate of spontaneous emission Γsp,

Fsp = exp
(
−Γsp · tint

)
. (4.62)

The rate Γsp depends on the natural properties of the atomic transition as well as the effective
potential seen by the atom [209],

Γsp =
Γnat

|∆|
⟨V(ŷ)⟩
ℏ

. (4.63)

Here, Γnat denotes the natural line width of the atomic transition and as before ∆ is the
detuning of the laser from the resonance frequency. To estimate Γsp, one must evaluate
⟨V(ŷ)⟩ with respect to the atomic state. In the case of an atom trapped in the fundamental
band of a deep optical lattice potential V(ŷ)∝ cos2 (kŷ), one can assume that the atom is
well described by the Bloch state in Eq. (4.56) corresponding to the lowest energy band
as described in Ref. [179]. Depending on the sign of the detuning ∆ of the light field, two
different rates are obtained when the harmonic approximation of the trapping potential is
performed for the case of an atom that is well localized in the wells of the optical potential.
In the case of a red detuned lattice, ∆ < 0, the atoms are primarily confined to the anti-
nodes of the optical lattice, where the intensity is highest [209]. Thus they experience a
decay rate,

Γsp,red =
Γnat

|∆|
V0

ℏ

[
1 − 1

2
√

V0/Er

]
, (4.64)

that is enhanced compared to a blue detuning

Γsp,blue =
Γnat

|∆|
V0

ℏ

1
2
√

V0/Er
. (4.65)
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Therefore, using a blue detuned potential can have a significant positive impact on the
spontaneous emission losses. Later, in Sec. (4.5), we will modify Eq. (4.65) slightly to
estimate the spontaneous emission losses in the QUANTUS-1 experiment. In this context,
we will account for the imperfections of the experimental realization of the twin-lattice
potential.

4.4 Realization in the QUANTUS-1 experiment

QUANTUS-1 is the product of a longstanding collaboration between several German uni-
versities funded by the German Aerospace Center (DLR, Deutsches Zentrum für Luft-
und Raumfahrt [92]). It represents a first-generation platform for experiments with ultra-
cold atomic gases in microgravity. To preform autonomous experiments in harsh envi-
ronments such as planes [52], drop towers [63, 65, 80, 93], sounding rockets [81, 90] or
space [47, 83, 210] it is necessary drive the transition from lab based apparatuses to robust
quantum sensors that are deployable in real-world scenarios. The QUANTUS-1 experi-
ment demonstrated the first realization of a BEC in free fall in 2007 [93] and showcased
the successful manipulation of the atomic ensemble towards atom interferometry with long
interrogation times [80]. For more details about the experimental apparatus and earlier
works we refer the reader to Refs. [194, 211–213]. Not only do these efforts represent
important milestones on the path to discover new physics with atom optics experiments in
weightlessness [82,83,210], but also proved vital in progressing the development of inertial
sensors based on light-pulse atom interferometry with condensed matter waves [94, 95].

In the following, we present a theoretical analysis of the contrast loss of the twin-lattice
interferometer realized in the QUANTUS-1 experiment. By accelerating ensembles of 87Rb
atoms via moving optical lattices a MZ-type geometry is realized featuring differential
momenta between the arms of up to 408 photon recoils. For more details about the twin-
lattice setup, we kindly refer the reader to the PhD thesis of M. Gebbe [96, 208], who
performed most of these experiments.

The main ingredients of the experimental setup are depicted in Fig. 4.4. At the top it
features a so-called "atom chip" that is aligned perpendicularly to gravity (here acting in
positive z-direction). This device provides the required magnetic potentials for the gener-
ation of BECs consisting of up to 1.5 · 104 87Rb atoms [93]. After the atoms reach their
condensed quantum state and before the start of the interferometry sequence, the ensemble
is released from the magnetic trap undergoing a vital preparation stage for ≈ 15 ms. During
that time, the cloud first freely expands and undergoes an adiabatic rapid passage for state
preparation before the magnetic potential is briefly switched on again. This "re-trapping"
(also referred to as "delta-kick collimation"( DKC) or "lensing") acts as a collimating lens
for the atomic source minimizing its momentum width [65, 188] along the interferometry
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Figure 4.4: Experimental twin-lattice setup. The twin lattice is formed by retroreflecting
light using two frequencies, ideally with linear orthogonal polarization. A quarter-wave
plate in front of the retroreflector alters the polarization to generate two counterpropa-
gating lattices (indicated in red and blue). After release from the atom chip trap and
state preparation, the BEC is symmetrically split and recombined by the lattices driving
DBD and BO. In this way, the interferometer arms enclose an area A (shaded in gray).
The interferometer output ports are detected on a CCD chip by absorption imaging. Fig-
ure adapted from M. Gebbe et al., Nat. Comm. 12(1):2544 (Ref. [96]), CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/.

axis to about σp = 0.03 ℏk (or σv = 0.18 mm/s in velocity). This corresponds to an effective
temperature of 340 pK in the y-direction and is paramount for efficient Bragg diffraction.
For a more exhaustive account of the atomic source preparation, see chapter 4 in Ref. [208].

4.4.1 Twin-lattice Potential

According to Fig. 4.4, the twin-lattice laser beam propagates below and parallel to the sur-
face of the atom chip. It has a beam waist of 3.75 mm and features up to 1.2 W in power
with a negative (blue) detuning of ∆ = (ωe − ωg) − ωL = −100 GHz6. (and two frequency
components that will be detuned up to several hundred kHz during the interferometer se-
quence) from the D2-line of the 87Rb atoms. As mentioned above, the twin-lattice potential
can be used for the generation of double Bragg pulses as well as for BO after loading the
atoms into the lattice. The Bragg pulses considered here use Gaussian temporal shapes,
while the intensity during the Bloch sequences is a linear function of time. Furthermore, to
accelerate the lattices into opposite directions and perform BO time-dependent frequency
ramps are required. For technical reasons in the QUANTUS-1 experiment these ramps

6Recall, that the light field contains two laser frequencies for which we can roughly estimate 2ωL ≈ω1 +

ω2 ∼ 200 GHz and 2δ(t) = ω1(t) + ω2(t)< 1MHz.

https://creativecommons.org/licenses/by/4.0/
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are linear functions of time (see Sec. 3.3 in Ref. [208]), despite the fact that this trans-
lates into instantaneous switching of the acceleration aL(t) = δ̇(t)/k, which may increase
non-adiabatic losses [198].

To understand the measured beam splitter fidelities at the beginning of the experimental
sequence it is necessary to take a closer look at the role played by polarization of the incom-
ing laser light in Eq. (4.26): To model imperfect experimental control over the alignment
of the polarization vectors, we assume linearly polarized light and allow either frequency
component to contain both horizontal and vertical polarization contributions,

ε1 = (1 − ϵ) εp + ϵ ε p and ε2 = ϵ εp + (1 − ϵ) ε p. (4.66)

In particular, we have introduced the spurious contribution strength 0 ≤ ϵ ≤ 0.5. Using
|εp|2 = 1 = |ε p|2 and ε∗p · ε p = 0 = ε∗p · εp this directly translates into an error in the potential
by modifying the scalar products in Eq. (4.26),

|ε1,2| 2 = (1 − ϵ)2 + ϵ2 = 1 − σpol, (4.67a)

|ε∗1 · ε2| = 2(ϵ − ϵ2) = σpol. (4.67b)

A non-vanishing polarization error, σpol B 2(ϵ − ϵ2) with 0 ≤ σpol ≤ 0.5, therefore affects
the interference pattern (4.26) by reducing the effective depth of the counterpropagating
twin-lattice potentials, V0(x, t) B (1 − σpol)2ℏΩ(x, t), and causing an additional parasitic
potential term

V(x, t) = V0(x, t)
[
cos2 (k(y − yL(t))) + cos2 (k(ŷ + yL(t)))

+
σpol

1 − σpol
2 cos (k(ŷ − yL(t))) cos (k(ŷ + yL(t)))

]
C V twin(x, t) + Vpara(x, t).

(4.68)

We will see in the next section that the occurrence of this additional term can have a signif-
icant impact on the beam splitter fidelities in the twin lattice as it acts as a standing lattice
potential,

Vpara ∝ cos (k(ŷ − yL(t))) cos (k(ŷ + yL(t))) = cos2 (kŷ) − sin2 (kyL(t)). (4.69)

The second term on the right-hand side of this equation describes a temporal beat, which
therefore has no effect on the momentum transfer via BO, but plays a role in the sponta-
neous emission losses due to the twin-lattice potential.
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4.4.2 Beam Splitter Fidelity

Before discussing the complete interferometer in the next section, we would like to stress
the importance of high beam splitter fidelities, when generating symmetric interferometers
with large momentum separations. In case of a twin lattice, one lattice may interfere with
the dynamics of the other, which would mean transfer amplitudes are more complex than
suggested by the LZ formula in Eq. (4.61). Therefore, we study the fidelity of the beam
splitters at the beginning of the interferometer separately. First, DBD is used to generate a
superposition of two wave packets moving in opposite directions. In comparison to the pure
Bloch beam splitter presented in Ref. [142], combining Bragg diffraction with BO reduces
the complexity of the time dependent intensity and frequency ramps while maintaining high
fidelities. To evaluate the performance of the subsequent Bloch ramps, the atoms are first
brought into a superposition of mean momenta ±2 ℏk via the Bragg pulses. The light pulses
driving DBD have a Gaussian-shaped temporal envelope of 37.5 µs width (corresponding
to τ≈ 0.89ω−1

r [100]). Subsequently, the intensity of the copropagating optical lattices is
linearly ramped up, and the optical potentials are then accelerated to impart an additional
momentum of ±2 ℏk via BO. At the end of the sequence the number of atoms in the final
momentum states is measured.
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Figure 4.5: Fidelity of one Bloch oscillation (BO) in the twin lattice. A superposition of
momentum ±2 ℏk (see main text) is loaded into the twin lattice and accelerated for different
times tacc to acquire additional momentum of ±2 ℏk. The transfer fidelity is evaluated as a
function of the lattice depth V0. Neither the LZ curves for a single lattice (see Eq. (4.61),
solid lines), nor the ones, for which we added the effect of a second hypothetical standing
lattice according to Eq. (4.70) (dashed lines) reproduce the features of the experimental data
(symbols) toward deeper potentials. The same is true for the fidelities F num

±4 ℏk in Eq. (4.71)
calculated via our 1D GPE simulation using the ideal twin-lattice potential in Eq. (4.28)
(dotted lines), which demonstrates the same scaling as the LZ curves.



140 Chapter 4. Atom Interferometry in a Twin Lattice

In Fig. 4.5, we analyze the experimentally achieved fidelity, when increasing the ini-

tial separation from 4 ℏk to 8 ℏk (±2 ℏk
Bloch→ ±4 ℏk). We compare different durations

tacc = (100, 200, 400, 800) µs, where shorter times translate into faster accelerations and
show the results in dependence of the lattice depth, which can be understood as the effective
lattice depth averaged over the atomic ensemble with respect to Eq. (4.68). Experimentally,
V0 has been determined using LZ curves (see Ref. [208] for more information). For shal-
low lattices (V0 ≤ 2 Er), the losses are reduced for more adiabatic timings and hence the
measured data mirror the LZ losses in a single lattice (see Sec. 4.3.4). This is confirmed
by our addition of the LZ fidelities for BO in the fundamental band calculated according
to Eq. (4.61). To explain the differences between the measurements and the LZ model, we
first attempt to extend the single-lattice model via the inclusion of a hypothetical second
lattice with a momentum offset of 2 ℏk. This can be achieved by multiplying the probabil-
ity of staying in the fundamental band of the copropagating lattice F0,0 = (1 − L1,0) (4.61)
with the probability of tunneling into higher bands with respect to the lattice that is offset
in velocity by 2 ℏk as described in Ref. [180],

FLZ = F0,0L3,2 =

1 − exp
−π4 taccωr

4

(
∆E1,0

Er

)2 · exp
−π4 taccωr

4

(
∆E3,2

Er

)2 . (4.70)

Here, we have inserted the constant acceleration aL = δ̇/k = 4ωr/ktacc required for a veloc-
ity change ∆vL = 2 ℏk/M = 4ωr/k over a duration tacc, and the band gap ∆E3,2 determines
the probabilityL3,2 that the atom remains unaffected by the hypothetical second lattice. Ac-
cording to Fig. 4.5, the combined LZ fidelities are worse for deeper lattices and even more
so for longer acceleration times as the effect of the off-resonant lattice increases, but they
still do not explain the features exhibited by the measured data. Moreover, using Eq. (4.70)
implicitly assumes a second parasitic lattice with full depth V0 and a velocity difference of
only 2 ℏk, which is inconsistent with the result in Eq. (4.68).

To explain the momentum transfer measurements we adapt the time-dependent GPE
model introduced previously in Secs. 4.2.1 and 4.2.2, taking into account the complete
potential in Eq. (4.68). First, we numerically solve the three-dimensional GPE in Eq. (4.9)
combining imaginary and real time evolution to compute an initial state for the lattice
dynamics, which is calibrated to the experimentally observed free evolution of the atomic
wave packet. In particular, we have focused on gauging the expansion velocity in the
lattice direction, which we managed by using the simulation parameters provided in the
first part of Tab. 4.1. Assuming the dynamics in the two radial directions is essentially
static, the resulting three-dimensional wave function is then translated into our effective
one-dimensional GPE model in order to simulate the lattice acceleration sequences that
are characterized by the parameters given in the lower part of Tab. 4.1. Since we focus on
understanding the fidelities of the Bloch sequence, we idealize the double Bragg interaction
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Figure 4.6: Fidelity of one Bloch oscillation (BO) in the twin lattice for different DBD
splittings. Experimental data (symbols) in (a) are identical to Fig. 4.5. In (b) and (c) the
initial DBD sequence produces an initial splitting of ±4 ℏk and ±6 ℏk, respectively. The
theoretical simulations (F num

±n ℏk in Eq. (4.71), lines) largely reproduce the measured data,
assuming an additional standing lattice of depth 0.37 V0 (see Eq. (4.68) with σpol = 0.2688)
due to polarization errors. The losses caused by the imperfections decrease with a larger
initial splitting ∆p and from (a) to (c) as the detuning from the standing lattice increases.
The parameters for the 1D GPE simulations of the Bloch sequence are presented in Tab 4.1.
Figure adapted from M. Gebbe et al., Nat. Comm. 12(1):2544 (Ref. [96]), CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/.

neglecting effects such as velocity selectivity or off-resonant couplings (see Chapter 2 for
single Bragg diffraction or, e.g., Ref. [134] for DBD specifically). In this sense, we describe
DBD realizing the initial relative momentum ∆pDBD at the start of the sequence by creating
an ideal superposition of counterpropagating wave packets in position space. The atomic
state is multiplied with the phase factors 1√

2
e±iφDBD (including normalization) providing the

constituents of the superposition, where φDBD = ∆pDBD ŷ/2ℏ.
First of all, the simulated data in Fig. 4.5 show that an ideal twin lattice, i.e., σpol = 0,

cannot reproduce the features of the experiment. We obtain the numerical fidelity by inte-
grating the density of the final wave function over the momentum regions of the two output
ports,

F num
±n ℏk =

∣∣∣⟨ψout
ideal|ψout

num⟩
∣∣∣2

=

∫ ℏk/2

−ℏk/2
dp |ψ̃out

num(−n ℏk + p)| 2 +
∫ ℏk/2

−ℏk/2
dp |ψ̃out

num(n ℏk + p)| 2,
(4.71)

where we have used the Fourier transformation,

ψ̃out
num(p) =

1√
2πℏ

∫ ∞

−∞
dx exp(−ipx/ℏ) ψout

num(x, tfinal), (4.72)

https://creativecommons.org/licenses/by/4.0/


142 Chapter 4. Atom Interferometry in a Twin Lattice

to obtain the momentum representation of the wave function after the end of the lattice
sequence, ψout

num(x, tfinal). In fact, the visible losses are almost identical to the ones of the
individual lattices. However, we demonstrate in Fig. 4.6(a) that by adding a standing lat-
tice of 0.37V0 depth the simulated curves agree with the experimental data. By effectively
changing the relative orientation of the polarization vectors, we have used the strength of
the undesired contributions to the dipole potential according to Eq. (4.68) as a fit param-
eter and obtained the best match with σpol = 0.2688, which is a plausible assumption for
the experimental setup. Polarization measurements show that the optical components, in
particular the vacuum windows, degrade the polarization quality resulting in an extinction
ratio of less than 20dB and a mismatch of several degrees from perfect orthogonality (see
Sec. 3 in Ref. [208] for more details). Hence, the losses shown in Fig. 4.6(a) mainly result
from an imperfect polarization of the light fields giving rise to a spurious standing lattice
potential [cf. Eq. (4.68)].

Fortunately, these losses can be overcome by increasing the initial momentum splitting
of the BEC corresponding to a larger detuning to the standing wave. This becomes clear
when comparing the results in Fig. 4.6(a) to the other panels, where we have prepared a
superposition of symmetric momentum states, ±4 ℏk (b) and ±6 ℏk (c). To this end, the
experiment uses an initial first-order DBD pulse and in addition a respective number of
consecutive pulses before a momentum of ±2 ℏk is imparted via BO. Our results clearly
confirm that the importance of the perturbative potential diminishes for larger initial sep-
arations. While the fidelities in Fig. 4.6(b) still feature local optima, in Fig. 4.6(c) they
follow the predictions of LZ theory and equal almost a hundred percent for sufficiently
deep lattices. In consequence, we start our interferometers with a beam splitter creating a
superposition of ±4 ℏk [as in Fig. 4.6(b)], which represents the best trade-off between the
losses caused by parasitic standing waves and the lower efficiency of Bragg processes.

4.4.3 Twin-lattice Interferometer

The twin-lattice interferometer scheme realized in the QUANTUS-1 experiment is depicted
in Fig. 4.7. Table 4.2 includes the most relevant parameters for all realizations sharing a
common total duration of 2T = 12.1 ms. As the figure illustrates, the temporal sequence of
DBD processes and BO is controlled via the power of the lattice laser and the frequency
difference δ(t). Ideally, the center-of-mass motion of the atoms follows the space-time
trajectories shown for momentum separations ∆p = (24, 128, 208, 408) ℏk. After preparing
the BEC, the twin lattice is pulsed to induce two successive first-order DBD processes
so that the BEC is split into two wave packets with a momentum separation of ±4 ℏk.
Thanks to the use of delta-kick collimated BECs, the experiment achieves a transfer fidelity
of 98.8 % per recoil in these processes. By linearly increasing the lattice depth V0 within
tload = 200 µs and adjusting δ(t) to match the mean velocities of the atomic clouds, the
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Parameter Symbol Value

State preparation
Atom number N ∼1.1 · 104

Scattering length (s-wave) ascat 5.272 nm
Initial trap frequencies ωx, ωy, ωz 2π (35.1, 185, 184) Hz
Magnetic lens frequencies ωDKC

x , ωDKC
y , ωDKC

z 2π (35.1, 112.8, 128.5) Hz
Free expansion before lens tfree,I 6 ms
Magnetic lens duration tlens 280 µs
Free expansion after lens tfree,II 10.72 ms
Time step (free expansion) dtfree 10 µs
Time step (lens) dtlens 1 µs

Bloch acceleration
Laser wavelength λL 780.2412 nm
Harmonic trap frequencies ωx, ωy, ωz 2π (0.48, 0, 0.48) Hz
(Un)loading time t(un)load 100 µs
Acceleration time tacc (100, 200, 400, 800) µs
Time of flight tTOF 10 µs
Time step dt 5 · 10−3 · λL/

√
40 Er/M

Table 4.1: Input parameters for the GPE simulation. The upper part shows the pa-
rameters for the three-dimensional simulation of the input state via the GPE in Eq. (4.9),
the lower part contains the parameters of the beam splitter sequences using the effective
one-dimensional GPE (4.14). The time step dt is chosen to be sufficiently small compared
to the frequency of a harmonic oscillator approximating an optical lattice well of depth
V0 = 20 Er. The time-of-flight tTOF after unloading ensures that the lattice potential has
vanished when calculating the fidelity.

BECs are efficiently loaded into the optical lattices. Each wave packet is accelerated by
its copropagating lattice via BO for tacc = 2 ms and gains additional momentum of up
to 200 ℏk. For the release from the lattices, the intensity is lowered again linearly within
tunload = 200 µs. In this way, fidelities of up to 99.93 % per recoil for BO can be obtained.
The accelerated wave packets evolve freely for tfree = 200 µs, before their motion is first
slowed down via BO to ±4 ℏk, then inverted via successive DBD. This marks the transition
between the first and the second part of the interferometer and afterwards the atoms are
accelerated again via BO in opposite directions as before. After another sequence of free
evolution for 200 µs, the velocities of the wave packets are reduced to ±4 ℏk to recombine
them via the last DBD process resulting in three output ports with mean momenta of ±2 ℏk
and 0 ℏk (cf. Sec. 4.3.2) as shown by the absorption images at the bottom of Fig. 4.7.
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Figure 4.7: Twin-lattice interferometer scheme. Space-time trajectories of the wave
packets travelling along the interferometer arms depicted for momentum transfers of ∆p =
(24, 128, 208, 408) ℏk (black, blue, red, green) with distances given relative to the center of
the atom chip. Below: Interferometer output ports for 48 ℏk and 408 ℏk. Right: Temporal
sequence of the twin-lattice laser power and the frequency difference δ(t) in the interfe-
rometer (neither to scale). DBD is driven by Gaussian-shaped pulses and BO use linear
frequency ramps of 2 ms (for ∆p ≥ 128 ℏk the ramps include two steps, see Ref. [96]
for details) in between 200 µs of loading and unloading time. For the contrast analysis,
the free evolution time in the second half is modified by δT with respect to the first half.
Figure adapted from M. Gebbe et al., Nat. Comm. 12(1):2544 (Ref. [96]), CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/.

The signal of the twin-lattice interferometer is defined as the normalized number of atoms
detected in the output ports µaBN0 ℏk/N and µbB (N2 ℏk + N−2 ℏk)/N, where we have used
the notation introduced in Chapter 3. Here, NBN−2 ℏk + N2 ℏk + N0 ℏk is the total number of
atoms recorded in the ports with average momenta ±2 ℏk as well as 0 ℏk.

Estimated Phase Sensitivity

Before analyzing the measured data in detail to draw conclusions about the coherence prop-
erties of the atomic ensemble after it has been subjected to the twin-lattice sequence, it is
worth considering the potential sensitivity gains that result from this geometry in terms of
a relative phase between the arms ϕ. We have discussed in the previous chapter that the
signal of the two-mode MZ interferometer realized by nth-order single-Bragg pulses has a

https://creativecommons.org/licenses/by/4.0/
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Parameter Symbol Value

DBD lattice depth V0 3−4 Er

DBD pulse width τ 37.5 µs
DBD beam splitter sequence tBS 600 µs
DBD mirror sequence tM 900 µs
Bloch lattice depth V0(∆p) 0−25.3 Er

Lattice (un)loading time t(un)load 200 µs
Acceleration time tacc 2 ms
Free propagation time tfree 200 µs
Interrogation time 2T 12.1 ms
Time of flight tTOF 8 ms

Table 4.2: Twin-lattice sequence parameters. The DBD sequences and timings are iden-
tical for all momentum separations ∆p = (8, 24, 48, 88, 128, 208, 308, 408) ℏk. The laser
intensities and thus the Bloch lattice depths V0(∆p) are varied to maintain high BO fideli-
ties as the acceleration is increased. The experimentally determined values for V0(∆p) are
plotted in Fig. 4.8(c).

sinusoidal dependence on ϕ [see Eq.(3.2)],

P(ϕ) = P0 + A cos (ϕ). (4.73)

In this equation, we have absorbed the Bragg order n in the relative phase ϕ. If we as-
sume that the signal is given by linear gravitational acceleration g and neglect effects of
finite pulse durations the phase takes the form ϕ = n 2kgT 2. Consequently, transferring
momentum to both arms simultaneously, e.g., via DBD will double the sensitivity,

ϕ = 2n 2kgT 2. (4.74)

The twin-lattice scheme combines sequential DBD with the acceleration in Bloch lat-
tices. Sequential momentum kicks as used in Refs. [97,98] further increase the momentum
separation and thereby the sensitivity of the device. If in a double diffraction scheme a
number of np (infinitely short) pulses separated by a finite time tsep are used to further
increase the separation symmetrically, then the sensitivity scales as [214]

ϕ = 2n(np + 1) 2kgT (T − nptsep). (4.75)

Because the mean velocity of the atoms only changes during the (instantaneous) pulses the
phase still scales quadratically with the effective interrogation time, which is now modified
by the waiting time tsep in between the sequential pulses. However, when Bloch sequences
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are included, this is no longer the case [57,215], since the relative velocity changes linearly
with time under the assumption of constant acceleration aL as in Fig. 4.7, leading to a
quadratic separation of the space-time trajectories ∆yL(t). Using semi-classical arguments
one can show that in this case the relative phase is proportional to the space-time area
enclosed by the interferometer arms ϕ ∝ A, withA =

∫ 2T

0
∆yL(t) dt [57].

While this is not true for an arbitrary time dependence aL(t) [216], this result enables
us to make a statement about the scaling of the phase sensitivity of the twin-lattice in-
terferometer with respect to an external acceleration aext

7. Assuming that the time in be-
tween sequential Bragg pulses is sufficiently small, justifying T − tsep ≈T (see Tab. 4.2), we
find [215]

ϕ = 2
(
n + NB

tacc + tfree

T

)
2k · aextT 2. (4.76)

In order to see the cubic scaling with T we need to assume a constant acceleration aL

during the time tacc = NBTB, which we can divide into NB intervals with the length of the
Bloch period in Eq. (4.60). Inserting NB into the above equation we obtain, in the limit
t(un)load, tfree≪ tacc → T/2, the scaling

ϕ = 4nk · aextT 2 +
k · aextT 3

2TB
. (4.77)

This shows that the twin-lattice geometry forms a combination of the MZ interferometer
and an interferometer with a T 3 scaling as long as TB is constant (cf. Refs. [215, 216]).

4.4.4 Experimental Contrast Analysis

Atom interferometers featuring wave packet separations of hundreds or even thousands of
photon recoils require not just LMT beam splitting techniques, which exhibit very good
transfer fidelities per ℏk. A key question is, whether these operations maintain the co-
herence of the atomic ensemble, which is essential for a phase-sensitive atom interfe-
rometer. If, as a result of coherent manipulation by means of atomic optics, the popu-
lation at the outputs of the interferometer exhibits a functional dependence in the form
P(ϕ) = P0 + A cos (ϕ) = P0 (1+C cos (ϕ)), we can introduce the fringe contrast C B A/P0,
which serves as a measure of how well the variation of the signal due to a change in
phase ϕ can be distinguished from ϕ-independent noise affecting the measurement. A
non-vanishing contrast is therefore direct evidence of the sensitivity of the interferome-
ter to phase shifts. We have seen in Chapter 3, the contrast can be inferred by scanning
the phase ϕ in the experiment and recording data µa(b)|ϕ in order to fit an estimator P(ϕ)

7In contrast to the interferometers discussed in Chapter 3 the horizontal alignment makes the twin-lattice
interferometer insensitive to a gravitational acceleration. However, such a setup is sensitive to tilts [94, 217]
or can be used as a gyroscope [122, 218].
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to the measurement data. However, this is not possible in the presence of phase noise in
excess of 2π due to a lack of fringe visibility. If ϕ is subject to shot-to-shot fluctuations,
e.g., caused by vibrations of the experimental platform transmitted onto the retroreflective
mirror in Fig. 4.1(a) the phase is practically randomized [52]. Fortunately, thanks to the
underlying functional dependence of the measurement statistics on ϕ, it is still possible to
evaluate the contrast by statistical means [103, 124]. In other words, while the visibility of
stable fringes is a sufficient condition for the coherence of the atom interferometer, it is not
a necessary one.
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Figure 4.8: Twin-lattice interferometer contrast data. (a) Experimental contrast in de-
pendence of momentum transfer ∆p for a lattice laser with 3.75 mm beam waist. The
analysis of the experimental data is described in Sec. 5 of Ref. [208] including a definition
of the error bars that lie below the marker size for most of the data points. (b) Relative atom
number N/N0 measured in the output ports normalized to the DBD interferometer (black
circles) with N0BN(∆p= 8 ℏk) and considering an absolute error of 0.05. Also, calcu-
lated spontaneous emission decay Nsp/N0 (blue squares) with confidence intervals given
by the errors in N/N0 and V0. (c) Lattice depth V0 for different separations ∆p with an
assumed relative error of 10 %. Atom number and lattice depth serve as input parameters
for our contrast simulation. Figure adapted from M. Gebbe et al., Nat. Comm. 12(1):2544
(Ref. [96]), CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

In the QUANTUS-1 experiment, vibrational noise as large as 10−2 m s−2 Hz−1/2 [219]
essentially randomizes the phase even for the smallest interferometer with separation ∆p =
8 ℏk [208]. Nonetheless, it is possible to evaluate the contrast if the signal depends on ϕ ac-
cording to Eq. (4.73). Assuming the phase noise to be uniformly distributed translates into
randomized measurement outcomes, the variance of which will depend on C. Specifically,
if ∆µa(b) denotes the standard deviation of the measurement data and we assume the offset
P0 to be the same from shot to shot, we can write C = 2

√
2∆µa(b) [103, 124, 219]. A more

https://creativecommons.org/licenses/by/4.0/
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complete characterization of the coherence of the atom interferometer can be obtained by
introducing a shift in time T +δT in the second half of the interferometer as we show on the
right-hand side of Fig. 4.7. Such an asymmetry introduces a spatial separation between the
atomic clouds ∆y = ∆p

m δT , which depends on the timing asymmetry and the differential ve-
locity of the two clouds. As the overlap between the envelopes of the superpositions during
the recombination pulse is reduced and the interferometer no longer closes, the fluctuations
∆µa(b)(δT ) decay and so does the contrast [220], which we will discuss in more detail below
in Sec. 4.6.2. To analyze the contrast in the QUANTUS-1 experiment, measurement data
µa(b) for different values δT are considered, which allow not only to determine the contrast
of the closed interferometer C(δT = 0) shown in Fig. 4.8(a) as function of the momen-
tum separation ∆p, but also to provide information about the coherence length of the BEC
source [124, 221]. For more information on the details of the experimental contrast mea-
surement, we kindly refer the reader to Sec. 5 of the dissertation of M. Gebbe in Ref. [208],
who performed this study as primary researcher.

The following sections are devoted to the question of whether the visible contrast loss
towards larger separations ∆p in Fig. 4.8(a) is fundamentally connected to the twin-lattice
scheme or rather due to the technical limitations of the current experimental setup shown
in Fig. 4.4.

4.5 Contrast Model: Atom Loss

Previous experiments suggest that atom loss is one of the main factors limiting the con-
trast in LMT atom interferometers [97]. Even if the efficiency per photon recoil is high
(see Sec. 4.4.3), the losses can be expected to grow exponentially with the number of tran-
sitions and the contrast is eventually lost at large momentum separation as the fraction
of atoms coherently oscillating with the phase ϕ approaches zero. However, in case of
the QUANTUS-1 experiment comparison between the detected total atom number for the
Bragg-Bloch interferometers, N(∆p), and the DBD interferometer, N0 B N(∆p = 8 ℏk), in
Fig. 4.8(b) demonstrates that at the end of the largest twin-lattice interferometer a fraction
of N(408 ℏk)/N0 = 35 % remains. Thus, the atom loss is not sufficient to explain the con-
trast decay in Fig. 4.8(a). In addition, detecting relative atom numbers not only makes the
measurement less susceptible to fluctuations of the initial atom number as explained in the
previous section, but also makes the contrast more robust to the removal of atoms from the
interferometer as long as technical noise can be neglected.

Therefore, it seems most likely that the twin-lattice sequences cause a background
of incoherent atoms, Nincoh, whose relative fraction increases as the total atom number,
N(∆p) = Ncoh(∆p) + Nincoh(∆p), decreases according to Fig. 4.8(b). Since all interferome-
ters rely on the same DBD sequence, we conclude that this fraction originates imperfection
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of the DBD beam splitters (see Sec. 5.2.1 in Ref. [208]). These initial losses may cause a
spurious fraction of atoms with average momentum 0 ℏk to overlap with the main interfe-
rometer arms at the time of the final pulse without having taken part in the interferometer.
If we assume that the final beam splitter distributes the incoherent fraction equally among
the output ports, we find for the extreme values with respect to ϕ (here for port a):

µmin = min
ϕ∈]0,2π]

µa(ϕ) =
Nincoh/2

N
and µmax = max

ϕ∈]0,2π]
µa(ϕ) =

Ncoh + Nincoh/2
N

. (4.78)

Hence, we can express the contrast of the two-mode signal (4.73) as

C(∆p) =
Ncoh(∆p)

Ncoh(∆p) + Nincoh(∆p)
=

N(∆p) − Nincoh(∆p)
N(∆p)

. (4.79)

In this equation we have used that contrast can be expressed in terms of the difference
between the maximum and the minimum signal C = (µmax − µmin)/(µmax + µmin). This is
justified because the use of first-order DBD pulses suppresses undesired couplings. Ac-
cordingly, previous phase-sensitive measurements with an identical beam splitter setup
discussed in Ref. [94] did not provide evidence for significant contributions from parasitic
interferometry paths to the interferometer signal.

Our goal is to formulate a model that explains that contrast is lost when the Bloch
sequences primarily reduce the number of coherent atoms, Ncoh. To do this, we combine
Eq. (4.79) with the experimentally determined atom numbers in Fig. 4.8(b), making the
following assumptions:

Assumption (i): Contrast of the DBD Interferometer

The contrast of the DBD interferometer, C(8 ℏk) = 0.7059 ± 0.022 [see Fig. 4.8(a)], is
reduced primarily due to the fraction of incoherent atoms, Nincoh

8. In this case, we can
solve Eq. (4.79) for Nincoh and insert the experimentally determined values for the contrast
C(8 ℏk) and number N0 in Fig. 4.8,

Nincoh(8 ℏk) = N0[1 −C(8 ℏk)]. (4.80)

Assumption (ii): Spontaneous Emission

Spontaneous scattering affects both Nincoh and Ncoh equally and therefore does not impact
the contrast according to Eq. (4.79). We justify this assumption by estimating the rate of
spontaneous decay for both fractions induced by the twin-lattice laser intensities. Once
again, we simplify this de facto three-dimensional problem for the purpose of this calcu-
lation by assuming a homogeneous effective lattice depths V0 as per Fig. 4.8(c) across the

8Again, this is only true when the DBD interferometer does not feature parasitic interferometers to a
significant degree, which would alter the signal in Eq. (4.73) (see Chapter 3).
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cloud based on the large beam waist∼ 3.75 mm compared to the radii of the BEC being in
the order of tens of µm. Thus, we only need to adapt the calculations done in Sec. 4.3.4
to account for the potential in Eq. (4.68). First, we evaluate the scattering rate for an atom
copropagating with one of the lattices,

Ṽ(ŷ, t) = V0

[
cos2 (kŷ) + cos2 (k(ŷ + 2yL(t)))

+
σpol

1 − σpol
2 cos (kŷ) cos (k(ŷ + 2yL(t)))

]
.

(4.81)

Here, we have introduced a shift in position, ŷ → ŷ + yL(t), consistent with the center-
of-mass velocity of the wave packet, vBEC(t) = +vL(t) = δ(t)/k [cf. Eq. (4.46a)]. In a
blue-detuned potential, the first term associated with the copropagating lattice averages to
⟨cos2 (kŷ)⟩ = 1

2

√
Er/V0 (see Sec. 4.3.4). To evaluate the time-dependent cos-functions we

can compare the time scale relevant for the shift in position yL(t) = δ(t)/k to the scattering
rate Γsp,blue (4.65), which is much smaller in the QUANTUS-1 experiment because of the
100 GHz detuning from resonance,

Γsp,blue ∝ Γnat

|∆| ωr≪ωr < δ(t). (4.82)

Hence, the temporal averages for the other terms read

⟨cos2 (k(ŷ + 2yL(t)))⟩ ≈ 1
2

and ⟨cos (kŷ) cos (kŷ + 2δt)⟩ ≈ 0. (4.83)

Inserting these results into Eq. (4.63) yields the total emission rate for an atom copropagat-
ing with one of the lattices

Γtwin(V0) =
Γnat

|∆|
V0

ℏ

[
1

2
√

V0/Er
+

1
2

]
. (4.84)

Using the form of the parasitic term in Eq. (4.69), we find a very similar result for an atom
that has been lost during the first beam splitting pulse with vBEC = 0 ℏk,

Γ0ℏk(V0) =
Γnat

|∆|
V0

ℏ

[
1 + 2

σpol

1 − σpol

(
1

2
√

V0/Er
− 1

2

)]
. (4.85)

Comparing both scattering rates and assuming σpol/(1 − σpol)≈ 0.37 (see Sec. 4.4.2), we
find that both scattering rates differ only by a few percent with Γ0 ℏk ⪆ Γtwin, confirming our
initial hypothesis that spontaneous emission affects all classes of atoms to a similar extent.
Therefore, in the following we consider only a single scattering rate Γtwin for all atoms and
insert this rate into Eq. (4.62). The surviving fraction of atoms after being exposed to the
twin lattice for a time ttwin thereby reads,

Nsp(∆p) B N0 · exp (−Γtwin(V0) · ttwin) . (4.86)
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We plot the ratio Nsp/N0 in Fig. 4.8(b) including the 10 % uncertainty in the experimentally
determined peak lattice depth, V0. Assuming Nincoh(∆p) is reduced only by spontaneous
scattering, we can also use Eq. (4.86) to estimate the incoherent fraction of all other twin
lattice interferometers when combined with Eq. (4.80),

Nincoh(∆p) = Nincoh(8 ℏk) · exp (−Γtwin(V0) · ttwin) = Nsp(∆p)[1 −C(8 ℏk)]. (4.87)

Assumption (iii): LZ Losses

Non-adiabatic LZ losses during the Bloch sequences remove coherent atoms from the inter-
ferometer and therefore reduce Ncoh(∆p), resulting in a loss of contrast. Atoms lost through
LZ transitions are expected to be spatially well separated from the output ports and thus
are unlikely to couple back into the interferometer. Meanwhile, it is reasonable to assume
that atoms Nincoh(∆p) do not perform BO due to their velocity detuning (see Sec. 4.4.2)
and hence are only affected by spontaneous emission as described above. The combina-
tion of the above aspects allows us to give the estimated contrast (4.79) for all twin-lattice
interferometers,

CA(∆p) B
N(∆p) − Nincoh(∆p)

N(∆p)
= 1 − 1 −C(8 ℏk)

N(∆p)/Nsp(∆p)
. (4.88)

To evaluate this expression, one must input the experimentally determined atom numbers,
N(∆p), the contrast of the DBD interferometer, C(8 ℏk), and the calculated spontaneous
emission losses, Nsp(∆p). All of these quantities are plotted in Figs. 4.8(a) and (b).

Looking at the data for the contrast in Fig. 4.8(a) and for N/N0 it is clear that the model
in Eq. (4.88) by itself cannot explain the functional dependence of C on the momentum
separation ∆p, which features a steep initial decline followed by an almost asymptotic
profile for ∆p> 88 ℏk. Moreover, our model treats spontaneous emission losses in the
twin-lattice interferometer as a mere loss channel. This is based on the assumption that the
vast majority of spontaneously scattered atoms are separated from the output ports due to
the use of delta-kick collimated BECs with momentum widths far below the photon recoil
(see Sec. 5.2.1 in Ref. [208]). Nevertheless, it would certainly be fruitful to investigate
more thoroughly the consequences of spontaneous emission for the properties of an atom
interferometer using BO beyond this simple contrast model. Unfortunately, this is beyond
the scope of this thesis.

4.6 Contrast Model: Light Field

A second potential source for a loss of contrast is the light field of the twin-lattice lasers.
Previous experiments have demonstrated that realistic electric fields, which deviate from
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the idealized case of a homogeneous plane wave, can have significant effects on the per-
formance of atom interferometers [85, 86, 118, 179, 222]. The most convincing evidence
for this is, on the one hand, the contrast improvements in LMT atom interferometers with
large separations made possible by the implementation of a so-called "ac-Stark compensa-
tion" [118, 124]. This technique suppresses absolute light shifts caused by intensity varia-
tions that induce local changes to the dipole potential. On the other hand, it is very likely
that the recent realization of atomic interferometers with unprecedented coherence times
of tens of seconds was made possible in large part by optical mode filtering of the cavity
environment [87, 88].

The QUANTUS-1 experiment operates in free space, and the space-time trajectories in
Fig. 4.7 show that the larger the momentum separation, the larger the region of the light
field probed by the interferometer arms. It can be assumed that this will make the inter-
ferometers increasingly susceptible to perturbations of the electric field. At the same time,
Fig. 4.8(c) highlights that to suppress LZ losses during the Bloch ramps in the experiment,
the average lattice depth V0 is increased with ∆p, which also increases the strength of these
perturbations.

According to our explanation in Sec. 3.1, the wave form P(ϕ) in Eq. (4.73) typically es-
tablishes a functional dependence between ϕ and the first momentum of the measurement
statistics µ̄. Consequently, C B A/P0 ≤ 1 represents the contrast after averaging over the
atomic ensemble during the measurement process. This means that, in principle, contrast
is lost in two different ways: First, due to a reduction in the single-particle contrast, e.g.,
caused by an unbalanced beam splitter (i.e., deviation from a 50/50 ratio), due to sponta-
neous emission [223] or as a result of an open interferometer [220]. Second, dephasing of
the atomic ensemble can decrease the average fringe contrast, which has been attributed
in the past to the deformation of realistic laser wavefronts [66–68] as well as distortions
of the intensity profile of the laser [85, 86]. Both mechanisms play a crucial role in the
formulation of an empirical model for the contrast loss reported for the twin-lattice inter-
ferometer realized in the QUANTUS-1 experiment. Before doing so, however, we first
establish a more formal framework that captures both contributions to the contrast on atom
interferometers.

4.6.1 Single Particle Contrast

Let |ψout⟩ ≡ |ψout(t)⟩ be the quantum state after the final beam splitter, t> 2T , at the output
of the interferometer as depicted in Fig. 4.7. In the previous chapter, we have expanded
this state in a basis of spatial trajectories corresponding to sets of momentum states, which
was instrumental in defining a scattering matrix to describe multi-port, multi-path atom
interferometers (cf. Sec. 3.3). In the idealized case of a lossless two-mode interferometer,
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it is often useful to express the state |ψout⟩ as a superposition of the atomic wave packet
exiting the interferometer via the ports a and b9,

|ψout⟩ = 1√
2

( |ψout
a ⟩ + |ψout

b ⟩). (4.89)

If there are no losses, probability is conserved, ⟨ψout|ψout⟩ = 1, and we find

1 = ⟨ψout|ψout⟩ = 1
2
⟨ψout

a |ψout
a ⟩ +

1
2
⟨ψout

b |ψout
b ⟩ C µa + µb, (4.90)

where we have introduced the probability for a single particle to be detected in ports a and
b, µa(b) = ⟨ψout

a(b)|ψout
a(b)⟩ /2. It is convenient to interpret the quantum state in either output port

as superpositions of wave packets travelling along the different arms of the interferometer
(labeled ’left’ and ’right’),

|ψout
a ⟩ =

1√
2

( |ψleft
a ⟩ + |ψright

a ⟩). (4.91)

This interpretation was successfully applied in the past to study the physics of conjugate
Ramsey-Bordé interferometers [118] as well as the features of open interferometers [220].
In Eq. (4.91), we have labeled the two arms depending on whether they propagate in nega-
tive ("left") or positive ("right") y-direction as can be seen in Fig. 4.7. Using this convention
and assuming ⟨ψleft

a |ψleft
a ⟩ = 1 = ⟨ψright

a |ψright
a ⟩, the probability to detect an atom in port a

(for any MZ type atom interferometer) becomes

µa =
1
2
⟨ψout

a |ψout
a ⟩ =

1
4
⟨ψright

a |ψright
a ⟩ + 1

4
⟨ψleft

b |ψleft
b ⟩ +

1
2

Re
{
⟨ψleft

a |ψright
a ⟩

}
=

1
2

(
1 + Re

{
⟨ψleft

a |ψright
a ⟩

})
.

(4.92)

The last equation shows that the probability of detecting a single particle in port a is deter-
mined by the overlap between the wave packets travelling along the different trajectories.
In particular, the overlap is a complex number, ⟨ψleft

a |ψright
a ⟩ = ⟨ψright

a |ψleft
a ⟩∗ ∈ C, which

means that we can write

⟨ψleft
a |ψright

a ⟩ ≡ C0 eiΦ. (4.93)

Here, we have introduced the single-particle contrast and the relative phase between the
two wave packets travelling along the two different arms of the interferometer

C0 ≡ | ⟨ψleft
a |ψright

a ⟩| , (4.94a)

Φ ≡ Im

ln
 ⟨ψleft

a |ψright
a ⟩

| ⟨ψleft
a |ψright

a ⟩|

. (4.94b)

9We remind the reader that due to the fact that the twin-lattice interferometer is fundamentally a double
diffraction interferometer, the two ports are composed of a single inner µa = N0 ℏk/N and the two outer ports
µb B (N2 ℏk + N−2 ℏk)/N shown in Fig. 4.7.
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In combination with Eq.(4.92), we can express the probability of a single particle to exit
the interferometer in port a in the familiar form

µa =
1
2

(1 +C0 cos (Φ)). (4.95)

4.6.2 Contrast Loss in Open Interferometers

Our goal is to analyze the reduction of C0 in the case of imperfect closure of the interfero-
meter. Contrast may be lost when the trajectories of the interferometer arms do not overlap
perfectly in phase space at the time of the last pulse, t = 2T . A detailed analysis of open
interferometers due to gravity gradients was presented by the authors A. Roura et al. [220].
While we only give a brief overview of their main results as part of our contrast model,
we recommend the reader to refer to this work and the related PhD thesis of one of the
co-authors W. Zeller in Ref. [224] for a more detailed account.

Formally, a relative displacement (δx, δp) in phase space between the center-of-mass
coordinates of two otherwise identical wave packets in port a results in a phase shift poten-
tially reducing C0,

C0 = | ⟨ψleft
a |ψright

a ⟩| = | ⟨ψ|ei(δpx̂−δxp̂)/ℏ|ψ⟩| ≤ 1. (4.96)

Such a displacement can originate, e.g., due to an asymmetry of the interferometer by
introducing a timing delay δT of the final beam splitter. This leads to a position offset,
δx = ∆vδT , where ∆v is the relative velocity of the wave packets during the time δT . To
provide a more intuitive understanding of how C0 can be affected by the relative phase in
Eq. (4.96), it is useful to write the wave packets in position representation:

ψleft
a (x, t) = ⟨x|ψleft

a ⟩ and ψ
right
a (x, t) = ⟨x|ψright

a ⟩ . (4.97)

In this representation, the single-particle contrast takes the form of an integral,

C0 =

∣∣∣∣∣∫ d3x exp
( i
ℏ
δp · x

)
ψ∗(x + δx/2, t) ψ(x − δx/2, t)

∣∣∣∣∣, (4.98)

where we have displaced both wave packets equidistantly from the origin. At first glance,
it is obvious that contrast will be lost if the spatial overlap between the wave packets at the
time of the last beam splitting pulse vanishes. This effect is exploited in atom interferom-
etry experiments performing contrast measurements in the presence of inertial phase noise
greater than 2π, as we have explained in Sec. (4.4.4). Assuming otherwise perfect over-
lap of the interferometer arms, the delay δT in the second half of the twin-lattice scheme
(cf. the right-hand side of Fig. 4.7) causes an offset in the direction of the beam splitter,
δy = ∆pδT/M, the magnitude of which depends on the momentum separation ∆p. Accord-
ing to Eq. (4.98), this offset has to be compared to the spatial extent of the wave packets,
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which in the case of the QUANTUS-1 experiment is determined by the Thomas-Fermi radii
of the BEC (4.21). Varying δT , one can record the controlled decay of C0 as evidence for
the coherence of the ensemble, although it is not possible to observe stable fringes of the
form of Eq.(4.95) [124, 221].

However, we focus on relating the contrast loss for increasing ∆p and δT = 0 shown
in Fig. 4.8(a) to the phase term in Eq. (4.98). To this end, we study the expression for C0

after a sufficiently long time of flight after the final beam splitter, tTOF, so that the output
ports are spatially well separated and the clouds have freely expanded. In this limit, the
expression in Eq. (4.98) simplifies to [220]

C0 ≈
∣∣∣∣∣∣∣
∫

d3x exp
 i
ℏ

(
δp − M

tTOF
δx

)T

· x
 |ψ(x, tTOF)| 2

∣∣∣∣∣∣∣. (4.99)

Thus, a displacement in phase space translates into spatially dependent interference fringes
[59] characterized by the wave vector

2π
λfr

n̂ =
1
ℏ

(δp − M
tTOF

δx). (4.100)

From Eq. (4.99) it can be deduced that contrast is lost when the fringe spacing is signifi-
cantly smaller than the spatial extent of the atomic cloud. In this case, these fringes usually
cannot be resolved during detection, and the contrast is "washed out" as performing the
integral averages over the spatial pattern. In the next sections, we examine how intensity
fluctuation of the twin-lattice laser can cause the interferometer to fail to close properly at
the time of the recombination pulse t = 2T , and how C0 is further reduced as a result of
phase variations across the ensemble.

4.6.3 Contrast Loss due to Dephasing

During the discussion of the signal of multi-port MZ interferometers in Sec. 3.4.2, we
have already mentioned that fringe visibility is lost when the spurious interferometry arms
are sufficiently populated and when their contributions to the signal are out of phase (cf.
Sec. 5 in Ref. [147]). Similarly, the contrast of a two-mode interferometer can be lost
due to dephasing across the atomic ensemble. Experiments realizing Ramsey-Bordé atom
interferometers with BO have shown that interaction with inhomogeneous laser potentials
can lead to large phase variations over time, depending on how the atomic cloud moves and
expands in the light field [85–88]. Such phases can be caused by light shifts [88], random
velocity changes due to spontaneous emission [85,86,223], or the effects of speckle patterns
on the laser beam [85, 86], and result in a loss of contrast when averaging over the phase
space distribution of the cloud during detection.
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To model the effect of an inhomogeneous phase evolution on the signal, we simply add
a parameter-dependent phase shift to the phase in Eq. (4.95) following Refs. [225, 226],

Φ = ϕ + δϕ(λ). (4.101)

In this case, the probability in Eq. (4.95) depends on the parameter, i.e., µa = µa(λ), and as-
suming that the measurement process requires averaging over the (for now) arbitrary prob-
ability distribution, 1 =

∫
P(λ) dλ, we find the average signal using Eqs. (4.92) and (4.93):

µ̄a =

∫
P(λ) µa(λ) dλ =

1
2

[∫
P(λ) dλ +

∫
P(λ) Re

{
C0 eiϕ+δϕ(λ)

}
dλ

]
=

1
2

[
1 + Re

{
eiϕ

∫
P(λ) C0eiδϕ(λ) dλ

}]
,

µ̄a =
1
2

[
1 + C̄ Re

{
ei(ϕ+δ̄ϕ)

}]
=

1
2

[
1 + C̄ cos (ϕ + δ̄ϕ)

]
. (4.102)

In the last line of this equation, we have introduced the average contrast and average phase
shift

C̄eiδ̄ϕ ≡
∫
P(λ) C0eiδϕ(λ) dλ, (4.103)

where the contrast is simply defined by

C̄ ≡
∣∣∣∣∣∫ P(λ)C0 ei(ϕ+δϕ(λ)) dλ

∣∣∣∣∣ = C0

∣∣∣∣∣∫ P(λ) eiδϕ(λ) dλ
∣∣∣∣∣

= C0

[(∫
P(λ) eiδϕ(λ) dλ

) (∫
P(λ) e−iδϕ(λ) dλ

)] 1
2

C̄ = C0

(∫ P(λ) cos (δϕ(λ)) dλ
)2

+

(∫
P(λ) sin (δϕ(λ)) dλ

)2 1
2

. (4.104)

In addition, we can define the average phase shift, δ̄ϕ, using the identities

C̄eiδ̄ϕ ≡
∫
P(λ)C0 ei(δϕ(λ)) dλ (4.105)

⇔ C̄(cos (δ̄ϕ) + i sin (δ̄ϕ)) ≡
∫
P(λ)C0 cos (δϕ(λ)) dλ + i

∫
P(λ)C0 sin (δϕ(λ)) dλ.

(4.106)

By comparing the coefficients, the following relationships can be determined

C̄ cos (δ̄ϕ) =
∫
P(λ)C0 cos (δϕ(λ)) dλ, (4.107)

C̄ sin (δ̄ϕ) =
∫
P(λ)C0 sin (δϕ(λ)) dλ, (4.108)
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the quotient of which yields

tan (δ̄ϕ) =
sin (δ̄ϕ)
cos (δ̄ϕ)

=

∫
P(λ) sin (δϕ(λ)) dλ∫
P(λ) cos (δϕ(λ)) dλ

. (4.109)

Assuming that the perturbative phase shift is small so that sin (δϕ(λ))≈ δϕ(λ), and assuming
that the probability distribution is symmetric, P(λ) = P(−λ), while the shift itself is an
asymmetric function, δϕ(λ) = −δϕ(−λ), with

(∫
P(λ) sin (δϕ(λ)) dλ

)2 ≈ 0, we find

C̄ ≈ C0

∫
P(λ) cos (δϕ(λ)) dλ. (4.110)

This expression has been used, e.g., in Refs. [85, 227] to characterize the exponential con-
trast decay due to random phase shifts δϕ = 2 keffδvT . In these cases, the velocity variations
δv were caused by speckle patterns on the laser beams and characterized by a Lorentzian
probability distribution P(δv). To model the contrast loss in the twin-lattice interferometer,
we combine the expression for the single-particle contrast in Eq. (4.99) with the result in
Eq. (4.110):

From a semiclassical point of view, our main idea is that we can interpret the center-of-
mass trajectories in Fig. 4.7 as representatives for ensembles of single-particle trajectories,
all of which have slightly different starting positions located within the finite spatial distri-
bution of the atomic cloud at the beginning of the interferometer. This motivates introduc-
ing the starting coordinates x0 = (x0, y0, z0) ∈ {x ∈ R3|0 ≤ |ψ(x, t = 0)| 2} determined by the
spatial probability distribution |ψ(x, t = 0)| 2. The contrast of the ensemble is then obtained
by averaging over the initial positions,

C =
∫

d3x0 |ψ(x0, t = 0)| 2C0(x0, t)

≈
∫

d3x0 |ψ(x0, t = 0)| 2
∣∣∣∣∣∣
∫

d3x exp
(

i
ℏ

(
δp(x0) − M

tTOF
δx(x0)

)
· x

)
|ψ(x, tTOF)| 2

∣∣∣∣∣∣.
(4.111)

Since we assume that the relative displacement between the two arms of the interferometer
depends on the initial starting position within the atomic cloud, (δx, δp)= (δx(x0), δp(x0)),
both |ψ(x0, t = 0)| 2 and |ψ(x, tTOF)| 2 determine the value of the integrals in Eq.(4.111). In
principle, the initial conditions of the trajectories additionally depend on the velocity distri-
bution of the atomic ensemble at the start of the interferometer. Conceptually, however, this
makes little difference and is therefore neglected to reduce the complexity of our model.

In the next section, we evaluate the contrast integral in Eq. (4.111) assuming that the
phase shifts are caused by dipole forces resulting from intensity fluctuations of the lattice
beam. Moreover, Eq. (4.109) implies that systematic phase shifts, δ̄ϕ, can also be a conse-
quence of the inhomogeneous phase shifts accumulated during the interrogation. In atom
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interferometry, such shifts occur mainly as a consequence of wavefront errors and are of-
ten discussed in the context of atom interferometers using laser cooled atoms due to the
large cloud sizes relative to the dimensions of the laser beams [66–68, 89]. In many of
these cases, the dephasing is the result of different parts of the atomic cloud interacting
with different parts of the phase fronts of the three-dimensional laser, either because the
cloud is expanding or because it is moving off-axis. In the QUANTUS-1 experiment, ef-
fects due to the finite curvature of the wavefronts or the Gouy phase of the Gaussian beam
used could possibly be exacerbated by the fact that the atomic cloud falls vertically through
the horizontally aligned beam and therefore samples a significant portion of the laser pro-
file off-axis (see Fig. 4.4). Conversely, because of its inherent symmetry, the twin-lattice
scheme should be inherently insensitive to phase fluctuations of the laser, and, to some ex-
tent, to imperfections of the laser profile, especially when a large and well-collimated beam
and a comparatively small atomic cloud with low expansion rates are used.

4.6.4 Distorted Light-field Model

To assess the impact of a distorted light field on the signal of the interferometer, we es-
timate contrast loss due to dephasing as predicted by Eq. (4.111). Perturbations of the
intensity profile of the laser can result, e.g., from diffraction on the edge of the atom chip
(see Fig. 4.4) and induce spatially variable dipole forces [85, 86]. Fundamentally, we in-
terpret the atomic cloud as an ensemble of single-particle trajectories with different initial
conditions determined by |ψ(x0, t = 0)| 2. As the twin-lattice sequence progresses, the tra-
jectories of the individual atoms in this semiclassical picture interact with slightly different
parts of the laser via the dipole force, which can prevent the individual paths from perfectly
overlapping at t = 2T , leading to phase variations in the wave packet.

First, we set δx = 0, simplifying the expression in Eq. (4.111). This is based on the
experimental observation that a non-ideal spatial overlap, especially in the direction of the
twin lattice, can be excluded, since it would introduce a dependence on the asymmetry
δT in the determination of the contrast, which is not confirmed by the measurements (see
Sec. 5.1.3 in Ref. [208]). Second, to calculate the phases caused by imperfect overlap in
momentum space, e.g., in the direction of the beam splitter, δpy, we determine the path-
dependent dipole forces resulting from the gradient of the lattice beam potential,

U(x, t;∆p) = U0(∆p)
I(x, t)
I0(t)

. (4.112)

Here, I0(t) B maxx∈R3 {I(x, t)} is the peak intensity of the diffracted twin-lattice laser and
U0(∆p) = V0(∆p)/(1 − σpol) is the maximum depth of the dipole potential, which depends
on ∆p via V0(∆p) [see Fig. 4.8(c)]. The experimental setup in Fig. 4.4 features several
potential sources of diffraction, such as apertures (vacuum windows etc.) or the edge of
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the atom chip. For our theoretical analysis, we assume that the incoming Gaussian beam
is diffracted at a metallic edge representing the atom chip [228], as shown in Fig. 4.9(a).
We calculate the differential momentum between the two arms, δpx j B px j,arm1 − px j,arm2
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Figure 4.9: Schematic of simulated light field and measured beam profile. (a) Hori-
zontal Gaussian beam refracted on a single metallic edge, which represents the atomic chi
(not to scale) in Fig. 4.4 in our simplified model. (b) Vertical cross-section of the calcu-
lated intensity profile along the center of the interferometry area shown in Fig. 4.7, where
the falling distance of the interferometer arms is shaded in blue [corresponding to a cut
through the blue region in (a)]. The diffraction at the edge causes a clearly visible diffrac-
tion pattern with oscillations of ∼ 1 % on length scales smaller than the Thomas-Fermi radii
of the BEC of about 30 µm (see inset). (c) Vertical slice through the center of the exper-
imentally determined intensity profile of the twin-lattice beam (black line), taken with a
beam profile camera after passing through the vacuum chamber. The blue line represents
a Gaussian fit to the data showing intensity variations in the order of ∼ 10 %. Figures (b)
and (c) adapted from M. Gebbe et al., Nat. Comm. 12(1):2544 (Ref. [96]), CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/.

with x j = x, y, z, by integrating the dipole force along the single-particle trajectories for
each arm, xarm = xarm(x0, t;∆p), yielding

px j,arm(x0, 2T ;∆p) = −
∫ 2T

0

∂

∂x j
U(xarm, t;∆p) dt,

= −U0(∆p)
∫ 2T

0

∂

∂x j

I(xarm, t;∆p)
I0(t)

dt.
(4.113)

We assume that the trajectories, xarm(x0, t;∆p), adiabatically follow the motion of the twin-
lattice illustrated by the paths in Fig. 4.7. Thus, each path is determined by the twin-lattice
sequences (and thereby ∆p, see right-hand side of Fig. 4.7) and their initial conditions at
t = 0, x0 = (x0, y0, z0). Furthermore, since the twin-lattice laser beam is well collimated
and the atomic motion in the x-direction is negligible compared to the other directions, we
set δpx = 0 and assume that the motion in the x direction makes no relevant contribution
to the contrast loss. As a result, it is sufficient for our model to find the two-dimensional

https://creativecommons.org/licenses/by/4.0/
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intensity distribution, I(y, z, t) = |E(y, z, t)| 2, of a single Gaussian beam propagating in
positive y-direction with wave number k = π

λL

EGauss(y, z, t) = E0(t)
(

w0

w(y)

)
exp

(−(z − zoffset)2

w2(y)

)
exp

(
−i

[
ky + k

(z − zoffset)2

2R(y)
+ ζ(y)

])
,

(4.114)

that is clipped at a metallic edge acting as a screen, see Fig. 4.9(a). We proceed by solving
the Fresnel integral for the diffracted electric field numerically [228],

E(y, z, t) =
1√
2π

∫ k

−k
exp

{
i
(
kzz + y

√
k2 − k2

z

)}
Ker(kz, y, z) F (EGauss(y, z, t)) dkz, (4.115)

with the help of the Fourier transformation in z-direction

F (EGauss(y, z, t))(y, kz, t) =
1√
2π

∫ +∞

−∞
EGauss(y, z, t) exp{−ikzz} dz, (4.116)

and the approximate integration kernel Ker(kz, y, z) suggested in Eq. (9) of Ref. [228]. The
incoming Gaussian beam in Eq.(4.114) is characterized by its waist w(y), a phase front
curvature R(y) and a Gouy phase ζ(y), which are determined by the beam parameters in
Tab. 4.3 using the relations

w(y) = w0 + y tan (θdiv), (4.117a)

R(y) = y
1 + (

yR

y

)2 , (4.117b)

ζ(y) = arctan
(

y
yR

)
. (4.117c)

We show in Fig. 4.9(a) that the incoming beam travels a distance of yoffset ≈ 238 mm before
it is diffracted on the edge. Since the diffracted beam originates from this edge, we have

Parameter Symbol Value

Laser wavelength λL 780.2412 nm
Beam waist w0 3.5 mm
Rayleigh range yR ≈ 60 m
Divergence angle θdiv 0.008◦

Horizontal offset yoffset 238.5 mm
Vertical offset zoffset 3 mm

Table 4.3: Diffraction model input parameters. The input parameters for our model for
a light field diffracted on a metallic edge, see Fig. 4.9(a). The Gaussian beam parameters
correspond to those used in the QUANTUS-1 experiment.
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shifted the origin in y-direction accordingly y → y + yoffset to simplify our notation. Be-
cause of its large waist and the fact that the axis of the Gaussian beam is offset only a few
millimeters below the edge, the vertical cross section of the intensity profile in Fig. 4.9(b)
clearly shows that diffraction at the edge causes local variations of the intensity profile on
top of the Gaussian envelope. While the blue shaded region indicates the vertical distance
traveled by the atoms in free fall during interrogation, the zoom in the inset highlights that
the typical length scale of the fluctuations in the z direction (∼ µm) is much smaller than
the radii of the atomic cloud (∼ 30 µm), possibly enhancing the dephasing due to locally
varying gradients. Using the intensity of the light field in Eq. (4.115), we can evaluate
δp = δp(x0, 2T ;∆p) = (0, δpy, δpz) via Eq. (4.113) and predict the contrast loss due to a
distorted light field,

CL(∆p) B
∫

d3x0 |ψTF(x0, 0)| 2
∣∣∣∣∣∫ d3x exp

( i
ℏ
δp(x0) · x

)
|ψTF(x, tTOF)| 2

∣∣∣∣∣. (4.118)

To do so, we approximate the density distributions of the atomic cloud via the Thomas-
Fermi solutions in Eq. (4.20). We define the density of the wave function via the Thomas-
Fermi Radii, which we calibrate to measurements giving us RTF(t = 0) = (22, 25, 20) µm
and RTF(t = tTOF) = (33, 39, 30) µm.

Comparison between Figs. 4.9(b) and (c) suggests that in our model intensity pertur-
bations, |I(x, t) − IGauss(x, t)|/I0(t)∼ 1 %, are much weaker than in the experiment, where
measurements behind the experimental chamber show intensity fluctuations in the order of
10 %. However, this discrepancy is to be expected as our model assumes diffraction on a
single edge, which underestimates the experimental imperfections, where multiple sources
of diffraction and potentially reflections play a role. Nevertheless, using the absolute mag-
nitude of the intensity fluctuations as our only fit parameter we will combine the model
for the contrast loss due to a distorted light field in Eq.(4.118) with the atom loss model
CA(∆p) in Eq. (4.88) to compare to the experimental data in the next section.

4.7 Combined Contrast Model and Conclusions

Figure 4.10(a) compares the results of our theoretical analysis and the experimental data for
the contrast we have already shown in Fig. 4.8(a). Starting with the predictions of the atom
loss model CA(∆p) [see Eq. (4.88)] represented by the green diamonds in Fig. 4.10(a), we
see that contrast is continuously lost due to increasing separations ∆p because the number
of coherent atoms is reduced by LZ losses and spontaneous scattering. However, this model
by itself significantly overestimates the remaining contrast and, in particular, does not ex-
plain the strong contrast decrease already for Bragg-Bloch interferometers with modest ∆p.
The comparatively large confidence intervals result from the 10 % uncertainty in the mea-
sured lattice depth V0(∆p) shown in Fig. 4.8(c) and are due to the sensitivity of CA(∆p) to
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spontaneous emission losses [see Eq. (4.86)]. The results of the dephasing model, CL(∆p),
have been obtained enhancing the perturbations of the laser profile to about 9 %, which pro-
vides good agreement with the experimentally measured fluctuations in the order of 10 %
as discussed in the previous section. The corresponding data points in Fig. 4.10(a) (red
triangles) clearly show that increasingly random velocity variations due to path-dependent
dipole forces can lead to a dramatic loss in contrast even in the twin-lattice configuration.
For our simulated light field, we obtain average differential velocities δv = δp/M in the
order of tens of nm/s (a few µm/s) in the y-direction (in z-direction), amounting to negli-
gible average phase shifts. However, their standard deviations range from tens of µm/s for
∆p = 24 ℏk up to several hundreds of µm/s for ∆p = 408 ℏk. This leads to uncertainties in
the phase ranging from a few hundred mrad (∆p = 24 ℏk) up to 2 rad (∆p = 408 ℏk) across
the cloud, for which the contrast has almost disappeared. Combining the models for atom
loss and dephasing processes, C(∆p) = CL(∆p) · CA(∆p) (orange pentagons), allows us to
reproduce the measured contrast loss. This provides strong evidence that the motion of the
atoms through the distorted light field is one of the primary sources of the contrast decay
with ∆p in the QUANTUS-1 experiment. With this in mind, our contrast calculations for
clouds with different sizes in Fig. 4.10(b) indicate that the twin-lattice interferometer ben-
efits greatly from the small spatial extent of the collimated BEC with Thomas-Fermi radii
of RTF = (33, 39, 30) µm at the end of the interferometer. Without delta-kick collimation,
the radii of the ensemble in the QUANTUS-1 experiment would increase by a factor of
three in the y and z-directions, which has a significant impact as shown by the open violet
circles in both panels of Fig. 4.10. The corresponding data points in (a) even overestimate
the contrast of the uncollimated BEC, since we assume the same efficiencies for DBD and
BO as for the collimated delta-kick BECs.

To experimentally check the influence of the spatial profile of the light field, the largest
twin-lattice interferometer, ∆p = 408 ℏk, was realized with a beam diameter (w0 = 1.65 mm)
about a factor of two smaller than that defined in Tab. 4.3. The blue square in Fig. 4.10(a)
shows that contrast is tripled, C(∆p = 408 ℏk) = 0.14, as the smaller diameter reduces
light field distortions caused by diffraction at the atom chip and other apertures to about
5 % (cf. Sec. 5.3 in Ref. [208]). This is still worse than predicted by our theoretical model,
where the same reduction of the beam diameter leads to an almost unperturbed beam, so
that contrast is mainly determined by atom loss [green diamonds in Fig. 4.10(a)]. How-
ever, as already mentioned, this discrepancy is to be expected because the assumption of
a beam clipped on a single chip edge oversimplifies the experimental situation in Fig. 4.4.
A more detailed study tailored to the experiment is beyond the scope of this work as it
would require a three-dimensional simulation of propagation of the lattice beam, including
retroreflection.
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Figure 4.10: Theoretical contrast analysis. (a) Experimental [black circles, same as in
Fig. 4.8(a)] and theoretical contrast C. Our model assumes atom loss (green diamonds) and
local inhomogeneous dipole forces due to light field distortions (red triangles) to contribute
to the decay of C(∆p). Combining both effects (orange pentagons) we reach reasonable
agreement with the experimental data. The shaded areas represent confidence intervals of
the simulation, determined by atom number and lattice depth uncertainty [see Fig. 4.8(c)].
In addition, our model predicts a significantly lower contrast for an uncollimated BEC
(open violet circles) because of its larger cloud size (see main text). Reducing the beam
waist of the twin-lattice laser in the experiment leads to better contrast (blue square). (b)
Simulated light-field contrast CL(∆p) for different cloud sizes. We compare the collimated
BEC (100 % cloud size, red triangles) different cloud sizes using otherwise identical input
parameters. An increase in size by 200 % or 300 % (gray diamonds, violet circles) leads
to a significant contrast reduction. Smaller sizes, on the other hand, improve the contrast,
highlighting the benefit of a well-collimated atom source in the presence of distortions of
the light field. Figure (a) adapted from M. Gebbe et al., Nat. Comm. 12(1):2544 (Ref. [96]),
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

Conclusions

The main goal of this chapter was to understand the limitations of the spatial coherence
of twin-lattice interferometers realized in the QUANTUS-1 experiment, which at the time
of writing has demonstrated the largest differential momentum splitting of ∆p = 408 ℏk
between the interferometer arms. The symmetric combination of DBD and BO not only
enables separations that exceed those of other symmetric schemes without BO by about a
factor of 50 [94, 176], but the high efficiency of BO per recoil also significantly reduces
atomic losses compared to the previous benchmark LMT experiment in Ref. [97]. Instead,
our above analysis strongly suggests that the current beam splitter efficiency, and in general
the scalability of this method, is primarily limited by technical reasons, in particular due to

https://creativecommons.org/licenses/by/4.0/
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spatial distortions of the twin lattice. It is therefore reasonable to assume that separations
of > 400 photon recoils are possible despite these shortcomings, since the symmetric ge-
ometry reduces the laser power requirements compared to an asymmetric scheme involving
BO. For the same momentum transfer and in the same amount of time, accelerating only
one interferometer arm would require a greater potential depth, resulting not only in higher
atomic losses due to spontaneous scattering, but also in even lower contrast due to light
field distortions.

In the ideal case of an undisturbed Gaussian lattice beam, on the other hand, the ex-
perimental observations and our theoretical model imply that neither the LZ losses nor the
differential dipole force arising due to the Gaussian waist are critical. For a twin lattice
featuring spatial intensity fluctuations in the order of 0.5 % of V0 our model predicts a con-
trast of more than 90 % at ∆p = 408 ℏk. Therefore, in addition to using a smaller beam,
the benefits of which are already evident from the single data point in Fig. 4.10(a), adding
a light field with opposite detuning with respect to the D2-line of 87Rb, ∆, can reduce the
effects of local distortions of the beam profile and improve the contrast by compensating
for absolute Stark shifts [23, 124].

In conclusion, twin-lattice atom interferometry appears to provide the scalability re-
quired for future LMT applications. This technique not only brings within reach rela-
tive momentum separations of one thousand photon recoils or more, as envisioned in cur-
rent designs of terrestrial detectors for infrasonic gravitational waves [37], in particular
MIGA [36], ELGAR [38], and MAGIS [40]. Beyond that, the ability to enclose large areas
in a comparably short time and volume makes the twin-lattice scheme attractive for iner-
tial measurement applications in the real world, e.g., in the form of gyroscopes [122, 218],
gradiometers [112, 142], or tilt meters [94, 217].

In general, it is reasonable to assume that addressing both interferometry arms symmet-
rically with two optical lattices derived from a single laser strongly suppresses diffraction
phases due to light shifts [110,150]. Nonetheless, this was not verified in the QUANTUS-1
experiment because no stable fringes could be observed due to inertial noise. It is impor-
tant to recall in this context one of the main motivations for our work in Chapter 3: To
benefit metrologically from the implementation of LMT beam splitters, one needs to un-
derstand and control systematic phase shifts below the mrad level. To this end, theoretical
studies similar to ours but analyzing diffraction phases in Bragg-Bloch interferometers at
the µrad-level will need to be performed in the future to ensure corresponding metrologi-
cal gain. Important work has already been done investigating light shifts associated with
BO [88, 150, 179]. Many of the existing studies, and most recently the predictions of K.
McAlpine et al. [150] rely on Bloch states to describe the dynamics of atoms in acceler-
ated optical lattices. As we have described here, this formalism is well suited to describe
the acceleration of in atoms in shallow optical lattices [108] but can also be extended to a
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go beyond single-band physics [229]. LMT beam splitters with ∆p∼ 1000 ℏk necessarily
operate in the tight-binding regime, V0≫ 20 Er [24, 175, 179, 207], where the single-band
approximation of the usual Bloch description fails. Thus, it will be interesting to see in the
future, whether the above picture of Bloch states or a formalism based on Wannier-Stark
states [199] is more appropriate to describe the acceleration of atoms in moving optical
lattices in the LMT regime.

Finally, this also raises once again the question of the role of spontaneous emission for
the phase of the interferometer. In our basic model of the QUANTUS-1 experiment, we
have simply assumed that spontaneously scattered atoms are lost because of the negligible
confinement in transverse direction due to the collimated beam. Nevertheless, it is not clear
ab initio, what role spontaneous emission plays with respect to the coherence of the atomic
ensemble in the tight-binding regime, where scattered atoms cannot leave the atomic cloud
because of their strong confinement in the optical lattice. A thorough theoretical under-
standing of these mechanisms is of paramount importance, especially when considering to
combine these novel LMT schemes with nonclassical BEC sources [163, 164, 230, 231].
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5
Summarizing Statements and
Outlook

Since the first experiments on Bragg scattering of atomic beams using light gratings about
thirty years ago, numerous experiments have demonstrated that elastic scattering of atoms
by laser light is a valuable technique for atom interferometry. It is noteworthy that these
efforts have gone beyond mere proofs of principle, as currently one of the state-of-the-art
measurements of the fine structure constant [23] as well as the best quantum test of the
equivalence principle [32] are based on Bragg diffraction. Moreover, it is not difficult to
envision the disruptive potential of this method as the basis for large-momentum-transfer
beam splitters that can increase the sensitivity of modern atom interferometers by orders
of magnitude. Therefore, Bragg diffraction is not only an important factor in the pursuit of
fundamental scientific goals such as the detection of infrasound gravitational waves [33–40]
or the search for ultralight dark matter [40, 46, 47], but also a key component in the devel-
opment of accurate and robust inertial sensors that are well suited for real-world appli-
cations [60]. To date, few Bragg atom interferometers have demonstrated metrological
gain [23, 32, 112, 113] using large momentum transfer despite their desirable properties.
Their sensitivity appears to be constrained by the limited control of manipulating atomic
wave packets with laser potentials.

The goal of this work was to promote a deeper understanding of the interaction between
light and matter that is essential in order to overcome current sensitivity limitations. In its
two main parts this thesis addressed atom interferometers operating between the Bragg and
the Raman-Nath regimes, and the current limits of symmetric momentum transfer realized
by twin-lattice interferometry in the QUANTUS-1 experiment.

5.1 Bragg Diffraction from Pulsed Optical Lattices

The first part began with Chapter 2, in which a brief overview of the current descriptions
of the scattering process derived from the theory of light diffraction by thick (Bragg) or
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thin (Raman-Nath) phase gratings in combination with Rabi oscillations in a two-level sys-
tem was given. In contrast, we proposed to reinterpret the time evolution of elementary
atom optical elements such as beam splitters or mirrors realized by Bragg diffraction from
a single optical lattice in terms of the adiabatic theorem. From this perspective, an ideal
Bragg pulse affects only the relative phase between the symmetric and antisymmetric com-
ponents of the incoming matter wave, which can be understood in a frame that comoves
with the optical lattice. This makes the dynamics fundamentally different from the diabatic
transitions between atomic hyperfine states that occur in Raman diffraction. Furthermore
it shows a close relationship to the image of Bloch bands normally used to describe Bloch
oscillations. Furthermore, it allowed us to find an analytical solution for the time evolution
of the Bragg pulse and to derive a scattering matrix relating the incoming to the outgo-
ing wave packet in the asymptotic limit, starting from the one-dimensional optical lattice
Hamiltonian in a moving frame.

Considering atomic wave packets with momentum uncertainties much smaller than the
lattice recoil. Assuming that the optical lattice velocity is fixed, we have represented the
Bragg Hamiltonian in eigenstates of the momentum operator exploiting the fact that a
Bragg pulse couples only even (odd) to even (odd) momentum components via one or
more two-photon transitions. Specifically, we treated an incoming plane wave with dis-
crete momentum −n ℏk relative to the optical lattice, coupled to the outgoing wave with n ℏk
and perturbatively included the effects of the finite momentum width of the wave packets.
Thus, we were able to exploit the fact that the Bragg Hamiltonian is block diagonal when
represented in the symmetric and antisymmetric components of plane waves. Assuming
that the laser intensity follows a smooth temporal envelope required for adiabatic time evo-
lution, we then formulated the scattering matrix adopting a block diagonal structure and
connecting the incoming with the outgoing symmetric and antisymmetric components of
the matter wave.

According to the adiabatic theorem, the time evolution of these components can be
easily calculated by solving simple time integrals over eigenenergies of finite-dimensional
matrices. Moreover, we related these eigenenergies of the Bragg Hamiltonian to specific
points in the Bloch spectrum and saw that they determine the differential phase between
symmetric and antisymmetric components of the diffracted wave. The Bragg pulse acts as
a beam splitter or mirror depending on how this phase is controlled by the duration and
intensity of the pulse. Thus, the differential phase can be understood as an analogue of the
pulse area in the description of Rabi oscillations in a two-level system.

In addition to the adiabatic phase evolution, our final expression for the scattering ma-
trix also includes corrections to the phase and amplitudes of the diffracted states. These
Landau-Zener phases and Landau-Zener losses to other momentum states can be derived
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from nonadiabatic couplings in an effective two-level system in most cases. Our perturba-
tive treatment of the finite momentum width has shown that a Doppler shift that is small
compared to the recoil frequency ωr = ℏk2/2M leads to transitions between the symmetric
and antisymmetric components of the outgoing matter wave, breaking the block-diagonal
structure of the Bragg Hamiltonian. For a wave packet with average momentum −n ℏk this
leads primarily to reduced diffraction efficiencies.

Finally, we compared the predictions of our analytical model with numerical solutions
of the Schrödinger equation, assuming pulses with Gaussian intensity envelopes that trans-
ferred up to ten photon recoils. This diffraction order strikes a reasonable balance between
the laser power and pulse duration required to change the differential phase to the desired
value (π/2 in the case of a beam splitter and π for a mirror) and spontaneous emission ac-
cording to Ref. [69]. To this end, we introduced the measurement of the fidelity of a Bragg
beam splitter and a mirror and found that our model is in very good quantitative agreement
with the numerical results. In particular, our study demonstrated that high-fidelity pulses
with Gaussian shapes are always adiabatic and that adiabaticity is a necessary condition for
efficient Bragg diffraction with smooth pulse shapes in general.

5.2 Large-momentum-transfer Bragg Interferometry

Finally, in preparation for Chapter 3 we included the dominant spurious diffraction or-
ders populated by Landau-Zener transitions in our scattering matrix. This is required to
adequately capture the multimode properties of Bragg atom interferometers previously ob-
served in experiments [117, 118, 135, 147]. The presence of multiple nearby momentum
states, which can be occupied by nonadiabatic transitions even at good diffraction efficien-
cies, arguably makes the estimation of the associated systematic effects more complex than
for Raman interferometers.

Since the relative phase in atom interferometers must be inferred indirectly via mea-
surements of an observable (in this case, the relative population detected in the two primary
output ports), these effects must be understood in the context of the theory of parameter es-
timation. Therefore, at the beginning of Chapter 3 we gave a brief overview of some of
the basic concepts of phase estimation including the method of moments, the Cramér-Rao
bound, and the quantum Cramér-Rao bound. We then proceeded to the main focus of this
chapter, which was to investigate the systematic effects arising from the multistage prop-
erties of the scattering process and the subsequent multipath interferences. In an effort to
complement previous studies [98,116,118,119], we extended our description of individual
Bragg pulses into an analytical framework that allows the study of systematic effects in
Bragg atom interferometers.
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In extending our formalism, we took advantage of the fact that modern ultracold atomic
sources, in particular BECs, have very narrow momentum distributions. Thus, we were able
to unambiguously assign trajectories in space-time to the various momentum states that
are populated by the scattering process. This description allows us to describe arbitrary
interferometry geometries composed of our Bragg scattering matrices in a basis of these
unique paths and to compute analytical results for the interferometer signal that depend on
the pulse parameters.

To demonstrate the usefulness of our method, we treated the example of a Mach-
Zehnder interferometer with two beam splitters and a mirror pulse between them. We
included the dominant spurious paths and output ports that occur due to the atom-light
interaction for diffraction order three or higher. In our example, the relative phase accumu-
lated between pulses during free evolution was determined by a linear acceleration parallel
to the wave vector of the optical lattice, as would be the case in a gravimeter setup.

Unlike a standard two-mode interferometer, Landau-Zener losses during the initial
beam splitter interaction can cause spurious interferometry paths to overlap with the main
interferometry arms at the time of the last beam splitter. We saw that the dominant spurious
transitions populate parasitic interferometers enclosing reduced space-time areas. Further-
more, it became clear that multipath interference actually renders their contribution to the
signal dependent on the pulse separation time T , which has already been observed exper-
imentally before [118, 147]. We also learned that in the case of Mach-Zehnder geometry,
the Bragg mirror pulse plays a crucial role. For the parasitic interferometers to close at all
they must be reflected by the mirror pulse. Additionally, we saw that even in cases, where
the mirror does not reflect these unwanted paths at all, the multiport nature of Bragg beam
splitters leads to phase shifts and potential deformations of the signal fringes. Similar ob-
servations have been made previously [117,118] and can now be quantified in terms of the
pulse parameters of the Bragg beam splitters using our model.

This provided us with the opportunity to show that it is possible to find optimal pulse
configurations that mitigate the adverse effects of parasitic paths and undetected output
ports.

Based on our findings, we formulated a phase estimation strategy that takes into account
the multiport properties of Bragg beam splitters and applied it in numerical experiments
realizing fifth-order Bragg Mach-Zehnder interferometers. We then assessed the accuracy
of our model by evaluating the systematic shift between the true value of the signal phase
as determined in the numerical simulations and the result of our estimation strategy. We
defined this shift as the diffraction phase. Scanning pulse parameters for beam splitting
losses up to 10 %, we saw that the systematic errors due to the diffraction phase can be as
large as several mrad and that they can be greatly reduced down to few µrad by our adapted
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estimation strategy. This was particularly the case when mirror parameters were used to
specifically suppress the formation of parasitic interferometers.

Finally, we analyzed the effects of multiple paths and ports on the statistical uncer-
tainty of the measurement in detail. In particular, we evaluated the shot noise of our phase
estimation strategy based on the method of moments that we had applied to the numeri-
cal simulations. We then compared this result with the fundamental bounds given by the
analytic Cramér-Rao bound and the quantum Cramér-Rao bound. This analysis made it
clear that there is a tradeoff between the nonadiabatic losses and the effects of the finite
momentum width of the ensemble when choosing the parameter sets of the Bragg pulses to
optimize the performance of the atom interferometer.

In summary, we are confident that the analytical framework presented in the first part
of this thesis pertaining single Bragg operations with smooth pulse shapes [120] and their
composition to large-momentum-transfer Bragg interferometers with µrad-accuracy [121]
will be instrumental in improving the performance of current and future Bragg atom inter-
ferometers. In addition, it is more than likely that future sensors based on atom interferom-
etry will employ large-momentum-transfer beam splitters that combine Bragg diffraction
with other methods such as Bloch oscillations to create separations of several hundred or
even thousands of photon recoils.

5.3 Scalability of Twin-lattice Atom Interferometers

In the second part of this work we provide a better understanding of the limitations of the
state-of-the-art LMT beam splitters realized in the QUANTUS-1 experiment. Using "twin-
lattice interferometry" it recently demonstrated the creation of Mach-Zehnder-type atom
interferometers with momentum separations of up to 408 ℏk [96], the largest at the time
of writing. Combining collimated Bose-Einstein condensates with double Bragg diffrac-
tion and subsequent Bloch oscillations in accelerated optical lattices, this method promises
efficient and symmetric momentum transfer.

After introducing the necessary theoretical concepts to adequately describe the accel-
eration of Bose-Einstein condensates in optical lattices, we first investigated the measured
Bloch transfer efficiencies produced by two optical lattices moving in opposite directions.
In the QUANTUS-1 experiment, the measurements deviate significantly from the predic-
tions of the standard Landau-Zener formalism. A numerical simulation of the acceleration
of the condensate in the twin lattice revealed that this was in fact not caused by the twin
lattice potential itself. Instead, we showed that the experimental data can be reproduced
assuming an additional stationary parasitic optical lattice potential, which is likely caused
by errors in the polarization of the light fields in combination with the retroreflective setup
in the experiment. Moreover, our simulations confirmed that the effects of the standing
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lattice can be successfully circumvented when increasing the initial momentum splitting to
eight photon recoils. This can be achieved implementing two consecutive first-order double
Bragg pulses at the start of the interferometer sequence. As a result the Doppler detuning
relative to the stationary potential is increased, which facilitates Bloch efficiencies in the
order of 99.9 % [208].

Following the introduction of the twin-lattice interferometer sequence, we focused on
modeling the experimentally observed contrast decay from ∼ 70 % for a momentum sepa-
ration of 8 ℏk to about 5 % for the largest interferometer at 408 ℏk. Due to the high transfer
efficiencies about one-third of the original atom number remains even for the largest sep-
aration, which means that the contrast loss cannot be explained by atom loss alone as was
the case in previous benchmark experiments [97].

Based on our analysis we conclude that there are two main sources of contrast loss in
the QUANTUS-1 experiment. First, the signal is affected by nonadiabatic losses during
Bloch oscillations as well as losses due to spontaneous emission. Second, distortions of
the twin-lattice laser profile due to diffraction along the beam path lead to spatial intensity
variations of the optical potential. Since the atomic ensembles interact with the distorted
potential over the course of the interferometer their spatial coherence is diminished and
thus the signal contrast is reduced. To estimate the second effect the atomic wave packets
traveling along the trajectories of the twin lattice are semiclassically sampled as they move
through the intensity distribution of a simplified light field modeled by a Gaussian laser
beam diffracted at a single metallic edge. The averaging over the separation phases caused
by the interaction with the dipole potential then showed that the contrast of the atomic
ensemble decreases as the area explored by the atoms increases. After fitting the magnitude
of the distortions in our calculations to experimental measurements of the twin-lattice laser
profile and combining our two models for contrast loss, very good agreement was obtained
with the experimental contrast data.

Our results are a clear indication that the current limits on the scalability of the twin-
lattice interferometer realized in the QUANTUS-1 apparatus are technical in nature, strongly
suggesting that this system is suitable for realizing Bose-Einstein condensate interferom-
etry with momentum separations of a thousand photon recoils or more in the near future.
However, as we pointed out, a thorough understanding of the systematic shifts at the µrad-
level is required to translate such improvements in sensitivity into a metrological gain.

5.4 Future Prospects

We are confident that the work presented here will make a significant contribution to im-
proving the accuracy of current and future Bragg atom interferometers, allowing them to
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take full advantage of large momentum separations. Moreover, our results facilitate future
studies of the optical elements of atom interferometers with great accuracy and utility.

First, our study of the Mach-Zehnder geometry has shown that it is possible to suppress
multipath interference efficiently via the Bragg mirror. Nevertheless, for Bragg order n =
5 the formation of parasitic interferometers cannot be completely prevented, because the
atom-light interaction couples multiple diffraction orders. Therefore, it will be interesting
to see, whether the adapted Bragg mirror is even more effective when applied to third-order
pulses since in this case and for comparable nonadiabatic losses only transitions to n−2 = 1
are significant. At the same time, the diffraction phases could be larger overall due to their
inverse scaling with the Bragg order n (see Sec. 3.6). Second, experimental observations
have shown that Bragg beam splitters populating multiple ports and interferometry paths
play an important role in modern h/M measurements with large diffraction orders [23,117,
118]. Previous studies based on numerical solutions of the atom-light interaction have
shown that the relative magnitude of the associated diffraction phases can be significantly
suppressed by the inclusion of Bloch oscillations [117, 118], which is a unique feature of
the conjugate Ramsey-Bordé interferometer. However, it will be interesting to characterize
the multipath interference effects and evaluate the optimization potential for this geometry
using our analytical formalism.

In the context of the work presented here, we considered only Bragg pulses with Gaus-
sian temporal pulse shapes which suppress nonadiabatic transitions. However, it is not
difficult to imagine that there are innovative pulse configurations that, e.g., use more than
one control parameter and can be tailored specifically to meet the requirements of mod-
ern atom interferometry devices. Along these lines, the authors Kovachy et al. [104] have
shown that the velocity selectivity of Bragg mirrors can be improved by combining a hyper-
bolic tangent intensity profile (tanh) with a linear sweep of the velocity of the Bragg lattice
across the resonance for the duration of the pulse creating an adiabatic rapid passage. It is
reasonable to assume that coupling to undesired momentum states or manipulation of par-
asitic interferometer paths also offer unexplored optimization potential. In the near future,
such research efforts can undoubtedly be facilitated by the application of optimal control
algorithms, the potential of which is best illustrated by the recent successful application of
this technique to Raman diffraction [232–234].

Yet, it is also clear from our analysis that the resulting and potentially highly sophisti-
cated experimental sequences will not only change the properties of the individual pulses. It
will also affect the systematic and statistical properties of the entire interferometer. There-
fore, such optimization routines must be considered in the context of the complete inter-
ferometer and not just a single operation. Our analytical framework has the potential to
provide such a holistic perspective for Bragg atom interferometers and is therefore well
suited to guide subsequent investigations.
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In this context, a more comprehensive characterization of the phase response of the
interferometer than we have provided here would be particularly desirable. The sensitiv-
ity function formalism is a powerful approach that goes beyond, e.g., our assumption of
instantaneous interaction between the atoms and momentum with respect to phase [235].
Thus, integrating this method into our scattering matrix formalism developed here would
certainly be extremely worthwhile, especially since it has already been successfully applied
to large-momentum transfer interferometers based on sequential Bragg pulses [214].

As mentioned earlier, a thorough understanding of the systematic shifts as well as the
statistical effects associated with the multistate nature of Bragg atom interferometers is es-
sential in light of recent proposals to use entanglement and in particular squeezed states to
overcome the standard quantum limit [141, 162–164]. In light interferometers the optimal
squeezing operations depend on the quality of the optical operations (see , e.g., Ref. [236]).
It will be interesting to determine these properties for multimode Bragg atom interferome-
ters with nonclassical sources.

In summary, all of the above efforts aim to minimize or mitigate the multimode nature
of Bragg scattering for atom interferometry. However, multimode interferometry has been
proposed to improve the phase sensitivity of an interferometer [137] and has been success-
fully implemented in a contrast interferometer with three arms populated by a Raman-Nath
pulse [98]. The unique multilevel structure of the diffraction process can therefore pro-
vide interesting opportunities for efficient multiport beam splitting and the targeted study
of multipath interference effects. In particular, the Bragg diffraction orders n = 2 and n = 3
seem to be suitable to realize 3- or 5-port beam splitters for matter waves simply by a
suitable choice of parameters.

Beyond single Bragg pulses, recent proof-of-principle experiments have shown that fu-
ture atom interferometers with momentum separations of several hundred or even thousand
photon recoils will most likely be based on a symmetric momentum transfer setup [96,142].
Therefore, it will certainly be worthwhile to investigate, whether the formalism of a scat-
tering matrix can be advantageous to describe double Bragg diffraction [94, 105, 132]. We
described in Chapter 4 that this technique allows for symmetric interferometer configu-
rations with state-of-the-art momentum separations when paired with Bloch oscillations.
Although the double-Bragg diffraction process is more complex than the single-Bragg case
because of the second optical lattice, double-Bragg interferometers exhibit multipath prop-
erties similar to those described here (see Ref. [136]) and can therefore benefit from the
insights gained from our description.

The goal should be of course to assess all aspects of modern large-momentum-transfer
beam splitters with the same rigor as we have attempted in this work, which requires a
theoretical framework that unifies the regimes of Bragg pulses and Bloch oscillations. The
prospect of gaining analytical insights into how to seamlessly transition from one process
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to another offers exciting new possibilities and seems feasible given the close relationship
between these two techniques that we pointed out in Chapter 2.

Ultimately however, we have seen that any description of realistic experiments must in-
clude the three-dimensional nature of the atomic cloud and the light fields interacting with
the atoms. For example, an important question that arises when studying Bragg interfer-
ometers with multiple paths and realistic light fields is how the different paths interact with
the inhomogeneous wavefronts or intensity distributions. Finding satisfactory answers to
these and related questions based on purely analytical calculations is certainly challenging.
Nevertheless, such efforts can be complemented by efficient and robust numerical simula-
tions (see, e.g., Ref. [237]) to provide accurate descriptions of atom interferometers in the
future.
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A
Appendices for Chapter 2

A.1 Analytical Landau-Zener (LZ) Transition Amplitudes

The results presented in this appendix are based on the work by G. S. Vasilev and N. V.
Vitanov in Ref. [145]. We reproduce here the functions entering formula (2.93) for the LZ
loss parameter γ2+:

aΘ(Ω, τ) =4ωr
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and

bΘ(Ω, τ) =
4ωr
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4 ln (mΘλ)2 + π2 − 2 ln (mΘλ), (A.1b)

with

λ ≡
√

2
Ω

4ωr
.

These equations correspond to formulas (53) and (44) in Ref. [145], respectively, where we
inserted the asymptotic energy difference between the states |2,+⟩ and |0,+⟩:

lim
t→±∞

E2,+(t) − E0,+(t)
ℏ

= 4ωr. (A.2)

Eq. (2.93) from the main text follows from Eq. (59) in [145]. All formulas have been
adapted to the notation used here. This requires in particular to identify the basic Hamil-
tonian in Eq. (2) in [145] with our Eq. (2.84). Note, that the latter features an increased
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coupling strength
√

2Ω in comparison to the former. Following the logic of Vasilev and
Vitanov, we can find values for the set of free parameters µΘ, νΘ,mΘ in Eqs. (A.1) to match
the exact numerical results as presented in Fig. 2.7 and in Fig. 2.8 in Sec. 2.6.3:

m π
2
= 0.918028; ν π

2
= 0.693525; µ π

2
= 0.790483

mπ = 0.983601; νπ = 0.596432; µπ = 0.822102.
(A.3)

The Θ dependence results from the fact that the basic Hamiltonian in Eq. (2) of Ref. [145]
applies to a constant energy offset between the two levels. The inclusion of more states
than |2,±⟩ and |0,+⟩ required for our analysis, however, leads to ac Stark shifts such that
the energy offset becomes Ω2(t) dependent. We do not include this as the adaptation of the
LZ-formula proposed in Ref. [145] is beyond the scope of this thesis. To account for the
different ac Stark shifts in case of a beam splitter and mirror pulse, we have optimized the
parameters in Eq. (A.3) separately.

A.2 Doppler Detuning

The first-order correction is described by

⟨+, n, p|Zα |−, n, p⟩ =
∫ ∞

−∞
dt

eiΘ(t) ⟨+, n, p; t|Vα(t) |−, n, p; t⟩
ℏ

, (A.4a)

where

Θ(t) =
∫ t

−∞
dt1

[
En+(t1) − En−(t1)

]
. (A.4b)

Note, this phase is related to the differential phase in Eq. (2.65) by limt→+∞Θ(t) = Θ. The
matrix element on the right-hand side of Eq. (A.4a) can be further simplified by noting that
we can rewrite Vα(t) in Eq. (2.44b) as

Vα(t) = i2ωrtℏΩ(t)
∑
n∈Zα

(
e2iϕLσ̂n+2,n − H.c.

)
= i2ωrt

Dα,
∑
n∈Zα

ℏΩ(t)
2

(
e2iϕLσ̂n+2,n + H.c.

)
= i2ωrt [Dα,Hα(t) − Lα]

= i2ωrt [Dα,Hα(t)] (A.5)

where Hα(t) and Lα are given in Eqs. (2.44a) and (2.37), respectively, and we introduced
the operator Dα =

∑
n∈Nα

nσ̂n,n. This operator acts on the (anti)symmetric states (for n > 0)
as Dα |±, n, p⟩ = n |∓, n, p⟩, and thus changes their parity. It also commutes with Lα, which



A.2. Doppler Detuning 179

we used in the last equality in (A.5). Taking into account the eigenvalue equation (2.70)
one finds

⟨+, n, p; t|Vα(t) |−, n, p; t⟩ = −i2ωrt
[
En+(t) − En−(t)

]
⟨+, n, p; t|Dα |−, n, p; t⟩ . (A.6)

This expression also shows that the diagonal matrix elements ⟨±, n, p; t|Vα(t) |±, n, p; t⟩ are
proportional to [En±(t) − En±(t)] = 0. Interpreting ⟨+, n, p; t|Dα |−, n, p; t⟩ one can consider
an expansion of the instantaneous energy eigenstates in terms of the asymptotic eigenstates,
|±, n, p; t⟩ = ∑

n cn±(t) |±, n, p⟩. Using the fact that Dα flips the parity of the asymptotic
eigenstates, one finds ⟨+, n, p; t|Dα |−, n, p; t⟩ = ∑

n nc∗n+(t)cn−(t). Due to the asymptotics of
the energy eigenstates Eq. (2.71) we have

lim
t→±∞

⟨+, n, p; t|Dα |−, n, p; t⟩ = n. (A.7)

Inserting (A.6) into Eq. (A.4a) we arrive at

⟨+, n, p|Zα |−, n, p⟩ = 2nτ2ω2
r zn,Θ(Ω0)eiΘ/2. (A.8)

which is Eq. (2.100) from the main text. Here, Θ is the differential phase from Eq. (2.65)
and zn,Θ is

zn,Θ(Ω0) = − i
∫ ∞

−∞
dζ ζ

En+(ζτ) − En−(ζτ)
ℏωr

× ⟨+, n, p; ζτ|Dα |−, n, p; ζτ⟩
n

ei[Θ(ζτ)−Θ/2]

≈ − i
∫ ∞

−∞
dζ ζ

En+(ζτ) − En−(ζτ)
ℏωr

ei[Θ(ζτ)−Θ/2].

(A.9)

In the last line of Eq. (A.9), we have approximated the rescaled matrix element to be unity.
With this, our theory relies only on the simple calculation of instantaneous eigenenergies
instead of the more involved computation of instantaneous energy eigenstates and their
overlaps.

The time integral and the integrand have been scaled to dimensionless units such that the
value of zn is positive and on the order of unity as can be seen in Fig. 2.4. The pulse length
is τ and ζ denotes a dimensionless time. The phase in Eq. (A.9) has been adapted such as
to assure that zn is real. In order to see this, we note that the argument of the exponential,
Θ(ζτ)−Θ/2, is an odd function in ζ since, for a Gaussian pulse, Θ(t) is essentially an error
function. Because the rest of the integrand is an odd function in time, only the imaginary
part of the exponential contributes to the integral in (A.9), which makes zn,Θ real.
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A.3 Hilbert Space Dimensionality and Numerical Integra-
tion

The results presented in this thesis are the product of calculations in truncated finite dimen-
sional Hilbert spaces. This is true both for our analytics, which requires a diagonalization
of finite-dimensional Hamiltonians to compute their spectra [see Eqs. (2.70)], and for the
full numerical integration of the Schrödinger equation. In each case, we truncate the mo-
mentum state basis like

{|−mmaxℏk + p⟩ , |(−mmax + 2)ℏk + p⟩ , ..., |(mmax − 2)ℏk + p⟩ , |mmaxℏk + p⟩}, (A.10)

where mmax is even (odd) if the diffraction order n is even (odd) and perform the same
truncation of the Hamiltonians in Eqs. (2.55) in the (anti)symmetric basis. The truncations
applied for our calculations are mmax = 6, 7, 8, 11 for the different Bragg orders n = 2, 3, 4, 5
respectively. The codes that generate the results presented in Figs. 2.2-2.8 and Fig. 2.11 are
available online [120]. Throughout this study, we compute time integrals and numerically
solve the Schrödinger equations using the truncations above. To ensure that these calcula-
tion reflect the asymptotic nature of scattering theory on which our model is based on, we
choose time intervals (expressed here in in units of ω−1

r ) ζ ∈ [−22, 22] accordingly.
Note, that these truncations are adequate for the analysis performed in the context of

the work presented in Sec. 2.6 chapter 2. Calculation of atom interferometer phases may
require increased accuracy and therefore higher truncations. We further comment on this in
chapter 3 and point out that our analytic model only relies on the computation of the spectra
of these Hamiltonians. An increase in dimensionality will therefore not add significantly to
the complexity of the model. As an example, Gochnauer et al. [119] successfully calculate
effective Rabi frequencies and diffraction phases in a similar fashion and find good agree-
ment with their experimental data taking into account nine states for a second-order Bragg
mirror pulse provides sufficient convergence (see Ref. [34] in [119]).

A.4 Four-mode Bragg Scattering Matrix (n = 2)

In Sec. 2.7 we state the scattering matrix for single Bragg pulses with n ≥ 3 including the
dominantly populated parasitic diffraction order. Here, we reproduce the corresponding
expressions for n = 2. As explained in the above section, the extended state space for
second-order Bragg diffraction includes a single LZ state

|s j(p)⟩ ∈ { |p, 2,±⟩ , |p, 0,+⟩ },
|q j(p)⟩ ∈ {|±2ℏk + p⟩ , |p⟩}. (A.11)
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The generalized projection of the scattering matrix (2.61) for the enlarged (anti)symmetric
state space reads

Sα =
∑

j,l

S jl |s j⟩⟨sl| , (A.12)

with

S = S LZ · S ad =


e−γ2+ −eiξ+

√
1 − e−2γ2+ 0

e−iξ+
√

1 − e−2γ2+ e−γ2+ 0
0 0 1


e
−iθ2+ 0 0
0 e−iθ0+ 0
0 0 e−iθ2−

 , (A.13)

in zeroth order of the (quasi)momentum p. Following the reasoning in Sec. 2.7, we take
into account finite-velocity effects only for the main diffraction order as described before
and write

S (p) = S · 1√
1 + η2(p)


1 0 iη(p)eiΘ2/2

0
√

1 + η2(p) 0
iη(p)e−iΘ2/2 0 1

 . (A.14)

According to the second line in Eq. (A.11), the scattering matrix in the momentum eigen-
state basis for n = 2 will have the form

S (Ω, τ) =

ℏk/2∫
−ℏk/2

dp
∑

j,l

[
B(p,Ω, τ)

]
jl |q j(p)⟩⟨ql(p)| , (A.15a)

where

B(p,Ω, τ) =


S −2,−2 B−2,0 B−2,+2

B0,−2 B0,0 B0,+2

B+2,−2 B+2,0 B+2,+2

 , (A.15b)

An expression for B(p,Ω, τ) is obtained in this case by performing the change in basis
using the transformation

T =
1√
2


ei2ϕL 0 e−i2ϕL

0
√

2 0
ei2ϕL 0 −e−i2ϕL

 (A.16)

We write in analogy to Eq. (2.121),

B(p,Ω, τ, ϕL) B T †S (p)T =M(Ω, τ, ϕL) · N(p,Ω, τ, ϕL), (A.17a)
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where

M(Ω, τ, ϕL) =



e
−i
2 (Φ2−iγ2+) cos

(
Θ2−iγ2+

2

)
−e−i(θ0+−ξ++2ϕL)

√
e−γ2+ sinh (γ2+) −ie−i4ϕLe

−i
2 (Φ2−iγ2+) sin

(
Θ2−iγ2,+

2

)
e
−i
2 (Θ2+2ξ++Φ2−4ϕL)√e−γ2+ sinh (γ2+) e−i(θ0+−γ2+) e

−i
2 (Θ2+2ξ++Φ2+4ϕL)√e−γ2+ sinh (γ2+)

−iei4ϕL e
−i
2 (Φ2−iγ2+) sin

(
Θ2−iγ2,+

2

)
−e−i(θ0+−ξ+−2ϕL)

√
e−γ2+ sinh (γ2+) e

−i
2 (Φ2−iγ2+) cos

(
Θ2−iγ2+

2

)


,

(A.17b)

and

N(p,Ω, τ, ϕL) =


1+iη(p) cos (Θ2/2)√

1+η2(p)
0 ie−i22ϕL iη(p) sin (Θ2/2)√

1+η2(p)

0 1 0

− ie+i4ϕL iη(p) sin (Θ2/2)√
1+η2(p)

0 1−iη(p) cos (Θ2/2)√
1+η2(p)

 . (A.17c)

The scattering matrixM(Ω, τ, ϕL) contains in addition to the scattering phase θ0+ (2.91) of
the energy eigenstate state |+, 0⟩ also the LZ transition phase ξ+. We explain in Sec. 2.7,
how this phase can be inferred for given pulse parameters {Ω, τ} from numerical solutions
of the Schrödinger equation with respect to the Hamiltonians in Eq. (2.44a).
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Free Propagation Operator

We solve the time evolution of the momentum eigenstates |q j⟩ j during free propagation to
derive the propagation phases ϑ(g, t, q j) (3.24). In doing so, we will reproduce the results
presented by Kritsotakis et al. in the appendix A of Ref. [166] for the convenience of the
reader. First, we use that the momentum operator p̂ in

Û(t) = exp
[
− it
ℏ

(
p̂2

2M
+ Mgẑ

)]
, (B.1)

is diagonal in the states acting on |q j⟩ j, p̂ |q j⟩ j = p̂z |q j⟩ j = q j |q j⟩ j. The effect of the
operator exp[±iκẑ] on those states is also well known (e.g., see appendix C.1 of [195]):
Let

∣∣∣q〉 and |z⟩ be eigenstate of the momentum operator p̂z and the position operator ẑ
respectively. In this case, we find that

e±iκẑ ≡
∫ +∞

−∞
dq

∣∣∣q ± κ〉〈q∣∣∣ , (B.2)

where we have used the identity

〈
z
∣∣∣e±iκẑ

∣∣∣q〉 = e±iκz 〈z∣∣∣q〉 = e±iκz 1√
2πℏ

eiqz/ℏ =
1√
2πℏ

eiz(q±ℏκ)/ℏ =
〈
z
∣∣∣q ± κ〉 . (B.3)

To use this result, we first need to isolate the operators in Eq. (B.1) via the application of
the Baker-Campbell-Hausdorff lemma:

eX̂+Ŷ = eX̂eŶe−[X̂,Ŷ]/2e(2[Ŷ ,[X̂,Ŷ]]+[X̂,[X̂,Ŷ]])/6, (B.4)

which is true for operators X̂, Ŷ fulfilling[[[
X̂, Ŷ

]
, X̂

]
, X̂

]
=

[[[
X̂, Ŷ

]
, X̂

]
, Ŷ

]
=

[[[
X̂, Ŷ

]
, Ŷ

]
, Ŷ

]
= 0.

183



184 Appendix B. Appendix for Chapter 3

In our case X̂ = − it
ℏ

p̂2

2M and Ŷ = − it
ℏ

Mgẑ, so that

[
X̂, Ŷ

]
=

igt2

ℏ
p̂z,

[
Ŷ ,

[
X̂, Ŷ

]]
=

iMg2t3

ℏ
, and

[
X̂,

[
X̂, Ŷ

]]
= 0, (B.5)

where we have used the fundamental commutation relations
[
ẑ, p̂z

]
= iℏ =

[
ẑ, p̂

]
. Thus, we

are allowed to apply Eq. (B.4) to transform Û(t), yielding

Û(t) = e−
it
ℏ

(
p̂2
2M+Mgẑ

)
= e

iMg2t3
3ℏ e−

it
ℏ

p̂2
2M e−

it
ℏMgẑe−

igt2
2ℏ p̂z . (B.6)

With this, we can show for the time evolution during the free propagation time T

Û(T ) |q j⟩ j = e
iMg2T3

3ℏ e−
iT
ℏ

p̂2
2M e−

iT
ℏ Mgẑe−

igT2
2ℏ p̂z |q j⟩ j = e

iMg2T3
3ℏ e−

igT2
2ℏ q je−

iT
ℏ

p̂2
2M |q j − MgT ⟩ j

= eiϑ(g,T,q j) |q j − MgT ⟩ j .
(B.7)

At this point, we recall that, while the momenta q j are affected by the effective gravitational
acceleration, due to |g| ≪ ℏk/(MT ) we assume this effect to be negligible on the level of
the trajectories as explained in Sec. 3.4. Moreover, we have introduced the propagation
phase

ϑ(g,T, q j) = M
g2T 3

3ℏ
− gT 2

2ℏ
q j − T

2Mℏ
(q j − MgT )2. (B.8)

It will be useful to evaluate this phase once for a discrete momentum of q j = 2m j ℏk with
m j ∈ Z. In this case, we find

ϑ(g,T, 2m j ℏk) = M
g2T 3

3ℏ
− gT 2

2ℏ
2m j ℏk − T

2Mℏ
(2m j ℏk − MgT )2

= · · · = −M
g2T 3

6ℏ
− 4m2

j
ℏk2

2M
T + m j kgT 2

= −M
g2T 3

6ℏ
− 4m2

j ωrT + m j ϕg,

(B.9)

where in the last line we have introduced the recoil frequency ωr = ℏk2/2M and the phase
ϕ = kgT 2. Seeing the above result we can simply write

ϑ j B θ j + m jϕ, (B.10)

with

θ j B −M
g2T 3

6ℏ
− 4m2

j ωrT. (B.11)
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