LACEABILITY PROPERTIES IN THE IMAGE GRAPH OF PRISM GRAPHS

P. GOMATHI ${ }^{1 *}$, R. MURALI ${ }^{2}, \S$

Abstract

A connected graph G is termed Hamiltonian- t-laceable if there exists in it a Hamiltonian path between every pair of vertices u and v with the property $d(u, v)=t$, $1 \leq t \leq \operatorname{diam}(G)$, where t is a positive integer. In this paper, we establish laceability properties in the image graph of Prism graph $\operatorname{Im}\left(Y_{n}\right)$.

Keywords: Hamiltonian graph, Hamiltonian laceable graph, Hamiltonian-t-laceable graph, Prism graph, Image graph.
AMS Subject Classification: [2010] 05C45, 05C99.

1. Introduction

Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices in G. The distance between u and v denoted by $d(u, v)$ is the length of a shortest path in G. G is Hamiltonian laceable if there exists in it a Hamiltonian path between every pair of vertices at an odd distance. G is Hamiltonian-t-laceable if there exists in G a Hamiltonian path between every pair of vertices u and v with the property $d(u, v)=t$, $1 \leq t \leq \operatorname{diam}(G)$, where t is a positive integer. Throughout this paper, P_{m} and K_{n} will denote the path graph and complete graph with m and n vertices respectively.

Laceability in the brick products of even cycles was explored by Alspach et.al. in [1]. A characterization for a 1-connected graph to be Hamiltonian-t-laceable for $t=1,2$ and 3 is given in [3] and this was extended to $t=4$ and 5 by Thimmaraju and Murali [4]. Leena Shenoy [5] studied Hamiltonian laceability properties in product graphs involving cycles and paths. More results in the laceability properties of product graphs can be found in [6], [7], [8], and [11].

The image graph of a graph was introduced by Annapoorna and Murali in [9] to study laceability properties. In this section, we explore laceability properties of some image graphs. The following definition is found in [9].

[^0]In this paper, we establish laceability properties in the edge tolerant of image of Prism graph $\operatorname{Im}\left(Y_{n}\right)$.

Definition 1. The vertex set of Y_{n}, the prism graph having $2 n$ vertices and $3 n$ edges is defined as $V\left(Y_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ (taken clockwise) $\mathcal{E} E\left(Y_{n}\right)=\left\{e_{i}: 1 \leq i \leq n\right\}$ $\cup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{e_{i i}: 1 \leq i \leq n\right\}$ where e_{i} is the edge $v_{i} v_{i+1}(1 \leq i \leq n-1)$, e_{n} is the edge $v_{n} v_{1}$ and e_{i}^{\prime} is the edge $u_{i} u_{i+1}(1 \leq i \leq n-1)$; e_{n}^{\prime} is the edge $u_{n} u_{1}$ and $e_{i i}$ is the edge $v_{i} u_{i}(1 \leq i \leq n-1)$. We call $v_{1}, v_{2}, \ldots, v_{n}$ as the outer cycle vertices (taken clockwise) and $u_{1}, u_{2}, \ldots, u_{n}$ as the inner cycle vertices (taken clockwise).

Figure 1. Prism graph Y_{6}

Definition 2. The image graph of a connected graph G, denoted by $\operatorname{Im}(G)$, is the graph obtained by joining the vertices of the original graph G to the corresponding vertices of a copy of G.

Figure 2. Image graph $G(8,2)$

Definition 3. A graph G^{*} is k-edge fault tolerant with respect to a graph G if the graph obtained by removing any k edges from G^{*} contains G, where k is a positive integer.

Definition 4. Let P be a path between the vertices v_{i} and v_{j} in a graph G and let P^{\prime} be a path between the vertices v_{j} and v_{k}. Then, the path $P \cup P^{\prime}$ is the path obtained by extending the path P between v_{i} and v_{j} to v_{k} through the common vertex v_{j} (i.e. if $P: v_{i} \ldots . v_{j}$ and $P^{\prime}: v_{j} \ldots v_{k}$ then $\left.P \cup P^{\prime}: v_{i} \ldots v_{j} \ldots . . v_{k}\right)$.

Definition 5. Let u and v be the two distinct vertices in G. Then u and v are attainable in G if there exists a Hamiltonian path in G between u and v.

2. RESULTS

Theorem 2.1. For $n \geq 3$ the graph $H=\operatorname{Im}\left(Y_{n}\right)$ is Hamiltonian-1-laceable.
Proof. Let $V\left(Y_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ (taken clockwise) \&
$E\left(Y_{n}\right)=\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{e_{i i}: 1 \leq i \leq n\right\}$ where e_{i} is the edge $v_{i} v_{i+1}$ $(1 \leq i \leq n-1), e_{n}$ is the edge $v_{n} v_{1}$ and e_{i}^{\prime} is the edge $u_{i} u_{i+1}(1 \leq i \leq n-1) ; e_{n}^{\prime}$ is the edge $u_{n} u_{1}$ and $e_{i i}$ is the edge $v_{i} u_{i}(1 \leq i \leq n-1)$. We call $v_{i}: 1 \leq i \leq n$ as the outer cycle vertices (taken clockwise) and $u_{i}: 1 \leq i \leq n$ as the inner cycle vertices (taken clockwise).

By the definition of image graph, $V(H)=v_{i} \cup v_{i}^{\prime} \cup u_{i} \cup u_{i}^{\prime}, 1 \leq i \leq n$ be the vertex set and $E(H)=E_{1} \cup E_{2} \cup E_{3}$, where E_{1} are the edges in the first copy of Y_{n}, E_{2} are the edges in the second copy of Y_{n} and $E_{3}=\left\{\left(v_{i}, v_{i}^{\prime}\right),\left(u_{i}, u_{i}^{\prime}\right), 1 \leq i \leq n\right\}$.
Clearly, $\operatorname{diam}(H)=2+\left\lfloor\frac{n}{2}\right\rfloor$.
Since $d\left(v_{i}, v_{i+1}\right)=d\left(v_{i}, v_{i}^{\prime}\right)=d\left(v_{i}, u_{i}\right)=d\left(u_{i}, u_{i}^{\prime}\right)=1$ in H for all $1 \leq i \leq n$, it is enough to prove that there exists a Hamiltonian path in $\operatorname{Im}\left(Y_{n}\right)$ between these pairs of vertices.

Claim 2.1.1. The vertices v_{i} and v_{i+1} are attainable.
In H, the path $v_{i}\left(P_{1}^{-1}[n-1] W_{i+2} P_{2}[n]\right)\left(u_{i+1}, u_{i+1}^{\prime}\right)\left(P_{2}[n] W_{i}^{-1} P_{1}^{-1}[n]\right)\left(v_{i+1}^{\prime}, v_{i+1}\right)$ is a Hamiltonian path between v_{i} and v_{i+1}.

Figure 3. Hamiltonian path between v_{1} and v_{2} in $\operatorname{Im}\left(Y_{n}\right)$

Claim 2.1.2. The vertices v_{i} and u_{i} are attainable.

In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}[n-1]\right)\left(u_{n+i-1}, u_{n+i-1}^{\prime}\right)\left(P_{2}^{-1}[n-1] W_{i+1}^{-1} P_{1}[n] W_{i}\right)$ $\left(u_{i}^{\prime}, u_{i}\right)$ is a Hamiltonian path between v_{i} and u_{i}.

Figure 4. Hamiltonian path between v_{2} and u_{2} in $\operatorname{Im}\left(Y_{n}\right)$

Claim 2.1.3. The vertices v_{i} and v_{i}^{\prime} are attainable.
In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}[n]\right)\left(u_{i}, u_{i}^{\prime}\right)\left(P_{2}^{-1}[n] W_{i+1}^{-1} P_{1}[n]\right) v_{i}^{\prime}$ is a Hamiltonian path between v_{i} and v_{i}^{\prime}.

Figure 5. Hamiltonian path between v_{4} and v_{4}^{\prime} in $\operatorname{Im}\left(Y_{n}\right)$

Claim 2.1.4. The vertices u_{i} and u_{i}^{\prime} are attainable.
In H, the path $u_{i}\left(P_{2}^{-1}[n] W_{i+1}^{-1} P_{1}[n]\right)\left(v_{i}, v_{i}^{\prime}\right)\left(P_{1}^{-1}[n] W_{i+1} P_{2}[n]\right) u_{i}^{\prime}$ is a Hamiltonian path between u_{i} and u_{i}^{\prime}. Hence the proof.

Figure 6. Hamiltonian path between u_{2} and u_{2}^{\prime} in $\operatorname{Im}\left(Y_{n}\right)$

Theorem 2.2. For $n \geq 3$, the graph $H=\operatorname{Im}\left(Y_{n}\right)$ is Hamiltonian-t-laceable for odd $t>1$.
Proof. Since $d\left(v_{i}, v_{i+t}\right)=d\left(v_{i}, u_{i+t-1}\right)=d\left(v_{i}, v_{i+t-1}^{\prime}\right)=d\left(v_{i}, u_{i+t-1}^{\prime}\right)=d\left(u_{i}, u_{i+t}\right)=t$ in H for all $t>1$ and $1 \leq i \leq n$, it is enough to prove that there exists a Hamiltonian path in $\operatorname{Im}\left(Y_{n}\right)$ between these pairs of vertices.

Claim 2.2.1. The vertices v_{i} and v_{i+t} are attainable.
In H, the path $v_{i}\left(P_{1}^{-1}[n-t] W_{i+t+1} P_{2}[n-t+1]\right) \bigcup_{m=0}^{\frac{t-3}{2}}\left(W_{i+2 m+1}^{-1} P_{1}[2] W_{i+2 m+2} P_{2}[2]\right)$ $\left(u_{i+t}, u_{i+t}^{\prime}\right)\left(P_{2}^{-1}[n] W_{i+t-1}^{-1} P_{1}[n]\right)\left(v_{i+t}^{\prime}, v_{i+t}\right)$ is a Hamiltonian path between the vertices v_{i} and v_{i+t}.

Figure 7. Hamiltonian path between v_{1} and v_{4} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(v_{1}, v_{4}\right)=3\right)$

Claim 2.2.2. The vertices v_{i} and u_{i+t-1} are attainable for $t \geq 5$.

In H, the path $v_{i}\left(P_{1}^{-1}[n-t+1] W_{i+t} P_{2}[n-t+2]\right) \bigcup_{m=0}^{\frac{t-5}{2}}\left(W_{i+2 m+1}^{-1} P_{1}[2] W_{i+2 m+2} P_{2}[2]\right)$ $W_{i+t-2}^{-1} P_{1}[2]\left(v_{i+t-1}, u_{i+t-1}^{\prime}\right)\left(P_{1}[n] W_{i+t-2} P_{2}^{-1}[n]\right)\left(u_{i+t-1}^{\prime}, u_{i+t-1}\right)$ is a Hamiltonian path between the vertices v_{i} and u_{i+t-1}.

Figure 8. Hamiltonian path between v_{2} and u_{6} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(v_{2}, u_{6}\right)=5\right)$

Remark 1. In H, the path $v_{i}\left(P_{1}^{-1}[n-3] W_{i+4} P_{2}[n-2] W_{i+1}^{-1} P_{1}[3] W_{i+3}\right)\left(u_{i+3}, u_{i+3}^{\prime}\right)$ $\left(P_{2}[n-1] w_{i+1}^{-1} P_{1}^{-1}[n] W_{i+2}\right)\left(u_{i+2}^{\prime}, u_{i+2}\right)$ is a Hamiltonian path between the vertices v_{i} and u_{i+2} for $t=3$.

Claim 2.2.3. The vertices v_{i} and v_{i+t-1}^{\prime} are attainable for $t \geq 7$.

In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{-1}\right)\left(P_{2}^{-1}[n-t+3] W_{i+t}^{-1}\right.$
$\left.P_{1}^{-1}[n-t+4]\right) \bigcup_{m=0}^{\frac{t-7}{2}}\left(W_{i+2 m+3} P_{2}[2] W_{i+2 m+4}^{-1} P_{1}[2]\right)\left(W_{i+t-2} P_{2}[2] W_{i+t-1}^{-1}\right) v_{i+t-1}^{\prime}$ is a Hamiltonian path between the vertices v_{i} and v_{i+t-1}^{\prime}.

Figure 9. Hamiltonian path between v_{1} and v_{7}^{\prime} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(v_{1}, v_{7}^{\prime}\right)=7\right)$

Remark 2. In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{-1}\right)\left[\left(P_{2}[n]\right)^{b}\left(P_{2}^{-1}[n)^{a}\right]\right.$ $\left(W_{i+t-2}^{-1} P_{1}^{-1}[n]\right) v_{i+t-1}^{\prime}$ where $a=\left\{\begin{array}{ll}1 & t=5 \\ 0 & t \neq 5\end{array}\right\} b=\left\{\begin{array}{ll}1 & t=3 \\ 0 & t \neq 3\end{array}\right\}$ is a Hamiltonian path between the vertices v_{i} and v_{i+t-1}^{\prime} for $t=3,5$.
Claim 2.2.4. The vertices v_{i} and u_{i+t-2}^{\prime} are attainable for $t \geq 7$.
In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{-1}\right)\left(P_{2}^{-1}[n-t+4] W_{i+t-1}^{-1}\right.$
$\left.P_{1}^{-1}[n-t+5] W_{i+3}\right)\left[\bigcup_{m=0}^{\frac{t-7}{2}}\left(P_{2}[2] W_{i+2 m+4}^{-1} P_{1}[2] W_{i+2 m+5}\right)\right]^{a} u_{i+t-2}^{\prime}$ where
$a=\left\{\begin{array}{ll}1 & t \geq 7 \\ 0 & t<7\end{array}\right\}$ is a Hamiltonian path between the vertices v_{i} and u_{i+t-2}^{\prime}.

Figure 10. Hamiltonian path between v_{1} and u_{6}^{\prime} in $\operatorname{Im}\left(Y_{n}\right)$ $\left(d\left(v_{1}, u_{6}^{\prime}\right)=7\right)($ Claim 5.2.4 $)$

Remark 3. In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{\prime}\right)\left(P_{2}[n-1] W_{i}^{-1} P_{1}^{-1}[n] W_{i+1}\right)$ u_{i+1}^{\prime} is a Hamiltonian path between the vertices v_{i} and u_{i+1}^{\prime} for $t=3$.

Claim 2.2.5. The vertices u_{i} and u_{i+t} are attainable.
In H, the path $u_{i}\left(P_{2}^{-1}[n-t] W_{i+t+1}^{-1} P_{1}[n-t+1]\right) \bigcup_{m=0}^{\frac{t-3}{2}}\left(W_{i+2 m+1} P_{2}[2] W_{i+2 m+2}^{\prime} P_{1}[2]\right)$ $\left(v_{i+t}, v_{i+t}^{\prime}\right)\left(P_{1}[n] W i+t-1 P_{2}^{-1}[n]\right)\left(u_{i+t}^{\prime}, u_{i+t}\right)$ is a Hamiltonian path between the vertices u_{i} and u_{i+t}.

Hence the proof.

Figure 11. Hamiltonian path between u_{4} and u_{7} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(u_{4}, u_{7}\right)=3\right)$

Combining the above two theorems we observe that there exists a Hamiltonian path in G between every pair of vertices in it at an odd distance. Hence we have the following theorem.

Theorem 2.3. The graph $H=\operatorname{Im}\left(Y_{n}\right), n \geq 3$ is Hamiltonian-laceable.
Following result establishes the edge tolerant property for the image graph of the prism graph for even t.

Theorem 2.4. For $n \geq 3$ the 1- edge-fault-tolerant graph $H=\operatorname{Im}\left(Y_{n}\right)$ is Hamiltonian-tlaceable for even $t, 1 \leq t \leq \operatorname{diam}(H)$.

Proof. Since $d\left(v_{i}, v_{i+t}\right)=d\left(v_{i}, u_{i+t-1}\right)=d\left(v_{i}, v_{i+t-1}^{\prime}\right)=d\left(v_{i}, u_{i+t-1}^{\prime}\right)=d\left(u_{i}, u_{i+t}\right)=t$ in H for all $i, 1 \leq i \leq n$, it is enough to prove that there exists a Hamiltonian path in $\operatorname{Im}\left(Y_{n}\right)$ between these pairs of vertices.

Claim 2.4.1. The vertices v_{i} and v_{i+t} are attainable.
In H, the path $v_{i}\left(P_{1}^{-1}[n-t] W_{i+t+1} P_{2}[n-t+1]\right)\left(W_{i+1}^{-1}\right)^{r}\left[\bigcup_{m=0}^{\frac{t-4}{2}}\left(W_{i+2 m+1}^{-1} P_{1}[2] W_{i+2 m+2}\right.\right.$ $\left.\left.P_{2}[2]\right)\right]^{s}\left(v_{i+t-1}, u_{i+t}\right)\left(u_{i+t}, u_{i+t}^{\prime}\right)\left(P_{2}[n] W^{-1}-i+t-1 P_{1}^{-1}[n]\right)\left(v_{i+t}^{\prime}, v_{i+t}\right)$
where $r=\left\{\begin{array}{ll}1 & t=2 \\ 0 & t \neq 2\end{array}\right\}, s=\left\{\begin{array}{ll}1 & t \neq 2 \\ 0 & t=2\end{array}\right\}$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and v_{i+t}.

Figure 12. Hamiltonian path between v_{1} and v_{3} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(v_{1}, v_{3}\right)=2\right)$

Claim 2.4.2. The vertices v_{i} and u_{i+t-1} are attainable for $t \geq 4$.
In H, the path $v_{i}\left(P_{1}^{-1}[n]\left(v_{i+1}, u_{i+2}\right) P_{n-t+3}^{-1}\right)\left(u_{i+t}, u_{i+t}^{\prime}\right)\left(P_{2}[n-1] W_{i+t-2}^{-1} P_{1}^{-1}[n] W_{i+t-1}\right)$ $\left(u_{i+t-1}^{\prime}, u_{i+t-1}\right)$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and u_{i+t-1}.

Figure 13. Hamiltonian path between v_{1} and u_{4} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(v_{1}, u_{4}\right)=4\right)$

Remark 4. In H, the path $v_{i}\left(P_{1}^{-1}[n]\left(v_{i+1}, u_{i+2}\right) P_{n-1}^{-1}\right)\left(u_{i}, u_{i}^{\prime}\right)\left(P_{2}^{-1}[n-1] W_{i+2}^{-1} P_{1}[n] W_{i+1}\right)$ $\left(u_{i+1}^{\prime}, u_{i+1}\right)$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and u_{i+t-1} for $t=2$.

Claim 2.4.3. The vertices v_{i} and v_{i+t-1}^{\prime} are attainable for $t \geq 6$.
In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{\prime}\right)\left(P_{2}^{-1}[n-t+3] W_{i+t}^{-1}\right.$
$\left.P_{1}[n-t+3]\right)\left(v_{i+2}^{\prime}, u_{i+3}^{\prime}\right) \bigcup_{m=0}^{\frac{t-6}{2}}\left(W_{i+2 m+3}^{-1} P_{1}[2] W_{i+2 m+4} P_{2}[2]\right) W_{i+t-1}^{-1} v_{i+t-1}^{-1}$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and v_{i+t-1}^{\prime}.

Figure 14. Hamiltonian path between v_{1} and v_{6}^{\prime} in $\operatorname{Im}\left(Y_{n}\right)$ $\left(d\left(v_{1}, v_{6}^{\prime}\right)=6\right)($ Claim 5.4.3)

Remark 5. In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{\prime}\right)\left(P_{2}[n]\left(u_{i+1}^{\prime}, v_{i+2}^{\prime}\right)\right.$
$\left.\left[P_{1}[n]\right]^{a}\left[P_{1}^{-1}[n]\right]^{b}\right) v_{i+t-1}^{\prime}$ where $a=\left\{\begin{array}{rr}1 & t=2 \\ 0 & t \neq 2\end{array}\right\}, b=\left\{\begin{array}{ll}1 & t=4 \\ 0 & t \neq 4\end{array}\right\}$
in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and v_{i+t-1}^{\prime} for $t=2,4$.
Claim 2.4.4. The vertices v_{i} and u_{i+t-2}^{\prime} are attainable for $t \geq 6$.
In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{\prime}\right)\left(P_{2}^{-1}[n-t+4] W_{i+t-1}^{-1} P_{1}[n-t+\right.$ 4]) $\left(v_{i+2}^{\prime}, u_{i+3}^{\prime}\right)\left[\bigcup_{m=0}^{\frac{t-8}{2}}\left(W_{i+2 m+3} P_{1}[2] W_{i+2 m+4} P_{2}[2]\right)\right]^{a}\left(W_{i+t-3}^{-1} P_{1}[2] W_{i+t-2}\right) u_{i+t-2}^{-1}$
in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and u_{i+t-2}^{\prime} where $a=\left\{\begin{array}{ll}1 & t \geq 8 \\ 0 & t<8\end{array}\right\}$.

Remark 6. (1) In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, u_{i+2}^{\prime}\right)\left(P_{2}[n-2] W_{i-1}^{-1}\right.$ $\left.P_{1}^{-1}[n-1] W_{i+1}\right)\left(u_{i+1}^{\prime}, v_{i}^{\prime}\right) u_{i}^{\prime}$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and u_{i}^{\prime} for $t=2$.
(2) In H, the path $v_{i}\left(P_{1}^{-1}[n] W_{i+1} P_{2}^{-1}[n]\right)\left(u_{i+2}, v_{i+2}^{\prime}\right)\left(P_{1}^{-1}[n] W_{i+3} P_{2}[n]\right) u_{i+2}^{\prime}$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices v_{i} and u_{i+2}^{\prime} for $t=4$.

Claim 2.4.5. The vertices u_{i} and u_{i+t} are attainable.
In H, the path $u_{i}\left(P_{2}^{-1}[n-t] W_{i+t+1}^{-1} P_{1}[n-t+1]\right)\left(W_{i+1}\right)^{r}\left[\bigcup_{m=0}^{\frac{t-4}{2}}\left(W_{i+2 m+1} P_{1}[2] W_{i+2 m+2}^{-1}\right.\right.$ $\left.\left.P_{2}[2]\right)\right]^{s}\left(u_{i+t-1}, v_{i+t}\right)\left(v_{i+t}, v_{i+t}^{\prime}\right)\left(P_{1}[n] W_{i+t-1} P_{2}^{-1}[n]\right)\left(u_{i+t}^{\prime}, u_{i+t}\right)$ where $r=\left\{\begin{array}{ll}1 & t=2 \\ 0 & t \neq 2\end{array}\right\}, s=\left\{\begin{array}{ll}1 & t \neq 2 \\ 0 & t=2\end{array}\right\}$ in the 1-edge-fault-tolerant graph H^{*} is a Hamiltonian path between the vertices u_{i} and u_{i+t}. Hence the proof.

Figure 16. Hamiltonian path between u_{1} and u_{5} in $\operatorname{Im}\left(Y_{n}\right)\left(d\left(u_{1}, u_{5}\right)=4\right)$

3. Conclusion

In this paper, the laceabilty properties of the image of prism graph have been explored for all $n \geq 3$. Also, we prove that for all even $t \geq 2$, the 1-edge fault tolerant graph is Hamiltonian-t-laceable. We pose the general problem as follows:

Open Problem: Alspach and Zhang(1989) showed that all cubic cayley graphs over dihedral groups are Hamiltonian by using the concept of brick products. It was proved by Alspach, Chen and McAvaney (1996) that most of the brick products $C(2 n, m, r)$ with one cycle $(\mathrm{m}=1)$ are Hamiltonian Laceable, in the sense that any two vertices at odd distance apart can be joined by a Hamiltonian path. The problem whether all brick products $\mathrm{C}(2 \mathrm{n}$, m, r) are Hamiltonian laceable is an open problem. Are the image graphs of brick products graphs $\mathrm{C}(2 \mathrm{n}, \mathrm{m}, \mathrm{r})$ with one cycle $(\mathrm{m}=1)$ Hamiltonian laceable? For what values of 't' are the image graphs Hamiltonian-t-laceable?

References

[1] Alspach, B., Chen, C. C., Kevin McAvancy, (1996), On a class of Hamiltonian laceable 3-regular graphs, Discrete Mathematics, 151(1), 19-38.
[2] Frank Harary, (1969), Graph Theory, Addison-Wesley series, USA.
[3] Harinath, K. S., Murali, R., (1999), Hamiltonian-n*-laceable graphs, Far East Journal of Applied Mathematics, 3(1), 69-84.
[4] Thimmaraju, S. N., Murali, R., (2009), Hamiltonian-n*-laceable graphs, Journal of Intelligent System Research, 3(1), 17-35.
[5] Leena N. Shenoy., Murali, R., (2010), Hamiltonian laceability in product graphs, International eJournal of Engineering Mathematics: Theory and Application, 9, 1-13.
[6] Girisha, A., Murali, R., (2012), i-Hamiltonian laceability in product graphs, International Journal of Computational Science and Mathematics, 4(2), 145-158.
[7] Girisha, A., Murali, R., (2013), Hamiltonian laceability in cone product graphs, International Journal of Research in Engineering Science and Advanced Technology, 3(2), 95-99.
[8] Gomathi, P., Murali, R., (2016), Hamiltonian-t*- laceability in cartesian product of paths, International Journal of Mathematics and Computation, 27(2), 95-102.
[9] Annapoorna, M. S., Murali, R., (2017), Laceability properties in image graphs, Asian Journal of Mathematics and Computer Research, 18(1), 1-10.
[10] Gomathi, P., Murali, R., (2018), Laceability properties in prism graph, Advances and Applications in Discrete Mathematics, 19(4), 437-444.
[11] Gomathi, P., Murali, R., (2019), Laceability properties in edge tolerant shawdow graphs, Bulletin of International Mathematical Virtual Institute, 9(3), 463-474.
[12] Gomathi, P., Murali, R., (2020), Laceability properties in edge tolerant corona product graph, TWMS Journal of Applied and Engineering Mathematics, 10(3), 734-740.

[^1]R. Murali for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.10, N.3.

[^0]: ${ }^{1}$ Department of Mathematics, BMS College of Engineering, Bengaluru, India.
 e-mail: pgomathi.maths@bmsce.ac.in; ORCID: https://orcid.org/0000-0002-8385-5252.

 * Corresponding author.
 ${ }^{2}$ Department of Mathematics, Dr. Ambedkar Institute of Technology, Bengaluru, India. e-mail: muralir2968.mat@drait.edu.in; ORCID: https://orcid.org/0000-0002-7175-2774.
 § Manuscript received: September 13, 2021; accepted: March 26, 2022. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 4 © Işık University, Department of Mathematics, 2023; all rights reserved.

[^1]: P. Gomathi for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.10, N.3.

