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SHIFTED LEGENDRE POLYNOMIAL SOLUTIONS OF NONLINEAR

STOCHASTIC ITÔ - VOLTERRA INTEGRAL EQUATIONS

S. R. BALACHANDAR1, D. UMA1∗, S. G. VENKATESH1, §

Abstract. In this article, we propose the shifted Legendre polynomial-based solution
for solving a stochastic integral equation. The properties of shifted Legendre polyno-
mials are discussed. Also, the stochastic operational matrix required for our proposed
methodology is derived. This operational matrix is capable of reducing the given sto-
chastic integral equation into simultaneous equations with N+1 coefficients, where N is
the number of terms in the truncated series of function approximation. These unknowns
can be found by using any well-known numerical method. In addition to the capability
of the operational matrices, an essential advantage of the proposed technique is that it
does not require any integration to compute the constant coefficients. This approach
may also be used to solve stochastic differential equations, both linear and nonlinear, as
well as stochastic partial differential equations. We also prove the convergence of the
solution obtained through the proposed method in terms of the expectation of the error
function. The upper bound of the error in L2 norm between exact and approximate
solutions is also elaborately discussed. The applicability of this methodology is tested
with a few numerical examples, and the quality of the solution is validated by comparing
it with other methods with the help of tables and figures.

Keywords: Nonlinear stochastic Itô - Volterra integral equation; shifted Legendre poly-
nomial, stochastic operational matrix, convergence analysis; error estimation.
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1. Introduction

The addition of one or more random elements, which is often considered as the noise
term, to the deterministic models results in stochastic models like the stochastic differ-
ential equation, stochastic integral equation, etc. Such models are used to study various
physical or biological phenomena in multiple fields like biology, medicine, population dy-
namics, mechanics, and finance [1, 2, 3, 4]. The Numerical solution of stochastic quadratic
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integral equations using operational matrices is studied by F. Mirzaee and N. Samadyar
[5]. The Numerical solution for stochastic Itô - Volterra integral equations of fractional
order is studied in [6] and for such an equation driven by fractional Brownian motion is
studied in [7]. Quintic B-spline collocation method, Cubic and bicubic B-spline collocation
methods are applied to obtain the numeric solution for linear and nonlinear stochastic inte-
gral equations as seen in [8, 9]. The Spectral collocation method together with the moving
least square scheme to solve stochastic Volterra type equations is studied as in [10, 11]. Or-
thonormal Bernoulli polynomials collocation approach for stochastic Itô Volterra integral
equations can be seen in [12] and for nonlinear Stratonovich Volterra integral equations in
[13, 14]. Motivated by the preceding works, in this paper, we consider the following sto-
chastic model to study the random effects of population growth in the form of a stochastic
integral equation [15, 16].

X(t) = f(t) +

∫ t

0
k1(s, t)N1(s,X(s))ds+

∫ t

0
k2(s, t)N2(s,X(s))dW (s), t ∈ [0, 1], (1)

where f(t), k1(s, t), k2(s, t), N1(s,X) and N2(s,X) are linear or nonlinear and X(t) is to be
determined. All the above processes, including X(t) are the stochastic processes defined
on the probability space. Here, W (t) is a standard Brownian motion whose detailed
information is discussed in Section 2. The stochastic non-autonomous logistic equation
and the population growth model in a closed system are the variants of the existing model.
In the financial market, Eq.(1.1) is used to study the behaviour of the stock price with
risky assets X(t), the spot price f(t) = X0 at time 0, k1(s, t) = µ(s), k2(s, t) = σ(s),
N1 = N2 = X(s) and W (t) is the standard Brownian motion with W (0) = 0. This
model is valid on [0,T], T is the maturity of the option and the resultant model is linear.
The system of integral equations in the stochastic form is used to study stochastic linear
and nonlinear pendulum problems with damping, frequency and excitation in a stochastic
sense. The stochastic delay differential equations are used to study the problems arising
in the field of reactor dynamics and the theory of automatic systems [17, 18].

Handling the nonlinear terms N1 and N2, in terms of the unknown stochastic process
X(s), is not an easy task. To find the approximate solutions of these stochastic equations,
several numerical methods with their variations have been utilised by various researchers
[19].The approximate or the analytical solutions of stochastic Volterra integral equations
based on various polynomials have been handled by many researchers [20, 21, 22, 23, 24,
25, 26, 27].

In recent years, to find an approximate solution, good approximation methods based
on the orthogonal basis of the polynomials have attracted the attention of mathemati-
cians’ interest. The Jacobi polynomial, which arises as Eigen functions of the singular
Sturm-Liouville problem, is one such polynomial [28]. A collection of polynomials like Le-
gendre, Chebyshev, and other spherical polynomials on [-1,1] are the solutions to the above
problem, and these polynomials are generated from the Jacobi polynomials by assigning
particular values to their parameters.

In the case of [0,1], we use the shifted version of Legendre polynomials called shifted
Legendre polynomials [29] to find an approximate solution of Eq(1.1) numerically. The
salient features of these polynomials, together with the operational matrices of integration
and stochastic integration, jointly guide us to convert the given equation into a system of
simultaneous algebraic equations. Solving this system of equations by any known numer-
ical method leads us to the numerical solution of the problem under consideration. Some
of the most important advantages of the proposed method are listed as follows:
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• The proposed method reduces the solution of the problem considered to a system
of algebraic equations, which is solved using an appropriate numerical method
• We have used shifted Legendre polynomials that have orthogonal property. This

property is very useful in numerical methods and is more convenient than the other
non orthogonal polynomials.
• The proposed method provides a more accurate solution and is easy to implement

as it involves sparse matrices.

The overview of this paper comprises the following: The fundamental definitions and
theorems that are required for our subsequent study are given in Section 2. The funda-
mentals of shifted Legendre polynomials and their properties are discussed in Section 3.
Various operational matrices required for the proposed method are also derived. In Section
4, the convergence theorems and the error estimates are presented in detail. The accuracy
and applicability of the scheme are tested on several examples, and the comparative results
are also presented in Section 5. The superiority of this method is also highlighted in that
section. Concluding remarks are given in the final section.

2. Mathematical Background

In this section, we provide the fundamental definitions of stochastic calculus and infor-
mation pertaining to our subsequent study [30, 31, 32]. We start by defining Brownian
motion, which is a fundamental example of a stochastic process. The underlying probabil-
ity space (Ω,F , P ) can be constructed on the space Ω = C0(R+) of continuous real-valued
functions on R+ starting at 0. Next, we introduce the idea of Hilbert space and Banach
space, where the concept of defining a norm has been established in the probability space
(Ω,F , P ). The idea of convergence of a sequence Xn in the given space, where the function
is defined, is also discussed. The basic properties of Itô integral and Itô isometry are also
elucidated for our subsequent development.

Definition 2.1. [33] Let (Ω,F , P )be a probability space with a filtration {Ft } t≥0. A
(standard) one-dimensional Brownian motion is a real-valued continuous {Ft } -adapted
process {Bt } t≥0 with the following properties:
(i) B0 = 0 a.s.;
(ii) for 0 ≤ s < t <∞, the increment Bt−Bs is normally distributed with mean zero and
variance t− s;
(iii) for 0 ≤ s < t <∞, the increment Bt −Bs is independent of {Fs }.

Definition 2.2. [30] Let p ≥ 2 and Lp(Ω, H) be the collection of all strongly measurable

random variables and if ‖V ‖Lp= {E |V |p}1/p =
(∫

Ω |V |
p dP

)1/p
, for each V ∈ LP (Ω, H)

then Lp(Ω, H) is a Banach space.

Definition 2.3. [30] Let A,B ∈ [0, T ]→ R and if A(t) ≤ λ+
∫ t

0 B(s)A(s)ds for t ∈ [0, T ]
then
A(t) ≤ λ

(∫ t
0 B(s)ds

)
for all t ∈ [0, T ] with λ ≥ 0.

Definition 2.4. [23] The sequence Xn converges to X in L2 if E(|Xn|2) < ∞ and
E(‖Xn −X‖)2 −→ 0 when n→∞.

Definition 2.5. [31] The Itô integral of f ∈ v(s, T ) is defined by
∫ T
s f(t, w)dB(t)(w)

= limn→∞
∫ T
s ϕn(t, w)dB, where ϕn is the sequence of elementary functions such that

E
(∫ T

s (f − ϕn)2dt
)
→ 0 as n→∞.
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Lemma 2.1. [31] The Itô isometry of f ∈ v(s, T ) is given by E
(

(
∫ T
s (f(t, w)dB(t)(w))2

)
=

E
(∫ T

s (f2(t, w)dt)
)

.

3. Shifted Legendre Polynomials

3.1. Preliminaries and properties. The Legendre polynomials Pn(z) are the solutions
of Legendre’s Differential Equation [34]. The orthogonal property of Legendre polynomials

is defined as
∫ 1
−1 Pn(z)Pm(z)dz = 2

2n+1δnm, where δnm is the Kronecker delta. The shifted

Legendre polynomials are derived from Pn(z) by replacing z by 2t-1, denoted by Ln(t)
thereby refined interval is [0,1]. The orthogonal property of Ln(t) with Kronecker delta in
[0,1] is defined by ∫ 1

0 Ln(t)Lm(t)dt = 1
2n+1δnm.

Then (i) the recurrence relation of Ln(t) is defined as

Li+1 (t) =
(2i+ 1)(2t− 1)

i+ 1
Li (t)− i

i+ 1
Li−1 (t) , i = 1, 2..., (2)

where L0 (t) = 1 and L1 (t) = 2t− 1.
(ii) The analytic form of the shifted Legendre polynomials Ln(t) of degree n is given by

Ln (t) =
n∑
i=0

(−1)n+i (n+ i)!

(n− i)!
ti

(i!)2
. (3)

Note that Ln (0) = (−1)n and Ln (1) = 1.
(iii) The shifted Legendre vector L(t) is normally defined as

L(t) = [L0(t) L1(t) . . . LN (t)]T . (4)

(iv) the matrix form of L(t) which is of degree N can be represented as



1 0 . . . 0

(−1)1+0 (1+0)!
(1−0)!(0!)2

(−1)1+1 (1+1)!
(1−1)!(1!)2

. . . 0

(−1)2+0 (2+0)!
(2−0)!(0!)2

(−1)2+1 (2+1)!
(2−1)!(1!)2

. . . 0
...

...
...

...

(−1)N+0 (N+0)!
(N−0)!(0!)2

(−1)N+1 (N+1)!
(N−1)!(1!)2

. . . (−1)N+N (N+N)!
(N−N)!(N !)2




1
t
t2

...
tN

 . (5)

Thus

L(t) = DY (t) (6)

The dual matrix Q1 is given by

Q1 =

∫ 1

0
L(t)LT (t)dt =

∫ 1

0
DY (t)(DY (t))Tdt

= D

(∫ 1

0
Y (t)Y T (t)dt

)
DT (7)

= DHDT ,

where H, a Hilbert matrix of order (N+1) is given by
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H =

∫ 1

0
Y (t)Y T (t)dt =


1 1

2
1
3 . . . 1

N+1
1
2

1
3

1
4 . . . 1

N+2
1
3

1
4

1
5 . . . 1

N+3
...

...
...

. . .
...

1
N+1

1
N+2

1
N+3 . . . 1

2N+1

 .

Theorem 3.1. [34] Any function u(t) ∈ L2[0, 1] can be approximated in terms of Ln(t) as

u(t) =

∞∑
n=0

unLn(t), (8)

from which the coefficients uj are given by

uj = (2j + 1)

∫ 1

0
u(x)Lj(x)dx, j = 0, 1, .... (9)

If we approximate u(t) by the first N + 1 terms, then we can write

u(t) '
N∑
n=0

unLn(t) = UTL(t) = LT (t)U,

where U is the shifted Legendre coefficient vector given by

U = [u0 u1 . . . uN ]T .

We approximate the kernel function by truncating the Taylor series of degree N in the
form

k(s, t) =
N∑
m=0

N∑
n=0

kmns
mtn,

where kmn = 1
m!n!

∂m+nk(0,0)
∂sm∂tn , n,m = 0, 1, ..., N .

The matrix form of the above expression is given by k(s, t) = Y (s)KY T (t). Additionally,
the kernel function k(s, t) can be expanded approximately by Lm(s) and Ln(t) of degree
N in the form

kN (s, t) =

N∑
m=0

N∑
n=0

LkmnLm(s)Ln(t),

and the matrix form of k(s, t) in terms of L(s) and LT (t) is

k(s, t) = L(s)KLL
T (t),KL = Lkmn .

3.2. Operational Matrices. In the subsequent parts of this section, we construct the
operational matrices as follows. We define the product matrix Q(t), as

Q(t) = L(t)LT (t), (10)

where Q(t) is a matrix of order (N + 1). Let U = [u0 u1 . . . uN ]T , then

Q(t)U ' ÛL(t). (11)
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Û is called the product operational matrix of shifted Legendre polynomial which is calcu-
lated as

Q(t)U = D

[
N∑
i=0

uiLi(t)
N∑
i=0

uitLi(t) . . .
N∑
i=0

uit
nLi(t)

]T
. (12)

By approximating each tkLi(t) by LT (t)Ck,i, we get

Ck,i = [Ck,i0 Ck,i1 . . . Ck,iN ]T .

From Eq.(7) we have∫ t

0
tkLi(t)L(t)dt '

[∫ t

0
L(t)LT (t)dt

]
Ck,j = Q1Ck,j .

Therefore, for each i and k , we get

Ck,i ' Q−1
1

∫ t

0
tkL(t)Li(t)dt

= Q−1
1

[∫ t
0 t

kL0(t)Li(t)dt
∫ t

0 t
kL1(t)Li(t)dt . . .

∫ t
0 t

kLN (t)Li(t)dt
]T
.

Now the term
∑N

i=0 uit
kLi(t) can be computed as follows

N∑
i=0

uit
kLi(t) '

N∑
i=0

uiL
T (t)Ck,i

=
N∑
i=0

ui

N∑
j=0

Lj(t)C
k,i
j

=
N∑
j=0

Lj(t)
N∑
j=0

uiC
k,i
j

= LT (t)
[∑N

i=0 uiC
k,i
0

∑N
i=0 uiC

k,i
1 . . .

∑N
i=0 uiC

k,i
N

]T
= LT (t)[Ck,0 Ck,1 . . . Ck,N ]TU

= LT (t)Ĉk. (13)

where Ĉk = [Ck,0 Ck,1 . . . Ck,N ]U , k = 0, 1, 2 . . . N .

From Eqs.(12) and (13), we obtain Û = DL̂T . The integrals of Ln(s) are evaluated with
the aid of recurrence property of Ln(t)∫ t

0
Ln(s)ds =

1

2(2n+ 1)
[Ln+1(t)− Ln−1(t)]. (14)

Therefore, ∫ t

0
L(s)ds = PL(t)− 1

2(2n+ 1)
Ln+1(t), (15)
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where P is the matrix, which denotes the integration matrix of polynomials, given by

P =



1
2

1
2 0 0 . . . 0 0

−1
6 0 1

6 0 . . . 0 0
0 1

10 0 1
10 . . . 0 0

0 0 −1
14 0 . . . 0 0

...
...

...
...

...
...

0 0 0 0 . . . 0 1
2(2m−3)

0 0 0 0 . . . −1
2(2m−3) 0


. (16)

The integration of the vector L(t) can be approximated from Eq.(15)∫ t

0
L(s)ds ' PL(t). (17)

Hence any function f(t) can be approximated as∫ t

0
f(s)ds '

∫ t

0
F TL(s)ds = F TPL(t). (18)

3.3. Stochastic operational matrix of shifted Legendre polynomials. For the the
vector L(t), we define its Itô integral with stochastic operational matrix of integration Ps∫ t

0
L(s)dW (s) = PsL(t) (19)∫ t

0
L(s)dW (s) =

∫ t

0
DX(s)dW (s) (20)

= D
[∫ t

0 dW (s)
∫ t

0 sdW (s) . . .
∫ t

0 s
NdW (s)

]T
= D

[
W (t)Y (t)−

[
0

∫ t
0 dW (s) . . . N

∫ t
0 s

N−1dW (s)
]T ]

= Dϑ(t) = D(λi), i = 0, 1, ..., N,

where λi = tiW (t)−
∫ t

0 s
i−1W (s)ds, i = 0, 1, ..., N.

Evaluating the integral for each i, we get

λi = tiW (t)− ti

4 (2( t2)i−1W ( t2) + ti−1W (t)) = [(1− i
4)W (t)− i

2W ( t2)]ti.

We assume that W (0.5) and W (0.25) are the approximate value of W (t) and W ( t2)
respectively for any value of t ∈ [0, 1]. Hence Dϑ(t) is given by

Dϑ(t) = D Γs


1
t
...
tN

 ,

where

Γs =


W (0.5) 0 . . . 0

0 3
4W (0.5)− 1

2W (0.25) . . . 0
...

...
. . .

...
0 0 . . . (1− N

4 )W (0.5)− N
2N
W (0.25)

 .
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Hence, Dϑ(t) = DΓsY (t)= DΓsD
−1L(t)= PsL(t).

where Ps= DΓsD
−1.

By using Eqs.(8) and(17), the Itô integral of u(t) is defined as

∫ t

0
u(s)dW (s) =

∫ t

0
UTL(s)dW (s) = UTPsL(t). (21)

Let

φi(t) = Ni(t,X(t)), i = 1, 2. (22)

Using Eq.(1) in Eq.(22),

φi(t) = Ni(t, f(t) +

∫ t

0
k1(s, t)φ1(s)ds+

∫ t

0
k2(s, t)φ2(s)dW (s)), i = 1, 2. (23)

Approximating the above mentioned functions in terms of L(s) and LT (t) in the following
manner

f(t) ' LT (t)F (24)

ki(s, t) ' LT (t)KT
iLL(s), i = 1, 2. (25)

φi(t) ' LT (t)Φi, i = 1, 2. (26)

Here, F,Φ1,Φ2 are (N + 1) column vectors and K1L and K2L are
(N + 1)× (N + 1) matrices.
By substituting Eqs.(24) - (26) in Eq.(23), we have

LT (t)Φi(t) = Ni(t, L
T (t)F +

∫ t

0
LT (t)KT

1LL(s)LT (s)Φ1(s)ds+ (27)∫ t

0
LT (t)KT

2LL(s)LT (s)Φ2(s)dW (s)), i = 1, 2.

By using Eqs.(11, 17 and 19), Eq.(27) becomes

LT (t)Φi(t) = Ni(t, L
T (t)F + LT (t)kT1LΦ̂1PL(t) + LT (t)kT2LΦ̂2PsL(t)), i = 1, 2. (28)

We collocate Eq.(28) at (N + 1) points using the formula

ts =
2s+ 1

2(N + 1)
, s = 0, 1, . . . , N. (29)

Therefore,

LT (ts)Φi(t) = Ni(ts, L
T (ti)F + LT (ts)K

T
1LΦ̂1PL(ts) + LT (ts)K

T
2LΦ̂2PsL(ts)), (30)

where i = 1, 2. By collocating Eq.(30) at these N+1 points, we get a nonlinear system of
2(N+1) algebraic equations from which the coefficients can be obtained by using Newton’s
method.
Hence the approximate solution of Eq.(1) is obtained as

X(t) ' LT (t)F + LT (t)KT
1LΦ̂1PL(t) + LT (t)KT

2LΦ̂2PsL(t). (31)
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4. Theoretical Analysis

Let eN (t) = X(t) − XN (t) be the error function where XN (t) is the Nth degree ap-
proximation of the exact solution X(t). The error bound and convergence theorem for
the proposed method in terms of the function approximation and the error function are
discussed here.

Theorem 4.1. Let fN (t) be the function approximation of f(t) then the error bound is

given by ‖f(t)− fN (t)‖L2 ≤ CF̂ (2)−N , t ∈ [0, 1], where F̂ =
sup
t

∥∥f (N)(t)
∥∥
L2, C being a

constant.

Proof.

‖f(t)− fN (t)‖2 =

∫ t

0
(f(t)− fN (t))2dt

≤
∫ t

0

(
1

N !2N
F̂ dt

)2

=

(
1

N !2N
F̂

)2

= (CF̂2−N )2,

where C = 1
N ! and F̂ =

sup
t

∥∥f (N)(t)
∥∥ , t ∈ [0, 1]. �

Theorem 4.2. Let kN (s, t) be the shifted Legendre approximation of the function k(s, t)
then we have,
‖k(s, t)− kN (s, t)‖ ≤ ĈK̂(2)−2N ,

where Ĉ is a positive constant, K̂ =
sup
(s,t)

∥∥∥∂2nk(s,t)
∂sn∂tn

∥∥∥ , (s, t) ∈ [0, 1]× [0, 1].

Proof. Proof of this theorem is based on the assumptions and the steps followed in Theorem
4.1. �

Theorem 4.3. Let XN (t) be the approximate solution of the exact solution X(t) with
N1(s, t), N2(s, t) satisfying the Lipschitz condition

‖N1(s, t1)−N1(s, t2)‖+ ‖N2(s, t1)−N2(s, t2)‖ ≤ L ‖t1 − t2‖ . (32)

Also assume that
i)‖Φi(t)‖ ≤ ρi, t ∈ [0, 1]
ii)‖ki(s, t)‖ ≤Mi , for every (s, t) defined in the domain [0, 1]× [0, 1]
iii) G(N) < 1 for i=1,2
Then we have
I) ‖X(t)−XN (t)‖ ≤ η(N)+((M1+ψ(N))β1(N)+ψ(N)ρ1)+‖W (t)‖((M2+γ(N))β2(N)+γ(N)ρ2)

1−G(N)

II) Xn(t)→ X(t) in L2 when E
(
|eN (t)|2

)
→ 0 where η(N) = CF̂ (2)−N

λ(N) = Ĉ1(2)−2N

γ(N) = Ĉ2(2)−2N

βi(N) = CΦ̂i(2)−N .

Φ̂i = sup
∥∥∥Φ

(N)
i (t)

∥∥∥ n = 0, 1, 2, ... .

Proof. Proof of I) : Let φ̂i(s) be the approximate solution of φi(s) of Eq.(22) and Eq.(23)
respectively. Then we have

φ̂i(s) = N̂i(s,XN (s)), i = 1, 2 (33)
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and

φNi (s) = Ni(s,XN (s)), i = 1, 2. (34)

Hence by the above theorems, we have∥∥∥φi(s)− φ̂i(s)∥∥∥ ≤ ∥∥φi(s)− φNi (s)
∥∥+

∥∥∥φNi (s)− φ̂i(s)
∥∥∥ (35)

≤ L ‖X(s)−XN (s)‖+ βi(N), i = 1, 2.

Also the approximate of Eq.(1) is given as

XN (t) = fN (t) +

∫ t

0
k1N (s, t)φ̂1(s)ds+

∫ t

0
k2N (s, t)φ̂2(s)dW (s).

Hence, the norm of the error function is given by

‖X(t)−XN (t)‖ ≤ ‖f(t)− fN (t)‖+
∥∥∥k1(s, t)φ1(s)− k1N (s, t)φ̂1(s)

∥∥∥+ (36)

‖W (t)‖
∥∥∥k2(s, t)φ2(s)− k2N (s, t)φ̂2(s)

∥∥∥ .
By using Theorems 4.1, 4.2 and assumptions (i) and (ii) of Theorem 4.3, we have∥∥∥k1(s, t)φ1(s)− k1N (s, t)φ̂1(s)

∥∥∥ ≤ ‖k1(s, t)‖
∥∥∥φ1(s)− φ̂1(s)

∥∥∥+ (37)

‖k1(s, t)− k1N (s, t)‖
(∥∥∥φ1(s)− φ̂1(s)

∥∥∥+ ‖φ1(s)‖
)
.

∥∥∥k1(s, t)φ1(s)− k1N (s, t)φ̂1(s)
∥∥∥ ≤ (M1 + λ(N))L ‖X(t)−XN (t)‖+ (38)

(M1 + λ(N))β1(N) + λ(N)ρ1.

and ∥∥∥k2(s, t)φ2(s)− k2N (s, t)φ̂2(s)
∥∥∥ ≤ ‖k2(s, t)‖

∥∥∥φ2(s)− φ̂2(s)
∥∥∥+

‖k2(s, t)− k2N (s, t)‖
(∥∥∥φ2(s)− φ̂2(s)

∥∥∥+ ‖φ2(s)‖
)

∥∥∥k2(s, t)φ2(s)− k2N (s, t)φ̂2(s)
∥∥∥ ≤ (M2 + γ(N))L ‖X(t)−XN (t)‖+

(M2 + γ(N))β2(N) + γ(N)ρ2. (39)

Using Eq.(38) - Eq.(40) and assumption (iii) of Theorem 4.3, we have

‖X(t)−XN (t)‖ ≤ η(N) +H(N) + ‖W (t)‖ I(N)

1−G(N)
, (40)

where G(N) = L(M1 + λ(N))− ‖W (t)‖L(M2 + γ(N))
H(N) = ((M1 + λ(N))β1(N) + λ(N)ρ1)
I(N) = ((M2 + γ(N))β2(N) + γ(N)ρ2).

Proof of II) :

E
(
|eN (t)|2

)
= E

(
|X(t)−XN (t)|2

)
.

By using Theorems 8,9,10 and [21], we get

E
(
|X(t)−XN (t)|2

)
≤ P (N) + T (N)E

(
|X(t)−XN (t)|2

)
, (41)
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where

P (N) = 3η2(N) + 9(M1 + λ(N))2β2
1(N) + 9λ2(N)ρ2

1+

9 |W (t)|2 ((M2 + γ(N))2β2
2(N) + γ2(N)ρ2

2

and

T (N) = 9(M1 + λ(N))2L2 + 9 |W (t)|2 γ2(N)ρ2
2).

Hence from Eq.(41) and Gronwall inequality, we have E
(
|eN (t)|2

)
→ 0. �

4.1. Time complexity. This proposed method deals with matrix multiplication and solv-
ing a system of equations.

Theorem 4.4. Suppose that N and k are the degree of the approximate function X(t) and
the number of simulations, respectively, then the time complexity of this proposed method
is O(k(N + 1)2).

Proof. The key steps of the proposed method is presented as follows:
Step 1: Construct the approximate vector L(t).

Step 2: Compute the matrices D,K1L,K2L, Û , P,Γs, Ps.
Step 3: Compute column vectors F,Φ1,Φ2, Φ̂1, Φ̂2.
Step 4: Solve the nonlinear system of algebraic equations with respect to Φ̂1, Φ̂2.
This proposed method has 3 major steps of computation. Step 2 computes various matrix

multiplications which require O
(

(N + 1)2
)

time. Step 3 computes the column vectors

which require O (N + 1) time. Step 4 computes the system of equations and display

the approximate solution numerically. They require O
(

(N + 1)2
)

time. These steps are

executed k times. Hence, the overall time complexity of this proposed method is

O
(
k (N + 1)2

)
. �

5. Numerical examples

To illustrate the efficiency, effectiveness, and reliability of the proposed method, three
examples are carried out in this section. N and k represent the degree of the approximate
function and the number of simulations, respectively. The absolute error function is defined
by eN (t) = |X(t)−XN (t)|. All numerical computations have been performed on a PC by
running some programmes written in MATLAB software.

Example 1: We consider Eq.(1) with f(t) = 0.5, k1(s, t) = 1; k2(s, t) = 0.25;N1(s,X(s)) =
X(s)(1−X(s));N2(s,X(s)) = X(s) which governs the population growth model with ran-
dom variations[27].

The solution for X(t) is obtained by the method described in Section 3. The computa-
tional results for k=100 and N=12 together with exact solution

X(t) =
0.5exp(0.96875t+ 0.25W (t))

1 + 0.5
∫ t

0 exp(0.96875s+ 0.25W (s))ds

and solutions obtained by Euler and Bernoulli polynomial methods are shown in Figure
1. In table 1, the mean XE and standard deviation SE for N = 8 and k = 100 of the
absolute errors of X(t) along with their 0.95 confidence intervals are presented.

Example 2: The next example of stochastic integral equation [27] is

X(t) = 1 +

∫ t

0
X(s)(

1

32
−X2(s))ds+ 0.25

∫ t

0
X(s)dW (s), t ∈ [0, 1], (42)
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Figure 1. The Graph of Exact and Approximate solutions of Example 1.

Table 1. Mean, standard deviation and mean confidence interval for error
in Example 1

0.95 Confidence interval

t XE SE Upper bound Lower bound

0 0.00000000 0.00000000 0.00000000 0.00000000

0.1 0.00087763 0.000713461 0.001017468 0.000737792

0.2 0.00334325 0.001171731 0.003572909 0.003113591

0.3 0.00083653 0.000651001 0.000964126 0.000708934

0.4 0.00183873 0.000943614 0.002023678 0.001653782

0.5 0.00069749 0.0041099 0.00150303 0.00010805

0.6 0.01175867 0.00973704 0.01366713 0.00985021

0.7 0.01538657 0.00987085 0.017321257 0.013451883

0.8 0.01758945 0.009792239 0.019508729 0.015670171

0.9 0.02265037 0.009979387 0.02460633 0.02069441

1 0.02315769 0.009966322 0.025111089 0.021204291

The computational results of proposed approximation method along with exact solu-

tion X(t) = exp(0.25W (t))√
1+2

∫ t
0 exp(0.5W (s))ds

, Euler polynomials method and Bernoulli polynomials

method are shown in Figure 2 for N=12. Table 2 shows the absolute error between the
exact and Euler [27], Bernoulli [35] and proposed numerical solutions of Eq.(42) for the
various values of N.

Example 3: Consider the equation [36]

X(t) =
1

8
− 0.015625

∫ t

0
X(s)(1−X2(s))ds+ 0.125

∫ t

0
(1−X2(s)dW (s), t ∈ [0, 1], (43)
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Table 2. Error comparison for Example 2.

Euler [27] Bernoulli [35] Proposed Method

t \N 4 8 10 4 8 10 4 8 10

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0529 0.0251 0.0631 0.0070 0.0080 0.0043 0.0136 0.0089 0.0091

0.2 0.0289 0.0259 0.0386 0.0815 0.0792 0.0381 0.0087 0.0084 0.0093

0.3 0.0067 0.0306 0.0165 0.0297 0.0345 0.0056 0.0027 0.0085 0.0078

0.4 0.0159 0.0384 0.0043 0.0654 0.0686 0.0297 0.0079 0.0098 0.0009

0.5 0.0412 0.0487 0.0241 0.0371 0.0411 0.0123 0.0094 0.0099 0.0075

0.6 0.0725 0.0608 0.0431 0.0457 0.0098 0.0057 0.0356 0.0150 0.0079

0.7 0.1141 0.0742 0.0612 0.0395 0.0247 0.0083 0.0986 0.0259 0.0067

0.8 0.1714 0.0889 0.0787 0.0407 0.0354 0.0094 0.0998 0.0388 0.0389

0.9 0.2512 0.1055 0.0955 0.0397 0.0325 0.0089 0.1276 0.0543 0.0528

1.0 0.2578 0.1123 0.0989 0.0398 0.0337 0.0089 0.1288 0.0581 0.0531
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Figure 2. Numerical solutions of Example 2.

We compare the proposed numerical results and absolute errors of Eq.(43) with exact

solution X(t) =
9
8
exp(0.25W (t))− 7

8
9
8
exp(0.125W (t))+ 7

8

and other methods discussed in [27, 35] are shown in

Figure 3 and Table 3 respectively.
The key features of our proposed methodology are summarised as follows. The pro-

posed technique provides good approximation solution in less computational time than
the other methods reported in the literature. The superiority of the technique stands in
the amount of error caused which is very less when compared with other methods and
it can be inferred through figures. We also observe from the tables that the error values
fall within the upper bound discussed in the theoretical analysis. As the polynomials
utilized here are orthogonal, construction of operational matrices and the calculation of
connection coefficients involved in function approximation have been carried out in an
effortless manner.The various matrices of the approximate function and their nature are
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Figure 3. The Graph of Exact and Approximate solutions of Example 3.

Table 3. The absolute errors of the approximate solution for Example 3.

t \N 4 8 16

0.0 0.000000 0.000000 0.000000

0.1 0.034890 0.000103 0.000001

0.2 0.038752 0.000513 0.000005

0.3 0.035984 0.001103 0.000009

0.4 0.024618 0.000745 0.000007

0.5 0.027598 0.000134 0.000002

0.6 0.029475 0.000435 0.000003

0.7 0.030639 0.000127 0.000002

0.8 0.031736 0.000863 0.000008

0.9 0.032639 0.000574 0.000004

1.0 0.020788 0.000653 0.000006

utilized to convert the given equations into a system of algebraic equations.The advantage
of possessing the lower triangular and tridiagonal forms enable us to solve the problem in
a more accurate manner whereas when dealing with Euler polynomials, it seeks the help
of the Bernoulli polynomials thereby the amount of work involved is huge even though it
reduces to lower triangular system of equations. The implementation of shifted Legendre
polynomials is superior to the generalized hat functions, Bernoulli and Bernstein polyno-
mials as they have the weak form of sparse matrices which make the calculation process
very difficult. Some numerical methods, namely Euler, Euler - Maruyama, R-K method
and Milstein methods require the previous iteration values for pointwise solutions, whereas
this method does not require any such assigned values. It has the advantage of providing
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a more accurate solution with a lesser number of basis functions and these polynomials
are elementary to handle any type of stochastic differential equations.

6. Conclusion

This article deals with an efficient approximation technique for solving the nonlinear
stochastic integral equations that occur in the physical and biological sciences. The pro-
posed methodology is based on approximating the given function in terms of a linear
combination of unknown constants and the basis of the polynomials. The stochastic op-
erational matrices for the function approximation have been derived to solve the given
equation. The theoretical analysis has been carried out for the proposed methodology,
and the applicability of the method has been validated through some numerical examples.
The solution quality has been tested with other classical methods mentioned in the liter-
ature. From tables and figures, it can be observed that the amount of error gets reduced
by increasing the values of N, and at one such stage, it is on par with the original solution
obtained through traditional methods. This technique is easy to implement to solve other
stochastic differential equations since the original problem gets solved through the system
of algebraic equations.
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