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CRITICAL POINT RESULTS AND THEIR APPLICATIONS

I. SADEQI1∗, R. ZOHRABI1, F. Y. AZARI1, §

Abstract. The purpose of this paper is to study the concept of a critical point in
complete cone metric spaces and its application in Ekeland type variational principle.
For this, we consider the concept of a λ-space, which is weaker than a cone metric space
in general. Actually, we rectify some critical point results in λ-spaces, and complete cone
metric spaces. Indeed, we try to correct some gaps in some definitions and main results
of the previous works and apply them in the set valued case. Moreover, we give an
improved version of Ekeland type variational principle in complete cone metric spaces.
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1. Introduction

The Ekeland variational principle (EV P ) [1], as one of the most important results in
nonlinear analysis, has many applications in the geometry of Banach spaces, optimization,
variational inequalities, game theory, optimal control theory and other related issues;
see, for example, [2]-[8], and references therein. The relation between EV P and the
famous Bishop-Phelps theorem (BPT ) is studied in [9], which plays an essential role in
optimization problems. Dancs et al. [10] presented a critical point theorem in complete
metric spaces and proved EV P . Alleche and Radulescu [4] presented the equilibrium
version of EV P (EEV P ) in complete metric spaces. Ansari [2] extended EEV P for
vector valued functions in the setting of complete quasimetric spaces with a W -distance.
He established some equivalent results to EEV P for vector valued functions and also
established Caristi-Kirk fixed point theorem for multivalued maps [11] in a more general
setting. Al-Homidan et al. [12] established EEV P in the setting of quasimetric spaces
with a Q-function which generalizes the notions of τ -function and a w-distance [8]. They
proved some equivalences of EEV P with a fixed point theorem of Caristi-Kirk type for
multivalued maps [11] and some other related results. Sabetghadam and Masiha [13]
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of Mathematics, 2023; all rights reserved.

1551



1552 TWMS J. APP. ENG. MATH. V.13, N.4, 2023

defined the concept of generalized ϕ-pair mappings and proved some common fixed point
theorems for this type of mappings. Asadi and Soleimani [14] presented some fixed point
theorems for generalized contractions by altering distance functions in a complete cone
metric spaces endowed with a partial order. Tavakoli et al. [15] presented some examples in
order to show that the imagination of many authors that the behavior of ordering induced
by a strongly minihedral cone is just as the behavior of usual ordering on the real line, that
has caused an error in their proofs, is not correct. They established a relationship between
strong minihedrality and total orderness and, then a fixed point theorem for a contractive
mapping is investigated. Bae and Kim [16] used the critical point theorem to establish
EEV P for multi-valued bifunctions. They also investigated critical point theorems for the
continuously Gateaux differentiable functionals. Khanh and Quy [17] apply their results to
establish EEV P for the vector-valued mappings. In this paper, we consider the concepts
of λ-function and λ-space, which are respectively weaker than those of cone metric and
cone metric space. We rectify some critical point results in λ-spaces, and complete cone
metric spaces, improve by the results of Ekeland type variational principles. This article
intends not only to rectify some gaps in [18] but also improve the Ekeland type variational
principle.

2. preliminaries

Let E be a topological vector space, a non-empty subset P of E is called a convex
cone if P + P ⊆ P and λP ⊆ P for λ ≥ 0. A convex cone P is said to be pointed if
P ∩ (−P ) = {0}.
Remark 2.1. The definition of partial order ” ≤ ” with respect to P in [18] is not logically
correct and, which is rectified as follows. Also, to correct the conditions mentioned for real
topological vector space E in [18], it is necessary to add the condition intP 6= 0.

For a given nontrivial, pointed, closed and convex cone P in E, we define on E a partial
order ≤ with respect to P by x ≤ y iff y − x ∈ P. We write x < y to indicate that x ≤ y
but x 6= y (i.e. y − x ∈ P \ {0}), while x � y will stand for y − x ∈ intP , where intP
denotes the interior of P . In the case that E is a normed linear space, the nontrivial,
pointed, closed and convex cone P is called normal if there exists a number K > 0 such
that for all x, y ∈ E, 0 ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖. The least positive number K
satisfying the above inequality is called the normal constant of P .
Throughout this note, unless otherwise specified, we always assume that X is a non-empty
set, E is a real topological vector space with its zero 0, ordered by a nontrivial, pointed,
closed and convex cone P with intP 6= ∅ and λ : X ×X → E is a vector-valued function.
Denote by 2X the family of all subsets of X.

Definition 2.1. [19] Let X be a non-empty set. A vector-valued function d : X ×X → E
is said to be a cone metric, if the following conditions hold:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(d2) d(x, y) = d(y, x) for all x, y ∈ X,
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The set X with a cone metric d is called a cone metric space and denoted by (X, d).

Definition 2.2. [18] A vector-valued function λ : X ×X → E is said to be a λ-function
if for all x, y ∈ X, λ(x, y) ≥ 0. If x 6= y then λ(x, y) 6= 0.
A nonempty set X with a λ-function is called a λ-space, and denoted by (X,λ).

Remark 2.2. Obviously every cone metric space is a λ-space. The following example
shows that the converse is not true in general.
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Example 2.1. Let X = E = R and P = R+. Define λ : X ×X → E by

λ(x, y) = max{| x |, | y |}.

Then (X,λ) is a λ-space but (X,λ) is not a cone metric space. Because x = y doesn’t
imply λ(x, y) = 0 in general.

Remark 2.3. There are some gaps in the Definition (2.3) [18], which must be corrected
as follows in order to be applied in th proof of Theorem 3.1, 3.14, and Remark 4 in [18].

(i) A sequence {xn}n∈N in a λ-space (X,λ) is said to be:
(a) λ-Cauchy sequence (resp., quasi-λ-Cauchy sequence) if for every c ∈ E with

c� 0 (resp., c > 0), there exists a positive integer N such that λ(xn, xm)� c
(resp., λ(xn, xm) < c) for all n,m ≥ N ,

(b) λ-convergent (resp., quasi-λ-convergent) if there exists x ∈ X such that for
every c ∈ E with c � 0 (resp., c > 0), there exists a positive integer N such
that λ(xn, x)� c (resp., λ(xn, x) < c) for all n ≥ N . In this case, we say that
{xn} λ-converges (resp., quasi-λ-converges) to x in (X,λ), and we denote it

by xn
λ−→ x (resp., xn

q−λ−→ x). The point x ∈ X is called a λ-limit point
(resp., quasi-λ-limit point) of the sequence {xn},

(ii) A λ-space (X,λ) is said to be λ-complete (resp., quasi-λ-complete) if every λ-
Cauchy sequence (resp., quasi-λ-Cauchy sequence) is a λ-convergent (resp., quasi-
λ-convergent) sequence.

(iii) A subset D of a λ-space (X,λ) is said to be the following:
(a) λ-closed (resp., quasi-λ-closed) in (X,λ) if for every x ∈ X with a sequence
{xn} ⊂ D such that {xn} λ-converges (resp., quasi-λ-converges) to x in
(X,λ), then x ∈ D; the λ-closure of a set D in(X,λ) is the intersection
of all λ-closed sets containing D.

(b) λ-open (resp., quasi-λ-open) in (X,λ) if Dc = X \D (the complement of D
in X) is λ-closed (resp., quasi-λ-closed).

The following example shows that λ-limit (quasi-λ-limit) in the setting of λ-spaces is
not unique.

Example 2.2. Let E = R, P = R+ and X = [0, 1]. Define λ : X ×X → R+ by

λ(x, y) =

 y − x y ≥ x,
1 + y − x y < x but (x, y) 6= (1, 0),
1 (x, y) = (1, 0).

Then (X,λ) is a λ-space but not a cone metric space. Consider sequence { n
n+1} ⊆ [0, 1)

increasing to 1. Thus, both 1 and 0 are λ-limit (quasi-λ-limit) points of the sequence
{ n
n+1}. Indeed,

∀c ∈ R with c ∈ (0,∞) ∃N ≥ 0 s.t ∀n ≥ N , c− λ(
n

n+ 1
, 0) ∈ (0,∞)

and

∀c ∈ R with c ∈ (0,∞) ∃N ≥ 0 s.t ∀n ≥ N , c− λ(
n

n+ 1
, 1) ∈ (0,∞).

Therefore, λ-limit (quasi-λ-limit) in a λ-space (X,λ) is not always unique.

We provide an example to show that, unlike metric spaces and cone metric spaces, in

λ-spaces if x ∈ Aλ, then there is not necessarily {xn} ⊂ A such that xn
λ−→ x.
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Example 2.3. Let X = E = R and P = R+. Consider λ-space (X,λ), which

λ(x, y) = max{| x |, | y |}.

Then, 1
2 ∈ (0, 1)

λ
= [0, 1) but there is not exist a sequence {xn} ⊂ (0, 1) such that xn

λ−→ 1
2 .

Since, if xn
λ−→ 1

2 then

∀c ∈ R with c ∈ (0,∞) ∃N ≥ 0 s.t ∀n ≥ N, c−max{|xn|,
1

2
} ∈ (0,∞).

This leads to a contradiction.

Remark 2.4. (i) The statement ”We replace λ by d in Definition 2.3 (i) and (ii), we
obtain the definition of d-Cauchy Sequence and d-convergent sequence in a cone metric
space” in Remark 2.6 of [18], is not correct. So the corrected definitions of d-Cauchy
sequence and d-convergent sequence are following.

(a) If (X, d) is a cone metric space, and if we replace λ by d in the definition of λ-
Cauchy sequence and λ- convergent sequence, we obtain the definitions of d-Cauchy
sequence and d-convergent sequence in a cone metric space and the definition of a d-
complete cone metric space in [19], respectively. If there is no danger of confusion,
then we will not use d before these definitions.

(b) As it is proved in [19], every convergent sequence is a Cauchy sequence in a cone
metric space. However, this assertion is not true for a λ-convergent sequence in
(X,λ). For example, let X = E = R and P = R+. Define λ : X ×X → E by

λ(x, y) =

{
| x− y | if x=0 or y=0,
1 otherwise.

Then, {1/n} is a λ-convergent sequence with λ-limit 0, but it is not a λ-Cauchy
sequence.

(c) The family of λ-open (resp., quasi-λ-open) and λ-closed (resp., quasi-λ-closed)
sets, makes a topology on X which is weaker than the topology generated by quasi-
metric spaces and cone metric spaces.

(ii) Definition 2.7 in [18] has some fundamental logical defects. The mentioned definition
has been modified as follows. Let A be a non-empty subset of a λ-space (X,λ), {An} be
a sequence of non-empty subsets in (X,λ) and let δ : 2X → E be a map. We adopt the
following notations:

(i) δ(A) < c for some c ∈ E with c ≥ 0 if and only if λ(x, y) < c for all x, y ∈ A.
(ii) δ(A)� c for some c ∈ E with c ≥ 0 if and only if λ(x, y)� c for all x, y ∈ A.
(iii) ρ(A) = sup{‖ λ(x, y) ‖: x, y ∈ A} if E is a normed vector space with an ordered

cone P .

(iv) δ(An)
λ−→ 0 of the first type if for every c ∈ E with c > 0, there exists a positive

integer N such that δ(An) < c for all n ≥ N .

(v) δ(An)
λ−→ 0 of the second type if for every c ∈ E with c� 0, there exists a positive

integer N such that δ(An)� c for all n ≥ N .

(vi) δ(An)
λ−→ 0 of the first type w.r.t. {yn} ⊆ X if for every c ∈ E with c > 0, there

exists a positive integer N such that for each n ≥ N , we have λ(yn, u) < c for all
u ∈ An.

(vii) δ(An)
λ−→ 0 of the second type w.r.t. {yn} ⊆ X if for every c ∈ E with c � 0,

there exists a positive integer N such that for each n ≥ N , we have λ(yn, u) � c
for all u ∈ An.
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In order to continue, we recall the definitions of τ -functions and weak τ -functions.

Definition 2.3. [21] Let (X, d) be a metric space. A function p : X ×X → R+ is said to
be a τ -function if the following conditions hold:

(τ1) For all x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z);
(τ2) p(x, .) is R+-lower semicontinuous, for each x ∈ X ( if x ∈ X and {yn} in X with

limn→∞ yn = y and p(x, yn) ≤M for some M > 0 then p(x, y) ≤M);
(τ3) For any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, and if there

exists a {yn} in X such that limn→∞ p(xn, yn) = 0, then limn→∞ d(xn, yn) = 0;
(τ4) For x, y, z ∈ X, p(x, y) = 0, and p(x, z) = 0 imply y = z.

Lemma 2.1. [21] Let p be a τ -function on X × X. If a sequence {xn} in X with
limn→∞ sup{p(xn, xm) : m > n} = 0, then {xn} is a Cauchy sequence in X.

Definition 2.4. [18] Let (X, d) be a quasi metric space (i.e., symmetricity is not required).
A function p : X ×X → R+ is said to be a weak τ -function if the conditions (τ1), (τ3),
and (τ4) hold.

Remark 2.5. The definition of weak τ -functions on a metric space is given in [17].

Definition 2.5. [10] Let F : X → 2X be a multi-valued map. A point x ∈ X is said to be
a critical point of F if and only if F (x) = {x}.

Theorem 2.1. [18] Let (X, d) be a complete metric space and F : X → 2X satisfy the
following conditions

(i) F (x) is closed and x ∈ F (x) for all x ∈ X,
(ii) for all x, y ∈ X, y ∈ F (x) implies F (y) ⊆ F (x),
(iii) limn→∞ d(xn, xn+1) = 0 if xn+1 ∈ F (xn) for all n.

Then, there exists x̄ ∈ X such that F (x̄) = {x̄}.

3. Critical Point Theorems

Remark 3.1. Without correcting the definition of quasi-λ-Cauchy sequence and part(i)
of Defintion(2.7) in [18], it wouldn’t be possible to prove the following theorem.

Theorem 3.1. [18] Let (X,λ) be a quasi-λ-complete space, and let F : X → 2X be a
multi-valued map with non-empty quasi-λ-closed values. Assume that

(i) for all x, y ∈ X, y ∈ F (x) implies F (y) ⊆ F (x),

(ii) for every sequence {xn} with xn+1 ∈ F (xn), one has δ(F (xn))
λ−→ 0 of the first

type.

Then, for each x̂ ∈ X, there exists x∗ ∈ F (x̂) such that F (x∗) = {x∗} and λ(x∗, x∗) = 0.

Remark 3.2. When E = R, P = R+ and (X,λ) is a complete metric space, Theorem 3.1
reduces to Theorem 3.1 in [10].

Definition 3.1. [18] For a transitive relation < (i.e., x<y and y<z imply x<z) in a
topological space Y , we say that

(i) < is lower closed if for any <-monotone (i.e., · · · <xn< · · · <x2<x1) convergent
sequence xn −→ x one has x<xn for all n ∈ N,

(ii) a subset A ⊆ Y is <-complete if any Cauchy sequence in A (if the definition of
Cauchy sequence is given) which is <-monotone, converges to a point of A.

Remark 3.3. In Theorem 3.1, if (X,λ) is λ-complete then F has λ-closed values. But,
if (X,λ) is quasi-λ-complete, F has not necessarily quasi-λ-closed values.
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Lemma 3.1. [18] Let (X,λ) be a λ-space, and let E be a normed vector space with an
ordering cone P . Let {An} be a sequence of subsets of X such that An+1 ⊆ An for all

n ∈ N. Then, limn→∞ ρ(An) = 0 implies δ(An)
λ−→ 0 of the second type in (X,λ).

Moreover, the converse holds if P is a normal cone.

Lemma 3.2. [18] Let E be a normed vector space ordered by a normal cone P , then the
following statements are equivalent.

(i) {xn} is a λ-Cauchy sequence in (X,λ).
(ii) For every ε > 0, there exists a positive N such that ‖ λ(xi, xj) ‖< ε for all i, j ≥ N .

Remark 3.4. Obviously, if E is assumed to be a normed vector space with a normal
ordering cone P , (X,λ) is λ-complete (not necessarily quasi-λ-complete) and the values of
mapping F is λ-closed (not necessarily quasi-λ-closed). Then, condition (ii) of Theorem
3.1 can be replaced by the following.

(ii)′′ For every sequence {xn} with xn+1 ∈ F (xn),we have δ(F (xn))
λ−→ 0 of the second

type.

Now, we are ready to establish the corrected version of the critical point theorem in the
setting of cone metric spaces. First we present the theorem as it is stated and proved in
[18].

Theorem 3.2. [18] Let (X, d) be a complete cone metric space, E a normed vector space,
and F : X → 2X a multi-valued map with non-empty closed values. Assume that

(i) for all x, y ∈ X, y ∈ F (x) implies F (y) ⊆ F (x),
(ii) for every sequence {xn} with xn+1 ∈ F (xn), one has limn−→∞ ‖d(xn, xn+1)‖ = 0.

Then, for each x̂ ∈ X, there exists x∗ ∈ F (x̂) such that F (x∗) = {x∗}.

Proof. Without loss of generality, we may assume that for each x ∈ X, F (x) is bounded;
that is, ρ(F (x)) exists. For any given ε > 0 and any fixed element x̂ ∈ X, let x1 = x̂ and
choose x2 ∈ F (x1) such that

‖ d(x1, x2) ‖>
ρ(F (x1))

2
− ε

2
. (1)

Continuing in this way, we obtain a sequence {xn}n∈N such that xn+1 ∈ F (xn) and

‖ d(xn, xn+1) ‖>
ρ(F (xn))

2
− ε

2n
, ∀n ∈ N. (2)

Since limn−→∞ ‖d(xn, xn+1)‖ = 0 and ε is arbitrary positive number, we have

lim
n−→∞

ρ(F (xn)) = 0. (3)

By Lemma 3.2, sequence {xn}n∈N is a Cauchy sequence in (X, d). Since (X, d) is complete,
{xn} converges to some x∗ ∈ X. �

Remark 3.5. Since the main space is supposed to be partially ordered and also the notion
of boundedness is not given in [18], so it can not be applied to prove the results. Also,
for all n ∈ N, xn 6∈ F (xn), inequalities (1) and (2) are not satisfied; therefore, (3) is not
valid. On the other hand, since P is not a normal cone, Lemma 3.2 can not be applied.
Also, the limit of sequences in the cone metric spaces is unique, therefore, the above proof
is incorrect. Thus, we first define the notion of boundedness from above in a cone metric
space. Then, to ensure existence of ρ(F (x)), for all x ∈ X, assuming P is a normal
cone with K as normal constant and for all x ∈ X, F (x) is bounded above, we have the
following proof.
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Definition 3.2. [22] Let (X, d) be a cone metric space. Then A ⊂ X is called bounded
above if there exists c ∈ E, c� 0 such that d(x, y) ≤ c, for all x, y ∈ A.

What follows is the corrected version of the above theorem.

Proof. Without loss of generality, we may assume that for each x ∈ X, ρ(F (x)) exists.
For any given ε > 0 and any fixed element x̂ ∈ X, let x1 = x̂ and choose for all n ∈ N,
xn+1 ∈ F (xn) such that

‖ d(x2, x3) ‖ ≥
ρ(F (x1))

2
− ε

2

‖ d(x3, x4) ‖ ≥
ρ(F (x2))

2
− ε

22

...

‖ d(xn, xn+1) ‖ ≥
ρ(F (xn−1))

2
− ε

2n−1
, ∀n ∈ N. (4)

Since limn−→∞ ‖d(xn, xn+1)‖ = 0 and ε is arbitrary positive number, by taking the limit
of both sides (4), we have

0 ≥ lim
n−→∞

ρ(F (xn−1)) =⇒ lim
n−→∞

ρ(F (xn−1)) = 0

and since

ρ(F (xn)) = sup{‖d(x, y)‖ : x, y ∈ F (xn)} ≤ sup{‖d(x, y)‖ : x, y ∈ F (xn−1)} = ρ(F (xn−1)).

Limiting from both sides, we have

lim
n−→∞

ρ(F (xn)) ≤ 0 =⇒ lim
n−→∞

ρ(F (xn)) = 0.

By Lemma 3.2, sequence {xn}n∈N is a Cauchy sequence in (X, d). Since (X, d) is complete,
{xn} converges to x∗ ∈ X. By hypothesis, F (xn) is closed and F (xn+1) ⊆ F (xn) for all
n ∈ N. Then, x∗ ∈ F (xn) for all n ∈ N. Since limn−→∞ ρ(F (xn)) = 0, we have

∩n∈NF (xn) = lim
n−→∞

F (xn) = {x∗}.

Indeed, if there exists y ∈ ∩n∈NF (xn) with y 6= x∗. Then,

0 <‖ d(x∗, y) ‖≤ ρ(F (xn)), ∀n ∈ N (5)

Since ρ(F (xn)) −→ 0, thus by taking the limit from both sides in (5), we have ‖ d(x∗, y) ‖=
0 which this leads to a contradiction. Therefore,

∅ 6= F (x∗) ⊆ ∩n∈NF (xn) = {x∗},

and hence F (x∗) = {x∗}. �

Remark 3.6. If for each un ∈ {xn} with un+1 ∈ F (un) there exists n ∈ N such that

un ∈ {xn}n∈N \ {xn}n∈N, it can not be concluded that δ(F (un))
λ−→ 0 of the second type.

In addition, if for all n ∈ N the critical point of the map F (x∗ ∈ X) 6= xn then it is

possible x∗ /∈ {xn}; hence it is not possible to have x∗ ∈
⋂
n∈NAn; so the proof of second

part of Theorem (3.12) [18] is not true. Moreover, the following example shows that in
Theorem (3.12) [18], if the multi-valued map F has a critical point in X then (X,λ) is
not necessarily λ-complete.
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Example 3.1. Let E = R, P = R+ and X = [0, 1). Define λ : X ×X → E by

λ(x, y) =| x− y |,

then (X,λ) is a a λ-space. If we define a multi-valued map F on X by

F (x) =

{
[0, x] ifx 6= 0,
{0} ifx = 0,

then, all the conditions of Theorem (3.12) [18] are satisfied, and there exists a critical
point 0 of F in (X,λ) (F (0) = {0}). In addition, { n

n+1}n∈N is a λ-Cauchy sequence in

(X,λ), but since n
n+1

λ−→ 1 6∈ X, { n
n+1}n∈N is not λ-converges. Therefore, (X,λ) is not

λ-complete.

Corollary 3.1. [18] Let (X, d) be a cone metric space, E a normed space ordered by a
normal cone P , and F : X → 2X a multi-valued map with non-empty closed values in
(X, d). Suppose that

(i) for all x, y ∈ X, y ∈ F (x) implies F (y) ⊆ F (x),

(ii) for every sequence {xn} with xn+1 ∈ F (xn),one has δ(F (xn))
d−→ 0 of the second

type in (X, d),

Then, the multi-valued map F has a critical point in X if and only if X, d) is d-complete.

Remark 3.7. According to the above explanation and Example 3.1, if F as a multi-valued
map has a critical point in X, then X is not necessarily d-complete.

Now we present another critical point theorem that generalizes the main result in [17].

Remark 3.8. If we replaced the triangle inequality by the condition (iii) in Theorem 3.14

[18] and define δ(F (xn))
λ−→ 0 of the first type w.r.t. {yn} ⊆ X if for every c ∈ E with

c > 0, there exists a positive integer N such that for each n ≥ N , we have λ(yn, u) < c
and λ(u, yn) < c for all u ∈ An, then for each x̂ ∈ X, there exists x∗ ∈ F (x̂) such that
F (x∗) = {x∗}.

Proof. Let {xn} and {yn} be the sequences given by condition (ii). Since δ(F (xn))
λ−→ 0

of the first type w.r.t. {yn} in (X,λ), for every c ∈ E with c > 0, there exists a positive
integer N such that for n ≥ N , we have

λ(yn, u) <
c

2
and λ(x, yn) <

c

2
∀x, u ∈ F (xn).

According to the triangle inequality, for all x, y ∈ F (xn)

λ(x, u) ≤ λ(x, yn) + λ(yn, u) < c.

Therefore, δ(F (xn))
λ−→ 0 of the first type in (X,λ) and Theorem 3.1 is satisfied. Thus,

for each x̂ ∈ X, there exists x∗ ∈ F (x̂) such that F (x∗) = {x∗}. �

Lemma 3.3. Let (X,λ) be a λ-space, E a normed space ordered by a normal cone P with
normal constant K. Let {xn} be a sequence in X. If {xn} quasi-λ-converges to x, then
λ(xn, x) −→

‖.‖E
0 (n −→∞).

Proof. Suppose that {xn} quasi-λ-converges to x. For every real ε > 0, choose c ∈ E with
0 < c and K‖c‖ < ε. Then there is a positive integer N , for all n ≥ N , λ(xn, x) < c,
therefore, n ≥ N , ‖ λ(xn, x) ‖≤ K ‖ c ‖< ε. This means λ(xn, x) −→

‖.‖E
0 (n −→∞). �
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Remark 3.9. [18] The uniqueness assumption of the quasi-λ-limit in Theorem 3.14 [18]
holds if for each x ∈ X, one of the following conditions is satisfied:

(A) limn−→∞ λ(xn, x) = 0 implies limn−→∞ λ(x, xn) = 0 and for each y ∈ X, either
λ(x, y) ≤ λ(x, z) + λ(z, y) or λ(y, x) ≤ λ(y, z) + λ(z, x) for all z ∈ X,

(B) λ(x, x) = 0 and for each y ∈ X, λ(x, y) ≤ λ(z, x) + λ(z, y) for all z ∈ X.

Indeed, it is obvious that condition (B) implies the symmetricity of λ and thus implies
condition (A). If condition (A) holds and both x and y are quasi-λ-limit points of sequence

{xn}n∈N. We have λ(xn, x)
q−λ−→ 0 and λ(xn, y)

q−λ−→ 0. Further, either

λ(x, y) ≤ λ(x, xn) + λ(xn, y)
q−λ−→ 0 as n −→∞, (6)

or

λ(y, x) ≤ λ(y, xn) + λ(xn, x)
q−λ−→ 0 as n −→∞. (7)

In either cases, we have x = y.

In the proof of Remark 3.9, since λ(x, xn) and λ(y, xn) are not quasi-λ-converges to 0,
therefore, one cannot result in the relations

λ(x, y) ≤ λ(x, xn) + λ(xn, y)
q−λ−→ 0 as n −→∞, (8)

or

λ(y, x) ≤ λ(y, xn) + λ(xn, x)
q−λ−→ 0 as n −→∞. (9)

If we assume that in Remark 3.9, E is a normal vector space ordered by a normal cone P ,
then by Lemma 3.3 we will have the following correct version of the proof.

Proof. It is obvious that condition (B) implies the symmetricity of λ and thus implies
condition (A). If condition (A) holds and both x and y are quasi-λ-limit points of sequence
{xn}n∈N. By Lemma 3.3

λ(xn, x) −→
‖.‖E

0 and λ(xn, y) −→
‖.‖E

0.

By condition (A)

λ(x, xn) −→
‖.‖E

0 and λ(y, xn) −→
‖.‖E

0.

Further, either

λ(x, y) ≤ λ(x, xn) + λ(xn, y) −→ 0 as n −→∞, (10)

or

λ(y, x) ≤ λ(y, xn) + λ(xn, x) −→ 0 as n −→∞. (11)

In either cases, we have x = y. �

Remark 3.10. In the proof of Corollary 3.19 [18], we may have xn /∈ G(xn), in the
other words, since G(xn) ⊆ F (xn), we should get xn /∈ G(xn) which does not hold true
in general. Also, Theorem 3.14 [18] does not hold for the map G, because Condition (ii)
of the Theorem 3.14 [18] for G is established when {xn}n∈N is a sequence in (X, d) with

xn+1 ∈ G(xn) and for yn ∈ G(xn) there exists {yn}n∈N such that δ(G(xn))
d−→ 0 of the

first type w.r.t {yn}n∈N in (X, d). While in the proof of Theorem 3.14 [18], it is shown that

δ(G(xn))
d−→ 0 of the first type w.r.t {xn}n∈N in (X, d) and it is may that xn /∈ G(xn).

Also, according to Theorem 3.14 [18] it is necessary that (X, d) be complete and G have
closed values. In the following we give a short proof for Corollary Corollary 3.19 [18].
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Proof. According to condition (iii), x ∈
⋂
n∈N F (xn) for all n ∈ N. If w ∈

⋂
n∈N F (xn)

then according Condition (ii), limn−→∞ p(xn, w) = 0. Also, because of condition (i) we
have

lim
n−→∞

sup{p(xn, xm) : m > n} = 0.

So with replacing yn ≡ w in (iii) we have

lim
n−→∞

d(xn, w) = 0 =⇒ xn → w.

The uniqueness of the limit in the hypothesis result that w = x̄. Hence
⋂
n∈N F (xn) = {x}.

Moreover, if condition (iv) holds, then

0 6= F (x̄) ⊆
⋂
n∈N

F (xn) = {x̄} =⇒ F (x̄) = {x̄}.

�

4. Ekeland Type Variational Principles

Definition 4.1. [23] Let (X, d) be a metric space. An extended real-valued function f :
X → (−∞,+∞] is said to be lower semicontinuous from above (in short, lsca) at x0 ∈ X
if for any sequence {xn} in X with xn −→ x0 and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · ·
imply that f(x0) ≤ limn−→∞ f(xn). The function f is said to be lsca on X if f is lsca at
every point of X.

Definition 4.2. [18] Let E be a normed vector space ordered by a cone P . Then E is
called well-normed with respect to P if there exists S ∈ R+ such that

n∑
k=1

‖ vk ‖≤ S ‖
n∑
k=1

vk ‖ ∀n ∈ N, vk ∈ P ∀k ∈ N. (12)

The least positive number S satisfying inequality (12) is called well-normed constant of P .
Also, E satisfies condition (L) if for all n ∈ N,

∑n
k=1 vk ≤ v for some v ∈ E where

vk ∈ P, ∀ k ∈ N⇒ lim
n−→∞

‖ vn ‖= 0.

Example 4.1. For each n ∈ N, let Rn be ordered by the cone P = R+
n. Then, Rn is not

only well-normed with well norm constant s = 1 but also satisfies condition (L).

The following lemma plays an important role in this section.

Lemma 4.1. [18] Let X be a topological space, E a topological vector space ordered by a
cone P and G, H : X → 2E multi-valued maps with non-empty values. If G is a lower
(−P )-continuous map and H is an upper P -continuous map with compact values, then the
set S = {x ∈ X : G(x) ⊆ H(x) + P} is a closed.

Definition 4.3. [24] Let X be a non-empty set and E be a topological vector space ordered
by a cone P . A mapping F : X → 2E is said to be P -bounded from below if there exists
l ∈ E such that f(x) ⊆ l + P for all x ∈ X.

Now we present a version of Ekeland type variational principle in the setting of complete
cone metric spaces.

Remark 4.1. To apply Lemma 4.1 in the proof of Theorem (4.7) in [18], it is necessary
F be a multi-valued map with non-empty values. So, we will have the rectified theorem as
follows.
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Theorem 4.1. Let E be a well-normed vector space ordered by a normal cone P . Let
(X, d) be a complete cone metric space, and let f : X → 2E be a lower (−P )-continuous
multi-valued map with non-empty values, bounded from below by l. Then, for every ε > 0
and for every x̂ ∈ X, there exists x∗ ∈ X such that

(i) f(x∗) + εd(x∗, x̂) ≤ f(x̂),
(ii) εd(x∗, x) 6≤ f(x∗)− f(x) for all x ∈ X \ {x∗}.

Definition 4.4. [25] Let X be a topological space and E be a topological vector space
ordered by a cone P . A set-valued mapping F : X ×X → 2E is said to be bounded below
on X ×X, if there exists z ∈ E such that

F (x, y)− z ⊆ P, ∀x, y ∈ X
Remark 4.2. In the proof of Theorem 4.8 [18], to verify that each fixed x ∈ X, d(x, .)
is an upper P -continuous function on X, it is necessary that (X, .) to be continuous w.r.t
second component and F be a multi-valued maps with non-empty values.

If H(x) = X for all x ∈ X, then we deduce the following corollary from Theorem 4.8
[18].

Corollary 4.1. Let (X, d) be a complete cone metric space, E be a normed vector space
with an ordering normal cone P that satisfies condition (L),and let F : X × X → 2E

be multi-valued map with non-empty values. For each x ∈ X, suppose that the following
conditions hold:

(i) There exists y ∈ X such that F (x, y) + d(x, y) ⊆ −P ,
(ii) Either F (x, .) is bounded from below on X or ∩y∈XF (x, y) 6= ∅,
(iii) F (x, z) ⊆ F (x, y) + F (y, z)− P for all y, z ∈ X,
(iv) the map F (x, .), is lower P -continuous on X.

Then, for every ε > 0 and for every x̂ ∈ X, there exists x∗ ∈ X such that

(a) F (x̂, x∗) + εd(x̂, x∗) ⊆ −P
(b) F (x∗, x) + εd(x∗, x) 6⊆ −P for all x ∈ X \ {x∗}.

Definition 4.5. [20] Let p be a τ -function on X. A sequence {xn} in X is asymptotic by
p, if limn→∞ p(xn, xn+1) = 0.

As an application of Theorem 2.1, we improve Theorem 2.1 in [21] as follows.

Theorem 4.2. Let (X, d) be a metric space, f : X → R a lsca function and bounded from
below on X, ϕ : (−∞,∞] −→ R+ a nondecreasing function, and p a τ -function on X with
p(x, x) = 0 for all x ∈ X. Define a binary relation on X by

y<x⇐⇒ p(x, y) ≤ ϕ(f(x))(f(x)− f(y)).

Suppose that X is <-complete and H : X → 2X is a multi-valued map with nonempty
values which for each x ∈ X, there exists y ∈ H(x) such that p(x, y) ≤ ϕ(f(x))(f(x) −
f(y)). Then, for each u ∈ X, there exists v ∈ X such that

(i) p(v, y) > ϕ(f(v))(f(v)− f(y)) for all y ∈ X, y 6= v,
(ii) v ∈ H(v).

Proof. Define F (x) = {y ∈ X : y<x} for all x ∈ X. We construct sequence {xn} in F (x)
as following: putting x1 = u and choose xn+1<xn for all n ∈ N ({xn} is <-monotone).
Then, it is easy to verify that < is a transitive relation and hence condition (ii) of Theorem
2.1 is satisfied. Since p(x, x) = 0 for all x ∈ X, we have x ∈ F (x) for all x ∈ X. We first
prove that {xn} is a Cauchy sequence. Since xn+1<xn, we have

p(xn, xn+1) ≤ ϕ(f(xn))(f(xn)− f(xn+1))
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which implies that f(xn+1) ≤ f(xn) for each n ∈ N and so {f(xn)}n∈N is a decreasing
sequence. Also since f is bounded from below, limn−→∞ f(xn) exists. Let

r = lim
n−→∞

f(xn) = inf
n∈N

f(xn),

then r ≤ f(xn) for all n ∈ N. We claim that limn−→∞ sup{p(xn, xm) : m > n} = 0. Since
ϕ is nondecreasing, if m > n, then we have

p(xn, xm) ≤
m−1∑
j=n

p(xj , xj+1) ≤ ϕ(f(xn))(f(xn)− r) = αn

where αn = ϕ(f(xn))(f(xn) − r). Then 0 ≤ sup{p(xn, xm) : m > n} ≤ αn for all n ∈ N.
Since r ≤ f(xn) for all n ∈ N, we always have f(xn) − r ≥ 0 and limn−→∞ f(xn) = r
implying that {αn} is a sequence in [0,∞) converging to zero and

lim
n−→∞

sup{p(xn, xm) : m > n} = 0. (13)

Then by Lemma 2.1, {xn} is a Cauchy sequence in X.
By the <-completness of X, there exists z ∈ X such that limn−→∞ xn = z. Since f is lsca,
it follows that f(z) ≤ limn−→∞ f(xn) = r ≤ f(xk) for all k ∈ N. Let n ∈ N be fixed and
for all m ∈ N with m > n,we have

p(xn, xm) ≤
m−1∑
j=n

p(xj , xj+1) ≤ ϕ(f(xn))(f(xn)− f(z)).

From (τ2) ,we have

p(xn, z) ≤ ϕ(f(xn))(f(xn)− f(z)) for all n ∈ N

which implies that z<xn for all n ∈ N. Therefore, < is lower closed. Since

0 ≤ p(xn, xn+1) ≤ sup{p(xn, xm) : m > n}

by (13), we have limn−→∞ p(xn, xn+1) = 0 and thus, {xn} is asymptotic by p. Let yn =
xn+1 for all n ∈ N, we have limn−→∞ p(xn, yn) = 0. By (τ3), we obtain limn−→∞ d(xn, xn+1) =
0. Therefore, condition (iii) of Theorem 2.1 is satisfied and by Theorem 2.1, F has a crit-
ical point, that is, there exists v ∈ X such that F (v) = {v}. for all y ∈ X with y 6= v, we
have y 6∈ F (v), that is

p(v, y) 6≤ ϕ(f(v))(f(v)− f(y)) =⇒ p(v, y) > ϕ(f(v))(f(v)− f(y)).

Since v ∈ X, by the hypothesis, there exists wv ∈ H(v) such that

p(v, wv) ≤ ϕ(f(v))(f(v)− f(wv)).

Then wv = v. Indeed, if wv 6= v, then

p(v, wv) ≤ ϕ(f(v))(f(v)− f(wv)) < p(v, wv)

which leads to a contradiction. Hence v = wv ∈ H(v). �

5. Conclusions

In this paper, it is considered the λ-space which is weaker than a cone metric space
in general, and also some critical point results in λ-spaces are rectified. In addition, an
improved version of Ekeland type variational principle in complete cone metric spaces is
given.
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