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A SUBCLASS OF BI-UNIVALENT FUNCTIONS RELATED TO

SHELL-LIKE CURVES CONNECTED WITH FIBONACCI NUMBERS

ASSOCIATED WITH (p, q)-DERIVATIVE

P. NANDINI1∗, S. LATHA2, §

Abstract. In this paper, we define a new subclass of bi-univalent functions related to
shell-like curves connected with Fibonacci numbers by using (p, q)-derivative and the
coefficient estimates, Fekete-Szego inequalities are discussed for the functions belonging
to this class.
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1. Introduction

Let A be the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc D = {z ∈ C; |z| < 1} with normalization f(0) =
f ′(0)−1 = 0. By S we mean the class of all functions A which are univalent in D. Also let
P be the class of Carathéodory functions p : D → C of the form p(z) = 1 + c1z+ c2z

2 + ...,
z ∈ D such that <{p(z)} > 0. We say that f is subordinate to g in D, written as f ≺ g
provided there is an analytic function w in D with w(0) = 0 and |w(z)| < 1 such that
f(z) = g(w(z)). It follows from Schwarz Lemma that

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(D) ⊂ g(D), z ∈ D.
For 0 < q < p ≤ 1, the (p, q)-analogue of Jackson derivative [3] is given by

Dp,qf(z) =
f(pz)− f(qz)

(p− q)z
, z 6= 0.

1 Department of Mathematics, JSS Academy of Technical Education, Bengaluru - 560 060, India.
e-mail: pnandinimaths@gmail.com; ORCID: https://orcid.org/0000-0002-3151-5563.

∗ Corresponding author.
2 Department of Mathematics, Yuvaraja’s College, Mysuru-570005, India.

e-mail: drlatha@gmail.com; ORCID: https://orcid.org/0000-0002-1513-8163.
§ Manuscript received: August 05, 2021; accepted: November 5, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.4 © Işık University, Department
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Therefore for f as in (1), we have

Dp,qf(z) = 1 +
∞∑
n=2

[n]p,qanz
n−1,

where [n]p,q =
pn − qn

p− q
, (0 < q < p ≤ 1).

By the Köebe’s one quarter theorem [2], we know that the image of D under every
univalent function f ∈ A contains a disk of radius 1/4. Therefore, every univalent function
f has an inverse f−1 satisfying:
f−1(f(z)) = z, (z ∈ D) and f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1

4).
It is easy to see that the inverse function has the form

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ... (2)

A function f ∈ A is said to be bi-univalent in D if both f and its inverse map g = f−1

are univalent in D. Let Σ denote the class of bi-univalent functions in D given by the
Taylor’s-Macluarin series expansion (1).

For f ∈ A the class SL of shell-like functions which is the subclass of the class S∗ of
starlike functions was first introduced by Sokol [11], in 1999 as below

Definition 1.1. The function f ∈ A belongs to the class SL of starlike shell-like functions
if it satisfies the condition that

zf ′(z)

f(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

In the year 2011, Dziok et al. [4], introduced the class KSL of convex functions related
to a shell-like curves as follows:

Definition 1.2. The function f ∈ A belongs to the class KSL of convex shell-like functions
if it satisfies the condition that

1 +
zf ′′(z)

f ′(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

Again Dziok et al. [5] in the year 2011, defined the following class SLMα of α-convex
shell-like functions.

Definition 1.3. The function f ∈ A belongs to the class SLMα, (0 ≤ α ≤ 1) if it satisfies
the condition that

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

zf ′(z)

f(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

We note that SLM0 ≡ SL, SLM1 ≡ KSL and SLMα 6= KSL for α 6= 1.
The function p̃ is not univalent in D, but it is univalent in the disc |z| < (3−

√
5)/2 ≈ 0.38.

For example, p̃(0) = p̃
(−1

2τ

)
= 1 and p̃

(
e∓iarcos(1/4)

)
=
√

5
5 , and it may also be noticed that

1

|τ |
=

|τ |
1− |τ |

,
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which shows that the number |τ | divides [0, 1] such that it fulfils the golden section. The
image of the unit circle |z| = 1 under p̃ is a curve described by the equation given by

(10x−
√

5)y2 = (
√

5− 2x)(
√

5x− 1)2,

which is translated and revolved trisectrix of Maclaurin. The curve p̃(reit) is a closed
curve without any loops for 0 < r ≤ r0 = (3−

√
5)/2 ≈ 0.38. For r0 < r < 1, it has a loop

and for r = 1, it has a vertical asymptote. Since τ satisfies the equation τ2 = 1 + τ , this
expression can be used to obtain higher powers τn as a linear function of lower powers,
which in turn can be decomposed all the way down to a linear combination of τ and 1.
The resulting recurrence relationships yield Fibonacci numbers un:

τn = unτ + un−1.

In [8], taking τz = t, Raina and Sokol showed that

p̃(z) =
1 + τ2z2

1− τz − τ2z2
= 1 +

∞∑
n=1

(un−1 + un+1)τnzn,

where un =
(1− τ)n − τn√

5
, τ =

1−
√

5

2
, (n = 1, 2, ...).

This shows that the relevant connection of p̃ with the sequence of Fibonacci numbers un,
such that u0 = 0, u1 = 1, un+2 = un + un+1 for n = 0, 1, 2, ... .
Hence

p̃(z) = 1 + τz + 3τ2z2 + 4τ3z3 + ...

Motivated by these works we define a new subclass of bi-univalent functions related to
shell-like curves connected to Fibonacci number using (p, q)- derivative.

Definition 1.4. For 0 < q < p ≤ 1 and 0 ≤ α ≤ 1, a function f ∈ Σ given by (1) is
said to be in the class SLMα,Σ(p, q, p̃(z)) if it satisfies the following conditions:

(1− α)zDp,qf(z) + αzDp,q(zDp,qf(z))

(1− α)f(z) + αzDp,qf(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
(3)

and
(1− α)wDp,qg(w) + αwDp,q(wDp,qg(w))

(1− α)g(w) + αwDp,qg(w)
≺ p̃(w) =

1 + τ2w2

1− τw − τ2w2
, (4)

where where τ = (1−
√

5)/2 ≈ −0.618, g = f−1 given by (2) and z, w ∈ D.

Specializing the parameter α = 0 and α = 1 we have the following respectively:

Definition 1.5. A function f ∈ Σ of the form(1) is said to be in the class SLΣ(p, q, p̃(z))
if it satisfies the following conditions:

zDp,qf(z)

f(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2

and
wDp,qg(w)

g(w)
≺ p̃(w) =

1 + τ2w2

1− τw − τ2w2
,

where τ = (1−
√

5)/2 ≈ −0.618, g = f−1 given by (2) and z, w ∈ D.

Definition 1.6. A function f ∈ Σ of the form (1) is said to be in the class KSLΣ(p, q, p̃(z))
if it satisfies the following conditions:

Dp,q(zDp,qf(z))

Dp,qf(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
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and
Dp,q(wDp,qg(w))

Dp,qg(w)
≺ p̃(w) =

1 + τ2w2

1− τw − τ2w2
,

where τ = (1−
√

5)/2 ≈ −0.618, g = f−1 given by (2) and z, w ∈ D.

Remarks 1.1.

(i) SLM0,Σ(1, q, p̃(z)) = q−SLΣ and SLM1,Σ(1, q, p̃(z)) = q−KSLΣ, the classes of
q-bi-univalent functions established by Ahuja [1].

(ii) SLMα,Σ,(1, 1, p̃(z)) = SLM(α,Σ)(p̃(z)), the class of bi-univalent functions defined
by Gurmeet Singh [9].

(iii) SLM0,Σ,(1, 1, p̃(z)) = SLΣ(p̃(z)) and SLM1,Σ,(1, 1, p̃(z)) = KSLΣ(p̃(z)) the classes
of bi-univalent functions studied by Guney [6].

In order to prove our results we need the following lemma.

Lemma 1.1. [7] If p ∈ P with p(z) = 1 + c1z + c2z
2 + ..., then

|cn| ≤ 2, n ≥ 1.

In the next section we obtain the initial Taylor coefficients |a2| and |a3| for the function
class SLMα,Σ(p, q, p̃(z)). Later we will reduce these bounds to other classes for special
cases.

2. Coefficient estimates

Theorem 2.1. For 0 < q < p ≤ 1, 0 ≤ α ≤ 1 , let f ∈ SLMα,Σ(p, q, p̃(z)). Then

|a2| ≤
|τ |√

|(η − ψ)τ + (1− 3τ)ζ|
(5)

and

|a3| ≤
|τ | {|(η − ψ)τ + (1− 3τ)ζ|+ η|τ |}

η|(η − ψ)τ + (1− 3τ)ζ|
, (6)

where
η = ([3]p,q − 1) [1 + α([3]p,q − 1)] , (7)

ψ = ([2]p,q − 1) [1 + α([2]p,q − 1)]2 , (8)

ζ = ([2]p,q − 1)2 [1 + α([2]p,q − 1)]2 . (9)

Proof. Let f be given by (1). As f ∈ SLMα,Σ(p, q, ˜p(z)), so by definition 1.4 and using
the concept of subordination, there exists Schwarz functions u, v : D → D with u(0) =
0 = v(0), such that

(1− α)zDp,qf(z) + αzDp,q(zDp,qf(z))

(1− α)f(z) + αzDp,qf(z)
= p̃(u(z)) (10)

and
(1− α)wDp,qg(w) + αwDp,q(wDp,qg(w))

(1− α)g(w) + αwDp,qg(w)
= p̃(v(w)). (11)

Now define the function,

h(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + c3z
3 + ...

Then

p̃(u(z)) = 1 +
c1

2
τz +

1

2

(
c2 −

c2
1

2
+

3c2
1

2
τ

)
τz2 + ... (12)
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Similarly we define the function,

k(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + d3w
3 + ...

Then

p̃(v(w)) = 1 +
d1

2
τw +

1

2

(
d2 −

d2
1

2
+

3d2
1

2
τ

)
τw2 + ... (13)

and by considering the LHS of (10) and (11), we have

(1− α)zDp,qf(z) + αzDp,q(zDp,qf(z))

(1− α)f(z) + αzDp,qf(z)

=1 + ([2]p,q − 1) (1 + α([2]p,q − 1)) a2z+{
([3]p,q − 1) (1 + α([3]p,q − 1)) a3 − ([2]p,q − 1) (1 + α([2]p,q − 1))2 a22

}
z2 + ...

and
(1− α)wDp,qg(w) + αwDp,q(wDp,qg(w))

(1− α)g(w) + αwDp,qg(w)

=1− ([2]p,q − 1) (1 + α([2]p,q − 1)) a2w+{
2([3]p,q − 1)

(
1 + α([3]p,q − 1)− ([2]p,q − 1)(1 + α([2]p,q − 1))2

)
a2

2

−([3]p,q − 1) (1 + α([3]p,q − 1)) a3}w2 + . . .

Using (12),(13) and the above two equations in (10) and (11) and equating the coefficients
of z, z2, w and w2 we get

([2]p,q − 1)(1 + α([2]p,q − 1))a2 =
c1

2
τ, (14)

([3]p,q − 1) (1 + α([3]p,q − 1)) a3 −
{

([2]p,q − 1) (1 + α([2]p,q − 1))2
}
a2

2

=
1

2

(
c2 −

c2
1

2

)
τ +

3c2
1

4
τ2,

(15)

−([2]p,q−1)(1 + α([2]p,q − 1))a2 =
d1

2
τ, (16)

and {
2([3]p,q − 1)

(
1 + α([3]p,q − 1)− ([2]p,q − 1)(1 + α([2]p,q − 1))2

)}
a2

2

− {([3]p,q − 1) (1 + α([3]p,q − 1))} a3 =
1

2

(
d2 −

d2
1

2

)
τ +

3d2
1

4
τ2.

(17)

From (14) and (16), we have

c1 = −d1 (18)

and also

2 ([2]p,q − 1)2 (1 + α([2]p,q − 1))2 a2
2 =

(c2
1 + d2

1)τ2

4
(19)

a2
2 =

(c2
1 + d2

1)τ2

8([2]p,q − 1)2(1 + α([2]p,q − 1))2
. (20)

Adding (15) and (17), we get

2
{

([3]p,q − 1)(1 + α([3]p,q − 1))− ([2]p,q − 1)(1 + α([2]p,q − 1))2
}
a2

2

=
1

2
(c2 + d2)τ − 1

4
(c2

1 + d2
1)τ +

3

4
(c2

1 + d2
1)τ2

. (21)
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Using (20) in the above equation, we get

4a2
2 =

(c2 + d2)τ2

[(η − ψ)τ + (1− 3τ)ζ]
, (22)

where η, ψ and ζ are given by (7), (8) and (9) respectively. Using Lemma 1.1, we obtain
the required inequality for |a2|.
To find |a3| first we subtract (17) from (15) and then by using (18), we get

2([3]p,q − 1) [1 + α([3]p,q − 1)] (a3 − a2
2) =

1

2
(c2 − d2)τ

a3 =
(c2 − d2)τ

4([3]p,q − 1) [1 + α([3]p,q − 1)]
+ a2

2. (23)

Now by using (22) in (23) and Lemma 1.1, we get the coefficient bound for |a3|.
�

If we can take the parameter α = 0 and α = 1 in the above theorem, we have the
following the initial Taylor coefficients |a2| and |a3| for the function classes SLΣ(p, q, p̃(z))
and KSLΣ(p, q, p̃(z)), respectively.

Corollary 2.1. For 0 < q < p ≤ 1, let f ∈ SLΣ(p, q, p̃(z)).Then

|a2| ≤
|τ |√

|([3]p,q − [2]p,q)τ + (1− 3τ)([2]p,q − 1)2|
and

|a3| ≤
|τ |
{
|([3]p,q − [2]p,q)τ + (1− 3τ)([2]p,q − 1)2|+ ([3]p,q − 1)|τ |

}
([3]p,q − 1)|([3]p,q − [2]p,q)τ + (1− 3τ)([2]p,q − 1)2|

.

Corollary 2.2. For 0 < q < p ≤ 1, let f ∈ KSLΣ(p, q, p̃(z)). Then

|a2| ≤
|τ |√

|([3]p,q([3]p,q − 1)− [2]2p,q([2]p,q − 1))τ + (1− 3τ)[2]2p,q([2]p,q − 1)2|

and

|a3| ≤
|τ |
{
|([3]p,q([3]p,q − 1)− [2]2p,q([2]p,q − 1))τ + (1− 3τ)[2]2p,q([2]p,q − 1)2|+ |[3]p,q([3]p,q − 1)τ |

}
[3]p,q([3]p,q − 1)|([3]p,q([3]p,q − 1)− [2]2p,q([2]p,q − 1))τ + (1− 3τ)[2]2p,q([2]p,q − 1)2| .

Remark 2.1. For p = 1, α = 0 and p = 1, α = 1, Theorem 2.1 gives the initial Taylor
coefficients |a2| and |a3| for the function classes q−SLΣ and q−KSLΣ, respectively defined
by Ahuja [1].

Letting p = 1 and q → 1 in Theorem 2.1 we obtain the following result.

Corollary 2.3. If f ∈ SLM(α,Σ)(p̃(z)), then

|a2| ≤
|τ |√

(1 + α)2 − (2 + 4α+ 4α2)τ

and

|a3| ≤
|τ |
[
(1 + α)2 − (4 + 8α+ 4α2)τ

]
2(1 + 2α) [(1 + α)2 − (2 + 4α+ 4α2)τ ]

.

Remark 2.2. For p = 1, q → 1, α = 0 and p = 1, q → 1, α = 1, Theorem 2.1 gives
the initial coefficients |a2| and |a3| for the function classes SLΣ(p̃(z)) and KSLΣ(p̃(z)),
respectively defined by Guney [6].

In the next section we obtain the Fekete-Szego inequalities for the function class
SLMα,Σ(p, q, p̃(z)).
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3. Fekete-Szego inequality

Theorem 3.1. Let f given by (1) be in the class SLMα,Σ(p, q, p̃(z)) and µ ∈ R. Then

|a3 − µa2
2| ≤


|τ |
η , |µ− 1| ≤ |τ(η − ψ) + (1− 3τ)ζ|

|τ |η
|µ− 1||τ |2

|τ(η − ψ) + (1− 3τ)ζ|
, |µ− 1| ≥ |τ(η − ψ) + (1− 3τ)ζ|

|τ |η
,

where η, ψ and ζ are given by (7),(8) and (9) respectively.

Proof. From (22) and (23), we obtain

a3 − µa2
2 =

(
h(µ) +

τ

4 (([3]p,q − 1)(1 + α([3]p,q − 1)))

)
c2+(

h(µ)− τ

4 (([3]p,q − 1)(1 + α([3]p,q − 1)))

)
d2

(24)

=

(
h(µ) +

τ

4η

)
c2 +

(
h(µ)− τ

4η

)
d2

where

h(µ) =
(1− µ)τ2

4 ((η − ψ)τ + (1− 3τ)ζ)
.

By taking modulus of (24) and using Lemma 1.1, we get

|a3 − µa2
2| ≤

{ |τ |
η , |h(µ)| ≤ |τ |4η

4|h(µ)|, |h(µ)| ≥ |τ |4η .
.

This gives the desired result. �

Taking µ = 1, we have the following result.

Corollary 3.1. If f ∈ SLMα,Σ(p, q, p̃(z)), then

|a3 − a2
2| ≤

|τ |
η
.

If we can take the parameter α = 0 and α = 1 in the above theorem,we have the follow-
ing Fekete-Szego inequality for the function classes SLΣ(p, q, p̃(z)) and KSLΣ(p, q, p̃(z)),
respectively.

Corollary 3.2. Let f given by (1) be in the class SLΣ(p, q, p̃(z)) and µ ∈ R. Then

|a3−µa22| ≤


|τ |

([3]p,q−1)
, |µ− 1| ≤ |τ([3]p,q − [2]p,q) + (1− 3τ)([2]p,q − 1)2|

|τ |([3]p,q − 1)
|µ− 1||τ |2

|τ([3]p,q − [2]p,q) + (1− 3τ)([2]p,q − 1)2| , |µ− 1| ≥ |τ([3]p,q − [2]p,q) + (1− 3τ)([2]p,q − 1)2|
|τ |([3]p,q − 1)

.

Corollary 3.3. Let f given by (1) be in the class KSLΣ(p, q, p̃(z)) and µ ∈ R. Then

|a3 − µa2
2| ≤


|τ |
A , |µ− 1| ≤ |B|

|τ |A
|µ−1||τ |2
|B| , |µ− 1| ≥ |B|

|τ |A
,

where A = [3]p,q([3]p,q − 1) and
B = τ

(
[3]p,q([3]p,q − 1)− [2]2p,q([2]p,q − 1)

)
+ (1− 3τ)[2]2p,q([2]p,q − 1)2.
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For p = 1 and q → 1 Theorem 3.1 agrees with the following result proved by Gurmeet
Singh [9], (see Theorem 3):

Corollary 3.4. If f ∈ SLM(α,Σ)(p̃(z)) and µ ∈ R. Then

|a3 − µa2
2| ≤


|τ |

2(1 + 2α)
, |µ− 1| ≤

[
(1 + α)2 − (2 + 4α+ 4α2)τ

]
2(1 + 2α)|τ |

|(1− µ)|τ2

[(1 + α)2 − (2 + 4α+ 4α2)τ ]
, |µ− 1| ≥

[
(1 + α)2 − (2 + 4α+ 4α2)τ

]
2(1 + 2α)|τ |

.

Remark 3.1. For p = 1, q → 1, α = 0 and p = 1, q → 1, α = 1, Theorem 3.1 gives the
Fekete-Szego inequality for the function classes SLΣ(p̃(z)) and KSLΣ(p̃(z)) respectively,
defined by Guney [6].
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