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Abstract: Road maintenance is crucial for ensuring safety and government compliance, but manual
measurement methods can be time-consuming and hazardous. This work proposes an automated
approach for road inventory using a deep learning model and a 3D point cloud acquired by a low-cost
mobile mapping system. The road inventory includes the road width, number of lanes, individual
lane widths, superelevation, and safety barrier height. The results are compared with a ground truth
on a 1.5 km subset of road, showing an overall intersection-over-union score of 84% for point cloud
segmentation and centimetric errors for road inventory parameters. The number of lanes is correctly
estimated in 81% of cases. This proposed method offers a safer and more automated approach to
road inventory tasks and can be extended to more complex objects and rules for road maintenance
and digitalization. The proposed approach has the potential to pave the way for building digital
models from as-built infrastructure acquired by mobile mapping systems, making the road inventory
process more efficient and accurate.

Keywords: road inventory; road parameters; mobile mapping system; 3D point cloud processing;
deep learning

1. Introduction

Roads are the main and most used land communication axes, accounting for 71.8%
of inland transport in EU-27 [1]. Road maintenance is therefore of the utmost importance
to the relevant management authorities. However, the road infrastructure maintenance
investments have been decreasing significantly since 2008, resulting in the deterioration of
the road network as well as additional costs, which increase exponentially as road assets
deteriorate [1]. To ensure infrastructure conservation and compliance with road users’
safety standards [2,3], government and local authorities must regularly measure, map,
and inventory road infrastructures. However, manual approaches disrupting traffic are
time-consuming and increase the risk of accidents with material or human consequences.
Road work zones remain dangerous, which led the European Union Road Federation (ERF)
to launch a program in 2014 to raise awareness among governments and standardize road
work zones in European countries to increase safety during road works [4].

In response, mobile mapping systems (MMS) have gained popularity, benefiting
from being safer and faster than conventional approaches, since they are dynamic remote
sensing techniques that do not disturb the traffic flow. In fact, there is a wide range of
applications that can use the same acquisition: from road markings detection [5–7], road
boundary estimation [8], and automatic retro reflectivity measures on road signs [9,10], to
road inventory [11,12]. The prospect of an automatic road inventory workflow paves the
way for the digitization of roads, marking a step forward in the possibility of modeling

Remote Sens. 2023, 15, 1351. https://doi.org/10.3390/rs15051351 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15051351
https://doi.org/10.3390/rs15051351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4383-9386
https://orcid.org/0000-0002-8949-4216
https://doi.org/10.3390/rs15051351
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15051351?type=check_update&version=1


Remote Sens. 2023, 15, 1351 2 of 20

existing roads with the emergence of building information modeling (BIM) applications.
The standardization of information regarding transportation infrastructure domains is
already being studied by buildingSMART to comply with industry foundation classes (IFC)
standards [13]. Indeed, roads present a specific challenge as existing road networks exhibit
a heterogeneous level of detail and information.

The purpose of this work is to analyze an automated method for road inventory of
a 3D point cloud acquired with a low-cost MMS. This method includes the road width,
the number and width of individual lanes, the superelevation, the width of the pavement
shoulders, and the barrier height when present. Previous works have proposed various
methodologies for road inventory: Holgado-Barco et al. proposed a heuristic method based
on the segmentation, classification, and extraction of road markings through intensity
thresholding and clustering of discontinuous road lines [12]. Then, an estimation of road
parameters, except for barrier height, is performed using PCA and specific thresholds.
However, it did not use the road centerline and was limited to highway study cases.
Vidal et al. [14] performed segmentation and classification of barrier types on 3D point
clouds using an intensity threshold to isolate road markings and fit a plane to the road. Then,
a DBSCAN clustering allows distinguishing barriers among non-ground points. However,
it focuses on security barriers and does not use more complex semantic segmentation
applied to different objects. Regarding road tilt, Gargoum et al. performed a detailed
estimation of superelevation for water drainage and roadside slopes on road cross sections
of an Alaskan highway [15].

These works highlight the importance of the automatic estimation of various elements
surrounding road infrastructures. Being able to make an inventory of road assets is a
crucial step to building an accurate digital representation of roads in an automated way.
In the context of road parametrization, Soilán et al. [16] proposed a method to extract
the road centerline and the geometric features of the road in a format compliant with
industry foundation classes (IFC) standards. To this end, the 3D point cloud is semantically
segmented using a deep learning approach based on Point Transformer [17]. The point
cloud is divided into four classes, including road asphalt and markings. Then, the road
centerline is extracted, and a robust curvature estimate is applied. The curvature is used to
classify the uniformly sampled points into three geometric classes according to the horizon-
tal alignment of the road (i.e., straight lines, circulars, and clothoids) whose parameters
are calculated.

Che et al. [18] developed a new specific structure called scan pattern grid as a pre-
processing step for features extraction and point cloud segmentation. Scan lines are used
to reconstruct the vehicle trajectory, then points are projected onto a 2D plan where rows
correspond to a scan angle while columns represent a timestamp of the acquisition. This
parametrization allows curved roads to be represented as a straight line. However, this
method has only been tested on a one-way acquisition and is not directly applicable to a
round-trip acquisition.

An essential step in the extraction of information in road applications is to isolate
the elements of interest. In this regard, semantic segmentation addresses this problem by
assigning a semantic class to each point in the case of a point cloud, allowing operations
to be applied only to the desired elements. Semantic segmentation can be achieved by
geometric considerations and thresholds, or by machine learning algorithms, such as
random sample consensus (RANSAC) and region-growing [19]. Vidal et al. [14] used a
scan angle threshold to isolate the road and characterized the density and verticality of the
point clouds to extract safety barriers from the road environment.

An increasingly popular approach relies on deep learning models to segment point
clouds [20]. Deep learning research on semantic segmentation for point clouds took a
large step forward with the release of PointNet in 2016 [21] as the first model able to
directly process raw point clouds without the need for additional 2D information or
additional transformations. Since then, great efforts have been made to improve results
on benchmark datasets, such as S3DIS [17,20–24]. Point Transformer [17] is a modern
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architecture published in 2021, based on self-attention layers using a concept analogous to
queries, keys, and values to enrich the input with contextual information. This structure
has proven effective and increasingly popular in natural processing languages tasks [25]
before being successfully applied to point cloud semantic segmentation, achieving state-of-
the-art results.

Deep learning has been successfully employed for the segmentation of 3D point
clouds of infrastructure features. In [26], road surface objects are segmented to extract
features from the road surface and road markings. However, the information is processed
using 2D images resulting from the projection of the 3D data. Ma et al. [27] focus on the
road pavement, developing a graph convolution network for pavement crack extraction.
While the network obtains good results, the applicability is limited to a single road feature.
In [28], PointNet++ is used to extract road footprints from airborne LiDAR point clouds in
urban areas. The main drawback of airborne data is that it is not possible to extract road
parameters or assets that require better data resolution.

In this context, the motivation of this work is to explore the possibilities of the semantic
classification of 3D point clouds to support road inventory tasks. To this end, this work
proposes the following contributions:

1. Exploit a particular version of a deep learning model based on Point Transformer
architecture for the semantic segmentation of 3D point clouds of road environments;

2. Use the road centerline to divide roads into cross sections and develop an algorithm
to build a rectified road model from a round-trip MMS acquisition to facilitate its
parametrization;

3. Integrate robust methods to estimate road parameters (i.e., road width, lane number
and width, road shoulders width and barrier height).

The remaining work is organized as follows. Case study data are presented in Section 2.
Section 2 also describes the methodology which consists of three main steps: (1) point
cloud segmentation and road centerline, (2) cross sections and construction of the rectified
road model, and (3) geometric inventory of the road for each cross section. The results are
presented in Section 3 and discussed in Section 4. Finally, the conclusions and future lines
of work are presented in Section 5.

2. Materials and Methods

This part is composed of a subsection describing the materials used for acquisition
and three methodological subsections, which are schematized in Figure 1. First, a Point
Transformer model is trained to perform semantic segmentation on the 3D point cloud.
Second, the segmented point cloud is rectified to produce road cross sections that ease the
road parameterization process. Finally, different parameters derived from the road layout
(lanes, shoulders, barriers, superelevation) are extracted as the output of this methodology.
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2.1. Case Study Data

This work uses data acquired with a custom and low-cost MMS in Ávila (Spain) in
July 2021 on a 6 km stretch of a conventional road (AV-110, starting in its kilometric point
0) (Figure 2a). The sensor was mounted on a van with 45◦ tilt, driving at approximately
80 km/h on the closest lane to the road centerline when possible. The laser scanner is a
Phoenix Scout Ultra 32 (Figure 2b) equipped with a Velodyne VLP-32C, with 32 laser beams
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and horizontal and vertical fields of view of 360◦ and 40◦, respectively. The scan rate of
600,000 measurements per second (PhoenixLidar, 2021) provides dense 3D point clouds.
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Figure 2. (a) Trajectory of the case study, a 6 km stretch of a road located in Ávila, Spain (red dot in
map); (b) Ad-hoc mobile mapping system (MMS).

2.2. Point Cloud Semantic Segmentation and Road Centerline Extraction

This section focuses on the point cloud semantic segmentation using the Point Trans-
former architecture and the extraction of the road centerline, both of which are used as
input for the rest of the work [16].

Semantic segmentation: The road dataset corresponds to a round-trip MMS acquisition
to ensure equal density on both sides of the road. Due to the high density in some areas,
the point cloud is subsampled with a distance criterion of 3 cm, which results in a dataset
of 103 M points. Ground truth data were obtained by manual labeling for the deep learning
training. The labeled dataset consists of 3 M points for training and 3.5 M for the test set
after subsampling to ensure enough representative data in both of them. The training and
test sets are divided into five classes: asphalt, road markings, road signs, barriers, and
other, see Figure 3. The class “others” is defined with all the points that do not belong to
the other classes to be segmented. Logically, and considering each class defined, we can
see that the dataset is unbalanced towards the classes “asphalt” and “other”, which each
account for 47% of the manually labeled points in the training set, as shown in Table 1.
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Table 1. Class repartition in training and test sets.

Class

Training Set Test Set

Number of
Points Proportion (in %) Number of

Points Proportion (in %)

Asphalt 1,503,027 47 1,609,010 46

Road markings 110,770 3 154,874 4

Road signs 16,036 0.5 5498 0.1

Barriers 71,725 2 8448 0.2

Other 1,494,874 47 1,719,488 49

Total 3,196,432 100 3,497,318 100

Point Transformer is an architecture introduced by Zhao et al. [17]. Supported by
this architecture, we designed a deep learning model composed of fives encoders and
five decoders, consisting of a variable number of Point Transformer layers followed by a
transition down and, respectively, up layer, as represented in Figure 4. Points are grouped
through k-nearest neighbors pooling to reduce the cardinality of points by a factor of 4 at
each stage of the architecture.
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Figure 4. Deep learning model used for the road inventory, being f the laser intensity.

The model is trained for five classes: asphalt, road markings, road signs, barriers, and
other. The original weights from the author’s training on S3DIS [17,20–24] are used as
initial weights to increase generalization capacity. The number of epochs is set to 300, while
the learning rate, set to 0.001, is decayed by a factor of 0.1 every 60 epochs with Adam. The
batch size is fixed to 32 samples of about 1500 points each.

To account for class imbalance, a weighted cross entropy loss with weights inversely
proportional to the number of points in each class in the training set is used. Laser intensity
is used as an additional input f for the deep learning model. To augment the data, a
random rotation around the Z-axis is applied, as well as a flipping of the positions and
slight rotations of up to 15 degrees around the X- and Y-axes for each batch.

Finally, to reduce the classification noise and give a smoother result removing the iso-
lated regions, a conditional random field (CRF) post-processing is added. The energy model
defined by Krähenbühl and Koltun [29] is considered as follows (Equations (1) and (2)):

E(x) = ∑
i

ψu(xi) + ∑
i<j

ψp
(
xi, xj

)
(1)



Remote Sens. 2023, 15, 1351 6 of 20

with

ψp
(

xi, xj
)
= µ

(
xi, xj

)
∑
i<j

(
w1 ∗ exp

(
−|pi−pj|2

2θ2
γ

)
+ w2 ∗ exp

(
−|pi−pj|2

2θ2
α
− | fi− f j|2

2θ2
β

))
(2)

where pi is the position of the point i, its associated class is xi and feature fi, w1 and w2 are
the weights, and θγ, θα, θβ are the bandwidths parameters.

The energy Equation (1) is the sum of unaries ψu and pairwise ψp potentials. Unaries
potentials correspond to the log probability of the point i belonging to a class. The pairwise
potentials are composed of a label compatibility matrix µ and two kernels, the smoothness
kernel and the appearance kernel. Nearby points sharing similar features tend to belong
to the same class, which is represented mathematically by the appearance kernel while
the smoothness kernel removes small regions in disagreement with their neighbors. The
specific features used in the pairwise energy term were selected based on their relevance
to this segmentation task, and their effectiveness in reducing classification noise and
smoothing the segmentation output was carefully considered, thus, 3D geometric features
derived from the coordinates of each point—normal vectors—and intensity as a feature
were selected for this term.

Unaries potentials are obtained by inferring the classes scores returned by the deep
learning segmentation model. Pairwise potentials allow to consider interactions between
points and their associated classes and penalize points classified differently from their
neighborhood by defining µ

(
xi, xj

)
= 1 i f xi 6= xj else 0. By adding a higher energy

when points are connected to points of different classes, the minimization of the energy
expression E results in a smoother segmentation. The minimization is done through a
python wrapper of the original code https://github.com/lucasb-eyer/pydensecrf (accessed
on 2 February 2023).

However, the hyperparameters of the pairwise energy, the weights w1, w2, and the
bandwidth θγ, θα, θβ, have to be chosen beforehand. To this end, the test set is classified
by the final trained model. A grid search of the hyperparameters is performed. For each
parameter combination, the increase in mean intersection-over-union (see Section 3) due to
the CRF processing is measured on the test set. Experiments showed a small influence of
the bandwidth parameters although large values were found to be more beneficial. Optimal
values were found for w1 = 0, w2 = 6 and θγ = 100, θα = 100, θβ = 10,000 .

Road centerline extraction: The road centerline is extracted following the semantic
segmentation of the point cloud. First, points labeled as asphalt and road marking are se-
lected and processed to filter false positives as a post-processing step. Then, road markings
are used together with the trajectory obtained by the navigation system of the MMS to
extract the road centerline, which separates both traffic directions. That road centerline
is processed so it can be defined by continuous geometries associated to the horizontal
alignment of the road (i.e., straight lines, circular arcs, and clothoids). Hence, it is possible
to sample that road centerline with a fixed distance, obtaining a discrete set of points that
belong to the road centerline, which can be used as input data for the next processing steps
of this work.

2.3. Cross Sections and Rectified Road Model

This section first describes the methodology for dividing the road point cloud into
smaller portions called cross sections, and then the way they are transformed and reattached
to build a rectified road model.

Cross-sections: Following a similar approach to Gargoum et al. [15], the road is divided
into cross sections. The points of the road centerline are separated by a distance of 1 m
and defined by their planimetric coordinates (x, y). A subtraction between consecutive
planimetric road centerline points gives the direction vector vi of the road on each point
posi (Equation (3)).

vi = posi+1 − posi = (A B 0) (3)

https://github.com/lucasb-eyer/pydensecrf
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The direction vector vi, as a normal vector, and the point posi = (x, y, 0) also define
the road cross-section plane Ax + By + Cz + D = 0, visible in Figure 5. The points in the
points cloud are then extracted based on a threshold distance d to the cross-section plane
and a distance to the origin of the vector, which were experimentally chosen as 2.5 m and
20 m, respectively. The distance d to the plane is defined as (Equation (4)):

d(x, y, z) =
|Ax + By + Cz + D|√

A2 + B2 + C2
(4)
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To facilitate the next steps in the workflow, the road is oriented such that the road axis
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Figure 6. Example of a 10 m cross section: (a) before rotation and (b) after rotation.

Rectified road model: The resulting cross sections are convenient when working
individually on each one of them. However, the continuity between consecutive sections is
lost. Larger cross sections give more robust lines estimations but are limited by road curves.
This step aims at building a rectified model of the road that allows to use the full scale of the
road by removing curves. To solve this problem, in addition to the rotation, a translation to
align each cross section to the others is performed. The algorithm used in this work requires
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only a list of road centerline points and is presented as pseudo-code in Figure 7. A rotation
centered on the origin of the associated vector is applied to each section. The section is then
translated on the X-axis and positioned at the calculated distance between the vector origin
and the center of the previous section. The comparison is shown in Figure 8.
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Figure 8. Comparison of a road subset before and after cross-section alignment. The original point
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2.4. Road Parameters

This section focuses on computing the road parameters: road width, superelevation,
lanes width, lanes number, road shoulders width, and barriers heights (Figure 9).
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Figure 9. Road parameters representation along a road cross section.

First, the cross sections are considered individually to calculate the geometric charac-
teristics shown in Figure 8. Thanks to the rotation computed before (Figure 6), asphalt edges
can be approximated as lines whose equation is y = a with a constant (Figure 10a). Since
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the asphalt classification contains false positives and false negatives (see Tables 2 and 3),
the outliers are filtered out by approximating the points to a normal distribution along
a specific axis and discarding the points outside the range [mean—2*std, mean + 2*std].
Filtering is performed on the vertical Z-axis and then on the Y-axis. Finally, the percentiles
0.01 and 0.99 of the Y distribution of asphalt points are considered as the edges of the
asphalt, which are y1 and y2, respectively, with y1 − y2 being the road width (Figure 10b).
The superelevation can be calculated by using the mean x of the cross section and taking the
planimetric points closest to (x1, y1) and (x2, y2) belonging to the asphalt class (Equation (5)).

superelevation (%) =

(
∆Z

|y1 − y2|

)
x100 (5)
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Table 2. Class-wise and average metrics of point cloud semantic segmentation.

Metric\Class Asphalt Markings Signs Other Barriers Avg

Precision 0.99 0.74 0.89 0.99 0.76 0.87

Recall 0.96 0.95 0.76 0.99 0.92 0.92

F-score 0.97 0.83 0.82 0.99 0.83 0.89

IoU 0.95 0.71 0.69 0.98 0.72 0.81

Table 3. Confusion matrix normalized over the true (rows) classes.

Asphalt Markings Signs Other Barriers

Asphalt 0.96 0.03 0 0.01 0

Markings 0.05 0.95 0 0 0

Signs 0 0 0.76 0.12 0.12

Other 0.01 0 0 0.99 0

Barriers 0.02 0.01 0 0.05 0.92

Now that the road width and superelevation are calculated, the lane-related param-
eters are computed: the number of lanes, the lane width, and the road shoulders width.
Their estimation is a process sensitive to outliers and misclassifications, especially when
sections are considered individually. To account for this sensitivity, the rectified road model
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is used to refine the points classified as road markings. First, road markings points outside
the road boundaries (previously computed and represented by y1 and y2) are discarded.

Even when considered in aggregate, additional road markings such as chevrons, white
diagonal stripes (see Figure 11a), and arrows can disrupt the process. Therefore, the entire
rectified road marking point cloud is converted to a raster, or more specifically, a binary
image. The points are projected onto an XY plane with a resolution of 0.1 m and each pixel
containing at least one road marking point has its value set to 1. Then, a Sobel operator [30]
defined as follows:

Sy =

 1 2 1
0 0 0
−1 −2 −1


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Figure 11. Rasterized binary image of the road markings point cloud: (a) before and (b) after appli-
cation of Sobel filter to enhance horizontal edges and discarding vertical and diagonal edges and 
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that do not give a response in 2D (equal to 0) are discarded, while the rest are kept. The 
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Figure 11. Rasterized binary image of the road markings point cloud: (a) before and (b) after
application of Sobel filter to enhance horizontal edges and discarding vertical and diagonal edges
and the points outside asphalt edges.

It is applied to all pixels of the image to highlight the horizontal edges. The pixels
that do not give a response in 2D (equal to 0) are discarded, while the rest are kept. The
result can be seen in Figures 11 and 12. Errors resulting from the alignment process are
visible in Figure 12 in the form of undulations and are discussed in more detail in the
discussions section.

The next step involves the detection and clustering of road markings using a line
extraction based on RANSAC [31]. Haga clic o pulse aquí para escribir texto. RANSAC
estimates line parameters by repeatedly using a random sampling strategy. The line
parameters are estimated from the subset that contains more inliers, i.e., number of points
closer than an orthogonal distance established at 10 cm as threshold (Figure 13).

The lines found on the whole rectified road model, referred to as global lines in the
following paragraphs, can then be compared to the lines found with RANSAC in each cross
section individually. As central road markings can be separated by a great distance, for
each cross section, the two neighboring cross sections are also selected to ensure that at
least two central road markings appear. To give a more precise estimation, local lines are
estimated using RANSAC and then compared to global lines. Two points are randomly
selected from the subset of road markings, a line equation is estimated, and the points
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falling within a 0.2 m threshold from the line equation are grouped together, see Figure 14.
Only the candidate with the most inliers is retained before repeating the process.
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Figure 14. Planimetric view of cross section road markings with chevron, clustered by colors.

Additional constraints based on the line slope are then added. This allows to discard
lines that are diagonal or orthogonal to the road, which can happen in noisy classification
or in the presence of chevrons (Figure 14). Each global line found in the rectified road
model is associated with the closest local line found in the cross section, which are the ones
kept for lanes delimitation. The process is repeated for each cross section.

Although RANSAC can perform well in the presence of outliers, the experimental
results applied on individual road sections yielded a high rate of false positives that resulted
in erroneous estimates of the width and number of lanes. This is mainly due to the presence
of chevrons or white diagonal stripes on the road, in addition to the classification noise.
The use of the rectified road model provides a larger scale approach more suitable for
lane estimation.

The final step is to calculate the number and the width of lanes. By considering a line
defined by the equation x = a, with a constant, passing through the center of the road
section and the equations of the lines resulting from RANSAC, the number of intersections
is calculated. The distances between consecutive lanes can be computed, giving the number
and widths of each lane. Similarly, the smallest distances of a road marking to the asphalt
edges y1 and y2, correspond to the two road shoulders’ widths as represented in Figure 9.

The last part of the method focuses on the calculation of barrier height as seen in
Figure 15. Using the classified asphalt points based on the deep learning model defined
in Section 2, a plane whose equation is Ax + By + Cz + D = 0 can be fitted to the road
with the least squares method. For its part, using the classified barrier points based on
the deep learning model defined in Section 2, the barrier height can be computed as the
perpendicular distance from the road plane to the barrier. Similar to the road markings,
RANSAC allows to extract the line that best fits with the superior part of the barrier and
cluster each barrier independently, since the number and height of barriers for each cross
section could vary. The 0.95 percentile value along the Z-axis is retained as the security
barrier height cluster.
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3. Results
3.1. Point Cloud Segmentation

Following the scientific literature, the mean intersection-over-union (IoU) metric is
used to choose the best performing model, which is defined for each class as (Equation (6)).
IoU has been chosen instead of other metrics such as overall accuracy, as it is a more
informative metric for segmentation tasks when classes are imbalanced, as it is the case for
this work:

IoU =
TP

TP + FP + FN
(6)

where TP, FP, FN represent the true positives, false positives and false negatives, respectively.
We also compute the following metrics for each class: precision, recall, and f-score.

They are resumed in Table 2.
Overall, the model reaches a mean IoU of 0.81. Unsurprisingly, the two most present

classes, road and other, have the best semantic segmentation scores. As a consequence, the
asphalt class can be considered the most reliable result when used as a basis for further
calculations. The confusion matrix in Table 3 shows that most of the confusion for this class
also occurs between geometrically similar classes (asphalt/markings). The same confusion
occurs between signs and barriers.

CRF post-processing: experiments showed that the performance of the CRF post-
processing increased the mIoU by 0.3. The new values are shown in Table 4 and values in
parenthesis indicate the difference without CRF post-processing. Qualitatively, the CRF
smooths the classification, hence reducing the classification noise characterized by points
isolated from their neighbors when considering their class, as represented in Figure 16.
Comparing with similar works in the literature, this work outperforms results from [32]
in road surface and guardrail segmentation, or results from [33] in road and traffic sign
segmentation.

Table 4. Class-wise and average metrics of point cloud segmentation.

Metric\Class Asphalt Markings Signs Other Barriers Avg

Precision 0.98 (−0.01) 0.89 (+0.15) 0.94 (+0.05) 0.99 (+0) 0.87 (+0.11) 0.93 (+0.06)

Recall 0.98 (+0.02) 0.90 (−0.05) 0.72 (−0.04) 0.99 (+0) 0.88 (−0.04) 0.89 (−0.03)

F-score 0.98 (+0.01) 0.89 (+0.06) 0.81 (−0.01) 0.99 (+0) 0.88 (+0.05) 0.91 (+0.02)

IoU 0.96 (+0.01) 0.81 (+0.1) 0.69 (+0) 0.98 (+0) 0.78 (+0.06) 0.84 (+0.3)

3.2. Road Centerline Extraction

The horizontal road alignment was provided by the local administration as ground
truth in a text file, so that it can perform as reference for the extraction of the road centerline.
More than 50% of road centerline points present a distance error below 19 cm in comparison
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with the ground truth. Larger discrepancies were found to be a result of a discrepancy
between the ground truth and the actual road centerline, which could be justified with the
complexity and subjective criteria used to define the horizontal alignment of roads or even
with discrepancies between the theoretical horizontal alignment designed and the final
executed alignment [16].
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3.3. Road Inventory Parameters

The road inventory results are presented in Table 5. To compare the results, a ground
truth was collected manually by an expert on a subset of the dataset. Measurements
were made manually on the point cloud with the software CloudCompare. The subset
is approximately 1.5 km long on which manual measures for different parameters were
performed every 20 m.

Table 5. Quantitative representation of estimated road parameters using the method developed.

Point_Id N◦ of
Lanes

Superelevation
(%)

Road
Width

(m)

Left
Shoulder

(m)

Right
Shoulder

(m)

Lane 1
Width

(m)

Lane 2
Width

(m)

Barrier 1
Height

(m)

Barrier 2
Height

(m)

285 2 1.6 10.57 1.16 2.10 3.60 3.70
290 2 0.8 10.58 1.19 2.01 3.57 3.81
295 2 2.7 10.48 1.18 1.96 3.68 3.66
300 2 2.0 10.27 1.05 1.91 3.81 3.51 0.14
305 2 3.4 9.87 1.15 1.53 3.59 3.60 0.12
310 2 1.6 9.93 1.08 1.63 3.55 3.66
315 2 4.2 9.81 1.24 1.47 3.55 3.55
320 2 1.5 9.90 1.24 1.34 3.50 3.81 0.15
325 2 4.1 10.27 1.53 1.52 3.45 3.77 0.63 0.28
330 2 1.6 10.31 1.58 1.55 3.53 3.65 0.70 0.28
335 2 4.4 10.44 1.61 1.65 3.55 3.63 0.73
340 2 3.9 10.44 1.40 1.82 3.55 3.67 0.76
345 2 4.6 10.22 1.47 1.61 3.48 3.66 0.75 0.30

In order to provide a comparison of the road inventory parameters against the ground
truth, a graphical representation of the parameters is given in Figure 17. The ground truth
is displayed in orange color, whereas the result coming from our method is outlined in
blue color. The road width (Figure 17a) and superelevation (Figure 17b) measurements
show a good correlation as well as the barriers height (Figure 17f) estimation. However,
the correct delimitation of road lanes is a delicate task that results in greater discrepancies
in associated parameters (i.e., lanes numbers (Figure 17e), lanes width (Figure 17g), and
shoulder widths (Figure 17c,d).
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Quantitative results in Table 6 show the median and mean errors in the estimates
of the road inventory parameters. While some road parameters are difficult to estimate
and measure manually, such as road shoulders, other parameters such as road width,
superelevation, or barrier heights can be estimated with small errors with respect to the
ground truth values. Moreover, the number of lanes is correctly inferred in 81% of cases
and Figure 17e shows that the parts in which the lane is incorrectly inferred is near singular
structures that will be studied further in the discussion section.

Table 6. Errors statistics for the road inventory parameters.

Errors Mean Median Mean (%) Median (%)

Road width (m)/ground truth 0.71 0.35 5 3
Elevation (%)/6% 0.44 0.36 7 6

Left road shoulder width (m)/1.5 m 0.87 0.24 58 16
Right road shoulder width (m)/1.5 m 0.26 0.23 17 16

Barrier heights (m)/1 m 0.12 0.01 12 1

Since the measured elements cover different orders of magnitude, a closer look at the
errors with respect to the expected value of each element is calculated and represented in
the two last columns of Table 6. Values in % represent errors divided by the representative
values chosen for each parameter. The road width presents the best result, with a mean
error of 0.71 m, representing 5% error. Barrier heights and superelevation are also correctly
estimated with a median error percentage of 1% and 6%, respectively, to the expected
values. On the contrary, road shoulders present the greatest discrepancy due to their small
size and the difficulty to precisely delineate the road edges. It is important to note the
high difference between mean and median values in Table 6 due to the presence of outliers
and, thus, the robust performance of the median to estimate the errors in the different road
inventory parameters. This can be also observed in Figure 17.

4. Discussion

In accordance with the results obtained, there are different error sources than can be
discussed here. First, the road rectification process takes as reference the extraction of the
road centerline. However, this reference centerline contains errors that result in erroneous
translations of the cross sections, visible by apparent undulations when displaying the
rectified road model. Figure 18a shows the road alignment computed over a subset of
points and the resulting road model with a local curb, visible in Figure 18b, that can affect
the rest of the process.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

Quantitative results in Table 6 show the median and mean errors in the estimates of 
the road inventory parameters. While some road parameters are difficult to estimate and 
measure manually, such as road shoulders, other parameters such as road width, super-
elevation, or barrier heights can be estimated with small errors with respect to the ground 
truth values. Moreover, the number of lanes is correctly inferred in 81% of cases and Fig-
ure 17e shows that the parts in which the lane is incorrectly inferred is near singular struc-
tures that will be studied further in the discussion section. 

Table 6. Errors statistics for the road inventory parameters. 

Errors Mean  Median Mean (%) Median (%) 

Road width (m)/ground 
truth 

0.71 0.35 5 3 

Elevation (%)/6% 0.44 0.36 7 6 

Left road shoulder width 
(m)/1.5 m 

0.87 0.24 58 16 

Right road shoulder width 
(m)/1.5 m 0.26 0.23 17 16 

Barrier heights (m)/1 m 0.12 0.01 12 1 

Since the measured elements cover different orders of magnitude, a closer look at the 
errors with respect to the expected value of each element is calculated and represented in 
the two last columns of Table 6. Values in % represent errors divided by the representative 
values chosen for each parameter. The road width presents the best result, with a mean 
error of 0.71 m, representing 5% error. Barrier heights and superelevation are also cor-
rectly estimated with a median error percentage of 1% and 6%, respectively, to the ex-
pected values. On the contrary, road shoulders present the greatest discrepancy due to 
their small size and the difficulty to precisely delineate the road edges. It is important to 
note the high difference between mean and median values in Table 6 due to the presence 
of outliers and, thus, the robust performance of the median to estimate the errors in the 
different road inventory parameters. This can be also observed in Figure 17. 

4. Discussion 
In accordance with the results obtained, there are different error sources than can be 

discussed here. First, the road rectification process takes as reference the extraction of the 
road centerline. However, this reference centerline contains errors that result in erroneous 
translations of the cross sections, visible by apparent undulations when displaying the 
rectified road model. Figure 18a shows the road alignment computed over a subset of 
points and the resulting road model with a local curb, visible in Figure 18b, that can affect 
the rest of the process. 
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Figure 18. Influence of a discrepancy in the road centerline extraction (a) on the rectification of the
road model (b).

Second, the process is highly dependent on the quality of the input semantic segmen-
tation. Large errors propagate into the subsequent heuristic process, resulting in poor
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parameter estimation. While road asphalt is one of the best segmented classes and is
therefore a class that can be considered more reliable than others, this is not the case for
road markings whose segmentation strongly influences the traffic lanes delineation or
barriers (Figure 19).
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Figure 19. Semantic segmentation error of a barrier classified as other (yellow) instead of barrier (red)
that can hinder the height estimation.

Finally, the road itself may have a variety of singular structures that require special
attention to be handled correctly. In the results presented in the previous section, an
intersection, visible in Figure 20, consisting of a secondary road joining the main road
perpendicularly and a merger lane, have implications for road width, road shoulder width,
as well as lanes estimates.
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Figure 20. Singular road structures, from left to right: an intersection and a merger lane.

In order to discuss possible improvements of this work, it is interesting to note that in
most of these failure cases, there is a geometric logic that is not being fulfilled. For example,
in Figure 19, it can be seen how the barrier is not correctly classified on one side of the
roadway despite being practically symmetrical with respect to the barrier on the other side,
which is correctly classified. Another example is that of erroneous results that may clearly
contradict existing regulations regarding shoulder or lane lengths. Adding this type of
logic to the classification architecture can improve the results. In this sense, works such
as [34] can be of great relevance to add this geometric logic to the segmentation process,
limiting these errors thanks to the prior knowledge of the domain.

It is also important to highlight some of the potential applications of the proposed
method. First, the straightforward application is road infrastructure mapping: measuring
the dimensions and features of the road is critical for road planning and design, as well
as for maintenance and safety improvements. The results of this method may be useful to
generate standardized as-is information models of the infrastructures, using formats such
as IFC [35]. Second, improving the semantic segmentation accuracy and working toward
real-time implementations would aid in the development of driver assistance systems,
providing crucial information for the perception and decision-making modules of these
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systems (for example, lane detection or recognition of traffic signs). Finally, by segmenting
the road environment and tracking changes over time, this method can be used to provide
information about the deterioration of the road, as well as identify areas where maintenance
is required. This can help reduce the cost and time associated with manual inspections and
improve the safety and efficiency of the road network, especially if the method is extended
to segment geometries related to slopes in mountainous areas, which is a relevant issue for
road safety [36].

5. Conclusions

This work presents a novel approach for automated road inventory that addresses the
challenges of determining road width, number of lanes, lane width, road shoulder width,
superelevation, and barrier heights. The approach employs deep learning on 3D point
cloud data acquired by a low-cost mobile mapping system (MMS). A deep learning model
is designed and trained on a manually labeled subset of the dataset, and the resulting
semantic segmentation of the road dataset is refined using a conditional random field
(CRF) post-processing to reduce classification noise. Road cross sections are extracted
using direction vectors computed from the road centerline, and a rectified road model is
generated to aid in lane delineation estimation. The rectified road model is rasterized using
a vertical Sobel filter to remove markings diagonal or orthogonal to the road axis, and
outliers filtering and heuristic processes are used to estimate the road parameters.

The results of this workflow are compared to a ground truth manually measured by an
expert on the point cloud of a 1.5 km-long subset of the road. The estimates yield positive
results for road width, superelevation, and barrier heights, with a median error of 0.35 m,
0.36%, and 0.01 m, respectively, and correctly inferring the number of lanes in 81% of the
road. This proves the viability of the workflow to support inventory tasks with a more
automated and safer approach than the classical protocols used for road inventory.

Although there are potential sources of error that may affect the results, this method-
ology shows potential for further improvements, such as enhancing the quality of input
elements like semantic segmentation, road centerline extraction, and improving the ro-
bustness of the heuristic processes to errors. The approach can be refined to extend to
more complex objects and rules for road maintenance and digitalization. Adding prior
geometric logic to the segmentation network is proposed as an innovative line to improve
the presented results. This encourages research on road inventory parameterization, in a
context where MMSs and digitalization are increasingly popular. Further research could
lead to segmenting more diverse and complex features, paving the way for building digital
models from as-built infrastructure acquired by MMS, and to perform more complete
geometric assessments.
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