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Abstract

The comparison of the central rules for claims

problems, according to the Lorenz order, has been

studied not only on the entire set of problems but also

on some restricted domains. We provide new charac-

terizations of the adjusted proportional rule as being

Lorenz‐maximal or Lorenz‐minimal within a class of

rules on the half‐domains. Using this result, we rank

the adjusted proportional, the minimal overlap, and

the average‐of‐awards rules by analyzing whether or

not these rules satisfy progressivity and regressivity on

the half‐domains. We also find that the adjusted

proportional rule violates two well‐known claim

monotonicity properties.
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1 | INTRODUCTION

A claims problem arises when an amount has to be divided among a set of agents with claims
that, in aggregate, exceed what is available. A rule is a way of selecting a division among the
claimants. The definition of rules and the study of different approaches to evaluate and
compare them started with O'Neill (1982) and Aumann and Maschler (1985), and has produced
ever since a vast literature. The model has many applications that include bankruptcy
problems, taxation systems, rationing problems, or the distribution of the carbon budget. For a
thorough survey on this subject refer to Thomson (2019).

The best‐known rule is the proportional rule that simply shares the scarce resource proportional
to claims. Primarily, this paper focuses on the adjusted proportional, the minimal overlap, and the
average‐of‐awards rules. The adjusted proportional rule was defined and studied by Curiel et al.
(1987). This rule first allocates to each claimant his minimal right, the part of the amount that is left
after each other individual is fully compensated. Each agent's claim is revised down to the minimum
of the remainder and the difference between his initial claim and his minimal right. Finally, the
resulting problem is solved using the proportional rule.

In the 12th century, the talmudic scholar Ibn Ezra described a problem consisting in dividing an
estate among four sons. The recommendation that he presented was a particular case of a method
proposed by Rabad, also in the 12th century, defined for problems such that no claim exceeds the
estate. This incompletely specified rule was extended for an arbitrary claims problem by O'Neill
(1982), and named the minimal overlap rule by Thomson (2003). Imagine that the amount available
consists of distinct parts, and that each agent, instead of expressing his claim in some abstract way,
claims specific parts of the total amount equal to his claim. The minimal overlap rule chooses
awards vectors that minimize “extent of conflict” over each unit available. Alcalde et al. (2005, 2008),
Chun and Thomson (2005), and Hendrickx et al. (2007) have given implicit formulae and new
representations and interpretations of the minimal overlap rule.

A division rule must satisfy three natural requirements: no claimant is asked to pay; no claimant
receives more than his claim; and the entire endowment is allocated. The set of all the allocations
that meet these basic properties is the set of awards vectors for the claims problem. The average‐of‐
awards rule, introduced by Mirás Calvo et al. (2022b), selects for each claims problem the expected
value of the (continuous) uniform distribution over its set of awards vectors. O'Neill (1982) associates
to each claims problem a coalitional game whose core is the set of awards vectors of the problem.
González‐Díaz and Sánchez‐Rodríguez (2007) introduce, for the class of coalitional games with a
non‐empty core, the core‐center solution: the centroid of the core. Therefore, the average‐of‐awards
rule corresponds to the core‐center solution for the associated coalitional game.

But the inventory of rules is rich. In this paper, we also considered: the constrained equal awards,
the constrained equal losses, Piniles', the Talmud, the constrained egalitarian, and the random arrival
rules. A rule might be selected by the appeal of its own definition and by the properties that it satisfies
or violates. In fact, a rule might be characterized as the only one that satisfies certain properties, or
axioms. When a rule violates a property, it is relevant to know if the rule satisfies it when restricted to
a subdomain of problems. Some meaningful subdomains have already received attention. Aumann
and Maschler (1985) argue that the half‐sum of the claims is an important point (a watershed). In
fact, the definition of the Talmud rule, for example, depends on whether or not the endowment is
lower or bigger than the half‐sum of the claims. These sets of problems are called the lower‐half and
higher‐half domains respectively. Their intersection, the midpoint domain, is the set of problems for
which the endowment is equal to the half‐sum of the claims. Thomson (2019) discusses the domain
of simple claims problems, those for which each claim is at most as large as the endowment.
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Rules can be compared and ranked. The Lorenz criterion is widely used for this purpose. In
order to compare a pair of awards vectors, rearrange the coordinates of each vector in a non‐
decreasing order. One vector Lorenz‐dominates the other if the first coordinate and all the
cumulative sums of the rearranged coordinates are greater with the former than with the latter.
Many authors have contributed to the ranking of rules. Hougaard and Thorlund‐Petersen (2001)
and Moreno Ternero and Villar (2006) are the first papers exploring that line. A convenient
approach is to characterize a rule as being maximal or minimal with respect to the Lorenz relation
within a class of rules. Bosmans and Lauwers (2011), improving upon previous results, present
Lorenz‐based characterization of the constrained egalitarian, the constrained equal awards,
Piniles', the minimal overlap, and the Talmud rules. One important aspect of their analysis is that,
since some rules are not Lorenz‐comparable, they restrict the comparison to the lower‐half and
higher‐half domains. Naturally, on the restricted domains the ranking of rules is richer than on
the full domain. Thomson (2012) develops three general methods to perform Lorenz comparisons
of rules: giving conditions such that two members of a certain family of rules can be compared;
providing criteria to deduce Lorenz‐domination for arbitrarily many claimants from Lorenz‐
domination in the two‐claimant case; and analyzing conditions under which operators preserve or
reverse the Lorenz order. As a corollary of all the different approaches, Bosmans and Lauwers
(2011) and Thomson (2019) provide a diagram reflecting the ranking of nine of the central rules
discussed in the literature on the full domain. Mirás Calvo et al. (2022a) incorporate the average‐
of‐awards rule to this ranking. Bosmans and Lauwers (2011) also present a diagram showing the
ranking of the nine central rules on the restricted domains. Our goal in this paper is to justify the
refined ranking summarized in Figure 4.

First, we show that the Talmud, the random arrival, the adjusted proportional, and the
average‐of‐awards rules, that are extensions of the concede‐and‐divide rule, recommend the same
division for any problem that belongs to a particular subclass that we called the middle domain.
That is a consequence of the fact that, for this type of problems, the corresponding set of awards
vectors presents a very simple structure similar to the configuration in the two‐claimant case.

Suppose that an agent claim increases. Claim monotonicity implies that his award should
not decrease. Other‐regarding claim monotonicity requires each of the other claimants to
receive at most as much as initially. If there are at least three claimants, order preservation
under claims variations says that given any two claimants whose claim remains the same, the
change in the award to the smaller one should be at most as large as the change in the award to
the larger one. We prove that, contrary to the other central rules, the adjusted proportional rule
violates both other‐regarding claim monotonicity and order preservation under claims
variations. That prevents us from using the existing Lorenz‐based characterization of the
minimal overlap rule to compare these two rules.

We provide new Lorenz‐based characterizations of the adjusted proportional rule on the
half domains. Progressivity and regressivity on these subdomains are the key requirements.
These properties are very natural in taxation problems and were studied in Ju and Moreno
Ternero (2008, 2011). Progressivity requires that a taxpayer with a higher income should pay at
least as much rate of tax as a taxpayer with a lower income. When the problem is to share a
scarce resource progressivity means that the claimants with big claims should receive more per
unit of claim. Regressivity is the opposite requirement. Naturally, in order to apply the Lorenz‐
based characterizations of the adjusted proportional rule, we must establish whether or not the
minimal overlap and the average‐of‐awards rules are progressive or regressive on the restricted
domains. We prove that the minimal overlap rule is progressive on the higher‐half domain and
that the average‐of‐awards rule is regressive on the lower‐half domain and progressive on the
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higher‐half domain. The first important implication is that we are able to show that the
adjusted proportional rule Lorenz‐dominates the minimal overlap rule on the entire domain.

A second consequence is that we can derive a complete ranking of the average‐of‐awards
rule on the restricted domains. If only as a “central” point of reference inside the set of awards
vectors, it is worthy comparing the average‐of‐awards rule with the other rules. Basically, the
geometric center of the set of awards vectors ranks between the Talmud rule and the adjusted
proportional rule in both half domains, but, of course in different directions. In fact, the
average‐of‐awards rule Lorenz‐dominates the adjusted proportional rule and is Lorenz‐
dominated by the Talmud rule on the lower‐half domain. Only the random arrival rule is not
Lorenz‐comparable to the average‐of‐awards rule on the restricted domains.

Figure 4 is not only an update of the ranking of the ten central rules on the restricted
domains. It also provides a dynamic view of how the ranking, for a fixed vector of claims,
changes as the endowment increases from 0 to the sum of the claims. The ranking for three‐
claimant problems, illustrated in Figure 6, presents some particularities.

In Section 2 we introduce notations, properties of rules, and the relevant domains.
Equalities of rules on the midpoint and middle domains are studied in Section 3. We devote
Section 4 to show whether or not the adjusted proportional and the minimal overlap rules
satisfy some additional properties that include others‐regarding claim monotonicity, order
preservation under claims variations, progressivity, and regressivity. The Lorenz‐based
characterizations of the adjusted proportional rule are given in Section 5. Finally, the ranking
of the ten rules is updated in Section 6. We include an Appendix with the results that are just
technical in nature. The computations and figures in the examples were carried out using the
ClaimsProblems R package (Núñez Lugilde et al., 2022).

2 | PRELIMINARIES

Let  be the set of all finite subsets of the natural numbers . Given N x, N∈ ∈ , and
S 2N∈ let  N n= be the number of elements of N and x S x( ) = i S i∈ . If N N′ ⊂ ∈  and

x N∈ , let x x= ( )N i i N
N

′ ′
′

∈∈ be the projection of x onto N ′. In particular denote
x x=i N i

N i
− \ { }

\ { }∈ the vector obtained by neglecting the ith‐coordinate of x, that is,
x x x x x= ( , …, , , …, )i i i n− 1 −1 +1 . For simplicity, we will write x x x= ( , )i i− .

A claims problem with set of claimants N ∈  is a pair E d( , ) where E 0≥ is the
endowment to be divided and d N∈ is the vector of claims satisfying d 0i ≥ for all i N∈ and
d N E( ) ≥ . We denote the class of claims problems with set of players N by CN .

For each E d C( , ) N∈ and each i N∈ let D d N d d N i= ( ) − = ( \{ })i i− . The minimal right and
truncated claim of claimant i N∈ in E d C( , ) N∈ are the quantities m E d E D( , ) = max{0, − }i i−

and t E d E d( , ) = min{ , }i i , respectively. Let m E d m E d( , ) = ( ( , ))i i N∈ and t E d t E d( , ) = ( ( , ))i i N∈ .
Let us write t t E d= ( , ) and m m E d= ( , ) if no confusion is possible.

Let n
≤ be the set of nonnegative n‐dimensional vectors x x x= ( , …, )n1 with coordinates

ordered from small to large, that is, x x0 n1≤ ≤ ⋯≤ . For simplicity, given E d C( , ) N∈ with
 N n= , we will assume throughout the paper that N n= {1, …, } and that d n∈ ≤. As a
consequence of such an arrangement of the claims we have that d D D D,i i i i− − −( +1)≤ ≥ and
m mi i+1≤ for all i N n\ { }∈ . Nevertheless, as it is illustrated in Figure 1, we can either have
d Dn n−≤ or D dn n− ≤ . In any case, d N( )

1

2
is the middle point of the line segment with endpoints

dn and D n− . In fact, d N( )
1

2
is also the middle point of the intervals d D[ , ]i i− for all i N n\ { }∈ .
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The claims problems E d C( , ) N∈ and d N E d C( ( ) − , ) N∈ are dual claims problems. Given
a domain of claims problems CΩ N⊂ the domain of dual claims problems

d N E d C E dΩ* = {( ( ) − , ) : ( , ) Ω}N∈ ∈ is the dual domain of Ω. The lower‐half domain
C E d C E d N= {( , ) : ( )}L
N N 1

2
∈ ≤ is the subdomain of claims problems for which the

endowment is lower than the half‐sum of claims. The subdomain of claims problems for
which the endowment is bigger than the half‐sum of claims, C E d C E d N= {( , ) : ( )}H

N N 1

2
∈ ≥ ,

is called the higher‐half domain. Naturally, the lower‐half domain and the higher‐half domain
are dual. Let us called the intersection C C E d C E d N= {( , ) : = ( )}L

N
H
N N 1

2
∩ ∈ the midpoint

domain: the class of claims problems for which the amount to divide is exactly the half‐sum of
the claims.

We say that a claims problem E d C( , ) N∈ belongs to the middle domain CM
N if one of the

following conditions holds: (1) D E dn n− ≤ ≤ or (2) d Dn n−≤ and E d N= ( )
1

2
. Therefore,


{ } { }C E d C D d N E d d N= ( , ) : min ,

1

2
( ) max ,

1

2
( ) .M

N N
n n−∈ ≤ ≤

The middle domain includes the claims problems for which either it is feasible to satisfy all the
agents' claims except for the one with the highest claim or, otherwise, the endowment coincides
with the half‐sum of claims. The intersections of the middle domain with the lower‐half and
higher‐half domains are denoted:

{ }
{ }

{ }

{ }

C C C E d C D d N E d N

C C C E d C d N E d d N

= = ( , ) : min , ( ) ( )

= = ( , ) : ( ) max , ( ) .

ML
N

M
N

L
N N

n

MH
N

M
N

H
N N

n

−
1

2

1

2

1

2

1

2

∩ ∈ ≤ ≤

∩ ∈ ≤ ≤

Clearly, CML
N and CMH

N are dual domains.
Thomson (2019) discusses another domain: claims problems such that no claim exceeds the

endowment. A claims problem E d C( , ) N∈ is a simple claims problem if E di≥ for all i N∈ . Let us
denote the domain of simple claims problems by C E d C E d i N= {( , ) : for all }S

N N
i∈ ≥ ∈ .

Given a vector of claims d n∈ ≤, Figure 2 shows schematically the intervals in which the
endowment E has to be so that the claims problem E d( , ) belongs to each of the subdomains
that we have defined.

A vector x N∈ is an awards vector for E d C( , ) N∈ if x d0 i i≤ ≤ for all i N∈ and
x N E( ) = . Let X E d( , ) be the set of awards vectors for E d C( , ) N∈ . A rule is a function

C: N N→ assigning to each claims problem E d C( , ) N∈ an awards vector

FIGURE 1 Claims arranged in ascending order on the interval d N[0, ( )]
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E d X E d( , ) ( , )∈ . That is, a rule is a way of associating with each claims problem a division
among the claimants of the amount available satisfying three natural requirements: non‐
negativity (no claimant is asked to pay); claims boundedness (no claimant receives more than
his claim); and the balance requirement (the entire endowment is allocated). It turns out, see
Thomson (2019) for example, that the set of awards vectors for a claims problem E d C( , ) N∈ is
the set of allocations satisfying the balance requirement that are bounded from below by the
minimal rights vector and bounded from above by the truncated claims vector:1

X E d x x d i N x N E

x m E d x t E d i N x N E

( , ) = { : 0 for all , ( ) = }

= { : ( , ) ( , ) for all , ( ) = }.

N
i i

N
i i i

∈ ≤ ≤ ∈

∈ ≤ ≤ ∈

We present a basic list of properties of rules. We say that a rule  satisfies:

• anonymity if for each E d C( , ) N∈ , each π ΠN∈ , and each i N∈ , we have
E d E d( , ( )) = ( , )π i π i i( ) ( )  , where ΠN is the class of bijections from N into itself.

• the midpoint property if d N d( ( ), ) =
d1

2 2
 .

• self‐duality if for each E d C( , ) N∈ we have E d d d N E d( , ) = − ( ( ) − , )  .

• minimal rights first if for each E d C( , ) N∈ we have ( )E d m E m d m( , ) = + − , −i N i∈  .

• claims truncation invariance if for each E d C( , ) N∈ we have E d E t( , ) = ( , )  .
• order preservation in awards if for each E d C( , ) N∈ we have E d E d( , ) ( , )i i+1≤  for all
i N n\ { }∈ .

• order preservation in losses if for each E d C( , ) N∈ we have d E d d E d− ( , ) − ( , )i i i i+1 +1≤ 
for all i N n\ { }∈ .

•  N

1 ‐truncated‐claims lower bounds on awards, if for each E d C( , ) N∈ then

 E d t E d( , ) ( , )i N i
1

≥ for all i N∈ .

FIGURE 2 The subdomains of claims problems relevant to our study

1For each E d C( , ) N∈ consider the coalitional game with set of players N and characteristic function
v S E d N S S( ) = max{0, − ( \ )}, 2N∈ . Then X E d( , ) coincides with the core of the coalitional game v.
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• endowment monotonicity if for each E d C( , ) N∈ and each E E′ ≥ , if d N E E( ) ′≥ ≥ we have
E d E d( ′, ) ( , )i i≥  for all i N∈ .

• claim monotonicity if for each E d C( , ) N∈ , each i N∈ , and each d d′ >i i, then
( ( ))E d d E d, , ′ ( , )i i i i− ≥  .

Order preservation is the property obtained as the combination of order preservation in awards
and order preservation in losses. With each rule  we can associate a unique dual rule * ,
defined by E d d d N E d*( , ) = − ( ( ) − , )  . Two properties are dual if, whenever a rule
satisfies one of them, its dual satisfies the other. A property is self‐dual if it coincides with its
dual. Clearly, if a rule  satisfies a property when restricted to a domain CΩ N⊂ then its dual
rule * satisfies the dual property on the dual domain Ω*. Throughout this paper we consider
ten rules: the proportional rule (PRO), the constrained equal awards rule (CEA), the
constrained equal losses rule (CEL), the constrained egalitarian rule (CE), Piniles' rule (PIN),
the Talmud rule (T), the random arrival rule (RA), the average‐of‐awards rule (AA), the
adjusted proportional rule (APRO), and the minimal overlap rule (MO). The formal definitions
are given in Appendix A. Table 1, adapted from Thomson (2019) and Mirás Calvo et al. (2022b),
summarizes which of the above properties are satisfied by these rules. A check mark, ✓, in a
cell means that the property in the row is satisfied by the rule indexing the column. A minus
sing, −, means the opposite.

We have assumed that given a claims problem E d C( , ) N∈ the coordinates of the vector of
claims are ordered from small to large, that is, d n∈ ≤. Since the ten rules that we discuss in
this paper are anonymous this assumption is fully justified. Moreover, if  is a rule that
satisfies order preservation in awards (the ten rules satisfy this property) then E d( , ) n∈ ≤ .

3 | RULES THAT COINCIDE ON THE MIDDLE DOMAIN

First of all, note that, by definition, the CE, T , and PIN rules make the same recommendation
when restricted to claims problems that belong to the lower‐half domain, that is,

E d T E d E dCE( , ) = ( , ) = PIN( , ) for all E d C( , ) L
N∈ . Obviously, the rules satisfying

the midpoint property coincide on the midpoint domain C CL
N

H
N∩ . Therefore,

TABLE 1 Main properties satisfied by the 10 rules

PRO APRO MO CEA CEL CE PIN T RA AA

Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Midpoint ✓ ✓ − − − ✓ ✓ ✓ ✓ ✓

Self‐duality ✓ ✓ − − − − − ✓ ✓ ✓

Minimal rights first − ✓ ✓ − ✓ − − ✓ ✓ ✓

Claims truncation invariance − ✓ ✓ ✓ − − − ✓ ✓ ✓

Order preservation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 N

1 ‐truncated‐claims lower bounds − ✓ ✓ ✓ − ✓ ✓ ✓ ✓ ✓

Endowment monotonicity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Claim monotonicity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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E d E d T E d E d E d E d E dCE( , ) = PIN( , ) = ( , ) = RA( , ) = AA( , ) = APRO( , ) = PRO( , ) when-
ever E d C C( , ) L

N
H
N∈ ∩ . We devote this section to identify other domains where some of the

central rules coincide.
Given a two‐claimant problem E d C( , ) N∈ with N d d d= {1, 2}, = ( , )1 2

2∈ ≤, that is,
D d d0 =−2 1 2≤ ≤ , the set of awards vectors X E d( , ) is the line segment with endpoints

m E m( , − )1 1 and E m m( − , )2 2 , wherem E d= max{0, − }1 2 andm E d= max{0, − }2 1 . Therefore,
for two‐claimant problems the middle‐domain is C E d d C d E d= {( , ( , )) : }M

N N
1 2 1 2∈ ≤ ≤ which

strictly contains the midpoint domain unless d d=1 2. The concede‐and‐divide rule (CD) is the two‐
claimant rule that first assigns to each claimant the difference between the endowment and the other
agent's claim (or 0 if this difference is negative), and divides the remainder equally:










( )
( )

( )
E d d

E d

E d E d

d E d d

CD( , ( , )) =

, if 0

, − if

, if +

.

E E

d d

E d d E d d

1 2

2 2 1

2 2 1 2

+ −

2

− +

2 2 1 2

1 1

1 2 1 2

≤ ≤

≤ ≤

≤ ≤

Geometrically, the CD rule selects the middle point of the line segment X E d( , ) so it
coincides with the AA rule. Since, for N = {1, 2}, the CD rule is the unique two‐claimant
rule satisfying the midpoint property, minimal rights first, and claims truncation
invariance, then E d E d E d T E d E d E dCD( , ) = AA( , ) = APRO( , ) = ( , ) = RA( , ) = MO( , ) for
all E d C( , ) N∈ . Moreover, for each claims problem in the middle domain
E d C E d d C d E d( , ) = {( , ( , )) : }M

N N
1 2 1 2∈ ∈ ≤ ≤ we have that m = 01 and m E d= −2 1 so

X E d x x x d x E x( , ) = {( , ) : 0 , = − }1 2
2

1 1 2 1∈ ≤ ≤ . Therefore, for all claims problem in the
middle domain E d C( , ) M

N∈ the CD rule recommends the constant amount d

2
1 to the first

claimant and the remainder E − d

2
1 to the other agent.

Let us see how, for an arbitrary population, the two‐claimant structure of the set of awards
vectors for problems on the middle domain is replicated. Let N be an arbitrary set of claimants
and E d C( , ) M

N∈ such that D E dn n− ≤ ≤ . Then the set of awards vectors X E d( , ) has a very
simple structure:









X E d x x d x E x N n( , ) = : [0, ], = − ( \ { }) .n
n

i

n

i n−

=1

−1

∈ ∈

So, as in the two‐claimant case, a natural recommendation for a claims problem that belongs to
the middle domain E d C( , ) M

N∈ is to assign the division that gives to all the claimants, except
the last, the geometric center of the n( − 1)‐rectangle d[0, ]i

n
i=1

−1 , and to the last claimant what
is left. Naturally, this is the division selected by the AA rule:



 


E d

d d
E

D
X E dAA( , ) =

2
, …,

2
, −

2
( , ).n n1 −1 − ∈

The rules that satisfy the midpoint property coincide on the midpoint domain and,
with the exception of the MO rule, the rules that extend the CD rule coincide on the
middle domain.
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Proposition 3.1. Let E d C( , ) N∈ and  be a rule that satisfies the midpoint property.
We have that:

1. = AA on CML
N if either  satisfies claims truncation invariance and endowment

monotonicity on CML
N or if  satisfies claims truncation invariance and minimal rights

first on CML
N .

2. = AA on CMH
N if either  satisfies minimal rights first and endowment monotonicity

on CMH
N or if  satisfies claims truncation invariance and minimal rights first on CMH

N .
3. If E d C( , ) M

N∈ then T E d E d E d E d( , ) = RA( , ) = APRO( , ) = AA( , ).
4. If E d C( , ) ML

N∈ then E d E d T E d E d E dCE( , ) = PIN( , ) = ( , ) = RA( , ) = APRO( , ) =

E dAA( , ).

Proof. Let  be a rule that satisfies claims truncation invariance and endowment
monotonicity on CML

N , and also the midpoint property. Take E d C( , ) ML
N∈ . If

D d N d Nmin{ , ( )} = ( )n−
1

2

1

2
then E d N= ( )

1

2
, and, by the midpoint property,

d N d d N d( ( ), ) = AA( ( ), ) =
d1

2

1

2 2
 . On the other hand, if D d N Dmin{ , ( )} =n n−

1

2 − then

E D d N[ , ( )]n−
1

2
∈ and E dn≤ . By claims truncation invariance and the midpoint

property,

( )
( )( )

D d D d D

d N d

( , ) = ( , ( , )) = , …, , ,

( ), = , …, , .

n n n n
d d D

d d d

− − − − 2 2 2

1

2 2 2 2

n n

n n

1 −1 −

1 −1

 



But, since  satisfies endowment monotonicity on CML
N , for each E D d N( , ( ))n−

1

2
∈ and

each j N n\ { }∈ , we have D d E d d N d( , ) ( , ) ( ( ), )j n j j−
1

2
≤ ≤   , so, necessarily,

E d( , ) =j
d

2

j . Therefore, E d E d( , ) = AA( , ) .

Assume now that  is a rule that satisfies claims truncation invariance and
minimal rights first on CML

N , and the midpoint property. Let E d C( , ) ML
N∈ . When

D d N d Nmin{ , ( )} = ( )n−
1

2

1

2
, the result is obvious. If D d N Dmin{ , ( )} =n n−

1

2 − then

E D d N[ , ( )]n−
1

2
∈ and m E d E D( , ) = (0, …, 0, − )n− . By claims truncation invariance,

minimal rights first, and the midpoint property,



 




E d E t m D d D E D

d d D
E d

( , ) = ( , ) = + ( , ( , )) = (0, …, 0, − )

+
2

, …,
2

,
2

= AA( , ).

n n n n

n n

− − − −

1 −1 −

  

Therefore, the first statement holds. Finally, since claims truncation invariance and
minimal rights first are dual properties and CML

N and CMH
N are dual domains, the second

statement follows at once.
The T , RA, and APRO rules satisfy the midpoint property, claims truncation

invariance, minimal rights first, and endowment monotonicity. Therefore,
T E d E d E d E d( , ) = RA( , ) = APRO( , ) = AA( , ) for all E d C( , ) M

N∈ . Moreover, by
definition, E d E d T E dCE( , ) = PIN( , ) = ( , ) if E d C( , ) ML

N∈ . □
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4 | PROPERTIES OF THE APRO AND MO RULES ON
SUBDOMAINS

Let us state some extra properties, all of them well‐known in the literature, that have being used to
characterize some of our basic rules. They will be relevant, in what follows, to compare the awards
vectors recommended by the APRO, MO, and AA rules. In the remainder of the section, we analyze
whether or not the APRO and MO rules satisfy these additional properties on the half domains.

We know that our 10 rules satisfy claim monotonicity, that is, if agent i's claim increases
then his award should not decrease. Let us state two related properties. Other‐regarding claim
monotonicity requires that if agent i's claim increases then each of the other claimants should
receive at most as much as initially. If there are at least three claimants, order preservation
under claims variations says that given any two claimants whose claim remains the same, the
change in the award to the smaller one should be at most as large as the change in the award to
the larger one. A rule  satisfies:

• other‐regarding claim monotonicity if for each E d C( , ) N∈ , each i N∈ , and each d d′ >i i,
then ( ( ))E d d E d, , ′ ( , )j i i j− ≤  for all j N i\ { }∈ .

• order preservation under claims variations if for each E d C( , ) N∈ with  N 3≥ , each
i N∈ , each d d′ >i i, and each pair j k N i{ , } \ { }⊂ such that d dj k≤ , then

( ( )) ( ( ))E d E d d E d E d d( , ) − , , ′ ( , ) − , , ′j j i i k k i i− −≤    .

Consider now situations in which the population of claimants involved may vary. In this
case, a claims problem is defined by first specifying N ∈  , then a pair E d C( , ) N∈ . So, a rule
is a function defined on  CN

N
∈ that associates with each N ∈  and each E d C( , ) N∈ an

awards vector for E d( , ). We say that a rule  satisfies:

• null claims consistency, if for each N ∈  , each E d C( , ) N∈ and each N N′ ⊂ , if d = 0i for all
i N N\ ′∈ , then ( )E d E d( , ) = ,N N′ ′  .

• population monotonicity, if for each N ∈  , each E d C( , ) N∈ , and each N N′ ⊂ , if
d N E( ′) ≥ then ( )E d E d( , ) ,j j N ′≤  for all j N′∈ .

• order preservation under population variations, if for each E d C( , ) N∈ , each i N∈

with E d N i< ( \{ }) and each pair j k N i{ , } \ { }⊆ , if d dj k≤ , then E d( , ) −j i−
E d( , )j E d E d( , ) − ( , )k i k−≤  .

It is well known that our ten rules satisfy null claims consistency, since the departure of agents
whose claims are 0 has no effect on what the other agents are awarded. Population
monotonicity implies that if the population of claimants enlarges but the endowment stays the
same, then each of the claimants initially present should receive at most as much as initially.
Order preservation under population variations says that when population decreases, given two
remaining claimants the difference between the smaller claimant new and initial awards
should be at least as large as the corresponding difference for the largest claimant.

Finally we recall a pair of dual properties. Progressivity requires that if the claim of agent i is
at most as large as the claim of agent j, agent i should receive proportionally at most as much as
agent j. The dual requirement is regressivity. A rule  satisfies:

• progressivity if for each E d C( , ) N∈ and each pair i j N{ , } ⊂ , if d d0 < i j≤ then
E d

d

E d

d

( , ) ( , )i

i

j

j
≤

 
.
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• regressivity if for each E d C( , ) N∈ and each pair i j N{ , } ⊂ , if d d0 < i j≤

then E d

d

E d

d

( , ) ( , )i

i

j

j
≥

 
.

Clearly, the PRO rule is the only rule to be both regressive and progressive. The CEA rule is
regressive and the CEL rule is progressive. Of course, there are rules that violate both
properties even when restricted to the lower‐half or higher‐half domains.2 The
combination of regressivity on the lower half‐domain and progressivity on the higher
half‐domain has a clear economic interpretation. If a rule satisfies regressivity on the
lower‐half domain, for each problem with an endowment smaller than the half‐sum of
claims, given any two claimants, the one with the smaller claim receives at least the same
amount (per unit of claim) than the one with the higher claim. Basically, agents with lower
claims benefit when the endowment is small. But, when the endowment is higher than the
half‐sum of claims, a progressive rule on the higher‐half domain is biased toward the
agents with larger claims.

Table 2 summarizes the behavior of the APRO and the MO rules with respect to the
additional properties on both half‐domains. Again, a check mark, ✓, in a cell means that the
property is satisfied by the rule and a minus sing, −, means the opposite. Moreover, some cells
include the reference to the result where the corresponding mark is established. In any case, all
signs are discussed below.

4.1 | APRO rule

A simple expression for the allocation selected by the APRO rule restricted to claims problems
in CL

N is given in Lemma B.1. Based on this formula, the positive results in Table 2 for the
APRO rule are established in Appendix B.3

Now, let us justify the negative marks. Since progresivity and regressivity are dual
properties, the APRO rule is self‐dual, and the PRO rule is the only rule to be both progressive
and regressive on CN , then the APRO rule fails progressivity on the lower‐half domain and
regressivity on the higher‐half domain.

Grahn and Voorneveld (2002) present a four‐claimant example where the APRO rule
violates population monotonicity.4 Our next example illustrates that the APRO rule violates not
only population monotonicity but also order preservation under population variation.

2For instance, the RA rule. Indeed, let N = {1, 2, 3} and d = (1, 5, 5). Now, d C(2, ) L
N∈ and d C(4, ) L

N∈ . But,
= > =

d

d

d

d

RA (2, ) 1

3

1

6

RA (2, )1

1

2

2
and = < =

d

d

d

d

RA (4, ) 1

3

11

30

RA (4, )1

1

2

2
. As a consequence, the RA rule is neither regressive nor

progressive on CL
N . Since the RA rule is self‐dual we conclude that it is neither regressive nor progressive on CH

N .
3Linked endowment‐population monotonicity is the dual property of population monotonicity. Since CL

N and CH
N are

dual domains, and the APRO rule is self‐dual, then the APRO rule satisfies linked endowment‐population
monotonicity on CH

N . A similar argument shows that the APRO rule satisfies the dual properties of other‐regarding
claim monotonicity, order preservation under claims variations, and order preservation under population variations on
CH
N . These dual properties are described in Thomson (2019) but they are not given a specific name.

4In fact, these authors show that the APRO rule does not satisfy linked‐endowment population monotonicity, that they
called the thieve property. Let N E= {1, 2, 3, 4}, = 12, and d = (1, 2, 9, 10). Then ( )E dAPRO( , ) = , , ,

6

11

12

11

54

11

60

11
and

( )E dAPRO( , ) = , ,−2
9

17

89

17

106

17
. So, when claimant 2 leaves, claimant 1 receives less than initially, and hence the APRO

rule is not population monotonic.
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Example 4.1. Let N E= {1, 2, 3, 4, 5}, = 17, and d = (1, 2, 3, 8, 10). Consider the
problems E d C( , ) H

N∈ and E d C( , ) H
N

−3
\ {3}∈ . Then



 


 


 


E d E dAPRO( , ) =

13

20
,

26

20
,

39

20
,

111

20
,

151

20
, APRO( , ) =

7

11
,

14

11
,

72

11
,

94

11
.−3

So, when claimant 3 leaves, claimants 1 and 2 receive less than initially, and hence the
APRO rule is not population monotonic. Moreover, E d E dAPRO ( , ) − APRO ( , ) =1 −3 1

E d E d− > − = APRO ( , ) − APRO ( , )
3

220

3

110 2 −3 2 , so the APRO rule does not satisfy order

preservation under population variation.

Most of the central rules satisfy other‐regarding claim monotonicity and order preservation
under claims variations but not the APRO rule.

Proposition 4.2. The adjusted proportional rule satisfies neither other‐regarding claim
monotonicity nor order preservation under claims variations.

Proof. Thomson (2019) shows that if a rule  satisfies null claims consistency and
other‐regarding claim monotonicity then  satisfies population monotonicity. Similarly,
if a rule satisfies null claims consistency and order preservation under claims variation
then  satisfies order preservation under population variation. Indeed, let
N E d C i N, ( , ) ,N∈ ∈ ∈ with E d N i< ( \{ }), and j k N i{ , } \ { }⊆ such that d dj k≤ .
Then,

E d E d E d E d

E d E d E d E d

( , ) − ( , ) = ( , ) − ( , ( , 0))

( , ) − ( , ( , 0)) = ( , ) − ( , ),
k k i k k i

j j i j j i

− −

− −≤

   

   

where the inequality holds by order preservation under claims variations, and the
equalities by null claims consistency. Now, the APRO rule satisfies null claims
consistency but, as shown in Example 4.1, violates both population monotonicity and

TABLE 2 Properties satisfied by the APRO and MO rules on the half domains

APRO MO

CL
N CH

N CL
N CH

N

Null claims consistency ✓ ✓ ✓ ✓

Other‐regarding claim monotonicity ✓ (B.3) − (4.2) ✓ ✓

Order preservation under claims variations ✓ (B.3) − (4.2) ✓ ✓

Population monotonicity ✓ (B.4) − (4.1) ✓ ✓

Order preservation under population variation ✓ (B.5) − (4.1) ✓ ✓

Progressivity − ✓ (B.2) − (4.4) ✓ (C.3)

Regressivity ✓ (B.2) − − (4.4) −
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order preservation under population variation. Therefore, the APRO rule fails other‐
regarding claim monotonicity and order preservation under claims variations. □

The statement of Proposition 4.2 is somehow surprising.5 If agent i's claim increases, his minimal
right doesn't change, but the minimal rights of the other claimants decrease in an order preserving
manner. That is, if E d C i N d d( , ) , , < ′N

i i∈ ∈ , and d d d′ = ( , ′)i i− then m E d m E d( , ) ( , ′)≥

and m E d m E d m E d m E d( , ) − ( , ′) ( , ) − ( , ′)j j k k≤ for all j k N i, \ { }∈ such that j k≤ . Therefore,
 M m E d M m E d= ( , ) ′ = ( , ′)j N j j N j≥∈ ∈ . Therefore  M m E d M m= ( , ) ′ =j N j j N j≥∈ ∈

E d( , ′). Now, E d m E d E M t E M d m E dAPRO( , ) = ( , ) + PRO( − , ( − , − ( , ))) and APRO

E d m E d E M t E M d m E d( , ′) = ( , ′) + PRO( − ′, ( − ′, ′ − ( , ′))). The problems E M t( − ,

E M d m E d( − , − ( , ))) and E M t E M d m E d( − ′, ( − ′, ′ − ( , ′))) differ not only on agent i's
claim but also on the endowment and on the claims of some other agents. So even though the PRO

rule satisfies other‐regarding claim monotonicity and order preservation under claims variations, we
can not conclude that, when applied to the revised problems, we obtain the wanted inequalities for
the APRO rule. It is easy to check that the APRO rule satisfies other‐regarding claim monotonicity
for three‐claimant problems and order preservation under claims variations for four‐claimant
problems.6 The following example not only presents a problem that illustrates the conclusions of
Proposition 4.2, but it also shows that other‐regarding claim monotonicity and order preservation
under claims variations are not preserved under the attribution of minimal rights operator.

Example 4.3. Let N E d= {1, 2, 3, 4, 5}, = 17, = (1, 2, 3, 8, 10), and d′ = (1, 2, 4, 8, 10).
Clearly, E d C E d C m E d( , ) , ( , ′) , ( , ) = (0, 0, 0, 1, 3)H

N
H
N∈ ∈ , and m E d( , ′) = (0, 0, 0, 0, 2), so

( )
( )

E d

E d

APRO( , ) = (0, 0, 0, 1, 3) + PRO(13, (1, 2, 3, 7, 7)) = , , , ,

APRO( , ′) = (0, 0, 0, 0, 2) + PRO(15, (1, 2, 4, 8, 8)) = , , , , .

13

20

26

20

39

20

111

20

151

20

15

23

30

23

60

23

120

23

166

23

Since E d E dAPRO ( , ′) > APRO ( , )1 1 , the APRO rule violates other‐regarding claim
monotonicity. Moreover,

E d E d E d E dAPRO ( , ) − APRO ( , ′) = −
1

460
> −

1

230
= APRO ( , ) − APRO ( , ′).1 1 2 2

Therefore, order preservation under claims variations is also violated by the APRO rule.
For each x [3, 5]∈ let d x= (1, 2, , 8, 10)x and consider, for each i {1, 2}∈ ,

the increments x E d E dΔ ( ) = APRO ( , ) − APRO ( , )i i i x . As Figure 3 illustrates,

x xΔ ( ) < Δ ( ) < 02 1 for all ( )x 3,
25

6
∈ . Then, in fact, the APRO rule violates both

properties for the problems E d( , ) and E d( , )x with x in the range ( )3,
25

6
.

5For instance, Bosmans and Lauwers (2011) state that the APRO rule satisfies order preservation under claims
variations.
6Here is an example of a four‐claimant problem for which the APRO rule fails other‐regarding claim monotonicity. Let
N E d= {1, 2, 3, 4}, = 12, = (0.5, 1, 9, 10), and d′ = (1, 1, 9, 10). Then, E d E dAPRO ( , ′) = > = APRO ( , )2

11

20

20

37 2 .
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4.2 | MO rule

As we already point out in the proof of Proposition 4.2, null claims consistency and other‐
regarding claim monotonicity (or order preservation under claims variation) together imply
population monotonicity (respectively, order preservation under population variation). It is
known, see Bosmans and Lauwers (2011) and Thomson (2019), that the MO rule satisfies both
other‐regarding claim monotonicity and order preservation under claims variations. Therefore, the
MO rule also satisfies population monotonicity and order preservation under population variation.

Next, we show that the MO rule is neither regressive nor progressive on the lower‐half domain.

Example 4.4. Let N E= {1, 2, 3}, = 5.3, and d = (1, 4, 7). Clearly, E d C( , ) L
N∈ . Since,

d E d< <2 3, we have that ( ) ( )E d E dMO( , ) = , + , + + − = , ,
d d d d d d d

3 3

−

2 3

−

2 2
1

3

11

6

47

15
1 1 2 1 1 2 1 .

Since = < =
E d

d

E d

d

MO ( , ) 1

3

11

24

MO ( , )1

1

2

2
the MO rule is not regressive. But, =

E d

d

MO ( , )2

2

> =
E d

d

11

24

47

105

MO ( , )3

3
so the MO rule fails progressivity.

Recall that the MO rule is not self‐dual. Therefore, Example 4.4 provides no information
about whether or not the MO rule is progressive or regressive on the higher‐half domain. But,
since the MO and APRO rules coincide with the CD rule for two‐claimant problems and, as we
have seen, the APRO rule is not regressive on the higher‐half domain we conclude that the MO

rule fails regressivity on CH
N . The domains CS

N and CH
N have non‐empty intersection but they are

not comparable by inclusion. In any case, we prove in Proposition C.2 that the MO rule satisfies
progressivity on the domain CS

N of simple claims problems. We also show, see Proposition C.3,
that the MO rule satisfies progressivity on the higher‐half domain.

FIGURE 3 The increments xΔ ( )1 and xΔ ( )2 for x [3, 5]∈ [Color figure can be viewed at
wileyonlinelibrary.com]

Remark 4.5. Let N E= {1, 2, 3}, = 5.3, and d = (1, 4, 7) as in Example 4.4. Since

E d C( , ) ML
N∈ and = > =

E d

d

E d

d

MO ( , ) 11

24

47

105

MO ( , )2

2

3

3
, we have an example that shows that

progressivity of the MO rule can not be extended beyond the domains CS
N and CH

N .
As Thomson (2019) notes, progressivity and regressivity are not preserved under

claims truncation. Nevertheless, given E d C( , ) N∈ then the truncated problem belongs to
the domain of simple claims problems, that is, E t E d C( , ( , )) S

N∈ . Since the MO rule is
progressive onCS

N , the MO rule satisfies progressivity on the truncated problem. Now, the
MO rule is claims truncation invariant. Therefore, for each E d C( , ) N∈ and each pair
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i j N{ , } ⊂ , if d d0 < i j≤ then E d

t

E d

t

MO ( , ) MO ( , )i

i

j

j
≤ . That is, if the claim of agent i is at most

as large as the claim of agent j, agent i should receive per unit of truncated claim at most
as much as agent j. In fact, in our running example, the truncated claims vector is

t E d( , ) = (1, 4, 5.3) and = < = < =
E d

t

E d

t

E d

t

MO ( , ) 1

3

MO ( , ) 11

24

MO ( , ) 94

159
1

1

2

2

3

3
.

5 | LORENZ ‐BASED CHARACTERIZATIONS

The CE, CEA, PIN, MO, andT rules have being characterized as being maximal or minimal with
respect to the Lorenz relation within a class of rules. We provide in this section a new
characterization of the APRO rule as being Lorenz‐maximal or Lorenz‐minimal within a class of
rules on the half‐domains. Using this result, we are able to rank the APRO, MO, and AA rules.

Given a claims problem E d C( , ) N∈ , an awards vector x X E d( , )∈ Lorenz‐dominates an
awards vector y X E d( , )∈ if all the cumulative sums of the rearranged coordinates are greater
with x than with y.

Definition 5.1. Let x y, n∈ ≤. We say that x Lorenz‐dominates y, and write x y≽ , if for
each k n= 1, …, − 1,

   x y x yand = .
j

k

j

j

k

j
j

n

j

j

n

j
=1 =1 =1 =1

≥

The Lorenz order is a partial order in n
≤, so it is a binary relation that is reflexive,

antisymmetric, and transitive. If x Lorenz‐dominates y and x y≠ , then at least one of the n − 1

inequalities is strict.
Recall that, if E d C( , ) N∈ and  is any of the ten rules, since d n∈ ≤ we have that
E d( , ) n∈ ≤ . Therefore, we can use the Lorenz order to check whether a rule is more

favorable to smaller claimants relative to larger claimants than other.

Definition 5.2. Let and ′ be two rules that satisfy order preservation in awards. We
say that  Lorenz‐dominates ′ on the domain CΩ N⊂ , and we write ′≽  , if

E d E d( , ) ′( , )≽  for all E d( , ) Ω∈ .
It is well known that the duality operator reverses the Lorenz order, so ′≽  on Ω if and

only if ( ′) ≽∗ ∗  on Ω*. The CEA rule is Lorenz‐maximal in the set of rules that preserve the
order of awards. Then, its dual, the CEL rule, is Lorenz‐minimal in the set of rules that satisfy
order preservation. If two rules  and ′ satisfy self‐duality, then  and ′ cannot be
compared on the entire domain CN .

Let us show that given a subdomain CΩ N⊂ , the PRO rule Lorenz‐dominates onΩ any rule
that is progressive on Ω. Naturally, the PRO rule is Lorenz‐dominated on Ω by any rule that is
regressive on Ω.

Proposition 5.3. Let CΩ N⊂ and let  be a rule that satisfies order preservation in
awards.

1. If  is progressive on CΩ N⊂ then the proportional rule Lorenz‐dominates  on Ω.
2. If is regressive on CΩ N⊂ then the proportional rule is Lorenz‐dominated by onΩ.
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Proof. Let be a rule that satisfies order preservation in awards and that is progressive
on CΩ N⊂ . Given E d( , ) Ω∈ and k N n\ { }∈ we have to prove that

  E d E d d( , ) PRO ( , ) =j
k

j j
k

j
E

d N j
k

j=1 =1 ( ) =1≤ or, equivalently, d N E d( ) ( , )j
k

j=1

E dj
k

j=1≤ . Since E E d= ( , )j
n

j=1 , the last inequality can be written as

     













d d E d E d E d d+ ( , ) ( , ) + ( , ) .

j

k

j

i k

n

i

j

k

j

j

k

j

i k

n

i

j

k

j

=1 = +1 =1 =1 = +1 =1

≤  

Therefore, we have to show that    E d d E d d( , ) ( , )j
k

j i k
n

i i k
n

i j
k

j=1 = +1 = +1 =1≤  . If  is

progressive on CΩ N⊂ then d E d E d d( , ) ( , )i j i j≤  for all j k{1, … }∈ and all
i k n{ + 1, … }∈ . Therefore,  E t d d E d( , ) ( , )j i k

n
i j i k

n
i= +1 = +1≤  for all j k{1, …, }∈ . But

then    E d d E d d( , ) ( , )j
k

j i k
n

i i k
n

i j
k

j=1 = +1 = +1 =1≤  and, indeed, E d E dPRO( , ) ( , )≽ .

On the other hand, if  is regressive on CΩ N⊂ , a similar argument shows that
E d E d( , ) PRO( , )≽ , which proves the second statement. □

Chun et al. (2001) characterize the CE rule as being Lorenz‐maximal within the subclass of
rules that satisfy order preservation in awards, endowment monotonicity, and the midpoint
property. Since theT rule is self‐dual, the CE and theT rules are equal on CL

N , and the domains
CL
N and CH

N are dual, it is easy to conclude that, when restricted to CH
N , the T rule is Lorenz‐

minimal within the subclass of rules that satisfy order preservation in losses, endowment
monotonicity, and the midpoint property. Let us state these two results and also the Lorenz‐
based characterization of the MO rule proved by Bosmans and Lauwers (2011).

1. Let  be the set of rules that satisfy order preservation in awards, endowment monotonicity,
and the midpoint property. The CE rule is the only rule in  that Lorenz‐dominates each
rule in  .

2. Let  be the set of rules that satisfy order preservation in awards, order preservation in
losses, endowment monotonicity, and the midpoint property. TheT rule is the only rule in 
that is Lorenz‐dominated by each rule in  on the subdomain CH

N .
3. Let  be the set of rules that satisfy order preservation in awards, order preservation in

losses, order preservation under claims variations, null claims consistency, and  N

1 ‐
truncated‐claims lower bounds on awards. The MO rule is the only rule in  that is Lorenz‐
dominated by each rule in  .

We know from Proposition 4.2 that the APRO rule does not satisfy order preservation under
claims variations, so we can not apply the characterization of the MO rule to compare it with
the APRO rule. In order to rank these rules we provide a Lorenz‐based characterization of the
APRO rule. According to Table 2, the APRO rule is regressive on the lower‐half domain and
progressive on the higher half‐domain.

Theorem 5.4. Let 1 be the set of rules satisfying the midpoint property, minimal rights
first, claims truncation invariance, order preservation in awards, and regressivity onCL

N . Let

2 be the set of rules satisfying the midpoint property,minimal rights first, claims truncation
invariance, order preservation in losses, and progressivity on CH

N .
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1. The APRO rule is the only rule in 1 that is Lorenz‐dominated by each rule in 1 on CL
N .

2. The APRO rule is the only rule in 2 that Lorenz‐dominates each rule in 2 on CH
N .

Proof. Let 1 be the set of rules satisfying the midpoint property, minimal rights first,
claims truncation invariance, order preservation in awards, and regressivity on CL

N .
First, let us show that the APRO rule is the only rule in 1 that is Lorenz‐dominated by
each rule in 1 on CL

N . Clearly, APRO 1∈  . Let E d C( , ) L
N∈ and 1∈  . By claims

truncation invariance, E d E t( , ) = ( , )  . If E D n−≤ then E d E tAPRO( , ) = PRO( , ).
But, E t E t( , ) PRO ( , )1 1≥ if and only if  E t t t E t( , ) ( , )j

n
j j

n
j1 =2 1 =2≥  . This

inequality holds because  is regressive. Let  t= j N j∈ . Now, for each k N\∈

  n E t E t t{ }, ( , ) PRO ( , ) =j
k

j j
k

j
E

j
k

j=1 =1 =1≥


if and only if  E t t( , )j
k

j j k
n

j=1 = +1

 E t t( , )j k
n

j j
k

j= +1 =1≥  . Again, by regressivity,  E t t t E t( , ) ( , )j j k
n

j j j k
n

j= +1 = +1≥  for

j k{1, …, }∈ . If E D d N[ , ( )]n−
1

2
∈ thenm E D= (0, …, 0, − )n− . By the midpoint property,

E t m D d D m D d D E t( , ) = + ( , ( , )) = + APRO( , ( , )) = APRO( , )n n n n n n− − − − − −  .
Let 2 be the set of rules satisfying the midpoint property, minimal rights first, claims

truncation invariance, order preservation in losses, and progressivity on CH
N . We claim

that the APRO rule is the only rule in 2 that Lorenz‐dominates each rule in 2 on CH
N .

Indeed, APRO 2∈  . But, order preservation in awards and order preservation in losses
are dual properties, and the same happens with claims truncation invariance and
minimal rights first, and with regressivity and progressivity. Besides, CL

N and CH
N are dual

domains. Therefore, the characterization on CH
N is the dual result of the one just proven

above. □

According to Theorem 5.4, among the rules that satisfy the midpoint property, minimal
rights first, claims truncation invariance, and order preservation on the entire domain, those
that in addition are progressive on the lower‐half domain Lorenz‐dominate the APRO rule
restricted to that domain, while those that in turn are regressive on the higher‐half domain are
Lorenz‐dominated by the APRO rule on that domain.

6 | RANKING OF RULES

Our aim in this Section is to establish the ranking of the ten rules summarized in Figure 4. An
arrow (or a sequence of arrows) from a rule  to a rule ′ specifies that  Lorenz‐dominates
′ , and the absence of an arrow (or of a sequence of arrows) specifies that there is no

relationship. The restricted domain where each ranking holds is schematically indicated by the
vertical lines at both sides of the diagram. As in Figure 2, they show the intervals where the
endowment E has to be so that the claims problem E d( , ) belongs to each particular subdomain.
The vertical line at the left reflects the case where D dn n− ≤ , the line to the right the case when
d Dn n−≤ . Therefore, the diagram provides a dynamic view of how the ranking, for a fixed
vector of claims, changes as the endowment increases from 0 to the sum of the claims d N( ).

Most of the arrows (and absence of arrows) have already been studied by several authors.
They were compiled, with the corresponding references, by Bosmans and Lauwers (2011) and
Thomson (2019). But Figure 4 is a refinement of the diagrams work out by these authors
because it presents several new features: it includes the middle domain, it incorporates the AA

rule, and it completes the ranking of the APRO and the MO rules on the restricted domains. In
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addition, we particularize the ranking of the ten rules for two‐claimant and three‐claimant
populations (Figures 5 and 6, respectively).

6.1 | Ranking of the adjusted proportional and the minimal overlap
rules

The Lorenz relationship between the APRO and the MO rule has already been stated. As far as
we know, the comparison has been established applying the Lorenz‐based characterization of

FIGURE 4 Ranking of rules on the lower‐half, middle, midpoint, and higher‐half domains
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the MO rule, in spite of the fact that the APRO rule does not satisfy order preservation under
claims variations. In any case, we show next that the APRO rule Lorenz‐dominates the MO rule
on the entire domain of claims problems.

Theorem 6.1. The adjusted proportional rule Lorenz‐dominates the minimal overlap
rule.

Proof. We are going to establish the relationship separately on both half‐domains. First,
we restrict to the lower‐half domain. Both the APRO and MO rules satisfy claims
truncation invariance, therefore if E d C( , ) L

N∈ then E d E tAPRO( , ) = APRO( , )

and E d E tMO( , ) = MO( , ). Note that E t C( , ) S
N∈ is a simple claims problem

because E t E d E d( , ) = min{ , }n n≥ . Therefore, since the MO rule is progressive
on CS

N (Proposition C.2), by Proposition 5.3 we have that E t E tPRO( , ) MO( , )≽ .
We can have two cases. If E D d Nmin{ , ( )}n−

1

2
≤ then, according to Lemma B.1,

E d E tAPRO( , ) = PRO( , ). Hence, E d E t E t E dAPRO( , ) = PRO( , ) MO( , ) = MO( , )≽ . On
the other hand, if E D d N[ , ( )]n−

1

2
∈ then E d( , ) belongs to the middle domain so

FIGURE 5 Ranking of rules when  N = 2

FIGURE 6 Ranking of rules when  N = 3
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E d T E dAPRO( , ) = ( , ). But, the T rule Lorenz‐dominates the MO rule,7 so
E d T E d E dAPRO( , ) = ( , ) MO( , )≽ . In any case, we conclude that APRO MO≽ on CL

N .
We turn to the higher‐half domain. We know, see Table 1, that the T rule satisfies the

midpoint property, minimal rights first, claims truncation invariance, and order
preservation. Moreover, we know from Proposition C.3 that the MO rule is progressive
on CH

N . Applying Theorem 5.4, we have that TAPRO≽ on CH
N . SinceT MO≽ , the transitive

property leads to APRO MO≽ on CH
N . Then, indeed, the APRO rule Lorenz‐dominates the

MO rule, that is, APRO MO≽ on CN . □

6.2 | Ranking of the average‐of‐awards rule

We turn our attention to the ranking of the AA rule on the half‐domains. We show that the AA

rule ranks between the T and the APRO rules in both half domains, but, of course in different
directions.8

Theorem 6.2. The average‐of‐awards rule Lorenz‐dominates the adjusted proportional
rule and is Lorenz‐dominated by the Talmud rule on CL

N . Reciprocally, the average‐of‐
awards rule Lorenz‐dominates the Talmud rule and is Lorenz‐dominated by the adjusted
proportional rule on CH

N .

Proof. According to Table 1, the AA rule satisfies order preservation in awards, order
preservation in losses, endowment monotonicity, and the midpoint property. Therefore,
by the characterizations of the CE and the T rules, we conclude that CE AA≽ on CN and

TAA≽ on CH
N . As a corollary, restricted to the lower‐half domain, the AA rule is Lorenz‐

dominated by the T rule, that is, T = CE AA≽ on CL
N .

The AA rule, as it is proven in Appendix C, satisfies regressivity when restricted to the
lower‐half domain and, by self‐duality, progressivity when restricted to the higher‐half
domain. Since it also satisfies the midpoint property, minimal rights first, claims
truncation invariance, and order preservation, we deduce, from the characterizations of
the APRO rule, that AA APRO≽ on CL

N and that APRO AA≽ on CH
N . □

Next, we present an example to illustrate that the RA and the AA rules are not Lorenz‐
comparable neither on the lower‐half domain nor on the higher‐half domain.

Example 6.3. Let N E= {1, 2, 3, 4}, = 16, and d = (3, 10, 12, 13) 4∈ ≤. Since

d N( ) = 38 then E d C( , ) L
N∈ . We have that ( )E dRA( , ) = , 4, 5,

3

2

11

2
and

( )E dAA( , ) = , , 5,
29

20

43

10

21

4
. Therefore, E d E dAA ( , ) < RA ( , )1 1 but

E d E d E d E dAA ( , ) + AA ( , ) =
23

4
>

11

2
= RA ( , ) + RA ( , ).1 2 1 2

7For instance, Thomson (2019) gives a direct proof of this fact.
8In contrast, Mirás Calvo et al. (2016) show that for the airport problem the core‐center solution Lorenz‐dominates the
Shapley value and is Lorenz‐dominated by the nucleolus.
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Hence, E dAA( , ) and E dRA( , ) are not comparable. Naturally, the dual problem
d N E d C( ( ) − , ) H

N∈ and, since the average of awards and the random arrival rules are
both self‐dual, d N E dAA( ( ) − , ) and d N E dRA( ( ) − , ) are not comparable.
In summary, TCE = PIN = AA APRO≽ ≽ on CL

N and TAPRO AA≽ ≽ on CH
N , so the AA

rule is Lorenz‐comparable on the half domains to all the rules except the RA rule. To end, we
conclude, directly from Figure 4, that PIN AA MO≽ ≽ on the entire domain of claims problems.
This result was already established by Mirás Calvo et al. (2022a) using a different approach.

6.3 | Ranking on the middle domain

So far, in Section 3, we have analyzed the rules that coincide when restricted to the middle domain.
According to Table 2, the APRO rule is progressive onCMH

N and regressive onCML
N , so by Proposition

5.3, PRO APRO→ onCMH
N and APRO PRO→ on CML

N (a fact already established by Bosmans and
Lauwers [2011]). Now, we show that the PRO and the MO rules are not comparable on CML

N .

Example 6.4. Let N E= {1, 2, 3}, = 5.1, and d = (1, 4, 7) 3∈ ≤. Since d N( ) = 12 then

E d C( , ) ML
N∈ . We have that ( )E dPRO( , ) = , ,

17

40

17

10

119

40
and ( )E dMO( , ) = , ,

1

3

11

6

44

15
. Then

E d E dPRO ( , ) > MO ( , )1 1 and

E d E d E d E dPRO ( , ) + PRO ( , ) =
17

8
<

13

6
= MO ( , ) + MO ( , ).1 2 1 2

Therefore, E dPRO( , ) and E dMO( , ) are not comparable.

6.4 | Ranking for two‐claimant populations

It is well known that, when  N = 2, the AA,T , APRO, MO, and RA rules coincide with the CD

rule. In addition, D d d=−2 1 2≤ so E d C( , ) M
N∈ if and only if d E d1 2≤ ≤ . Figure 5 summarizes

the ranking of the ten rules for two‐claimant problems.

6.5 | Ranking for three‐claimant populations

Let us focus next on claims problems with three claimants. Take N = {1, 2, 3} and
d d d d= ( , , )1 2 3

3∈ ≤. First, observe that given two rules and ′ satisfying order preservation
in awards and a problem E d C( , ) N∈ then E d( , ) Lorenz‐dominates E d′( , ) if and only if

E d E d( , ) ′ ( , )1 1≥  and E d E d( , ) ′ ( , )3 3≤  . We present three‐claimant examples to show
that the RA and the PRO rules are incomparable on both half domains and that the MO and the
PRO rules are not Lorenz‐comparable on the lower‐half domain.

Example 6.5. Let N E= {1, 2, 3},   = 4, and d = (1, 4, 5) 3∈ ≤. Then E d C( , ) , PROL
N∈

( )E d( , ) = , , 2 ,
2

5

8

5
and ( )E d E dRA( , ) = MO( , ) = , , .

1

3

11

6

11

6

Clearly, E d E dRA ( , ) < PRO ( , )1 1 and E d E dRA ( , ) < PRO ( , )3 3 so E d E dRA( , ) = MO( , )

and E dPRO( , ) are not Lorenz‐comparable. Therefore, the RA and the MO rules are
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not comparable with the PRO rule on CL
N . The corresponding dual problem

( )d N E d C PRO d N E d( ( ) − , ) = (6, (1, 4, 5)) , ( ( ) − , ) = , , 3H
N 3

5

12

5
∈ and RA d N( ( ) −

( )E d, ) = , , .
2

3

13

6

19

6

Since d N E d d N E dRA ( ( ) − , ) > PRO ( ( ) − , )1 1 and d N E d d N E dRA ( ( ) − , ) > PRO ( ( ) − , )3 3 ,
the RA and the PRO rules are incomparable on CH

N .

Bosmans and Lauwers (2011) also give examples showing that the RA and the APRO rule
are not comparable neither on CL

N nor on CH
N , but the examples involved problems with four

claimants. In fact, we prove in Appendix D that these two rules are comparable on the half
domains when there are just three claimants. Indeed, if  N = 3 then the APRO rule Lorenz‐
dominates the RA rule on the lower‐half domain and the APRO rule is Lorenz‐dominated by
the RA rule on the higher‐half domain. The ranking of the ten rules for problems with just
three claimants on the half‐domains is summarized in Figure 6. Observe that the RA rule can
be compared with all the rules except the PRO rule.

6.6 | Final comments on the refined ranking

First, let us give an example of a three‐claimant problem to illustrate the results that we have
established on the lower‐half, higher‐half, and middle domains.

Example 6.6. Let N = {1, 2, 3} and d = (1, 4, 7) 3∈ ≤. Then d N d N( ) = 12, ( ) = 6
1

2
,

and D d d= + = 5−3 1 2 , so D d N d< ( ) <−3
1

2 3. If E [5, 7]∈ then E d C( , ) M
N∈ so

T E d E d E d E( , ) = APRO( , ) = AA( , ) = ( , 2, − )
1

2

5

2
. Now, let  be any of these five

rules: PRO, APRO, T , AA, or MO. Consider the function d( , ) : [0, 12]1 ⋅ → that
assigns to each E [0, 12]∈ the value E d( , )1 , the award given to the first claimant by
in the claims problem E d( , ). The plot of the function d( , )1 ⋅ is called the schedule of
awards of the rule for the claims vector d corresponding to the first claimant. Figure 7
shows the schedules of awards of the five rules.

FIGURE 7 The schedules of awards d( , )1 ⋅ of several rules for d = (1, 4, 7) [Color figure can be viewed at
wileyonlinelibrary.com]
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Since the APRO,T , and AA rules Lorenz‐dominate the MO rule on the entire domain,
we see that the schedules of awards of APRO,T , and AA lie above the schedule of awards
of the MO rule. Nevertheless, the paths of dPRO ( , )1 ⋅ and dMO ( , )1 ⋅ cross each other on
the interval [0, 6] indicating that these rules are not Lorenz‐comparable on the lower‐half
domain. Now, we have that T AA APRO PRO≽ ≽ ≽ on CL

N but TPRO APRO AA≽ ≽ ≽ on
CH
N which implies that T E d E d E d E d( , ) AA ( , ) APRO ( , ) PRO ( , )1 1 1 1≥ ≥ ≥ for all

E [0, 6]∈ and E d E d E d T E dPRO ( , ) APRO ( , ) AA ( , ) ( , )1 1 1 1≥ ≥ ≥ if E [6, 12]∈ .

The Lorenz order is a partial order, so it is noteworthy to obtain results regarding the Lorenz
ranking of rules. The ranking illustrated in Figure 6 can be helpful, for instance, to discard three‐
claimant problems as a source of counterexamples for some axioms and rules. As for the big
picture, summarized in Figure 4, the analysis outlined in Example 6.6 can be extended to larger
populations and can provide helpful information in situations when the initial resource varies
with time. One of the many applications of claims problems is the allocation of CO2 emissions. In
Giménez‐Gómez et al. (2016) model, the endowment, E0, is the available carbon budget and the
claimants are the countries/regions that claim their current quota ofCO2 emissions. Now, in order
to comply with the international agreements on climate change, the allowed globalCO2 emissions
in the next decade must drop 7.6 per cent per year before crossing a dangerous threshold. Mirás
Calvo et al. (2020) present a dynamic model by selecting a set of 20 emitters, N = {1, …, 20}, with
fixed claims d N∈ (their current emissions), and considering a sequence of claims problems
E d C( , )t

N∈ , with t {1, …, 10}∈ , where E E= (1 − 0.076)t
t

0. They analyze several rules that
provide different distribution patterns of the emissions reduction among the polluters. If two rules
are Lorenz‐comparable then the one that Lorenz‐dominates demands a lesser effort to the top
polluters than the one that is Lorenz‐dominated. But, since the endowment is reduced by 7.6
percent in each period, the claims problems at the beginning of the decade belong to the higher‐
half domain while toward the end of the period they belong to the lower‐half domain. Therefore,
according to the refined ranking, some rules that demand a lesser effort to the top polluters in the
first years will ask for a bigger effort to those countries at the end of the period, and vice versa.9

These qualitative differences are of great interest when negotiating the policy to be implemented.
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APPENDIX A: DEFINITION OF RULES

• Proportional rule (PRO): For each E d C( , ) N∈ and each i N E d E, PRO ( , ) =i
d

d N( )
i∈ if

d N( ) 0≠ and EPRO ( , 0) = 0i , otherwise.

• Adjusted proportional rule (APRO): For each E d C( , ) N∈ and each i N∈ ,

E d m E M d m E MAPRO ( , ) = + PRO ( − , (min{ − , − }) ),i i i j j j N∈

where M m= j N j∈ .

• Minimal overlap rule (MO): Let d = 00 . For each E d C( , ) N∈ and each i N∈ ,

i) If E dn≤ then E dMO ( , ) = + + +i
t

n

t t

n

t t

n i

−

− 1

−

− + 1
i i1 2 1 −1⋯ .

ii) If E d> n, let s d d( , ]k k +1∈∗ ∗ ∗ , with k n* {0, 1, …, − 2}∈ , be the unique solution to the
equation  d s E smax{ − , 0} = −j N j∈ . Then,





E d
i k

s d d s i k n
MO ( , ) =

+ + + if {1, …, *}

MO ( *, ) + − * if { * + 1, …, }
.i

d

n

d d

n

d d

n i

i i

−

− 1

−

− + 1
i i1 2 1 −1⋯ ∈

∈

• Constrained equal awards rule (CEA): For each E d C( , ) N∈ and each
i N E d α d, CEA ( , ) = min{ , }i i∈ , where α 0≥ is chosen such that E E d= CEA ( , )i N i∈ .

• Constrained equal losses rule (CEL): For each E d C( , ) N∈ and each
i N E d d β, CEL ( , ) = max{0, − }i i∈ , where β 0≥ is chosen such that E E d= CEL ( , )i N i∈ .

• Talmud rule (T): For each E d C( , ) N∈ and each i N∈ ,







( )
( )

T E d
E E d N

d d N E E d N
( , ) =

CEA , if ( )

− CEA ( ) − , if ( )
.i

i
d

i i
d

2

1

2

2

1

2

≤

≥

• Piniles' rule (PIN): For each E d C( , ) N∈ and each i N∈ ,
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( )
( )

E d
E E d N

E d N E d N
PIN ( , ) =

CEA , if ( )

+ CEA − ( ), if ( )
i

i
d

d
i

d

2

1

2

2

1

2 2

1

2
i

≤

≥

• Constrained egalitarian rule (CE): For each E d C( , ) N∈ and each i N∈ ,







( )
{ }

E d
E E d N

d λ E d N
CE ( , ) =

CEA , if ( )

max , min{ , } if ( )
i

i
d

d
i

2

1

2

2

1

2
i

≤

≥

where λ 0≥ is chosen such that  { }d λ Emax , min{ , } =i N
d

i2
i

∈ .

• Random arrival rule (RA): For each E d C( , ) N∈ and each i N∈ ,

 E d
N

d E d P iRA ( , ) =
1

!
min{ , max{0, − ( ( ))}},i

π

i π

ΠN∈

where ΠN is the set of strict orders on N and P i j N π j π i( ) = { : ( ) < ( )}π ∈ for π ΠN∈ .
• Average‐of‐awards rule (AA): For each E d C( , ) N∈ the average‐of‐awards rule, E dAA( , ),
selects the centroid of the set of awards vectors X E d( , ). Let μ be the n( − 1)‐dimensional
Lebesgue measure and denote V E d μ X E d( , ) = ( ( , )) the volume (measure) of the set of
awards vectors. If V E d( , ) > 0 then for each i N∈ ,

E d
V E d

x dμAA ( , ) =
1

( , )
.i

X E d
i

( , )

APPENDIX B: PROPERTIES OF THE APRO RULE

Lemma B.1. Let E d C( , ) L
N∈ and d = 00 . We have that

1. If E D d Nmin{ , ( )}n−
1

2
≤ , let  k k N d E= { : }k0 ∈ ≤ and  d n k E= + ( − )s

k
s=0 0

0 .

Then







E d E t
t E j k

j k
APRO ( , ) = PRO ( , ) = =

if

if >
.j j

j

d E

E

0

0

j

2

≤






2. If E D d N[ , ( )]n−
1

2
∈ then ( )E d EAPRO( , ) = , …, , −

d d D

2 2 2
n n1 −1 − .

Proof. Let E d C( , ) L
N∈ . If E d C( , ) ML

N∈ then E d E dAPRO( , ) = AA( , ). Now, if
E D d Nmin{ , ( )}n−

1

2
≤ then m = 0j for all j N∈ and E d E tAPRO( , ) = PRO( , ). Observe

that, if  k k N d E= { : }k0 ∈ ≤ then  t E d d n k E= ( , ) = + ( − )i N i s
k

s=0 0
0

∈ . The result
in this case is straightforward. □
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Proposition B.2. The APRO rule satisfies regressivity on CL
N and progressivity on CH

N .

Proof. Let E d C( , ) L
N∈ and denote  t E d= ( , )i N i∈ . Then









{ }
E d

d

E D d N

D E d N i N n

D E d N i n

APRO ( , )
=

if min , ( )

if ( ) and \{ }

if ( ) and =

.i

i

t E

d
n

n

E D

d
n

−
1

2

1

2
−

1

2

2 −

2
−

1

2

i

i

n

n

−

≤

≤ ≤ ∈

≤ ≤



It follows at once that the APRO rule is regressive on CL
N and, by self‐duality, progressive

on CH
N . □

Proposition B.3. The APRO rule satisfies both other‐regarding claim monotonicity and
order preservation under claims variations on CL

N .

Proof. Let E d C i N d d d d d( , ) , , ′ > , ′ = ( , ′)L
N

i i i i−∈ ∈ , and denote E dΔ = APRO ( , )j j

E d−APRO ( , ′)j for j N i\ { }.∈ We have to prove that 0 Δ Δj k≤ ≤ for all j k N i{ , } \ { }⊂

with d dj k≤ . Since the APRO rule satisfies anonymity, it is sufficient to prove the
result when d d d< ′i i i+1≤ . Now, since E d C( , ) L

N∈ then E d C( , ′) L
N∈ and t t= ′j j

for j N i\ { }∈ . Let  t= k N k∈ and  t′ = ′k N k∈ . If E D d Nmin{ , ( )}n−
1

2
≤ then

{ }E D d Nmin ′ , ′( )n−
1

2
≤ , so ( )t EΔ = −j j

1 1

′ 
for each j i≠ , and the result follows

immediately. Suppose E D d N[ , ( )]n−
1

2
∈ . If i n= the result also holds because






D D E D d N′ = , ′ , ′( )n n n− − −

1

2
∈ , and Δ = 0j for j n< . Suppose i n< :

Case 1: If E D ′n−≤ then






( )d j N i n

E E j n
Δ =

− if \ { , }

− − if =
.

′

′

j

E
j

D E

1

2

2
n−

∈




Take j k N i n j k, \ { , },∈ ≠ . Now D E′ = ′ +n− so E < ′1

2
 and 0 Δ Δj k≤ ≤ . Moreover,

( )E DΔ = 1 − − 0n
E

n′

1

2 − ≥


because E D n−≥ and Δ Δj n≤ since D′ n−≥ .

Case 2: If E D ′n−≥ then





 ( )

j N i n

D D j n
Δ =

0 if \ { , }

′ − if =
.j

n n
1

2 − −

∈

The result holds since D D′n n− −≥ . □

Proposition B.4. The APRO rule satisfies population monotonicity on CL
N .
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Proof. Let N E d C, ( , ) L
N∈ ∈ , and N N′ ⊂ such that d N E( ′) ≥ . If ( )E d C, N L

N
′

′
∈ ,

then by Proposition B.3, ( ( ))E d E dAPRO ( , ) APRO , , 0N N N N N′ ′ ′ \ ′≤ . But, the APRO rule
satisfies null claims consistency, so ( ( )) ( )E d E dAPRO , , 0 = APRO ,N N N N N N′ ′ \ ′ ′ ′ .

Therefore, ( )E d E dAPRO ( , ) APRO ,N N N′ ′ ′≤ . On the contrary, if ( )E d C, N H
N

′
′

∈ then,
for each j N′∈ ,

( ) ( ) ( )E d d N d d N d E dAPRO ( , ) APRO ( ), = = APRO ( ′), APRO ,j j
d

j N j N
1

2 2

1

2
′ ′

j
≤ ≤

where, we have applied that E d N( )
1

2
≤ and that the adjusted proportional rule satisfies

endowment monotonicity and the midpoint property. Hence, we conclude that the
adjusted proportional rule satisfies population monotonicity on CL

N . □

Proposition B.5. The APRO rule satisfies order preservation under population variation
on CL

N .

Proof. Let E d C i N( , ) ,L
N∈ ∈ with E d N i< ( \{ }) and a pair j k N i{ , } \ { }⊆ where d dj k≤ ,

we have to prove that E d E d E d E dAPRO ( , ) − APRO ( , ) APRO ( , ) − APRO ( , )k j k i j i− −≤ .

When E D i
1

2 −≤ , the property holds directly by Proposition B.3 since the APRO rule satisfies

null claims consistency. Now, if E D i
1

2 −≥ , we have that

( )
( )

E d E d E d E d

E d

E d

E d E d

E d E d

APRO ( , ) − APRO ( , ) APRO ( , ) − APRO ( , )

= APRO ( , )

APRO ( , )

= APRO ( , ) − APRO ( , )

APRO ( , ) − APRO ( , ).

k i j i j i
d

d j i

d d

d j i

d d

d j

j
d

d j

k j

− − − −

−
−

−

k

j

k j

j

k j

j

k

j

≥

≥

≥

The first inequality holds because, by Proposition B.2, the APRO rule is progressive on
CH
N i\ { } . The second inequality is an application of Proposition B.4, and the last one follows

from Proposition B.2. □

APPENDIX C: PROGRESSIVITY AND REGRESSIVITY OF THE MO AND
AA RULES

Lemma C.1. Let E d C( , ) N∈ . If E d E dMO ( , ) = MO ( , ) +i i
t t

n i+1
−

−
i i+1 for some i N n\ { }∈

then E d

t

E d

t

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ .
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Proof. Let i N n\ { }∈ such that E d E dMO ( , ) = MO ( , ) +i i
t t

n i+1
−

−
i i+1 . Simple calculations

show that E d

t

E d

t

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ if and only if ( )t t E d( − ) − MO ( , ) 0i i

t

n i i+1 −
i ≥ . But,

( )E d− MO ( , ) 0
t

n i i−
i ≥ , because:

n i E d
n i

n
t

n i

n i
t t

t t t t t t

( − )MO ( , ) =
−

+ +
−

− + 1
( − )

+ ( − ) + + ( − ) = .

i i i

i i i

1 −1

1 2 1 −1

⋯

≤ ⋯

Since t t( − ) 0i i+1 ≥ , we have that ( )t t E d( − ) − MO ( , ) 0i i
t

n i i+1 −
i ≥ . □

Proposition C.2. The MO rule satisfies progressivity on CS
N .

Proof. When  N = 2 the result is clear. So, let  N 3≥ and E d C( , ) S
N∈ . It suffices to

prove that E d

d

E d

d

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ for all i N n\ { }∈ . Since E d C( , ) S

N∈ then E dn≥ and

t E d d( , ) = . If E d= n, the result follows directly from Lemma C.1. If E d> n, let
( ]s d d*

*,k k*+1∈ , with k n* {0, 1, …, − 2}∈ , be the solution to the equation

 d s E smax{ − , 0} = −i N i∈ . By Lemma C.1, we have that E d

d

E d

d

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ for all

i k{1, …, * − 1}∈ . Now, since s d* k*≥ we have that E d s dMO ( , ) = MO ( *, )k k* * . In
addition,

E d s d d s s d

s d

n k
d s

MO ( , ) = MO ( , ) + ( − ) = MO ( , )

+
−

−
+ ( − ).

k k k k

k
k

+1 +1 +1

+1

∗ ∗ ∗

∗ ∗

∗
∗

∗ ∗ ∗ ∗

∗

(C1)

But, again by Lemma C.1,

E d

d

s d

d

s d

d

E d

d

MO ( , )
=

MO ( , ) MO ( , )
=

MO ( , ) +
.k

k

k

k

k

k

k
s d

n k

k

+1

+1

−

−

+1

k

≤
∗ ∗

∗
∗

∗

∗

∗

∗

∗

∗
∗ ∗

∗

Then, since 0
d s

d

−k

k

+1

+1
≥

∗ ∗

∗
, we have that

E d

d

E d

d

d s

d

E d

d

MO ( , ) MO ( , ) +
+

−
=

MO ( , )
,k

k

k
s d

n k

k

k

k

k

k

−

−

+1

+1

+1

+1

+1

k

≤
∗∗

∗

∗
∗ ∗

∗

∗

∗

∗

∗

∗

where the last equality follows from (C1). Finally, if i k* + 1≥ then E d

d

E d

d

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤

if and only if



 


 


 


E d

s d

n k
d s d E d

s d

n k
d s dMO ( , ) +

* −

− *
+ − * MO ( , ) +

* −

− *
+ − * ,k

k
i i k

k
i i*

*
+1 *

*
+1≤
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or, equivalently,



 


d d E d

s d

n k
s( − ) MO ( , ) +

* −

− *
− * 0.i i k

k
+1 *

*
≤

Since d d− 0i i+1 ≥ , we have to prove that

E d
s d

n k
s

n k E d d n k s

n k
MO ( , ) +

* −

− *
− * =

( − *)MO ( , ) − − ( − * − 1) *

− *
0.k

k k k
*

* * *
≤

Indeed, the inequality holds since n k− * − 1 0≥ , because k n* − 1≤ ,

and n k E d d( − *)MO ( , )k k* *≤ , because n k E d d( − *)MO ( , ) = + +k
n k

n

n k

n k
*

− *
1

− *

− * + 1
⋯

( )d d d d d d d d− + − + + − =k k k k k* *−1 1 2 1 * *−1 *≤ ⋯ . □

Proposition C.3. The MO rule satisfies progressivity on CH
N .

Proof. When  N = 2 the result is clear. So, let  N 3≥ and E d C( , ) H
N∈ . It suffices to prove

that E d

d

E d

d

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ for all i N n\ { }∈ . If E dn≥ , the result follows directly from

Proposition C.2. As a consequence, we just have to prove the result if d N E d( ) < n
1

2
≤ . But

then d D Ei n−≤ ≤ for all i N n\ { }∈ , so t E d d d E( , ) = ( , …, , )n1 −1 and

E d E dMO ( , ) = MO ( , ) +i i
t t

n i+1
−

−
i i+1 . By Lemma C.1 we have that E d

d

E d

d

MO ( , ) MO ( , )i

i

i

i

+1

+1
≤ for

each i N n n\ { , − 1}∈ . It remains to be proved that E d d E d dMO ( , ) MO ( , )n n n n−1 −1≥ . Since
E d E d E dMO ( , ) = MO ( , ) + −n n n−1 −1, we have to prove that d d( − )MOn n n−1 −1

E d E d d( , ) ( − )n n−1 −1≤ . But,

E d
d

n

d d

n

d d d d d

d d d

MO ( , ) = +
−

− 1
+ +

−

2 2
+

−

2

+ +
−

2
=

2
.

n
n n

n n n

−1
1 2 1 −1 −2 1 2 1

−1 −2 −1

⋯ ≤

⋯

Moreover, it is easy to check that ( )d d d d N d( − ) ( ) −
d

n n n n2 −1 −1
1

2 −1
n−1 ≤ . Then,

( )d d E d d d d d N d E d d( − )MO ( , ) ( − ) ( ) − ( − )n n n
d

n n n n n n−1 −1 2 −1 −1
1

2 −1 −1 −1
n−1≤ ≤ ≤ . □

Lemma C.4. The CD rule satisfies regressivity on CL
N and progressivity on CH

N .

Proof. Let N = {1, 2}. Since progressivity and regressivity are dual properties and the
concede‐and‐divide rule is self‐dual, it suffices to prove that the concede‐and‐divide rule

is regressive on CL
N . But, if E d0 1≤ ≤ , then E d

d

E d

d

CD ( , ) CD ( , )1

1

2

2
≥ if and only if E

d

E

d2 21 2
≥ ,

which holds because d d2 1≥ . On the other hand, if d E
d d

1
+

2
1 2≤ ≤ then

E d

d

E d

d

CD ( , ) CD ( , )1

1

2

2
≥ if and only if E d

d

1

2

2 −

2
1

2
≥ which obviously holds since E

d d+

2
1 2 ≥ . □
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Proposition C.5. The AA rule is regressive on CL
N and progressive on CH

N .

Proof. Progressivity and regressivity are dual properties and the average‐of‐awards rule
is self‐dual, so it suffices to show that it is regressive on CL

N . We proceed by induction on
the number of claimants  n N= . First, the average‐of‐awards rule coincides with the
concede‐and‐divide rule when  N = 2, and, by Lemma C.4, the concede‐and‐divide rule
satisfies regressivity on CL

N .
Now, let  N n E d C= 3, ( , ) L

N≥ ∈ , and i j N, ∈ such that d di j≤ . By the induction
hypothesis, assume that the average‐of‐awards rule is regressive on the lower‐half
domain for all problems with n − 1 claimants. We have to prove that

E d

d

E d

d

AA ( , ) AA ( , )j

j

i

i
≤ .

Clearly, D Dn− −1≤ ⋯≤ and if k N n\ { }∈ then d Dk k−≤ . As for the relative position of dn
and D n− , both situations, d Dn n−≤ and D dn n− ≤ , are possible (see Figure 1). In any case,
d N( )

1

2
is the middle point of the interval with extreme points dk and D k− for all k N∈ .

We distinguish three cases:
Case 1: Let E d[0, ]1∈ . For each k N∈ denote ak N∈ the vector with E in the kth‐

coordinate and 0's elsewhere. Then X E d( , ) is the regular simplex spanned by the points
a k N,k ∈ , so the centroid of X E d( , ) is the arithmetic mean of its extreme points:

E dAA ( , ) =k
E

n
for each k N∈ . Therefore, − = − 0

E d

d

E d

d

E

nd

E

nd

AA ( , ) AA ( , )j

j

i

i j i
≤ .

Case 2: If E D d N[ , ( )]n−
1

2
∈ , then E d C( , ) M

N∈ so E dAA ( , ) =j
d

2

j for all j N n\ { }∈

and E d EAA ( , ) = −n
D

2
n− . Hence, − = 0

E d

d

E d

d

AA ( , ) AA ( , )i

i

j

j
whenever j n< . But,

− = − = 0
E d

d

E d

d

E D

d

E d N

d

AA ( , ) AA ( , ) 2 −

2

1

2

2 − ( )

2
n

n

i

i

n

n n

− ≤ because E d N2 ( )≤ .

Case 3: Let E d D d N[ , min{ , ( )}]n1 −
1

2
∈ . Take k N i j\ { , }∈ . Let g d N D: (0, ( )) × [0, ]k k− ⟶

be the function defined by g E u( , ) =k
n

n − 1
E u d N D, ( , ) (0, ( )) × [0, ]

V u d

V E d k
( , )

( , ) −
k− ∈ . Mirás

Calvo et al. (2022b) show that, for all N kℓ \ { }∈ ,

E d u d g E u duAA ( , ) = AA ( , ) ( , ) ,
r E d

R E d

k kℓ
( , )

( , )

ℓ −
k

k

where r E d E d( , ) = max{0, − }k k and R E d E D( , ) = min{ , }k k− . But, E D k−≤ and
R E d E( , ) =k . Then, since i j N k, \ { }∈ , we can write:

 







E d

d

E d

d

u d

d

u d

d
g E u du

AA ( , )
−

AA ( , )
=

AA ( , )
−

AA ( , )
( , ) .

j

j

i

i r E d

E
j k

j

i k

i
k

( , )

− −

k

(C2)

Now, if E d D[ , ]k1
1

2 −∈ then E D Dk k
1

2 − −≤ ≤ . Therefore u d C( , )k L
N k

−
\ { }∈ for all

u r E d E[ ( , ), ]k∈ , so, by the induction hypothesis, − 0
u d

d

u d

d

AA ( , ) AA ( , )j k

j

i k

i

− − ≤ . Since

g E u( , ) 0k ≥ we have − 0
E d

d

E d

d

AA ( , ) AA ( , )j

j

i

i
≤ .

On the other hand, if E D d N[ , ( )]k
1

2 −
1

2
∈ then equality (C2) can be express as
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( )
( )

g E u du

g E u du

− = − ( , )

+ − ( , ) .

E d

d

E d

d r E d

D u d

d

u d

d k

D

E u d

d

u d

d k

AA ( , ) AA ( , )

( , )

AA ( , ) AA ( , )

AA ( , ) AA ( , )

j

j

i

i k

k j k

j

i k

i

k

j k

j

i k

i

1
2 − − −

1
2 −

− −

(C3)

By self‐duality,

− = −

= − .

u d

d

u d

d

d D u d

d

d D u d

d

D u d

d

D u d

d

AA ( , ) AA ( , ) − AA ( − , ) − AA ( − , )

AA ( − , ) AA ( − , )

j k

j

i k

i

j j k k

j

i i k k

i

i k k

i

j k k

j

− − − − − −

− − − −

It is easy to see that X E d D X D E d( , ) = − ( − , )k k k k− − − − . Then V E d( , ) =k−

V D E d( − , )k k− − and applying the change of variable s D u= −k− ,




















u d

d

u d

d
g E u du

s d

d

s d

d
g E s ds

AA ( , )
−

AA ( , )
( , )

=
AA ( , )

−
AA ( , )

( , ) .

D

E
j k

j

i k

i
k

D E

D
i k

i

j k

j
k

1
2

− −

−

1
2

− −

k

k

k

−

−

−
(C4)

Since D E d N D( )k k
1

2 −
1

2 −≤ ≤ ≤ , we have that r E d D E D( , ) −k k k−
1

2 −≤ ≤ . Then,

 



( ) ( )

( )

g E u du

g E u du

g E u du

− ( , ) = −

( , )

+ −

( , ) .

r E d

D u d

d

u d

d k r E d

D E u d

d

u d

d

k

D E

D u d

d

u d

d

k

( , )

AA ( , ) AA ( , )

( , )

− AA ( , ) AA ( , )

−

AA ( , ) AA ( , )

k

k j k

j

i k

i k

k
j k

j

i k

i

k

k
j k

j

i k

i

1
2 − − −

−
− −

−

1
2 −

− −

(C5)

Now combining (C3) with the equalities (C4) and (C5),

 







E d

d

E d

d

u d

d

u d

d
g E u du

AA ( , )
−

AA ( , )
=

AA ( , )
−

AA ( , )
( , ) .

j

j

i

i r E d

D E
j k

j

i k

i
k

( , )

−
− −

k

k−

Finally, u d C( , )k L
N k

−
\ { }∈ for all u r E d D E[ ( , ), − ]k k−∈ , so, by the induction hypothesis,

− 0
u d

d

u d

d

AA ( , ) AA ( , )j k

j

i k

i

− − ≤ . Therefore, − 0
E d

d

E d

d

AA ( , ) AA ( , )j

j

i

i
≤ . □
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APPENDIX D: RANKING THE RA AND APRO RULES FOR THREE ‐
CLAIMANT PROBLEMS
Let N = {1, 2, 3}. We want to prove that APRO RA≽ on CL

N and that RA APRO≽ on CH
N .

Let E d C( , ) N∈ with d d d d= ( , , )1 2 3
3∈ ≤. Since both the APRO rule and the RA rule are

self‐dual we just have to show that E d E dAPRO( , ) RA( , )≽ whenever E d C( , ) L
N∈ . Then,

assume that E d d d( + + )
1

2 1 2 3≤ and let us prove that E d E dAPRO ( , ) RA ( , )1 1≥ and

E d E dAPRO ( , ) RA ( , )3 3≤ . We distinguish five cases.

Case 1: If E d1≤ , then E d E dAPRO( , ) = RA( , ) and the result is trivial.

Case 2: If d E d<1 2≤ , then ( )E dAPRO( , ) = , ,
d E

d E

E

d E

E

d E+ 2 + 2 + 2
1

1

2

1

2

1
and E dRA( , ) =

( ), ,
d E d E d

3

3 −

6

3 −

6
1 1 1 . Easy computations show that E d E dAPRO ( , ) RA ( , )1 1≥ and

E d E dAPRO ( , ) RA ( , )3 3≤ .
Case 3: If d E d d N< ( )2 3

1

2
≤ ≤ or d E d d d N< + ( )2 1 2

1

2
≤ ≤ then:

( )
( )

E d

E d

APRO( , ) = , ,

RA( , ) = , , .

d E

d d E

d E

d d E

E

d d E

E d d E d d E d d

+ + + + + +

+ 2 −

6

− + 2

6

4 − −

6

1

1 2

2

1 2

2

1 2

1 2 1 2 1 2

Clearly, E d E dAPRO ( , ) RA ( , )1 1≥ if and only if E AE B− + 02 ≤ where A d= 3 1 and
B d d d d= 2 + −1

2
1 2 2

2. But E AE B E d d E d d− + = ( − (2 − ))( − ( + )) 02
1 2 1 2 ≤ since

E d d+1 2≤ and E d d d2 −2 1 2≥ ≥ . Analogously, E d E dAPRO ( , ) RA ( , )3 3≤ if and only if
E CE C2 − 3 + 02 2 ≤ where C d d= +1 2. But E CE C E C E C2 − 3 + = ( − )(2 − ) 02 2 ≤

because E C≤ and d E
C

2 2≤ ≤ .

Case 4: If d d E d N+ ( )1 2
1

2
≤ ≤ then ( )E d E d ERA( , ) = APRO( , ) = , , −

d d d d

2 2

+

2
1 2 1 2 .

Case 5: If d E d N( )3
1

2
≤ ≤ then:

( )
( )

E d

E d

APRO( , ) = , ,

RA( , ) = , , .

d E

d d d

d E

d d d

d E

d d d

E d d d E d d d E d d d

+ + + + + +

2 + 2 − −

6

2 − + 2 −

6

2 − − + 2

6

1

1 2 3

2

1 2 3

3

1 2 3

1 2 3 1 2 3 1 2 3

Basic computations show that E d E dAPRO ( , ) RA ( , )1 1≥ if and only if M d E= 6 −1

d d d E d d d( + + )(2 + 2 − − ) 01 2 3 1 2 3 ≥ . But M E d d d d d d= (2 − ( + + ))(2 − − ) 01 2 3 1 2 3 ≥

since E d N( )
1

2
≤ and d d d2 +1 2 3≤ . Now, E d E dAPRO ( , ) RA ( , )3 3≤ if and only if

Q d E d d d E d d d= 6 − ( + + )(2 − − + 2 ) 03 1 2 3 1 2 3 ≤ . But Q E d d d d= (2 − ( + + ))(2 −1 2 3 3

d d− ) 01 2 ≤ since E d N( )
1

2
≤ and d d d2 +3 1 2≥ .
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