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ZAGREB EQUIENERGETIC BIPARTITE GRAPHS

G. H SHIRDEL1∗, S. AHMADI1, §

Abstract. Let G be a graph with vertices v1, v2, . . . , vn and let di be the degree of vi.
The Zagreb matrix of the graph G is the square matrix of order n whose (i, j)-entry is
equal to di + dj if the vertices vi and vj are adjacent, and zero otherwise. The Zagreb
energy ZE(G) of G is the sum of the absolute values of the eigenvalues of the Zagreb
matrix. Two graphs are said to be Zagreb equienergetic if their Zagreb energies are
equal. In this paper, we show how infinitely many pairs of Zagreb equienergetic bipartite
graphs can be constructed such that these bipartite graphs are connected, possess an
equal number of vertices, an equal number of edges, and are not cospectral.

Keywords: Zagreb energy, Line graph, Complement of graph, Extended double cover of
graph, Bipartite graph.
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1. Introduction

In this paper, G is a simple undirected graph with a vertex set V = V (G) = {v1, v2, . . . ,
vn} and an edge set E = E(G). The integers n = n(G) = |V (G)| and m = m(G) = |E(G)|
represent the graph’s order and size, respectively. The open neighborhood of a vertex
v ∈ V is the set N(v) = {u ∈ V |uv ∈ E}, and the degree of v is d(v) = |N(v)|. The graph
G is said to be r-regular if the degree of its all vertices is r. A bipartite graph is a graph
such that its vertex set can be partitioned into two sets, X and Y , (referred to as the
partite sets), such that every edge meets both X and Y . The complement G of a graph G
is the simple graph whose vertex set is V and whose edges are the pairs of non-adjacent
vertices of G. The line graph of a graph G, written L(G), is the graph whose vertices are
the edges of G, with ef ∈ E(L(G)) when e = uv and f = vw in G. The basic properties
of line graphs are found in textbooks [9]. The iterated line graphs of G are then defined
recursively as L2(G) = L(L(G)), L3(G) = L(L2(G)), . . . , Lk(G) = L(Lk−1(G)), . . .. It is
consistent to set L(G) ≡ L1(G) and G ≡ L0(G). The basic properties of iterated line
graph sequences are summarized in the articles [2, 3]. The extended double cover of G,
defined in [1] and denoted by G∗ is the bipartite graph with bipartition (X,Y ) where
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X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, in which xi and yi are adjacent if and only
if i = j or vi and vj are adjacent in G . It is easy to see that G∗ is connected if and only
if G is connected and G∗ is regular of degree r + 1 if and only if G is regular of degree r.

The adjacency matrix A(G) of G is defined by its entries as aij = 1 if vivj ∈ E(G) and
zero otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A(G), then the energy
of the graph G was first introduced by Gutman [5] in 1978 and is defined as the sum of
the absolute values of the eigenvalues of its adjacency matrix,

E = E(G) =
n∑

i=1

|λi|.

The concept of graph energy arose in chemistry (see, e.g., [4, 5]). Two non-isomorphic
graphs G1 and G2 of the same order are said to be equienergetic if E(G1) = E(G2)
[11]. The Zagreb indices are widely studied degree-based topological indices and were
established by Gutman and Trinajstić [8] in 1972. The Zagreb matrix of a graph G is a
square matrix Az(G) = (mij) of order n, defined in [13], as follows:

mi,j =

 di + dj if the vertices vi and vj of G are adjacent,

0 otherwise.

The eigenvalues of Az(G) labeled as z1 ≥ z2 ≥ · · · ≥ zn are referred to as the Zagreb
eigenvalues of G. The Zagreb energy, represented by ZE(G) and described in [13], is the
sum of all absolute Zagreb eigenvalues and is defined as follows:

ZE = ZE(G) =

n∑
i=1

|zi|.

In a manner analogous to equienergetic graphs, two non-isomorphic graphs of the same
order are said to be Zagreb equienergetic if they have the same Zagreb energy.

2. Main result

Let G be a r−regular graph of order n and λ1 ≥ λ2 ≥ · · · ≥ λn and z1 ≥ z2 ≥ · · · ≥ zn be
the eigenvalues and the Zagreb eigenvalues of G respectively. According to the definition
of the adjacency matrix A(G) and the Zagreb matrix Az(G), we have

Az(G) = 2rA(G). (1)

Therefore

zi = 2rλi for i = 1, 2, . . . , n. (2)

If dmax is the greatest vertex degree of a graph, then all its eigenvalues belongs to the
interval [−dmax,+dmax] [4]. In particular, the eigenvalues of the r− regular graph G,
satisfy the condition −r ≤ λ ≤ r for all i = 1, 2, . . . , n. From (2), we have

−2r2 ≤ zi ≤ 2r2 for all i = 1, 2, . . . , n.

On the other hand, n−dimension column vector with all one, clearly is an eigenvector
of A(G) with corresponding the eigenvalue r. Then the greatest eigenvalue of A(G) is
always r, that is λ1 = r. Therefore, z1 = 2r2. By definition, the diagonal elements of the
adjacency matrix of graph G are equal to zero. Therefore, the trace of A(G) is zero. From
linear algebra, we know that the sum of all the eigenvalues of a square matrix is equal to
the trace of the matrix. Therefore, we conclude

∑n
i=1 λi = 0. Considering (2), we also
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have
∑n

i=1 zi = 0.

To prove the main results in this note, we will use the following theorems and their
corresponding results.

Theorem 2.1. [2, 3] The line graph of a regular graph is a regular graph. In particular,
the line graph of a regular graph G of order n0 and of degree r0 is a regular graph of order
n1 = 1

2r0n0 and degree r1 = 2r0 − 2. Consequently, the order and degree of Lk(G) are

nk =
1

2
rk−1nk−1 and rk = 2rk−1 − 2,

where nk−1 and rk−1 stand for the order and degree of Lk−1(G). Therefore

rk = 2kr0 − 2k+1 + 2

and

nk =
n0
2k

k−1∏
i=0

ri =
n0
2k

k−1∏
i=0

(2ir0 − 2i+1 + 2).

Corollary 2.1. If G be a r-regular graph of order n, then the degree and order of L2(G)
are 4r − 6 and nr(r − 1)/2, respectively.

Theorem 2.2. [14] If z1 ≥ z2 ≥ · · · ≥ zn be the Zagreb eigenvalues of a regular graph G
of order n and degree r, then the Zagreb eigenvalues of L(G) are

8− 8r n(r − 2)/2 times,

4(r − 1)
(
zi/2r + r − 2

)
i = 1, 2, . . . , n.


Corollary 2.2. If z1 ≥ z2 ≥ · · · ≥ zn be the Zagreb eigenvalues of a regular graph G of
order n and degree r, then the Zagreb eigenvalues of L2(G) are

24− 16r nr(r − 2)/2 times,

8(2r − 3)(r − 3) n(r − 2)/2 times,

4(2r − 3)(zi/2r + 3r − 6) i = 1, 2, . . . , n.

 (3)

Theorem 2.3. [14] Let G be a r-regular graph (r ≥ 3) of order n with the Zagreb eigenval-
ues z1 ≥ z2 ≥ · · · ≥ zn. The Zagreb eigenvalues of Az(G) are 2(n−r−1)2 with multiplicity
one and 2(n− r − 1)

(
− zi/2r − 1

)
, for i = 2, 3, . . . , n.

Corollary 2.3. Let G be a r-regular graph (r ≥ 3) of order n with Zagreb eigenvalues

z1 ≥ z2 ≥ · · · ≥ zn. The Zagreb eigenvalues of L2(G) are(
nr(r − 1)− 8r + 10

)
nr(r − 2)/2 times,(

nr(r − 1)− 8r + 10
)2
/2 one time,(

nr(r − 1)− 8r + 10)(−2r + 5) n(r − 2)/2 times,(
nr(r − 1)− 8r + 10

)(
− zi/2r − 3r + 5

)
i = 2, 3, . . . , n.


(4)
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Proof. First note that the degree and order of L2(G) are 4r−6 and nr(r−1)/2, respectively.

Then combining Corollary 2.2 and Theorem 2.3, the eigenvalues of L2(G) are obtained
immediately. �

Theorem 2.4. Let G be a r-regular graph of order n and z1 ≥ z2 ≥ · · · ≥ zn be the
Zagreb eigenvalues of G. Then the Zagreb eigenvalues of G∗ are ±2(r + 1)

(
zi/2r + 1

)
for

i = 1, 2, . . . , n.

Proof. Let A(G) and Az(G) be the adjacency matrix and Zagreb matrix of G, respectively.
Then the Zagreb matrix of G∗ is as follows: 0 2(r + 1)(A(G) + I)

2(r + 1)(A(G) + I) 0

 ,

where I is the unit matrix. Since A(G) = Az(G)/2r, the Zagreb matrix of G∗ can be
written as  0 2(r + 1)

(
Az(G)/2r + I

)
2(r + 1)

(
Az(G)/2r + I

)
0

 .

Suppose that z is a Zagreb eigenvalue of G and x is an eigenvector corresponding to z
that is, Az(G)x = zx. Then we have 0 2(r + 1)

(
Az(G)/2 + I

)
2(r + 1)

(
Az(G)/2 + I

)
0

(x
x

)
= 2(r + 1)

(
z/2r + 1

)(x
x

)
.

And 0 2(r + 1)
(
Az(G)/2 + I

)
2(r + 1)

(
Az(G)/2 + I

)
0

( x
−x

)
= −2(r+ 1)

(
z/2r+ 1

)( x
−x

)
.

As a result, G∗ has two Zagreb eigenvalues ±2(r + 1)
(
z/2r + 1

)
corresponding to the

Zagreb eigenvalue z of G. This completes the proof. �

Here we offer the method for constructing pairs of Zagreb equienergetic bipartite graphs
that is similar to Theorem 2 in [10].
The following is the main result of this note.

Theorem 2.5. Let G1 and G2 be two regular graphs, both on n vertices, both of degree
r ≥ 3. Then

(1) (L2(G1))
∗
and (L2(G1))

∗
are Zagreb equienergetic bipartite graphs and

ZE((L2(G1))
∗
) = ZE((L2(G2))

∗
) = 2nr(4r − 5)(3r − 5).

(2) (L2(G1))
∗
and (L2(G2))

∗
are Zagreb equienergetic bipartite graphs and

ZE((L2(G1))
∗
) = ZE((L2(G2))

∗
) = (nr(r − 1)− 8r + 12)(5nr2 − 9nr − 16r + 24).
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(3) (L2(G1)
∗) and (L2(G2)

∗) are Zagreb equienergetic graphs and

ZE((L2(G1)
∗)) = ZE((L2(G2)

∗)) = 2(nr − 4)(r − 1)(4nr2 − 6nr − 8r + 8).

Proof. First, we need to remind that the degree and order of L2(G), (L2(G))
∗

and L2(G)
are as follows:

L2(G) : 4r − 6,
nr(r − 1)

2
;

L2(G)
∗

: 4r − 5, nr(r − 1);

L2(G) :
nr(r − 1)− 8r + 10

2
,

nr(r − 1)

2
.

Let z1 ≥ z2 ≥ · · · ≥ zn be the Zagreb eigenvalues of G. Combining Corollary 2.2 and
Theorem 2.4, the eigenvalues of (L2(G))

∗
are obtained as

±2(4r − 5) nr(r − 2)/2 times,

±2(4r − 5)(2r − 5) n(r − 2)/2 times,

±2(4r − 5)
(
zi/2r + 3r − 5)

)
i = 1, 2, . . . , n.

 (5)

Evidently, (4r− 5) and (2r− 5) are positive-valued for r ≥ 3. In order to determine the
sign of zi/2r + 3r − 5, recall that all Zagreb eigenvalues of a regular graph of degree r lie
in the interval [−2r2, 2r2]. Therefore, zi/2r ≥ −r, i.e.,

zi/2r + r ≥ 0. (6)

Because r ≥ 3, we have

2r − 5 > 0. (7)

Summing (6) and (7), we obtain zi/2r + 3r − 5 > 0 for i = 1, 2, . . . , n.
Knowing the signs of all eigenvalues of (L2(G))

∗
, from (5) we can obtain the Zagreb energy

of (L2(G))
∗

as

ZE((L2(G))
∗
) = 2(4r − 5)

[
2
nr(r − 2)

2
+ 2(2r − 5)

n(r − 2)

2
+ 2

n∑
i=1

(
zi
2r

+ 3r − 5)

]

= 2nr(4r − 5)(3r − 5)

(recall that
∑n

i=1 zi = 0).

Combining Corollary 2.3 and Theorem 2.4, the Zagreb eigenvalues of (L2(G))
∗

are
obtained as
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±2(nr(r − 1)− 8r + 12) nr(r − 2)/2 times,

±(nr(r − 1)− 8r + 10)2/2 one time,

±(nr(r − 1)− 8r + 12)(−2r + 6) n(r − 2)/2 times,

±(nr(r − 1)− 8r + 12)
(
− zi/2r − 3r + 6

)
i = 2, 3, . . . , n.


(8)

The quantity
(
nr(r − 1)− 8r + 10

)
/2 is necessarily positive-valued, because it is equal

to the degree of L2(G). Therefore, nr(r− 1)− 8r+ 12 is always positive too. In the same
way as in the proof of previous part, we conclude −2r + 6 ≤ 0 and −zi/2r − 3r + 6 ≤ 0
for i = 1, 2, . . . , n.

Knowing the signs of all eigenvalues of L2(G)
∗
, from (8) we can obtain the Zagreb energy

of L2(G)
∗

as

ZE(L2(G)
∗
) = (nr(r − 1)− 8r + 12)2

+ 2(nr(r − 1)− 8r + 12)

[
(2r − 6)(

n(r − 2)

2
)

+ 2
nr(r − 2)

2
+

n∑
i=2

(
zi
2r

+ 3r − 6)

]
.

Considering

n∑
i=2

(
zi
2r

) =
n∑

i=1

(
zi
2r

)− z1
2r
, (9)

we have

ZE(L2(G)
∗
) = (nr(r − 1)− 8r + 12)2 + 2(nr(r − 1)− 8r + 12)

[
n(r − 2)(r − 3)

+ nr(r − 2) +
n∑

i=1

zi
2r
− z1

2r
+ 3(r − 2)(n− 1)

]

which, bearing in mind

n∑
i=1

zi = 0 and z1 = 2r2 (10)

yields the formula

ZE(L2(G)
∗
) = (nr(r − 1)− 8r + 12)(5nr2 − 9nr − 16r + 24).

Combining (5) and Theorem 2.3, the Zagreb eigenvalues of L2(G)∗ are obtained as
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2((nr − 4)(r − 1))2 one time,

2(nr − 4)(r − 1)(4r − 6) one time,

2(nr − 4)(r − 1)(±1− 1) nr(r − 2)/2 times,

2(nr − 4)(r − 1)
(
± (2r − 5)− 1

)
n(r − 2)/2 times,

2(nr − 4)(r − 1)
(
± (zi/2r + 3r − 5)− 1

)
i = 2, 3, . . . , n.



(11)

In the same way as in the proof of part 1, we know the signs of all quantities in (11).

Therefore we can obtain the Zagreb energy of L2(G1)
∗ as

ZE(L2(G1)
∗) = 2

(
(nr − 4)(r − 1)

)[
(nr − 4)(r − 1) + 4r − 6 + nr(r − 2)

+ n(2r − 5)(r − 2) + (6r − 10)(n− 1) +

n∑
i=2

zi/r
]

= 2(nr − 4)(r − 1)
[
4nr2 − 6nr − 6r + 8− z1/r

]

= 2(nr − 4)(r − 1)
[
4nr2 − 6nr − 8r + 8

]
.

This completes the proof. �

Remark 2.1. If G be a regular graph of degree r = 1, then L(G) consists of isolated
vertices, and L2(G) is the graph without vertices. If G be a regular graph of degree r =
2, then G and L(G) are isomorphic. Consequently, if r = 2, then G and Lk(G) are
isomorphic for all k ≥ 1.

3. Discussion

Corollary 3.1. Let G1 and G2 be two regular graphs, both on n vertices, both of degree
r ≥ 3. Then for any k ≥ 2, the following pairs of graphs are Zagreb equienergetic

(1) (Lk(G1))
∗
and (Lk(G2))

∗
;

(2) (Lk(G1))
∗
and (Lk(G2))

∗
;

(3) (Lk(G1))
∗
and (Lk(G2))

∗
.

Corollary 3.2. Let G1 and G2 be two connected and non-cospectral regular graphs, both
on n vertices, both of degree r ≥ 3. Then for any k ≥ 2, both (Lk(G1))

∗
and (Lk(G2))

∗

are regular, bipartite, connected, non-cospectral, and Zagreb equienergetic. Furthermore,
(Lk(G1))

∗
and (Lk(G2))

∗
possess the same number of vertices, and the same number of

edges.

Within Theorem 2.5, we obtained the expression (in terms of n and r) for the Zagreb
energy of the extended double cover of the second iterated line graph of a regular graph.
Analogous (yet much less simple) expressions could be calculated also for ZE((Lk(G))

∗
);

k ≥ 2, i.e., the energy of the extended double cover of the k-th iterated line graph, k ≥ 2,
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of a regular graph on n vertices and of degree r ≥ 3 is also fully determined by the
parameters n and r.
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[8] Gutman, I., Trinajstić, N., (1972), Graph theory and molecular orbitals. Total π-electron energy of

alternant hydrocarbonsπ, Chemical Physics Letters, 17 (4), pp. 535–538.
[9] Harary, F., (1969), Graph Theory, Addison-Wesley Publishing Company, Reading, Boston.
[10] Hou, Y., Xu, L., (2007), Equienergetic bipartite graphe, MATCH Commun. Math. Comput. Chem.,

57, pp. 363–370.
[11] Ramane, H. S., Walikar, H. B., (2007), Construction of equienergetic graphs, MATCH Commun.

Math. Comput. Chem, 57, pp. 203–210.
[12] Ramane, H. S., Walikar, H. B., Rao, S. B., Acharya, B. D., Hampiholi, P. R., Jog, S. R., Gutman,

I., (2005), Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett., 18, pp.
679–682.

[13] Rad, N. J., Jahanbani, A., Gutman, I., (2018), Zagreb energy and Zagreb estrada index of graphs,
MATCH Communications in Mathematical and in Computer, 79, pp. 371–386.

[14] Sheikholeslami, S. M., Jahanbani, A., Khoeilar, R., (2021), New Results on Zagreb Energy of Graphs,
Hindawi Mathematical Problems in Engineering, Volume 2021, (Article ID 9969845), pp. 1–6.

Gholam Hassan Shirdel received his B.Sc. Degree from the Ferdowsi University
of Mashhad in 1993, M.Sc.(in 1996) and Ph.D. (in 2003) both from University of
Tehran. He is currently an associate professor in the department of mathematics and
computer sciences at University of Qom (Qom, Iran). His main research interests
include network flows, optimization, graph theory, operations research, fuzzy set the-
ory, fuzzy optimization, simulation, combinatorics and combinatorial optimization.

Sara Ahmadi received her B.Sc. from the Razi University of Kermanshah in 2009
and the M.Sc. Degree from Azerbaijan Shahid Madani University of Tabriz in 2012.
Now she is the forth-year applied mathematics Ph.D. student at the University of
Qom, Iran. Her field of work is graph theory and topology indices. She is currently
working as a high school math teacher. She is interested in graph theory and algorithm
design.


