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Abstract: Fucoxanthin, a brown algae carotenoid, has attracted great interest because of its numerous
biological activities supported by in vitro and in vivo studies. However, its chemical structure is
susceptible to alterations when subjected to food processing and storage conditions, such as heat,
oxygen, light, and pH changes. Consequently, these conditions lead to the formation of fucoxanthin
derivatives, including cis-isomers, apo-fucoxanthinone, apo-fucoxanthinal, fucoxanthinol, epoxides,
and hydroxy compounds, collectively known as degradation products. Currently, little information is
available regarding the stability and functionality of these fucoxanthin derivatives resulting from food
processing and storage. Therefore, enhancing the understanding of the biological effect of fucoxanthin
derivatives is crucial for optimizing the utilization of fucoxanthin in various applications and ensuring
its efficacy in potential health benefits. To this aim, this review describes the main chemical reactions
affecting the stability of fucoxanthin during food processing and storage, facilitating the identification
of the major fucoxanthin derivatives. Moreover, recent advancements in the structure–activity
relationship of fucoxanthin derivatives will be critically assessed, emphasizing their biological
activity. Overall, this review provides a critical updated understanding of the effects of technological
processes on fucoxanthin stability and activity that can be helpful for stakeholders when designing
processes for food products containing fucoxanthin.

Keywords: brown seaweed-derived xanthophyll; chemical structure; isomerization; degradation
products; biological activity

1. Introduction

Fucoxanthin is a brown-to-olive-green carotenoid pigment, naturally occurring in
the chloroplasts of brown algae. It has attracted increasing interest from researchers and
industry because of its numerous bioactive activities supported by in vitro and in vivo
studies.

From a chemical viewpoint, fucoxanthin is a carotenoid compound with certain
peculiarities, including the presence of an unusual allenic conjugated double bond at
position 9, a 5,6-monoepoxide, and some oxygen-containing groups (e.g., hydroxyl, epoxy,
carbonyl and carboxyl moieties) (Figure 1). Trans isomers are those mostly occurring in
nature (>88%) [1].
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Figure 1. Overview of the structure–function relationship of fucoxanthin and its derivatives.

In spite of its attractive properties, fucoxanthin is not widely employed at an indus-
trial level both because of its challenging physicochemical properties (e.g., low solubility,
crystallinity) and its instability in food processing conditions. These physicochemical
shortcomings have attracted the attention of food and pharmaceutical technologists to
develop diverse strategies aiming to overcome them. Nanoencapsulation of fucoxanthin
involves the use of nanotechnology to encapsulate or trap fucoxanthin molecules within
nanocarriers. This technique has gained interest in recent years due to its potential to
improve the bioavailability, stability, and delivery of fucoxanthin. However, there is still a
gap in what concerns the fundamentals behind the protection impaired by these systems.

The available literature is generally focused on the extraction, purification, charac-
terization, and determination of the bioactive properties of fucoxanthin, also including
attempts to encapsulate it. However, little is known about the products generated through
processing, storage, and digestion, which doubtless affect fucoxanthin’s functionality. Even
less knowledge is available about the bioactive properties of the degradation products.
On the other hand, nanoencapsulation can affect the structure–activity relationship of
fucoxanthin by altering its physical and chemical properties. The effects of encapsulation
on the biological activity of fucoxanthin may vary depending on the encapsulation method
and materials used. Therefore, it is important to carefully evaluate the impact of nanoencap-
sulation on the biological activity of fucoxanthin in each specific application. Such studies
could generate critical knowledge to appropriately define the best processing and storage
conditions, enabling the retention of fucoxanthin’s biological properties.

This review critically summarizes the state of the art about the most critical food pro-
cessing and storage conditions affecting the chemical stability of fucoxanthin. Information
about degradation products, including (when available) their potential bioactive properties,
is also discussed (Figure 1). Special emphasis was put on the understanding of the effect
of technological processes on the stability and activity of fucoxanthin, in order to provide
useful information to aid decision-making when designing processes for the development
of food products, supplements, or cosmetics containing fucoxanthin.
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2. Food Processing and Storage Conditions Affecting Fucoxanthin Structure

The use of fucoxanthin as a functional ingredient in the design of novel foods is limited
due to fucoxanthin, like most carotenoids, being susceptible to different processing and
storage conditions (e.g., temperature, oxygen, light, pH, storage time), and the pro-oxidant
components present in the food matrix (e.g., metals, enzymes, among others) [2]. In fact,
the propylene group makes fucoxanthin heat-sensitive (positions 13 and 9′ being easily
oxidatively cleavable sites), the conjugated polyene long chain makes it photosensitive,
and ethylene oxide moiety makes it oxygen-sensitive [3]. Thus, understanding how the
mechanisms of food processing and storage affect these functional structures is crucial
to design procedures that aim to preserve the molecule and control the formation of
undesirable fucoxanthin-derivative compounds [4].

2.1. Heat Processing

Heating is the most extensively studied factor influencing fucoxanthin extractability
and stability. Some studies have found that temperature has a significant effect on fucox-
anthin recovery using pressurized-liquid extraction and microwave-assisted extraction
from different macro- and microalgae species [5,6]. Fucoxanthin extractability increases as
temperature increases up to a certain value (around 100 ◦C, depending on species). This
effect was attributed to fucoxanthin being coupled to proteins and chlorophyll a, resulting
in fucoxanthin-Chl a-protein complexes that can be destroyed by increasing the tempera-
ture [7]. Regarding stability, Li et al. [8] found that fucoxanthin degraded as temperature
increased from 50 to 200 ◦C. However, Prabhasankar et al. [9] showed that fucoxanthin
remained stable after being subjected to a pasta production process and even during the
cooking step, indicating that this pigment can be employed in the food industry. The
stability of fucoxanthin can be ascribed to the presence of other antioxidant compounds
in the crude extract [10]. Similarly, Nuñez de Gonzalez et al. [11] found that heating
fucoxanthin-enriched yogurt at 80 ◦C for 30 min had no influence on the pigment stability,
implying that yogurt appears to be a good matrix to be fortified with fucoxanthin.

Like most carotenoids, fucoxanthin occurs in nature as trans-isomers characterized by
having low water solubility and a high tendency to crystalize. Its thermodynamic stability
is associated with the linear configuration [12]. Heating promotes the isomerization of
all trans-fucoxanthin to its cis counterparts, 13-cis, 13′-cis, and 9′-cis fucoxanthin being the
main isomers identified (Figure 2). In this regard, the concentration of 13-cis and 13′-cis
fucoxanthin in canola oil was found to gradually increase as temperature increased to
100 ◦C, while all trans-isomers experienced a drastic concentration decrease ascribed to
isomerization (Table 1) [2,13].

Table 1. Food processing and storage conditions affecting fucoxanthin stability.

Factor Treatment Conditions Algae Main Findings Ref.

FOOD PROCESSING
Temperature

Exposure at 25, 37, 50, 80, and
100 ◦C.

Phaeodactylum
tricornutum

Fucoxanthin content slightly decreased
from 25 to 80 ◦C. Beyond this value, a
significant reduction was observed.

[14]

Supercritical CO2 extraction
(40–160 ◦C, and 20–40 MPa) using
ethanol as co-solvent.

Undaria pinnatifida

Increasing extraction temperature
promoted isomerization from all trans
fucoxanthin to cis forms and recovery of
13-cis and 13′-cis isomers.

[1]
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Table 1. Cont.

Factor Treatment Conditions Algae Main Findings Ref.

Oven drying (40–100 ◦C). Padina australis

Isomerization from all trans fucoxanthin
to 13′-cis, 13-cis, and 9′-cis isomers (from
40 to 80 ◦C). Beyond 80 ◦C,
degradations of all trans and cis isomers
were found.

[13]

Hot water blanching (HWB) and
saltwater blanching (SWB,
0.5–16 min at 60–98.3 ◦C). Steam
blanching (SB, 0.5–16 min
at 100.1 ◦C). Microwave blanching
(MWB, 0.5–16 min at 560 W).

Sargassum fusiforme

HWB allowed higher fucoxanthin
recovery in comparison to other
treatments. However, fucoxanthin
degraded over time in all
treatments applied.

[15]

Tomato purees supplemented with
microalgae and subjected
to sterilization.

Isochrysis, and
Phaeodactylum

Fucoxanthin content decreased by 40%
due to sterilization [16]

−20 ◦C and room temperature. Sargassum tenerrimum
Trans-fucoxanthin isomers remained
stable when stored at both temperatures
in the dark.

[17]

Oxygen

Exposure to irradiation (10, 20, 40,
60, 80 min) and hydrogen peroxide
(20 mg/L).

Standard

Fucoxanthin showed the highest
degradation rate. Degradation products
were identified as: fucoxanthinals
(12′-apo-fucoxanthinal and 15′-apo
fucoxanthinal), fucoxanthinones (9′-
apo-fucoxanthinone,
13′-apo-fucoxanthinone and
13-apo-fucoxanthinone), fucoxanthinol,
and 3-hydroxy-DHA (loliolide).

[18]

Exposure to potassium
permanganate (KMnO4) and
hypochlorous acid/hypochlorite
(HClO/ClO−).

U. pinnatifida

Fucoxanthin degradation led to the
formation of many cleavage compounds
such as 3 apo-fucoxanthinones and 11
apo-fucoxanthinals.

[19]

Ozone oxidation. U. pinnatifida
Fucoxanthin oxidation led to the
formation of apo-13-fucoxanthinone
and apo-9′fucoxanthinone.

[3]

Open air in amber color bottle at
30 ◦C. S. tenerrimum

Approximately 55% of all-trans
fucoxanthin was retained, while 30% of
the fucoxanthin was observed to
be oxidized.

[17]

Light
Direct daylight (2500 lux; 90 min)
at room temperature U. pinnatifida Fucoxanthin content was reduced

by 90%. [20]

Light at 175.77 mol/m2/s,
room temperature

S. tenerrimum Fucoxanthin underwent oxidation after
exposing to light. [17]

pH

Exposure at pH 2, 4, 6, 7, 8, and 10. Phaeodactylum
tricornutum

Fucoxanthin was sensitive to acidic
conditions (pH 2–4), but stable in the
neutral and alkaline systems (pH 6–10).

[14]

STORAGE CONDITIONS
Temperature

4 and 25 ◦C for six months. Phaeodactylum
tricornutum

Fucoxanthin stored at a low
temperature (4 ◦C) was more stable
during long-term storage than at 25 ◦C.

[14]
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Table 1. Cont.

Factor Treatment Conditions Algae Main Findings Ref.

Incubation at 25, 37, and 60 ◦C
in a water bath in the dark. C. costata

Degradation of all trans-fucoxanthin and
13-cis and 13′-cis isomers were observed
at every temperature assayed during
storage. However, the concentration of
9′-cis fucoxanthin was stable regardless
of temperature studied during storage.

[21]

Oxygen
Sterilized tomato purees
supplemented with microalgae
stored for 12 weeks at 37 ◦C.

Isochrysis, and
Phaeodactylum

Fucoxanthin was significantly degraded
in purees during storage. [16]

Incubated in an oven in open air
at 25 ◦C for 30 weeks. C. costata

Fucoxanthin was degraded, resulting in
the predominant formation of 9′-cis as
the major product.

[2]

Light

Exposure at 300 or 2000 lux and
incubation for 16 weeks. C. costata

Isomerization from 13-cis and 13′-cis to
all trans fucoxanthin was found at both
light intensities.
Isomerization from all trans to 9′-cis
fucoxanthin was also detected and was
more pronounced at 2000 lux.
From half of the storage to the end,
photodegradation of all trans and cis
isomers was detected.

[2]

Storage at room temperature with
or without light for 30 days. Sargassum thunbergii

A slight reduction of fucoxanthin
content was observed during storage in
the dark. On the contrary, a drastic
decrease in fucoxanthin content was
found when stored with light.

[22]

pH

Exposure at pH 1.2, 4.6, and 7.5
and incubation for 120 days. C. costata

All trans and cis-fucoxanthin isomers
were degraded at pH 1.2. However, in
neutral conditions, degradation rate of
all trans, 13-cis and 13′-cis fucoxanthin
was reduced. The formation of 9′-cis
isomer was observed.

[21]

Similarly, Honda et al. [1] observed that increasing temperature to 160 ◦C (higher than
usual values) in fucoxanthin supercritical CO2 extraction from Undaria pinnatifida induced
not only isomerization from trans-fucoxanthin to its cis-counterparts but also enhanced
the production of 13-cis and 13′-cis isomers (Table 1). On the other hand, heating can also
promote the degradation of all fucoxanthin isomers (including trans and cis forms) by
cleaving the conjugated double bonds’ polyene chains in the presence of air (oxidation)
and light (photodegradation) [2,12]. In this way, 9′-cis fucoxanthin isomers were found
to degrade at high temperatures as they are more heat-sensitive than 13-cis and 13′-cis
forms (Table 1) [2]. Low temperature (4 ◦C) is preferred over room temperature to keep
fucoxanthin stable during prolonged storage [11,13,14].
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2.2. Oxygen

The presence of oxygen is inevitable during food processing and storage, and the expo-
sure of fucoxanthin in its free form to oxygen can trigger oxidation reactions. Oxidation can
induce cleavage in the conjugated double-bond polyene chain, epoxidation, and hydrolysis
of fucoxanthin, depending on the medium conditions (Figure 2) [18,19]. These reactions
lead to the formation of new short-chain carbonyl compounds that can be produced on
both sides of the fucoxanthin molecule. The generated compounds contain conjugated car-
bonyl, epoxide, or allenic groups with different chemical properties than their predecessors.
Studies dealing with the effect of oxidation on fucoxanthin structure have investigated the
exposure of the pigment to air at 25 ◦C [2] or to different oxidating agents [e.g., ozone, potas-
sium permanganate (KMnO4), hypochlorous acid/hypochlorite (HClO/ClO−), hydroxyl
radicals (OH−), and peroxide (H2O2)] (Table 1) [3,18,19]. From these works, the main prod-
ucts derived from fucoxanthin oxidation can be classified into three groups according to the
nature of the oxidized group: fucoxanthinals (aldehydes), fucoxanthinones (ketones), and
fucoxanthinol [18,23] (Figure 3). Regarding fucoxanthinals, more than twelve compounds
belonging to this group were identified, 15′-apo-fucoxanthinal, 12′-apo-fucoxanthinal and
10′-apo-fucoxanthinal being the most common ones [18,19]. Concerning fucoxanthinones,
9′-apo-fucoxanthinone, 13-apo-fucoxanthinone, and 13′-apo-fucoxanthinone were the main
compounds identified [3,18,24]. On the other hand, oxidation can induce the conversion
of the fucoxanthin epoxy group into the hemiacetal one, leading to the production of loli-
olide (Figure 3) [18] Although fucoxanthinol can be produced via fucoxanthin hydrolysis
during food processing, it is also the main gastrointestinal metabolite resulting from the
consumption of all trans-fucoxanthin (Figure 3) [25].
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biological activity attributed to fucoxanthin.

2.3. Light Exposure

Like most carotenoids, fucoxanthin is a photosensitive pigment as it can absorb light in
the UV and visible regions and reach an excited state more prone to react with the solvent
and produce free radicals [18,26]. During the processing and storage of foods, fucoxanthin
can be exposed to light, leading to chemical instability. The exposure to light could promote
the isomerization of fucoxanthin at an early storage stage and photodegradation in long-
term storage (Figure 1, Table 1). For instance, Zhao et al. [2] found that the illumination of
fucoxanthin in canola oil at 300 or 2000 lux induced isomerization from 13-cis and 13′-cis
forms to all-trans isomers during the first week of storage. In addition, the exposure to
light at low intensity (300 lux) significantly promoted the production of 9′-cis fucoxanthin
from all-trans isomers during 15 weeks of storage [2]. At prolonged storage, 13-cis, 13′-cis,
and all trans-fucoxanthin isomers were degraded, while 9′-cis forms appeared to be more
resistant as they remained stable [2]. Similar findings were obtained for other related
marine xanthophyll like astaxanthin. In this sense, Martinez-Delgado et al. [26] found that
illumination promoted isomerization of all cis-astaxanthin to all-trans counterparts during
21 days of storage at 30 ◦C.
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2.4. pH

pH medium can also have an impact on fucoxanthin structure. Fucoxanthin has been
shown to be unstable under acidic conditions with high degradation rates in all-trans-
and -cis isomers (Figure 1, Table 1) [21]. Fucoxanthin stability decreased during goat milk
yogurt fermentation, which was linked to the production of lactic acid, reducing pH and
affecting fucoxanthin structure [11]. This low stability was also observed in structurally
similar xanthophylls, such as violaxanthin and antheraxanthin, indicating that the epoxy
group is very sensitive to low pH [27]. In this regard, the 5,6-epoxide group of fucoxanthin
could be converted into 5,8-epoxide via epoxidation and under acidic conditions, leading
to the formation of new compounds with different chemical properties. On the contrary,
fucoxanthin was more stable in neutral systems during storage [21]. In addition, the
formation of 9′-cis fucoxanthin was observed during the first half of storage, followed
by degradation to initial values until the end of storage [21]. Similarly, violaxanthin and
antheraxanthin were stable at neutral conditions since the 5,6-epoxide group did not show
any chemical modification [27]. From these findings, high pH values are preferred to
preserve fucoxanthin structure, but these values are rarely employed in the food industry.

Overall, the conclusive identification of the primary factors exerting a significant
influence on fucoxanthin stability is a challenging task, given the potential occurrence of
synergistic and intricate mechanisms, which are further influenced by the specific matrix
in which fucoxanthin is dissolved. For example, Zhao et al. [21] demonstrated that the
stability of all-trans fucoxanthin and its cis-isomers against various influencing factors
was lower when dissolved in an oil/water emulsion compared to when dissolved solely
in oil [2]. This observation was attributed to the presence of a high concentration of
available oxygen in the water phase of the emulsion, which triggered oxidation reactions.
Conversely, the fucoxanthin extract derived from S. tenerrimum demonstrated varying
degrees of susceptibility to different environmental conditions, with light being the most
influential factor, followed by heat, open air, and room temperature [17].

3. Biological Activity of Fucoxanthin Derivative Compounds

Food processing and storage, as previously stated, can have a significant impact on
the structure of fucoxanthin. Because the biological activity of fucoxanthin is closely related
to its structure (functional groups, conjugated double bonds, stereochemistry), determining
the potential bioactivity of fucoxanthin derivatives is of interest. In this regard, the most
studied derivatives of fucoxanthin were grouped in Figure 3 according to the primary
reaction resulting from different processing and storage conditions. Within each compound
grouping, emphasis is directed towards highlighting the functional active group, which
holds the potential responsibility for their respective biological activities.

As previously described, isomerization is the most common reaction triggered by
different food processing and storage factors. Trans-carotenoid isomers are majorly present
in nature and are characterized by having a crystalline state and low solubility in certain
polar and nonpolar solvents [28]. However, isomerization from trans-carotenoids to their
cis forms induces changes in their physicochemical properties. In general, cis-carotenoid
isomers have an amorphous state with a lower tendency to crystallize and lower melting
points as they are thermodynamically less stable than their trans counterparts [29]. In
addition, cis-carotenoids have shown higher solubility in polar and nonpolar solvents in
comparison to their trans forms. Although these features were attributed to cis-lycopene,
β-carotene, and astaxanthin, it could be assumed that cis-fucoxanthin isomers follow a
similar pattern [30,31].

On the other hand, the effects of isomerization on bioaccessibility, bioavailability,
and bioactivity differ among carotenoids. For example, cis-lycopene isomers and cis-
astaxanthin isomers showed higher bioavailability and biological activity than their trans
forms [32,33]. On the contrary, β-carotene cis isomers reported less bioavailability than its
trans-isomers [33].
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The extensive scientific evidence supporting the biological activities associated with
all-trans-fucoxanthin (Figure 4) has been recently reviewed by Mohibbullah et al. [34] based
on in vitro and in vivo studies.
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However, the biological effect of fucoxanthin cis-isomers and those derivatives re-
sulting from food processing and storage has been scarcely studied and the mechanisms
remain unclear (Table 2). In this regard, apo-9′-fucoxanthinone has been gaining attention
for its strong anti-inflammatory effect, as this compound can inhibit nitric oxide (NO)
and prostaglandin E2 production, reduce the expression of inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2), and suppress the production of pro-inflammatory
cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in in vitro RAW
264.7 cells and in vivo zebrafish models (Table 2). In addition, apo-9′-fucoxanthinone has a
multifaceted potential for therapeutic use as it has demonstrated antiproliferative activity
against Caco-2 cells, immunomodulation activity, and stimulation of hair growth. Another
degradation product with promising anti-inflammatory activity is apo-10′-fucoxanthinal,
which has been shown to downregulate the expression of inflammatory mediators by
suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) sig-
naling [35]. Thus, the chemical structure of fucoxanthin degradation products play an
important role in defining the mechanisms that determine biological activity. Comparing
two oxidative products, apo-9′-fucoxanthinone showed higher antiproliferative activity
on Caco-2 cells than apo-13- fucoxanthinone, indicating that the allenic structure may be
crucial for such activity [3].

The enhancement of antioxidant characteristics in carotenoids has been documented to
arise from the presence of functional groups within the terminal rings of these compounds.
That is the case of fucoxanthin, in which the allenic bonds [36], and the 5,6-monoepoxide
structures are responsible for such properties (Figure 3) [36]. Notably, the allenic bond
plays a pivotal role in inhibiting the generation of superoxide and NO [37]. In contrast,
the presence of a 4-oxo β-group, as observed in carotenoids such as astaxanthin and
canthaxanthin, promotes the generation of NO. Most of the degradation products of
fucoxanthin retain such structures and therefore still have antioxidant properties.

The enhancement of fucoxanthin derivatives’ biological activities could also be related
to changes in their physicochemical properties, such as higher solubility, which leads to
better addition to bile acid micelles and thus higher bioavailability [28].
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Table 2. Changes in biological activity of fucoxanthin derivatives resulting from food processing and
storage.

Biological Activity Fucoxanthin Derivative
Compound Source Main Findings Ref.

Anti-inflammatory

9′-cis fucoxanthin, and a
complex including both 13-cis
and 13′-cis fucoxanthin

Sargassum siliquastrum

9′-cis fucoxanthin inhibited the
production of NO, TNF-α, and
IL-6 in RAW 264.7 cells.
13-cis and 13′-cis fucoxanthin
showed cytotoxic effect.

[38]

Apo-9′-fucoxanthinone Sargassum muticum

Suppression of NO and PGE2
production, and iNOS and
COX-2 expression in RAW 264.7
cells.
Reduction of ROS and NO
production, and level of iNOS,
COX, TNF-α, and IL-1β in
LPS-treated zebrafish.

[39]

S. muticum Suppression of NO and PGE2
production. [40]

Sargassum horneri
Suppression of NO production
in LPS-stimulated RAW
264.7 cells.

[41]

Loliolide Sargassum horneri
Suppression of NO production
in LPS-stimulated RAW
264.7 cells.

[41]

S. horneri
Suppression of IL-1β, IL-6, and
TNF-α, PGE2 COX-2, and iNOS
expression in LPS-induced cells.

[42]

Apo-10′-fucoxanthinal Prepared from
fucoxanthinol

Suppression of MAPK and
NF-κB signaling via
downregulating the expression
of inflammatory mediators in
LPS-induced RAW264.7 cells.

[35]

Fucoxanthinol Nitzschia laevis

Suppression of NO, PGE2, and
ROS production, and reduction
of the expression of iNOS,
COX-2, IL-1β, TNF-α, and IL-6,
in LPS-induced BV-2 cells.

[25]

Antioxidant

Ratio of trans- to cis-fucoxanthin
(100:3:7; 100:3:8, 100:3:10)

Phaeodactylum
tricornutum

As the concentration of the cis
isomers increased, the
antioxidant activity (DPPH,
superoxide anion, reducing
power, and hydrogen peroxide)
decreased.

[14]

9′-cis, 13-cis and 13′-cis
fucoxanthin isomers

Laminaria japonica
Aresch

DPPH and superoxide radical
scavenging activity: 13-cis- and
13′-cis-isomers > all
trans-fucoxanthin > 9′-cis-isomer.
ABTS scavenging activity: 9′-cis
isomer > all trans-fucoxanthin >
13-cis and 13′-cis isomers.

[43]

Fucoxanthinol Standard Inhibition of cellular reactive
oxygen species accumulation. [44]
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Table 2. Cont.

Biological Activity Fucoxanthin Derivative
Compound Source Main Findings Ref.

Anticancer

Apo-13-fucoxanthinone and
apo-9′-fucoxanthinone U. pinnatifida

Apo-9′-fucoxanthinone showed
higher cytotoxic effect against
Caco-2 cells than
apo-13-fucoxanthinone.

[3]

9′-cis fucoxanthin, and a
complex including both 13-cis
and 13′-cis fucoxanthin

Sargassum siliquastrum

All isomers significantly
inhibited human fibrosarcoma
(HT1080) cell migration.
Reduction of the MMP-2 and
MMP-9 activities.

[45]

Fucoxanthinol Standard
Reduction of in colorectal cancer
cells (HCT116, DLD-1, Caco-2,
WiDr, SW620).

[46]

Enzymatically
prepared from
fucoxanthin standard

Modulation of gene expression
and core signaling pathways in
human breast cancer cells
(MCF-7 and MDA-MB-231).
Induction of apoptosis in MCF-7
and MDA-MD-231 cells.

[47]

Immunomodulation

Apo-9′-fucoxanthinone S. muticum

Modulation of immune system
by inhibition of IgE serum levels
and cutaneous edema.
Reduction of IL-4, IFN-γ, and
TNF-α production.
Decrease of lymph node size in
atopic dermatitis mouse.

[48]

Anti-hyaluronidase

Trans-, 9′-cis, and 13′-cis
fucoxanthin isomers.

Sargassum vulgare
Keelakarai, Turbinaria
ornata, Turbinaria
conoides

Despite cis-isomers being able to
react with hyaluronidase
enzyme through hydrophobic
interactions, these forms were
less stable than
trans-fucoxanthin.

[17]

Hair growth
stimulation

Apo-9′-fucoxanthinone S. muticum

Apo-9′-fucoxanthinone induced
the dermal papilla cell growth
and reduction of 5α-reductase
activity, suggesting its potential
use for hair growth.

[49]

NO: nitric oxide; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; PGE2: prostaglandin E2; iNOS: in-
ducible nitric oxide synthase; COX-2: cyclooxygenase-2; IL-1β: interleukin-1β; LPS: lipopolysaccharide; IgE:
immunoglobulin E; IL-4: interleukin-4; IFN-γ: interferon-γ; IL-12 p40: interleukin 12 p40; CpG: cultured glial
cells; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor-κB; MCF-7 and MDA-MB-231: breast cancer
cell lines; DPPH: 1,1-diphenyl-2-picrylhydrazyl radical; ABTS: 2-2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic
acid); Caco-2: human colorectal adenocarcinoma cells; MMP-2: matrix metalloproteinases-2; MMP-9: matrix
metalloproteinases-9; HL-60: human promyelocytic leukemia cells; HCT116: human colorectal carcinoma cell;
DLD-1: colorectal adenocarcinoma cell, WiDr: derivative of colon adenocarcinoma cell line, HT-29; SW620:human
Caucasian colon adenocarcinoma.

On the other hand, there is an increasing interest in studying fucoxanthinol as it
has shown anti-inflammatory, antioxidant, neuroprotective, and antiproliferative activity
against different cancer cell lines (colorectal, breast, etc.) [25,44,50]. Li et al. [25] found that
fucoxanthinol extracted from Nitzschia Laevis exhibited remarkable anti-neuroinflammatory
effects. These authors observed a significant reduction in the production of various pro-
inflammatory substances, such as nitric oxide (NO), prostaglandin E-2 (PGE-2), reactive
oxygen species (ROS), interleukin-1 (IL-1), interleukin-6 (IL-6), TNF-α, COX-2, and iNOS
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in BV-2 cells induced with lipopolysaccharide (LPS). Additionally, Li et al. [25] found
that fucoxanthinol showed anti-fibrogenic and antioxidant properties by suppressing the
expression of pro-fibrogenic genes induced by transforming growth factor β1 (TGFβ1) and
reducing the accumulation of ROS in LX-2 cells.

Regarding fucoxanthin isomers, 9′-cis and 13′-cis fucoxanthin showed higher anti-
hyaluronidase activity and instability than trans isomers [17]. These authors also con-
cluded that although cis isomers are highly active, the biological activity of fucoxanthin
is attributed to the trans configuration [17]. However, 9′-cis fucoxanthin showed higher
anti-inflammatory and antioxidant activity (evaluated through ABTS assay) than all trans-,
13-cis, and 13′-cis isomers (Table 2). Heo et al. [38] observed that 9′-cis fucoxanthin exhibited
a more pronounced anti-inflammatory effect on the transcriptional activity of NO, TNF-a,
and IL-6 within LPS-stimulated RAW 264.7 cells, compared to 13′-cis fucoxanthin. Notably,
9′-cis fucoxanthin demonstrated the ability to attenuate the expression of iNOS protein and
mRNA, concomitant with the reduction of TNF-a and IL-6 production. Conversely, 13′-cis
fucoxanthin demonstrated a cytotoxic effect. Thus, further in vivo studies are needed to
provide comprehensive knowledge regarding the biological activity of fucoxanthin isomers.

Miyashita et al. [51,52] suggested that the allenic moiety is involved in the anti-obesity
properties of fucoxanthin. Indeed, carotenoids containing an allene bond and an additional
hydroxyl substituent on the side group, such as fucoxanthin and its biologically active
form, fucoxanthinol, show suppressive effects on adipocyte differentiation within 3T3-L1
cells. From a biological viewpoint, the anti-obesity effect of fucoxanthin is intricately linked
to its influence on the protein and gene expressions of uncoupling protein 1 (UCP1) in
white adipose tissue (WAT) [53]. The induction of UCP1 in abdominal WAT by fucoxanthin
intake is in part attributed to the upregulation of β3 adrenergic receptor. This receptor is
recognized for its involvement in processes such as lipolysis and thermogenesis [53,54],
contributing to the oxidative breakdown of fatty acids and heat generation within mi-
tochondria of WAT [52]. Consequently, it can be inferred that the allenic moieties and
hydroxyl substituents present in the side chain play a significant role in the regulation of
UCP1 expression within white adipose tissue.

Regarding skin protection, fucoxanthin exhibits a suppressive influence on the enzy-
matic activity of tyrosinase, melanin synthesis within B16 melanoma cells, and mitigates
skin pigmentation in UVB-irradiated guinea pigs. Additionally, it also suppresses mRNA
expression of various molecules, including COX-2, endothelin receptor A, p75 neurotrophin
receptor, prostaglandin E receptor 1, melanocortin 1 receptor, and tyrosinase-related protein
1 [55]. The ability of both fucoxanthin and its degradation byproducts to effectively scav-
enge free radicals contributes to their capacity to support the inherent defense mechanisms
of the skin. However, it is noteworthy that the exploration in this area is still relatively
limited, necessitating further comprehensive investigations to elucidate the complete scope
of these effects and their practical applications in skincare.

As a whole, it should be mentioned that the available information about the bioactive
properties of fucoxanthin and its degradation products is rather descriptive; that is, different
assays supporting them have been successfully carried out, but such properties are ascribed
to the compound itself, without identifying which of the fucoxanthin functional groups are
responsible for them. This underlines the need to set up more precise experiments blocking
or inhibiting the different fucoxanthin functional groups in order to identify the role of
each of them in the different bioactive properties.

4. Conclusions

In spite of the hard work carried out on the sustainable extraction, characterization,
and biological properties of fucoxanthin, there still exist important gaps in fundamental
knowledge that should be filled for a more accurate development of innovative applica-
tions. As mentioned in this review, the low solubility of fucoxanthin represents a challenge
both for the development of food and pharmaceutical applications and also for its ab-
sorption at the intestinal level. Overcoming this problem requires innovation aiming to
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enhance its solubility and consequently its bioavailability. This represents a great oppor-
tunity to incorporate innovative approaches based on novel technologies, such as micro-
and nanotechnology.

Although isomerization reactions are the main degradation paths of fucoxanthin, little
is known about the physicochemical and bioactive properties of degradation compounds,
which are mainly cis-isomers. The amorphous characteristics of other cis-carotenoids can
be cautiously extrapolated to fucoxanthin. It is well known that amorphous states provide
better storage conditions, extending the shelf-life of different food and pharmaceutical
products [56]. Therefore, degradation reactions leading to cis-fucoxanthin would provide
more soluble compounds which could be better incorporated into bile acid micelles and thus
be more bioavailable. In spite of that, as the available information about the bioavailability
and bioaccessibility of these compounds is still scarce, this technological advantage should
be carefully investigated.

Regarding bioactivity, certain cis-isomers and other degradation products of fucoxan-
thin have demonstrated bioactive properties, in particular anti-inflammatory, antioxidant,
and antiproliferative ones.

Considering that the main problems to extend the industrial production of fucox-
anthin arise from its physicochemical and stability properties, and certain degradation
products might have better solubility and bioactive properties, it appears that degradation
reactions are not so undesirable as one can a priori prejudice. This points out the need for
deeper insights on fundamental research to shed light on the mechanisms explaining their
physicochemical and biological behavior, and also on in vivo and clinical studies of the
degradation products. Such information will be a great help for optimizing the production
of degradation products with better physicochemical and bioactive properties. In addition,
it will strongly contribute to accurately engineering the processing conditions and stimulate
larger industrial applications.
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