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A B S T R A C T   

Santiago Urban Dataset SUD is a real dataset that combines Mobile Laser Scanning (MLS) and Handheld Mobile 
Laser Scanning (HMLS) point clouds. The data is composed by 2 km of streets, sited in Santiago de Compostela 
(Spain). Point clouds undergo a manual labelling process supported by both heuristic and Deep Learning 
methods, resulting in the classification of eight specific classes: road, sidewalk, curb, buildings, vehicles, vegetation, 
poles, and others. Three PointNet++ models were trained; the first one using MLS point clouds, the second one 
with HMLS point clouds and the third one with both H&MLS point clouds. In order to ascertain the quality and 
efficacy of each Deep Learning model, various metrics were employed, including confusion matrices, precision, 
recall, F1-score, and IoU. The results are consistent with other state-of-the-art works and indicate that SUD is 
valid for comparing point cloud semantic segmentation works. Furthermore, the survey’s extensive coverage and 
the limited occlusions indicate the potential utility of SUD in urban mobility research.   

1. Introduction 

Point cloud data is increasingly used in several urban applications 
such as BIM (Building Information Modelling) (Romero-Jarén & Arranz, 
2021), city mapping (Murtiyoso et al., 2020), road infrastructure man
agement (Gouda et al., 2021; Justo et al., 2021), or construction of HD 
(High Definition) maps for autonomous driving (Gao et al., 2021; Ma 
et al., 2019). In addition, several studies focus their research on pedes
trian urban mobility. Balado et al., (2019) presented a methodology for 
the use of point clouds for direct pathfinding in urban environments. 
Fernández-Arango et al., (2022) characterized the urban space available 
for walking, by segmenting Mobile Laser Scanning (MLS) point clouds. 
Ito & Takemura, (2021) proposed a method to estimate the mobility of 
intelligent electric wheelchairs users using eye movements and point 
clouds. Soilán et al., (2018) presented an automatic methodology for the 
assessment of several safety indicators in urban crosswalks. In many of 
urban applications the detection and classification of the point cloud 
objects is needed (Fernandes et al., 2021). Recently, the use of Deep 
Learning methods has become the state of the art in point cloud classi
fication (Kim et al., 2020; Ma et al., 2020; Zou et al., 2017) which deals 

with the need for large labelled datasets to train the Neural Networks. 
Traditional laser scanning systems include Terrestrial Laser Scanning 

(TLS), Mobile Laser Scanning (MLS) and Aerial Laser Scanning (ALS), 
although new types of platforms are in the market, as Handheld Mobile 
Laser Scanning (HMLS) or UAV Laser Scanning (ULS) (Soilán et al., 
2019). Through all these possibilities, both outdoor and indoor spaces 
can be digitalized. For indoor spaces, TLS or HMLS are preferably 
employed. For outdoor spaces, the selection of the laser scanning sys
tems depends on the purpose and the laser scanning mobility. MLS ob
tains a large amount of information in a short time, e.g., scanning 
kilometres of roads. However, MLS data usually features numerous 
sidewalk occlusions, mainly occurred by parked vehicles (Barros-Rib
ademar et al., 2022). These occlusions imply a lack of knowledge of the 
pedestrian urban environment and, although several methods have been 
proposed for their systematic regeneration, (Liu et al., 2022),these 
methods do not necessarily coincide with reality as they do not consider 
the existence of sidewalk surface damages or hidden objects, barriers of 
pedestrian mobility. Therefore, despite the existence of point cloud 
urban datasets to train Neural Networks, these datasets contain unreal or 
incomplete data of the pedestrian urban environment. 
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Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2023.121842 
Received 16 June 2023; Received in revised form 22 August 2023; Accepted 25 September 2023   

mailto:silvgonzalez@uvigo.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.121842
https://doi.org/10.1016/j.eswa.2023.121842
https://doi.org/10.1016/j.eswa.2023.121842
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 238 (2024) 121842

2

This paper presents a large labelled point cloud database acquired in 
Santiago de Compostela (Spain). The Santiago Urban Dataset (SUD) was 
acquired with MLS and HMLS. Both data were georeferenced and 
labelled into eight main classes: road, sidewalk, curb, buildings, vehicles, 
vegetation, pole-like elements and others. The novelty of this research is to 
provide a complete dataset with real pedestrian urban environment, 
which distinguishes the ground urban elements. By combining MLS with 
HMLS data, occlusions in sidewalks are removed, and the dataset be
comes highly suitable for pedestrian mobility studies and a valuable 
resource for training Deep Learning models. 

This paper is organized as follows: Section 2 collects the related work 
of urban point cloud datasets. Section 3 presents the data generation. In 
Section 4, the results obtained are shown. Section 5 is devoted to the 
discussion. Finally, Section 6 presents the conclusions. 

2. Related work 

The increased use of LiDAR sensors and cameras favours a rise in 3D 
point cloud datasets, while the increased use of Deep Learning (Bello 
et al., 2020; Guo et al., 2021) contributes to the need for labelled da
tabases. These 3D point cloud datasets can be obtained synthetically 
(Griffiths & Boehm, 2019) or can be scanned with different sensors and 
in different spaces, regarding indoor and outdoor spaces. Furthermore, 
open access data contributes to a wider dissemination and sharing of 
results. 

Although there are also several indoor datasets (Chang et al., 2017; 
Dai et al., 2017), most point cloud datasets were taken in outdoor scenes. 
Regarding to urban environments, MLS offers the advantage of scanning 
many road metres in a short time. However, occlusions appear in MLS 
point clouds mainly due to parked vehicles (Barros-Ribademar et al., 
2022), making MLS point clouds difficult to be useful for studying 
pedestrian mobility. (Balado et al., 2019) presented a method for 
pedestrian pathfinding from point clouds and they had to correct oc
clusions with morphological operations. The proposed SUD dataset 
eliminates occlusions by combining both MLS and HMLS data. With the 
HMLS data, most of the sidewalk points are obtained, filling in the MLS 
occlusions without resorting to synthetic data that may not match 
reality. 

Most datasets focus the attention on labelling the ground, vegetation, 
buildings and pole-like elements or tree trunks. In Toronto-3D (Tan 
et al., 2020) e.g., all ground is considered as class road. Some datasets 
made a more detailed classification of the ground. In TUM-MLS-2016 
(Zhu et al., 2020), only a distinction is made between man-made and 
natural terrain. The Synthcity dataset (Griffiths & Boehm, 2019), 
composed by synthetic point clouds, split the ground points into road 
and pavement. The Paris-Lille-3D dataset (Roynard et al., 2018) includes 

more than 50 classes, considering buildings, vehicles, vegetation and 
poles among others, and the ground is classified into road and sidewalk. 
Both datasets distinguish between sidewalk and road, however curbs are 
not considered, being one of the main barriers for people with reduced 
mobility. In the SUD dataset, the ground is also labelled in more detail, 
considering sidewalk (occlusion-free), road and curbs. Other classes 
relevant to urban mobility such as buildings, vehicles, vegetation, and poles 
are also labelled. 

Some datasets present synthetic point clouds or a combination of 
synthetic and real point clouds, e.g. Paris-CARLA-3D (Deschaud et al., 
2021). One of the primary benefits of a self-constructed synthetic model 
is the ability to choose the object placement distribution (Griffiths & 
Boehm, 2019). In addition, the synthetic point clouds do not present 
occlusions, but the realism of the urban scene is lost. In SUD dataset, the 
creation of synthetic data was not performed as the streets were scanned 
with MLS and HMLS systems and many of the occlusions were corrected 
by combining both data. Besides, it is intended that in the future this 
dataset will be used for urban mobility studies, and not only to evaluate 
semantic segmentation algorithms. 

Table 1 compares the characteristics of some of the 3D point clouds 
datasets, sorted chronologically, available in outdoor environment. 

3. Dataset generation 

3.1. Equipment 

Point clouds were obtained with an MLS and a HMLS scanners. A 
Riegl VUX-1HA MLS scanner was used to acquire the point clouds from a 
car perspective. The most common mobile LiDAR system configuration 
integrates digital frame cameras, laser scanner, GNSS receiver, inertial 
navigation system (INS) for acceleration and orientation measurements 
of the moving platform, and a wheel-mounted Distance Measuring In
dicator (DMI), that provides accurate vehicle velocity updates (Puente 
et al., 2011). The positioning sensors are vehicle-oriented to determine 
the absolute locations of the mobile mapping platform with respect to a 
global coordinate system. During the data acquisition, the GNSS/INS 
system calculates the trajectory and records the triggering events from 
the laser scanner inputs while the laser scanner measures two- 
dimensional points. Profile data is converted into three dimensions in 
the georeferencing phase where each of the laser points are assigned an 
appropriate time stamp and coupled with the trajectory information of 
the scanner’s location and altitude. 

The HMLS ZEB GO scanner was also used to scan the urban envi
ronment from a pedestrian perspective. The ZEB GO consists of a 2D 
time-of-flight laser range scanner rigidly coupled to an inertial mea
surement unit (IMU) mounted on a motor drive. The motion of the 

Table 1 
Comparison of urban point cloud datasets.  

Dataset (Year) World RGB Intensity Length N◦ points Classes LiDAR Sensor 

Oakland (Munoz et al., 2009) Real No No 1510 m 1.3 M 5 SICK LMS 
Paris-rue-Madame (Serna et al., 

2014) 
Real No Yes 160 m 20 M 17 MLS system L3D2 

iQumulus (Vallet et al., 2015) Real No Yes 10000 m 300 M 11 MLS system Stereopolis II 
Semantic3D (Hackel et al., 2017) Real Yes Yes 4500 m 4009 M 9 Terrestrial Laser Scanner 
Paris-Lille-3D (Roynard et al., 

2018) 
Real No Yes 1940 m 143 M 50 Velodyne HDL-32E 

SynthCity (Griffiths & Boehm, 
2019) 

Synthetic Yes No 4000 m 368 M 9 Blender 3D graphics software 

Toronto-3D (Tan et al., 2020) Real Yes Yes 1000 m 78 M 9 MLS Teledyne Optech Maverick 
TUM-MLS-2016 (Zhu et al., 2020) Real No Yes 1000 m 41 M 9 Velodyne HDL-64E LiDAR 
Paris-CARLA-3D 

(Deschaud et al., 2021) 
Synthetic +
Real 

Yes Yes (Synthetic) 
No  
(Real) 

550 m + 5800 
m 

700 + 60 M 23 CARLA Simulator + LiDAR Velodyne 
HDL32 

SUD (Ours) Real No Yes (MLS) 
No (HMLS) 

1635 m (MLS) 
2089 m 
(HMLS) 

296 M (MLS) 
167 M 
(HMLS) 

8 MLS Riegl VUX-1HA þ HMLS Zeb GO  
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scanning head on the motor drive provides the third dimension required 
to generate 3D information. A novel 3D simultaneous localization and 
mapping algorithm is used to combine the 2D laser scan data with the 
IMU data to generate accurate 3D point clouds. The ZEB GO captures 
raw laser range measurement and inertial data. Then, this data must be 
processed using GeoSLAM’s algorithm to convert the raw data into a 3D 
point cloud using the GeoSLAM Hub processing application (Geoslam, 
2022). 

Table 2 shows the technical characteristics of Riegl VUX-1HA (RIEGL 
Laser Measurement Systems GmbH, 2022) and ZEB-GO (Geoslam, 2022) 
systems. 

3.2. Scanned area 

The survey was conducted in Santiago de Compostela (Spain), in 
February 2022. The dataset contains fourteen segments of six urban 
streets. Each segment measures approximately 200 m, therefore the 
dataset is formed by 1.6 km MLS point clouds and 2 km HMLS point 
clouds of urban streets (Fig. 1). The República Argentina Street (seg
ments A, B and C) was acquired with the HMLS system, and only 50 m of 
this street (section of segment A) were acquired with the MLS system. 

3.3. Point cloud registration 

Point clouds obtained with the ZEB-GO laser scanner are not 
georeferenced, therefore, HMLS point clouds were registered with 
respect to the MLS point clouds with CloudCompare (CloudCompare, 
2022). To do an accurate registration, at least four points were selected 
in corners of the MLS point clouds and their counterparts in the HMLS 
point cloud. Table 3 shows the number of meters, points and the regis
tration error of each segment. Registration error was directly obtained 
from the CloudCompare registration tool. República Argentina street 
was registered regarding GPS points due to this street was not scanned 
with the Riegl system. Therefore, the registration error in segments A, B 
and C is higher. 

3.4. Labelling 

The workflow to label MLS and HMLS point clouds is shown in Fig. 2. 
Manual labelling was conducted with CloudCompare, that was com
bined with automatic processes to reduce the human effort. The 
following rules were established to obtain uniform and consistent 
labelling:  

• All the points behind the facade line were considered as building 
points, including flooring of entrances, doors, shop windows, etc.  

• Only stationary cars and vans were considered as vehicles.  
• Motorbikes, large trucks, or any vehicle in movement were classified 

as class others.  
• Any element in the ground space that is neither trees nor stationary 

cars/trucks was classified as others. 

First, 200 m of MLS point cloud data were manually labelled in five 
classes (ground, building, vehicles, vegetation and others). These first 200 m 
labelled data was used to train PointNet++ (Qi et al., 2017), and 

implement a preliminary classification of the remaining point clouds. 
The point clouds classified by PointNet++ had only a 0.75 of accuracy, 
but they were a great help for supporting subsequent manual labelling. 

After obtaining all the segments classified in five classes, k-Nearest 
Neighbours (KNN) algorithm (S. Zhang et al., 2018) was applied to the 
HMLS data to assign labels by proximity from MLS data. For each point 
in the HMLS point cloud, the nearest neighbour in the MLS point cloud is 
located, and subsequently, the class of the MLS point is assigned to the 
corresponding HMLS point. However, some points were misclassified; 
for example, cars in different positions between MLS and HMLS scans. 
Therefore, a manual correction was done to correct the remaining mis
classified points. 

After obtaining the MLS and HMLS point clouds labelled into five 
classes, the ground was split into road, sidewalk and curb. Following a 
similar process as (Balado Frias et al., 2017), an algorithm was applied 
to the ground points of the MLS data in order to separate the vertical 
ground elements (curbs) from de horizontal ones (sidewalks and road), 
using the values of inclination, curvature and DBSCAN algorithm (Wang 
et al., 2019). Then, the horizontal elements were manually separated 
into sidewalk and road. The ground points of the HMLS data were clas
sified applying a KNN algorithm, referring to the classified ground 
points of the MLS data. Some points were misclassified due to the oc
clusions in the MLS data, therefore ground points of the HMLS data had 
to be manually corrected. 

From the class others, the class pole-likes were extracted. DBSCAN 
algorithm was applied to individualize the class others of the MLS point 
clouds. Pole-like elements were obtained filtering by height and width. 
The class others of the HMLS data was classified into pole-like elements 
and others with a KNN algorithm, referring to the classified data others of 
the MLS data. Again, some corrections were done. Finally, both MLS and 
HMLS data were classified into 8 classes: road, sidewalk, curb, building, 
vehicles, vegetation, pole-like elements and others (Fig. 3 and Fig. 4). 

Tables 4 and 5 show the number of meters, the total number of points 
and the number of points per class in each street, regarding MLS data 
and HMLS data respectively. The values of number of meters, points and 
points per class of the dataset are also represented for both types of data. 
The labelling process was optimized, however, around 600 h of manual 
classification were required. 

4. Baseline 

4.1. Neural network 

PointNet++ model was tested on the proposed dataset as baseline 
approach. This architecture is commonly used in Deep Learning appli
cations with point clouds (Garcia-Garcia et al., 2016; Z. Zhang et al., 
2020). The operation of PointNet++ is based on the following steps. 
First the set of points is partitioned into overlapping local regions. The 
local features are extracted from small neighbourhoods; such local fea
tures are further grouped into larger units and processed to produce 
higher level of features until the features of the whole point set are 
obtained. 

The model was trained and tested on a GPU NVIDIA A100 Tensor 
Core with 40G of RAM. Table 6 compiles the parameters used for the 
pre-processing and training of PointNet++. Different pre-processing 
steps and training parameters were tested to find the best configura
tion for the specific dataset. The number of epochs and the batch size 
were chosen based on metrics obtained with different test, varying both 
parameters. The cube size was chosen regarding memory restrictions 
and the number of points was selected searching a compromise with the 
cube size. 

4.2. Implementation 

Given the existence of two data sources, three tests with their cor
responding three training sessions were performed: one with only MLS 

Table 2 
Technical characteristics of Riegl VUX-1HA and ZEB-GO.   

Riegl VUX-1HA ZEB-GO 

Field of view (vertical/horizontal) 360◦ full circle 270◦/360◦

Angular resolution (vertical/horizontal) 0.001◦ 1.8◦/0.625◦

Range (m) 1.2–420 30 
Accuracy (mm) 5 10–30 
Pts/s Up to 1,000,000 43,200 
Wavelength (nm) Near infrared 905 
Weight (kg) 3.75 1  
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point clouds, another one with only HMLS point clouds and a third one 
using both MLS and HMLS point clouds. The dataset was divided into 
training, validation, and test sets. For validation and testing, 200 m 
segments with overlap between MLS and HMLS data were selected. In 

addition, validation and test sets were checked for the absence of ele
ments do not present in the training dataset. Segments I and K segments 
were selected for validation and segments F and M were selected for test 
(Fig. 5). 

4.3. Metrics 

To assess the model’s performance, several metrics were employed, 
including confusion matrices, precision, recall, F1-score, intersection 
over union (IoU) for each class, and the mean IoU. Precision measures 
the ratio of correctly predicted positive observations to the total pre
dicted positive observations (Equation (1), with TP representing true 
positive values and FP representing false positive values. Recall, on the 
other hand, calculates the ratio of correctly predicted positive obser
vations to all observations in the actual class (Equation (2), with FN 
representing false negative values. The F1-Score, being the weighted 
average of precision and recall, takes into account both false positives 
(FP) and false negatives (FN) (Equation (3). For evaluating the perfor
mance of each class, IoU (Equation (4) is employed, where i denotes the 
class. Lastly, the mean IoU (Equation (5) provides an overall assessment 
of the semantic segmentation’s quality. 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2) 

Fig. 1. Scanned urban area. The visualization of the streets is overlaid on an OpenSteetMaps map.  

Table 3 
Characteristics of HMLS data.  

HMLS data 

Street Segment Length 
(m) 

Num. 
points 

Registration error 
(m) 

República 
Argentina* 

A  161.0 13,724,766  0.47 
B  94.5 8,717,573  0.67 
C  188.8 16,896,888  0.72 

Ramón 
Cabanillas 

F  179.1 13,163,458  0.18 

Fernando III D  167.4 13,183,486  0.098 
E  147.8 11,016,596  0.08 

Santiago de Chile M  123.0 10,262,331  0.17 
N  201.0 16,071,852  0.17 

Frei Rosendo 
Salvado 

L  107.9 9,605,623  0.028 
G  76.3 5,283,901  0.044 
K  150.2 6,026,889  0.029 

Pedro Mezonzo H  195.1 17,966,453  0.069 
I  149.8 12,356,344  0.056 
J  147.3 13,050,813  0.084 

*República Argentina street was registered regarding GPS points due to this 
street was not scanned with the Riegl system. 
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Fig. 2. Labelling workflow. Green squares represent the input data and orange squares the final labelled data. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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F1 score = 2*
Precsion*Recall

Precision + Recall
(3)  

IoUi =
TPi

TPi + FPi + FNi
(4)  

IoU =
1
N

∑N

i=1
IoUi (5)  

4.4. Results 

Table 7, Table 8 and Table 9 show the confusion matrices consid
ering MLS data, HMLS data and H&MLS data respectively. Results of the 
abovementioned metrics are compiled in Table 10 for MLS data, 

Table 11 for HMLS and Table 12 for MLS and HMLS. 
The behaviour of PointNet++ in the predictions was as expected. 

The best identified classes were those corresponding to the largest 
number of points and distinctive geometries (road, sidewalk, buildings, 
vehicles, and vegetation). Likewise, the ground class did not achieve as 
high hit rates as in other works (Tan et al., 2020) because it was divided 
into three classes (road, sidewalks and curbs). It is also worth noting that 
the classification with MLS data is better than with HMLS, which may be 
justified by the lower quality of the HMLS point cloud (less point density 
and less precision). On the other hand, it is interesting to check how the 
union of MLS and HMLS does not improve the classification. Future 
works will study this behaviour in more detail. Fig. 6 shows the results 
obtained with the three models in the test data. 

Fig. 3. MLS data classification into 8 classes.  

Fig. 4. HMLS data classification into 8 classes.  
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5. Discussion and improvements 

The main contribution of this research is the generation of a labelled 
urban dataset with the ground classified into road, sidewalk and curbs, 
and combining H&MLS data in order to reduce the occlusions caused by 
parked cars or street furniture. 

Data labelling poses a significant challenge in the pursuit of 
acquiring a meticulously annotated dataset. In (Deschaud et al., 2021), 
the data labelling endeavour was executed exclusively through manual 
means using the software CloudCompare, engaging the participation of 
three individuals across three distinct phases, to annotate the point 
clouds. Similarly, within the context of the present method, a concerted 
effort was made to integrate automated labelling techniques. However, 
the data labelling process necessitated a significant reliance on manual 

Table 4 
Number of points and meters scanned with MLS per street.  

MLS data 
Street Street 

meters 
Total num. of 
points 

Num. of points per class 

Road Sidewalk Curb Buildings Vehicles Trees Pole-like Others 

República 
Argentina  

52.7 11,113,830 1,979,064 1,042,534 105,775 7,392,622 213,058 290,902 50,801 39,074 

Ramón 
Cabanillas  

178.12 30,828,846 5,305,175 4,603,088 249,264 17,416,993 872,227 1,903,385 182,027 296,687 

Fernando III  333.1 49,606,416 9,407,063 6,391,132 368,079 29,155,235 814,850 2,368,449 281,236 820,372 
Santiago de Chile  299.7 68,719,549 14,627,929 3,021,162 173,614 43,923,460 5,047,461 889,251 196,218 840,454 
Frei Rosendo 

Salvado  
313.1 60,811,417 11,198,283 7,358,812 676,678 36,392,723 984,493 2,442,067 282,136 1,476,225 

Pedro Mezonzo  458.7 75,162,564 15,114,656 8,026,624 594,869 41,947,838 3,070,328 3,981,101 374,977 2,052,171 
Total  1635.4 296,242,622 5,763,2170 30,443,352 2,168,279 176,228,871 11,002,417 11,875,155 1,367,395 5,524,983  

Table 5 
Number of points and meters scanned with HMLS per street.  

HMLS data 

Street Street 
meters 

Total num. of 
points 

Num. of points per class 

Road Sidewalk Curb Buildings Vehicles Trees Pole-like Others 

República 
Argentina  

444.3 39,339,227 4,577,460 8,087,385 — 21,543,974 1,343,479 1,095,806 344,572 2,346,551 

Ramón Cabanillas  179.1 13,163,458 765,371 4,177,145 37,011 6,451,801 236,267 756,051 120,046 619,766 
Fernando III  315.2 24,200,082 1,875,792 6,350,938 74,223 12,938,420 487,683 1,182,827 214,424 1,075,775 
Santiago de Chile  324.0 26,334,183 3,145,861 5,012,419 148,260 14,743,982 1,320,996 460,214 245,358 1,257,093 
Frei Rosendo 

Salvado  
334.4 20,916,413 1,216,984 5,014,617 105,643 12,518,601 151,194 595,940 134,061 1,179,373 

Pedro Mezonzo  492.2 43,373,610 2,951,666 11,603,368 270,998 22,765,308 1,731,343 2,053,345 337,661 1,659,921 
Total  2089.2 167,326,973 14,533,134 40,245,872 636,135 90,962,086 5,270,962 6,144,183 1,396,122 8,138,479  

Table 6 
PointNet ++: Pre-processing and training parameters.  

Random Cubes size 10 m per point cloud 

Random Rotation Z axis 
Random sampling 32,768 points 
Scale data [0,1] 
Epochs 2000 
Batch size 2 
Optimizer Adam 
Learning Rate 0.001 
Batch normalization momentum 0.9  

Fig. 5. Deep Learning model data: validation and test data.  
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Table 7 
Confusion Matrix: MLS data.  

Ref/Pred Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Road 666,849 6845 2493 1345 221 0 0 301 
Sidewalk 66,183 310,136 4451 6132 881 202 98 5245 
Curb 3045 1887 14,261 138 206 3 0 146 
Building 51,562 104,647 2796 3,578,057 9239 67,912 12,059 117,968 
Vehicles 2187 451 147 2056 101,364 38 249 22,806 
Vegetation 38 327 88 1029 14 170,023 1011 4030 
Poles 7 409 37 446 0 3223 13,659 761 
Others 483 2626 509 3353 2678 860 2226 24,920  

Table 8 
Confusion Matrix: HMLS data.  

Ref/Pred Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Road 242,419 6879 0 912 1262 2 1 230 
Sidewalk 253,953 401,296 0 9001 610 111 181 243 
Curb 7224 2050 0 60 90 0 1 9 
Building 11,733 60,703 0 1,481,454 1284 26,344 2552 15,579 
Vehicles 3236 301 0 1248 53,603 44 111 2706 
Vegetation 1739 224 0 2126 5634 91,861 2211 1091 
Poles 197 42 0 2697 495 6337 19,091 2081 
Others 7244 4617 0 23,282 43,507 4271 6746 59,717  

Table 9 
Confusion Matrix: H&MLS data.  

Ref/Pred Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Road 601,546 16,486 3939 6159 1296 0 0 280 
Sidewalk 126,572 355,864 10,333 34,260 551 184 47 1865 
Curb 6385 4454 5950 367 336 1 1 105 
Building 42,324 63,692 337 3,702,201 14,519 32,547 21,304 43,855 
Vehicles 2766 167 98 8823 115,991 21 0 3989 
Vegetation 233 491 204 13,335 515 168,266 1776 5860 
Poles 6 423 28 1454 186 3987 16,445 2029 
Others 2455 3691 725 12,629 14,623 1850 951 38,897  

Table 10 
Metric results (MLS data).   

Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Precision  0.8437  0.7258  0.5755  0.9960  0.8845  0.7018  0.4661  0.1414 
Recall  0.9835  0.7885  0.7244  0.9072  0.7840  0.9630  0.7367  0.6618 
F1-Score  0.9083  0.7558  0.6414  0.9495  0.8312  0.8119  0.5710  0.2331 
IoU  0.8319  0.6075  0.4721  0.9038  0.7111  0.6834  0.3996  0.1319 
IoU     0.8186      

Table 11 
Metric results (HMLS data).   

Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Precision  0.4593  0.8429  0.0000  0.9741  0.5034  0.7123  0.6180  0.7313 
Recall  0.9631  0.6031  0.0000  0.9261  0.8752  0.8758  0.6170  0.3998 
F1-Score  0.6220  0.7031  0.0000  0.9495  0.6391  0.7856  0.6175  0.5169 
IoU  0.4514  0.5421  0.0000  0.9039  0.4697  0.6469  0.4466  0.3486 
IoU     0.6575      

Table 12 
Metric results (H&MLS data).   

Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

Precision  0.7690  0.7992  0.2753  0.9796  0.7836  0.8134  0.4058  0.4015 
Recall  0.9553  0.6719  0.3381  0.9443  0.8797  0.8825  0.6696  0.5130 
F1-Score  0.8521  0.7300  0.3035  0.9616  0.8289  0.8465  0.5054  0.4505 
IoU  0.7422  0.5748  0.1789  0.9261  0.7078  0.7339  0.3381  0.2907 
IoU     0.7318      
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intervention, highlighting the continued importance of human expertise 
and oversight in achieving accurate annotations. In the present method, 
six individuals labelled the point clouds using the software CloudCom
pare. Although initial attempts using Machine Learning and Deep 
Learning models were undertaken for segmentation, the achieved clas
sification did not meet the requisite quality standards for final publi
cation. Consequently, an alternative approach was adopted, involving 
the initial application of PointNet++ for semantic segmentation on MLS 
(Mobile Laser Scanning) data, but with a reduced set of classes. This 
preliminary segmentation served as a visual aid, facilitating subsequent 
manual correction to enhance accuracy. 

Furthermore, established heuristic algorithms were implemented to 
segment and classify the dataset into the eventual eight classes. Mean
while, considering the availability of two distinct data sources, a similar 
process was contemplated for the HMLS (Handheld Mobile Laser Scan
ning) data. However, due to the inferior classification outcomes 
compared to the MLS data, a point-to-point class assignment method 
based on the K-Nearest Neighbors (KNN) technique was selected. This 
approach allowed for the identification of errors with relative ease in the 
classification process. 

The incorporation of HMLS data played a crucial role in addressing 
occlusions within the urban scene, allowing PointNet++ to accurately 
classify points located within these occluded areas (as depicted in 
Fig. 6). This outcome proved elusive when attempting label assignments 
solely based on proximity to the MLS (Mobile Laser Scanning) point 
cloud. However, the contribution of HMLS data was not uniformly 
distributed across the entire environment. While both sides of vehicles 
were thoroughly surveyed, one using MLS and the opposite using HMLS, 
the representation of curbs in the HMLS point cloud was less compre
hensive. This limitation arises from the methodology employed, as the 
perspective from the sidewalk was utilized while moving with the ZEB- 

GO system. Consequently, the number of curb points acquired using the 
ZEB-GO device was notably lower when compared to the Riegl system, 
as clearly depicted in Table 4 and Table 5. 

Furthermore, it is important to note that the quality of the HMLS 
point cloud fell short of that achieved by the MLS point cloud. The HMLS 
data required manual registration in relation to the MLS point clouds. 
Consequently, georeferenced HMLS point clouds exhibited registration 
errors, with magnitudes ranging from 0.03 to 0.1 m. It is worth high
lighting that the República Argentina street data displayed a more sig
nificant registration error due to the utilization of GPS points, leading to 
a reduction in the precision of the registration process. These registra
tion errors were notably influenced by the deformation observed in the 
point clouds acquired through the ZEB-GO system. Several scans were 
deemed unusable due to inaccurate SLAM (Simultaneous Localization 
and Mapping) performance, particularly in cases where objects dis
played displacements of up to 1 m near the start and end of the scan. This 
phenomenon was particularly pronounced in areas featuring highly re
petitive patterns on building façades. A potential solution for the future 
might involve the implementation of nonrigid ICP (Cheng et al., 2015). 
However, tests indicated that such nonrigid ICP algorithms come with 
significant computational demands, especially when dealing with large 
point clouds. 

The acquisition of ZEB-GO data was strategically planned to 
accommodate the inherent limitations of the scanner. The survey area 
was subdivided into individual scans, each of which was carefully 
designed to span no more than 15 min in duration. Additionally, the 
scanning trajectory for each instance of the ZEB-GO was meticulously 
charted in a pattern resembling the numeral “eight,” with both the 
initiation and conclusion points of the trajectory coinciding at the same 
geographical location (as illustrated in Fig. 7). 

When assessing the performance of the trained models by comparing 

Fig. 6. Zoom in segment D. MLS, HMLS and H&MLS Deep Learning results.  
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F1-score and IoU values, all models exhibited high-quality results. 
Specifically, the obtained mean IoU values consistently exceeded 0.65, 
further solidifying the efficacy of PointNet++ and establishing the 
validity of the dataset for the evaluation of alternative semantic seg
mentation algorithms. In a parallel examination of datasets that incor
porate both real and synthetic point clouds, (Deschaud et al., 2021) 
similarly utilized the PointNet++ architecture as one classification 
methodology. However, their investigation yielded an aggregate IoU of 
merely 0.14. Intriguingly, their results indicated a discernible perfor
mance disparity, wherein the employment of the PointNet++ archi
tecture exhibited superior outcomes when applied to real point clouds as 
opposed to synthetic point clouds. This contrast underscores the 
nuanced intricacies inherent in the utilization of such architectures 
across divergent data sources. 

It is noteworthy that all classes within the dataset are accurately 
represented, maintaining a distribution of point counts that mirrors a 
realistic scenario. Nevertheless, a recurring observation, consistent with 
findings in related research (Deschaud et al., 2021), reveals that most 
elements lack precise delineation, leading to significant confusion, 
particularly in areas adjacent to one another (as illustrated in Fig. 6). 

Furthermore, both the labelled and predicted data demonstrate a 
high degree of utility for the examination of urban mobility, encom
passing both pedestrian and vehicular aspects. Moreover, the dataset’s 
completeness and extensive coverage make it a valuable resource for 
investigations in the fields of urban planning and geometry. This multi- 
faceted utility is a direct consequence of the comprehensive nature of the 
survey. 

6. Conclusion 

This study introduced a new urban point cloud dataset, known as the 

Santiago Urban Dataset (SUD). SUD was meticulously labelled with 
eight distinct classes, including road, sidewalk, curb, buildings, vehicles, 
vegetation, poles, and a category denoted as others. Notably, SUD dataset 
is a composite dataset, merging Handheld Mobile Laser Scanning 
(HMLS) and Mobile Laser Scanning (MLS) point clouds. One of the key 
advancements achieved in this work was the utilization of data fusion 
techniques to effectively handle occlusions introduced by parked vehi
cles and furniture. This approach mitigated the challenges posed by 
these occlusions, thereby enhancing the overall quality of urban point 
cloud data. 

The PointNet++ model was selected as a baseline approach for 
evaluation, and several pertinent metrics were introduced to assess its 
performance. The outcomes of this evaluation were notably consistent 
with those observed in other state-of-the-art works. Both the quantity 
and spatial distribution of errors align with established benchmarks, 
affirming that the SUD dataset is well-suited for comparative assess
ments of new Deep Learning models targeting semantic segmentation 
tasks. Beyond its applicability in model comparisons, the broad scope of 
the survey, coupled with the integration of HMLS and MLS data, 
significantly extends the potential applications of the SUD. This dataset 
can serve as a valuable resource for studies spanning urban mobility, 
urban planning, functional spatial analysis, and investigations into 
urban geometry. This multifaceted utility is a direct result of the 
extensive data coverage and the inclusion of data from both HMLS and 
MLS sources. 

As future work, other Deep Learning models will be tested on the 
dataset as well as new architectures. Different frameworks to integrate 
and fusion HMLS data into MLS data will also be studied. The SUD is free 
and public on Github (González-Collazo, 2022). 

Fig. 7. Scanning trajectory with ZEB GO (multicolor line).  
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