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Abstract: Black alder (Alnus glutinosa (L.) Gaertn.) is a species of tree widespread along Europe
and belongs to mixed hardwood forests. In urban environments, the tree is usually located along
watercourses, as is the case in the city of Ourense. This taxon belongs to the betulaceae family, so it
has a high allergenic potential in sensitive people. Due to the high allergenic capacity of this pollen
type and the increase in global temperature produced by climate change, which induces a greater
allergenicity, the present study proposes the implementation of a Machine Learning (ML) model
capable of accurately predicting high-risk periods for allergies among sensitive people. The study
was carried out in the city of Ourense for 28 years and pollen data were collected by means of the
Hirst trap model Lanzoni VPPS-2000. During the same period, meteorological data were obtained
from the meteorological station of METEOGALICIA in Ourense. We observed that Alnus airborne
pollen was present in the study area during winter months, mainly in January and February. We
found statistically significant trends for the end of the main pollen season with a lag trend of 0.68 days
per year, and an increase in the annual pollen integral of 112 pollen grains per year and approximately
12 pollen grains/m3 per year during the pollen peak. A Spearman correlation test was carried out in
order to select the variables for the ML model. The best ML model was Random Forest, which was
able to detect those days with medium and high labels.

Keywords: Alnus; pollen; machine learning; random forest; trends

1. Introduction

Alnus glutinosa (L.) Gaertn., commonly known as black alder, is naturally widespread
across Europe, from mid-Scandinavia to the Mediterranean countries, including northern
Morocco and Algeria [1,2]. It is usually part of mixed hardwood forests and represents
less than 1% of the forest cover in most countries [3]. Despite this low percentage of
representation in forests, black alder has a good potential for timber production [1]. On
the other hand, black alder is important in open landscapes; for example, in the city of
Ourense, Alnus is located along the riverbank, as in other European cities where alders are
equally represented in woodland and in linear features along watercourses [4,5]. As the
Miño river flows through the city, this species approaches the sensitive population that
lives in the city, causing many people to present allergic symptoms to this pollen type.

Nowadays, allergies have become an important public health problem in the urban
environment of industrialised countries. This sickness is considered a global pandemic with
a great impact on the worldwide economy [6,7]. In general, a higher prevalence of cases
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of sensitization related to pollen was detected in urban environments compared to rural
areas [8,9]. In addition to individual genetic predispositions, a recent study has identified
environmental factors, such as climate change [10], that contribute to allergic reactions.
An increase in temperature will modify the flowering process, inducing changes in the
beginning of flowering, as earlier blooms will modify the duration of the pollen season [11].
The expected amount of pollen production will depend on the plant species, the time of the
year and the region in question, since climate change produces different effects depending
on the bioclimatological region [11,12]. Associated with climate change, pollen allergies are
expected to change their pattern and/or intensity due to early flowering, changes in pollen
production and the invasion of new allergenic plants [13]. Several authors around the world
have pointed out that in the long term, there may be large variations in the local pollen
season, as well as in the onset of the season, seasonal pollen integral (SPIn) and season
duration, which fluctuate between years depending on local climatic variations and climate
change that affects the growth of species [14–25]. In addition, meteorological variables can
produce a direct effect on the airways and induce asthma, and an indirect effect through
airborne allergens and pollutant levels. For this reason, the climatic change and greenhouse
gases influence the frequency and severity of respiratory allergies [26]. Several researchers
found that the sensitivity of a population depends on the local flora (and pollen), concluding
that if a plant species is widespread in a geographical area, the population can tolerate a
higher concentration of this pollen before the symptoms appear [27,28]. Different authors
pointed out that the presence of a certain plant species affects the tolerance of the population
and the appearance of symptoms, such as Betula [29,30], Phleum pratense [30] or Dactylis
glomerata [31].

In order to inform people who manifest allergic symptoms of possible risks of an
allergic response, different groups of scientists have proposed threshold values of pollen
concentration that causes symptomatology. The European Academy of Allergy and Clinical
Immunology (EAACI) determined the high pollen days for five different pollen types [32]
based on a review of threshold values for pollen-induced symptoms [33]. The first alder
pollen concentration threshold study was carried out in Sweden in 1970; Swedish doctors
established four pollen concentration risk thresholds (low: 0–10 pollen grains/m3; middle:
10–30 grains/m3; high: 30–100 grains/m3 and very high: >100 grains/m3) [34]. A later
study carried out in Denmark identified four risk thresholds (low risk: 0–30 grains/m3;
middle: 30–50 grains/m3; high: 50–150 grains/m3 and very high: >150 grains/m3) [35].
Recent studies have indicated that these threshold values may be highly dependent on
regional conditions, such as vegetation and climate [33].

Due to the growing global problem of increasing pollen allergenicity, wide varieties
of studies have addressed the prediction of allergic risk periods caused by high pollen
concentrations [36–42]. In such situations, it is important to find a set of variables that enable
the early prediction of pollen counts through the application of intelligent models [43]. A
survey written by Suanno et al. [43] highlights the utility of aeropalynological data (pollen
counts) to accurately predict pollen trends. However, pollen counts taken on previous days
are mainly used to run kriging methods, which allow for obtaining approximate pollen
counts in areas where there are no pollen collectors by using pollen counts from other
nearby locations. Furthermore, pollen counts on previous days incorporate information on
the timing of the pollen season and summarize information provided by other variables
that have affected the plants during previous days. Therefore, we believe (hypothesize)
that this type of information can complement other variables to accurately forecast pollen
release.

In the present study, an analysis of the Alnus pollen trends in recent years was carried
out, as well as the assessment of the influence exerted by meteorological variables on pollen
concentrations in the atmosphere. Finally, we also implemented a Machine Learning (ML)
model able to accurately predict the periods of allergy risk in a sensitive population by
successfully combining meteorological and aeropalynological data.
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2. Materials and Methods
2.1. Characterization and Location of Study Area

The study was carried out in the city of Ourense (42◦20′ N; 7◦52′ W) located in the
northwest of Spain (Figure 1). The city is located at 139 m above sea level and its climate
has a marked Mediterranean tendency, with warm temperatures, low humidity, an annual
average temperature around 14.9 ◦C and a total annual rainfall of 811 mm [44].
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Figure 1. Sampling location area; green zone indicates the Alnus glutinosa tree distribution in Spain.
To locate Alnus trees, we used the Spanish Forest Species Inventory (http://especiesforestales.com/
fichas.html, accessed on 23 May 2023).

2.2. Airborne Pollen

The monitoring of airborne pollen was carried out with a Lanzoni VPPS-2000 volu-
metric trap [45] from 1993 to 2021. Pollen data were counted following the standardised
protocol of the Spanish Aerobiological Network [46]. The results obtained were expressed
as the seasonal pollen integral (SPIn) (pollen grains), and daily mean values were expressed
as pollen/m3 of air [47].

2.3. Main Pollen Season and ML Pollen Period

In order to calculate the main pollen season (MPS), an AeRobiology (2.0.1) software
package was applied [48]. The MPS was calculated using a percentage method based on
eliminating a certain percentage at the beginning and end of the pollen season. The present
study applied the pollen season based on 95% of the total annual pollen [49]. Therefore, the
MPS start date was considered as the day in which 2.5% of the total pollen was registered,
and the end date of the pollen season was marked as the day in which 97.5% of the total
pollen was registered.

In order to build and adjust a successful ML model, we avoided discarding information
about some days with a low pollen emission (MPS disregarded 5% of the data) and tried to
preserve some data on days when no pollen grains were widespread. This idea led us to
create the new concept of the “ML pollen period”. Moreover, the MPS was different every
year and must be calculated. However, the ML pollen period was defined using fixed dates.

The ML pollen period was additionally defined to include a pollen concentration
greater than zero—useful for building the different ML models studied in this work. The
ML pollen period covers the same set of months in which any pollen grain was observed
in any previous year. Therefore, the ML pollen period includes the main pollen season,
but does not discard any days with observations greater than 0 grain/m3. In addition,
this decision does not imply the use of an excess of zero-value observations (which would
be the case if we took all days of the year), which could lead to an increase in the effects
produced by unbalanced data [50].

http://especiesforestales.com/fichas.html
http://especiesforestales.com/fichas.html
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Throughout the 26-year period under study (1993 to 2018), there were very few days
with no data due to failure of the collectors or power outages. Missing data were calculated
using the AeRobiology software package with the “interpollen” function using the “linear”
method, and the interpolation was performed by drawing a straight line between the ends
of the gap [48].

2.4. Meteorological Data

The meteorological variables, such as maximum, minimum and average temperatures
(◦C) and rainfall (mm), as well as data from 1 to 7 days before, were monitored by the
meteorological station of the Galician Institute for Meteorology and Oceanography ME-
TEOGALICIA (https://www.meteogalicia.gal, accessed on 16 January 2023), located 300 m
from the pollen trap.

2.5. Statistical Analysis
2.5.1. Correlation Analysis

A linear regression analysis was conducted in order to estimate the increasing or
decreasing trends for airborne pollen, MPS characteristics (start, end and length dates of
the MPS, pollen integral, pollen peak concentration and pollen peak day) and meteorologi-
cal parameters. Moreover, a Spearman correlation analysis was performed between the
airborne pollen and different variables (meteorological and pollen counts of previous days)
by using IBM SPSS Statistics 24.0 software.

2.5.2. Machine Learning Models

We took advantage of different ML models to predict whether the Alnus pollen con-
centration in the air would be high (>50 grains/m3), medium (30–50 grains/m3) or low
(0–30 grains/m3) following the EAACI criterion. To this end, we selected different ML
algorithms to compare their achieved performance including Random Forests (RF), Support
Vector Machines (SVM), Gaussian Naïve Bayes (GNB) and Multi-Layer Perceptron (MLP).

RF is an ensemble approach that is mainly used for classification (label assignment)
purposes. It is based on the combination of multiple weak classifiers (usually denoted
as base classifiers/estimators) built on different columns. This ML scheme has been
widely used to tackle different classification and regression problems including pollen
forecasting [36,37]. For our experimentation, we selected DecisionTree classifiers [51] as
base estimators.

SVM comprises a family of geometric-inspired algorithms commonly used to accu-
rately solve classification and regression problems. When the objective is to assign labels
(the current problem), SVMs are able to find parameters of a kernel to transform each input
observation into a point in an n-dimensional space. Then, they compute a hyperplane for
the space that is able to keep observations connected with a label (positive) separated from
the remaining ones (negative). SVM optimises both the transformation and the hyperplane
generated to maximize the distance between positive and negative instances with regard
to one label. This kind of model has been successfully applied to solve a wide variety of
problems including pollen forecasting [39]. In our experiments, we used a radial basis
function (RBF) kernel.

GNB is a probabilistic-based model, which forms part of the Naïve Bayes family. GNB
takes advantage of Gaussian distributions for estimating the probability of the occurrence
of each label when the input variable takes a specific value. This approach is appropriate
for the resolution of different kinds of problems represented by float variables, also being
applied in the context of pollen estimation [40].

MLP represents a widely used neural-based model able to perform label assignment
and time series prediction [52] and is particularly applied for pollen forecasting [41,42].
Generally speaking, an MLP classifier consists of a neural network that has an input layer
containing as many neurons as input variables, and an output layer with as many neurons
as output values. Following this scheme, the output layer in our experiments contains

https://www.meteogalicia.gal
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3 neurons that correspond to ‘Low’, ‘Medium’ and ‘High’ labels. In addition, an MLP
classifier also comprises one or more hidden layers (2 in our configuration) made of a certain
number of neurons (100 per layer in our case), with a configurable activation function [53]
(ReLU in our configuration). However, as the labels defined for the current approach are
exclusive, the output layer was configured with a Softmax activation function that causes
only the neuron with the highest output value to be activated. The parameters (weights) of
the MLP model are typically optimized by using a software algorithm such as Adam [54]
(https://ieeexplore.ieee.org/document/8624183/metrics#metrics, accessed on 11 April
2023).

The dataset was built from Alnus pollen concentration data (in grains/m3) collected
from 1 December 1993 to 30 April 2021 in the city of Ourense. Also, for this period,
the Ourense meteorological station of METEOGALICIA supplied the data of average
temperature (◦C), maximum temperature (◦C), minimum temperature (◦C) and rainfall
(mm) registered. Moreover, for the training, testing and validation of the different ML
models, the dataset was split: (i) data within the period 1993–2013 were used for the
construction of the model; (ii) for testing purposes, we used the information available about
the period 2014–2018; and finally, (iii) we preserved the data between 2019 and 2021 for
validation purposes.

In the framework of the proposed research, pollen observations taken outside the
ML pollen periods were discarded. Moreover, all variable values were scaled between 0
and 1, considering their respective maximum and minimum values. To globally assess the
performance of the different classifiers, we selected Cohen’s kappa coefficient [55]. Kappa
allows for calculating the probability that the rankings made by two evaluators will overlap.
We used the proposed model and the manually labelling method (data included in the
original dataset) as evaluators to assess the performance of the former. Kappa was selected
as the evaluation metric because it takes into account imbalance in class distribution.

3. Results

Alnus airborne pollen was present in the study area during the winter months, mainly
in January and February (Figure 2).
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Figure 2. Average daily values of Alnus pollen concentration in the atmosphere of the city of Ourense
from 1993 to 2018. The black dotted line represents the 5-day running mean.

Over the 26 years under study, the MPS average start date took place on January 8th
and the end date was on 1 March (Table 1). We obtained a major standard deviation from
the end date (11.5%) compared to the start date (6.4%). The earliest start date took place on
December 29 in the year 1994, while the most delayed end date was observed on 6 April
2015. The Alnus main pollen season covered a long period with an average duration of
53 days during the entire period under analysis, ranging from 35 days in 2008 to 82 days in
2015 (Table 1).

https://ieeexplore.ieee.org/document/8624183/metrics#metrics
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Table 1. Characteristics of the Alnus MPS over the 26 years under study: start date, end date, length
of the MPS, annual pollen integral (pollen grains), daily pollen peak (pollen/m3) and date of pollen
peak of each year. Average value (mean), maximum value (max.), minimum value (min.), standard
deviation (SD) and relative standard deviation (RSD, %) in all study years.

Year Start
MPS

End
MPS

Length
MPS

Annual
Pollen

Pollen
Peak

Pollen
Peak Date

1993 8-Jan 8-Mar 60 1414 75 29-Jan
1994 29-Dec 19-Feb 53 1098 163 15-Jan
1995 10-Jan 21-Feb 43 1147 171 25-Jan
1996 3-Jan 5-Mar 62 1387 91 14-Feb
1997 5-Jan 12-Feb 39 3113 534 27-Jan
1998 7-Jan 23-Feb 48 809 72 21-Jan
1999 12-Jan 26-Feb 46 1369 161 1-Feb
2000 11-Jan 15-Mar 64 666 113 30-Jan
2001 1-Jan 19-Feb 50 630 94 8-Jan
2002 15-Jan 20-Feb 37 1246 163 28-Jan
2003 31-Dec 15-Feb 47 2132 400 28-Jan
2004 1-Jan 24-Feb 55 1114 79 18-Jan
2005 16-Jan 27-Feb 43 1937 261 24-Jan
2006 20-Jan 1-Mar 41 2754 353 3-Feb
2007 9-Jan 2-Mar 53 1695 159 8-Feb
2008 19-Jan 22-Feb 35 4319 499 30-Jan
2009 5-Jan 13-Mar 68 1294 208 30-Jan
2010 18-Jan 5-Mar 47 1724 156 24-Jan
2011 9-Jan 23-Feb 46 3516 345 20-Jan
2012 7-Jan 11-Mar 64 4351 305 20-Jan
2013 2-Jan 4-Mar 62 2253 192 16-Jan
2014 10-Jan 22-Mar 72 1216 96 27-Jan
2015 15-Jan 6-Apr 82 1137 147 17-Feb
2016 31-Dec 8-Mar 68 5317 617 24-Jan
2017 10-Jan 2-Mar 52 2692 408 30-Jan
2018 17-Jan 26-Feb 41 6441 867 24-Jan

Mean 8-Jan 1-Mar 53 2184 259 26-Jan
Max. 20-Jan 6-Apr 82 6441 867 24-Jan
Min. 29-Dec 12-Feb 35 630 72 21-Jan
SD 6.45 11.49 11.96 1503.84 197.19 8.73

RSD (%) 0.01 0.03 22.57 68.87 76.19 0.02

The annual pollen integral evidenced higher fluctuations, ranging between 630 pollen
grains in 2001 and 6441 pollen grains in 2018, with an average value of 2184 pollen grains
during the analysed period. These variations were also observed in the pollen peak
concentrations. In general, the peak was registered during the second fortnight of January or
first fortnight of February, with an average value of 259 pollen/m3 registered on 26 January,
a maximum pollen peak of 867 pollen/m3 on 24 January in 2018 and a minimum pollen
peak of 72 pollen/m3 on 21 January in 1998 (Table 1).

The percentage of the total annual pollen registered in the whole period suffered severe
fluctuations between different years. In detail, we observed a significant and positive trend
that led to a 19% increase in the percentage of pollen grains by year (Figure 3).

When we analysed the trends of the characteristics of the airborne Alnus MPS for all
the years, we observed that the variables showing a significant trend were the MPS end,
annual pollen and pollen peak. The MPS end exhibited a significant and positive delay
trend of approximately 0.68 days per year, an increase in the annual pollen integral of
112 pollen grains per year and an increasing trend in the pollen peak of approximately
12.4 pollen grains/m3 per year (Figure 4).
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Figure 3. Trend of the airborne Alnus pollen concentration percentage regarding the total pollen in
the period under study (1993–2018).
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Figure 4. Trends of the airborne Alnus MPS during the period under study (1993–2018): start and end
dates, length, annual pollen integral, pollen peak and pollen peak date.

In order to apply the different ML models as pollen predictions, we used the informa-
tion included in Table 1 to compute the ML pollen period for the Alnus species. By applying
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the ML pollen period definition, we found that ML models should only consider the Alnus
pollen concentration series between 1 December and 30 April.

To decide which variables to use for the construction of the different ML models,
we performed a Spearman’s correlation analysis between all the available input vari-
ables and the pollen concentration in a specific day, i.e., cAp(d). We preserved the
data between 2019 and 2021 for evaluation purposes. Therefore, the correlation was
computed using data between 1993 and 2018. In the analysis, we included the fol-
lowing combination of variables: (i) the concentration of Alnus pollen in the previous
7 days, i.e., cAp(d− 1), cAp(d− 2) . . . , cAp(d− n), n = 7, where cAp(d) indicates the
concentration of Alnus pollen in a given day, d; (ii) the rainfall on the previous days,
rain(d− 1), rain(d− 2) . . . , rain(d− n), n = 7, where the rain(d) function is used for
indicating the precipitation amount for a specific day, d; (iii) the maximum temperature
reached in the previous days, i.e., maxt(d− 1), maxt(d− 2), . . . , maxt(d− n), n = 7,
where maxt(d) indicates the maximum temperature achieved for a certain day, d; (iv) mini-
mum temperature recorded on previous days, i.e., mint(d− 1), mint(d− 2), . . . , mint(d− n),
n = 7, where mint(d) stands for the minimum temperature achieved in a specific day, d; and
(v) the average temperature on previous days, avgt(d− 1), avgt(d− 2), . . . , avgt(d− n),
n = 7, where avgt(d) represents the average temperature of a specific day, d. Table 2 shows
the correlation found between all the variables.

Table 2. Spearman’s correlation test coefficients (R) in the 1993–2018 study period, applied to daily
pollen concentration variables. cAp(d) indicates the concentration of Alnus pollen in a given day, d.
maxt(d), mint(d) and avgt(d) indicate the maximum, minimum and average temperature achieved
for a certain day, respectively, d; the rain(d) function is used for indicating the precipitation amount
for a specific day, d. The expression (d-i) is used to indicate the value of the variable in the previous i
days. Statistical significance was considered at 95% (* p≤ 0.05) and 99% (** p≤ 0.01) confidence level.

Alnus R p Alnus R p Alnus R p

cAp(d) 1.000 maxt(d − 6) −0.276 ** 0.000 avgt(d − 4) −0.275 ** 0.000

cAp(d − 1) 0.803 ** 0.000 maxt(d − 7) −0.289 ** 0.000 avgt(d − 5) −0.287 ** 0.000

cAp(d − 2) 0.770 ** 0.000 mint(d) −0.214 ** 0.000 avgt(d − 6) −0.300 ** 0.000

cAp(d − 3) 0.756 ** 0.000 mint(d − 1) −0.193 ** 0.000 avgt(d − 7) −0.315 ** 0.000

cAp(d − 4) 0.740 ** 0.000 mint(d − 2) −0.189 ** 0.000 rain(d) −0.065 ** 0.000

cAp(d − 5) 0.727 ** 0.000 mint(d − 3) −0.186 ** 0.000 rain(d − 1) −0.059 ** 0.000

cAp(d − 6) 0.714 ** 0.000 mint(d − 4) −0.189 ** 0.000 rain(d − 2) −0.012 0.475

cAp(d − 7) 0.690 ** 0.000 mint(d − 5) −0.184 ** 0.000 rain(d − 3) 0.012 0.460

maxt(d) −0.146 ** 0.000 mint(d − 6) −0.188 ** 0.000 rain(d − 4) 0.032 0.051

maxt(d − 1) −0.168 ** 0.000 mint(d − 7) −0.202 ** 0.000 rain(d − 5) 0.030 0.062

maxt(d − 2) −0.200 ** 0.000 avgt(d) −0.238 ** 0.000 rain(d − 6) 0.031 0.060

maxt(d − 3) −0.221 ** 0.000 avgt(d − 1) −0.239 ** 0.000 rain(d − 7) 0.039 * 0.017

maxt(d − 4) −0.237 ** 0.000 avgt(d − 2) −0.253 ** 0.000

maxt(d − 5) −0.257 ** 0.000 avgt(d − 3) −0.265 ** 0.000

Table 2 shows how Alnus concentrations pertaining to the last days were the most
correlated variables, although rainfall and temperature were also related. On this basis, we
optimised the parameters used for the construction of the proposed ML models by using
only the values belonging to the ML pollen periods included in the period 1993–2013 for
training purposes, leaving the period 2014–2018 for testing.

We ran the models incorporating n previous Alnus pollen concentration days as
independent variables (that is, cAp(d− i) with i = [1. . .n] and n = [1. . .7]), achieving the
best results for n = 4. Using this configuration as a baseline, we applied different schemes
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based on the idea that there is a (biological) connection between meteorological variables
(e.g., precipitation and/or temperature) and pollen concentration. For this purpose, we
introduced rainfall in three different ways: (i) precipitation modelled with independent
variables with the rainfall of the previous n days (i.e., rain(d− i), with i = [1. . .n] and
n = [1. . .7]), (ii) cumulative precipitation during the previous n days (i.e., ∑n

i=1 rain(d− i))
and (iii) the precipitation estimated for the target day, using rain(d) to model this value.

We also incorporated average temperature, (avg(d)), in different forms: (i) avgt(d− i)
with i = [1. . .n] and n = [1. . .7], (ii) combined average temperature, avgn

i=1(avgt(d− i)),
where n = [1. . .7] and avgm

j=1
(
xj
)

indicates the average of xj and (iii) the average temperature
on the target day, (avgt(d)). Maximum and minimum temperatures were also tested with
similar configurations. Taking into consideration the results achieved using the previous
4 days of pollen (i.e., cAp(d− 1), cAp(d− 2), cAp(d− 3), cAp(d− 4)), only the inclusion
of the variable rain(d) made it possible to reach better results. This fact seems to support
the idea that pollen recordings from past days (used for model construction) may indirectly
contain information about temperatures and precipitation from previous days.

Starting from the best configuration achieved in the testing phase, we carried out a
validation step with those values of ML pollen periods included in the years 2019, 2020
and 2021 (previously unseen by the models). The experiments were carried out year by
year, retraining the models to incorporate the new available data. Table 3 shows the kappa
values together with the median/difference of the analysed model.

Table 3. Kappa values obtained by the models analysed during the validation period (2019–2021).

Year

Classifier
RF SVM GNB MLP

2019 0.680 0.668 0.592 0.749

2020 0.570 0.586 0.551 0.569

2021 0.571 0.426 0.312 0.479

Median/Difference 0.607/±0.073 0.56/±0.134 0.485/±0.173 0.599/±0.150

As indicated in Table 3, the models showed an adequate performance. However,
although the MLP model achieved an excellent result for the year 2019, it may probably be
affected by overfitting, since the kappa index worsened in the upcoming years. On the other
hand, although the RF model attained a slightly lower evaluation for the first year, it was
able to maintain its accuracy in subsequent years. This observation suggests that this model
is best suited to address changes in pollen distribution trends. Then, using the RF model,
we calculated the underline confusion matrix [56] (Table 4). The confusion matrix allows
for a numerical comparison between the predictions (classes) made with the model and the
real situation. In particular, it allows us to numerically assess the probability of specific
errors (e.g., the probability of classifying a day labelled with high pollen liberation as low).
In each cell included in our confusion matrix, we include the percentage of successful
predictions as compared to the real classification of data.

As seen in Table 4, despite the very imbalanced data (more than 90% of the data
are labelled as low), the Random Forest classifier is able to easily detect those days with
medium and high labels. Similarly, it is also possible to observe how, on many occasions
(especially in the years 2020 and 2021), an error occurs in classifying a medium label as a
high one, which is not a problem from a medical point of view. From another perspective,
the number of days with a high incidence of pollen being misclassified is quite low (which
only happens in the year 2019).
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Table 4. Confusion Matrix for Random Forest.

Year Predicted Labels

2019

low medium high
low 95.35 0.0 4.65

Real labels medium 33.33 0.0 66.67
high 6.25 0.0 93.75

2020

low medium high
low 90.22 0.0 9.78

Real labels medium 0.0 0.0 100.0
high 0.0 0.0 100.0

2021

low medium high
low 96.55 0.0 3.45

Real labels medium 0.0 33.33 66.67
high 0.0 0.0 100.0

4. Discussion

During the last decades, several studies have noted that different atmospheric biologi-
cal particles, including alder pollen grains, cause human health problems such as allergies
and infections [32,57–60]. In the present study, we found that, on average, the Alnus MPS
starts on 8 January and ends on 1 March with an average length of 53 days. These results
were similar to those pointed out by several authors from areas in northern Spain [61].
Studies carried out in Central Spain indicated that the onset of Alnus MPS was delayed to
mid-January and the end to the final days of March [62]. Research conducted in Central
Europe noted the MPS was advanced around the Christmas season, e.g., Switzerland or
Austria [63,64], whereas southern European, as in Italy or Turkey, areas showed a later
MPS start in the month of February [61,65,66]. In addition, we found an average of pollen
grains during the study period (1993–2018). The value is similar to that noted in [61] for the
same study area, and higher than the data pointed out for southern Europe locations [66].
On the other hand, northern Europe locations such as Poland registered higher annual
values of 7050 pollen grains [65]. The start, end and length features of the MPS and even
the pollen concentration are highly influenced by meteorological factors; hence, in recent
years, different authors have studied how climate change will influence plant behaviour
and its impact on people’s health [67,68]. In the present study, we calculate the trends for
the main MPS characteristics, registering statistically significant linear trends (p < 0.01)
for the end of MPS, the annual pollen integral (SPIn) and the pollen peak. The detected
trends indicate that the pollen concentration will rise 112 pollen grains per year and the
pollen peak will increase by 12.4 grains of pollen/m3. These data are consistent with a
study carried out in Bratislava, which detected increases in the pollen peak of 16.3 pollen
grains/m3 [69]. As a general form, these trends were also similar to the data pointed out
for North America over the period 1990–2018, with significant trends in different pollen
metrics, such as the seasonal features and pollen integral values [70].

Different research has shown that plant flowering, and therefore airborne pollen
concentration, may be influenced by meteorological parameters [71–73]. In particular,
a study conducted in Poland noted that the onset and the length of the pollen season
depend on the weather variables prevailing before and during the release of alder pollen
grains [65]. Moreover, several researchers have pointed out that the variations in alder
airborne pollen concentrations happened due to temperature [71–73]. The Spearman
correlation analysis carried out between the Alnus pollen and weather variables showed a
negative and significative (p < 0.01) correlation between Alnus pollen and temperatures
(maximum, minimum and average) for the same day and the 7 previous days, as well as
the rain of the same day and 1 day before. With a lower significance level (p < 0.05), there
is a positive correlation with the rain of the 7 previous days. These data are consistent
with a study conducted in Malaga (southern Spain), in which the authors pointed out
significant and negative correlations between average and minimum temperatures [74]. In
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addition, other investigations conducted in Poland showed a negative correlation between
alder pollen and maximum temperature and a positive correlation with the rainfall [65].
Different long-term studies on selected plant taxa pointed to an increase in the pollen
concentrations as well as the length of the pollen season in recent years, often modulated
by temperature [17,75,76]. Moreover, we also found a positive correlation with a high
significance level (p < 0.01) between the Alnus pollen count of a day and each of the pollen
counts made on the 7 previous days.

Once the correlation analysis was performed, we carried out an analysis using ML
techniques in order to predict the Alnus pollen concentration. In recent years, ML models
have been successfully implemented to predict air quality indices in Smart cities [77,78].
In the present work, four different classifiers were tested: Random Forests (RF), Support
Vector Machines (SVM), Gaussian Naïve Bayes (GNB) and Multi-Layer Perceptron (MLP).
The best classifier was RF, showing a kappa value of 0.680, 0.570 and 0.571 in 2019, 2020
and 2021, respectively. In addition, the most informative variables were the combination
of pollen counts in the previous 4 days and the rainfall of the same day. This finding is
consistent with several studies pointing out that RF is the model with a higher r2 value
for Alnus in nine Polish cities, with r2 value oscillations between 0.220 and 0.480 [79].
This study also pointed out that the variables that most influenced the RF model were
temperature and rainfall. A previous study conducted in Germany using autoregression
and neural network approaches to predict Betula and Poaceae airborne pollen registered an
r2 value ranging from 0.13 to 0.62 for Betula and 0.03 to 0.55 for Poaceae [80]. These results
are slightly lower than those obtained in the present work.

Finally, a confusion matrix was analysed to know the RF model sensitivity on each
validation year under study (i.e., 2019, 2020 and 2021). From an overall perspective, it is
possible to state that the model accurately predicts high or low values (e.g., in 2019, the
sensitivity of the model for days with a high pollen concentration was 93.75%, and only
6.25% of those cases were misclassified as a low level). In contrast, the sensitivity of the
model with days classified as a low concentration was 95.35% (with 4.65% of the instances
being misclassified as a high level). In 2020 and 2021, the sensitivities achieved by the
model for the label “High” were 100%, while in the case of the label “Low”, the values were
90.22% and 96.55%, respectively (9.78% and 3.45% of the occurrences were misclassified as
a high level). All cases from 2019 with medium labels were misclassified as high (66.67%)
or low (33.33%). In 2020, 100% of cases having medium labels were misclassified as a high
value. In 2021, the model attained a sensibility of 33.33% for medium-labelled instances
while the remaining 66.66% were misclassified as high. As long as most cases with the
medium label were classified as high, the impact caused by the errors is reduced. Similar
results were pointed out in a study conducted in Poland for Alnus airborne pollen [37].
In this study, the authors only considered two labels (i.e., high and low) and two tests
were applied. The percentage of sensitivity registered was lower than that obtained in the
current study, with 70.0% in the case of days with a high pollen concentration in the first
test, and a percentage of 59.0% in the second test.

Alnus pollen is small in size and this feature allows it to be transported over long
distances by the wind [81]. Therefore, the transport of Alnus pollen from distant locations
may contribute to its high concentrations, in some years, far from the area of emission [65].
Specific episodes of the long-range transport of pollen could hamper the ML model’s
accuracy for pollen concentration predictions. Events of pollen transport were previously
detected with other taxa in our study area [82], which reinforces the robustness and accuracy
of the proposed ML models.

5. Conclusions

This study introduces an analysis of pollen seasonal changes in Alnus over the last
26 years (1993–2018) and documents inner distribution changes: the start/end dates and the
amount of pollen grains registered yearly. In addition, the work incorporates an analysis of
different variables biologically connected with the liberation of pollen from Alnus species.
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We found that, on average, the Alnus MPS starts on 8 January and ends on 1 March with an
average length of 53 days. An annual average of 2184 pollen grains were detected during
the study period. These parameters can be influenced by meteorological factors, so climate
change has modified plant behaviour in recent years and its impact on people’s health.
Significant trends in MPS characteristics indicated that pollen concentration will increase
by 112 pollen grains per year and the pollen peak will increase by 12 pollen/m3. In the
correlation analysis, the most correlated variables (i.e., pollen observations in the previous
7 days, min./max./avg. temperature and rainfall) were chosen to build and analyse the
performance of different state-of-the-art ML models able to accurately estimate Alnus pollen
liberation. As a result, it was determined that pollen counts taken in the previous 4 days
together with the rainfall forecast of the current day are the best attributes to make the
prediction. Finally, the Random Forests (RF) model proved to be a suitable model to carry
out the prediction of Alnus pollen concentration in the atmosphere by using rainfall and
previous pollen concentrations as features, being able to classify the amount of grains
as low (0–30 grains/m3), medium (30–50 grains/m3) or high (>50 grains/m3) following
the EAACI criterion. On the basis of the above, the Random Forests (RF) model was
built by using these attributes to achieve short-term (1–5 days) predictions of Alnus pollen
concentration in the atmosphere, which makes it possible for people to make informed
decisions prior to suffering allergic symptoms, such as the use of prophylactics to reduce
the severity of reactions caused by pollen. The reason for predicting in a short period of
time is because foreseen meteorological data are used. Due to the weather variability in the
region of Galicia, the prediction of Alnus pollen concentration will be much more accurate
in a short period of time. As long as our model requires the pollen amount of 4 previous
days and the rainfall forecast for the target day, we plan to obtain the rainfall forecast from
the Meteogalicia website and the pollen grain forecast using the AeRobiology software
package [48].
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79. Nowosad, J.; Stach, A.; Kasprzyk, I.; Chłopek, K.; Dąbrowska-Zapart, K.; Grewling, Ł.; Latałowa, M.; Pędziszewska, A.;
Majkowska-Wojciechowska, B.; Myszkowska, D.; et al. Statistical Techniques for Modeling of Corylus, Alnus, and Betula Pollen
Concentration in the Air. Aerobiologia 2018, 34, 301–313. [CrossRef]

80. Muzalyova, A.; Brunner, J.O.; Traidl-Hoffmann, C.; Damialis, A. Forecasting Betula and Poaceae Airborne Pollen Concentrations
on a 3-Hourly Resolution in Augsburg, Germany: Toward Automatically Generated, Real-Time Predictions. Aerobiologia 2021, 37,
425–446. [CrossRef]
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