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Multidimensional Two-Level Multiphase Space
Vector PWM Algorithm and Its Comparison With

Multifrequency Space Vector PWM Method
Oscar López, Member, IEEE, Drazen Dujic, Member, IEEE, Martin Jones, Member, IEEE,

Francisco D. Freijedo, Member, IEEE, Jesús Doval-Gandoy, Member, IEEE, and Emil Levi, Fellow, IEEE

Abstract—A multilevel multiphase space vector pulsewidth
modulation (SVPWM) algorithm has been introduced recently,
in which the reference is separated into an integer part and a
fractional part. The fractional part is, in essence, a two-level
multiphase space vector algorithm. This paper shows that, with
appropriate adaptations, the fractional part of the general space
vector multilevel multiphase PWM can be applied as a stand-alone
PWM method in conjunction with two-level voltage-source
converters with any number of phases. Simulation results of the
five- and six-phase cases are shown, and the new algorithm is com-
pared with another recent multifrequency SVPWM algorithm,
which follows the standard approach of selecting the switching
vectors and calculating their application times using dq planes.
The experimental verification is provided using a five-phase two-
motor series-connected induction motor drive, supplied from a
custom-designed five-phase voltage-source inverter.

Index Terms—Modulation index range, multifrequency
pulsewidth modulation (PWM), multiphase voltage-source
converter, space vector PWM (SVPWM).

I. INTRODUCTION

MAIN advantages of multiphase machines over their
three-phase counterparts are the following: 1) higher

efficiency; 2) the greater fault tolerance; and 3) the lower
torque pulsation [1]. Multiphase motor drives are of interest for
applications where their advantages outweigh the lack of the
off-the-shelf availability of both machines and power electronic
converters [2]. They have been found to be ideally suited for
direct drives in marine propulsion applications [3]–[5] and for
drive systems in safety-critical applications, such as the more-
electric aircraft [6]–[11]. Other recent applications include
electric vehicle propulsion [12]–[15] and locomotive traction
[16], [17].
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Advances in multiphase drives led to the corresponding de-
velopment of new pulsewidth modulation (PWM) techniques.
The carrier-based PWM techniques developed for multiphase
systems are rather simple extensions of the techniques de-
veloped for three-phase converters [18]–[21]. The extension
of the space vector PWM (SVPWM) techniques from three
to multiphase systems is however more involved. The classi-
cal motor-drive approach selects the switching vectors using
reference-related considerations in several 2-D dq planes [22]–
[28]. The majority of such techniques is related to two-level
converters with a particular number of phases and a single-
frequency output. The dq SVPWM for three-level converters
is addressed in [27], and the dq SVPWM for a multifrequency
output with two-level inverters is addressed in [28]. A recent
alternative approach to SVPWM is the selection of the space
vectors directly in a multidimensional space [29]. However,
the existing approach to the switching vector selection [29],
[30] is characterized with the huge computational cost [30].
The algorithm for two-level converters with any number of
phases, presented in [31], can deal with multifrequency out-
put and has low computational cost; however, this algorithm
requires storing of precalculated tables, and table size increases
dramatically with an increase in the number of phases. Re-
cently, three generic multidimensional SVPWM techniques for
multilevel multiphase converters with low computational cost,
low memory requirements, and capability of multifrequency
output generation have been developed [32]–[34]. The mod-
ulation techniques in [33] and [34] are specifically for multi-
level converters: The former technique takes into account the
switching state redundancy present in multilevel topologies,
while the latter one reduces distortion in the output waveform
due to imbalances in the dc links of multilevel converters.
The SVPWM technique in [32], which was the precursor of
[33] and [34], makes use of a two-level SVPWM algorithm.
This two-level algorithm, which was specifically developed to
solve the multilevel problem, is a general two-level multiphase
SVPWM technique that can be used as a stand-alone PWM
technique with two-level voltage-source converters. Since two-
level inverters are, nowadays, customarily used as the supply in
multiphase drives, the fractional part of the general multilevel
SVPWM algorithm actually has a better prospect for real-world
applications than the complete multilevel algorithm.

This paper studies the application of the two-level multiphase
SVPWM algorithm developed in [32] to conventional two-level



voltage-source converters. It shows, for the first time, that this
algorithm can be used for both sinusoidal and multifrequency
output voltage generation with two-level inverters, and provides
corresponding experimental proofs. The new multidimensional
modulation algorithm has a number of properties inherited from
the algorithm in [32]. Thus, it can be used with converters
with any number of phases; it has a low computational cost,
and it is suitable for online implementation. The range of
the modulation index in the linear region of the algorithm is
calculated in this paper, and the technique to extend it when the
load has the floating neutral point is outlined. The algorithm
is simulated with a five- and a six-phase inverter, and it is
compared with the recent multifrequency SVPWM algorithm
in [28], which carries the switching vector selection in several
dq planes. Experimental results, collected from a five-phase
two-motor series-connected drive, are given to verify the the-
oretical analysis.

II. TWO-LEVEL MULTIPHASE SVPWM

A. Multidimensional Formulation and Modulation Law

The two-level multiphase SVPWM technique presented in
[32] formulates the modulation problem of a P -phase voltage-
source converter in a multidimensional space, in which the
normalized reference vector

vr =
[
v1

r , v2
r , . . . , vP

r

]T
(1)

and the switching state vectors

vsj =
[
v1

sj , v
2
sj , . . . , v

P
sj

]T
, j = 1, . . . , P + 1 (2)

are P -dimensional vectors. The reference vector vr gathers
the normalized reference voltages of all legs of the converter,
which are calculated by dividing the actual reference voltage
by the dc-link voltage vk

r = Vk
r/Vdc. In the same way, the

switching vectors vsj gather the switching states of the legs
of the converter. In two-level converters, each leg has only two
possible states: zero and one. The lower switch of leg k is on
and the upper switch of leg k is off for the case vk

s = 0, whereas
in the case vk

s = 1, the switches of the leg k are in the opposite
state.

Since the switching states of the power converter stay at
discrete states, the SVPWM technique is used to synthesize
the reference voltage vector vr by means of a sequence of
space vectors vsj during each modulation cycle. Each space
vector must be applied during a normalized dwell time tj in
accordance with the following modulation law:

vr =
P+1∑
j=1

vsjtj ,
P+1∑
j=1

tj = 1 (3)

in which the negative rail of the dc link is the reference voltage
point. The actual dwell time Tj corresponding to the switching
vector vsj is obtained from the switching period as Tj = tjT .

If expressions in (3) are rewritten in matrix format, then the
following system of linear equations is obtained:⎡

⎢⎢⎢⎢⎣
1
v1

r

v2
r
...

vP
r

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
v1

s1 v1
s2 · · · v1

sP+1

v2
s1 v2

s2 · · · v2
sP+1

...
...

. . .
...

vP
s1 vP

s2 · · · vP
sP+1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎣

t1
t2
...

tP+1

⎤
⎥⎥⎦ . (4)

The two-level multiphase algorithm in [32] finds the coefficient
matrix D that allows solving the aforementioned system of
linear equations, and then, it calculates the solution dwell times.
The coefficients of matrix D only take the values zero or one
because the converter only has two levels.

The application of the multidimensional two-level multi-
phase SVPWM algorithm requires calculation of a permutation
matrix P that sorts the elements of the reference vector vr in
descending order

P
[
1
vr

]
=

[
1
v̂r

]
(5)

where v̂r = [v̂1
r , v̂2

r , . . . , v̂P
r ]T is the reference vector after sort-

ing is completed, in which

v̂1
r ≥ · · · ≥ v̂k−1

r ≥ v̂k
r ≥ · · · ≥ v̂P

r . (6)

In [32], the reference vector for the two-level multiphase
SVPWM is the fractional part of the reference vector, and
consequently, all the components of that vector are always in
the interval [0, 1). When the two-level SVPWM algorithm is
applied as a stand-alone algorithm, then its reference voltage
can be of any value, and the constraints v̂1

r ≥ 0 and v̂P
r < 1

in [32] no longer apply. The permutation matrix and the sorted
vector v̂r can be readily obtained at the same time by mak-
ing row-switching transformations in the following augmented
matrix: [

1
vr

∣∣∣∣ I
]

Row−switching−−−−−−−−−−−−−−−−−− −→
transformations

[
1
v̂r

∣∣∣∣P
]

(7)

where I is the (P + 1)× (P + 1) identity matrix. The goal in
the row-switching transformation is to exchange the columns
of the augmented matrix in order to sort the components of
the vector vr in the first column. It is important to remark
that the first row is never moved. The resulting augmented
matrix includes both the sorted vector v̂r and the permutation
matrix P.

The coefficient matrix D is calculated with the permutation
matrix P as

D = PTD̂ (8)

where D̂ is the following upper triangular matrix:

D̂ =

⎡
⎢⎢⎣
1 1 · · · 1

1 · · · 1
. . .

...
0 1

⎤
⎥⎥⎦ . (9)



Fig. 1. Block diagram of the two-level multiphase SVPWM.

Since the matrix PT applies to the matrix D, the inverse
set of row-switching transformation done in (7), the matrix
multiplication in (8) can be avoided if the operations carried
out to sort the reference vector vr are stored and then applied
in inverse order to the matrix D [32]. Finally, the dwell times
are calculated from v̂r as

tj =

⎧⎨
⎩

1− v̂1
r , if j = 1

v̂j−1
r − v̂j

r , if 2 ≤ j ≤ P
v̂P

r , if j = P + 1.
(10)

Since constraints v̂1
r ≥ 0 and v̂P

r < 1 no longer apply, then
some reference vectors can lead to a negative dwell time. In
this case, the reference vector is in the overmodulation region,
and it cannot be accurately synthesized, which requires an
investigation of the modulation index range of the stand-alone
SVPWM algorithm.

In summary, as it is shown in Fig. 1, the steps of the
multidimensional two-level multiphase SVPWM algorithm are
the following:

1) calculation of the normalized reference vector vr;
2) calculation of the sorted reference vector v̂r and the

permutation matrix P by means of (7);
3) rearrangement of the rows of the triangular matrix D̂ to

obtain the matrix D by means of (8);
4) extraction of the switching vectors vdj from the matrix D

by taking into account the expression in (4);
5) calculation of the time corresponding to each switching

vector from the components of the vector v̂r by means
of (10).

The application of the algorithm is illustrated by considering
an arbitrary reference voltage for each leg of a five-phase
inverter: 0.69Vdc for leg a, 0.60Vdc for leg b, 0.11Vdc for
leg c, 0.21Vdc for leg d, and 0.34Vdc for leg e. The values are
given with respect to the negative rail of the dc link. In this case,
the normalized reference vector for the algorithm is

vr = [0.69, 0.60, 0.11, 0.21, 0.34]T. (11)

After carrying out the row-switching transformations on the
augmented matrix made with vr and the identity 6 × 6
matrix, as it was depicted in (7), the following sorted
vector:

v̂r = [0.69, 0.60, 0.34, 0.21, 0.11]T (12)

and the following permutation matrix:

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ (13)

are obtained. From (8), the matrix D is calculated as

D = PTD̂ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦ (14)

and the switching vector sequence is extracted from this matrix,
taking into account its definition given in (4)

vd1 = [0, 0, 0, 0, 0]T

vd2 = [1, 0, 0, 0, 0]T

vd3 = [1, 1, 0, 0, 0]T

vd4 = [1, 1, 0, 0, 1]T

vd5 = [1, 1, 0, 1, 1]T

vd6 = [1, 1, 1, 1, 1]T. (15)

As expected, consecutive vectors of the sequence are adjacent.
Therefore, the number of switchings is minimized. Finally,
the switching times are calculated from the ordered reference
vector v̂r by means of the expression in (10)

t1 =1− v̂a
r = 0.31

t2 = v̂a
r − v̂b

r = 0.09

t3 = v̂b
r − v̂c

r = 0.26

t4 = v̂c
r − v̂d

r = 0.13

t5 = v̂d
r − v̂e

r = 0.10

t6 = v̂e
r = 0.11. (16)

B. Modulation Index Range

The reference vector cannot be accurately synthesized, i.e.,
it lies in the overmodulation region, if some of the switching
vectors have a negative dwell time. Dwell times from t2 to
tP are always positive because they are calculated from the
components of v̂r by means of (10), and the components of
v̂r fulfill the expression in (6). The only dwell times that can
be negative are t1 and tP+1. Therefore, the following rule
applies in order to determine if the reference vector lies in the
overmodulation region:

t1 < 0 tP+1 < 0. (17)



From (6), the first and the last components of the sorted
reference vector can be written as

v̂1
r = max

k=1,...,P

(
vk

r

)
(18)

v̂P
r = min

k=1,...,P

(
vk

r

)
. (19)

Thus, t1 = 1−maxk(vk
r ), and tP+1 = mink(vk

r ). Conse-
quently, the rule in (17) can be rewritten as a function of the
reference voltages as

min
k=1,...,P

(
vk

r

)
< 0 max

k=1,...,P

(
vk

r

)
> 1. (20)

Hence, the reference vector vr lies in the overmodulation
region of the modulation index if some of its components are
outside the interval [0, 1]. If the modulation index is defined
as the ratio of the peak-to-peak fundamental of the output volt-
age to the dc-link voltage m = Vpp/Vdc, then the modulation
index of the multidimensional two-level multiphase SVPWM
algorithm is limited to

m ≤ 1. (21)

In the case of multifrequency output, a modulation index is
defined for each frequency component, i.e., mi = Vppi

/Vdc.
In this case, the modulation indexes are limited by the
expression

Q∑
i=1

mi ≤ 1 (22)

where Q = (P − 1)/2 if the number of phases is odd and
Q = P/2− 1 if P is an even number. This is the same limit
as with the classical sinusoidal carrier-based PWM technique.
The mathematical demonstration of (21) and (22) is provided in
the Appendix.

C. Modulation Index Extension

The switching vector sequence obtained with the modula-
tion law in (3) guarantees that the reference leg voltage and
the cycle-by-cycle averaged output leg voltage are equal in
the linear region of the modulation index. Consequently, the
reference vector and the averaged output vector obtained with
the SVPWM algorithm have the same homopolar and nonho-
mopolar components. Therefore, this algorithm can be used
both with converters with neutral and without load neutral wire.
Nevertheless, in the latter case, if the voltage of the neutral point
of the load is not a constraint, then the homopolar component of
the output voltage can be modified to increase the modulation
index range.

If the homopolar component h is added to the output voltage
by applying the modified reference vector v′

r = [v1
r + h, v2

r +
h, . . . , vP

r + h]T to the SVPWM algorithm, then the switch-
ing vector sequence does not change. It is because the row-
switching transformations to sort vr and v′

r are the same,
and consequently, matrices P and D are the same as well.

Fig. 2. Modification of the homopolar component of the output voltage.

From (10), the dwell times corresponding to the new reference
vector are

t′j =

{ t1 − h, if j = 1
tj , if 2 ≤ j ≤ P
tP+1 + h, if j = P + 1.

(23)

Therefore, as Fig. 2 shows, the homopolar component of the
output voltage can be modified by changing the dwell times
corresponding to the first and the last elements of the switching
vector sequence. Since those are the only dwell times that are
taken into account in the overmodulation rule in (17), it is
possible to correct a negative value in t′1 or t′P+1 to avoid an
eventual overmodulation situation of the SVPWM algorithm.
This correction is carried by selecting a value of h in the range

−tP+1 ≤ h ≤ t1. (24)

Such a correction is not possible if the length of this interval is
negative because, in this case, there does not exist any value of
h that provides positive values for t′1 and t′P+1 at the same time.
Consequently, the condition

t1 + tP+1 < 0 (25)

can be used to check if the reference vector lies in the over-
modulation region when the correction of the dwell times is
carried out. This rule is less restrictive than the rule in (17). If
expressions in (18) are taken into account, then the aforemen-
tioned overmodulation condition can be rewritten in terms of
the normalized reference vector as

max
k=1,...,P

(
vk

r

) − min
k=1,...,P

(
vk

r

)
> 1. (26)

If symmetrical multiphase systems where the phase shift be-
tween consecutive phases is 2π/P and single-frequency output
are considered, then the modulation index is limited to

m ≤
{
1/ cos

(
π
2P

)
, if P is odd

1, if P is even
(27)

which is the limit of the sinusoidal carrier-based PWM with har-
monic injection technique [18]. In the case of multifrequency
output, the modulation indexes of all components are limited
by the expressions

Q∑
i=1

mi |sin(niπ/P )| ≤ 1, for n = 1, . . . , N (28)



Fig. 3. Area of the permissible modulation index pairs. (a) Five-phase system.
(b) Six-phase system.

where N = (P − 1)/2 if P is odd and N = P/2 if P is even.
The mathematical demonstration of (27) and (28) is provided in
the Appendix.

It is interesting at this point to address the result of (28)
in more detail. Consider, for example, a five-phase system.
According to (28){

m1 sin(π/5) + m2 sin(2π/5) ≤ 1
m1 sin(2π/5) + m2 sin(4π/5) ≤ 1. (29)

Equation (29) defines the area shown in Fig. 3(a) of the per-
missible modulation index pairs in the m1m2 plane, which
satisfy simultaneously both those in (29). In the limit m1 =
m2 = mmax and solution of (29) is mmax = 0.6498. This
means that the sum of the two modulation indexes in the
limit of the linear modulation region is equal to 1.2996, which
is considerably more than for the single-frequency operation
(mmax = 1.0515). This result shows that the multidimensional
two-level SVPWM algorithm enables full utilization of the dc
bus voltage. It is also in full agreement with the general study
of the limits of the dc bus voltage utilization in the linear
modulation region, reported in [35], for multiphase inverter-fed
systems. The analysis in [35] is the only known study. It has
been based on a simple physical reasoning and was independent
of the PWM method. On the other hand, the analysis here for
a specific multidimensional SVPWM yields the same results so
that (28), in essence, verifies the findings in [35] and vice versa.

In the case of a six-phase system and according to (28), the
area of the permissible modulation index pairs is defined by⎧⎨

⎩
m1 sin(π/6) + m2 sin(2π/6) ≤ 1
m1 sin(2π/6) + m2 sin(4π/6) ≤ 1
m1 sin(3π/6) + m2 sin(6π/6) ≤ 1.

(30)

This area is shown in Fig. 3(b). As can be seen, the sum
of the two modulation indexes is restricted to no more than
1.1547. The individual maximum values are m1max = 1 and
m2max = 1.1547. This means that, although the sum of the
two modulation indexes in the limit of the linear modulation
region is equal to 1.1547, the operation with m2 = 0 leads to
the maximum value of m1 of only m1max = 1 (which is the
limit for the single-frequency operation). On the other hand,
the operation with m2max = 1.1547 (the same limit as for the
three-phase case) is possible when m1 = 0.

Fig. 4. Switching patterns. (a) Case 1: No dwell time correction. (b) Case 2a:
The first switching vector is not used. (c) Case 2b: Balanced dwell times of the
first and the last switching vectors. (d) Case 2c: The last switching vector is not
used.

D. Algorithm Simulation

The multidimensional two-level SVPWM algorithm was
simulated for single-frequency output with a five-phase inverter
for four cases.

1) Algorithm without dwell time correction (h = 0).
2) Algorithm with the following dwell time corrections:

a) Correction with h = t1; therefore, t′1 = 0, and t′P+1 =
t1 + tP+1.

b) Correction with h = (1/2)(t1 + tP+1); hence, t′1 =
t′P+1 = (1/2)(t1 + tP+1).

c) Correction with h = −tP+1; therefore, t′1 = t1 +
tP+1, and t′P+1 = 0.

Fig. 4 shows the switching patterns obtained, in the four
cases, with the same normalized reference vector considered
in the previous example vr = [0.69, 0.60, 0.11, 0.21, 0.34]T.



Fig. 5. Cycle-by-cycle averaged output leg voltage. (a) Case 1: No dwell time
correction. (b) Case 2a: The first switching vector is not used. (c) Case 2b:
Balanced dwell times of the first and the last switching vectors. (d) Case 2c:
The last switching vector is not used.

The switching vectors have been arranged symmetrically in
the switching period. Fig. 4(a) shows the switching pattern
obtained in case 1 with the switching vectors in (15) and the
switching times in (16), where t1 = 0.31 and t6 = 0.11. In
case 2a, the dwell time of the first switching vector is always
zero, so such a vector is never used, as it is shown in Fig. 4(b),
where t′1 = 0 and t′6 = 0.42. Fig. 4(c) shows case 2b, where
the dwell times of the first and the last vector are balanced
t′1 = t′6 = 0.21. In case 2c, the last vector is not used because
it has a zero dwell time, as it is shown in Fig. 4(d), where
t′1 = 0.42 and t′6 = 0. In cases 2a and 2c, there is always one leg
that keeps constant its switching state throughout the switching
period, and as a result, the switching losses in those cases are
reduced.

Fig. 5 shows the cycle-by-cycle averaged output waveforms
in the four cases explained previously when the reference is
a purely sinusoidal wave with unit peak-to-peak amplitude
(m = 1). In the simulations, the output leg voltages of the

Fig. 6. Trajectories of the output voltage of the five-phase converter in the
dq planes. (a) d1q1 plane. (b) d2q2 plane.

converters are measured with respect to the midpoint of the
dc link, and a switching frequency that is 20 times the output
fundamental has been considered. Fig. 5(a) shows case 1 in
which there is no correction of the dwell times; thus, the
averaged output voltage is equal to the reference voltage. In
this case, the filtered output leg voltage is the same as that with
the carrier-based PWM technique [18]. Fig. 5(b)–(d) shows the
cases that include dwell time correction. In all of them,
the modulation index can be increased by up to 5.1% within
the linear region. The corrections performed in cases 2a and
2c provide a discontinuous PWM, whereas a continuous PWM
is obtained in cases 1 and 2b. The filtered output leg voltage
in case 2b is the same as that with the carrier-based PWM
technique with triangular zero-sequence injection [20].

The algorithm was simulated in the case of multifrequency
output for five- and six-phase converters. In the following
simulations, the dwell time correction of case 2b, shown
in Fig. 5(c), was used to extend the modulation index range.
Fig. 6 shows the trajectories of the output voltage vectors in the
two dq planes corresponding to a five-phase system. The thin
traces in gray correspond to the unfiltered output voltage, and
the thick traces in black are the trajectories of the cycle-by-cycle
averaged output voltage. In the d1q1 plane, a reference with the
modulation index m1 = 0.64984 and a fundamental frequency
of 50 Hz was considered. In the d2q2 plane, a reference with
the same modulation index m2 = 0.64984 and a fundamental
frequency of 150 Hz was considered. This pair of modulation
indexes corresponds to the limit case obtained in Section II-C.
Therefore, as expected, the trajectory of the filtered voltage is a
circle in each plane because the multiphase SVPWM operates
always in the linear region (essentially, in the limit).

Fig. 7 shows the trajectories of the output voltage vectors
in the two dq planes corresponding to a six-phase system. In
the d1q1 plane, a modulation index m1 = 1 and a fundamental
frequency of 50 Hz were considered. In the d2q2 plane, the
modulation index m2 = 0.1547 and a fundamental frequency
of 150 Hz were considered. This pair of modulation indexes
corresponds to the limit case obtained in Section II-C for six-
phase systems. Therefore, as expected, the trajectory of the
filtered voltage is a circle in each plane. The trajectory of the
averaged output voltage in the 0-axis, not shown in the figures,
is equal to zero. Consequently, the multidimensional SVPWM
operates properly.



Fig. 7. Trajectories of the output voltage of the six-phase converter in the
dq planes. (a) d1q1 plane. (b) d2q2 plane.

III. COMPARISON WITH MULTIFREQUENCY

SVPWM ALGORITHM

The customary approach in variable-speed motor drives con-
sists in decomposing the multidimensional space in several
dq planes, using either real decoupling transformations or a
symmetrical component approach [36], [37]. A very demand-
ing situation for such PWM techniques arises in multimo-
tor series-connected multiphase drive systems with a single
voltage-source inverter [38]. In this case, each dq plane is
used to control one machine of the system, and selecting
an appropriate switching vector sequence is complex because
magnitudes and frequencies of the reference voltages in all
dq planes are completely independent one from the other. The
multifrequency SVPWM algorithm presented in [28] allows
selecting the switching vectors and calculating their dwell times
in two-motor series-connected five-phase drives. This algorithm
takes the magnitude and the angle of the reference voltage in
each dq plane and selects in each plane four active vectors,
as proposed in [39]. It requires dividing each dq plane in ten
sectors and taking the two mediums and the two large vectors
corresponding to the sector in which the reference vector lies.
The four active vectors of the first dq plane (first machine) plus
the four active vectors of the second dq plane (second machine)
are reduced to only four active vectors by summing the duty
cycles of both planes on a per-leg basis [28]. It results in a
switching vector sequence with six adjacent vectors arranged
symmetrically in the switching period. The switching vector
sequence includes two zero vectors and four active vectors,
where the first and the last ones are always the zero vectors
[0, 0, 0, 0, 0]T and [1, 1, 1, 1, 1]T, respectively. The same dwell
time is used for both of them.

The two-level SVPWM algorithm, elaborated in this paper,
can be used with converters with any number of phases. It
provides a space vector sequence made with P + 1 adjacent
vectors because the sequence is obtained by reordering the
columns of the triangular matrix D̂. The difference between two
adjacent vectors is only one bit; consequently, the algorithm
minimizes the number of switchings. In addition, it has a
low computational cost, which grows slightly with the phase
number because of the greater number of elements in vr that
must be sorted out. Therefore, it is well suited for real-time
implementation in low-cost devices.

With the multidimensional SVPWM algorithm presented
in this paper, the reference voltage for each leg can be an
arbitrary waveform. Consequently, it is possible to synthesize
an output voltage that contains a certain number of sinusoidal
components like with the multifrequency SVPWM algorithm.
The numbers of switching vectors used by the multifrequency
and the multidimensional SVPWM algorithms are the same. In
addition, in the multidimensional SVPWM algorithm, the first
and the last vectors of the switching sequence are always the
zero vectors vs1 = [0, 0, . . . , 0]T and vsP+1 = [1, 1, . . . , 1]T,
respectively. This is so because the switching vector sequence
is obtained from matrix D after reordering all rows of the
triangular matrix D̂ except the first one. The remaining vectors
vs2 to vsP are all active vectors. Therefore, for a five-phase
converter, if the switching pattern is obtained as in case 2b of
the previous section, then both algorithms have the following
similarities.

1) Both use four active vectors.
2) The first and the last switching vectors of the se-

quence in both algorithms are always [0, 0, 0, 0, 0]T and
[1, 1, 1, 1, 1]T, respectively.

3) Both balance the dwell time of the zero vectors.
4) Both arrange the switching vectors symmetrically within

the switching period.

The differences between the two modulation techniques are
the following.

1) They use a different frame for the reference voltage. The
multidimensional algorithm requires the values of the
reference voltage for each leg, while the multifrequency
one requires the amplitude and phase of the vectors in
every dq plane.

2) The multidimensional SVPWM algorithm has a lower
computational cost. However, if the reference voltage is
given in the dq frame, then the required change of the ref-
erence frame means that both algorithms will ultimately
have a similar computational cost.

3) The result of the multidimensional SVPWM is a se-
quence of switching vectors with their corresponding
dwell times, whereas the multifrequency SVPWM al-
gorithm provides the duty cycles of the transistors of
the inverter legs. Therefore, the latter algorithm is better
suited for implementation in a digital signal processor
(DSP) that includes built-in PWM units, and the former
one is suitable for a field-programmable gate array, where
the PWM units are not included.

4) The multidimensional algorithm allows eliminating the
low-order voltage harmonics in the load neutral point
voltage if the dwell times of the switching vectors are not
corrected.

The reference vector vr = [0.69, 0.60, 0.11, 0.21, 0.11]T of
the example in the previous section corresponds to a refer-
ence vector with an amplitude of |V1| = 0.3Vdc and an angle
of φ1 = 15◦ in the first dq plane, and a reference vector
with an amplitude of |V2| = 0.8Vdc and an angle of φ2 =
85◦ in the second dq plane. In this case, the duty cycles
obtained with the multifrequency SVPWM algorithm for the
legs of the converter are da = 0.79, db = 0.71, dc = 0.21,



Fig. 8. Switching pattern with the multifrequency SVPWM algorithm.

Fig. 9. Cycle-by-cycle averaged output leg voltage with the multifrequency
SVPWM algorithm.

Fig. 10. Experimental setup.

dd = 0.31, and de = 0.44 which correspond to the switching
vector sequence [0, 0, 0, 0, 0]T, [1, 0, 0, 0, 0]T, [1, 1, 0, 0, 0]T,
[1, 1, 0, 0, 1]T, [1, 1, 0, 1, 1]T, and [1, 1, 1, 1, 1]T. Fig. 8 shows
the switching pattern obtained in this case that is identical to
the pattern obtained in Fig. 4(c) corresponding to case 2b of the
multidimensional SVPWM algorithm. Fig. 9 shows the cycle-
by-cycle averaged output leg voltage with a modulation index
equal to one in the first dq plane and a zero reference for the
second dq plane. The results obtained are again identical to the
results in Fig. 5(c) corresponding to case 2b of the previous
section. Both algorithms have been simulated in many different
cases providing always the same results, regardless of the fact
that they follow very different approaches.

IV. EXPERIMENTAL RESULTS

For the purpose of experimental verification of the mul-
tidimensional SVPWM, the testing was done with a two-
motor five-phase series-connected induction motor drive. The
experimental setup is shown in Fig. 10. It includes a dSPACE
platform where the algorithm has been implemented, a five-
phase inverter, and two induction motors. The ten PWM trigger
signals, with a frequency of 10 kHz, have been generated
with the DS5101 Digital Waveform Output board. A more
detailed explanation of the inverter, the load, and the operating
principles of this multimotor drive can be found in [40]–[42].

Fig. 11. Filtered leg a voltage with a purely sinusoidal reference. (a) Case 1:
No dwell time correction. (b) Case 2a: First switching vector not used. (c) Case
2b: Balanced dwell times. (d) Case 2c: Last switching vector not used.

The drive system is operated in open-loop speed control
mode, and the V/Hz ratio is held constant. The inverter dead
time is not compensated in the inverter control, and this can
cause some undesirable effects, particularly at low reference
voltage values [43], [44]. More detailed considerations are
however beyond the scope of this paper. It suffices to say
that the impact of dead time on the results presented here is
very small since all the studied cases involve operation at high
modulation index values.

Fig. 11 shows the filtered voltage of leg a measured with
respect to the midpoint of the dc link when the reference is a
sinusoidal wave with m = 1. Voltages have been filtered with
a low-pass filter of 1.6-kHz cutoff frequency. The experimen-
tal measurements agree with the simulation results shown in
Fig. 5(a) and (c) for the cases without and with zero-sequence
injection.



Fig. 12. Measured waveforms and spectra of the phase voltages. (a) Inverter
output voltage. (b) Second machine voltage.

Fig. 12 shows the multifrequency output case with the refer-
ences f1 = 10 Hz and V1 = 25 V for the first machine and f2 =
40 Hz and V2 = 100 V for the second machine. The inverter
output voltage spectrum shows two components of frequencies
10 and 40 Hz with the corresponding amplitudes of 25 and
100 V, respectively. The operating point and the experimental
results of the multidimensional SVPWM algorithm are equal
to the operating point and the experimental results obtained
in the third case considered in [28] for the validation of the
multifrequency SVPWM algorithm.

V. CONCLUSION

In this paper, the two-level multiphase SVPWM algorithm
developed for a recent multilevel multiphase SVPWM algo-
rithm has been adapted and applied to two-level voltage-source
converters. This is a multidimensional algorithm with a low
computational cost that can be used with converters with any
number of phases. The direct application of the algorithm pro-
vides a modulation range in the linear region from zero to one.

The linear region can be extended by correcting the dwell times
of the switching vectors if the converter has an odd number
of phases and the neutral point of the load is floating. The
algorithm was simulated and verified by means of a five-phase
voltage-source inverter. The new algorithm was also compared
with a previous multifrequency SVPWM algorithm that carries
the vector selection in individual dq planes. It was shown that
both approaches provide the same results.

APPENDIX

PROOF OF MODULATION INDEX RANGE EQUATIONS

The control of a multiphase system can be carried out in a
set of Q dq planes [1], where Q = (P − 1)/2, if the number
of phases is an odd number, and Q = P/2− 1, if P is an
even number. In steady state, the inverter output voltage is
composed of a set of sinusoidal waves, with each one mapping
to a different dq plane. If a system with a spatial displacement
between any consecutive two phases α = 2π/P is considered,
then the reference voltage for each phase k = 1, . . . , P can be
written as

vk
r =

1
2
+

1
2

Q∑
i=1

mi cos (ωit + φi0 + (k − 1)iα) (31)

where mi, ωi, and φi0 are the modulation index, the angular
frequency, and the initial phase angle of each component,
respectively.

From (31) and according to (20), the reference voltage re-
mains in the linear region of the modulation index if

0 ≤ 1
2
+

1
2

Q∑
i=1

mi cos (φi + (k − 1)iα) ≤ 1 (32)

for all values of k and φi, where φi = ωit + φi0. Therefore, the
following constraint applies for the modulation indexes of the
multifrequency reference voltage:

Q∑
i=1

|mi| ≤ 1 (33)

which is equivalent to (22). The expression in (21) correspond-
ing to single output frequency is obtained from (33), making all
the modulation indexes but one equal to zero.

If the correction of the dwell time is performed, then the
overmodulation condition in (26) applies. In this case, the
reference voltage remains in the linear region of the modulation
index if

−1≤ 1
2

Q∑
i=1

mi{cos (φi+(p−1)iα)−cos (φi+(q−1)iα)}≤1

(34)

where vp
r = maxk(vk

r ) and vq
r = mink(vk

r ). Taking into ac-
count the identity cos 2a − cos 2b = 2 sin(a + b) sin(b − a),
this expression can be rewritten as

−1 ≤
Q∑

i=1

mi sin
(

φi +
p + q − 2

2
iα

)
sin

(
q − p

2
iα

)
≤ 1.

(35)



The aforementioned condition has to be satisfied for all values
of φi; thus

Q∑
i=1

∣∣∣∣mi sin
(

q − p

2
iα

)∣∣∣∣ ≤ 1. (36)

Since the higher and the lower values of the reference phase
voltage are not known in advance, all the combinations of p
and q must be tested. Due to the properties of the sinusoidal
functions, there are several combinations of p and q that provide
the same constraints. Only the following N equations are
independent:

Q∑
i=1

|mi sin(niα/2)| ≤ 1, for n = 1, . . . , N (37)

where N = (P − 1)/2 if P is an odd number and N = P/2
if P is an even number. The aforementioned expressions are
equivalent to the expressions in (28). Equation (27) correspond-
ing to single output frequency is obtained from (37) by making
all the modulation indexes but m1 equal to zero. Among the
N conditions in (37), the most restrictive one is obtained
for n = N . If P is an odd number, then m1 ≤ 1/ sin(((P −
1)/P )(π/2)) = 1/ cos(π/2P ), and if P is an even number,
then m1 ≤ 1/ sin(π/2) = 1.

REFERENCES

[1] E. Levi, R. Bojoi, F. Profumo, H. A. Toliyat, and S. Williamson, “Mul-
tiphase induction motor drives—A technology status review,” IET Elect.
Power Appl., vol. 1, no. 4, pp. 489–516, Jul. 2007.

[2] E. Levi, “Multiphase electric machines for variable-speed applications,”
IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909, May 2008.

[3] F. Terrien, S. Siala, and P. Noy, “Multiphase induction motor sensorless
control for electric ship propulsion,” in Proc. IEE PEMD, Edinburgh,
U.K., Mar. 31–Apr. 2, 2004, vol. 2, pp. 556–561.

[4] D. Gritter, S. Kalsi, and N. Henderson, “Variable speed electric drive
options for electric ships,” in Proc. IEEE ESTS, Philadelphia, PA, 2005,
pp. 347–354.

[5] L. Parsa and H. A. Toliyat, “Five-phase permanent magnet motor drives
for ship propulsion applications,” in Proc. IEEE ESTS, Philadelphia, PA,
Jul. 25–27, 2005, pp. 371–378.

[6] G. Atkinson, B. Mecrow, A. Jack, D. Atkinson, P. Sangha, and
M. Benarous, “The design of fault tolerant machines for aerospace ap-
plications,” in Proc. IEEE IEMDC, San Antonio, TX, May 15–18, 2005,
pp. 1863–1869.

[7] J. Bennett, B. Mecrow, A. Jack, D. Atkinson, C. Sewell, G. Mason,
S. Sheldon, and B. Cooper, “Choice of drive topologies for electrical
actuation of aircraft flaps and slats,” in Proc. IEE PEMD, Edinburgh,
U.K., Mar. 31–Apr. 2, 2004, vol. 1, pp. 332–337.

[8] G. Atkinson, B. Mecrow, A. Jack, D. Atkinson, P. Sangha, and
M. Benarous, “The analysis of losses in high-power fault-tolerant ma-
chines for aerospace applications,” IEEE Trans. Ind. Appl., vol. 42, no. 5,
pp. 1162–1170, Sep./Oct. 2006.

[9] X. Huang, K. Bradley, A. Goodman, C. Gerada, P. Wheeler, J. Clare,
and C. Whitley, “Fault-tolerant brushless dc motor drive for electro-
hydrostatic actuation system in aerospace application,” in Conf. Rec. IEEE
IAS Annu. Meeting, Tampa, FL, Oct. 8–12, 2006, vol. 1, pp. 473–480.

[10] C. Gerada and K. J. Bradley, “Integrated PM machine design for an
aircraft EMA,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3300–3306,
Sep. 2008.

[11] L. de Lillo, L. Empringham, P. W. Wheeler, S. Khwan-On, C. Gerada,
M. N. Othman, and X. Huang, “Multiphase power converter drive for
fault-tolerant machine development in aerospace applications,” IEEE
Trans. Ind. Electron., vol. 57, no. 2, pp. 575–583, Feb. 2010.

[12] M. G. Simoes and P. Vieira, “A high-torque low-speed multiphase brush-
less machine—A perspective application for electric vehicles,” IEEE
Trans. Ind. Electron., vol. 49, no. 5, pp. 1154–1164, Oct. 2002.

[13] S. Jiang, K. Chau, and C. Chan, “Spectral analysis of a new six-phase
pole-changing induction motor drive for electric vehicles,” IEEE Trans.
Ind. Electron., vol. 50, no. 1, pp. 123–131, Feb. 2003.

[14] R. Bojoi, A. Tenconi, F. Profumo, and F. Farina, “Dual-source fed multi-
phase induction motor drive for fuel cell vehicles: Topology and control,”
in Proc. IEEE PESC, Recife, Brazil, Jun. 11–16, 2005, pp. 2676–2683.

[15] S. Niu, K. Chau, D. Zhang, J. Jiang, and Z. Wang, “Design and control
of a double-stator permanent-magnet motor drive for electric vehicles,” in
Conf. Rec. IEEE IAS Annu. Meeting, New Orleans, LA, Sep. 23–27, 2007,
pp. 1293–1300.

[16] M. Steiner, R. Deplazes, and H. Stemmler, “New transformerless topology
for ac-fed traction vehicles using multi-star induction motors,” EPE J.
(Eur. Power Electron. Drives J.), vol. 10, no. 3/4, pp. 45–53, Sep. 2000.

[17] M. Abolhassani, “A novel multiphase fault tolerant high torque density
permanent magnet motor drive for traction application,” in Proc. IEEE
IEMDC, San Antonio, TX, May 15–18, 2005, pp. 728–734.

[18] A. Iqbal, E. Levi, M. Jones, and S. N. Vukosavic, “Generalised sinusoidal
PWM with harmonic injection for multi-phase VSIs,” in Proc. IEEE
PESC, Jeju, Korea, Jun. 18–22, 2006, pp. 2871–2877.

[19] O. Ojo and G. Dong, “Generalized discontinuous carrier-based PWM
modulation scheme for multi-phase converter-machine systems,” in Conf.
Rec. IEEE IAS Annu. Meeting, Hong Kong, Oct. 2–6, 2005, vol. 2,
pp. 1374–1381.

[20] D. Dujic, M. Jones, and E. Levi, “Continuous carrier-based vs. space
vector PWM for five-phase VSI,” in Proc. Int. Conf. Comput. Tool
EUROCON, Warsaw, Poland, Sep. 9–12, 2007, pp. 1772–1779.

[21] D. Dujic, E. Levi, M. Jones, G. Grandi, G. Serra, and A. Tani, “Continu-
ous PWM techniques for sinusoidal voltage generation with seven-phase
voltage source inverters,” in Proc. IEEE PESC, Orlando, FL, Jun. 17–21,
2007, pp. 47–52.

[22] P. de Silva, J. Fletcher, and B. Williams, “Development of space vector
modulation strategies for five phase voltage source inverters,” in Proc.
IEE PEMD, Edinburgh, U.K., Mar. 31–Apr. 2, 2004, vol. 2, pp. 650–655.

[23] S. Xue and X. Wen, “Simulation analysis of two novel multiphase
SVPWM strategies,” in Proc. IEEE ICIT , Hong Kong, Dec. 14–17, 2005,
pp. 1337–1342.

[24] H.-M. Ryu, J.-H. Kim, and S.-K. Sul, “Analysis of multiphase space
vector pulse-width modulation based on multiple d-q spaces concept,”
IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1364–1371, Nov. 2005.

[25] S. Xue, X. Wen, and Z. Feng, “Multiphase permanent magnet motor
drive system based on a novel multiphase SVPWM,” in Proc. CES/IEEE
IPEMC, Shanghai, China, Aug. 14–16, 2006, vol. 1, pp. 1–5.

[26] G. Grandi, G. Serra, and A. Tani, “Space vector modulation of a
seven-phase voltage source inverter,” in Proc. SPEEDAM, Taormina,
Italy, May 23–26, 2006, pp. 1149–1156.

[27] G. Liliang and J. E. Fletcher, “A space vector switching strategy for 3-
level 5-phase inverter drives,” IEEE Trans. Ind. Electron., vol. 57, no. 7,
pp. 2332–2343, Jul. 2010.

[28] D. Dujic, G. Grandi, M. Jones, and E. Levi, “A space vector PWM scheme
for multifrequency output voltage generation with multiphase voltage-
source inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1943–
1955, May 2008.

[29] M. J. Duran and E. Levi, “Multi-dimensional approach to multi-phase
space vector pulse width modulation,” in Proc. IEEE IECON, Paris,
France, Nov. 7–10, 2006, pp. 2103–2108.

[30] M. Duran, S. Toral, F. Barrero, and E. Levi, “Real-time implementation
of multi-dimensional five-phase space vector pulse-width modulation,”
Electron. Lett., vol. 43, no. 17, pp. 949–950, Aug. 2007.

[31] A. Lega, M. Mengoni, G. Serra, A. Tani, and L. Zarri, “Space vector mod-
ulation for multiphase inverters based on a space partitioning algorithm,”
IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4119–4131, Oct. 2009.

[32] O. López, J. Alvarez, J. Doval-Gandoy, and F. D. Freijedo, “Multilevel
multiphase space vector PWM algorithm,” IEEE Trans. Ind. Electron.,
vol. 55, no. 5, pp. 1933–1942, May 2008.

[33] O. López, J. Alvarez, J. Doval-Gandoy, and F. D. Freijedo, “Multilevel
multiphase space vector PWM algorithm with switching state redun-
dancy,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 792–804, Mar. 2009.

[34] J. I. León, O. López, L. G. Franquelo, J. Doval-Gandoy, S. Vázquez,
J. Alvarez, and F. D. Freijedo, “Multilevel multiphase feedforward space-
vector modulation technique,” IEEE Trans. Ind. Electron, vol. 57, no. 6,
pp. 2066–2075, Jun. 2010.

[35] E. Levi, D. Dujic, M. Jones, and G. Grandi, “Analytical determination
of dc-bus utilization limits in multiphase VSI supplied ac drives,” IEEE
Trans. Energy Convers., vol. 23, no. 2, pp. 433–443, Jun. 2008.

[36] Y. Zhao and T. Lipo, “Space vector PWM control of dual three-phase
induction machine using vector space decomposition,” IEEE Trans. Ind.
Appl., vol. 31, no. 5, pp. 1100–1109, Sep./Oct. 1995.



[37] G. Grandi, G. Serra, and A. Tani, “General analysis of multiphase sys-
tems based on space vector approach,” in Proc. EPE-PEMC, Portoroz,
Slovenia, Aug. 30–Sep. 1, 2006, pp. 834–840.

[38] E. Levi, M. Jones, S. N. Vukosavic, and H. A. Toliyat, “Operating prin-
ciples of a novel multiphase multimotor vector-controlled drive,” IEEE
Trans. Energy Convers., vol. 19, no. 3, pp. 508–517, Sep. 2004.

[39] A. Iqbal and E. Levi, “Space vector PWM for a five-phase VSI supply-
ing two five-phase series-connected machines,” in Proc. IEEE PEMC,
Portoroz, Slovenia, Aug. 30–Sep. 1, 2006, pp. 222–227.

[40] E. Levi, M. Jones, S. N. Vukosavic, A. Iqbal, and H. A. Toliyat, “Mod-
eling, control, and experimental investigation of a five-phase series-
connected two-motor drive with single inverter supply,” IEEE Trans. Ind.
Electron., vol. 54, no. 3, pp. 1504–1516, Jun. 2007.

[41] A. Iqbal, S. Vukosavic, E. Levi, M. Jones, and H. Toliyat, “Dynamics of a
series-connected two-motor five-phase drive system with a single-inverter
supply,” in Conf. Rec. IEEE IAS Annu. Meeting, Hong Kong, Oct. 2–6,
2005, vol. 2, pp. 1081–1088.

[42] E. Levi, M. Jones, S. N. Vukosavic, and H. A. Toliyat, “Steady-state
modeling of series-connected five-phase and six-phase two-motor drives,”
IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1559–1568, Sep./Oct. 2008.

[43] M. Jones, S. N. Vukosavic, D. Dujic, and E. Levi, “A synchronous cur-
rent control scheme for multiphase induction motor drives,” IEEE Trans.
Energy Convers., vol. 24, no. 4, pp. 860–868, Dec. 2009.

[44] M. Jones, D. Dujic, E. Levi, and S. N. Vukosavic, “Dead-time effects in
voltage source inverter fed multi-phase ac motor drives and their compen-
sation,” in Proc. Eur. Conf. Power Electron. Appl. EPE, Barcelona, Spain,
Sep. 8–10, 2009, pp. P.1–P.10, [CD-ROM].

Oscar López (M’05) received the M.Sc. and Ph.D.
degrees from the University of Vigo, Vigo, Spain, in
2001 and 2009, respectively.

Since 2004, he has been an Assistant Professor
with the Department of Electronics Technology, Uni-
versity of Vigo. His research interests are in the areas
of ac power switching converters technology.

Drazen Dujic (S’03–M’09) received the Dipl.Ing.
and M.Sc. degrees from the University of Novi Sad,
Novi Sad, Serbia, in 2002 and 2005, respectively,
and the Ph.D. degree from Liverpool John Moores
University, Liverpool, U.K., in 2008.

From 2002 to 2006, he was a Research Assistant
with the Department of Electrical Engineering, Uni-
versity of Novi Sad. From 2006 to 2009, he was
a Research Associate with Liverpool John Moores
University. He is currently with the ABB Corporate
Research Center, Baden-Dättwil, Switzerland. His

main research interests are in the areas of design and control of advanced power
electronics systems and high-performance drives.

Martin Jones (M’07) received the B.Eng. degree
(First Class Honors) and the Ph.D. degree from
Liverpool John Moores University, Liverpool, U.K.,
in 2001 and 2005, respectively.

From September 2001 until Spring 2005, he was
a research student at Liverpool John Moores Univer-
sity, where he is currently a Senior Lecturer.

Dr. Jones was a recipient of the IEE Robinson
Research Scholarship for his Ph.D. studies.

Francisco D. Freijedo (M’07) received the M.Sc.
degree in physics from the University of Santiago de
Compostela, Santiago de Compostela, Spain, in 2002
and the Ph.D. degree from the University of Vigo,
Vigo, Spain, in 2009.

Since 2005, he has been an Assistant Professor
with the Department of Electronics Technology, Uni-
versity of Vigo. The areas of his research are qual-
ity problems, grid-connected switching converters,
ac power conversion, and flexible ac transmission
systems.

Jesús Doval-Gandoy (M’99) received the M.Sc.
degree from the Polytechnic University of Madrid,
Madrid, Spain, in 1991 and the Ph.D. degree from
the University of Vigo, Vigo, Spain, in 1999.

From 1991 to 1994, he worked at industry. He is
currently an Associate Professor with the University
of Vigo. His research interests are in the areas of ac
power conversion.

Emil Levi (S’89–M’92–SM’99–F’09) received the
M.Sc. and Ph.D. degrees from the University of
Belgrade, Belgrade, Yugoslavia, in 1986 and 1990,
respectively.

From 1982 to 1992, he was with the Department
of Electrical Engineering, University of Novi Sad,
Novi Sad, Serbia. In May 1992, he joined Liverpool
John Moores University, Liverpool, U.K., where he
has been a Professor of electric machines and drives
since September 2000.

Dr. Levi was the recipient of the IEEE Power and
Energy Society’s 2009 Cyril G. Veinott Award for contributions to electro-
mechanical energy conversion. He serves as a Coeditor-in-Chief of the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, as an Editor of the IEEE
TRANSACTIONS ON ENERGY CONVERSION, and as a member of the Editorial
Board of the IET Electric Power Applications.


