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Abstract: In this study, we conducted a global assessment of the sensitivity of vegetation greenness
(VGS) to precipitation and to the estimated Lagrangian precipitation time series of oceanic (PLO) and
terrestrial (PLT) origin. The study was carried out for terrestrial ecosystems consisting of 9 biomes
and 139 ecoregions during the period of 2001–2018. This analysis aimed to diagnose the vegetative
response of vegetation to the dominant component of precipitation, which is of particular interest
considering the hydroclimatic characteristics of each ecoregion, climate variability, and changes in
the origin of precipitation that may occur in the context of climate change. The enhanced vegetation
index (EVI) was used as an indicator of vegetation greenness. Without consideration of semi-arid
and arid regions and removing the role of temperature and radiation, the results show the maximum
VGS to precipitation in boreal high-latitude ecoregions that belong to boreal forest/taiga: temperate
grasslands, savannas, and shrublands. Few ecoregions, mainly in the Amazon basin, show a negative
sensitivity. We also found that vegetation greenness is generally more sensitive to the component
that contributes the least to precipitation and is less stable throughout the year. Therefore, most
vegetation greenness in Europe is sensitive to changes in PLT and less to PLO. In contrast, the boreal
forest/taiga in northeast Asia and North America is more sensitive to changes in PLO. Finally, in
most South American and African ecoregions, where PLT is crucial, the vegetation is more sensitive
to PLO, whereas the contrast occurs in the northern and eastern ecoregions of Australia.

Keywords: vegetation sensitivity; precipitation; PLO; PLT

1. Introduction

Covering approximately three-fourths of the land surface, vegetation represents a
principal part of land ecosystems [1] and plays an important role in land–atmosphere
interactions [2,3]. Additionally, vegetation in terrestrial ecosystems affords a broad range
of ecosystem goods and services (e.g., water balance and carbon cycle) [4]. Thus, many
researchers have focused their studies on the estimation of vegetation feedback to fluc-
tuations in specific climatic variables [5,6], revealing that climate change has seriously
affected the distribution and variety of vegetation [7,8]. Vegetation is a crucial element
in the terrestrial ecosystem functionality and is highly dependent on climatic conditions.
Vegetation changes have been particularly linked with variations in temperature and precip-
itation [9–11]. Because precipitation has a crucial role in water accessibility, it is considered
a meteorological variable that primarily controls vegetation structure and dynamics. It is
responsible for vegetation greenness and growth in arid and semi-arid ecosystems where
the lack of precipitation suppresses the grow of plants [12–15].
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Extensive research has been carried out to understand the precipitation–vegetation
relationship in diverse types of ecosystems and areas worldwide, including North Amer-
ica [13,16], Africa [17], Asia [18,19], and Australia [20]. For this purpose, the NDVI is one
of the most frequently utilized vegetation indexes, recognized as a dependable indicator
of vegetation greenness at local and global scales [21–24]. However, some studies have
commented that NDVI saturates over zones with high leaf area indexes [25,26]. Because
of this, the EVI, an index similar to NDVI, has been established to overcome NDVI limits.
Studies have shown various grades of linkage between precipitation and vegetation under
distinct climatic conditions. Changes in precipitation patterns have a substantial part in
vegetation growth, although the effects differ among distinct vegetation types [19,27–29].
For example, some researchers published that vegetation advance has a positive con-
nection with precipitation in arid and semi-arid areas like northern China [29], Central
Asia [18], New Mexico, USA [30], temperate biomes [16,31,32], and water-limited biomes in
Africa [33] and Australia [34]. However, no clear relationship, or only a weak relationship,
was detected in some moist zones of southeastern China, where water accessibility is not
limited and a suitable amount of water in the soil could diminish the reliance of vegetation
on precipitation [35] and tropical ecosystems [36,37]. Thus, a correct assessment of the
response of vegetation to precipitation requires differentiation between vegetation types.
Indeed, the capacity of some vegetation types (e.g., temperate coniferous forest) to sequester
carbon largely depends on the precipitation regime. Therefore, further investigation into
the relationship between precipitation and vegetative activity also supports adaptation
strategies in the context of climate variability and change [38,39].

Precipitation falling on the continents delimits the size and nature of terrestrial
ecosystems. It is provided by humidity that arises right from the ocean or is afterward
recycled from the very same continents. According to Gimeno et al. (2020) [40], the
linkage between oceanic and terrestrial precipitation is expected to vary globally and
regionally, as well as the impact of both components on global and local precipitation
trends [40]. Despite the primary influence of precipitation on vegetation, it also alters the
climate. For example, vegetation moisture recycling is part of terrestrial origin precipita-
tion, as well as moisture export within continents, which is particularly important for
precipitation over dryland ecosystems which rely principally on soil water content [41].
Recently, a global study confirmed that the quantity of precipitation that originates
from upwind vegetation-regulated evaporation is major over eastern and northeastern
Eurasia, Canada, and South America [42]. Alternatively, a tropical forest located in the
Amazon or Congo River basin receives a large quantity of atmospheric moisture for
precipitation from oceanic regions [43–46]. However, vegetation-regulated moisture
recycling is high in these areas and becomes crucial for precipitation over them and their
surrounding continental regions [47]. Thus, the origin of precipitation modulates the
amount of continental precipitation, but also its variability, which is why the individual
study of the influence of the oceanic and terrestrial components of precipitation on the
variation of vegetative activity is of interest, as there are regions, such as those mentioned
above, where one or the other component dominates or where one component varies
more than the other during the course of the hydrological year. Sensitivity studies at
local and global scales using various methods have been conducted to assess vegetation
dynamics considering precipitation variability [48–51] and other variables. However,
although considerable research has been conducted on this subject, it has not been con-
sidered that precipitation itself can vary according to multiple factors, including its
origin. The separation of terrestrial precipitation into oceanic and continental origins by
different methods has been used in various studies in recent years, permitting a better
understanding of the hydrological cycle, particularly the occurrence of extreme events
such as droughts [52–54] and heavy precipitation events [55–57].

The effect of rainfall on plant growth occurs via the soil moisture, and in the context
of climate change, an intensification of the global water cycle is expected, including its
variability [58]. However, the relative impact of these changes in mean aboveground
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net primary production remains uncertain [59–61]. Thus, it is extremely important to
understand the role of oceanic and terrestrial origin precipitation on continental precipi-
tation, particularly on vegetation development. The importance of oceanic evaporation
as a source of continental precipitation under current global warming has also been
investigated [62]. For example, Gimeno et al. (2021) [40] concluded that there has been
an increase in the trend of precipitation of oceanic origin greater than that of terrestrial
origin in tropical regions of the planet. In addition, the increase in global temperature
has affected patterns of terrestrial evapotranspiration [63,64], which is a key source
of moisture for terrestrial precipitation [43] in various regions of the planet, like the
Amazon and Congo River basins [47,63,65–67]. Thus, in this study, we aimed to quantify
and understand the vegetation greenness sensitivity (VGS) to precipitation, but also to
oceanic and terrestrial origin precipitation individually, in global terrestrial ecosystems
formed by 9 biomes and 139 ecoregions over the period of 2001–2018. To perform this
study, well-documented Lagrangian estimated precipitation global datasets and vegeta-
tion indices were used. This approach based on precipitation components represents a
novelty that permits a better attribution analysis of vegetation changes due to the nature
of precipitation.

2. Materials and Methods
2.1. Study Regions

This study was conducted for 9 terrestrial biomes, which are the main global plant
communities based on homogeneous rainfall and climate characteristics, and they were
also divided into 139 ecoregions. The main biomes of the world are distinguished by
specific climatic conditions (e.g., precipitation and temperature). Forests are one of the
most significant groups of terrestrial biomes, covering around one-third of the conti-
nental area of the Earth [68]. Additionally, ecoregions are part of biomes, representing
areas that are geographically and ecologically similar, and experience similar climatic
conditions [69]. Arid, semiarid, and desert areas are characterized by low precipitation
rates and available water for vegetation, which inhibit most plants from surviving, and
thus, the productivity is negligible. For this reason, these areas were not considered in
this study. Figure 1 illustrates the 9 terrestrial biomes and 139 ecoregions with areas
greater than 200,000 km2 for each major habitat type (biome) used in this study. The nine
biomes are tropical and subtropical moist broadleaf forests (with 30 ecoregions); tropical
and subtropical dry broadleaf forests (5); temperate broadleaf and mixed forests (24);
temperate coniferous forests (4); boreal forest/taiga (17); tropical and subtropical grass-
lands, savannas, and shrublands (27); temperate grasslands, savannas, and shrublands
(19); montane grasslands and shrublands (10); and Mediterranean forest woodlands and
scrub (3). The major forest biomes worldwide are tropical, temperate, and boreal forests
(tundra) [70]. Tropical and subtropical moist forests are characterized by high variability
in precipitation (>2000 mm/year) and low variability in temperature [69]. Thus, their
structure is characterized by semi-evergreen and evergreen deciduous tree species. These
forests are usually located in equatorial regions, in the Indo-Malayan Archipelagos, the
Amazon Basin in South America, and the African Congo. A constantly warm, humid cli-
mate leads to increased plant growth compared with other biomes [69]. In contrast, low
annual temperatures with precipitation ranging between 400 and 1000 mm/year and
low evaporation due to cold temperatures prevail in the boreal forest (taiga). This biome
is the world’s largest terrestrial biome and is found across Canada, Alaska, Russia, and
northern Europe. The long, cold winters in boreal forests have led to the predominance
of cold-tolerant, cone-bearing plants, such as pines, spruces, and firs. For each ecoregion,
we used boundaries identified by the World Wildlife Fund (WWF) in The Global 200:
Priority Ecoregions for Global Conservation [71].
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Figure 1. Schematic representation of 9 terrestrial biomes and 139 ecoregions of each major habitat 
type (biome) used in the study: (B1) tropical and subtropical moist broadleaf forest ecoregions; (B2) 
tropical and subtropical dry broadleaf forests; (B3) temperate broadleaf and mixed forests; (B4) tem-
perate coniferous forests; (B5) boreal forest/taiga; (B6) tropical and subtropical grasslands, savannas, 
and shrublands; (B7) temperate grasslands, savannas, and shrublands; (B8) montane grasslands and 
shrublands; and (B9) Mediterranean forest woodlands and scrub. All ecoregions shown are delim-
ited by a black contour line with an area greater than 200,000 km2. Source: https://www.worldwild-
life.org/publications/terrestrial-ecoregions-of-the-world (accessed on 20 October 2021). 

2.2. Data 
The spatial extension of the biomes and ecoregions was obtained from the WWF with 

a horizontal resolution of 0.25°. Ecoregions with areas greater than 200,000 km2 were se-
lected, resulting in 139 terrestrial ecoregions.  

The global precipitation and temperature dataset from the Climate Research Unit 
(CRU) TS v4.05 at 0.5° (PCRU) [72] was utilized to obtain the precipitation series over each 
biome and the associated ecoregion. These data are generated by the interpolation of 
monthly climate anomalies from widespread networks of weather station observations, 
which guarantees a realistic representation of precipitation, particularly over densely 
monitored regions. As precipitation amounts can change from month to month in many 
parts of the world and not all databases represent them completely reliably, global da-
tasets of precipitation from ERA-Interim reanalysis (PERA) [73] were also used. Both the 
datasets were interpolated to 0.25° resolution. For this purpose, the ordinary kriging in-
terpolation method was used, as it has demonstrated accurate estimates of plant diversity 
values [74,75]. Global monthly radiation datasets with this resolution were also down-
loaded from the ERA5 reanalysis project [76]. The study was performed for the 2001–2018 
period. 

Global monthly gridded datasets of Lagrangian precipitation from oceanic (PLO) and 
terrestrial (PLT) origins with a spatial resolution of 0.25° obtained by Nieto and Gimeno 
(2019, 2021) [77,78] were used. For this calculation, the authors used the FLEXible PARTi-
cle dispersion model (FLEXPART) [79,80], which uses ERA-Interim reanalysis datasets. 
This approach considers the atmosphere divided into 61 vertical levels and approximately 
2 million particles that are tracked forward in time using the 3D winds and specific hu-
midity. Along the trajectories and in 6 h time (t) intervals, the specific humidity (q) changes 
in each particle were computed by computing the gain (through evaporation from the 
environment, e) or loss (through precipitation, p), using Equation (1). 𝑒 𝑝 = 𝑚 𝑑𝑞𝑑𝑡  (1)

Integrating this budget in the vertical column permits us to obtain the budget of the 
total evaporation (E) minus precipitation (P), which represents the freshwater flux (E − P). 

Figure 1. Schematic representation of 9 terrestrial biomes and 139 ecoregions of each major habi-
tat type (biome) used in the study: (B1) tropical and subtropical moist broadleaf forest ecore-
gions; (B2) tropical and subtropical dry broadleaf forests; (B3) temperate broadleaf and mixed
forests; (B4) temperate coniferous forests; (B5) boreal forest/taiga; (B6) tropical and subtropical
grasslands, savannas, and shrublands; (B7) temperate grasslands, savannas, and shrublands; (B8)
montane grasslands and shrublands; and (B9) Mediterranean forest woodlands and scrub. All
ecoregions shown are delimited by a black contour line with an area greater than 200,000 km2.
Source: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world (accessed
on 20 October 2021).

2.2. Data

The spatial extension of the biomes and ecoregions was obtained from the WWF with
a horizontal resolution of 0.25◦. Ecoregions with areas greater than 200,000 km2 were
selected, resulting in 139 terrestrial ecoregions.

The global precipitation and temperature dataset from the Climate Research Unit
(CRU) TS v4.05 at 0.5◦ (PCRU) [72] was utilized to obtain the precipitation series over each
biome and the associated ecoregion. These data are generated by the interpolation of
monthly climate anomalies from widespread networks of weather station observations,
which guarantees a realistic representation of precipitation, particularly over densely
monitored regions. As precipitation amounts can change from month to month in many
parts of the world and not all databases represent them completely reliably, global datasets
of precipitation from ERA-Interim reanalysis (PERA) [73] were also used. Both the datasets
were interpolated to 0.25◦ resolution. For this purpose, the ordinary kriging interpolation
method was used, as it has demonstrated accurate estimates of plant diversity values [74,75].
Global monthly radiation datasets with this resolution were also downloaded from the
ERA5 reanalysis project [76]. The study was performed for the 2001–2018 period.

Global monthly gridded datasets of Lagrangian precipitation from oceanic (PLO) and
terrestrial (PLT) origins with a spatial resolution of 0.25◦ obtained by Nieto and Gimeno
(2019, 2021) [77,78] were used. For this calculation, the authors used the FLEXible PAR-
Ticle dispersion model (FLEXPART) [79,80], which uses ERA-Interim reanalysis datasets.
This approach considers the atmosphere divided into 61 vertical levels and approximately
2 million particles that are tracked forward in time using the 3D winds and specific humid-
ity. Along the trajectories and in 6 h time (t) intervals, the specific humidity (q) changes
in each particle were computed by computing the gain (through evaporation from the
environment, e) or loss (through precipitation, p), using Equation (1).

(e − p) = m
(

dq
dt

)
(1)

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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Integrating this budget in the vertical column permits us to obtain the budget of the
total evaporation (E) minus precipitation (P), which represents the freshwater flux (E − P).
Negative values of (E − P) are therefore an approximation of precipitation. Thus, the values
of PLO (PLT) over continental regions were obtained in the experiment forward in time
by obtaining the (E − P) < 0 over the terrestrial areas on air masses tracked forward in
time from entirely oceanic (terrestrial) regions. The sum of PLO and PLT results in the
total Lagrangian precipitation, which is an approximation of the ERA Interim precipitation.
The optimal integration times (in days) for each grid were taken into account in order to
achieve the best approximation of precipitation according to three databases. The approach
used by several researchers through this modelling experiment has proven to be a reliable
tool for investigating the atmospheric branch of the hydrological cycle. These datasets have
also been recently used to investigate the precipitation trend over continents [40] and to
assess the frequency and severity of drought episodes over major world river basins [54].

In this study, we utilized monthly EVI values for the period 2001–2018. These cover
18 years and consequently consist of 216 values. Using the complete continuous series
guarantees the introduction of the temporal (seasonal, inter-annual) variations of the
greenness stages. The EVI time series was extracted from the moderate resolution imag-
ing spectroradiometer MODIS/Terra Vegetation Indices (MOD13C2) at 0.05◦ obtained
from the Land Processes Distributed Active Archive Center (LP DAAC) and the U.S.
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center [81]
at https://lpdaac.usgs.gov (accessed on 31 October 2021). Remotely sensed vegetation
indices from satellite data have been widely used to characterize vegetation dynamics
at regional and global scales [82,83]. We chose this index because, compared to other
datasets, it is based on narrow-band calculations specifically designed for vegetation
monitoring and is a quality-controlled global-gridded dataset which benefits from up-
graded radiometric feeling and atmospheric conditions [84]. The EVI index has been
modified for some atmospheric conditions and canopy background noise and is more
sensitive than the NDVI in high-biomass areas [85,86]. It incorporates an “L” value which
represents a canopy background adjustment, “C” values as coefficients for atmospheric
resistance, G as a gain or scaling factor, and values from the blue band (blue). These
improvements make it possible in most cases to calculate the index with a reduction in
background noise, atmospheric noise, and saturation. The index ranges in value between
−1 (surface water) and +1 (complete, lively canopy). According to Chen et al. (2006) [87]
and Ayanlade (2017) [88], healthy vegetation with high chlorophyll content (e.g., forests)
will produce high EVI values near 1, while poor (drier) vegetation will produce values
below 0.5 (indicating sparse canopies). The EVI dataset used here is derived from at-
mospherically corrected reflectance in the red, near-infrared, and blue wavebands. Due
to its rationing properties, a large proportion of signal variations attributed to calibra-
tion, noise, and changing irradiance conditions is removed, permitting us to obtain the
Vegetation Index (VI) time series directly. In our analysis, EVI values greater than 0.1
were utilized, ensuring that everything from shrub and grassland areas to temperate
and tropical rainforests and crops areas at their peak growth stage were considered. The
higher the value, the denser the vegetation. We removed negative values associated with
water and snow surfaces, and clouds, as well as values close to zero (0.1 and below),
which correspond to areas of rock and sand [81]. This avoids the inclusion of sensitivity
values with no real ecological significance.

The choice of EVI as the only index for this study took into account its advantages
over other indices, its temporal availability, and its ability to represent vegetative activity
in different types of climates and ecosystems. An assessment of the MODIS vegetation
indices showed that NDVI values present a greater range over the semiarid regions, but
at the expense of a lower dynamic range over the more humid forested sites, where
the EVI remained sensitive to canopy variations [84]. Additionally, these authors also
found a good correspondence between airborne-measured, top-of-canopy reflectances
and VI values and those from the MODIS sensor at four intensively measured test sites

https://lpdaac.usgs.gov
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representing semi-arid grass/shrub, savanna, and tropical forest biomes. Another study
confirmed a good relationship between EVI and Leaf Area Index (LAI) in five sites around
the world characterized by different vegetation types in dry and warm tropical climatic
conditions [89]. Additionally, regional studies (e.g., Northwest China) have also confirmed
the ability of the EVI to characterize different vegetation types (e.g., broadleaf forests,
needle leaf forests, meadows, grassland, steppes, scrubs, desert, and cultivated vegetation)
and even represent crop growth better than NDVI [90]. Despite the good performance of
the EVI in representing vegetative activity, there are indices such as the MCTI that have
outperformed it. However, the period of data available for the MCTI was shorter than
that available for the EVI. An assessment of the radiometric and biophysical performance
of the MODIS vegetation indices showed that NDVI values present a greater range over
the semiarid regions, but at the expense of a lower dynamic range over the more humid
forested sites, where the EVI remained sensitive to canopy variations [82]. Additionally,
these authors also found a good correspondence between airborne-measured, top-of-canopy
reflectances and VI values and those from the MODIS sensor at four intensively measured
test sites representing semi-arid grass/shrub, savanna, and tropical forest biomes. Another
study confirmed a good relationship between EVI and Leaf Area Index (LAI) in five sites
around the world characterized by different vegetation types in dry and warm tropical
climatic conditions [89]. Additionally, regional studies (e.g., Northwest China) have also
confirmed the ability of the EVI to characterize different vegetation types (e.g., broadleaf
forests, needle leaf forests, meadows, grassland, steppes, scrubs, desert and cultivated
vegetation) and even represent crop growth better than NDVI [90].

2.3. Vegetation Greenness Sensitivity (VGS) Metric and Statistical Analyses

We performed a sensitivity analysis to understand vegetation changes in each biome
and ecoregion due to precipitation of oceanic and terrestrial origins. In the first step, a
linear regression was used to estimate the mean temporal relationship between primary
production (EVI), which is the dependent variable (y), and the independent variables (x),
which are PCRU, PLO, and PLT, as represented by Equation (2).

y = ax + b (2)

The same approach has been used in previous investigations (e.g., [91,92]). In regions
where the sensitivity of vegetation to variables other than precipitation is higher, our
results would be attenuated by the effect of these variables. Thus, the VGS was also
calculated after removing the compound effects of two crucial variables on the vegetative
activity, the temperature and radiation. This was achieved by means of multiple regression
analysis, following a residualization technique. The first step is to fit a regression model
with EVI (y) as dependent, and the temperature (t) and radiation (r) as independent
variables (Equation (3)). Afterward, the residuals (Yr) are calculated, which represent the
remaining variation in ‘y’ after accounting for the effects of temperature and radiation, and
they are used to perform individually the following regression with PCRU, PLO, and PLT
(Equation (4)).

y = at + br + u (3)

Yr = ax + b (4)

To confirm the statistical significance, we used a p-value at the 95% confidence level.
Finally, the sensitivity values are fitted to an exponential model to adjust individual sen-
sitivities for changes in PCRU, PLO, and PLT and observe the VGS distribution among
ecoregions of the same and different biomes. The VGS units were expressed as the change
in monthly EVI per unit (mm/year) of change in PCRU, PLO, and PLT. Figure 2 illustrates
an example, where y characterizes the VGS and x characterizes the independent variable.
The figure shows that the VGS fluctuates over the range of x (PCRU, PLO, and PLT). When x
is lower, a minor alteration in x corresponds to a great alteration in VGS, meaning a higher



Remote Sens. 2023, 15, 4706 7 of 20

sensitivity. The sensitivity is minor when x is greater because a great change in x produces
a minor alteration in y.
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3. Results

The VGS to variations of PCRU, PLO, and PLT by biome and ecoregion, after also
removing the effects of temperature and radiation, is shown in Figure 3. The sensitivity
was determined using monthly values. The analysis indicated that the major VGS to
PCRU occurs in the temperate broadleaf and mixed forest (B3); boreal forest/taiga (B5);
and temperate grasslands, savannas, and shrublands (B7). However, greater values of
sensitivity were observed when the effects of temperature and radiation were removed
(Figure 3a,b). In contrast, the vegetation sensitivity of tropical and subtropical moist
broadleaf forest ecoregions (B1) to PCRU is lower. In the rest of the biomes and ecoregions,
the vegetation response to the PCRU was mostly positive. When the effects of temperature
and radiation are removed (Figure 3b), the VGS to PCRU, PLO, and PLT shows a similar
fitting pattern, but the values seem to be higher, although the number of non-statistically
significant (p < 0.05) values increased.

The spatial representation of VGS shown in Figure 3, according to the EVI to PCRU,
PLO, and PLT without removing and after removing the compounding effects of tempera-
ture and radiation, appears in Figure 4a–f. These values were determined according to the
temporal variations of greenness and precipitation for individual eco-zones. For PCRU, as
illustrated in Figure 4a, the response of vegetation productivity was highly similar in ecore-
gions of South America, Africa, southeast Asia, and Australia. This pattern is highlighted,
however, because of the major VGS exhibited in boreal high-latitude ecoregions across Eu-
rope, Asia, and North America, where precipitation is lower than in humid tropical regions.
In this figure, it can be observed that a few ecoregions experience a negative VGS which is
not statistically significant. These include the southern tip of South America occupying B7,
northern Western Europe (B3), and some regions of B1 in the extreme southwest region
of Amazonia. When the joint effect of temperature and radiation is removed (Figure 4b),
the VGS values become more heterogeneous among the biome ecoregions, with those of
biomes 2 and 6, located south of the Amazon, standing out, as well as those ecoregions
located in the Sahel and Equatorial Africa (B1, B6). This figure also confirms the higher VGS
in the ecoregions of northern Eurasia, with the ecoregions of biomes 7 and 9 in the Iberian
Peninsula, Central Europe (B3), and northeastern Eurasia (B5) standing out. Additionally,
ecoregions with negative sensitivity are observed in Southeast Asia, particularly in China.
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Figure 3. Sensitivity of the EVI (a,c,e) and EVI (excluding temperature and radiation) (b,d,f) to PCRU

(a,b); precipitation from oceanic origin (PLO) (c,d); and precipitation from terrestrial origin (PLT)
(e,f). Empty circles represent non-significant (p < 0.05) values. The y-axis units represent the change
in annual EVI per mm of change in PCRU, PLO, and PLT. Period of study: 2001–2018. Every color
represents the ecoregion of nine different biomes (B1–B9).

The VGS to PLO (Figure 4c) revealed a pronounced change between the maximum
and minimum values among all the biomes and ecoregions, showing the highest values
in the boreal forest/taiga ecoregions of biome 5, in the north of North America and the
north and northeast of Eurasia. Negative values indicating non-sensitivity were obtained
for various ecoregions of B1 in the Amazonia, and ecoregions in B3 that occupy a large
part of central and western Europe, excluding the Mediterranean forest woodlands and
scrub (B9) that occupy the Iberian Peninsula. Not statistically significant sensitivity values
are mostly observed in various ecoregions of B1 in the Amazon basin, but also in the
northeast of North America and central Europe. Figure 4d reveals that after removing the
compounding effects of temperature and radiation, the magnitude of VGS values varies
from those observed in Figure 4c. Most notably, VGS values in Western Europe are now
positive. The contrary occurs in ecoregions located in Southeast Asia, East China, and the
northeast of North America. A large number of ecoregions with not statistically significant
(p < 0.05) VGS values are also observed.



Remote Sens. 2023, 15, 4706 9 of 20
Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 

 

 

Figure 4. Vegetation greenness sensitivity, according to EVI, to PCRU, PLO, and PLT (a,c,e), and PCRU, 

PLO, and PLT excluding the effects of temperature and radiation (b,d,f). Values are multiplied by 

1000. Period: 2001–2018. Pink dots represent non-significant values. 

The VGS to PLO (Figure 4c) revealed a pronounced change between the maximum 

and minimum values among all the biomes and ecoregions, showing the highest values 

in the boreal forest/taiga ecoregions of biome 5, in the north of North America and the 

north and northeast of Eurasia. Negative values indicating non-sensitivity were obtained 

for various ecoregions of B1 in the Amazonia, and ecoregions in B3 that occupy a large 

part of central and western Europe, excluding the Mediterranean forest woodlands and 

scrub (B9) that occupy the Iberian Peninsula. Not statistically significant sensitivity values 

are mostly observed in various ecoregions of B1 in the Amazon basin, but also in the north-

east of North America and central Europe. Figure 4d reveals that after removing the com-

pounding effects of temperature and radiation, the magnitude of VGS values varies from 

those observed in Figure 4c. Most notably, VGS values in Western Europe are now posi-

tive. The contrary occurs in ecoregions located in Southeast Asia, East China, and the 

northeast of North America. A large number of ecoregions with not statistically significant 

(p < 0.05) VGS values are also observed. 

A longitudinal gradient of VGS is best observed in the ecoregions of B5 along northern 

Eurasia (Figure 4c,d). These figures also illustrate marked similarities and dissimilarities in 

the spatial response of vegetation activity to PLT when the compound effect of both temper-

ature and radiation was removed. Figure 4e shows a few differences in VGS among the 

ecoregions, highlighting the major differences in North America and Eurasia. Our findings 

also highlight the European ecoregions where, contrary to the role of PLO, the vegetation is 

more sensitive to PLT. When the effect of temperature and radiation is removed, the VGS to 

PLT reveals noticeable changes (Figure 4f) with respect to the values depicted in Figure 4e. 

The most evident is that VGS becomes negative and mostly non-statistically significant in 

Figure 4. Vegetation greenness sensitivity, according to EVI, to PCRU, PLO, and PLT (a,c,e), and PCRU,
PLO, and PLT excluding the effects of temperature and radiation (b,d,f). Values are multiplied by
1000. Period: 2001–2018. Pink dots represent non-significant values.

A longitudinal gradient of VGS is best observed in the ecoregions of B5 along northern
Eurasia (Figure 4c,d). These figures also illustrate marked similarities and dissimilarities
in the spatial response of vegetation activity to PLT when the compound effect of both
temperature and radiation was removed. Figure 4e shows a few differences in VGS
among the ecoregions, highlighting the major differences in North America and Eurasia.
Our findings also highlight the European ecoregions where, contrary to the role of PLO,
the vegetation is more sensitive to PLT. When the effect of temperature and radiation
is removed, the VGS to PLT reveals noticeable changes (Figure 4f) with respect to the
values depicted in Figure 4e. The most evident is that VGS becomes negative and mostly
non-statistically significant in East and Southeast Asia (B1, B2). Additionally, Figure S2
shows the VGS to PLO and PLT, also considering the removed effects of temperature
and radiation.

The total number of ecoregions by biomes, with positive and negative VGS values
without removing and after removing the compound effects of temperature and radiation,
expressed as a percentage, is shown in Table S1. Likewise, in this table, the area occupied
by the respective ecoregions is also shown in percentage. This information summarizes
numerically what can be observed in Figure 4. A greater number of ecoregions that belong
to B1 experience a positive VGS to PCRU, PLO, and PLT. However, the area they occupy
is very similar to the total area occupied by ecoregions with negative VGS, confirming
the importance of the spatial extension of the ecoregions. This disproportionality is also
observed for other biomes, such as B2, which stand out because the vegetation of all
ecoregions experiences a positive sensitivity to PCRU, PLO, and PLT. To summarize, the
frequency distributions of the VGS illustrated in Figure 4c–f are represented by histograms
in Figure 5. For the VGS to EVI (Figure 5a), the number of ecoregions with negative
sensitivity values is higher for PLO than PLT. Additionally, there is a larger number of
ecoregions with a positive response to PLT (128 ecoregions) than to PLO (110), although
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the highest levels of sensitivity (>1) are due to changes in PLO. Ecoregions with negative
sensitivity sum up to 27 for PLO and 24 for PLT. Similar results were found for the sensitivity
assessed after removing the effect of temperature and radiation (Figure 5b). In this case, we
confirmed that a large number of ecoregions (117) also experienced higher positive VGS
to PLT, while only 112 did for PLO. In both graphs, the positive values, which indicate
the degree of sensitivity, range between 0 and 1, with a greater frequency observed to PLT.
However, according to Figure 5b, the VGS values greater than 1 were also more frequent,
owing to the PLO. Table S2 shows the percentage of the number of ecoregions with non-
significant sensitivity by each of the histogram ranges, confirming the small number of
cases for the positive values.
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Figure 5. Frequency of ecoregions that experience a positive and negative sensitivity of the vegetation
greenness according to EVI (a) and EVI (excluding temperature and radiation effects) (b) to PLO
(light sky-blue color) and PLT (Salmon color). The purple color represents the interception of the two
bars. Period: 2001–2018.

Figure 6a summarizes the major role of precipitation from oceanic and terrestrial origin
in the VGS according to EVI. Figure 6b also shows the same metric but considers the VGS
obtained after removing the compound effects of the temperature and radiation. Ecoregions
that are most sensitive to PLT are shaded in red, to PLO in blue, and those with negative
sensitivity for both are shaded in light green. In the first analysis, 60% of the ecoregions
considered for this study showed greater VGS to PLO, followed by 34% to PLT, and only in
6% did both variables have no direct effect. In a more realistic analysis, after removing the
influence of temperature and radiation on the variability of vegetative activity (Figure 6b),
a very similar spatial pattern is observed, with 58% of ecoregions showing vegetation that
is more sensitive to changes in PLO, 32% to PLT, and in 10%, the sensitivity values are
negative, and therefore do not contribute to the understanding of changes in greenness.

The predominant sign of VGS in North America represented in Figure 6a demonstrates
some variation among ecoregions when the influence of temperature and radiation is
removed, as illlustrated in Figure 6b. In this figure, some ecoregions stand out, such as
those located in the central east and belonging to biomes 2 and 3, mainly due to the negative
sign (Figure 6b). Of the remaining ecoregions, only those in the northwest that belong
to B5, and one in the central United States (B2), are more sensitive to changes in PLO. In
South America, the vegetation greenness in most of the ecoregions experiences a major
sensitivity to changes in precipitation of oceanic origin. Furthermore, in areas of the central
and northeastern Amazon region, the negative values of vegetation productivity to both
PLO and PLT confirm that vegetation is not constrained by water availability. In this region,
other factors like cloudiness and temperature play a major role [93].
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In Southeast Asia, some ecoregions of tropical and subtropical moist and dry broadleaf
forests (B1 and B2) experience greater sensitivity to PLT (Figure 6a). However, the effects
of radiation and warming on greening in these regions have been documented [94], and
consequently, removing their effects resulted in negative VGS values. Similarly, this also
occurs in the northern and eastern ecoregions of Australia (Figure 6a), which belong to
(1) the biomes of temperate broadleaf and mixed forest (B3); (2) tropical and subtropical
grasslands, savannas, and shrublands (B6); and (3) temperate grasslands, savannas, and
shrublands (B7). Our results show that precipitation can play a distinct role in the dynamics
of vegetation if its components are analyzed independently, which is a useful approach
for understanding the role of global warming in precipitation variability and its impact
on vegetation. The question arises as to what will happen in different global warming
scenarios, in which the influence of the precipitation components may vary with respect to
what is observed or reinforce the conditions described above.

4. Discussion

The climatological distribution of radiation, temperature, and precipitation on the
planet is a key factor determining the behavior of vegetative activity. Accordingly, the
values of VGS to PCRU show remarkable differences, mainly latitudinal, between biomes
and even between biome ecoregions themselves. The lower values of VGS to precipitation
obtained for the vegetation of humid equatorial ecoregions (Figure 4a,b) are in agreement
with previous studies. Zhang et al. (2022) [51] found that the mean sensitivity of vegetation
canopy greenness to precipitation is highest in drier and arid regions and decreases in
more humid regions. In drier regions, vegetation constraints on plant growth responses
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to precipitation are hypothesized to place an upper limit on net primary productivity [95].
However, Hilker et al. (2014) [96] found that the vegetation canopy of the Amazon rainforest
is highly sensitive to changes in precipitation, revealing that the Amazon forest greens
during the dry season because of the light limitations during the wet season and insufficient
water supply for deep-rooted trees. Our results also confirm that in the vast majority of
ecoregions, there is an increase in VGS to precipitation after removing the influence of
temperature and radiation, including the vegetation of humid tropical regions such as the
Congo and the Sahel. Other factors already documented are forest height and age, which
are important in the control of photosynthesis in response to interannual precipitation
fluctuations [97].

The terrestrial origin moisture, transported across the continents, and local recycling in-
crease the terrestrial origin precipitation in high-latitude boreal ecoregions [40,54]. In these
regions, the observed greater VGS to PCRU, which is even greater when not considering the
effect of temperature and radiation (Figure 4a,b), must be associated with the temperature
shift, bearing in mind that at high latitudes in the Northern Hemisphere, vegetation is
more sensitive to changes in temperature than to changes in precipitation [98]. However,
these authors also found that around 18.48% of the world is more sensitive to precipitation
than to temperature. In boreal high latitudes, the effect of temperature is also higher than
that of precipitation, making these regions energy-limited areas [99]. This phenomenon
is particularly observed in northern Western Europe ecoregions, and also in some wetter
terrestrial ecoregions, as commented above, located in the Amazonia that belong to B1,
where energy supply, not water supply, limits evapotranspiration. In these ecoregions, the
negative sensitivity of vegetation greenness to precipitation indicates that precipitation is
not the primary variable controlling vegetation productivity because of the primary role of
radiation and air temperature [100]; however, it could play a secondary role. Alternatively,
in drier zones characterized by water-limited conditions, precipitation generally becomes
the main impacting factor, as freshwater resources are limited, which results in a restrictive
condition for the vegetation [10,100]. A study by Seddon et al. (2016) [101] also showed
that prairies in mid-northern hemisphere latitudes are water-limited, high latitudes are
driven by a combination of temperature and cloudiness, and tropical forests are particularly
sensitive to cloudiness.

As commented above, our results are in agreement with previous studies, which
documented that vegetation in humid ecoregions is more sensitive to changes in solar
radiation followed by temperature and precipitation [102]. In those regions characterized
by high annual precipitation rates, the rainfall becomes a less limiting factor on vegetation
growth, which is, in contrast, modulated by the effects of temperature and radiation [21].
In this way, the VGS values depicted in Figure 4b objectively represent more realistically
the vegetative response to changes in precipitation. However, to obtain more accurate
results, the influence of other factors should have been taken into account. For instance,
other studies have determined that additional water resources like groundwater will also
reduce the direct dependency of vegetation on precipitation [103], as well as other local
constraints on plant growth, like nutrients [104].

Precipitation contributes to soil moisture and part of it is retained by vegetation. How-
ever, this precipitation has a percentage of oceanic and terrestrial origin, and it is variable on
our planet. There are regions, like those near the coasts of the continents, characterized by a
major percentage of precipitation of oceanic origin, while in inland regions, the percentage
of precipitation of terrestrial origin exceeds that of oceanic origin [40]. The VGS calculated
considering the terrestrial and oceanic components of precipitation is an analysis that has
not been performed before, and it takes into account the dynamics of the atmospheric
branch of the hydrological cycle and terrestrial and oceanic evaporation processes to ex-
plain the vegetative response. Our analysis shows precisely that, in some ecoregions located
in eastern North America, northern Amazonia, and western Europe, except the Iberian
Peninsula, where the major percentage of precipitation is due to PLO [40], the VGS values
obtained are negative (Figure 4c). The historical changes in zonal vegetation patterns across
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the Iberian Peninsula have been utilized to investigate annual precipitation variability and
trends and their local patterns over 11 700 years [105]. After removing the joint effect of
temperature and radiation, the resulting values of VGS to PLO (Figure 4d) reveal that
Western European ecoregions now exhibit positive values. In this region of the planet, the
VGS is mainly modulated by temperature [98], so this result confirms that the major precip-
itation component over this region influences vegetation activity, but in agreement with
other studies, it also draws attention to possible uncertainties of different methodologies in
representing the complex interactions between climate and vegetation [98]. For Southeast
Asia, in contrast, the VGS cannot be explained after removing the role of temperature and
radiation, in agreement with findings obtained with PCRU (Figure 4b).

In other ecoregions characterized by energy-limited conditions (where P/Etp > 1),
such as northern Eurasia, part of the Amazon, and Central Equatorial Africa [94], the
energy supply and not the water supply limits the actual evapotranspiration (i.e., the
amount of water that is removed from the surface due to the processes of evaporation and
transpiration). In these regions, PLT is greater than PLO [40], owing to intense recycling
and moisture exports within the continent [43]. In our analysis (and previous studies),
we found that in regions with high rainfall regimes (humid regions), the sensitivity of
vegetation to rainfall is lower because precipitation is not a limiting factor, and the opposite
was found in regions with a low rainfall regime. Therefore, we should expect that VGS
is greater (lower) to the minor (major) component of precipitation. Hence, vegetation is
more sensitive to changes in PLO in those ecoregions where precipitation is mostly from
terrestrial origin. The opposite is observed in a large part of Western Europe, parts of central
eastern North America, and the southeast of the United States, which belong to B3 and
B4, respectively. The predominance of precipitation of oceanic origin in these regions [40]
makes the vegetation more sensitive to changes in PLT, as shown in Figure 4e,f. In Africa,
two differentiated regions are situated on the coast of West Africa and Ethiopia, where the
VGS to PLT without eliminating and after eliminating the joint effect of temperature and
radiation is higher than in the rest of the ecoregions of that continent. In both regions, the
oceanic contribution to precipitation is higher and directly modulated by the moisture sup-
ply from the Gulf of Guinea [106,107] and the western Indian Ocean [108,109], respectively.
Vegetation in both regions is therefore more sensitive to slight changes in precipitation
of terrestrial origin. In the Sahel zone, the VGS is lower than that exhibited with PLO,
because of the crucial role of the predominant evapotranspiration and recycling process
in maintaining and determining the annual cumulative precipitation in this region [110].
Previous studies have found that the NDVI response to precipitation in the Sahel occurs
at seasonal scales, although inter-annual fluctuations in precipitation also coincide with
fluctuations in the NDVI values [49], which suggests that further research on this topic,
while considering lag times, should be carried out.

As explained above, by separating the effects of the precipitation components, we are
likely to spatially delineate ecoregions where vegetation is most sensitive to changes in
precipitation due to the major variability of one of its components. This differentiation is
well observed in Eurasia, where the west is more sensitive to changes in PLT (Figure 4c–f)
due to the more stable character of the oceanic precipitation generated by moisture trans-
port from the Atlantic and the Mediterranean [111,112]. However, in central north and
northeast Eurasia, PLT is predominant [40], and the variability of PLO originating from
moisture fluxes from oceanic regions makes vegetation more susceptible. Other studies
(e.g., Seddon et al. (2016) [101]) found that central and western continental Europe demon-
strates a stronger water limitation in comparison with temperature and radiation, while
other authors [97] have also described the east–west vegetation sensitivity gradient to pre-
cipitation and temperature. This is probably why removing the joint effect of temperature
and radiation generally increases the VGS in this region. However, in several ecoregions
of Southeast Asia and eastern China, it is observed that after removing the compound
effects of temperature and radiation, negative VGS values to PLO and PLT (Figure 4d,f)
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are demonstrated, which represents a more realistic dynamic, as obtained in the sensitivity
analysis of PCRU (Figure 4b).

Other results show that precipitation in the half-east of North America is mainly mod-
ulated by precipitation originating from oceanic origin [94], and consequently, vegetation
is more sensitive to alterations in the terrestrial component (Figure 4c–f), while the contrary
is observed for the northwest ecoregions. Something similar occurs in Africa, where the
sensitivity to PLT is higher in those regions where moisture transport mechanisms increase
the oceanic origin precipitation (the southern coast of West Africa and the Ethiopian area).
Precipitation from an oceanic tropical origin is normally dominant in these regions [113].
Furthermore, this pattern is also seen in Australia, where the crucial role of humidity
transport from the surrounding Pacific and Indian Oceans has been well-documented [114].
The subsequent analysis also revealed that this homogeneity changes, with ecoregions with
a predominance of VGS to PLO, to PLT, and even negative joint values. Previous findings
have also described that the warming of some biomes in northern ecosystems affects green-
ing, while precipitation anomalies in tropical biomes caused browning associated with
climate change [115].

Precipitation plays a decisive role in vegetative development by supplying the water
necessary for plant germination and growth. However, the amount of precipitation over a
region depends on the moisture that is transported from oceanic and/or terrestrial regions.
Therefore, in studies on the attribution of causes of changes in vegetation sensitivity due to
changes in precipitation, the amount of the oceanic and terrestrial Lagrangian components
of precipitation should be taken into account. There are regions, such as the Congo Basin, for
example, where the major percentage of precipitation is produced by recycled precipitation
and evapotranspiration [46,116], but findings of Gimeno et al. [40] confirmed the growing
importance of precipitation from oceanic origin over tropical regions, which could modulate
the vegetation sensitivity along the influencing areas. The consideration of both components
also represents an opportunity to understand the role of global warming in the atmospheric
branch of the hydrological cycle, the precipitation variability, and the vegetation response.
This also applies to future studies considering the observed and expected changes in the
hydrological cycle [117,118]. It should also be mentioned that although the Lagrangian
methodology has been widely used for the study of the hydrological cycle, it also has
limitations, as it does not specifically represent precipitation, which affects the comparative
analyses that can be carried out with precipitation data. Similarly, the estimated values of
(E − P) < 0 will be better correlated with the model input precipitation data (ERA-Interim
precipitation). In this study, we use a different database to avoid any possible collinearity.
The effectiveness of our results also depends on the methodology used. Multiple studies
have used the same regression analysis; however, others have opted to use polynomial
regression [97] or land surface models [119] to represent non-linear relationships, which
represent an advantage principally for studies at local and regional scales.

5. Conclusions

This study aimed to investigate the global vegetation greenness sensitivity (VGS)
to precipitation over the period of 2001–2018, and separately considered precipitation
from oceanic and terrestrial origins. We quantified the VGS in 9 biomes consisting of
139 ecoregions worldwide for the period of 2001–2018 through the satellite vegetative
index EVI, precipitation, and oceanic and terrestrial Lagrangian precipitation data. Without
taking into account arid and semi-arid regions, and by removing the compound effects of
temperature and radiation, our results are in accordance with previous findings, confirming
that moist broadleaf forest and wetland vegetation in Amazonia, Oceania, and southeast
Asia generally experience smaller and even negative VGS to precipitation than other
vegetation types. This was also observed in a few other ecoregions characterized by
temperate broadleaf and mixed forests (B3) and temperate grasslands, savannas, and
shrublands (B7) and temperate broadleaf and mixed forests in northwest Europe. In the rest
of the ecoregions, a positive relationship was found. According to the literature, the greatest
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VGS to precipitation occurs in tropical and subtropical arid, semiarid, and desert regions
located in areas of North Africa, the Arabian Peninsula, South Africa, Australia, and central
South America, but these regions were not taken into account in this study. Consequently,
our analysis confirmed that vegetation greenness is more sensitive to precipitation changes
in high-latitude ecoregions of the Northern Hemisphere. We confirmed the veracity of
these results after removing the compound effects of temperature and radiation, which play
a key role in vegetation productivity. The VGS in each ecoregion according to the EVI was
also studied, but considering the oceanic and terrestrial components of the precipitation
individually. These results revealed notable differences in the VGS magnitude between
ecoregions of the same biome that were geographically distant. This was mostly observed
among the ecoregions of Biome 5 (boreal forest/taiga), located in North America, Europe,
and North Asia, but particularly in the European temperate broadleaf and mixed forests.
Additionally, and in agreement with what was obtained for precipitation, neither PLO nor
PLT controlled vegetation greenness in some ecoregions of central and northeast Amazonia,
where climatological high precipitation makes the vegetation productivity more susceptible
to other factors. Removing the joint effect of temperature and radiation resulted in changes
in VGS values, allowing a more realistic characterization of vegetation dynamics. Finally,
we found that normally, the greenness sensitivity is more affected by fluctuations in PLT
(PLO) in climatological regions with a major rate of PLO (PLT). As the contribution to
precipitation by the dominant component of the precipitation is more stable, the variations
in the contribution of the minor component can affect the average water availability, and
consequently the vegetation greenness. Thus, in regions with high rainfall regimes (humid
regions), the sensitivity of vegetation to rainfall is lower due to its small variation during the
year, and the opposite occurs in regions with a low rainfall regime. These results reveal the
importance of considering the intrinsic climate variability on the assessment of precipitation
variability resulting from global oceanic evaporation and terrestrial evapotranspiration and
their contribution to water availability and vegetation greenness. However, an assessment
of the VGS, simultaneously considering other climatic and anthropogenic factors across
the global land, is lacking. It represents a challenge and support for investigating the
ecosystem’s development and its functionalities in the present and future climate and
vegetation scenarios. Ongoing simulation of future moisture transport will support the
studies of vegetation response to hydroclimatic changes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15194706/s1, Figure S1. All biomes. Sensitivity of the
enhanced vegetation index (EVI) to precipitation from ERA Interim data (PERA) (a) and sensitivity
of the enhanced vegetation index (EVI excluding temperature and radiation) to precipitation
from ERA Interim data (PERA) (b). Empty circles represent non-significant values. Sensitiv-
ity is estimated for each site as the slope (x1000) of the linear regression of EVI against annual
precipitation. Period of study: 2001–2018.; Figure S2. Vegetation sensitivity to precipitation of
oceanic (PLO) and terrestrial (PLT) origin according to the enhanced vegetation index (EVI) (a) and
enhanced vegetation index (EVI (excluding temperature and precipitation)) (b) for nine biomes:
(B1) tropical and subtropical moist broadleaf forests ecoregions; (B2) tropical and subtropical dry
broadleaf forests; (B3) temperate broadleaf and mixed forests; (B4) temperate coniferous forests;
(B5) boreal forest/taiga; (B6) tropical and subtropical grasslands, savannas, and shrublands; (B7)
temperate grasslands, savannas, and shrublands; (B8) montane grasslands and shrublands; and
(B9) Mediterranean forest woodlands and scrub.; Table S1. The total number of ecoregions and
area with positive and negative sensitivity values, expressed as a percentage. Table S2. Percentage
of the no significant values of sensitivity according to Figure 5.
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