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Abstract
Key message This study details a methodology to automatically detect the positions of and dasometric information 
about individual Eucalyptus trees from a point cloud acquired with a portable LiDAR system.
Abstract Currently, the implementation of portable laser scanners (PLS) in forest inventories is being studied, since they 
allow for significantly reduced field-work time and costs when compared to the traditional inventory methods and other 
LiDAR systems. However, it has been shown that their operability and efficiency are dependent upon the species assessed, 
and therefore, there is a need for more research assessing different types of stands and species. Additionally, a few studies 
have been conducted in Eucalyptus stands, one of the tree genus that is most commonly planted around the world. In this 
study, a PLS system was tested in a Eucalyptus globulus stand to obtain different metrics of individual trees. An automatic 
methodology to obtain inventory data (individual tree positions, DBH, diameter at different heights, and height of individual 
trees) was developed using public domain software. The results were compared to results obtained with a static terrestrial 
laser scanner (TLS). The methodology was able to identify 100% of the trees present in the stand in both the PLS and TLS 
point clouds. For the PLS point cloud, the RMSE of the DBH obtained was 0.0716, and for the TLS point cloud, it was 
0.176. The RMSE for height for the PLS point cloud was 3.415 m, while for the PLS point cloud, it was 10.712 m. This 
study demonstrates the applicability of PLS systems for the estimation of the metrics of individual trees in adult Eucalyptus 
globulus stands.

Keywords Forest inventories · Eucalyptus globulus · Portable laser scanners (PLS) · Terrestrial laser scanners (TLS) · 
Dasometric variables

Introduction

Forest inventories constitute an essential tool for sustainable 
forest management, since they provide relevant information 
from an ecological and economical perspective (Fankhauser 
et al. 2018). Forest inventories are usually based on the 
measurement of tree attributes, such as height, diameter at 
breast height (DBH), stem profiles, and first branch height, 
among others (Maas et al. 2008). These forest attributes are 
traditionally obtained through fieldwork using measuring 
instruments, such as calipers, hypsometers, and tape meas-
ures (Piermattei et al. 2019). However, conducting research 
in this way usually entails a great investment in terms of 
economic resources and time (Dalla Corte et al. 2020), thus 
limiting the periodicity, scale, and scope of these inventories 
(Liang et al. 2018).

In recent years, advances in remote-sensing technol-
ogy have provided solutions and aided in overcoming the 
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drawbacks of traditional approaches to information acquisi-
tion for forest inventories; these advances have led to the 
enhancement of the provided inventory data (White et al. 
2016). LiDAR technology is especially useful in this field. 
It provides 3D representations of target areas and allows for 
the characterization of the structure of the above ground 
biomass (Lechner et al. 2020; Shugart et al. 2010).

LiDAR devices can be mounted on different platforms, 
each with its associated strengths and weaknesses: aerial 
platforms (either manned or unmanned aerial vehicles), 
ground platforms (such as terrestrial laser scanners), mobile 
terrestrial platforms, and on-board satellite platforms 
(Michez et al. 2016). Airborne laser scanning (ALS) systems 
are the most widespread; they have proven to be very helpful 
in describing and characterizing forest variables at relatively 
large scales (Kangas et al. 2018). However, due to the fact 
that ALS point clouds hardly provide representations of tree 
trunks, they have limitations when it comes to providing 
tree diameter information, such as diameter at breast height 
(DBH) (Chen et al. 2019; Gollob et al. 2020).

Ground-based LiDAR systems allow for the creation of 
3D representations of the vegetation structure at the lower 
canopy level with higher point densities than ALS systems 
(Donager et al. 2021; Hilker et al. 2010; Xia et al. 2021). The 
ground-based devices can be divided into terrestrial laser 
scanners (TLS) and the more-recently-developed portable 
systems, known as mobile laser scanners (MLS).

TLS are stationary systems that must be fixed on a tri-
pod; they can provide high-quality diameter metrics for 
multiple tree species in different environments (Brede et al. 
2022; Calders et al. 2020; Panagiotidis et al. 2022; Gao and 
Kan 2022). The main weakness of these systems, in terms 
of operability, stems from their static nature (Liang et al. 
2016; Tremblay and Béland 2018), which generates occlu-
sion problems (tree occlusion, treetop occlusion, or even 
stem occlusion due to the presence of shrubs or branches) 
(Bauwens et al. 2016).

MLS systems work mounted on moving platforms (e.g., 
vehicles) (Del Perugia et al. 2019). When it can be carried 
by a human, the system is known as a personal laser scanner 
(PLS), although there are a variety of terms that are used 
to refer to these systems: handheld mobile laser scanners 
(HMLS), wearable laser scanners (WLS), and handheld laser 
scanners (HLS) (Gollob et al. 2020). According to Bauwens 
et al. (2016), PLS are more suitable for forest environments 
than other MLS systems with integrated GNSS devices; 
high-quality GNSS is not usually feasible under forest cover. 
Furthermore, the other MLS systems cannot guarantee the 
desired continuous and nondestructive acquisition of data. 
Additionally, thanks to its portability, PLS systems signifi-
cantly reduce field work time and costs when compared to 
the other laser scanning systems; they also improve point 
cloud density and avoid the occlusion problems that are 

characteristic of TLS systems (Bauwens et al. 2016; Chi-
appini et al. 2022; Donager et al. 2021).

The applicability of PLS systems for forest inventories is 
being assessed in the scientific literature. An example of the 
implementation of PLS into forest inventories can be found 
in Hyyppä et al. (2020). They developed a methodology 
to assess stem curve and stem volume using PLS in boreal 
forests. Other examples are the studies by Chiappini et al. 
(2022) and Donager et al. (2021). They used PLS systems to 
detect single trees and obtain stand variables, such as DBH 
and tree height in Pinus nigra and Pinus ponderosa stands, 
respectively; both obtaining satisfactory results. Gollob et al. 
(2020) and Gollob et al. (2021) show a comparison of the 
efficiency of different ground-based LiDAR devices in the 
detection of individual trees and the estimation of DBH in 
different types of temperate-forest stands (i.e., species com-
position and basal area). They demonstrated the superior-
ity of PLS over TLS. However, Gollob et al. (2020) found 
that DBH accuracies significantly differed among the tree 
species analyzed when using the PLS in temperate forests. 
Bienert et al. (2018) also reported that certain temperate-
forest tree species might compromise the PLS’s operability. 
Given these observations, and considering the novelty of 
the technology, Donager et al. (2021) indicated the need for 
more research in different types of stands and tree species, 
as well as research on sampling methods and methodological 
variables, to achieve a better understanding of the capabili-
ties and potential of PLS.

Some studies have focused on the appropriacy of PLS 
systems for Eucalyptus stands, Eucalyptus being one of 
the most common genera in forest plantations worldwide 
(FAO 2005; Messier et al. 2021). Marselis et al. (2016), for 
instance, used a PLS in a natural Eucalyptus forest to auto-
matically detect individual trees and calculate their DBH, 
obtaining high-accuracy results. Conversely, Levick et al. 
(2021) reported difficulties in deriving Eucalyptus tree diam-
eter metrics using PLS in the Australian tropical savanna. 
Additionally, Camaretta et al. (2021) declared that for their 
study site (Eucalyptus trees of less than 10 m in height), it 
was not possible to directly calculate DBH using 3D mod-
eling techniques similar to the ones used in the previously 
mentioned studies; instead, they used allometric equations 
along with the height and the crown diameters calculated 
from the LiDAR point cloud. While these studies constitute 
valuable examples, research on PLS to capture Eucalyptus 
stands can, nevertheless, be considered scarce. Additionally, 
all of the studies mentioned were carried out in Eucalyptus 
stands in their natural ecosystem. Considering the impor-
tance of Eucalyptus trees in forestry, further exploration of 
PLS capabilities in Eucalyptus stands is necessary. Further-
more, exploration into methodologies incorporating open-
access software would contribute to operational applicability 
(Zeybek and Vatandaslar 2021).
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This study focuses on the capability of a PLS system to 
detect individual trees and measure tree metrics in a Euca-
lyptus stand. Open-access-software-tools were used to 
develop the methodology. In particular, a Eucalyptus globu-
lus plot was captured using an SLAM-based PLS system to 
obtain inventory data (individual tree positions, DBH, diam-
eter at different heights, and height of individual trees). The 
results obtained were compared, in terms of accuracy and 
efficiency in data collection, to the results obtained using 
a TLS system and to the results obtained using traditional 
field methods.

Study area

The present study was performed in a Eucalyptus globulus 
stand, located on Illa do Covo, an Island in Pontevedra, Gali-
cia (Northwestern Spain); see Fig. 1. The island has an area 
of 7.6 ha. The stand is free of understory and is composed of 
large individuals with a maximum height of approximately 
50 m. A group of representative trees was selected. These 
individuals covered an area of 1500  m2. Figure 2 shows a 

Fig. 1  Study area

Fig. 2  Photo depicting the stand analyzed
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photograph taken in the stand to depict the condition of the 
stand.

Materials

The TLS data were collected using an  FARO® Focus3D 120 
laser scanner. This scanner weighs 5 kg, has a measurement 
range of 120 m, an accuracy range of up to 2 mm at 25 m, 
a 360º horizontal field of view, and a 305º vertical field of 
view, and captures up to 976,000 points/second. Six refer-
ence spheres were used to co-register the data collected.

The PLS data were collected using a GeoSLAM™ ZEB 
Horizon scanner. The scanner head of this device weighs 
1.5 kg, has a measurement range of 100 m, an accuracy 
range of between 1 and 3 cm, a 270º horizontal field of view, 
and a 360º vertical field of view, and captures 300,000 points 
per second. This device uses a simultaneous localization and 
mapping (SLAM) algorithm to reference the laser distance 
measurements in three-dimensional space, while the device 
is in motion, without the need for a global navigation satel-
lite system (GNSS) (Cabo et al. 2018; Gollob et al. 2020).

A diameter tape, a measuring tape, and a Vertex IV hyp-
someter were used to collect field data using the traditional 
methods.

To process the data, the following software was used: 
GeoslamHub, FaroScene, CloudCompare, LAStools, R, 
QGIS and FugroViewer.

Methodology

This section is divided into four subsections: the process of 
obtaining the field measurements, the scanning, and pre-
processing methodologies for each of the two devices, and 
the process followed to estimate dasometric variables from 
the point clouds obtained. An overview of the method is 
presented in Fig. 3.

Acquisition of tree metrics using the traditional 
methods

All of the trees within the study plot were measured using the 
traditional tools. The first metric obtained was the diameters 
at breast height (DBH); measured with the diameter tape. The 
measurement was performed in the direction orthogonal to 
the vertical axis of the tree trunks. The second variable was 
the height of the trees, which was measured using a Vertex IV 
hypsometer. To do this, the optimum position to view the tree-
top had to be selected. The trees lying on or near the contour 
of the plot could be easily observed, but the trees in the plot’s 
interior proved more troublesome as it was difficult to view 

their treetops given the proximity and height of the neighbor-
ing trees.

Point cloud acquisition and post‑processing 
for the terrestrial laser scanner

Given the range of the device and the stand area in this study, 
two scans were taken with the TLS. This device is station-
ary, so it was necessary to acquire several scans to optimize 
the 3D measurement of the trees’ understory with minimum 
occlusions. Most TLS systems can be configured to satisfy the 
study requirements. In this case, the parameters were defined 
to strike a balance between maximizing the resolution of the 
point clouds and minimizing the amount of time invested in 
field work. They are described in Table 1. The time invested 
in data collection was also measured.

Once the single point clouds are obtained, they can be 
combined and transformed into a common coordinate system. 
Several procedures can be used to do this (Mora et al. 2021). 
In open environments where there are no regular surfaces, 
and vegetation may be moved slightly by the wind, the most 
highly recommended procedure is to use fixed references like 
spheres, cylinders, or planar targets (Wilkes et al. 2017). In this 
case, six reference spheres were distributed within the plot and 
scanned together with the trees in the scene. The co-registering 
of point clouds was performed using FAROScene software; the 
result was the generation of one single point cloud.

The whole point cloud was classified into two classes: 
ground points and non-ground points. This step is needed for 
further normalization. It was done with the “lasground” tool 
from the LAStools software. The tool settings were adjusted 
to obtain an optimized performance.

The normalization of the classified point cloud was per-
formed to convert the altitude of points into their heights 
above ground. This step allows for the automation of the 
Canopy Height Model generation. These models represent 
vegetation heights as raster maps. The normalization algo-
rithm applied consisted of a k-nearest neighborhood (KNN) 
interpolation with an inverse distance weighting (IDW). It 
was implemented using the “lidR” package from the Rstudio 
software.

The final processing step was noise removal. This was 
done by defining the admissible values for the normalized 
heights of the points. These threshold values were 0 and 
60 m, and all points below the minimum threshold value 
or above the maximum threshold value were removed from 
the point cloud.

Point cloud acquisition and post‑processing 
with the portable laser scanner

The PLS acquisition started with the design of the scan-
ning trajectory. This was carried out in such a way as to 
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minimize occlusions, while optimizing acquisition time 
and ensuring a closed loop to minimize SLAM drift (Gol-
lob et al. 2020). The operator walked along the designed 
route while holding the scanning device. The raw LiDAR 
data were processed with GeoSLAM Hub software and 
one single point cloud was obtained. To streamline the 
subsequent processing, point cloud density was reduced 
using an Octree decimation algorithm with ten subdivi-
sions. This final point cloud was classified and normalized 
like the previous one; the noise was removed as well.

Fig. 3  Overview of the methodology followed. The brackets denote the main steps in the methodology (sections). The solid-line boxes represent 
the main procedures performed. The dotted-line boxes correspond to the final results obtained at each step

Table 1  Scanning parameters established for the TLS system

Scanning parameters

Horizontal scan range 0.0º to 360.0º
Vertical scan range − 60.0º to 90.0º
Resolution 1/5
Quality 2×
Scan size [pts] (V × H) 8195 × 3414
Point distance [mm/10 m] 7.670
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Estimation of dasometric variables

The procedure to estimate the dasometric variables from the 
point clouds obtained was designed to be fully automated. It 
is based on the identification of individual trees, with each 
subset being subsequently further processed to estimate the 
DBH and heights of those trees.

Recognition of individual trees in the point cloud

The recognition of individual trees in the point cloud was 
done by slicing the point cloud and performing a clus-
ter analysis of the slices. This is outlined in a diagram in 
Fig. 4. The first step in this workflow consists of extract-
ing a thin slice of the point cloud at breast height (DBH-
1.3 m). The X, Y coordinates of the points contained in 

the slice were used to perform a cluster analysis with the 
aim of grouping into a cluster all of the points that belong 
to a certain tree stem. The cluster algorithm that was used 
is the density-based cluster algorithm (DBSCAN) (Ester 
et al. 1996). This algorithm is a density-based clustering 
algorithm which clusters points that are in areas of high 
point density, separating them from points lying in areas 
with low point density values. Consequently, points that 
are in low density regions can be considered outliers. 
This is an important step, because it avoids mistakenly 
clustering as tree stems points that correspond to different 
features. For example, scattered points that belong to the 
upper part of shrubs can be mistakenly included in a tree 
stem cluster, and this step serves to avoid this problem. 
The configuration of two parameters is needed: the maxi-
mum Euclidean distance permitted to consider two points 

Fig. 4  Diagram of the workflow used for the recognition of individual 
trees using cluster analysis. First, a slice of the point cloud is obtained 
at 1.30 m. Second, the points of this slice are horizontally projected. 

Third, the horizontal projection of the slice is subjected to a cluster 
analysis. Fourth, each obtained cluster is adjusted to a circumference
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as neighbors (eps) and the minimum number of points that 
a cluster can contain (minPts).

This process was performed for both the TLS and the PLS 
point clouds. Different slice thicknesses were tested for each 
of the clouds to find the most suitable size considering the 
noise, occlusions, and irregular spatial distribution of points. 
The TLS and the PLS point clouds required different eps and 
minPts to efficiently obtain the tree stem clusters.

Once the cluster analysis is performed, the group of points 
within a cluster is adjusted to a circumference line using 
Umbach and Jones’s (2003) full least-squares method. This 
function minimizes the sum of the squares of the distances 
from the points to the circle (Umbach and Jones 2003). The 
X, Y central coordinates of the fitted circles were extracted 
and considered to be the central coordinates for each tree.

Diameter estimation

The DBH estimations were obtained by extracting the radius 
of each circle generated in the previous step (see “Recog-
nition of individual trees in the point cloud”). These were 
compared with the measured diameters collected in field 
work. Linear regressions were performed and the Root-
Mean-Error Square (RMSE) was calculated.

Diameters at higher heights are commonly used to obtain 
stem curves (Holopainen et al. 2011) and for volumetric 
estimation purposes. In this case, diameters at 4 m above 
the ground were measured in both point clouds to compare 
the performance of the two different scanners on this task. 
Point clustering, circle fitting, and circle radius extraction 
were performed analogously to the DBH measurement pro-
cedure. Since the resolution of the point cloud decreases 
with increased distance from the scanner to the object (Liang 
et al. 2014), the estimation of diameters at this height was 
done using the original point clouds, prior to decimation.

Height estimation

To estimate the heights of individual trees, the CHM (Can-
opy height model) was created from the normalized point 
cloud. This model consists of a raster containing informa-
tion about the height of the vegetation in each pixel. The 
CHM was obtained using the “LidR” package from the R 
software. A 0.5 m resolution was selected, in an attempt to 
strike a balance between height generalization and exces-
sive height detail. Subsequently, the height of each tree was 
automatically estimated by extracting the CHM value for its 
previously calculated central coordinates. This procedure 
was performed for both point clouds. The heights obtained 
were compared with the data obtained in the field. Linear 
regressions were performed and the root-mean-error square 
(RMSE) was calculated. Nevertheless, as problems often 
arise when using the Vertex to measure tall trees (Fernandes 

da Silva et al. 2012) or due to a lack of visibility of the tree 
apex (Larjavaara and Muller-Landau 2013), a new set of 
ground truth values was obtained. Tree heights were meas-
ured directly from the PLShh point cloud as this was the 
point cloud that had the least occlusion in the upper part of 
the canopy. An example is presented in Fig. 5.

Results

Point cloud acquisition and post‑processing

Table 2 shows the time invested in collecting data for each 
of the two scanning devices. The TLS point cloud acquisi-
tion took 37 min, while only 8 min were needed for the PLS.

The registration error in co-registering the two TLS point 
clouds acquired was an RMSE of 14.6 mm. The integrated 
TLS point cloud had 11,589,772 points. For the PLS, the 
point cloud was directly downloaded from the scanning 
device. It had 41,902,931 points. In this case, the density 
reduction step mentioned in the methodology was applied 
to obtain a decimated point cloud; it contained 12,942,132 
points.

Figure 6 shows the plane and perspective views of the 
final normalized point clouds. This figure illustrates the dif-
ferences between the two different devices’ point clouds in 
terms of the completeness of the objects. This can be appre-
ciated both in vertical and horizontal structure. Due to the 
occlusions typical of the TLS, there are few points that reach 
the tops of the trees in the upper part of the canopy. The PLS 

Fig. 5  Example of a height measurement made directly in a vertical 
slice of the PLS (portable laser scanner) point cloud
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point cloud, on the other hand, has much more noise than 
the TLS point cloud.

Estimation of dasometric variables

Recognition of individual trees in the point cloud

The point cloud slices extracted at DBH from each point 
cloud are presented in Fig. 7. The final slice thicknesses 
selected for each point cloud were 2 cm in the case of the 
TLS and 1 cm in the case of the PLS.

The final minPts and eps selected differed between the 
two point clouds. For the TLS point cloud, the eps was 
0.4 and the minPts was 10. In the case of the PLS, the eps 
was 0.5 and the minPts was also 10. As an example of the 
clustering step, the cluster result for the PLS point cloud is 
shown in Fig. 8.

Table 2   Acquisition times for the different scanning methods

TLS PLS

Reference sphere distribution, 
establishing TLS stations

30 min. –

Trajectory design – 5 min.
Scanning 3.5 min. (×2 scans) 3 min.
Total 37 min. 8 min.

Fig. 6  Comparison of different views of the normalized point clouds 
from the terrestrial laser scanner (TLS) and the personal laser scanner 
(PLS). a Horizontal projection of the TLS normalized point cloud. 

b 3D representation of the TLS normalized point cloud. c Horizontal 
projection of the PLS normalized point cloud. d 3D representation of 
the PLS normalized point cloud
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Diameter estimation

The linear regressions comparing the diameters measured 
using the traditional field methods with the diameters meas-
ured using the TLS and the portable LiDAR are shown in 
Figs. 9 and 10, respectively. The R2 obtained when com-
paring the TLS to the field data was R2 = 0.5782. The R2 
obtained when comparing the PLS to the field data was 
R2 = 0.8735.

When using the TLS for DBH estimation, an RMSE of 
0.176 was obtained. A higher RMSE was obtained when 
using the PLS for DBH estimation (RMSE = 0.071). An out-
lier was identified in the TLS data set; it was tree 12 (see 
Figs. 9, 10).

For the diameter estimation at 4 m, the thickness used in 
the extraction of the slice was 2 cm for the TLS point cloud 
and 1 cm for the PLS point cloud. Figure 11 shows a hori-
zontal projection of the slices. In the case of the TLS slice, 
it is noticeable that some of the stems are not represented, 
while in the case of the PLS slices, some of the stems have a 
great deal of surrounding points that most likely correspond 
to noise.

The final parameters for the cluster analysis at 4  m 
were the following: for the TLS point cloud: minPts = 10 
and eps = 0.4; for the PLS point cloud: minPts = 10, and 
eps = 0.5. Table 3 presents the final diameters obtained at 
a height of 4 m from the three point clouds (TLS, reduced 
PLS, and complete PLS). It should be noted that some of 

the estimated values are overestimations, since they make 
no physical sense: diameters should be smaller at greater 
heights. In fact, of the diameters at 4 m that were estimated 
from the reduced PLS point cloud, 58.3% can be deemed 
overestimates. However, when the complete PLS point cloud 
is used to estimate the diameters, the percentage of overes-
timates is only 23.08% .

Height estimation

The CHM raster layers obtained from each point cloud (TLS 
and PLS) are shown in Fig. 12. The cluster analyses are over-
laid with the central coordinates detected for each tree. The 
CHM’s statistics, the maximum and mean height of each 
CHM raster layer, are shown in Table 4.

Figures 13 and 14 show the linear regression between 
the tree heights measured in the field using the traditional 
methods and the tree heights obtained from the TLS and 
PLS point clouds, respectively. The R2 obtained from the 
comparison of the ground truth height with the TLS is lower 
than the R2 obtained when comparing the ground truth 
height with the PLS (TLS height R2 = 0.0534, PLS height 
R2 = 0.1149). When using the TLS for height estimation, 
the calculated root-mean-square error (RMSE) was 19.593. 
The RMSE was 1.4 m lower when using the PLS for height 
estimation (RMSE = 18.189). These results are detailed in 
Table 5.

Fig. 7  Comparison of the slices extracted at a height of 1.3 m from the TLS and PLS normalized point clouds. a The horizontal projection from 
the TLS point cloud; b the horizontal projection from the PLS point cloud
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The correlation between ground truth height values meas-
ured directly from the PLS point cloud, and height values 
measured automatically from each of the two different point 
clouds are shown in Fig. 15 (TLS) and Fig. 16 (PLS). In both 
cases, the R2 values were greater than in the case of the the 
R2 values when comparing the height measurement using 

automatic methods vs. traditional methods. Furthermore, 
the R2 value remains greater for the PLS’s height measure-
ment, (R2 0.867), than for the TLS’s height measurement 
(R2 0.505). An RMSE of 10.712 was obtained when using 
the TLS for height estimation, while the RMSE was lower 
(RMSE 3.415 m) when using the PLS (see Table 5).

Fig. 8  Result of the cluster analysis performed with DBSCAN over 
the PLS point cloud slice obtained at 1.3 m. Colored clusters corre-
spond to clusters identified as tree stems. Black clusters correspond 

to noise (groups of points that have 10 or fewer points, or where the 
distances between the points are greater than 0.5 m)

Fig. 9  Linear regression 
between diameters acquired in 
the field using the traditional 
methods and diameters obtained 
from the TLS point cloud

1

2

34

5

6

7

8
9

10

11

12

13

14

y = 1.3865x - 0.2396
R² = 0.5782

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0.500 0.600 0.700 0.800 0.900 1.000 1.100

TL
S 

di
am

et
er

s (
m

)

Field diameters (m)



973Trees (2023) 37:963–979 

1 3

Discussion

According to the results presented above, the efficiency in 
data acquisition of PLS systems as compared to TLS sys-
tems or traditional fieldwork seems clear, an observation 
that has also arisen in the other recent studies focused on 
this topic (Balenović et al. 2021; Bauwens et al. 2016; Chen 
et al. 2019; Gollob et al. 2021; Chiappini et al. 2022). This 
is a key point when it comes to ensuring the possibility of 
incorporating LiDAR data into the forest inventory refer-
ence data.

Another key feature of the results presented here is the 
possibility of the automated detection of the trees within a 
stand. The methodology presented here appears to be suc-
cessful at this task. Previous studies also rely on DBSCAN 
clustering to identify individual trees (Hyyppä et al. 2020). 
The use of this methodology conveys an advantage when 
compared to other methodologies, since it avoids constraints 
such as the need for training data (Zeybek and Vatandaslar 
2021) or a reliance on commercial software (Levick et al. 
2021). Such constraints can hinder the viability, from an 
operational standpoint, of the implementation of the PLS in 
forest inventories.

Fig. 10  Linear regression 
between diameters acquired in 
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methods and diameters obtained 
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Fig. 11  Horizontal projection of different slices of the normalized 
point clouds taken at a height of 4 m. a Horizontal projection of the 
slice obtained from the TLS normalized point cloud. b Horizontal 

projection of the slice obtained from the density-reduced PLS nor-
malized point cloud. c Horizontal projection of the slice obtained 
from the complete PLS normalized point cloud
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Additionally, it was observed that after the tree detec-
tion and individualization, it was possible to obtain DBH 
and height metrics from the PLS point clouds. In fact, 
higher accuracy metrics for both DBH and height were 
obtained with the PLS than with the TLS. Nevertheless, 

PLS systems do not always yield more accurate DBH esti-
mations; this depends on many factors such as the accu-
racy and range of the device used, the number of scanning 
positionings used for the TLS and the trajectory followed 
when scanning with the PLS. An example of this is ana-
lyzed in the study conducted by Balenovic et al. (2021). In 
the case of the present study, it should be noted that large 
trees are being studied (roughly 40 m tall). Some studies 
have previously reported differences in the accuracy of the 
data obtained depending on the size of the trees. For exam-
ple, Gollob et al. (2020) found that DBH was generally 
underestimated when the DBH was greater than 10 cm and 
that the magnitude of this underestimation became greater 
with increased DBH. Xie et al. (2022) stated that when 
trees are big, the shapes of their stems’ cross-sections tend 
to be irregular, thus, increasing deviations between dif-
ferent measuring methods. Some other authors, such as 
Ryding et al. (2015), Bauwens et al. (2016), and Hartley 
et al. (2022), also noted that irregularities (bark rough-
ness and textures, or non-regular cross-section shapes) 
have an influence on the measurement of diameters. In 
fact, the greatest deviation coincides with the largest trees 
(for example, trees number 7 and 12). The trees in the case 
of this study also present quite noticeable bark roughness 
and irregular shapes (especially in the case of tree number 

Table 3  Final diameters obtained from the slices at a height of 4 m

The second column shows the diameters measured in the field (at 
a height of 1.3 m). The third column shows the diameters obtained 
from the TLS point cloud at a height of 4 m. The fourth column 
shows the diameters obtained from the reduced PLS point cloud at a 
height of 4 m. Red numbers correspond to overestimations. The fifth 
column shows the diameters obtained with the complete PLS point 
cloud at a height of 4 m

Tree ID DBH field 
data (m)

D4m TLS (m) D4m  PLSdec (m) D4m 
 PLScomplete 
(m)

1 0.829 0.743 0.768 0.708
2 0.796 0.739 – 0.699
3 0.795 0.701 0.800 0.724
4 0.677 0.649 1.709 –
5 0.535 0.481 0.546 0.482
6 0.557 0.440 0.602 0.473
7 1.250 0.959 0.948 0.879
8 0.688 – 2.683 2.728
9 0.603 – 1.822 1.441
10 0.840 0.685 0.731 0.687
11 0.759 0.667 - 0.659
12 0.901 0.749 0.671 0.719
13 0.752 0.669 0.714 0.631
14 0.589 – 1,705 1,900

Fig. 12  The CHM (canopy height model) obtained from each point cloud. The colored dots represent the position of each tree according to the 
previous analysis performed. a The CHM raster obtained from the TLS point cloud. b The CHM obtained from the PLS point cloud

Table 4  The maximum and 
mean height of each CHM 
(canopy height model) obtained 
from the two point clouds (TLS 
and PLS)

CHMTLS CHMPLS

Hmax (m) 47.14 51.36
Hmean (m) 12.81 21.65
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12). These irregularities can lead to errors when automat-
ically fitting the scanned points to circumferences, and 
furthermore, this effect may be greater if there are trunk 
occlusions. In fact, when tree number 12 is removed from 

the analysis, the R2 of the TLS measurements increases 
to 0.95, exceeding the value obtained for the PLS, 0.87. 
Although this circle-fitting approach can lead to errors, as 
shown here, it is an approach which is efficient and easy 

Fig. 13  Linear regression 
between heights acquired in 
the field using the traditional 
methods and heights obtained 
from the TLS point cloud
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Fig. 14  Linear regression 
between heights acquired in 
the field using the traditional 
methods and heights obtained 
from the PLS point cloud
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Fig. 15  Linear regression 
between heights measured 
directly from the PLS point 
cloud and heights obtained 
automatically from the TLS 
point cloud
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Fig. 16  Linear regression 
between heights measured 
directly from the PLS point 
cloud and heights obtained 
automatically from the PLS 
point cloud
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to implement from an operational point of view and it has 
been followed in different studies (Bauwens et al. 2016; 
Hyyppä et al. 2020).

Greater height accuracies are to be expected with the PLS 
as there are fewer occlusions than with the static TLS sys-
tems (Chiappini et al. 2022; Hyyppä et al. 2020). This might 
not only be crucial for obtaining higher height accuracy met-
rics but may also be of interest in terms of going beyond the 
traditional measurements. For example, PLS systems can be 
used effectively to obtain diameters at different heights, as 
shown in this study, and later extract stem curves and esti-
mate volumes, as shown in Hyyppä et al. (2020).

In general, the accuracy metrics obtained in this study are 
lower than in the previously mentioned studies. For DBH 
estimations, Giannetti et al. (2018) reported an RMSE of 
0.0113 m with a TLS point cloud, and an RMSE of 0.0128 m 
with a PLS point cloud. The study of Oveland et al. (2018) 
reported DBH estimations with an RMSE of 0.062 m using 
a TLS point cloud and an RMSE of 0.031 using a PLS point 
cloud. Gollob et al. (2020), when measuring DBH, obtained 
RMSE values of 0.0255 m and 0.0232 m with TLS and PLS 
point clouds, respectively. When measuring heights, Gian-
netti et al. (2018) reported an RMSE of 0.88 m with a TLS 
and an RMSE of 2.15 m with a PLS. In the present study, 
for DBH estimations, the RMSE was 0.176 m with the TLS 
point cloud and 0.0716 m with the PLS point cloud. When 
comparing ground truth height values measured directly 
from the PLS point cloud and height values measured auto-
matically, the RMSE for the TLS was 10.712 m, and for 
the PLS, it was 3.415 m. These RMSE values are lower 
than those obtained when comparing ground truth height 
values measured with traditional methods and height values 
measured automatically. In regards to this point, it is impor-
tant to keep in mind that collecting height information using 
the traditional methods usually entails difficulties, since in 
certain conditions, it can be difficult to ensure an optimum 
point of view to adequately measure individual tree height 
(Sterenczak et al. 2019).

According to the results of this study, DBH measure-
ments can be efficiently obtained from PLS point clouds 

in Eucalyptus stands. In this line, Marselis et al. (2016) 
calculated DBH and obtained similar RMSE and R2 values 
(3.79 cm and 0.72). However, these results contrast the con-
clusions of some other previous studies (Levick et al. 2021; 
Camarretta et al. 2021). This discrepancy may be due to the 
varying complexity of the stands analyzed.

The previously mentioned studies do not test the PLS’s 
ability to calculate individual tree height, while this study 
highlights the superiority of the PLS in comparison to the 
TLS in this regard. Therefore, the results presented here 
show that PLS systems can be used efficiently for inventory 
purposes in Eucalyptus stands similar to the stand analyzed 
here. Considering the importance of the Eucalyptus genus 
for the forestry sector worldwide (FAO 2005), an important 
next step for the future of this research will be to test the 
capacity of the proposed methods in more complex Euca-
lyptus stands.

Conclusion

In conclusion, this study demonstrates the utility and suit-
ability of the PLS with the SLAM algorithm for estimating 
forestry parameters of individual trees in Eucalyptus globu-
lus stands. The potential of these systems is undeniable, and 
an effort is required on the part of the scientific community 
to develop different methodologies for their application. 
Aiding in the extraction of dasometric variables can facili-
tate the use of these types of systems that have the potential 
to become a powerful tool for monitoring the evolution of 
forest masses of interest and even to help optimize produc-
tion masses.

The most notable contribution of this study is that it 
developed a methodology for automatically processing 
LiDAR data acquired from a PLS system to obtain the daso-
metric variables of a Eucalyptus globulus stand. This is note-
worthy due to the importance of this species for economic 
purposes worldwide. Furthermore, the entire methodology is 
based on the use of public domain software, which is crucial 
in terms of its replicability in different stand conditions.
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