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Abstract
The set of awards vectors for a claims problem coincides with the core of the associated
coalitional game. We analyze the structure of this set by defining for each group of claimants
a, so called, utopia game, whose core comprises the most advantageous imputations available
for the group. We show that, given a claims problem, the imputation set of the associated
coalitional game can be partitioned by the cores of the utopia games. A rule selects for each
claims problem a unique allocation from the set of awards vectors. The average-of-awards
rule associates to each claims problem the geometric center of the corresponding set of awards
vectors. Based on the decomposition of the imputation set, we obtain an interpretation of
the average-of-awards rule as a point of fairness between stable and utopia imputations and
provide a backward recurrence algorithm to compute it. To illustrate our analysis, we present
an application to the distribution of CO2 emissions.

Keywords Claims problems · Average-of-awards rule · Utopia games · Global carbon
budget

1 Introduction

A claims problem (Aumann & Maschler, 1985; O’Neill, 1982) arises when a finite group of
agents claim a scarce resource, the endowment, which is insufficient to honor the aggregate
claim. A rule proposes a way to divide the endowment among the claimants. For each claims
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problem, the allocation selected by a rule must belong to the set of awards vectors: it must
be non-negative, bounded from above by the claims, and such that the sum of the awards is
equal to the endowment. Division rules are classified and compared according to different
principles that one may want them to satisfy. Thomson (2019) reviews the vast literature on
claims problems, including the most important rules and axioms.

Following O’Neill (1982), to each claims problem one can associate a coalitional game,
with the creditors as players, and such that the characteristic function assigns to each coalition
the difference between the endowment and the sum of the claims of the complementary
coalition whenever this difference is positive, and zero otherwise. Curiel et al. (1987) note
that the coalitional game associated with a claims problem is a convex game, so its core is a
non-empty convex set. In fact, it can be shown (see for instance Thomson (2019)) that the core
of the coalitional game associated with a claims problem coincides with the corresponding
set of awards vectors.

An intuitive and simple way of selecting an allocation from the set of awards vectors for
a claims problem is to assume that all the awards vectors are equally likely and therefore
choosing their “average”. Mirás Calvo et al. (2022b) called this selection the average-of-
awards rule (AA). Obviously, for each claims problem the AA rule selects the center of
gravity (centroid) of the core of the associated game, so the AA rule corresponds to the core-
center solution defined by González-Díaz & Sánchez-Rodríguez (2007) for balanced games.
Mirás Calvo et al. (2022b) show that the AA rule satisfies a good number of properties so
as to be included in the inventory of rules. Mirás Calvo et al. (2022a) compare the AA rule
with the most important rules using the Lorenz order. In this paper we address the issue of
computing the recommendation made by the AA rule for a problem.

Archimedes of Syracuse introduced the concept of center of gravity in his work On the
Equilibrium of Planes. Archimedes derived the law of the lever and calculated the center
of gravity of parallelograms, triangles, and trapeziums. Implicit in the work is the idea that
the center of gravity is a point of equilibrium: a point from which a freely hanging body is
stable. Today a more general concept, the centroid, is used in many different fields: physics,
engineering, etc. The core-center is just another application of this concept, in this case to
cooperative game theory.

It is easy to calculate the centroid for a symmetric shape, but for an irregular object it
could be a challenging task. Again Archimedes paved the way. One of the techniques used in
obtaining the centroid of a compound shape is the method of geometric decomposition. The
method works by dividing the shape into a number of parts, that share no common volume,
and then finding the overall centroid as the average of the centroid of each part weighted by
its relative measure.

We rely on the method of geometric decomposition to obtain an algorithm to compute
the AA rule for claims problems. Let us explain the intuitions behind our analysis with the
help of a simple diagram. Consider a claims problem with just three claimants. Figure1
shows a sketch of the imputation set of the associated coalitional game and a core with the
maximum number of extreme points. If all of the claims are bigger than the endowment, the
core coincides with the imputation set. In this situation, most of the rules recommend the
egalitarian division among the claimants: the barycenter of the imputation triangle.

But, if at least one claim is less than the endowment then there are imputations that are not
stable. In particular, when the three claims do not exceed the endowment, these imputations
belong to the three interior equilateral triangles in the picture. The imputations in the triangle
at bottom left, assign to claimant 1 at least its claim, so the allocations in this region are clearly
the most favorable to this agent. This triangle happens to be the core of the coalitional game
associated with a particular claims problem, that will be called the utopia game for claimant
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Fig. 1 A generic three-claimant set of awards vectors X(E, d)

1. Analogously, we can define utopia games for agents 2 and 3, whose respective cores are
the other two interior triangles. Therefore, a reasonable selection in each of these equilateral
triangles will be, again, the egalitarian division. Now, each utopia region represents a given
percentage of the total imputation set. Since the big triangle can be decomposed as the union of
the smaller triangles (the utopia regions for the claimants) and the core, the initial egalitarian
division is the weighted average of the utopia egalitarian selections and the centroid of the
core (the AA rule). So the AA rule can be computed using this decomposition: a partition of
the imputations set by cores of coalitional games associated with claims problems.

Our aim is to show that these ideas can be extended to claims problems with an arbi-
trary number of claimants. Given a group of claimants, we want to identify the allocations
that assign to the group at least the joint claim, provided that all the minimal rights have
already been allocated. It turns out that these allocations are the set of awards vectors for a
claims problem that we name the utopia problem for that group of claimants. We refer to the
associated coalitional game as the utopia game for that coalition.

The contribution of this paper is threefold. First, we show that given a claims problem,
an allocation that belongs to the imputation set of the associated coalitional game is either
a stable allocation for that game or it is a stable allocation for the utopia game of some
coalition. Secondly, we provide a backward recurrence algorithm to compute the allocation
selected by the AA rule. Finally, we present an application to a real-world problem involving
20 claimants.

Our main result establishes that the imputation set of the game associated with a claims
problem is the union of the cores of the utopia games for all the proper coalitions, and that
any two pieces of this decomposition have negligible intersection. Therefore, applying the
method of geometric decomposition, we develop an algorithm that computes the allocation
selected by the AA rule. The algorithm can be greatly simplified by taking into consideration
some of the properties satisfied by the rule. In doing so, we come out with an explicit formula
for the AA rule. Based on the algorithm and the formula we provide interpretations of the
allocation selected by the AA rule.
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Certainly, our algorithm is specific for claims problems and therefore can not be applied to
compute the core-center solution for arbitrary balanced games. Nevertheless, in addition to
the class of bankruptcy games, it can be easily adapted to give the core-center solution for the
class of two-bound core games (Gong et al., 2022), that includes, 1-convex games (Driessen,
1986), big boss games (Muto et al., 1988), and clan games (Potters et al., 1989). Moreover,
our analysis extends to the computation of the centroid of any core-like polyhedron that is
the intersection of an efficiency-type hyperplane with a rectangle, for instance, the core cover
set (Tijs & Lipperts, 1982).

One of the many applications of claims problems is the allocation of CO2 emissions,
see Giménez-Gómez et al. (2016), Duro Moreno et al. (2020), Heo and Lee (2022), and
the references therein. The endowment is the available carbon budget (the allowed global
CO2 emissions before crossing a dangerous threshold), and the claimants are the countries, or
groups of countries, that are typically going to claim a larger quota ofCO2 emissions.Howcan
the global carbon budget be distributed among the emitters? According to the United Nations
Environment Program (2019) in order to get in line with the Paris Agreement, emissionsmust
drop 7.6 per cent per year from 2020 to 2030. Based on this conclusion, we present a dynamic
model that analyzes the year-by-year reductions proposed by the proportional, the Talmud,
the random arrival, and the average-of-awards rules for the 2020–2030 period and the top
20 world emitters. This example illustrates the behavior of the AA rule and highlights some
similarities and discrepancies with the other rules.

In Sect. 2 we introduce the basic definitions and notations. The utopia games are defined
and analyzed in Sect. 3. In Sect. 4we derive our decomposition result: the union of the cores of
the utopia games comprises the imputation set. In Sect. 5, we develop a backward recurrence
algorithm to compute the AA rule. Section6 is devoted to the CO2 emissions example. In
Sect. 7 we briefly point out how the method can be applied to the computation of the core-
center solution for some particular classes of games. We leave to the Appendix the proofs of
the results. The computations in all the examples and applications throughout the paper were
carried out with the ClaimsProblems R package Núñez Lugilde et al. (2023), Mirás Calvo
et al. (2023).

2 Preliminaries

Let N be a finite subset of natural numbers. Given z ∈ R
N and S ∈ 2N , let |S| be the

number of elements of S and z(S) = ∑

i∈S
zi . Given N ′ ⊂ N , let zN ′ = (

zi
)
i∈N ′ ∈ R

N ′
be

the projection of z onto R
N ′
. A claims problem with set of claimants N is a pair (E, d)

where E ≥ 0 is the endowment to be divided and d ∈ R
N is the vector of claims satisfying

di ≥ 0 for all i ∈ N and d(N ) ≥ E . We denote the class of claims problems with set of
claimants N by CN . The minimal right of claimant i ∈ N in (E, d) ∈ CN is the quantity
mi (E, d) = max

{
0, E − d(N\{i})}. The truncated claim of claimant i ∈ N in (E, d) ∈ CN

is ti (E, d) = min{E, di }. Let m(E, d) = (
mi (E, d)

)
i∈N and t(E, d) = (

ti (E, d)
)
i∈N .

Sometimes we write t = t(E, d) and m = m(E, d) if no confusion is possible.
A vector x ∈ R

N is an awards vector for (E, d) ∈ CN if 0 ≤ xi ≤ di for all i ∈ N and
x(N ) = E . Let X(E, d) be the set of awards vectors for (E, d) ∈ CN , that is, X(E, d) ={
x ∈ R

N : 0 ≤ xi ≤ di for all i ∈ N , x(N ) = E}. Therefore, X(E, d) is the intersection
of the n-rectangle

∏

i∈N
[0, di ] with the hyperplane H(E, d) = {x ∈ R

N : x(N ) = E}, so
X(E, d) is a nonempty compact convex polytope that has, at most, dimension n − 1. Let
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I (E, d) = {x ∈ H(E, d) : xi ≥ mi (E, d)} be the set of allocations that share the endowment
honoring the minimal rights.

A rule is a function R : CN → R
N assigning to each claims problem (E, d) ∈ CN an

awards vector R(E, d) ∈ X(E, d), that is, a way of associating with each claims problem a
division among the claimants of the amount available.

A coalitional game with set of players N is a function v : 2N → R such that v(∅) = 0. Let
GN be the set of all coalitional games with player set N . For simplicity, we will write v(i)
instead of v({i}) for i ∈ N . An allocation x ∈ R

N is said to be efficient, or a preimputation,
for a game v ∈ GN if x(N ) = v(N ). The set of all efficient allocations for game v is the
hyperplane H(v) = {x ∈ R

N : x(N ) = v(N )}. Given some class of games G ⊂ GN , a
solution onG is amappingϕ : G → R

N that associates with each game v ∈ G a preimputation
ϕ(v) ∈ H(v).

Given a convex polytope K ⊂ H(v) denote by Voln−1(K ), or simply Vol(K ) if no
confusion is possible, its (n − 1)-dimensional Lebesgue measure and by μ(K ) its centroid.
Convexity of K ensures that μ(K ) ∈ K . Also μ(a+ K ) = a+μ(K ) for all a ∈ R

N . By the
method of geometric decomposition, if K = K1 ∪ K2, Vol

(
K1 ∩ K2

) = 0, and ρ = Vol(K1)
Vol(K )

,
then μ(K ) = ρμ(K1) + (1 − ρ)μ(K2).

The set of imputations of a game v ∈ GN is defined as I (v) = {
x ∈ H(v) : xi ≥

v(i) for all i ∈ N
}
. Clearly, I (v) is nonempty if and only if � = v(N ) − ∑

k∈Nv(k) ≥ 0.
In that case, I (v) ⊂ H(v) is the regular simplex spanned by the points ai = (ai1, . . . , a

i
n) ∈

R
N , i ∈ N , where aij =

⎧
⎪⎨

⎪⎩

v( j) if j ∈ N\{i}
v(N ) −

∑

k �=i

v(k) if j = i . When v(N ) = ∑
k∈Nv(k), the

imputation set is a singleton, I (v) = {(v(1), . . . , v(n))}. Otherwise, √
2� is the common

edge length and the (n−1)-volume of I (v) is Vol(I (v)) =
√
n

(n−1)!�
n−1. The center of gravity

of I (v) is the arithmetic mean of its extreme points, μ(I (v)) = ∑n
i=1

ai
n , so μi (I (v)) =

v(i) + �
n for all i ∈ N .

The core of a game v ∈ GN is the set C(v) = {
x ∈ I (v) : x(S) ≥ v(S) for all S ∈ 2N

}
.

A game v ∈ GN is called balanced if its core is non-empty, i.e., C(v) �= ∅. The allocations
that belong to the core are called stable allocations. A game v ∈ GN is additive if v(S) =∑

i∈Sv(i) for all S ∈ 2N , in which case C(v) = I (v) = {(v(i)
)
i∈N }. Thus, an additive game

v ∈ GN is characterized by the vector a = (
v(i)

)
i∈N ∈ R

N . To simplify the notation, we
identify by the same letter both the vector and the additive game. Two games v1, v2 ∈ GN

are said to be strategically equivalent if there exists k > 0 and an additive game a ∈ GN

such that v1 = a + kv2. Observe that if the scale factor is k = 1, then v1 is the translate of
game v2 by the vector a. A game v ∈ GN is zero-normalized if v(i) = 0 for each player
i ∈ N . Given a game v ∈ GN the zero-normalization of v is the game v0 ∈ GN defined
by v0(S) = v(S) − ∑

i∈Sv(i), S ∈ 2N . Clearly, a game v ∈ GN and its zero-normalization
v0 ∈ GN are strategically equivalent, in fact, v = a + v0 where a = (

v(i)
)
i∈N . A game

v ∈ GN is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N . It is known
that convex games are balanced, so the core C(v) of a convex game v ∈ GN is a non-empty
convex polytope.

The core-center (González-Díaz & Sánchez-Rodríguez, 2007) is the solution that asso-
ciates to each balanced game v ∈ GN the stable allocation μ(v) = μ(C(v)), the centroid
of the core. Clearly, the core-center of a balanced game v ∈ GN is the expectation of the
uniform distribution over the core of the game: the average stable payoff.
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O’Neill (1982) associates with each claims problem (E, d) ∈ CN a coalitional game
v ∈ GN defined as v(S) = max

{
0, E − d(N\S)

}
for all S ∈ 2N . Note that, for each

i ∈ N , mi (E, d) = v(i) and ti (E, d) = v(N ) − v(N\{i}). Naturally, H(v) = H(E, d)

and I (v) = I (E, d). Thomson (2019) shows that for each claims problem (E, d) ∈ CN , the
core of the associated coalitional game is its set of awards vectors, that is, C(v) = X(E, d).
Curiel et al. (1987) note that the coalitional game associated with a claims problem is convex.
If a = (

v(i)
)
i∈N then the coalitional game v0 ∈ GN associated with the claims problem

(
E − a(N ), d − a

) ∈ CN is the zero-normalization of v.

3 The utopia games

Let (E, d) ∈ CN be a claims problem and v ∈ GN the associated coalitional game. Curiel
et al. (1987) show that the core C(v) consists of all efficient allocations which are bounded
from below by the minimal rights and bounded from above by the truncated claims:

C(v) = X(E, d) = {
x ∈ H(E, d) : mi (E, d) ≤ xi ≤ ti (E, d) for all i ∈ N

}
.

For instance, for a claims problem (E, d) ∈ CN with two claimants, N = {1, 2}, and
d = (d1, d2) ∈ R

N such that 0 ≤ d1 ≤ d2, it is clear that X(E, d) = I (E, d) is the line
segment with endpoints

(
m1(E, d), E −m1(E, d)

)
and

(
E −m2(E, d),m2(E, d)

)
. Figure1

shows a set of awards vectors for a three-claimant problem with the maximum number of
extreme points. The next result, whose proof follows at once from the representation of
X(E, d) given above, identifies the claims problems, with at least three claimants, for which
the set of awards vectors is either a regular simplex or it is not full dimensional.

Proposition 3.1 Let (E, d) ∈ CN be a claims problem with |N | ≥ 3. Then, X(E, d) =
I (E, d) if and only if E ≤ di for all i ∈ N or E = d(N ). Moreover, Vol(X(E, d)) = 0 if
and only if E = 0 or E = d(N ) or di = 0 for some i ∈ N.

Let CN+ = {(E, d) ∈ CN : 0 < E < d(N ), di > 0 for all i ∈ N } be the class of claims
problems with set of claimants N such that Vol(X(E, d)) > 0. Our analysis is mainly
concerned with claims problems that belong to CN+ , that is, problems for which the set of
awards vectors is full dimensional. For such problems either X(E, d) = I (E, d) or, as we
argued in the simple example presented in the Introduction, there are vectors belonging to a
region with positive measure that award the minimal rights to each claimant but that clearly
benefit a certain creditor or group of creditors.

Denote P = {S ∈ 2N : S �= N } the collection of all the proper coalitions of N . Given a
claims problem (E, d) ∈ CN and a group of claimants T ∈ P we want to identify all the
allocations that guarantee to the claimants in T at least d(T ) provided that the minimal rights
of all the claimants are honored, that is, allocations x ∈ I (E, d) such that x(T ) ≥ d(T ).
Certainly, these are ideal, or utopian, payoffs for the members of T as a group, because
they receive an award larger than their initial claim. We achieve this goal by associating to
each proper coalition T a so called T -utopia claims problem. If the sum of the claims of the
creditors in T is bigger or equal than the endowment, d(T ) ≥ E , then the T -utopia claims
problem is just the problem where the claimants in N\T withdraw their claims.1 But, if the
aggregate claim of the agents in T is less than the endowment, d(T ) < E , then first we give
to the members of T their initial claims and to the others their minimal rights. So, the new

1 In this case, the associated coalitional game corresponds to the T -face game defined by Mirás Calvo et al.
(2020).
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endowment is the remainder, each agent in T claims that endowment while the others claim
what was not already satisfied.

Definition 3.2 Let (E, d) ∈ CN be a claims problem and T ∈ P . The T -utopia claims
problem (ẼT , d̃T ) ∈ CN and the T -utopia additive game aT ∈ GN are given by:

d(T ) ≥ E d(T ) < E

ẼT E E − d(T ) −
∑

�∈N\T
m�(E, d)

d̃T (d̃T )i =
{
di if i ∈ T

0 if i /∈ T
(d̃T )i =

{
ẼT if i ∈ T

di − mi (E, d) if i /∈ T

aT aT (i) = 0, i ∈ N aT (i) =
{
di if i ∈ T

mi (E, d) if i /∈ T

Let ṽT ∈ GN be the coalitional game associated with the T -utopia claims problem
(ẼT , d̃T ) ∈ CN . The T -utopia game is defined as vT = aT + ṽT ∈ GN .

Let us see that the T -utopia problem given in Definition 3.2 is in fact a claims problem.
Clearly (ẼT , d̃T ) ∈ CN when d(T ) ≥ E . Now, suppose that d(T ) < E and let v ∈ GN be
the coalitional game associated with (E, d) ∈ CN . Then ẼT ≥ 0, because, by convexity of
game v, E − d(T ) = v(N\T ) ≥ ∑

�∈N\T v(�) = ∑
�∈N\Tml(E, d). In addition, (d̃T )i ≥ 0

for all i ∈ N and d̃T (N ) = |T |ẼT + d̃T (N\T ) ≥ ẼT .
In Appendix A we analyze several properties of the T -utopia game and its core. We prove

that vT is a convex game, vT (N ) = E , and vT (T ) = E−v(N\T ). Certainly, when d(T ) ≥ E
the core of the T -utopia game has at most dimension n − 2, so it is not full dimensional. If
T = ∅ then vT = v and ṽT is the zero-normalization of v. The T -utopia game vT for any
coalition T with n − 1 claimants and such that d(T ) < E is additive, so vT = aT and its
core is a singleton, C(vT ) = {aT }. In summary, for each coalition T ∈ P such that either
d(T ) ≥ E or |T | = n − 1 the core of the T -utopia game is not full dimensional. Given a
claims problem (E, d) ∈ CN+ consider the family of coalitions with at most n − 2 claimants
for which the aggregate sum of claims does not exceed the endowment,

F = {
T ∈ P : |T | ≤ n − 2, d(T ) < E

}
.

Note that the empty set belongs to F . Proposition A.2 shows that the core of the T -utopia
game vT is full dimensional if and only if coalition T belongs to family F .

4 A decomposition of the imputation set

Our main result states that the imputation set of a coalitional game associated with a claims
problem that has full dimensional core is the union of the full dimensional cores of the T -
utopia games, and that any two pieces of this decomposition have negligible intersection.
The proof is given in Appendix B.2

2 Obviously, it is also true that the imputation set is the union of the cores of all the T -utopia games, I (E, d) =⋃

T∈P
C(vT ), because if T /∈ F thenC(vT ) is not full dimensional. Therefore, these pieces of the decomposition

are, to our purposes, redundant.
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Theorem 4.1 Let (E, d) ∈ CN+ and for each T ∈ F let vT ∈ GN be the T -utopia game.
Then

I (E, d) =
⋃

T∈F
C(vT ).

Moreover, if T , R ∈ F , T �= R, then Voln−1
(
C(vT ) ∩ C(vR)

) = 0.

Given a claims problem, any allocation that shares the entire endowment and assigns to
each claimant at least the minimal rights must either belong to the set of awards vectors for
the claims problem or being a stable allocation for the T -utopia game of a particular group
of claimants T . Moreover, the intersection of the cores of two utopia games corresponding
to two different coalitions in F has null volume. We also show in Appendix B that the core
of the T -utopia game of an inclusion-wise maximal set T ofF coincides with the imputation
set of that game, and therefore it is a regular simplex, that is, if T is a maximal element of F
then C(vT ) = I (vT ).

For each coalition T ∈ F , the T -utopia game vT is strategically equivalent to the coali-
tional game ṽT ∈ GN associated with the T -utopia claims problem (ẼT , d̃T ) ∈ CN+ .
Therefore, we can apply Theorem 4.1 to the T -utopia claims problem to obtain a decompo-
sition of the imputation set of ṽT by the cores of the corresponding utopia games.

Let T ∈ F and denote FT = {
S ∈ F : S ⊃ T

}
. Observe that T is a maximal coalition

of F if and only if FT = {T }. In that case I (vT ) = C(vT ). In general, the imputation set of
the T -utopia game vT is the union of the cores of the utopia games corresponding to those
coalitions that belong to FT . The proof is left to Appendix B.

Theorem 4.2 Let (E, d) ∈ CN+ . If T ∈ F then I (vT ) = ⋃

S∈FT

C(vS).

Therefore, the tree structure of the inclusion relation on F determines the structure of the
decomposition of the imputation set I (v) through the cores of the T -utopia games. The
inclusion-wise maximal sets of F contribute to the partition with pieces that are regular sim-
plices. These pieces in turn are part of the decompositions of the utopia games corresponding
to the subsets of the maximal elements. Repeating the process, going down the tree branches,
we finally reach the empty set. Since the core of its utopia game is the set of awards vectors for
the claims problem, X(E, d) = C(v∅), the decomposition is then completed. We illustrate
the process in the following example.

Example 4.3 Let N = {1, 2, 3, 4} and consider the claims problem (E, d) ∈ CN+ with E = 10
and d = (2, 4, 7, 9). The associated coalitional game v ∈ GN is given by: v(i) = 0 for all
i ∈ N ; v({1, 2}) = v({1, 3}) = v({1, 4}) = v({2, 3}) = 0; v({2, 4}) = 1; v({3, 4}) = 4;
v({1, 2, 3}) = 1; v({1, 2, 4}) = 3; v({1, 3, 4}) = 6; v({2, 3, 4}) = 8; and v(N ) = 10.
Clearly, F = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}. The following diagram represents the tree
structure of family F ordered by inclusion.

∅

{4}

{3}

{1}

{2}

{1, 3}

{1, 2}
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Fig. 2 The projection onto R3 of the T -utopia cores for T ∈ F

The maximal elements of F are the coalitions {4}, {1, 2}, and {1, 3}. Therefore, C(v{4}) =
I (v{4}), C(v{1,2}) = I (v{1,2}), and C(v{1,3}) = I (v{1,3}), whose projections onto R

3 are the
tetrahedrons shown in Fig. 2 (left). For any coalition T ∈ F , the T -utopia additive game
aT ∈ GN and the T -utopia problem (ẼT , d̃T ) ∈ CN+ are given in the next table:

{1} {2} {3} {4} {1, 2} {1, 3}
ẼT 8 6 3 1 4 1
d̃T (8, 4, 7, 9) (2, 6, 7, 9) (2, 4, 3, 9) (2, 4, 7, 1) (4, 4, 7, 9) (1, 4, 1, 9)
aT (2, 0, 0, 0) (0, 4, 0, 0) (0, 0, 7, 0) (0, 0, 0, 9) (2, 4, 0, 0) (2, 0, 7, 0)

We have that I (v{1}) = C(v{1}) ∪ C(v{1,2}) ∪ C(v{1,3}), I (v{2}) = C(v{2}) ∪ C(v{1,2}), and
I (v{3}) = C(v{3}) ∪C(v{1,3}). The projections of the cores C(v{1}), C(v{2}), and C(v{3}) are
depicted in Fig. 2 (middle). Finally, since v is a zero-normalized game we have that v∅ = v

and I (v) = C(v)∪C(v{1})∪C(v{2})∪C(v{3})∪C(v{4})∪C(v{1,2})∪C(v{1,3}). The projected
core of game v is shown in Fig. 2 (right).

5 The average-of-awards rule algorithm

One way of defining meaningful rules for claims problems is by applying game theoret-
ical solutions to the associated coalitional game. The average-of-awards rule is the rule
AA : CN → R

N that assigns to each claims problem (E, d) ∈ CN the core-center of its
associated coalitional game v ∈ GN , that is, AA(E, d) = μ(v) = μ(C(v)) ∈ X(E, d).
Since the core of the associated coalitional game coincides with the set of awards vectors
for a claims problem, the average of awards rule is the expected value of the (continuous)
uniform distribution over the set of awards vectors. This is an intuitive and simple way of
selecting an allocation from this set: assume that all the awards vectors are equally likely and
choose their expected value. Mirás Calvo et al. (2022b) analyze the AA rule in detail showing
that it satisfies a good number of properties. Let us recall here the ones that are relevant for
our purposes that, by the way, are straightforward. The AA rule satisfies:

• Anonimity: if for each (E, d) ∈ CN , each bijection f from N into itself, and each i ∈ N ,
AAi (E, d) = AA f (i)

(
E, (d f (i))i∈N

)
.

• Equal treatment of equals3: if for each (E, d) ∈ CN such that di = d j we have
AAi (E, d) = AA j (E, d).

3 Anonymity implies equal treatment of equals.
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• Null claims consistency: if for each (E, d) ∈ CN , and each N ′ ⊂ N , if d(N\N ′) = 0
we have AAN ′(E, d) = AA(E, dN ′).

• Self-duality: if for each (E, d) ∈ CN we have AA(E, d) = d − AA
(
d(N ) − E, d

)
.

Obviously, AA(0, d) = 0, AA(d(N ), d) = d , and AAi (E, d) = 0 for each i ∈ N such
that di = 0. Moreover, by null claims consistency, in order to compute the AA rule, the
agents whose claims are 0 can be removed, so we can restrict our analysis to the class CN+ .
But, if (E, d) ∈ CN+ then Theorems 4.1 and 4.2 allow us to apply the method of geometric
decomposition and derive a backward recurrence algorithm to compute AA(E, d).

Let (E, d) ∈ CN+ , T ∈ F , vT ∈ GN the T -utopia game, aT ∈ GN the T -utopia additive
game, and ṽT ∈ GN the coalitional game associated with the T -utopia claims problem
(ẼT , d̃T ) ∈ CN+ . The volumes of the imputation set and the core of game vT , scaled by the

factor α =
√
n

(n−1)! , will be denoted pIT = 1
α
Vol(I (vT )) and pT = 1

α
Vol(C(vT )).

First, we focus on the imputation set of the T -utopia game, I (vT ). Consider the claims
problem with initial endowment ẼT and n equal claims (ẼT , . . . , ẼT ) whose associated
coalitional game is given by ṽ I

T (N ) = ẼT and ṽ I
T (S) = 0 if S �= N . Then v I

T = aT + ṽ I
T ;

I (vT ) = I (v I
T ) = C(v I

T ) = aT + I (ṽ I
T ); pIT = (ẼT )n−1; and μi (I (vT )) = μi (v

I
T ) =

aT (i) + ẼT
n , for all i ∈ N .

Next, we turn our attention to the core of the T -utopia game,C(vT ). According to Theorem
4.1 and Theorem 4.2, we can apply the method of geometric decomposition to obtain:

pIT = pT +
∑

S∈FT
S �=T

pS and pITμ(v I
T ) = pTμ(vT ) +

∑

S∈FT
S �=T

pSμ(vS). (1)

Denote c = max{|T | : T ∈ F} the biggest cardinality of the coalitions in the family F . If
c = 0 then F = {∅}, C(v) = I (v), and AAi (E, d) = E

n for all i ∈ N . If c > 1, then for

each T ∈ F with |T | = c, T is maximal so C(vT ) = I (vT ), pIT = pT = (ẼT )n−1, and

μi (vT ) = aT (i) + ẼT
n , for all i ∈ N . Then, we proceed backwards on the cardinality of

the coalitions in F . For each T ∈ F such that |T | = t < c, either T is maximal and so
C(vT ) = I (vT ) as before, or we can apply the equalities in (1) to compute pT and μ(vT ),
because |S| > t whenever S ∈ FT , S �= T . The procedure ends when t = 0, that is T = ∅,
because AA(E, d) = μ(C(v)) = μ(C(v∅)). The procedure is described in pseudocode form
in Algorithm 1.

Example 5.1 Let N = {1, 2, 3} and consider the claims problem (E, d) ∈ CN+ with E = 4
and d = (3, 5, 5). Thenm(E, d) = (0, 0, 0) and F = {∅, {1}}, so {1} is a maximal coalition
of F .

Therefore:

• Ẽ{1} = E − d1 = 1 and a{1} = (d1, 0, 0) = (3, 0, 0).

• pI{1} = (Ẽ{1})2 = 1 and μ(v{1}) = a{1} + ( Ẽ{1}
3 ,

Ẽ{1}
3 ,

Ẽ{1}
3

) = ( 10
3 , 1

3 ,
1
3

)
.

• Ẽ∅ = E = 4, a∅ = (0, 0, 0), pI∅ = (Ẽ∅)2 = 16 and μ(v I
∅) = ( 4

3 ,
4
3 ,

4
3

)
.

• Since c = max{|T | : T ∈ F} = 1 then p{1} = pI{1} = 1 and p∅ = pI∅ − p{1} = 16− 1 =
15.

Finally,

AA(E, d) = 1

p∅
(
pI∅μ(v I

∅) − p{1}μ(v{1})
) = ( 6

5 ,
7
5 ,

7
5

)
.

The set of awards vectors X(E, d) and the allocation AA(E, d) are shown in Fig. 3.

123



Annals of Operations Research

Algorithm 1 AA rule algorithm

1: procedure AA(E, d) � The AA rule for (E, d) ∈ CN+
2: n ← |d| � The number of claims
3: F ← T : d(T ) < E, |T | ≤ n − 2 � The family F
4: c ← max{|T | : T ∈ F} � The biggest cardinal
5: for all T ∈ F do
6: U (T ) ← (

ẼT , aT
) � The T -utopia game

7: p(T , I ) ← (
ẼT

)n−1 � The imputation set volume: pIT
8: g(T , I ) ← aT + 1

n ẼT � The imputation set center: μI
T

9: end for
10: for t = c, c − 1, . . . , 0 do � Backward recurrence
11: for all T ∈ F : |T | = t do
12: p(T ) ← p(T , I ) − ∑

S∈F
S⊃T

p(S) � The volume pT

13: g(T ) ← 1
p(T )

(
p(T , I )μ(T , I ) − ∑

S∈F
S⊃T

p(S)g(S)
)

� The center of gravity μT

14: end for
15: end for
16: return g(∅) � AA(E, d) is μ(∅)

17: end procedure

Fig. 3 The set of awards vectors
and the AA allocation for the
problem

(
4, (3, 5, 5)

)

The AA rule is the unique rule for which the egalitarian division of the initial endowment
E is the weighted sum of the allocations that the rule assigns to the T -utopia games with full
dimensional core. The weights are the ratios of T -utopia allocations to stable allocations.

Working out the computations we obtain alternative expressions for all of the elements
of the algorithm. In Appendix C we show that the AA rule is the core-center of a game,
v∗
∅ ∈ GN , that is strategically equivalent to the coalitional game ṽ∗

∅ ∈ GN associated with

a claims problem, (Ẽ∗
∅, d̃∗

∅) ∈ CN for which all of the claims are equal to the endowment.
Therefore, since μ(ṽ∗

∅) coincides with the equalitarian division, initially, the AA rule divides

the amount Ẽ∗
∅ equally among the claimants. Then, each claimant’s award is readjusted by

adding the vector a∗
∅.

Certainly, the algorithm can be improved upon by making use of some properties satisfied
by the AA rule. For instance, by anonymity, we can assume that given a claims problem
(E, d) ∈ CN , the vector of claims d = (d1, . . . , dn) ∈ R

N is sorted in ascending order, i.e.,
d1 ≤ · · · ≤ dn . The AA rule is self-dual, so if the endowment is greater than the half-sum
of claims, E ≥ 1

2d(N ), then AA(E, d) = d − AA(d(N ) − E, d) and d(N ) − E ≤ 1
2d(N ).

Therefore, we can restrict the algorithm to the claims problems for which E ≤ 1
2d(N ).

But Mirás Calvo et al. (2022b) show that if d(N\{n}) ≤ E ≤ dn then AA j (E, d) = d j
2
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for all j ∈ N\{n} and AAn(E, d) = E − 1
2d(N\{n}). As a consequence, we can always

reduce the computation of the AA rule of a claims problem (E, d) ∈ CN+ to the case where
0 < E ≤ min{ 12d(N ), d(N\{n})}. Let I = {i ∈ N : {i} ∈ F} and χ(i) = 1 if {i} ∈ F and
χ(i) = 0 otherwise. We further simplify the notation by writing pi and p instead of p{i} and
p∅, respectively.

Theorem 5.2 Let (E, d) ∈ CN+ such that E ≤ min{ 12d(N ), d(N\{n})}. Then, for all i ∈ N,
we have that

AAi (E, d) = 1
n

(
E +

∑

j∈I

p j
p d j

)
− χ(i) pi

p di .

According to Theorem 5.2, in order to obtain AA(E, d) we have to compute the ratios
p j
p

for the claimants such that E > d j . Therefore,
p j
p represents the ratio of utopia allocations

for claimant j to awards vectors for the problem (E, d). We call this proportion the utopia
ratio for claimant j . Now, let us increase the initial endowment by adding, for each claimant
whose claim does not exceed the endowment, an amount equal to the utopia ratio times
the claim, E + ∑

j∈I
p j
p d j . Then, the AA rule first acts as an egalitarian rule, dividing the

endowment enlarged by the utopia ratios equally among the agents. Then, it takes away from
each claimant the extra amount initially granted.

Example 5.3 Let N = {1, 2, 3, 4} and consider the claims problem of Example 4.3,
that is, (E, d) ∈ CN with E = 10 and d = (2, 4, 7, 9). Recall that F ={∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}} so I = {{1}, {2}, {3}, {4}}. First, we compute pT for
the maximal elements of F that, as shown in Fig. 2, are tetrahedrons:

• C(v{4}) = I (v{4}) so p{4} = (E − d4)3 = (10 − 9)3 = 1.
• C(v{1,2}) = I (v{1,2}), so p{1,2} = (E − d1 − d2)3 = (10 − 2 − 4)3 = 64.
• C(v{1,3}) = I (v{1,3}), so p{1,3} = (E − d1 − d3)3 = (10 − 2 − 7)3 = 1.

Secondly, from the decompositions obtained in Example 4.3 we have:

• I (v{1}) = C(v{1}) ∪ C(v{1,2}) ∪ C(v{1,3}), so (E − d1)3 = p{1} + p{1,2} + p{1,3}. Then
p{1} = (10 − 2)3 − 64 − 1 = 447.

• I (v{2}) = C(v{2})∪C(v{1,2}), so (E−d2)3 = p{2}+ p{1,2}. Then p{2} = (10−4)3−64 =
152.

• I (v{3}) = C(v{3})∪C(v{1,3}), so (E−d3)3 = p{3} + p{1,3}. Then p{3} = (10−7)3−1 =
26.

Finally, I (v) = C(v) ∪ C(v{1}) ∪ C(v{2}) ∪ C(v{3}) ∪ C(v{4}) ∪ C(v{1,2}) ∪ C(v{1,3}) and
p = p∅ = E3 − ∑

T∈F
pT = 103 − 691 = 309. Then, applying Theorem 5.2,

AA1(E, d) = 1
n

(
E +

∑

j∈I

p j
p d j

)
− χ(1) p1

p d1

=1

4

(

10 + 447 × 2 + 152 × 4 + 26 × 7 + 1 × 9

309

)

− 447 × 2

309
= 1207

1236 .

Similar computations show that,

AA(E, d) = ( 1207
1236 ,

2351
1236 ,

1414
431 , 1494

389

) = (0.9765, 1.9021, 3.2807, 3.8406).
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Fig. 4 World CO2 emissions from 1960 to 2014

6 An application: CO2 emissions

TheUnitedNations Framework Convention onClimate Change (UNFCCC), created in 1992,
is an international treaty that basically seeks to combat climate change by limiting average
global temperature increases. Initially, 154 nations signed the UNFCCC (there are now 197
parties) that have met annually since the first Conference of the Parties (COP) took place
on April 1995 in Berlin. At the 21st Conference of the Parties (COP 21) held in Paris on
December 2015, parties to the UNFCCC reached a landmark agreement to combat climate
change. The Paris Agreement central aim is: “to strengthen the global response to the threat of
climate change, in the context of sustainable development and efforts to eradicate poverty, by
holding the increase in the global average temperature to well below 2 degrees Celsius above
pre-industrial levels and to pursuing efforts to limit the temperature increase to 1.5 degrees
Celsius above pre-industrial levels, recognizing that this would significantly reduce the risk
and impacts of climate change”. The Paris Agreement entered into force on 4 November
2016. Figure4 shows the World emissions of CO2, measure in gigatonnes (Gt),4 from 1960
to 2014 (source: Climate Change Data, World Bank Group).

In November 2019, the United Nations Environment Programme issued the tenth annual
Emissions Gap Report: “It provides the latest assessment of scientific studies on current
and estimated future greenhouse gas emissions and compares these with the emission levels
permissible for the world to progress on a least-cost pathway to achieve the goals of the Paris
Agreement. This difference between ’where we are likely to be and where we need to be’
has become known as the emissions gap”. The report tells us that total emissions reach a
record high of 55.3 Gt of CO2 equivalent in 2018. To get in line with the Paris Agreement,
emissions must drop 7.6 per cent per year from 2020 to 2030 for the 1.5 ◦C goal and 2.7%
per year for the 2 ◦C goal.

The world’s countries emit vastly different amounts of greenhouse gases into the atmo-
sphere. Even if all of them were fully committed to achieve the 1.5 ◦C goal, how to find an
equitable share of the 7.6% per year drop on emissions? Giménez-Gómez et al. (2016) argue
that: “framing climate negotiations as a classical conflicting claims problem may provide
for an effective climate policy”. In their analysis, the endowment is the available carbon
budget and the claimants are the emitting countries. Duro Moreno et al. (2020) also use a

4 1Gt = 106kt = 109t = 1012kg.
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Table 1 Selected countries/regions CO2 emissions (kt) in 2014

1-China 2-USA 3-India 4-Rest EU 5-Rest Asia

10291926.878 5225412.661 2232729.957 2095334.801 1848538.367

6-Russia 7-Western Asia 8-Japan 9-Rest Europe 10-Rest America

1736984.560 1256361.871 1206674.021 1131240.164 919404.908

11-Rest Africa 12-Germany 13-Iran 14-Saudi Arabia 15-Republic of Korea

897886.952 720363.815 652392.303 601046.969 587156.373

16-Canada 17-Brazil 18-South Africa 19-Mexico 20-Oceania

540614.809 533530.165 484495.041 481499.102 413861.287

claims approach to analyze some theoretical solutions through the establishment of equity
and stability criteria. Heo and Lee (2022) present a dynamic claims problem and analyze
CO2 allocations over time. Following these models, we consider the 13 countries that emit-
ted the most carbon dioxide in 2014: China, USA, India, Russia, Japan, Germany, Iran, Saudi
Arabia, Republic of Korea, Canada, Brazil, South Africa, and Mexico. The year 2014 is the
last for which there are data of CO2 emissions available for all the world’s countries from
the Climate Change Data, World Bank Group. The remaining countries are grouped in 7
geographical regions: Rest of the European Union, Rest of Europe, Western Asia, Rest of
Asia, Rest of America, Rest of Africa, and Oceania. Table 1 shows the estimated carbon
dioxide emissions, in kilotons (kt), by the selected 20 claimants. We assume that, at least,
each country commits to maintain its annual CO2 emissions below the 2014 amount. There-
fore, each emitter’s claim d j , j ∈ N = {1, . . . , 20}, corresponds to its estimated emission in
2014. Naturally, we denote d = (d1, . . . , d20).

According to the data presented in Table 1, the sum of CO2 emissions in 2014 is E0 =
33 857 455.004 kt. We take the 2014 emissions as the ones valid for the year 2020 (whenever
updated data become available, the analysis can be carried over with the new information).
Now, the Emissions Gap Report points out that each year from 2021 to 2030, the total
emissions must drop 7.6%. Therefore, for each i ∈ {1, . . . , 10}, we consider the claims
problem (Ei , d) ∈ CN , where Ei = (1 − 0.076)i E0, that is:

E1 E2 E3 E4 E5

31 284 288.424 28 906 682.503 26 709 774.633 24 679 831.761 22 804 164.547

E6 E7 E8 E9 E10

21 071 048.042 19 469 648.391 17 989 955.113 16 622 718.524 15 359 391.916

Now, for each problem (Ei , d) ∈ CN , we compute the recommendations made by the
proportional rule (PRO), the Talmud rule (T), the random arrival rule (RA), and the average-
of-awards rule (AA).5

The four rules provide different ways to share the emissions reduction among the polluters.
We chose three countries (China, USA, and Saudi Arabia) and three regions (the rest of the
European Union, the rest of Europe, and Oceania) to illustrate the results. Figure5 shows the
evolution of the CO2 emissions reduction, from 2021 to 2030, recommended by the four rules
for the aforementioned CO2 emitters.We observe some clear patterns. The PRO andRA rules
demand big reductions in the first years to the top polluters, China and the USA for example,
while the T and AA rules dictate an initial lesser effort from these countries. Naturally, the

5 The definitions of the PRO, T, and RA rules can be found in Appendix D.
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Fig. 5 Different emissions reduction patterns given by the four rules

situation is reversed for the countries/regionswith the lowest emissions claims: the reductions
in the first years are very severe with the T andAA rules but steadily decreasing with the other
rules. As we see in the graphic corresponding to the rest of the European Union (the fourth
polluter in the ranking) the behavior of the four rules is somehow similar. But, as we consider
regions with lesser emissions claims, the rest of Europe for instance, the pattern of stricter
reductions implied by the T and AA rules stars to emerge. Note that for all i ∈ {1, . . . , 8}, the
endowment Ei is bigger than the half-sum of the claims, while E10 < E9 < 1

2d(N ). That
explains why the paths depicted in each picture of Fig. 5 crossed right before the year 2029.

One can think of a continuous time version of our model by just considering for each
t ∈ [0, 10] the claims problem (Et , d) ∈ CN , where Et = E0e−0.076t . The path followed
by the awards vector chosen by any of the four rules, say R, as the time increases from 0 to
10, that is, the functionR(t) = R(Et , d) is a dynamic strategy of emissions reduction. Now,
a rule R satisfies endowment differentiability if R(·, d) is a differentiable function of the
endowment for all claims vector. Obviously, the PRO rule satisfies this property. When there
are more than two claimants, Mirás Calvo et al. (2022b) show that the AA rule is endowment
differentiable. Nevertheless, both the T and RA rules violate it. As a consequence, the path
of emissions reduction corresponding to the PRO and AA rules do not present brisk changes
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in the rate of reduction. The graphs shown in Fig. 5 correspond to the discrete time approach
but one can easily observe that the T rule does not vary smoothly.

Even though the stakes are very high, most of the countries do not comply with the
commitments made. In particular, the top emitters tend to be more hesitant. We think that,
qualitative, rules that demand a lesser effort to the top polluters in the first years and a bigger
effort at the end of the period, such as the T and AA rules, are more realistic.

7 Concluding remarks

Theorem 5.2 provides an expression to compute the allocation recommended by the AA rule
in terms of the claims problem initial data (the endowment E and the vector of claims d) by
calculating the utopia ratios pi

p . The algorithm that we present in this paper is a mechanism
to obtain these ratios. But, one can rely on any other alternative method to compute the
volumes pi and p, for instance applying a general algorithm to compute the volume of a
convex polyhedron such as Lasserre (1983).

Our algorithm can be easily adapted to compute the core-center solution for the class
of two-bound core games (Gong et al., 2022). A balanced game v ∈ GN is a two-bound
core game if there exist l, u ∈ R

N such that C(v) = {x ∈ R
N : li ≤ xi ≤ ui for all i ∈

N , x(N ) = v(N )
}
, that is, if C(v) is the intersection of the n-rectangle

∏
i∈N [li , ui ] with

the hyperplane H(v). Given a two-bound core game v ∈ GN and a player i ∈ N , let
l∗i (v) = minx∈C(v)xi andu∗

i (v) = maxx∈C(v)xi . Thevectors l∗(v) = (
l∗i (v)

)
i∈N andu∗(v) =

(
u∗
i (v)

)
i∈N are called the lower exact core bound and the upper exact core bound, respectively.

Two-bound core games are closely related to claims problems. In fact, Gong et al. (2022)
prove that if v ∈ GN is a two-bound core game then C(v) = l∗(v) + X(E, d), where the
claims problem (E, d) ∈ CN is given by E = v(N ) − ∑

i∈N l∗i (v) and d = u∗(v) − l∗(v).
Consequently, the core-center of a two-bound core game v ∈ GN can be computed as:

μ(v) = l∗(v) + AA
(
v(N ) −

∑

i∈N
l∗i (v), u∗(v) − l∗(v)

)
.

The class of two-bound core games includes, among others, 1-convex games (Driessen,
1986), big boss games (Muto et al., 1988), clan games (Potters et al., 1989), compromise
stable games (Quant et al., 2005), and reasonable stable games (Dietzenbacher, 2018).

The analysis presented in this paper also applies to the computation of the centroid of any
convex polytope that is the intersection of a rectanglewith an efficiency-type hyperplane. That
is the case, in the theory of coalitional games, of the core cover set (Tijs & Lipperts, 1982) and
the reasonable set (Gerard-Varet & Zamir, 1987). The core cover of a game v ∈ GN is the set
CC(v) = ( ∏

i∈N
[mi (v), Mi (v)]) ∩ H(v), where, for each i ∈ N , Mi (v) = v(N ) − v(N\{i})

and mi (v) = max
S⊂N : i∈S

{
v(S) − ∑

j∈S\{i}
Mj (v)

}
. A game v ∈ GN is compromise admissible

if the core cover set is nonempty.6 Estévez-Fernández et al. (2012) prove that if v ∈ GN is
compromise admissible then CC(v) = m(v) + X

(
v(N ) − ∑

j∈N
m j (v), M(v) −m(v)

)
, where

m(v) = (
mi (v)

)
i∈N and M(v) = (

Mi (v)
)
i∈N . Therefore, the centroid of the core cover set

is μ(CC(v)) = m(v) + AA
(
v(N ) − ∑

j∈N
m j (v), M(v) − m(v)

)
.

6 A balanced game v ∈ GN is compromise stable if C(v) = CC(v).
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A permutation on N is a bijection π : {1, . . . , n} → N , where π(k) denotes the player
at position k. The set of all permutations of N is denoted by 	N . Let v ∈ GN . For a given
permutation π ∈ 	N of the player set N the marginal worth vector mπ (v) is defined, for
each k ∈ N , by mπ

k (v) = v(Sπ
k ) − v(Sπ

k−1), where Sπ
0 = ∅ and Sπ

k = {π( j) : j ≤ k}. The
reasonable set of v ∈ GN is given by R(v) = {

x ∈ R
N : min

π∈	N
mπ

i (v) ≤ xi ≤ max
π∈	N

mπ
i (v)

}∩
H(v). Again, the centroid of the reasonable set can be computed by means of our algorithm.7

The algorithm developed in this paper works for the classes of games just mentioned
above. González-Díaz et al. (2016) describe another particular procedure, based on a quite
different approach, to calculate the core-center solution for airport games. But, as far as we
know, no specific algorithm to compute the core-center solution for arbitrary balanced games
is available, so one has to rely on general methods for the computation of the centroid of
convex polyhedrons. It is an open question if the technique presented in this paper can be
extended to other subclasses of balanced games, in particular, to convex games. Certainly, the
core of a convex game has amore complex structure than the core of a compromise admissible
game but it still has good properties (González-Díaz&Sánchez-Rodríguez, 2008). Recall that
there are two key aspects that allow us to develop the algorithm to compute the centroid of the
set of awards vectors for a claims problem, relying on themethod of geometric decomposition.
First, the imputation set of the associated game can be partitioned by the cores of the utopia
games corresponding to the relevant coalitions, the ones that belong to familyF , because the
set of awards vectors is the intersection of a rectangle with a hyperplane. Secondly, the core
of the utopia game of an inclusion-wise maximal set of the familyF is a regular simplex and,
thus, its centroid is easy to obtain. To be able to generalize this method for convex games we
face two challenges. First, utopia games have to be properly defined so that the imputation
set admits a decomposition by their cores. Secondly, some pieces of the decomposition must
be simple enough so that its centroid is known.
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Appendix

A The core of the utopia games

Proposition A.1 Let (E, d) ∈ CN+ , v ∈ GN the coalitional game associated with (E, d) ∈
CN , T ∈ P , (ẼT , d̃T ) ∈ CN the T -utopia claims problem, aT ∈ GN the T -utopia additive
game, and vT ∈ GN the T -utopia game. We have that:

1. vT is a convex game, vT (N ) = E, vT (T ) = E − v(N\T ), I (vT ) = aT + I (ṽT ),
C(vT ) = aT + C(ṽT ), Vol(I (vT )) = Vol(I (ṽT )), Vol(C(vT )) = Vol(C(ṽT )), and
μ(vT ) = aT + μ(ṽT ).

2. vT (S) ≥ v(S) if S ⊃ T .
3. If d(T ) ≥ E then vT = ṽT and Vol(C(vT )) = 0.
4. If d(T ) < E then ṽT is a zero-normalized game and

vT (S) =
⎧
⎨

⎩

d(T ) + v(S ∩ (N\T )) if T ⊂ S

d(S ∩ T ) + ∑

l∈S∩(N\T )

v(l) otherwise.

If, in addition, |T | = n−1 then vT = aT is an additive games and its core is a singleton,
C(vT ) = {aT }.

5. v∅ = v and ṽ∅ is the zero-normalization of v.

Proof Note that ṽT ∈ GN is a convex game, because it is the coalitional game associated
with a claims problem. By definition, vT and ṽT are strategically equivalent, so vT is also a
convex game. Since vT = aT + ṽT , the equalities of the first statement are straightforward.

Let S ∈ 2N such that S ⊃ T . If d(T ) ≥ E then vT (S) = ṽT (S) = max{0, E −
d((N\S) ∩ T )} = max{0, E − d(N\(S ∪ (N\T ))} = E = v(N ). Since v ∈ GN is the
game associated with (E, d) we conclude that vT (S) = v(N ) ≥ v(S). If d(T ) < E , since
v(N\T ) = E − d(T ) = v(N ) − d(T ), we have that vT (S) = v(S ∩ (N\T )) + d(T ) =
v(S ∩ (N\T )) + v(N ) − v(N\T ) ≥ v(S), where the last inequality holds by convexity of v.
Therefore, the second statement is true.

Assume that d(T ) ≥ E . By Definition 3.2, vT = ṽT so C(vT ) = X(ẼT , d̃T ). But,
according to Proposition 3.1, X(ẼT , d̃T ) is not full dimensional because d̃T (N\T ) = 0.
That proves the third item.

Let T ∈ P such that d(T ) < E . Then, we claim that, for all S ∈ 2N ,

ṽT (S) = max
{
0, ẼT − d̃T (N\S)

} =

⎧
⎪⎨

⎪⎩

v(S ∩ (N\T )) −
∑

�∈S∩(N\T )

v(�) if T ⊂ S

0 otherwise
. (2)

Indeed, if there is i ∈ T ∩ (N\S) then ṽT (S) = 0 because d̃T (N\S) = ẼT + d̃T (N\(S ∪
{i})) ≥ ẼT . On the other hand, if T ⊂ S then N\S ⊂ N\T , so:
ṽT (S) = max

{
0, ẼT − d̃T (N\S)

} = max
{
0, E − d(T ) −

∑

�∈N\T
v(�) −

∑

�∈N\S
(d� − v(�))

}

= max
{
0, E − d((N\S) ∪ T )) −

∑

�∈S∩(N\T )

v(�)
}
. (3)

We distinguish two cases:
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Case 1. If E ≤ d((N\S)∪T ) then, from (3), ṽT (S) = 0. By definition, v(S∩ (N\T )) =
max

{
0, E − d((N\S) ∪ T )

} = 0. Also, for each � ∈ S ∩ (N\T ) we have that v(�) =
max{0, E − d(N\{�})} = 0. Therefore, ṽT (S) = v(S ∩ (N\T )) − ∑

�∈S∩(N\T )

v(�) = 0.

Case 2. If E > d((N\S) ∪ T ) then v(S ∩ (N\T )) = E − d
(
(N\S) ∪ T

)
> 0. Since

v is convex v(S ∩ (N\T )) ≥ ∑

�∈S∩(N\T )

v(�). Therefore, by equality (3), we have ṽT (S) =
E − d((N\S) ∪ T )) − ∑

�∈S∩(N\T )

v(�) and, again, ṽT (S) = v(S ∩ (N\T )) − ∑

�∈S∩(N\T )

v(�).

We have just proved that equality (2) holds. In particular, ṽT (i) = 0 for all i ∈ N , so ṽT
is a zero-normalized game. Now, for all S ∈ 2N , aT (S) = d(S ∩ T ) + ∑

l∈S∩(N\T )

v(l) and

vT = aT + ṽT , so

vT (S) =
⎧
⎨

⎩

v(S ∩ (N\T )) + d(T ) if T ⊂ S

d(S ∩ T ) + ∑

l∈S∩(N\T )

v(l) otherwise . (4)

In particular, let T = N\{ j} for some j ∈ N such that d(T ) < E . Then aT ( j) = v( j) =
E − d(T ) and aT (k) = dk for k ∈ T . Then vT (N ) = E = aT (N ) and if S ∈ 2N , with
S �= N , vT (S) = aT (S), because, by (3), ṽT (S) = 0. Therefore, in fact, vT ∈ GN coincides
with the additive game defined by the vector aT ∈ R

N , so C(vT ) = {aT }.8 Finally, the last
statement is straightforward. ��
Proposition A.2 Let (E, d) ∈ CN+ , T ∈ P , and vT ∈ GN the T -utopia game. Then,
Vol(C(vT )) > 0 if and only if T ∈ F .

Proof Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ and ṽT ∈ GN

the coalitional game associated with the T -utopia claims problem (ẼT , d̃T ) ∈ CN . By
Proposition A.1, Vol(C(vT )) = Vol(C(ṽT )). We will show that Vol(C(ṽT )) > 0 if and only
if T ∈ F . First, we prove sufficiency. Assume that |T | ≤ n − 2 and d(T ) < E . Let us check
that none of the conditions of Proposition 3.1 are satisfied by (ẼT , d̃T ) ∈ CN . Assume that
ẼT = 0 so

∑

�∈N\T
v(�) = E −d(T ) > 0. Now, N\T has al least 2 players, since |T | ≤ n−2.

Denote A = {� ∈ N\T : v(�) > 0} and B = { j ∈ N\T : v( j) = 0}. So, N = A ∪ B ∪ T
and |A| ≥ 1 because

∑

�∈N\T
v(�) > 0. But,

E − d(T ) =
∑

�∈N\T
v(�) =

∑

�∈A

v(�) =
∑

�∈A

(
E − d(N\{�}))

= |A|E − (|A| − 1)d(A) − |A|(d(T ) + d(B))

= E − d(T ) + (|A| − 1)
(
E − d(N )

) − d(B).

Therefore, (|A| − 1)
(
E − d(N )

) = d(B). So either |A| = 1 and d(B) = 0 in which case
|B| ≥ 1 and di = 0 for all i ∈ B; or |A| > 1 and E ≥ d(N ). Since both situations
lead to a contradiction, we conclude that, in fact, ẼT > 0. Next, we show that d̃T (N ) =
|T |ẼT + d̃T (N\T ) > ẼT . Whenever |T | > 1 or |T | = 0 this property is obvious, and for
|T | = 1 is a direct consequence of the fact that v( j) = m j (E, d) < d j for all j ∈ N , since
otherwise E = d(N ). For the same reason (d̃T )i > 0 for all i ∈ N .

8 Observe that aT ∈ R
N is a marginal worth vector of game v ∈ GN .
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To prove necessity, observe that if d(T ) ≥ E then according to Proposition A.1,
Vol(C(ṽT )) = 0. On the other hand, if T = N\{i} such that d(T ) < E then by Propo-
sition A.1, C(vT ) = {aT }. ��
Proposition A.3 Let (E, d) ∈ CN+ , T ∈ F , and vT ∈ GN the T -utopia game. Then I (vT ) ⊂
I (E, d) and C(vT ) = {

x ∈ I (vT ) : xi ≤ vT (N ) − vT (N\{i}) for all i ∈ N\T }
.

Proof Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ , aT ∈ GN the T -
utopia additive game, and ṽT ∈ GN the coalitional game associated with the T -utopia claims
problem (ẼT , d̃T ) ∈ CN+ . The imputation set I (vT ) is the regular simplex spanned by the n
points bi = aT + ẼT ei ∈ R

n , i ∈ N . Therefore, to see that I (vT ) ⊂ I (v) it suffices to prove
that bi ∈ I (v) for all i ∈ N . So, let i ∈ N . Clearly,

∑

j∈N
bij = ∑

j∈T
d j + ∑

j∈N\T
v( j) + ẼT = E

so bi ∈ H(v). Besides, if j �= i , bij = aT ( j) ≥ v( j). But, if i ∈ T , then bii = ẼT + di ≥
di ≥ v(i). Analogously, if i /∈ T , then bii = ẼT + v(i) ≥ v(i).

On the other hand, since C(vT ) = aT + C(ṽT ) = aT + {
x̃ ∈ I (ṽT ) : x̃i ≤

min{ẼT , (d̃T )i } for all i ∈ N
}
and min{ẼT , (d̃T )i } = ẼT for all i ∈ T , the lower bound

constraints for the players in T in the former representation of C(vT ) are redundant. The
result follows directly. ��

B The imputation set and the utopia games

Proposition B.1 Let (E, d) ∈ CN+ , T ∈ F , and vT ∈ GN the T -utopia game. If T is a
maximal element of F then C(vT ) = I (vT ).

Proof Let v ∈ GN and ṽT ∈ GN be the coalitional games associated with the claims problem
(E, d) ∈ CN+ and the T -utopia claims problem (ẼT , d̃T ) ∈ CN+ respectively. If T ∈ F is
maximal then d(T ) < E and d(T ) + d j ≥ E whenever j /∈ T . We know that vT is
strategically equivalent to ṽT . So according to Proposition 3.1, we just have to prove that
(d̃T )k ≥ ẼT for all k ∈ N . Indeed, (d̃T )i = ẼT if i ∈ T . But, if j /∈ T , we have

(d̃T ) j − ẼT = (d j − v( j))−(
E − d(T )−

∑

�∈N\T
v(�)

) = (
d(T ) + d j −E

)+
∑

�∈N\(T∪{ j})
v(�)

≥ (
d(T ) + d j − E

) ≥ 0

because T is maximal. ��
Lemma B.2 Let (E, d) ∈ CN+ , T , R ∈ F such that R ⊂ N\T , and vT ∈ GN the T -utopia
game. Then E − vT (N\R) ≤ d(R).

Proof Since R ∈ F , d(R) = E − v(N\R). Besides, N\R ⊃ T , and then by Proposition
A.1, vT (N\R) ≥ v(N\R). ��
Lemma B.3 Let (E, d) ∈ CN+ , T , R ∈ F such that T �= R, and vT , vR ∈ GN the T -utopia
and R-utopia games, respectively. Then Vol

(
C(vT ) ∩ C(vR)

) = 0.

Proof Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ . We show that there
is a hyperplane separating C(vT ) and C(vR). We distinguish three cases.
Case 1: Assume that T = ∅. Then vT = v and the hyperplane x(R) = d(R) separates C(v)

and C(vR). Indeed, if y ∈ C(v) then y(R) = E − y(N\R) ≤ E − v(N\R) = d(R). On the
other hand, if z ∈ C(vR) then z(R) ≥ vR(R) = d(R).
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Case 2: Assume that T , R �= ∅ and R ∩ T = ∅. The hyperplane x(T ) = d(T ) separates
C(vR) and C(vT ). Certainly, if y ∈ C(vT ) then y(T ) ≥ vT (T ) = d(T ). On the other hand,
if z ∈ C(vR) then z(T ) = E − z(N\T ) ≤ E − vR(N\T ) ≤ d(T ), where the last inequality
holds by Lemma B.2.
Case 3: Assume that R ∩ T �= ∅ and that |R| ≥ |T |. Then S = R ∩ (N\T ) �= ∅. Let
aR ∈ GN the R-utopia additive game, and ṽR ∈ GN the coalitional game associated with
the R-utopia claims problem (ẼR, d̃T ) ∈ CN . Trivially, aR(S) = d(S) and ṽR(S) = 0.
The hyperplane x(S) = d(S) separates C(vR) and C(vT ). Indeed, if y ∈ C(vR) then
y(S) ≥ vR(S) = aR(S)+ ṽR(S) = d(S). On the other hand, let z ∈ C(vT ). Since S ⊂ N\T ,
we can apply Lemma B.2, so z(S) = E − z(N\S) ≤ E − vT (N\S) ≤ d(S). ��

Proof of Theorem 4.1

Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ . First, observe that if
F = {∅} then, according to Proposition 3.1, I (v) = C(v). So, assume that F contains
at least one non-empty coalition. Then, for all T ∈ F , by Proposition A.3, we have that
C(vT ) ⊂ I (vT ) ⊂ I (v). Therefore, I (v) ⊃ ⋃

T∈F
C(vT ). To show that I (v) ⊂ ⋃

T∈F
C(vT )

it suffices to prove that if x ∈ I (v)\C(v) then there exists T ∈ F such that x ∈ C(vT ).
Take T = {i ∈ N : xi > di }. First of all, since x ∈ I (v) then x j ≤ E for all j ∈ N . But
if x /∈ C(v), there exists i ∈ N for which xi > min{E, di } and then xi > di . Therefore,
|T | ≥ 1. Now, we show that |T | ≥ n − 1 leads to a contradiction. Indeed, if |T | = n then
E = x(N ) > d(N ). If |T | = n − 1 then T = N\{ j} for some j ∈ N . Consequently,
x j = E − x(N\{ j}) < E − d(N\{ j}) ≤ v( j) and x /∈ I (v). Finally, T ∈ F because
d(T ) < x(T ) ≤ x(N ) = E .

LetvT ∈ GN be theT -utopia game.According toPropositionA.3, x ∈ C(vT ) if x ∈ I (vT )

and for any i /∈ T , xi ≤ vT (N )−vT (N\{i}). First we check that x ∈ I (vT ). Clearly, if i /∈ T ,
vT (i) = v(i) ≤ xi because x ∈ I (v). But if i ∈ T , xi > di = vT (i). It remains to be proved

that if i /∈ T then xi ≤ vT (N ) − vT (N\{i}) = min
{
di , E − d(T ) − ∑

�∈N\(T∪{i})
v(�)

}
. But,

if i /∈ T then xi ≤ di . Now, the fact that x ∈ I (v) implies xi = E − x(T ) − ∑

�∈N\(T∪{i})
x� ≤

E − d(T ) − ∑

�∈N\(T∪{i})
v(�).

The fact that if T , R ∈ F , T �= R, then Vol
(
C(vT ) ∩ C(vR)

) = 0, follows at once by
Lemma B.3. ��

Proof of Theorem 4.2

Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ , aT ∈ GN the T -utopia
additive game, and ṽT ∈ GN the coalitional game associated with the T -utopia claims
problem (ẼT , d̃T ) ∈ CN+ . By Proposition A.1 and Theorem 4.1,

I (vT ) = aT + I (ṽT ) =
⋃

R∈F̃
C

(
aT + (ṽT )R

)
(5)

where F̃ = {R ∈ P : d̃T (R) < ẼT , |R| ≤ n − 2} and (ṽT )R ∈ GN is the R-utopia
game associated with the T -claims problem (ẼT , d̃T ) ∈ CN+ . Take R ∈ F̃ . First, observe
that R ⊂ N\T (otherwise (d̃T )i = ẼT for each i ∈ T ∩ R and d̃T (R) ≥ ẼT ). Besides,
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d̃T (R) = d(R) − ∑
�∈R v(�) < E − d(T ) − ∑

�∈N\T v(�) = ẼT . So, d(R) + d(T ) <

E − ∑
�∈N\T v(�) + ∑

�∈R v(�) < E , and then, T ∪ R ∈ F whenever |T ∪ R| ≤ n − 2.9

Now,

ẼT − d̃T (R) = E − d(T ) −
∑

�∈N\T
v(�) − d(R) +

∑

j∈R

v( j)

= E − d(T ∪ R) −
∑

�∈N\(T∪R)

v(�) = ẼT∪R

where the last equality holds since T ∪ R ∈ F . Let aT∪R ∈ GN the (T ∪ R)-utopia additive
game, and ṽT∪R ∈ GN the coalitional game associated with the (T ∪ R)-utopia claims
problem (ẼT∪R, d̃T∪R) ∈ CN+ . By definition:

(aT∪R)i =
{
di if i ∈ T ∪ R

v(i) if i ∈ N\(T ∪ R)
, (d̃T∪R)i =

{
ẼT∪R if i ∈ T ∪ R

di − v(i) if i ∈ N\(T ∪ R)
.

On the other hand, associated with the T -utopia claims problem (ẼT , d̃T ) ∈ CN+ we have
the R-utopia game (ṽT )R ∈ GN . Denote by aT R ∈ GN the R-utopia additive game and by
ṽT R ∈ GN the coalitional game associated with the claims problem

(
ẼT R, d̃T R) ∈ CN+ such

that (ṽT )R = aT R + ṽT R . From Proposition A.1 we know that ṽT ∈ GN is a zero-normalized
game, so ẼT R = ẼT − d̃T (R) = ẼT∪R . Moreover,

(aT R)i =
{
di − v(i) if i ∈ R

0 if i ∈ N\R , (d̃T R)i =

⎧
⎪⎨

⎪⎩

ẼT∪R if i ∈ R

ẼT if i ∈ T

di − v(i) if i ∈ N\(T ∪ R)

.

It is easy to check that aT∪R = aT + aT R . Since (d̃T R) j = (d̃T∪R) j for all j ∈ N\T and
(d̃T R)i = ẼT ≥ ẼT∪R = (d̃T∪R)i for all i ∈ T we conclude that ṽT R = ṽT∪R . Therefore,
vT∪R = aT∪R + ṽT∪R = aT + aT R + ṽT R = aT + (ṽT )R . Finally, from (5), we have
I (vT ) = ⋃

R∈F̃
C

(
aT + (ṽT )R

) = ⋃

R∈F̃
C

(
vT∪R

) = ⋃

S∈FT

C(vS). ��

C The algorithm

Proposition C.1 Let (E, d) ∈ CN+ , v ∈ GN the associated coalitional game, T ∈ F , vT ∈
GN the T -utopia game, aT ∈ GN the T -utopia additive game, and ṽT ∈ GN the coalitional
game associated with the T -utopia claims problem (ẼT , d̃T ) ∈ CN+ . Let Ẽ∗

T > 0 and
a∗
T ∈ R

N , defined by backward recurrence as:

Ẽ∗
T =

⎧
⎪⎪⎨

⎪⎪⎩

ẼT if |T | = c
pIT
pT

ẼT − ∑

S∈FT
S �=T

pS
pT

Ẽ∗
S otherwise , a∗

T =

⎧
⎪⎪⎨

⎪⎪⎩

aT if |T | = c
pIT
pT
aT − ∑

S∈FT
S �=T

pS
pT
a∗
S otherwise .

Let (Ẽ∗
T , d̃∗

T ) ∈ CN be the claims problem such that (d̃∗
T )i = Ẽ∗

T for all i ∈ N, ṽ∗
T ∈ GN

the associated coalitional game, and v∗
T = a∗

T + ṽ∗
T ∈ GN . Then:

9 If |T ∪ R| ≥ n − 2, then the core of the (T ∪ R)-utopia game is not full dimensional.
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1. pT = (ẼT )n−1 − ∑

S∈FT
S �=T

pS.

2. Ẽ∗
T = ẼT + ∑

S∈FT|S|=|T |+1

pS
pT

(
ẼT − ẼS

)
and Ẽ∗

T ≥ ẼT ≥ ẼS > 0, for all S ∈ FT .

3. a∗
T (i) = di if i ∈ T and a∗

T (i) = v(i) − pS
pT

(di − v(i)) if i /∈ T , S = T ∪ {i}.
4. I (ṽ∗

T ) = C(ṽ∗
T ); μi (ṽ

∗
T ) = Ẽ∗

T
n , for all i ∈ N; and μi (vT ) = μi (v

∗
T ) = a∗

T (i) + Ẽ∗
T
n , for

all i ∈ N.

Proof The first statement follows from the properties of the imputation set I (vT ) and equality
(1). Doing some algebraic manipulations, it can be proved, by backward induction on the
cardinality of T , the equality of the second statement. Clearly, ẼT ≥ ẼS > 0, for all
S ∈ FT . That, in turn, implies Ẽ∗

T ≥ ẼT . Analogously, it can be proved that a∗
T (i) =

aT (i)+ ∑

S∈FT|S|=|T |+1

pS
pT

(
ẼT − ẼS

)
for all i ∈ N . The expressions in the third statement are now

straightforward. If T is a maximal coalition of F then Ẽ∗
T = ẼT and C(vT ) = I (vT ). Now,

let us proceed by backward recurrence on the cardinality of those coalitions T ∈ F such that
there exists S ∈ FT , S �= T . Then, in every step, from the equalities in (1), we have,

pITμ(aT + ṽ I
T ) = pTμ(vT ) +

∑

S∈FT
S �=T

pSμ(a∗
S + ṽ∗

S).

Then, μ(vT ) = μ
(( pIT

pT
aT − ∑

S∈FT
S �=T

pS
pT
a∗
S

) + ( pIT
pT

ṽ I
T − ∑

S∈FT
S �=T

pS
pT

ṽ∗
S

)) = μ(a∗
T + ṽ∗

T ) = a∗
T +

μ(ṽ∗
T ). Obviously, a∗

T ∈ GN is an additive game, ṽ∗
T (N ) = Ẽ∗

T , and ṽ∗
T (S) = 0 if S �= N . ��

Proof of Theorem 5.2

Let v ∈ GN be the coalitional game associated with (E, d) ∈ CN+ . Since E ≤
min{ 12d(N ), d(N\{n})}, we conclude that v is a zero-normalized game. We know, from
Proposition C.1, that when T = ∅ there is E∗ = E + ∑

i∈I
pi
p di > 0 and a vector a∗ ∈ R

n such

that μi (v) = a∗
i + E∗

n for all i ∈ N . Moreover, v(i) = 0 for i ∈ N implies a∗(i) = − pi
p di

if i ∈ I and a∗(i) = 0 otherwise. The result is now straightforward. ��

D The rules

• Proportional rule (PRO): For each (E, d) ∈ CN and each i ∈ N , PROi (E, d) = di
d(N )

E
if d(N ) �= 0 and PROi (E, 0) = 0.

• Constrained equal awards rule (CEA): For each (E, d) ∈ CN and each i ∈ N ,
CEAi (E, d) = min{α, di }, where α ≥ 0 is chosen such that E = ∑

i∈N
CEAi (E, d).

• Talmud rule (T): For each (E, d) ∈ CN and each i ∈ N ,

Ti (E, d) =
{
CEAi (E, d

2 ) if E ≤ 1
2d(N )

di − CEAi (d(N ) − E, d
2 ) if E ≥ 1

2d(N )
.
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• Random arrival rule (RA): For each (E, d) ∈ CN and each i ∈ N ,

RAi (E, d) = 1

|N |!
∑

π∈	N

min
{
di ,max{0, E − d(Pπ (i))}},

where 	N is the set of strict orders on N and Pπ (i) = { j ∈ N : π( j) < π(i)} for
π ∈ 	N .
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