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Abstract: Intelligence capabilities will be the cornerstone in the development of next-generation
cognitive networks. These capabilities allow them to observe network conditions, learn from them,
and then, using prior knowledge gained, respond to its operating environment to optimize network
performance. This study aims to offer an overview of the current state of the art related to the use of
deep learning in applications for intelligent cognitive networks that can serve as a reference for future
initiatives in this field. For this, a systematic literature review was carried out in three databases,
and eligible articles were selected that focused on using deep learning to solve challenges presented
by current cognitive networks. As a result, 14 articles were analyzed. The results showed that
applying algorithms based on deep learning to optimize cognitive data networks has been approached
from different perspectives in recent years and in an experimental way to test its technological
feasibility. In addition, its implications for solving fundamental challenges in current wireless
networks are discussed.
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1. Introduction

Nowadays, with the arrival of smart environments as part of the daily life of many
people, it has been evident that it is of the utmost importance that its design needs to
consider telecommunications networks. These networks allow the transmission of all the
data between various environment components (Figure 1): the Internet of Things (IoT)
devices, middleware, and applications. However, without a data network that has the
intelligence to dynamically adapt to the conditions presented in complex environments, it
will result in less-than-optimal communication and limit functions that need to be real-time.
Because of this, there is particular interest in studying novel data networks.
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Figure 1. Connected environments through cognitive data networks.

The arrival of these new generations of mobile networks, such as 5G, and the expo-
nential growth of end-users who rapidly demand large data transactions has caused the
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current networks to become more complex, with the need for faster and more intelligent
learning mechanisms [1]. However, most current communications networks are limited
by the layered protocol architecture, which causes individual elements to be unaware of
the state of the network experienced by other factors. Consequently, the response to the
conditions presented in the network has a limited and isolated scope, often resulting in sub-
optimal performance [2]. Therefore, this forces us to rethink the design of next-generation
networks to transform them into cognitive networks that satisfy these data communication
needs. A cognitive network is an intelligent network that should be simple to manage, and
its capabilities should be continuously developed and expanded with as little human inter-
action as feasible [3]. Recently, much effort has been made to improve network connectivity
by developing reactive mechanisms to address different operational problems. However,
these mechanisms work inefficiently when the network presents significant changes in its
operation since they cannot collect data to continue learning and better adapt to these new
changes, much less predict future changes. This leads to the use of deep learning (DL) to
enable protocols to observe the network conditions and to use prior knowledge gained to
efficiently respond to this complex and dynamic operation [4].

For this reason, part of this paper provides a concise discussion of the fundamental
and predictive ability of DL methods and the many applications available for the next
generation of cognitive networks. It is important to point out that DL is a type of machine
learning (ML) algorithm, and ML is a subfield of artificial intelligence (AI) that allows the
development of smart devices, products, and systems that mimic many human behaviors
and capabilities. ML has become the primary tool for developing AI because ML provides
algorithms that can learn from experience, which is powerful when generalizing (deducing
new facts from old facts) because ML algorithms assume that the past predicts the future.
However, the main difference between machine learning methods and conventional statis-
tical learning methods is that most ML methods are nonparametric models. For this reason,
nowadays, AI products being developed with ML have surpassed AI products developed
with the symbolic AI (old fashion AI), which was the dominant AI paradigm before the
ML paradigm’s arrival. Human knowledge and behavior standards are explicitly included
in computer programs using symbolic AI. The foundation of symbolic AI programs is the
creation of explicit structures and behavior rules. Symbolic AI is the best option when the
rules are explicit because the input can be simply received and translated into symbols.
However, the breaking point of symbolic AI was its inability to learn from the past to
predict the future.

For this reason, after the 1980s, ML was adopted for AI because it gives computers the
ability to learn without being explicitly programmed [5] and enables computers to act and
make data-driven decisions to carry out a specific task. However, it is essential to point out
that, in essence, the ML domain is a combination of probability, statistics, and computer
sciences that allows the development of stochastic algorithms designed so that they can
learn and improve over time when exposed to new data. For this reason, ML methods are
defined as applying statistical methods to identify patterns in data using computers [6]
and as methods that can learn from data and detect hidden patterns in databases to use
generated knowledge to predict new outputs of the system [7].

The fundamentals of ML methods are varied, but our focus in this survey is on DL
methods and a particular type of ML methods. DL models are different from most ML meth-
ods since their functioning is inspired by the functioning of the human brain. The power of
the human brain resides in the fact that it is composed of around 1011 neurons. Neurons
work in parallel with the memory processing the information captured by the synapses to
be distributed over the network [8]. For this reason, an artificial neural network is described
as a collection of simple pieces (usually adaptable) that are massively interconnected in
parallel and organized hierarchically to interact with real-world objects in the same way
that the human nervous system does [9]. DL is defined as a generalization of artificial
neural networks (ANN) where more than one hidden layer is used, implying that more
neurons are used to implement the model. The adjective “deep” applies not to the acquired
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knowledge itself but to how the knowledge is acquired [10] since it stands for the idea of
successive layers of representations. The “deep” of the model refers to the number of layers
that contribute to a model. This means that DL is a type of ML technique that utilizes a
stack of multiple processing layers. Each successive layer uses the output from the previous
layer as input for learning representations of data with various levels of abstraction. DL
is a type of universal learning that may be used to solve supervised, semi-supervised,
and unsupervised issues. Training data containing pairs of objects are required for the
supervised framework (typically vectors). The input data are one component (predictors).
The other is the desired outcome (response variable = output); ML supervised approaches
learn a function that translates an input to an output based on input–output pairings. The
function’s output can be a continuous value (as in regression issues), a class label (as in
binary and multinomial regression), or a count value (as in Poisson regression). This means
that ML methods allow the creation of machines for predicting many types of univariate
and multivariate outcomes. Unsupervised DL algorithms, on the other hand, only have
input (predictors) data (X) and no labeled outputs or response variables (y). Therefore, their
goal is to extract the underlying structure or distribution in the data to understand more
about it. However, we do not know if our work is accurate since we do not know if the
correct answer was complete without supervision. Unlike supervised and unsupervised
methods, the semi-supervised methods have few observations with their respective inputs
(X) and their respective output label (Y). Still, most of the statements do not have output
labels. In this way, these methods try to work with fewer data for training and, therefore,
less processing time, seeking to solve two of the main problems of supervised methods and,
on the other hand, to increase the low efficiency of non-supervised methods. Although
three approaches have been used in many domains, we will focus primarily on applications
of supervised methods mainly used for prediction purposes.

The value of DL as a tool for designing AI systems, goods, gadgets, and apps is
well-documented. Since technical applications are used in agriculture, banking, medicine,
computer vision, and natural language processing, these items can be found everywhere,
from social sciences to natural sciences. Some examples are self-driving cars, robots,
chatbots, text-to-speech gadgets, devices that automatically translate text and images [11],
speech recognition systems, digital assistants such as Google Now and Amazon Alexa,
automatic image classification systems; systems to answer natural-language questions [12],
to play video games like chess, Jeopardy, GO, and poker [13] or dynamically adjust the
difficulty [14]; and systems for adding sound automatically to silent movies, etc.

For these reasons, DL tools are being adopted in many other domains such as health
sciences for disease (cancer, dermatology problems, etc.) prediction. For example, in
biological sciences, Menden et al. [15] used a DL approach to forecast the survivability of
a cancer cell line exposed to a medication in the biological sciences. Alipanahi et al. [16]
employed DL in conjunction with a convolutional network architecture to predict DNA
and RNA-binding protein specificities. Tavanaei et al. [17] employed a DL technique to
predict tumor suppressor genes and oncogenes. Single-cell DNA methylation statuses have
also been accurately predicted using DL techniques [18] in the genomic domain for the
prediction of breeding values and phenotypes of traits of interest in many cultivars using
as input environmental and genomic information [19–22]. However, the application of DL
in the telecommunications field is almost new; however, it is clear that what motivates its
study is the need to build more efficient and autonomous network connectivity, that is,
with less human intervention.

In this paper, we review the applications of deep learning for next-generation cognitive
networks to obtain a meta-picture of its performance and highlight how these tools can help
solve the challenging problems of cognitive networks. We also provide the fundamentals
of DL, the requirements for its appropriate use, general guidance on how to use the DL
method effectively, the pros and cons of this technique, and the trends of DL applications.
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2. Materials and Methods
Search Strategy

The present work corresponds to a systematic search in the databases IEEE Xplore,
Elsevier, and Springer databases, focused on deep learning in the context of cognitive
networks.

The words used in the search were: network, wireless, spectrum, traffic prediction,
resource allocation, and deep learning. To ensure the effectiveness of the search, the words
“deep learning” were combined with the rest of the terms. In addition, the selection criteria
prioritized works published within the last 5 years or less, published in journals (but not
limited), indexed in JCR (Journal Citation Reports), with at least one citation, avoiding
works that were literature reviews, and clearly indicating which was the DL method used.
Table 1 shows the search queries by database.

Table 1. Search strategy and queries used in each database.

Database Search Query Results

IEEE Xplore

(“Document Title”:network) AND (“Document Title”:”resource allocation”) AND (“Document
Title”:deep learning) 69

(“Document Title”:wireless) AND (“Document Title”:communications) AND (“Document
Title”:“deep learning”) 32

(“Document Title”:network) AND (“Document Title”:traffic prediction) AND (“Document
Title”:deep learning) 24

(“Document Title”:network) AND (“Document Title”:”congestion control”) AND (“Document
Title”:deep learning) 6

(“Document Title”:wireless) AND (“Document Title”:spectrum) AND (“Document
Title”:“deep learning”) 5

ScienceDirect

TITLE (“deep learning”) AND (network) AND (“resource allocation”) 159
TITLE (“deep learning”) AND (wireless) AND (communications) 218

TITLE (“deep learning”) AND (wireless) AND (spectrum) 118
TITLE (“deep learning”) AND (network) AND (“traffic prediction”) 19

TITLE (“deep learning”) AND (network) AND (“congestion control”) 14

Springer Link

TITLE = (“deep learning”) AND (wireless) AND (communications) 620
TITLE = (“deep learning”) AND (wireless) AND (spectrum) 152

TITLE = (“deep learning”) AND (network) AND (“resource allocation”) 118
TITLE = (“deep learning”) AND (network) AND (“traffic prediction”) 63

TITLE = (“deep learning”) AND (network) AND (“congestion control”) 6

Because many results involve these search criteria, works dedicated to spectrum
use, traffic flow prediction, and resource allocation were chosen. We found a total of
1623 papers, and following the selection criteria, 14 works were selected, of which 10 were
journal papers (89%), 3 were conference papers, and 1 was a book (Table 2).

Table 2. List of journals, books, and conferences where the reviewed papers were published.

Title Publisher/Organizer Type n

IEEE Access IEEE Journal 5
IEEE Transactions on Green Communications and Networking IEEE Journal 1
IEEE Transactions on Vehicular Technology IEEE Journal 1
IEEE Internet of Things Journal IEEE Journal 1
Wireless Communications and Mobile Computing HINDAWI Journal 1
Ad Hoc Networks ELSEVIER Journal 1
Multidisciplinary Approaches to Neural Computing Springer Book 1
International Conference on Signal and Information Processing, Networking,
And Computers Springer Conference 1

International Conference on Electronics, Information, and Communications IEEE Conference 1
International Symposium on Wireless Communication Systems IEEE Conference 1
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All the journal articles are JCR indexed with an Impact Factor (IF) greater than
2 (min = 2.336, max = 25.249).

The complete search strategy can be seen in Figure 2, which is based on the flow chart
of the PRISMA Statement [23].
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3. Results

DL has earned a great deal of research attention in the computing field. However,
its use in cognitive network systems is relatively recent [24], and to better understand its
high complexity, several challenges need to be addressed. Our research objective is to
find the potential use of DL methods to enhance the performance of the mechanisms that
manage the operation of wireless data networks. In this context, we propose grouping the
challenges into three large areas of operation of these networks, which have been constantly
addressed in different related works, such as:

• Wireless spectrum management;
• Energy utilization efficiency;
• Enhanced data transmission.

The following subsections summarize these challenges and the deep learning solutions
that can address them.

3.1. Wireless Spectrum Management

The explosion of internet access with wireless technologies, such as 3G, 4G, and 5G
networks and wireless LANs, has caused the number of devices connected to the internet
to grow without measure. As a result, the wireless spectrum is becoming an essential
and scarce resource. Moreover, there are so many technologies coexisting together that the
problems of interference, channel congestion, data collisions, and unbalanced spectrum
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usage become a challenge, which drastically reduces overall network performance and
user experience [25,26]. In this sense, we present some works discussing solutions to
this challenge.

Mitigating channel interference within wireless networks is a significant challenge
in improving spectrum usage performance. Channel interference can be reduced by op-
timizing the configuration of the devices in the use of the wireless channel. The authors
in [27] proposed performing an effective wireless channel matching and power allocation
configuration. They presented a distributed resource matching scheme based on deep
reinforcement learning (DRL) in a device-to-device (D2D) network communication sce-
nario. The scheme is called a “Distributed Multi-user Channel and Communication Power
matching algorithm” (DMCP). The DL algorithm of DMCP is formed by a double deep
Q network (DDQN), which aims to select the channel and transmission power level au-
tonomously. This combination of learning, especially DRL, allows decision making based
on historical information in real-time observations. Another point worth noting is that they
propose that the base stations take over the training process, which helps to reduce the
data communication delay. The work results show that the DMCP algorithm obtains good
results in channel assignment and transmission power selection, which leads to improving
the overall throughput and energy efficiency of the network.

Kulin et al. [4] advocated employing deep learning to improve and regulate radio
spectrum usage to address various issues related to inefficient spectrum management,
utilization, and regulation that the future generation of wireless networks faces. They
proposed a spectrum monitoring end-to-end learning framework and defined a generic
technique for designing and implementing wireless signal classifiers. As a result, con-
volutional neural networks (CNN) were used to automatically extract characteristics of
non-linear and more abstract wireless signals that are invariant to local spectral and tem-
poral fluctuations and to train wireless signal classifiers. The authors presented two case
studies: monitoring the radio spectrum to identify the signals in the communications
channel (modulation recognition) and detecting wireless interference technologies.

Shen et al. [28] presented a deep learning-based solution for dealing with the problem
of communication network interference. In this scenario, typical machine learning algo-
rithms are ineffective. Because the actual interference image contains many disturbances,
the same interference can take on many different shapes, making it impossible to discern
the interference shape solely by extracting characteristics from the surrounding area. For
spectrum interference image recognition, a deep CNN is utilized to generate an adequate
classification of cell interference kinds, considerably boosting the efficiency of interference
problem handling. The deep learning recognition procedure includes interference cell de-
tection, interference type identification, and interference source location. The deep learning
structure uses the picture disturbance and morphological changes as practical data input
in each neuron. Different neurons represent different features of the image. The feature
database is optimized by the machine self-learning system through continuous neural
network iteration. As a result, the interference signature feature library approaches the
real generated phase and effectively recognizes the communication network’s interference.
By increasing the efficiency of interference identification, the possibilities for improving
network quality and user perception become more numerous.

In [29], they proposed SL-MAC, an intelligent spectrum learning-based medium access
control (MAC) protocol for future wireless local area networks (WLAN). Their proposal
combines deep learning and spectrum sensing to create an intelligent medium access system
that can collect more data on channel usage, for example, instead of standard spectrum
sensing technologies that can simply tell whether a channel is busy or not, how many
devices are sharing the spectrum, and who are they. To implement the suggested MAC,
a pre-trained CNN is deployed within the access point (AP) to detect the stations (STAs)
involved in collisions (when more than one user transmits request to send (RTS) packets at
the same time). According to the inference results, the AP schedules the data transmissions
of the users involved and obtains a collision-free channel within a period. The SL-MAC



Appl. Sci. 2022, 12, 6262 7 of 16

protocol can retrieve information even if packets collide, training a deep neural network
offline with historical radio frequency (RF) traces and inferring STAs involved in online
collisions in near real-time. The SL-MAC protocol includes three operation steps. The first
step is channel contention, in which the STAs compete for the channel according to the
rules of a typical multiple access channel, such as the IEEE 802.11 scheme. The second step
is collision detection and identification, starting from the reception of the RTS signals that
arrive at the AP, where the pre-trained CNN algorithm resides. In this case, the protocol
can distinguish if the channel is free (no RF signals), when there is only one RTS signal
(collision-free), and when there are several overlapping RTS signals (collision). Finally, in
the third step, when there is a collision, the transmission scheduling is executed according
to the inference given by the pre-trained CNN algorithm. For this, the AP broadcasts a
special CTS (Clear to Send) packet that contains a field with the transmission scheduling
for each STA involved in the collision. The STAs not involved are kept silent (no packet
transmission) during the retransmission period marked in the CTS packet. A comparison
with the conventional IEEE 802.11 protocol was made to demonstrate the superiority of the
SL-MAC protocol. The authors explored the impact of the inference error on the achieved
throughput and looked at the top bound of throughput gain supplied by the CNN predictor.
The benefits of the SL-MAC protocol were proven through extensive simulations. As a
result, network capacity is increased as channel access efficiency improves.

Mennes et al. [30] proposed a deep neural network (DNN) strategy for predicting
spectrum occupancy in the near future of unknown neighboring networks. They showed a
multi-agent environment that employs RL and supervised learning approaches. Existing
network schedulers can use this prediction to avoid collisions with nearby networks
or other electromagnetic sources. Furthermore, unlike most existing MAC algorithms,
which only strive to maximize their own network performance, this concept can change
its operation to avoid cross-technology interference based on spectrum consumption by
different technologies. Thus, the multi-channel access problem is studied in this paper,
framed as a partially observable stochastic game in which N nodes have access to C
channels in an environment where other networks use the same fraction of the spectrum.

Consequently, the proposed MAC algorithm selects the channel with less predicted
interference from the set of available channels to perform its data transmission. In other
words, the algorithm decides when and on which channel to transmit to avoid interference
between networks. Therefore, the algorithm focuses on predicting the behavior of the
interfering network cluster (INC). They look into deep multi-agent supervised online
learning to enable learning in an unknown environment by predicting spectrum usage
for upcoming slots at each node. They also construct a loss function that can be used to
optimize predictions based on partially observable data. The five essential components
of the proposed approach’s architecture are the spectrum monitor, preprocessing unit, a
prediction unit, probability matrix, and transmission scheduler. The first four units are
on each node, and the scheduler can be centralized or decentralized. The monitoring unit
can capture the energy of the surrounding spectrum. This information is forwarded to the
processing unit, preparing the observation to feed the predictor unit. The latter predicts
the used slots in the upcoming super-frame used by the INC. As a result, it indicates if the
slot is predicted as highly used or free. The predictor unit uses a DNN in a fully connected
eight-layer model to optimize the prediction. They also recommended employing a swish
activation function on all layers except the last (output), which uses a SoftMax activation
on the preceding dimension. The SoftMax activation function ensures that each cell in the
output matrix, which reflects the prediction, has a value between 0 and 1, indicating the
likelihood of the INC using the slot. The information from the predictor is used to form a
probability matrix; this matrix is the basis of the operation of the scheduler to select slots
expected to be free to avoid collisions. An application scenario could be where a sender
node transmits a slot request to the receiver.

The receiver replies with the best available slots according to the prediction. As a
result, there is a channel synchronization between sender and receiver to avoid a collision.
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To evaluate the algorithm’s performance, they used two methods: simulation and real
experimentation. In the case of simulation, a multiple frequencies time division multiple
access (MF-TDM) discrete event simulator was used based on the time synchronized chan-
nel hopping (6TiSCH) simulator [31]. For real experimentation, the testbed proposed in
the spectrum collaboration challenge (SC2) of the DARPA competition was used [32]. The
results obtained in the simulation showed that the number of inter-networks collisions can
be reduced by 30% compared to commonly used schedulers. In the case of real experimen-
tation, the algorithm was shown to increase the overall throughput of the network in a
variety of topologies and settings compared to an exponentially weighted moving average
(EWMA) collision avoidance slot selection algorithm.

3.2. Efficiency on Energy Utilization

Power consumption is one of the most significant challenges in wireless networks
since the mobile network nodes have a very scarce power supply based on batteries. This
resource is crucial since the energy of each node is directly related to the network lifetime.
Therefore, efficient use of this resource must be made to avoid inappropriate spending on
the wireless network operation. For example, the transmission and reception of data are
the functions that consume the most energy in the node. Therefore, avoiding the loss and
retransmission of data promotes energy savings. There are several efforts in this regard;
below, we present some works.

The authors in [33] discussed the challenge of managing the energy consumed by the
sensor nodes of a network under the Internet of Things paradigm. This work proposes
a model that uses deep reinforcement learning (DQN) to calibrate each node sensor and
reduce power consumption according to the network operating environment. Their model
integrates a RL agent with a deep learning long–short-term memory (LSTM) agent. The
reinforcement agent takes advantage of its ability to make observations within a changing
environment and take actions accordingly. The LSTM agent takes advantage of its ability
to handle time series, which can retain long sequences due to its memory cell. The RL
agent’s previous action input, state, and reward are taken as input vectors of the proposed
architecture. They are delivered to several LSTM layers with a batch normalization layer
to increase the network’s stability and speed. Finally, the architecture includes a classic
deep learning layer (or fully connected). In evaluations, this combination demonstrated
excellent results in maximizing the energy efficiency of the IoT network under a changing
operating environment, as stated by the authors.

According to Zhang et al. [34], the fast-growing demand for wireless transmission has
pushed mobile broadband to spread across numerous frequency bands. As a result, power
consumption for multi-carrier information and processing is increasing proportionally,
which conflicts with the energy efficiency requirements of 5G wire-free systems. This has
led to the adoption of multi-carrier power amplifier (MCPA) technology, which allows
many carriers to be supported by a single power amplifier. However, the authors raise
an important point: how to distribute those carriers over numerous MCPAs and whether
the allocation strategy should be dynamically changed. They theoretically articulated the
problem of dynamic carrier allocation to MCPA due to this.

Furthermore, they suggested algorithms based on convex relaxation and deep learning.
The deep learning technique uses feedforward neural networks (FNN), namely a multi-
layer perceptron (MLP) and a one-dimensional CNN, to approximate the non-convex
function to process the one-dimensional carrier allocation problem. According to their
simulation data, the convex relaxation-based approach saves more energy than the deep
learning-based scheme. On the other hand, the DL-based strategy outperforms the others
in terms of computing complexity.

Due to the vast number and small size of sensor nodes deployed in various wireless
sensor networks (WSNs) applications, the system throughput of nodes is insufficient, and
energy is scarce. In addition, there are some network environments where node replace-
ment is problematic. As a result, how to improve and extend the network life cycle is a
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pressing concern in today’s WSNs [35]. Cooperative communication is key to improving
performance and expanding network coverage [36], as it uses the broadcast characteristics
of wireless systems to optimize communication between nodes in the network. A coopera-
tive communication scheme with relay selection for WSN based on DRL, called DQ-RSS, is
proposed in [35]. This approach considers the cooperative communications process using a
Markov decision process (MDP) model to solve a single-pair optimization problem because
MDP is an optimal decision process for stochastic dynamical systems based on the Markov
process (MP). Since the Q-learning algorithm suffers from a low learning speed in a large
state space, deep neural networks’ function approximation and generalization capabilities
are exploited to compensate for this limitation. As a result, to improve its operation, DQ-
RSS combines deep learning with Q-learning to accelerate learning and perform optimal
relay selection. According to the outage probability, a deep Q network (DQN) is trained.
The channel state information (CSI) was observed for optimal relay selection among a set
of candidates to participate in cooperative communication without the need for a network
model prior data. To assess the Q-value of each action, the proposed deep learning network
approach uses two convolutional layers and two fully connected layers. The rectified linear
unit is used as the activation function in the first convolutional layer, which consists of
20 filters. The second convolutional layer employs the same non-linear rectifier and has
40 filters; 360 rectified linear units are used in the first Fc layer, whereas 180 units are used
in the second [35]. Simulations were carried out to evaluate the performance of DQ-RS,
using the basic parameters according to the IEEE 802.15.4 standard protocol in the 2.4 GHz
frequency band. The results show that DQ-RSS outperforms the Q-RSS and random se-
lection methods in all evaluated metrics, such as outage probability, energy consumption,
and average utility of the network; for example, the outage probability of the DQ-RSS is
roughly two times less than the random relay selection scheme and approximately 30%
lower than the Q-RSS [35]. The authors propose, for future work, to consider the mobility
of sensor nodes and complex channel models to study their impacts on actual WSN.

We increasingly depend on wireless networks to perform daily tasks, which has
caused a rapid expansion of networks, such as in the case of smart cities. In this context,
base stations are used to control network connectivity and traffic that is more densely
loaded with traffic than others. The former presents a large amount of energy wasted
caused by the power consumption used in data transmission. The above leads to the death
of the station and reduces the network lifetime. Therefore, managing the transmission
power of the base stations to improve energy utilization efficiency is necessary. The key to
enabling modern cognitive wireless networks is that base stations have self-management
capabilities and dynamic adjustment. To achieve the before-mentioned goal, one of the
prerequisites is that the base stations can accurately predict the wireless traffic of the
network. It is, nevertheless, a complex undertaking because data traffic is highly nonlinear
and complicated, characterized by temporal and spatial connections [37]. However, most
existing prediction methods do not consider temporal and spatial situations in the traffic
data modeling process. The preceding makes it impossible to obtain an accurate forecast of
the traffic of these networks. To address this problem, in [37], a convolutional network was
proposed with a mechanism (called LA-ResNet) to solve the spatial-temporal modeling
and predict wireless network traffic. The residual network, the recurrent neural network,
and an attention mechanism are part of the LA-ResNet mechanism [37]. The residual
network is initially employed in LA-ResNet to extract the spatial properties of wireless
network data. The residual network’s output data are then fed into the recurrent neural
network (RNN), which uses the memory unit’s time-series processing capacity to record
the temporal information. The attention mechanism allows the focus to be directed on the
intermediate output, which ties the residual network and RNN modules together. This
increases the prediction’s accuracy and consistency. The results reveal that the LA-ResNet
model outperforms other existing prediction approaches like RNN and 3DCNN in terms of
traffic prediction. This allows us to conclude that the LA-ResNet mechanism is an excellent
option to be installed in base stations.
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3.3. Enhanced Data Transmission

The primary objective of any communication system is effective data transmission.
However, it is not an easy task since multiple factors intervene, such as the type and
amount of traffic, the communication channel congestion, etc., which makes it challenging
to achieve this goal. In addition, this objective becomes a more significant challenge in the
case of wireless networks. Because they are networks made up of devices with limited
storage, processing, and energy capacities, with a shared transmission channel, they are
unstable and prone to failures (path losses, signal fading). That is why there are several
jobs focused on this goal. Below, we present some proposals that involve this objective and
deep learning methods.

A routing algorithm capable of detecting link-level, node-level, and sink-level failures
with high accuracy and low overhead in an IoT-enabled WSN is one of the central goals
proposed in [38]. To achieve this goal, the authors propose a fault tolerance multi-objective
deep reinforcement learning (MO-DRL) agent embedded in each sensor node of the net-
work to optimize a data routing algorithm. MO-DRL detects faulty nodes in the WSN and
removes them from the transmission path, achieving fault-free data routing. They also sug-
gest a mobile sink method to complete an efficient solution, which collects data from sensor
nodes with better performance than a stationary one, enhancing network dependability and
lifetime. The MO-DRL algorithm’s multi-objective capability and support for multi-policy
methods justify its use, allowing it to work with several conflicting objectives. In this work,
for example, they propose minimizing message overhead, minimizing communication
delay and maximizing network throughput, with all purposes contradictory to each other.
In particular, the MO-DRL framework is composed of a DDQN, which consists of two
DNN. The first one computes the current Q-value and updating the network parameters.
The second neural network is responsible for calculating the target Q-value and periodically
copying the network parameters obtained in the first neural network. Finally, the authors
proposed a mobile sink node that collects data from sensor nodes through the shortest
path, using the traveling salesman problem. The simulation results show that the proposal
outperforms other algorithms in all the metrics evaluated.

Narejo et al. [39] proposed using deep learning for internet traffic prediction as a key
objective to guarantee the quality of service (QoS) of the network connections applications.
They propose three different architectures of deep belief network (DBN) through the
stacking of restricted Boltzmann machines (RBMs) to create a DNN architecture. QoS
contains a set of parameters, such as error rate, transmission rate, and other physical
characteristics of the network, which must be guaranteed to meet a certain level of QoS.
These parameters can be measured and improved through mechanisms integrated into the
network nodes. In addition, the parameters are closely related to the network traffic load.
Therefore, advanced knowledge of the future traffic load becomes useful. They discover
the non-linear hierarchical nature found in the time series of internet traffic data using an
artificial neural network with four hidden layers in each model. First, the network’s deep
learning is implemented using unsupervised layer pretraining. The expected future traces
of traffic load are then forecasted at the output layer, which is trained in a supervised way
during the model’s fine-tuning stage. The findings of its proposal revealed accurate traffic
predictions while modeling traffic data patterns and stochastic features, with a test dataset
RMSE of 0.028.

Yang et al. [40] proposed employing the DRL method, known as deep Q-learning,
to develop an intelligent agent for allocating computational resources for overloaded
multi-user tasks. The future 5G services and IoT paradigm requires ultra-reliable low-
latency communications (URLLC), which this agent provides. The approach is based on
mobile edge computing (MEC), also known as fog computing, which is used to meet the
computational demands of perimeter devices that lack such resources, such as wireless
devices that make up the IoT. The suggested agent has a sophisticated, dynamic policy
for allocating computational resources for numerous users, and it is embedded in the
MEC node. The channel quality, data packet size, and current waiting time should also be
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considered. After the offloaded data have been processed in the MEC node, the proposed
mechanism selects a low downlink transmission rate to reduce the likelihood of error
and enhance the successful transmission rate while staying within the downlink channels’
delay limits.

Han et al. [41] proposed using deep learning to optimize a congestion control algo-
rithm in wireless networks. The algorithm uses MLP structure with one hidden layer
for network congestion detection, accurately distinguishing between data congestion and
wireless network error when fast retransmission by a packet loss occurs in the sender. This
distinction is critical in wireless networks, deciding what type of congestion control to
apply and avoiding degradation of the network’s overall performance. They also propose
reducing the transmission window size when packet loss occurs due to data congestion
using an additive increase multiplicative decline (AIMD) algorithm. Finally, they suggest
a proprietary mechanism to retransmit the lost packet solely in the event of a wireless
fault. Still, they do not change the size of the current congestion window. The proposed
algorithm aims to use deep learning to forecast network congestion and random packet
loss. The minimum round-trip time (RTT) value and the current smoothed RTT value
were utilized as inputs to the MLP structure, and the reason for packet loss was used
as the output layer’s response to train the algorithm. The study results reveal that the
performance in the environment without wireless loss is comparable to the protocols that
were tested. However, when the amount of wireless loss increases, the suggested algorithm
beats the others since it determines the cause of the lost packet rather than reducing the
transmission window as the other protocols do.

The authors of [42] proposed an integrated method that combines a classical DNN (as
multilayer perceptron) with an improved K-nearest neighbor (KNN) algorithm to deal with
the indoor location problem (or location fingerprinting). The conventional KNN provides
the foundation for the upgraded KNN algorithm. The original KNN algorithm, on the other
hand, ignores the influence of nearby locations. The algorithm’s general procedure can be
broken into two sections. The Wi-Fi received signal strength indicator (RSSI) fingerprint
dataset was first classified using the DNN method. The modified KNN technique is then
used in the second phase to classify these alternative locations in a specific class to establish
the mobile device’s final position. The DNN algorithm trains the dataset in the offline stage
and predicts in the online stage. The KNN algorithm classifies these favorable positions
into a specific class to determine the final part of the online step. When the first phase is
completed, the entire positioning scene is divided into several clusters to choose the most
likely collection to which the target belongs, increasing the number of learning samples
for the DNN classifier algorithm. The interference from other groups can be reduced
after knowing the particular cluster, and the calculation cost of the KNN algorithm can be
reduced in the second phase.

The proposal’s performance was compared to that of other traditional indoor location
algorithms, including random forest (RF), KNN, support vector machine (SVM), and
decision tree (DT), among others. The proposed algorithm outperforms the other since it
takes advantage of both algorithms’ strengths.

4. Discussion

Analyzing the behavior of cognitive data networks, especially wireless networks,
is a great challenge. Several aspects must be considered regarding the environments
where the networks are deployed: the number of devices (i.e., IoT devices [43–45]), the
characteristics of the applications (i.e., smart environments [46–48]), and the transmission
technologies [26,49,50], among others. The nonlinearity and complexity of data traffic
flow in such networks, for example, are characterized by temporal and spatial correlation.
Therefore, their study is complex and even more so if one wants to predict its behavior.

In addition, in the case of spectrum usage, it is necessary to extract meaningful
information that leads, as a result, to a set of massive and complex data that requires
sophisticated and advanced algorithms for its analysis. Moreover, in data networks,
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learning models must allow sequential decisions to be made based on continuous feedback
or prior knowledge using algorithms that can work with multiple objectives in conflict
with the flexibility and speed to make observations within a changing environment and
take actions accordingly.

For this reason, summarizing the review works, most include the use of combined
learning methods, highlighting deep reinforcement learning (DRL) and the convolutional
neural network (CNN), for example, the multilayer perceptron (MLP) in conjunction
with reinforcement learning (RL), MLP with the CNN itself, residual network with the
recurrent neural network (RNN), RL and long–short-term memory LSTM, and double deep
reinforcement learning, among others. However, even with this clarity, it is not an easy task
to select the appropriate deep learning method for each communication objective within
the network, linked to the great challenge that implies the input parameters selection and
tuning of the model’s hyper-parameters.

Table 3 presents a summary of the previous challenges and the application of deep
learning for addressing them.

Table 3. Challenges of cognitive networks solved by deep learning applications.

Challenge Work Deep Learning Technique to
Solve the Challenge Issue to Solve

Wireless spectrum
management

[4,28,29] Convolutional Neural Network

Improve and regulate the radio spectrum utilization;

Smart learning of spectrum for the access control medium;

Spectrum interference image recognition.

[27,30] Multilayer Perceptron and
Reinforcement Learning Predict spectrum occupancy in wireless network.

Efficiency on energy
utilization

[33,35] Reinforcement Learning Prolong the network life-time.

[34] Multilayer Perceptron and
Convolutional Neural Network

Allocate, dynamically, multiple carriers through a
single power amplifier.

[37] Residual Network and Recurrent
Neural Network

Wireless network traffic prediction to improve energy
utilization in base stations.

Enhanced data
transmission

[39] Deep Belief Network and Restricted
Boltzmann Machine Internet traffic prediction to guarantee QoS.

[41] Multilayer Perceptron Congestion control and wireless error detection.

[38,40] Deep Reinforcement Learning Computational resources allocation for offloaded tasks.

[42] Multilayer Perceptron and
K-NearestNeighbor

Deal with the indoor location problem and determine
the final position of the mobile device.

5. Recommendations

This section presents the most important recommendations that the authors of this
paper obtained when conducting this review on applying DL models to the data networks
domain. These recommendations become the future challenges that must be addressed in
this matter.

ML and DL are solving old problems in all areas of knowledge that remained un-
solved, and now, thanks to new studies in this area and new computing technologies,
outstanding results have been obtained. The use of ML and, in particular, DL in wireless
data connectivity is an exceptional area of opportunity to build algorithms that can make
more efficient decisions than traditional methods since the behavior of data networks is a
challenging problem to solve automatically given the non-linearity and complexity of data.

For example, DL models work very well to capture the behavior of patterns that
change over time, such as RNNs that have a kind of artificial memory, as in the case of the
LSTM in conjunction with the RL. Other DL models are instrumental in capturing spatial
patterns and correlating the information with different designs, as is the case with CNN.
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The preceding is ideal for data networks because their data have a non-linear behavior
characterized by a high temporal and spatial correlation.

Consequently, a mixture of various DL algorithms to capture these behavior patterns
has to be done in a single framework to solve the optimization of the different responses
needed in the operation of data networks.

Another vital recommendation has to do with taking advantage of the use of DL to
address problems in a multidimensional way. It automatically optimizes several parameters
simultaneously with ease and without human error, unlike traditional methods that do
not use DL or only one problem at a time. Therefore, the future trend in the context
of data networks is to address their optimization problem with multivariate models to
predict different responses simultaneously. This approach can better use the data collected
for each answer and the degree of correlation between them, known as “information
borrowing”. From our point of view, we believe that work should be done to understand
the main problems in data networks rather than understanding the scenarios and types
of network applications. In this way, it is possible to establish the appropriate “entries”
for each problem and create “frameworks” focused on the problems rather than the types
of networks. With this, more general application solutions can be built. The user of these
frameworks concentrates only on selecting the problems he wants to solve and entering
the established entries without needing to be an expert in the design of DL solutions.

Finally, DL algorithms must be created to be “automatically retrained” online. To prevent
it from becoming obsolete in the short term, one must incorporate new data into the DL model
as further information is received during its operation within the data network. Today, when
there are significant changes in the model inputs, the models must be retrained “offline” and
re-deployed to the system for operation, resulting in prohibitive costs for enterprises.

6. Limitations

Like every systematic review, this one has three significant limitations: (1) a limited
number of databases consulted; (2) the search phrases used; and (3) the risk of bias in
works selection.

By using three databases as query sources, interesting works in cognitive data net-
works could be left aside; however, this limitation was solved, as the databases consulted
are the most relevant for this area.

An incorrect selection of search phrases can leave out research with significant contri-
butions to the community of cognitive data networks. That is why the search words as well
as their operators were valued in detail.

The number of publications on the use of DL in data networks is increasing, so the
selection of the works to be included in this review conveyed the risk of bias due to the
authors’ personal preferences. Therefore, the inclusion and exclusion criteria were clearly
defined to avoid bias and a cross-assessment when analyzing the abstracts and full texts.

7. Conclusions

This paper presents a review of new research using deep learning algorithms to opti-
mize the operation of cognitive data networks, focused on wireless spectrum management,
energy efficiency, and improved data transmission. It was found that there are exciting
applications that show that this trend will continue to grow, as they help solve significant
problems in this area. The traditional methods that have been used have focused on creat-
ing reactive mechanisms that cannot collect data to continue learning, with no possibility
of predicting critical changes in network operation.

The works studied in this paper showed a preference for using a combination of DL
methods in a single reference framework, highlighting the use of convolutional neural
network (CNN) and deep reinforcement learning (DRL) methods. The preceding is justified
since the flow of traffic and the spectrum usage in the networks has a high degree of nonlin-
earity and complexity, characterized by temporal and spatial correlation. Furthermore, this
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entails generating a massive and complex dataset requiring sophisticated and advanced
algorithms for its analysis.

Creating frameworks that address data network problems in a multidimensional way
is crucial to integrating several issues in the same framework and predicting different
responses simultaneously, which is known in statistics as multivariate models.

For everything already mentioned, it is undeniable that next-generation data networks
must include deep learning (DL) methods in designing their operating mechanisms if they
want to meet the data transmission quality required by new network applications.
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