
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

Tool Support for System-Theoretic Process Analysis

Jette Petzold and Reinhard von Hanxleden

xiii pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Tool Support for System-Theoretic Process Analysis

Jette Petzold and Reinhard von Hanxleden

{jep, rvh}@informatik.uni-kiel.de
Department of Computer Science
Kiel University, Kiel, Germany

Abstract: Hazard analysis techniques such as System-Theoretic Process Analysis
(STPA) are used to guarantee the safety of safety-critical systems. Our goal is to
improve the tool support for STPA. The preliminary result is the PASTA Visual Studio
Code (VSCode) Extension that provides verification checks and diagrams. PASTA

uses elkjs to layout the diagrams and Sprotty to draw them. We evaluate PASTA by
recreating the ROLFER analysis. In the future we plan to further evaluate whether
PASTA improves upon existing tools and to add more features such as reevaluation
suggestions, model checking, and support for other risk analysis techniques.

Keywords: Automatic Visualization, Software Safety, STPA, VSCode Extension

1 Introduction

System-Theoretic Process Analysis (STPA) is a relatively new hazard analysis technique for
safety-critical systems, based on the System-Theoretic Accident Model and Processes (STAMP)
[Lev04]. It is applied manually by the safety analyst and consists of four phases. The results
are a control structure and components of seven different aspects, which are: Losses, hazards,
system-level constraints, responsibilities, unsafe control actions (UCAs), controller constraints,
and scenarios. Components of these aspects reference each other as seen in Fig. 1 [LT18]. Haz-
ards reference the losses they cause, system-level constraints are defined for hazards, UCAs lead
to hazards, and so on. The control structure is composed of controllers, controlled systems,
control actions, and feedback. Extensions of STPA have a similar approach. One example is
STPA for Security (STPA-Sec) [YL13], which goal is to ensure security instead of safety. In this
extension, the analyst defines vulnerabilities instead of hazards and Unsecure Control Actions
instead of unsafe control actions. In contrast to traditional techniques, such as Fault Tree Analy-
sis (FTA) [RS15], STPA considers not only component failures but also unsafe interactions among
system components. That is why STPA identifies more risks than traditional techniques [Lev16].
However, STPA takes more time to apply than these traditional techniques, which is why the need
for tools that provide systematization and automation has been widely acknowledged [SPP+19].
One project that would benefit from such a tool is Förde 5G1. It is a project of the Clean Au-
tonomous Public Transport Network (CAPTN)2 initiative with the goal to develop an unmanned
autonomous ferry for the Kieler Förde. Since a ferry is a safety-critical system, risk analysis
must be performed to verify the safety of the system and it is planned to use STPA for this.
1 https://captn.sh/foerde-5g/
2 https://captn.sh/

i / xiii Volume 82 (2022)

mailto:\{jep, rvh\}@informatik.uni-kiel.de
https://captn.sh/foerde-5g/
https://captn.sh/


Tool Support for System-Theoretic Process Analysis

Losses

System-level Hazards System-level
constraints

Responsibilities
Unsafe
Control
Actions

Controller
constraints

Scenarios
(with UCAs)

Scenarios
(without UCAs)

Figure 1: The STPA aspects and their connections as visualized by Leveson et al. [LT18]. A
component belonging to an aspect that is the origin of an edge must reference a component
belonging to the target aspect of this edge.

We want to improve the support for applying STPA on safety-critical systems by harnessing the
benefits of automatically generated diagrams and automatic layout in the STPA context. Textual
graph definitions provide benefits in comparison to Drag-and-Drop such as version control and
faster diagram creation [FH10]. Since the target group, the analysts, may be more familiar
with the creation of diagrams via Drag-and-Drop, a way must be found to introduce textual
graph definition. Besides the diagram for STPA, it may also be useful to support other analysis
techniques in the same tool. Antoine states that hardware issues found with STPA could be further
analyzed with traditional techniques, whose focus lies on these issues [Ant13]. According to
him, FTA would be the best candidate for this. This is why, we plan to look further into a possible
combination of STPA with FTA.

Sec. 2 presents related work. The preliminary results covered in Sec. 3 are the Pragmatic
Automated System-Theoretic Process Analysis (PASTA) Visual Studio Code (VSCode) extension
and its features. Sec. 4 introduces the used technologies and planned evaluation strategies. The
main contributions are concepts that are planned to be finalized and implemented in the future,
which are presented in Sec. 5. Finally, Sec. 6 concludes with a summary.

2 Related Work

Tools that support the application of STPA already exist. STPA based Hazard and Risk Analysis
(SAHRA) is a graphical editor which provides graphical elements for STPA components [KRR16].
An extract of an example diagram can be seen in Fig. 2. A component is represented as a
rectangle containing an ID, a description, and an icon in the upper-right corner representing
the aspect. The connections between components are represented by arrows, and additional

ISoLA DS 2022 ii / xiii



ECEASST

LossesHazardsUCA TypeControl Action Unsafe Control Actions

Figure 2: An extract of an example diagram in SAHRA [KRR16].

element types are used for the control structure. SAHRA provides a mind map style that helps to
see relationships at a glance and provides flexibility regarding documentation details [KRSH16].
However, unlike the work presented here, SAHRA does not provide automatic layout and therefore
requires potentially tedious and time-consuming manual layout. Furthermore, SAHRA does not
provide filtering options that would improve the navigation for large diagrams.

The Extensible STAMP Platform (XSTAMPP), which is open source and based on the Eclipse
Rich Client Platform (RCP), provides a graphical editor for creating the control structure [AW16b].
The other aspects of STPA are maintained in several views and tables. Furthermore, a subset of
the STPA process is automated. The authors also developed a plug-in called Extended Approach
to STPA (XSTPA), which implements context-tables proposed by Thomas [Tho13]. These context-
tables systematize and partly automate the identification of UCAs. Based on the results of that
phase and Safe Behavioral Models (SBMs), modeled manually by the user in another tool e. g.
Simulink3, test-cases can be generated automatically [AW16a]. Additionally, model checking
is provided for these models. The model checker uses Linear Temporal Logic (LTL) formulas
that are automatically generated based on the UCAs. Failing checks are displayed together with
a textual counterexample. In contrast to SAHRA and the tool we develop, XSTAMPP has no visu-
alization of the STPA aspects. This feature can help to get a better overview, which makes seeing
connections between components easier. Furthermore, the counterexamples XSTAMPP provides
during model checking can be improved by simulating them in the SBM.

3 https://www.mathworks.com/products/simulink.html

iii / xiii Volume 82 (2022)

https://www.mathworks.com/products/simulink.html


Tool Support for System-Theoretic Process Analysis

Losses

Hazards

Constraints

Responsibilities

Unsafe Control Actions

Controller Constraints

Loss Scenarios

Figure 3: The PASTA VSCode extension.

An example of a web application is WebSTAMP [SPP+19]. It provides a web-based collab-
orative environment, security, and (context) tables for the STPA aspects. However, it focuses on
only two of the four STPA steps. UCAs and scenarios can be defined but losses, hazards, responsi-
bilities and the control structure must be modeled elsewhere. In contrast, PASTA aims to support
the entire STPA process.

3 Preliminary Results

So far we concentrated on how visualizations can help when performing STPA. The result is
a Domain Specific Language (DSL) for STPA as a VSCode Extension that provides the option to
automatically generate a diagram [PKH23]. The syntax of the DSL is based on the notation used
in the STPA handbook [LT18] to make access for safety analysts as easy as possible. An overview
of the PASTA extension can be seen in Fig. 3. On the left is the editor in which the components
of the STPA aspects and the control structure can be defined. On the right, the automatically
generated and laid out diagram is shown.

Most of the STPA components should be referenced by another component. With a large num-
ber of components, unreferenced components are not directly obvious. Highlighting these com-
ponents improves the overview of the analysis completeness. The DSL does this by showing a
warning in the editor [PKH23]. Another verification check verifies that for each control action,
at least one UCA is defined to ensure that the user does not overlook an action. These checks can
be enabled or disabled by the user.

ISoLA DS 2022 iv / xiii



ECEASST

L1L2 L3 L4L5

H1H2 H3 H4H5

SC1SC2 SC3 SC4SC5

UCA3 UCA4UCA1 UCA2 UCA5UCA6UCA7UCA8 UCA9UCA10UCA11UCA12UCA13 UCA14UCA15 UCA16 UCA17 UCA19UCA18UCA20 UCA21UCA22 UCA23 UCA24UCA25 UCA26UCA27UCA28 UCA29UCA30UCA31 UCA32UCA33UCA34UCA35 UCA36UCA37 UCA38 UCA39UCA40 UCA41 UCA43UCA42UCA44 UCA45 UCA46UCA47 UCA49UCA50 UCA51 UCA52UCA53UCA54 UCA55 UCA56UCA57UCA58 UCA59UCA60UCA61 UCA63UCA62 UCA64UCA65UCA66UCA67 UCA68 UCA69UCA70UCA71 UCA72 UCA73 UCA74 UCA76 UCA77UCA78UCA75 UCA83UCA79UCA80 UCA81 UCA82UCA84 UCA85 UCA88UCA86 UCA89UCA101UCA90UCA91UCA92 UCA93 UCA94UCA95UCA96 UCA98UCA99UCA100 UCA102UCA104

S1S2 S3 S4S5S6 S7 S8 S9 S10S11 S12 S13S14 S15 S16S17 S18S19S20 S21S22S23S24 S25 S26 S27 S28 S29S30 S31 S32 S33S34S35S36S37 S38S39 S40S41 S42S43 S44 S45 S46 S47 S48S49S50 S51 S52S53 S54S55S56S57S58 S582 S583S59S60 S61 S62 S63S64S65S66S67S68 S69S70 S71 S72S73 S74S75S76S77 S78S79S80S81S82 S83 S84S85 S86S87 S88S89S90 S91S92S93 S94S95S96S97 S98S100S101 S102 S103 Scenario105

(a) Unfiltered Diagram.

L1 L2L3L4 L5

H1 H2H3H4 H5

SC1 SC2SC3SC4 SC5

UCA10 UCA11

(b) Filtered Diagram.

Figure 4: Effect of filtering on a very large diagram. In this case, filtering is done based on the
control action of the UCAs.

The purpose of the two generated graphs is to provide an overview and help the user to better
understand the relationships. However, the graph for the STPA aspects can grow to a considerable
size. In order to still provide a clearly structured diagram, the STPA aspects should be distin-
guishable. For this purpose, each aspect of STPA has its own row in the graph and different colors
are used (Fig. 3). The visualization can help to inspect specific components. The component
the user is interested in and the connected components can be highlighted. PASTA implements
this by highlighting selected nodes and their connected nodes. A further provided option, to
focus on the currently important components, is the ability to filter components based on their
aspects and filtering within an aspect. These filters are also helpful when a large number of STPA

components are defined. An example application of filtering within the UCAs is shown in Fig. 4.
With a growing number of components, the diagram also grows in size and hence the overview
the diagram is supposed to give is impaired as can be seen in Fig. 4a. Using the filters leads to
a smaller diagram (Fig. 4b), which can still provide a good overview of the currently important
components.

Besides the diagrams, another view can be opened showing a context table as seen in Fig. 5
[PKH23]. Context tables are generated to guide the identification of components of a specific
STPA aspect: unsafe control actions (UCAs). UCAs are divided into four types: provided, not
provided, wrong timing, and applied too long or stopped too soon. In the context table view,
the user can select for which control action and type the context table is shown. When clicking
on a cell in the table that contains a UCA, the corresponding component in the editor and in the
diagram is highlighted making the connection between the views easier.

v / xiii Volume 82 (2022)



Tool Support for System-Theoretic Process Analysis

Figure 5: The context table in PASTA.

In order to simplify the access to text-based graphs, diagram snippets are provided for the
control structure. They are shown in a menu in the activity bar as seen in Fig. 6. A diagram
snippet is a textual control structure definition for which a preview is generated that shows how
it will be visualized. Clicking on one of them inserts the corresponding textual definition in the
editor, which adds the selected diagram as a subgraph to the control structure. This way users
unfamiliar with the syntax of the control structure can easily construct the desired graph and
can learn the syntax. It is also possible to create new snippets by selecting the corresponding
textual definition, opening the context menu, and selecting the action to add a snippet. This
can reduce the time needed to construct control structures, especially if several project analyses
contain control structures with identical substructures.

4 Methods

PASTA4 is open-source and part of the Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER)5 project. It uses elkjs6, the javascript version of Eclipse Layout Kernel (ELK)7,
to layout diagrams automatically. We use the open-source diagram framework Sprotty8 to draw
the laid out diagrams. Sprotty is well suited for our use case because it has built-in support for

4 https://marketplace.visualstudio.com/items?itemName=kieler.pasta
5 https://github.com/kieler
6 https://github.com/kieler/elkjs
7 https://www.eclipse.org/elk/
8 https://github.com/eclipse/sprotty

ISoLA DS 2022 vi / xiii

https://marketplace.visualstudio.com/items?itemName=kieler.pasta
https://github.com/kieler
https://github.com/kieler/elkjs
https://www.eclipse.org/elk/
https://github.com/eclipse/sprotty


ECEASST

Figure 6: The diagram snippets in PASTA.

elkjs. The DSL in PASTA is defined with Langium9 since it already provides an integration with
Sprotty. Langium already provides language support such as renaming and auto-completion as
well as default services such as a scope provider and validator which can be further customized.
The verification checks provided by PASTA are realized by implementing a custom validator. In
order to create a diagram, we extended the DiagramGenerator provided by Langium. The
diagram generator takes an Abstract Syntax Tree (AST) as input and creates an SGraph. Sprotty
provides the SGraph structure and default rendering for it. We defined custom rendering to
visualize the diagram as described in the previous section. The different views for the diagram,
context table, and diagram snippets are generated using VSCode webviews.

Evaluation of the concepts for the STPA support can be done by using PASTA in the Förde
5G context. This way, analysts can give feedback regarding the workflow and the implemented
concepts. An exemplary analysis was done by using the aircraft example of the STPA handbook
[LT18], which showed that the whole STPA process is supported. Furthermore, we used PASTA

to recreate the entire Robotic Lifeguard For Emergency Rescue (ROLFER) analysis [CLD+20].
In addition to the support of all defined components, the recreation revealed that filtering is
needed since the graph can grow to a considerable size [PKH23]. A comparison to other tools
was already done based on the suggestions of Ludvigsen [Lud18] and Souza et al. [SPP+19]. It
revealed that the main advantage of PASTA is the visualization of the relationships between the
STPA components and that our tool can keep up with XSTAMPP, which fulfills the most sugges-
tions of the compared tools [PKH23]. However, a full user study should be conducted in which
the participants use XSTAMPP as well as PASTA to apply STPA.

9 https://langium.org/

vii / xiii Volume 82 (2022)

https://langium.org/


Tool Support for System-Theoretic Process Analysis

Controller

Controlled Process

Actuators Sensors

Process model
Variable1 [Values]
Variable2 [Values]
…

Other Controller

Controlled Process

Process model
Variable1 [Values]
Variable2 [Values]
…

Figure 7: The planned visualization of the control structure in PASTA. The nodes represent system
components while the edges represent communication between them.

5 Next Steps

We plan to include reevaluation suggestions as proposed by Ludvigsen [Lud18]. STPA does not
need to be a linear process, so if components are adjusted in later steps, reevaluation suggestions
can show which other components need to be updated as well. This way inconsistencies that
emerge because not all affected components are updated could be reduced. We plan to inspect
how such suggestions can be realized and to what extent visualization can help. One possible
realization is a workflow similar to renaming a component: The user right-clicks on the compo-
nent that should be changed and selects the reevaluate action. Subsequently, the component can
be edited and affected components highlighted in the editor or diagram. An option to jump to
the next affected component in the editor may be useful as well.

Furthermore, the DSL will be evaluated, especially the usefulness of the visualization. Ad-
ditionally, we intend to improve the diagram further. For example, the layout of the control
structure can be adjusted to be more similar to manually drawn ones. This may lead to better
orientation in the graph as it is more in line with the mental map of the user. The orientation
and overview can be improved even further by drawing actuators and sensors differently from
other system components and using dashed lines for feedback transitions. The process model of
a controller, which contains information about other system components and the environment,
can be visualized as well. The resulting visualization is shown in Fig. 7. In order to evaluate
these concepts, we plan to conduct a survey.

ISoLA DS 2022 viii / xiii



ECEASST

Fundamentals +
Control Structure

Unsafe Control Actions

PASTA KIELER

Linear Temporal Logic

NuXmv

Model Checker View

Safe Behavioral Model

Symbolic Model Verifier

Highlight failed SSRs

Figure 8: The workflow for model checking with PASTA.

5.1 Model Checking

Moreover, we plan to adapt the verification and test-case generation done by Abdulkhaleq et
al. [AW16a] into KIELER and combine it with the DSL. Abdulkhaleq et al. use the context tables to
automatically derive Software Safety Requirements and translate them to LTLs formulas. These
formulas can be used to verify the SBM of a software controller of the analyzed system. The
SBM is modeled manually by the user and is automatically transformed into a Symbolic Model
Verifier (SMV) model. The generated LTL formulas are added to this SMV model and the NuSMV
model checker is used to verify the correctness of the SBM regarding the formulas. When the
model is correct, a safe test model — an Extended Finite State Machine (EFSM) — is constructed
automatically based on the SBM. The EFSM is then used to create test cases. This verification and
test case generation is implemented in XSTAMPP. We plan to also provide such model checking
with PASTA. The planned workflow can be seen in Fig. 8. The STPA aspects, including the UCAs,
are defined by the user in PASTA. Based on the context tables, LTL formulas are generated using
Abdulkhaleq et al.’s rules. However, not all UCA types are considered by these rules. It is planned
to create rules for the missing types.

The SBM that Abdulkhaleq et al. expect to be modeled elsewhere, will be modeled in KIELER.
KIELER already supports a translation to an SMV model and model checking of LTL formulas.
The model checking is done by using NuXmv [CCD+14]. In order to use the LTL formulas that
are generated by PASTA, KIELER must communicate with PASTA. Since both tools are VSCode

ix / xiii Volume 82 (2022)



Tool Support for System-Theoretic Process Analysis

Extensions, this will be done with the Language Server Protocol (LSP). In contrast to XSTAMPP,
KIELER can simulate the counterexamples of failed LTL formulas in the SBM, which may help the
user to better understand why a formula is not fulfilled.

Additionally, failed LTL formulas are planned to be tracked back to their UCAs to highlight
them in the editor and visualization in PASTA. For this, again, the LSP will be used. The finished
SBM can be used to generate safe code for the modeled controller. KIELER provides different
methodologies and target languages for such a code generation. Furthermore, we want to explore
in what detail an SBM can be generated automatically based on the STPA analysis. If a completely
automatic generation of an SBM is possible, an STPA analysis would be sufficient to generate code
for software controllers. Even a partly automatic generation of an SBM can help to reduce the
time needed for modeling the behavior of a controller.

Additionally, we plan to use the SBM to generate scenarios in the OpenSCENARIO10 format
because these scenarios can be used for a simulation in the Unreal Engine11. With such a sim-
ulation the behavior of a system can be verified. For the Förde 5G project, such a simulation of
the autonomous ferry exists and it is planned to use OpenSCENARIO to test the ferry. In order
to create the scenarios, at first test cases must be generated. For that, we can create random val-
ues for the input variables similar as Abdulkhaleq et al. do. However, to create scenarios in the
OpenSCENARIO format, it is not sufficient to only know the behavior of the modeled system in
each scenario. In the case of the ferry in the Förde 5G project, we also have to state the behavior
of other vessels in each scenario. Hence, we must define a way how the user can specify the
environment, such as the number of additional vehicles, their maximal velocity, their mobility,
etc. We plan to investigate which parameters are needed and how these parameters can be used
to create scenarios in which several vessels participate.

5.2 FTA Integration

We want to support other risk analysis techniques in PASTA and if possible combine them with
STPA. For now, we chose FTA for this, since Antoine states that it is the best candidate for a
combination with STPA [Ant13]. In FTA the user draws a tree starting with the component failure
as the top event. Subsequently, the events leading to the top event are added using one of the
following connectors: AND gate, OR gate, k/n gate, or INHIBIT gate. An example tree can be
seen in Fig. 9 in which G1 is an AND gate and G2 an OR gate. If the events E1 and E2 occur
and one of the events E3 or E4, the top event DS1 occurs. To integrate FTA in PASTA a new
grammar must be defined in PASTA. Just as for STPA this can be done with Langium. Besides a
new grammar, we need to define a diagram generator which translates an FTA AST to an SGraph.
This graph can then be visualized by defining custom rendering similar to how it is done for
STPA. Once PASTA provides such a FTA DSL, we will look into the combination of STPA with FTA.
For example, an option can be provided to import component failure events detected with STPA

to an FTA file. We plan to investigate to what extent a fault tree can be automatically generated
for such a component failure based on the information given in the STPA file.

10 https://www.asam.net/standards/detail/openscenario/v200/
11 https://www.unrealengine.com/de

ISoLA DS 2022 x / xiii

https://www.asam.net/standards/detail/openscenario/v200/
https://www.unrealengine.com/de


ECEASST

E1 E2

G1

DS1

G2

E3 E4

Figure 9: An example Fault Tree.

6 Conclusion

In conclusion, a basic foundation to improve the support for STPA is already implemented in
the PASTA VSCode Extension. PASTA provides a DSL, automatic validation checks, automatically
generated diagrams, and context tables. A comparison based on the suggestions of Ludvigsen
and Souza et al. revealed that PASTA can already keep up with XSTAMPP and has the advantage
of the visualization of relationships between STPA components. In the future several features are
planned to be finalized and implemented. These features include an expanded control structure
definition and visualization as well as model checking and scenario generation based on the
STPA result. For the latter, KIELER will be used. Furthermore, we plan to inspect how STPA can
be combined with FTA.

Acknowledgements: This research has been partly funded by the Federal Ministry for Digital
and Transport (BMDV) within the project “CAPTN Förde 5G”.

Bibliography

[Ant13] B. Antoine. Systems Theoretic Hazard Analysis (STPA) applied to the risk review of
complex systems: an example from the medical device industry. PhD thesis, Mas-
sachusetts Institute of Technology, 2013.

[AW16a] A. Abdulkhaleq, S. Wagner. An Automatic Safety-Based Test Case Generation Ap-
proach Based on Systems-Theoretic Process Analysis. Technical report, University
of Stuttgart, 2016.

[AW16b] A. Abdulkhaleq, S. Wagner. XSTAMPP 2.0: New Improvements to XSTAMPP In-
cluding CAST Accident Analysis and an Extended Approach to STPA. 2016 STAMP
Workshop at Massachusetts Institute of Technology (MIT), Mar. 2016.

[CCD+14] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, S. Tonetta. The nuXmv symbolic model checker. In Computer Aided

xi / xiii Volume 82 (2022)



Tool Support for System-Theoretic Process Analysis

Verification: 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26.
Pp. 334–342. 2014.

[CLD+20] S. Charalampidou, E. Lygouras, I. Dokas, A. Gasteratos, A. Zacharopoulou. A So-
ciotechnical Approach to UAV Safety for Search and Rescue Missions. In 2020 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS). Pp. 1416–1424.
2020.

[FH10] H. Fuhrmann, R. von Hanxleden. Taming Graphical Modeling. In Proceedings of the
ACM/IEEE 13th International Conference on Model Driven Engineering Languages
and Systems (MoDELS ’10). LNCS 6394, pp. 196–210. Springer, Oct. 2010.
doi:10.1007/978-3-642-16145-2

[KRR16] S. S. Krauss, M. Rejzek, M. U. Reif. Towards a modeling language for Systems-
Theoretic Process Analysis (STPA) : Proposal for a domain specific language (DSL)
for model driven Systems-Theoretic Process Analysis (STPA) based on UML. Tech-
nical report, ZHAW Züricher Hochschule für Angewandte Wissenschaften, Dec.
2016.

[KRSH16] S. S. Krauss, M. Rejzek, C. W. Senn, C. Hilbes. SAHRA - An integrated software
tool for STPA. In 4th European STAMP Workshop, Zurich, 13-15 September 2016.
2016.

[Lev04] N. Leveson. A New Accident Model for Engineering Safer Systems. Safety science
42(4):237–270, 2004.

[Lev16] N. G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety. The
MIT Press, 2016.

[LT18] N. Leveson, J. P. Thomas. STPA Handbook. MIT Partnership for Systems Ap-
proaches to Safety and Security (PSASS), 2018. http://psas.scripts.mit.edu/home/get_
file.php?name=STPA_handbook.pdf.

[Lud18] N. Ludvigsen. Prototyping a digital support tool for an agile implementation of
STPA. Master’s thesis, Norwegian University of Science and Technology, 2018.

[PKH23] J. Petzold, J. Kreiß, R. von Hanxleden. PASTA: Pragmatic Automated System-
Theoretic Process Analysis. In 53rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 2023.

[RS15] E. Ruijters, M. Stoelinga. Fault Tree Analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Computer science review 15:29–62, 2015.

[SPP+19] F. G. Souza, D. P. Pereira, R. M. Pagliares, S. Nadjm-Tehrani, C. M. Hirata. Web-
STAMP: a Web Application for STPA & STPA-Sec. In MATEC Web of Conferences.
Volume 273. 2019.

ISoLA DS 2022 xii / xiii

http://dx.doi.org/10.1007/978-3-642-16145-2
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf


ECEASST

[Tho13] J. P. Thomas. Extending and Automating a Systems-Theoretic Hazard Analysis for
Requirements Generation and Analysis. PhD thesis, Massachusetts Institute of Tech-
nology, 2013.

[YL13] W. Young, N. Leveson. Systems thinking for safety and security. In Proceedings of
the 29th Annual Computer Security Applications Conference. Pp. 1–8. 2013.

xiii / xiii Volume 82 (2022)


	Introduction
	Related Work
	Preliminary Results
	Methods
	Next Steps
	Model Checking
	FTA Integration

	Conclusion

