
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

SOS-Supported Graph Transformation

Sebastian Teumert, Marvin Krause, Bernhard Steffen

22 pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

SOS-Supported Graph Transformation

Sebastian Teumert, Marvin Krause, Bernhard Steffen

TU Dortmund University

Abstract: In this paper, we propose a simplicity-oriented approach for model-to-
model transformations of graphical languages. Key to simplicity is decomposing
the rule system into two rule sub-systems that separate purpose-specific aspects
(transformation and computation), and specifying these rule systems as a graphi-
cal language. For the transformational aspect, we use a compiler-like generation
approach, while taking Plotkin’s Structural Operational Semantics (SOS) as inspi-
ration for the computational aspect. We define these rule systems as inference rules
for pattern-based transformations of typed, hierarchical graphs. Using typed graphs
allows patterns to easily distinguish between the elements of the source graph. The
resulting rule system (named SOS-Supported Graph Transformation, or SOS-GT)
supports a well-structured and intuitive specification of complex model-to-model
transformations adequate for a variety of use cases. We illustrate these rules with
an example of transforming the WebStory language (WSL, an educational tool) to a
Kripke Transition System (KTS) suitable for model checking, and give an overview
over more applications in the end of the paper.

Keywords: Multi-level transformations, Model-to-model transformation, Graph rewrit-
ing, Structural Operational Semantics, Abstraction, Rule systems, Meta language,
Graph pattern

1 Introduction

A commonly faced problem in the world of model-driven development and language-driven
development (LDE) [SGNM19] is interpreting a model. A model may be interpreted to execute
it, to generate code from it, to convert it to a textual representation or to convert it to another
(graphical) model, either in the same or another language (e.g. for language evolution and co-
evolution). In this paper, we present a novel approach to the latter problem using a rule system
in which the purpose-specific aspects of transformation and computation are realized as separate
subsystems. An important driver of this approach is simplicity [MS10] and cross-domain work
of experts similar to the approach used in [KLNS21].

Both aspects are addressed with rule systems that are based on inference rules. The computa-
tional aspects are addressed by a rule system that is inspired by Plotkin’s Structural Operational
Semantics (SOS) [Plo81], while the transformational aspect is realized by a rule system that uses
pattern-matching to find elements in the source model and uses template-based production rules
to generate elements in a separate target model. Thus, the source model is not rewritten, but only
inspected, while the target model is constructed incrementally.

The subject is of great interest for the LDE community, because the aim of LDE is to enable
domain experts to express themselves in a way that is accessible to them, alleviating the need to

1 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

acquire extensive programming knowledge.
Current state-of-the art transformation tools are usually textual and often require a significant

amount of textual programming and complexity [Ren04, BNBK07, ERRS10, ERT99]. By bring-
ing both the transformation and computation onto the same meta-level as the domain-specific
languages (DSL) the domain experts use, those experts can express both aspects in a way that
utilizes their domain knowledge and expertise in the (graphical) languages they have already
acquired, instead of forcing them to learn a new, unfamiliar skill.

We demonstrate the usefulness of the rule system using the same example as [KLNS21] - the
transformation of a graphical language called WebStory Language (WSL), designed for teaching
purposes, to a Kripke transition system (KTS) - leading to the possibility of model checking the
original language.

To this end, we introduce the required background information in Section 2, where we intro-
duce the language workbench we used (Section 2.1), the WSL (Section 2.3), the target language
KTS (Section 2.4) and the underlying data structure of all models (Section 2.2). Our main re-
sult is found in Section 3, where we first lay out some requirements (Section 3.1), introduce
the intermediate language (Section 3.2) and rule system (Section 3.3), the context and semantic
function (Section 3.4), both sub rule-systems (Section 3.5, Section 3.6) and give an overview
over the whole transformation process (Section 3.7). In Section 4, we evaluate the approach and
highlight its limitations, while we outline the future work in ?? and offer some conclusions and
perspectives in Section 6.

2 Background

First, we discuss the basics required for understanding the main contributions presented in Sec-
tion 3. Working with languages requires powerful frameworks for the realization and evolu-
tion of the required domain-specific development environments, often called language work-
benches [Fow05]. Section 2.1 introduces CINCO [NLKS17], the language workbench used
throughout this paper, while Section 2.2 discusses the type of model that CINCO uses and which
can be used with this transformation approach in more detail. Section 2.3 introduces the Web-
Story language, an educational language that is used as example throughout the paper, while
Section 2.4 introduces Kripke-Transition Systems, which are used as example for a transforma-
tion target throughout this paper.

2.1 CINCO Meta Tooling Suite

The CINCO Meta Tooling Suite1 [NLKS17] is a tool for generating domain-specific graphical
modeling environments, which we used for our implementation and to define our graphical rule
language. CINCO works with typed hierarchical attribute graphs which can be defined by de-
scribing their nature on the meta level. It is built upon the Eclipse Modeling Framework (EMF)
[SBPM08] and the RCP [MLA10] and uses Xtext-based languages for the metamodel definition
as well as integration of textual DSLs in a service-oriented fashion [Nau17].

1 Cinco SCCE Meta Tooling Suite. http://cinco.scce.info.

ISoLA DS 2022 2 / 22

http://cinco.scce.info


ECEASST

2.2 Typed Hierarchical Attribute Graphs

A Typed Attribute Graph (G, t) is a graph G = (V,E) and a graph morphism t : G → AT G
[EEPT06, HEGO10]. AT G= (T G,Z) is an Attributed Type Graph made up of a Type Graph T G,
which contains the node and edge types and a data signature Z which holds the attribute types.
We use an E-Graph which extends G by connecting data nodes to its elements using attribute
edges and enables the possibility to assign attribute values. We also need the concept of contain-
ment which is not offered by the Typed Attribute Graph itself. Therefore a containment relation
is represented by an additional edge type in T G called the contains-edge [KLNS21]. This makes
the graph hierarchical and it will be called Typed Hierarchical Attribute Graph (THAG) in the
following.

In this paper we are working with models that can be described as THAGs. In CINCO, the
types are given by the metamodel as described in the so-called Meta Graph Language (MGL) and
allow for a subtyping relationship. The models that are transformed by SOS-Supported Graph
Transformation (SOS-GT, cf. Section 3) are instances of the given metamodel. The patterns
used in the rule system also refer to these types to restrict which elements are a match for each
pattern.

2.3 WebStory Language

The WebStory Language (WSL) is a graphical language built for show case and teaching pur-
poses which has been created with CINCO [LKZ+18]. With the WSL it is possible to define
simple click adventure-like games in the web browser where the user can click on certain areas
on a background image. When clicking such a click area, the data flow is evaluated and the user
is presented with a new screen. The screen that is reached may depend on the value of variables
if the data flow gos through a Condition node. The value of variables may be changed if the
data flow goes through a ModifyVariable node in between two screens.

Consider Figure 1, which shows an example WSL model that we will refer to throughout this
paper. All annotations (letters A−F , numbers 1-8, m1, m2, c1, c2) are not part of the original
WSL model and only added for explanation purposes.

The WSL is made up of the following building blocks: The big rectangles with the images
inside are so-called Screens. Screens define the background images the user can explore in
the browser.

The green triangle is the StartMarker which is connected to the first Screen the user will
see. Inside of the Screen are ClickAreas displayed in purple and numbered with the num-
bers 1-8 which define the clickable areas on the different background images. There can be an
arbitrary number of ClickAreas inside of every Screen. Note that the Screen A and B con-
tain two ClickAreas each and Screen C-F are all covered by a single ClickArea. There
are two types of ClickArea available, RectangleClickArea and EllipseClickArea,
which both inherit from the abstract super type ClickArea. In this example, however, only
RectangleClickAreas are used.

The blue circles are Variables. In this example there are the two Variables key (left)
and gold (right). Variables are of type boolean and have the default value false. The
value of a Variable can be changed with the ModifyVariable node which looks simi-

3 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

Figure 1: An example WSL model with six screens and two variables2.

lar to a little traffic light and are also subsequently annotated here with m1 and m2. A green
ModifyVariable assigns the value true to the connected Variable, a red one (which
is not included in this example) assigns the value false. The yellow diamonds (c1 and c2)
are Condition nodes and read from the Variables they are connected to. There are two
outgoing edges for each Condition: The FalseTransition (dotted) which is traversed
when the Variable has the value false and the TrueTransition (continuous) which is
traversed when the Variable has the value true.

The purple edges all symbolize control flow. For example, by clicking on a ClickArea, a
new Screen can be reached directly or the value of a Variable can be written or read first.
The grey edges represent data flow, i.e. writing to or reading from a Variable.

2 Images are taken from the following sources (all last accessed on 2023-03-10):

• Nahaufnahme der Schlüssel by George Becker (available under Pexels license):
https://www.pexels.com/de-de/foto/nahaufnahme-der-schlussel-333837/

• Truhe, Schatzkiste, Mittelalter by Momentmal (available under Pixabay license):
https://pixabay.com/de/photos/truhe-schatzkiste-mittelalter-2512108/

• Wooden House in a Forest by Mateas Petru (available under Pexels license):
https://www.pexels.com/photo/wooden-house-in-a-forest-673788/

• Goldbarren Lot by Pexels (available under Creative Commons Zero license):
https://www.pexels.com/de-de/foto/goldbarren-lot-47047/

• Grüner Laubbaum by veeterzy (available under Pexels license):
https://www.pexels.com/de-de/foto/gruner-laubbaum-38136/

ISoLA DS 2022 4 / 22

https://www.pexels.com/de-de/foto/nahaufnahme-der-schlussel-333837/
https://pixabay.com/de/photos/truhe-schatzkiste-mittelalter-2512108/
https://www.pexels.com/photo/wooden-house-in-a-forest-673788/
https://www.pexels.com/de-de/foto/goldbarren-lot-47047/
https://www.pexels.com/de-de/foto/gruner-laubbaum-38136/


ECEASST

⟨A, f, f⟩

⟨C, f, f⟩

⟨A, t, f⟩

⟨C, t, f⟩

2 5

⟨B, t, f⟩

1

52

3

⟨B, f, f⟩

1

⟨E, t, t⟩4

⟨B, t, t⟩

7

⟨F, t, t⟩
4

8

3

⟨D, f, f⟩
4

6

⟨A, t, t⟩

31

⟨C, t, t⟩
2

5

Figure 2: The KTS of the WSL model shown in Figure 1.

In this example, the user explores a forest. He starts on Screen A and finds a forest hut on
Screen B by clicking on ClickArea 1. If the user tries to open the door (ClickArea 4), the
value of the Variable key is read. At this point, the value is false and the user is redirected
to Screen D and told to find the keys for the door. Every click now leads back to Screen
B. In order to open the door, the user has to go back to Screen A via ClickArea 3 and then
to Screen C via ClickArea 2 to find the keys. Each click now writes the value true into
the Variable key and redirects the user to Screen A again. If the user tries to open the door
one more time, the TrueTransition is traversed and the value of the Variable gold is
evaluated. Since this has the value false, a ModifyVariable node is reached immediately
afterwards, which writes the value true to the Variable gold before the user finally finds the
treasure on Screen E. Another click takes the user back to Screen B. If the user tries to find
the treasure again, he will only find an empty treasure chest (Screen F), because the evaluation
of the Variable gold this time returns true.

2.4 Kripke Transition System

Kripke Transitions Systems (KTSs) (a generalization of both Kripke structures and labeled tran-
sition systems [MSS99]), had already been identified as providing an adequate semantic model
structure for graphical program models [MS09].

Given AP a set of atomic propositions a Kripke Transition System (KTS) is a quintuple
KT S = (S, I,Act,R,L) where

• S is a set of states,

• I ⊆ S is a set of initial states,

• Act is a set of actions,

• R ⊆ S×Act ×S is a transition relation and

• L : S → 2AP is a labeling function.

5 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

Figure 2 shows the KTS of the WSL model displayed in Figure 1. Here the labeling consists of
the current Screen and the values of the Variables key and gold (with f = false and t =
true). The only initial state (⟨A, f , f ⟩) is marked with an incoming edge without a source. The
actions represent the clicking of the different ClickAreas and are shown here as edge labels
with the numbers representing the ClickArea clicked.

3 SOS-Supported Graph Transformation

In this section we look in detail at the results of our work. For this purpose, we first describe the
goals we set in advance before we continue with the individual components of our rule system
and the functioning of the transformation calculus.

3.1 Goals

The main goal to be achieved was the conceptualization of a calculus that allows to transform
one typed hierarchical attribute graph into another. As already described in Section 1, some
approaches already exist for this purpose, whereby we mainly picked up the work of Kopetzki
et al. [KLNS21] and wanted to continue or rather develop it one step further. Our minimum
requirement was therefore to be able to achieve at least equivalent results. For this, we used the
same example, the transformation from WebStory Language to KTS, as a guideline and wanted
to be able to produce a model that could be validated in a simple way using standard model
checkers, e.g. GEAR [BMRS09].

In addition, we have considered other use cases of such a calculus which may not have been
covered before. This included, for instance, the simplification of models, i.e. the transformation
within a single model type in which, for example, unneeded information is removed from the
model or structures are represented differently (e.g. serialization). An inherently similar appli-
cation is forward migration of models, i.e., updating graph models to another version through
the transformation process, where the source and target models then often differ in only a few
aspects.

Unlike many other approaches, we wanted to avoid so-called rewriting, i.e. the transformation
directly in the source model, and leave the source model untouched during the entire transforma-
tion. Thus, the source model should be read-only while the results are written exclusively to the
target model, making our approach work in a compiler-like manner.

Apart from that, a user of our tool should be able to define the transformation itself by creating
graphical transformation rules. These rules should be easy to design and understand for domain
experts, or at least support communication about the transformation process with them. In this
way, it should be possible to work out a descriptive and easy to realize solution for the use
cases described above, which in practice are often of a very technical and sometimes highly
complicated nature. As in [KLNS21], the graphical rule language is inspired by Plotkin’s SOS
or, more generally, by inference rules.

ISoLA DS 2022 6 / 22



ECEASST

Figure 3: The WSL model of Figure 1 transformed into an IL model.

3.2 Intermediate Language

Both for the definition of the rules and for the transformation, we decided to use a uniform
Intermediate Language (IL) instead of working directly on the source or target language. Every
source model is first transformed into this IL and each target model has been generated from an
IL model. The IL model consists only of three simple elements: ILNode, ILContainer and
ILEdge, which are then parameterized to represent the elements of the original source model.
This preserves any information from the original model and IL(A) becomes a parameterized
metamodel of a language A. Figure 3 shows the IL model of WSL model seen earlier in Figure 1.

Utilizing an IL is desirable both from an implementation as well as a conceptual point of view.
On the conceptual layer, it allows for IL enrichment. Thus, source models can be pre-processed
and enriched with additional information prior to transformation. It also allows for enrichment of
the target model when needed, e.g. to better discriminate target elements during transformation.
Utilizing an IL also significantly eases implementation, both for languages in our own ecosystem,
as well as languages defined in other ecosystems. By utilizing the IL, we are free to import any
model that is compatible with being looked at as a typed, hierarchical graph. Here, a language is
compatible when it is as strong as the definition, or weaker. For example, languages that have no
hierarchies or no attributes are still compatible with our definition and can be translated to our
IL. Even though both the IL and our rule system are model types defined in CINCO, this opens
up the possibility to partially decouple from CINCO models in the long term and to open up to
other ecosystems.

7 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

3.3 Rule System

In order to achieve all of these goals, a rule system with two types of rules is used. The rule
system is based on inference rules, where a premise must hold in order for the conclusion to be
reached, under an optional (side-) condition. For the method presented herein, we derived two
different kinds of inference rules, namely transformation rules and computation rules.

These rules are defined as transformation not directly on the source and target model, but the
intermediate language introduced above. As such, the complete ruleset represents the transfor-
mation from IL(A) to IL(B), where A is the source metamodel and B is the target metamodel.
Hence we write RS(A,B) : IL(A) 7→ IL(B), where RS(·, ·) is the whole ruleset consisting of both
transformation and computation rules.

Configuration (-Transition) [Condition]
Source Pattern → Target Production

Figure 4: General Scheme for Transformation Rules

Transformation rules (see Figure 4) are used to match a pattern in the source model under a
specific configuration and produce a certain structure in the target model when the premise for
the transformation holds and the (side-) condition is true. The premise of a transformation rule
is checked via the computation rules and describes a required transition from one configuration
to another (Section 3.4). Transformation rules are discussed in more detail in Section 3.5.

Source Pattern [Condition]
Start-Configuration → End-Configuration

Figure 5: General Scheme for Computation Rule

Computation rules (see Figure 5) describe the transition from a starting configuration to an
end configuration in their conclusion, under the premise that the structure described in the source
pattern of the rule can be found in the source graph and the (side-) condition holds. They are
discussed in more detail in Section 3.6

3.4 Configurations and State of the Computation

The state of the current transformation process is recorded in a working set of configurations. A
configuration is a tuple ⟨l,σ⟩, where l is a location in the source model (l ∈ V ∪E) and σ is a
key-value store to be tracked during computation. In order for the process to terminate, σ needs
to have a finite domain.

At the beginning of the transformation process, an initial σ needs to be specified. The starting
configuration is ⟨ε,σ0⟩, where ε is a special value for any location and σ0 is the initial store,
which can be specified by the user.

ISoLA DS 2022 8 / 22



ECEASST

We define two different operations for the store, which shall be used later: interpretation and
substitution. For interpretation of a variable v under a given store σ , we write JvK(σ) and mean
”The value stored under the key v in the store σ”. For substitution, we write σ{v/k} and mean
”the new store created by replacing the value v stored under the key k in the store σ”.

We also define the transition between two subsequent configurations as →∗. We say that
a →∗ b if and only if either a = b or there exists a series of one or more computation steps as
evaluated by the computation rules, that transforms a to b3. Note that this relation is transitive,
so that a →∗ b∧b →∗ c ⇒ a →∗ c.

3.5 Transformation Rules

In transformation rules, the conclusion consists of a source pattern and a target production, with
the intended semantic that when the source pattern is found in the source model, then the target
production should be found in the generated target model as well. The premise places constraints
on the current configuration or the required transition of the configuration to another configura-
tion.

Transformation rules are evaluated by matching their source pattern under the current config-
uration, then checking the premise using the computation rules, and then, when the premise and
side condition hold, identifying the already existing target elements of the target production in
the target model, and generating all missing elements that have not yet been generated.

3.5.1 Source Pattern

Source patterns are described as partial graphs in the IL of the source metamodel, and consist
of nodes, edges and containers. Each element of the source pattern is annotated with a label
and type from the metamodel of the source model. The labels are later used in the premise and
condition as metavariables. When a source pattern is successfully matched in the source model,
these metavariables then refer to the concretely matched element in the source graph. The type
annotations are used to constrain which kinds of elements can be matched in the source graph.
Type annotations allow for subtyping: in order for an element to be allowed to match, it must
have the same type as the type annotation, or its type must be compatible with the type annotation
in a standard subtyping relationship 4. The subtyping relationship of the source metamodel is
enriched with a new supremum, called Any. This element is the supertype of every element in
the source metamodel and can thus be used as a wildcard for type assertions.

Additionally, constraints can be placed on the attributes of elements5. Elements of the source
model which do not fulfill these constraints on their attributes cannot be used to instantiate a
match for the given pattern.

A match in the source model is found if and only if the elements have the same structure
as in the source pattern. They must match in (1) Type, (2) Attributes, (3) Containment and

3 In the future, we might also define the relation a →k b, which restricts execution to exactly k steps, or relations like
a →<k b and a →>k b with the analogous semantics.
4 Since we implemented this in CINCO, the subtyping rules of CINCO do apply in our case.
5 We do not prescribe any concrete mechanism for this. In our implementation, attribute constraints are attached to
each rule and specified using a small DSL that can access the metavariables from the source pattern.

9 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

(4) Connections. Note that source patterns are partial and of an existential nature. It is legal for a
node or container to have more edge connections than shown in the source pattern, but not less. It
is legal for nodes and containers to be contained in other elements not in the source pattern, but if
the source pattern prescribes a concrete containment relationship between two or more elements,
this relation must be found as given (transitive containment is not legal). Source patterns must
always be matched completely, with every element uniquely identified for any given instance of
the match.

Source patterns may contain a special element, called the anchor. If an element of the source
pattern is marked as the anchor, the rule is said to be a local rule, otherwise, it is said to be a
global rule. Global rules can match the any (ε) location in a configuration, while local rules
cannot. In order for a source pattern of a local rule to be a match, its anchor must be matched
with the location of the current configuration.

3.5.2 Premise and Condition

The premise of a transformation rule either consists of a single configuration ⟨l,σ⟩, or a config-
uration transition ⟨l,σ⟩ →∗ ⟨t,τ⟩. The leftmost configuration is called the start configuration,
and the (optional) right hand configuration is called the end configuration. The location of the
start configuration always refers to a label in the source pattern. The variables introduced in the
configurations can be referenced in the (side-) condition. Both start and end configuration (if it
exists) must also fulfill the (side-) condition.

Valid constraints to be placed upon the configurations can either constrain the type of the
location by a type assertion, or the values stored in the store (using the J·K(·) relation)6. The
→∗ relation is trivially true if the start configuration already fulfills the constraints of the end
configuration, since zero evaluation steps are explicitly included in its definition. Otherwise, the
computation rules are used to determine if the →∗ relation specified in the premise holds.

3.5.3 Target Production

Target productions are described as partial models in the IL of the target model, and consist of
nodes, edges and containers. Each element of the target production is annotated with a label and
type from the metamodel of the target model. All types must be concrete, non-abstract and thus
instantiable types of the target metamodel. Using non-instantiable types in the target production
is illegal, since the presence of even one such uninstantiable element makes the whole target
model uninstantiable. The labels can be used to reference the elements, e.g. to describe the
values of their attributes7. Furthermore, elements in the target production are annotated with a
configuration under which they are produced. These configurations do not necessarily need to
be start- or end configuration, but can be any valid configuration.

Only those elements of the target production which do not yet exist in the target model are
generated. If an element of a target production already exists in the target model, the existing

6 In our concrete implementation, this includes boolean terms, numeric terms and string comparisons, as well as
nested terms with ∧, ∨ and brackets.
7 Again, we do not prescribe a concrete mechanism for this. Our implementation uses a simple DSL that utilizes the
metavariables of the pattern to assign values to its attributes.

ISoLA DS 2022 10 / 22



ECEASST

element is instead re-used and the rest of the target production is generated around the already
existing elements. In order to do this, the target production is first treated like a pattern and
matched within the target model. A match in the target is found, if and only if the elements
have the same structure as in the target production: they must match in (1) Type, (2) Attributes,
(3) Containment, (4) Connections and (5) Configuration. Note that target productions are partial
and of an existential nature. It is legal for a node or container to have more edge connections
then shown in the target production, but also less, since the missing edge connections will then
be created. It is legal for nodes and containers to be contained in other elements not in the target
production, but if the target production prescribes a concrete containment relationship between
two or more elements, this relation must be found as given (transitive containment is not legal).
The match is always maximal, meaning that if it is possible to match an element of the target
model to the match, the element is included in the match.

After a (partial) match for the target production is found, then the missing elements are gener-
ated. Note that elements in the target model are never mutated, they are never deleted, reparented
or their attributes changed. Edges are never reconnected to other elements once created. If a tar-
get production matches an element in all but their attributes, the element is not a match. The
attributes are not overridden, but instead a new element is generated that has the appropriate
attributes8.

3.5.4 Transformation Rules for WebStory to KTS

In this section, we show and informally describe a concrete example of a set of transformation
rules defined using the schema laid out before, in our concrete syntax as used in our implementa-
tion of this calculus. Figure 6 shows the two transformation rules as used for the transformation
of WSL to KTS.

The Initial-Screen rule matches a Screen (with the label L) in the source model that
directly follows the (unique) StartMarker element (with the label s) in its source pattern. The
pattern does not have a designated anchor, thus the rule is a global rule and can match the any
(ε) location. In the premise, it only uses a single configuration ⟨L,σ⟩. The configuration has to
exist, and the (side-) condition asserts that the interpretation of all Variables that exist in the
source model (where Variable is a type in the WSL metamodel, cf. Section 2.3) must be true.
If premise and condition hold, the rule produces the initial state of the KTS in the target model,
under the configuration ⟨L,σ⟩.

Moving on to the Screen-to-Screen rule, this rule matches a ClickArea (with the
label a), contained in some Screen (with the label L), as well as any element it is connected
to (with the label l). Since a is asserted to be a ClickArea, which is an abstract type with
two concrete subtypes – RectangleClickArea and EllipseClickArea, it can match
nodes from both of these types. The Screen labeled L has a bold outline, indicating that this
source pattern has a designated anchor of L. Thus, it is only applicable for configurations whose
location is a screen and can be matched to L. The premise and condition together assert that after
zero or more steps in the →∗ relation (evaluated via computation rules), the end-configuration
is in a location labeled S for which the type assertion S : Screen holds. When this is true,

8 Setting attributes is not shown in the image, but in both rules, the generated states are labelled with a letter repre-
senting the Screen, and boolean values representing the currently stored values for each Variable in the store.

11 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

Figure 6: Transformation rules to transform WSL to KTS, with the two rules
Initial-Screen and Screen-to-Screen.

the target production specifies the goals that the target model should meet. It should contain a
KTS state representing the starting configuration, as well as a KTS state representing the end
configuration, and both shall be connected via a transition edge.

3.6 Computation Rules

Computation rules are used to evaluate the →∗ relation and are thus utilized when the premise of
a transformation rule needs to be checked and does not trivially hold (after zero steps). Hence,
their conclusion describes the transition of one configuration to another configuration, which are
called the start and end configuration, respectively. The premise of a computation rule is a source
pattern, matching a pattern in the source model.

3.6.1 Conclusion

Computation rules are always invoked with a given configuration – either from a transformation
rule, or with the configuration reached by a previous computation rule. The start configuration
has the form ⟨l,σ⟩ and introduces meta-variables for the location and store of the start configura-
tion, which can be used later in the condition and in the source pattern. The end configuration is
given as ⟨l,σ⟩ as well. The location of the end configuration refers to a metavariable introduced
in the source pattern, or, when the location should be unchanged, the location as given in the start

ISoLA DS 2022 12 / 22



ECEASST

configuration. The store of the end configuration can either refer to the store as used in the start
configuration (if the store does not change), or introduce a new metavariable for the final store,
which can be used to describe how the new store should look like. The condition (see below) can
place additional requirements on the final store, expressed using the store substitution introduced
in Section 3.4.

3.6.2 Source Pattern and Condition

The premise of a computation rule is a source pattern which works analogous to source patterns
in transformation rules. They are partial graphs to be matched in the source model, annotated
with labels and type assertions. As in the source patterns of transformation rules, these labels
can later be used in the condition, but also in the description of the configuration transition.
Type assertions support subtyping as well, and the same matching rules as for source patterns in
transformation rules are used for source patterns in computation rules. Unlike in transformation
rules, the anchor is not optional though, and source patterns in computation rules always have a
designated anchor element in their pattern.

Conditions in computation rules work analogous to conditions in transformation rules (cf.
Section 3.5.2).

3.6.3 Computation Rules for WebStory to KTS

Figure 7 shows the three computation rules as used for the transformation of WSL to KTS. To re-
call, in the WSL, there are three possible target nodes that DataFlow edges can reach: Screen
containers, ModifyVariable nodes and Condition nodes. If a DataFlow edge directly
connects a ClickArea to another Screen, the transformation of the Screen-to-Screen
rule is directly applicable. The computation rules reflect the other possibilities in which a WSL
model may be constructed. Thus, there is one rule for the ModifyVariable node. In case of
Condition nodes, there are two possible paths after them, depending on the value the given
variable has in the store at that moment (a boolean value), resulting in a total of three computation
rules needed to fully cover all possible constructions of the WSL.

The ModifyVariable rule is applicable when the location of the current configuration is
a ModifyVariable node (labeled m). The type constrained on m is expressed in the source
pattern. The node labeled m there is also bold because it represents the anchor of the pattern.
The pattern also matches the Variable to be modified as v, and the subsequently reached
node (which again, can either be a Screen, ModifyVariable or Condition node) as l,
which can be of any type. The conclusion shows the transition from the start configuration to an
end configuration in which both location and store have changed. The location changes to the
element labeled l, while in the store τ , the value of the variable v is replaced with the value of
the ModifyVariable node9.

Either of the Condition-[True|False] rules is applicable when the current configu-
ration contains a location that is of type Condition, which is matched as anchor L in the
source pattern. Either rule matches the Variable node with the label v. However, the (side-)

9 In our implementation, we use JnK to mean ”the value of the attribute value of the node referenced by the label n,
and Jn|atrK to mean ”the value of the attribute atr of the node referenced by the label n.

13 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

Figure 7: Computation rules for calculating the configuration transitions (→∗) in WSL.

condition constrains the rules to one of the two possible valuations of v in the store σ . The
Condition-True rule is only applicable when the variable is valued as true. The source
pattern of this rule matches the TrueTransition edge and an arbitrary target node of that
edge as T . Thus, in the conclusion, the end configuration is a configuration in which the store
is unchanged, but the location progresses to the target of the TrueTransition branch. The
Condition-False rule works analogous.

3.7 Transformation Process

In this section, a complete overview of the transformation process (utilizing both rule types) is
given. For this purpose, we first describe the algorithm in a descriptive manner and then examine
individual transformation steps using WSL to KTS as an concrete example.

ISoLA DS 2022 14 / 22



ECEASST

3.7.1 General Approach

To transform a model of a language A to a model of language B, the following inputs are needed:

• A ruleset RS specified on the IL representations of A and B: RS(A,B) : IL(A) 7→ IL(B),

• a source model of type A transformed into the intermediate IL representation IL(A),

• the initial store value σ0

The algorithm then constructs the target model in IL(B) with the following steps:

1. A working set WS is initialized with the starting configuration ⟨ε,σ0⟩. A set D holding the
already finished (”done”) configuration is initialized empty. We also initialize an empty
target model of type IL(B).

2. A configuration C is drawn randomly from WS. At the beginning we only have the starting
configuration but more configurations will be discovered during the algorithm execution.

3. All applicable rules for C are applied. A rule is applicable if

• the anchor of the rule is compatible with C,

• the source pattern can be matched in IL(A),

• the premise holds,

• the side condition holds and

• the execution would add information to the current target model.

With each rule execution, the target model is updated accordingly. If a new end configura-
tion is discovered by applying a rule, it is added to WS as long as it is not already marked
as ”done” (included in D).

4. We add C to the set D of processed configurations, since all rules have now been applied
for this configuration and also remove it from WS.

5. Steps 2-4 are repeated as long WS is not empty.

6. As every applicable rule has been applied for every discovered configuration the transfor-
mation process has finished and the target model is returned.

3.7.2 Exemplary transformation steps of WebStory to KTS

In this section, we demonstrate the exemplary steps of the transformation of a WSL model to a
KTS model. The complete ruleset for this transformation has been shown in two parts, in Figure 6
(transformation rules) and Figure 7 (computation rules). The model under consideration is the
model as shown in Figure 1.

First we need to transform the WSL model to the intermediate representation of type IL(WSL).
During the conversion the IL representation is enriched with additional letters for each screen 10.

10 In our implementation, this is achieved with the term var n = ’A’; ∀S ∈ Screen.S.name = n++, but we do not
prescribe any particular way to enrich IL for this calculus.

15 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

The resulting IL is shown in Figure 3. All information including the new screen letters are stored
inside of String attributes of the model elements. In order to be able to name the individual
elements we use the same annotations as in Figure 1 during the following example. The initial
store valuation σ0 shall be JgoldK := f alse and JkeyK := f alse, since this corresponds to how
variables are initialized in WSL.

The evaluation starts by adding the initial configuration ⟨ε,σ0⟩ to the working set. As it is
the only configuration present in the working set, it is the only candidate to be used as current
configuration, and thus drawn from the set. Afterwards, both transformation rules are checked
for applicability. Since the current configuration contains the any (ε) location, only global rules
are applicable. Such a global rule is found in Initial-Screen, and the source pattern of
the rule is matched in the source model. Since in case of WSL, the StartMarker is unique,
there is only one unique match that is found, with s as the StartMarker and L as the Screen
A. The target model is empty, therefore all elements in the target production are generated into
the target model, resulting in a target model containing of a single KTS state corresponding
to ⟨A, f , f ⟩. Since all work for the initial configuration has been done, it is removed from the
working set. The newly discovered configuration ⟨A,σ0⟩ is added to the working set, resulting
in W = {⟨A,σ0⟩} and D = {⟨ε,σ0⟩}.

Now assume that a few steps later we have already produced the target model shown in Fig-
ure 8 (c). Here the configuration ⟨A,σ0⟩ is already done and the nodes for ⟨B, f , f ⟩ (top) and
⟨C, f , f ⟩ (bottom) are already added to the target IL model. Assume we draw the configuration
⟨B, f , f ⟩ from the working set and find a match for the Screen-to-Screen rule with click
area 3 and screen A (cf. Figure 8 (a) & (b)). The premise is trivially fulfilled as the successor
of the click area already is of type Screen. Applying the rule now adds everything from the
target template that is not yet included in the target model. Since both the node for state ⟨B, f , f ⟩
and the node for state ⟨A, f , f ⟩ are already contained in the target model (Figure 8 (c)), only the
edge between them (shown in red in Figure 8 (b)) is added in this case leading to the final target
model of Figure 8 (d).

Another transformation step where the premise is not trivially fulfilled would be the match
with screen A, click area 4 and the configuration ⟨B, f , t⟩, i.e. the keys have been found already
(cf. Figure 9). For this match, the rule application needs to invoke the computation rules to
determine if there exists a chain of computation rules that has a screen in their location. Such
a chain can be found using Condition-True, which will match c2 for its end configura-
tion and then the Condition-False rule, which will match m2, followed by the Modify
Variable rule, which then will match the screen E in its end configuration. At this point, the
check succeeds and corresponding a KTS state will be generated in the target model, while the
configuration ⟨E,{key = true,gold = true}⟩ will be added to the working set.

4 Evaluation and Limitations

The calculus presented herein can successfully transform a WSL model to a KTS and does so
without rewriting or in-place mutation. No element generated in the target model is ever mutated,
the model is constructed by small steps until a final fixpoint is reached in which no other elements
can be generated. The transformation is independent of the order of rule application, since

ISoLA DS 2022 16 / 22



ECEASST

Fi
gu

re
8:

A
pp

lic
at

io
n

of
th

e
S
c
r
e
e
n
-
t
o
-
S
c
r
e
e
n

ru
le

(b
)

us
in

g
th

e
m

at
ch

in
th

e
so

ur
ce

(W
SL

)
as

hi
gh

lig
ht

ed
in

(a
),

re
-u

si
ng

th
e

ex
is

tin
g

no
de

s
in

th
e

ta
rg

et
(K

T
S)

as
sh

ow
n

in
(c

)a
nd

pr
od

uc
in

g
th

e
m

is
si

ng
ed

ge
le

ad
in

g
to

th
e

ne
w

ta
rg

et
m

od
el

in
(d

).

17 / 22 Volume 82 (2022)



SOS-Supported Graph Transformation

Figure 9: Source IL(WSL) model with highlights for the match of the Screen-to-Screen
rule and the chain of computations that fulfill the premise ⟨l,σ⟩ →∗ ⟨S,τ⟩ ∧ S : Screen.

elements are generated in an additive fashion, but never more then once. Thus, the application
of individual rules is commutative. Hence, the fix point found by this transformation is unique.

The method presented herein works well for the use-case presented above, and we have already
very promising results for forward-migration and model serialization. This method seems to be
well suited for a wide-range of problems and produces rule sets that are reasonably easy to
understand.

A limitation is the restriction of patterns to only positive matches, and not allowing negations
in any kind or shape. However, conditions can include negations and rule out some elements
individually, but negations cannot be applied to the pattern itself. It is thus not possible to match
nodes without a certain parent or without a certain edge connection. This greatly simplifies the
calculus, both in the mental model and implementation, but makes certain transformations more
difficult to achieve. Preliminary investigations have shown, however, that this is not a severe
restriction in practice, owing to the fact that the calculus promotes step-by-step construction of
the target model in an incremental way due to being based on inference rules. This, together with
the fact that the source model is never changed, eliminates most problems that occur due to the
absence of negations.

ISoLA DS 2022 18 / 22



ECEASST

5 Related Work

SOS-GT has notable differences to other works. Compared to GROOVE, it does not mutate
models in-place, but instead constructs a new target model step-by-step. SOS-GT also offers
a unique way to add auxiliary computations with its computation rules, behavior which needs
more complex modeling in GROOVE. Similar considerations hold true for AGG, Triple-Graph-
Grammars and related techniques.

JetBrains Meta Programming System (MPS)11 is a language workbench that can be used to
create DSLs and also features model transformation capabilities12. However, to our knowledge,
MPS cannot match complex patterns and instead only matches a single model element (called
concept in MPS lingo). MPS features a mechanism reminiscent of computation rules, where a
context can be passed to evaluate a more complex condition. These conditions are specified in
Java code and could possibly be used to implement the same behavior as checked with compu-
tation rules.

6 Conclusions and Perspectives

In this paper, we have introduced a rule scheme for model-to-model transformations based on in-
ference rules, called SOS-GT. Characteristic for our approach is its conceptual simplicity which
is the result of

• decomposing the rule system into two simple rule sub-systems, one for treating the graph
transformation aspect in a pattern matching style and an SOS-inspired one for the compu-
tational aspect, and

• clearly separating source and target model in a way reminiscent of traditional code gen-
eration: The source model is only read, and the target model is monotonically built up.
In particular this means that existing model structures are guaranteed to persist during the
entire model-to-model transformation, a property important to prove the commutativity of
rule application.

Currently, we are investigating how far this approach carries. Extending our example scenario
to capture language migration is possible without problems in a similar fashion as sketched in
[Kop19]. More challenging is our intended application to CI/CD: The generation of YAML
code from CI/CD pipeline models specified in the graphical DSL Rig currently depends on a
hand-written code generator [Teu21, TTS+21]. Specifying such a code generator with SOS-GT
is non-trivial and requires extensions, not only to comprise textual languages as transformation
target. It is our goal to solve this problem while maintaining as much of the current simplicity as
possible.

In general, different application scenarios will require different extensions and therefore domain-
specific versions of SOS-GT in order to maintain simplicity. We are convinced that this kind
of domain-specific decomposition may drastically improve the performance of transformation-
based approaches.
11 https://www.jetbrains.com/mps/
12 https://www.jetbrains.com/help/mps/generator-user-guide-demo4.html#reductionrule

19 / 22 Volume 82 (2022)

https://www.jetbrains.com/mps/
https://www.jetbrains.com/help/mps/generator-user-guide-demo4.html#reductionrule


SOS-Supported Graph Transformation

Bibliography

[BMRS09] M. Bakera, T. Margaria, C. Renner, B. Steffen. Tool-supported enhancement of diag-
nosis in model-driven verification. Innovations in Systems and Software Engineering
5:211–228, 2009.
doi:10.1007/s11334-009-0091-6

[BNBK07] D. Balasubramanian, A. Narayanan, C. van Buskirk, G. Karsai. The graph rewriting
and transformation language: GReAT. Electronic Communications of the EASST 1,
2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer-Verlag, Berlin, Heidelberg, 2006.

[ERRS10] H. Ehrig, A. Rensink, G. Rozenberg, A. Schürr (eds.). Graph Transformations: 5th
International Conference, ICGT 2010, Enschede, The Netherlands, September 27 -
October 2, 2010. Proceedings. Lecture Notes in Computer Science. Springer, 2010.
doi:10.1007/978-3-642-15928-2

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG approach: Language and environment. In
Handbook Of Graph Grammars And Computing By Graph Transformation: Volume
2: Applications, Languages and Tools. Pp. 551–603. World Scientific, 1999.

[Fow05] M. Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?
http://martinfowler.com/articles/languageWorkbench.html, 06 2005. [Online; last ac-
cessed 2023-03-31].

[HEGO10] F. Hermann, H. Ehrig, U. Golas, F. Orejas. Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars. In
Proceedings of the First International Workshop on Model-Driven Interoperability.
MDI ’10, p. 22–31. Association for Computing Machinery, New York, NY, USA,
2010.
doi:10.1145/1866272.1866277

[KLNS21] D. Kopetzki, M. Lybecait, S. Naujokat, B. Steffen. Towards Language-to-Language
Transformation. Int. Journal on Software Tools for Technology Transfer, Jun 2021.
doi:10.1007/s10009-021-00630-2

[Kop19] D. Kopetzki. Generation of domain-specific language-to-language transformation
languages. PhD Thesis, TU Dortmund University, Dortmund, NRW, 2019.
doi:10.17877/DE290R-21179

[LKZ+18] M. Lybecait, D. Kopetzki, P. Zweihoff, A. Fuhge, S. Naujokat, B. Steffen. A Tutorial
Introduction to Graphical Modeling and Metamodeling with Cinco. In Proc. of the 8th
Int. Symp. on Leveraging Applications of Formal Methods, Verification and Validation,

ISoLA DS 2022 20 / 22

http://dx.doi.org/10.1007/s11334-009-0091-6
http://dx.doi.org/10.1007/978-3-642-15928-2
http://martinfowler.com/articles/languageWorkbench.html
http://dx.doi.org/10.1145/1866272.1866277
http://dx.doi.org/10.1007/s10009-021-00630-2
http://dx.doi.org/10.17877/DE290R-21179


ECEASST

Part I Modeling (ISoLA 2018). Lecture Notes in Computer Science 11244, pp. 519–
538. Springer, 2018.
doi:10.1007/978-3-030-03418-4 31

[MLA10] J. McAffer, J.-M. Lemieux, C. Aniszczyk. Eclipse Rich Client Platform. Addison-
Wesley Professional, 2nd edition, 2010.

[MS09] T. Margaria, B. Steffen. Business Process Modelling in the jABC: The One-Thing-
Approach. In Cardoso and Aalst (eds.), Handbook of Research on Business Process
Modeling. IGI Global, 2009.

[MS10] T. Margaria, B. Steffen. Simplicity as a Driver for Agile Innovation. Computer
43(6):90–92, 2010.
doi:10.1109/MC.2010.177

[MSS99] M. Müller-Olm, D. Schmidt, B. Steffen. Model-Checking - A Tutorial Introduction. In
Proceedings of the 6th International Symposium on Static Analysis (SAS ’99). Pp. 330–
354. 1999.
doi:10.1007/3-540-48294-6 22

[Nau17] S. Naujokat. Heavy Meta. Model-Driven Domain-Specific Generation of Generative
Domain-Specific Modeling Tools. Dissertation, TU Dortmund University, Dortmund,
Germany, Aug. 2017.
doi:10.17877/DE290R-18076

[NLKS17] S. Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: A Simplicity-Driven
Approach to Full Generation of Domain-Specific Graphical Modeling Tools. Software
Tools for Technology Transfer 20(3):327–354, 2017.
doi:10.1007/s10009-017-0453-6

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical report, Uni-
versity of Aarhus, 1981. DAIMI FN-19.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
Pfaltz et al. (eds.), Applications of Graph Transformations with Industrial Relevance.
Pp. 479–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley, Boston, MA, USA, 2008.

[SGNM19] B. Steffen, F. Gossen, S. Naujokat, T. Margaria. Language-Driven Engineering:
From General-Purpose to Purpose-Specific Languages. In Steffen and Woeginger
(eds.), Computing and Software Science: State of the Art and Perspectives. Lecture
Notes in Computer Science 10000. Springer, 2019.
doi:10.1007/978-3-319-91908-9 17

[Teu21] S. Teumert. Visual Authoring of CI/CD Pipeline Configurations. Bachelor’s Thesis,
TU Dortmund University, 4 2021.
https://archive.org/details/visual-authoring-of-cicd-pipeline-configurations

21 / 22 Volume 82 (2022)

http://dx.doi.org/10.1007/978-3-030-03418-4_31
http://dx.doi.org/10.1109/MC.2010.177
http://dx.doi.org/10.1007/3-540-48294-6_22
http://dx.doi.org/10.17877/DE290R-18076
http://dx.doi.org/10.1007/s10009-017-0453-6
http://dx.doi.org/10.1007/978-3-319-91908-9_17
https://archive.org/details/visual-authoring-of-cicd-pipeline-configurations


SOS-Supported Graph Transformation

[TTS+21] T. Tegeler, S. Teumert, J. Schürmann, A. Bainczyk, D. Busch, B. Steffen. An Intro-
duction to Graphical Modeling of CI/CD Workflows with Rig. In Margaria and Steffen
(eds.), Leveraging Applications of Formal Methods, Verification and Validation. Pp. 3–
17. Springer International Publishing, Cham, 2021.
doi:10.1007/978-3-030-89159-6 1

ISoLA DS 2022 22 / 22

http://dx.doi.org/10.1007/978-3-030-89159-6_1

	Introduction
	Background
	Cinco Meta Tooling Suite
	Typed Hierarchical Attribute Graphs
	WebStory Language
	Kripke Transition System

	SOS-Supported Graph Transformation
	Goals
	Intermediate Language
	Rule System
	Configurations and State of the Computation
	Transformation Rules
	Source Pattern
	Premise and Condition
	Target Production
	Transformation Rules for WebStory to KTS

	Computation Rules
	Conclusion
	Source Pattern and Condition
	Computation Rules for WebStory to KTS

	Transformation Process
	General Approach
	Exemplary transformation steps of WebStory to KTS


	Evaluation and Limitations
	Related Work
	Conclusions and Perspectives

