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Abstract 

The double exponentially weighted moving average (DEWMA) control chart, an extension of the 

EWMA control chart, is a useful statistical process control tool for detecting small shift sizes in the 

mean of processes with either independent or autocorrelated observations. In this study, we derived 

explicit formulas to compute the average run length (ARL) for a moving average of order q (MA(q)) 

process with exponential white noise running on a DEWMA control chart and verified their accuracy 

by comparison with the numerical integral equation (NIE) method. The results for both were in good 
agreement with the actual ARL. To investigate the efficiency of the proposed procedure on the 

DEWMA control chart, a performance comparison between it and the standard and modified 

EWMA control charts was also conducted to determine which provided the smallest out-of-control 
ARL value for several scenarios involving MA(q) processes. It was found that the DEWMA control 

chart provided the lowest out-of-control ARL for all cases of varying the exponential smoothing 

parameter and shift size values. To illustrate the efficacy of the proposed methodology, the presented 
approach was applied to datasets of the prices of several major industrial commodities in Thailand. 

The findings show that the DEWMA procedure performed well in almost all of the scenarios tested. 
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1- Introduction 

Statistical process control (SPC) is very important for verifying the quality of a product and also monitoring and 

improving the process for its manufacturing. One of the tools used to achieve this is the control chart. They have been 

applied in various fields to monitor a process and detect changes therein. Well-known ones include the Shewhart, 

cumulative sum (CUSUM) [1], and exponentially weighted moving average (EWMA) [2] control charts. The Shewhart 

control chart is good for detecting large changes in the process mean, whereas the CUSUM and EWMA control charts 

are better at detecting small-to-moderate shifts. The double EWMA (DEWMA) control chart is an extension of the 

EWMA control scheme carried out by using exponential smoothing parameters [3, 4]. The DEWMA control chart is 

good for detecting small sustained shifts in the mean of a process with normally distributed observations and performs 

better than the EWMA control chart in detecting small shifts in the process mean ranging from 0.1 to 0.5 of the process 

standard deviation [5]. 

Comparing its performance with that of the standard EWMA control chart can be evaluated based on the zero-stat 

performance [6]. It can be said that the DEWMA control procedure with the larger exponential smoothing parameter 

values (𝜆 > 0.05 ) performs better than the EWMA control chart in detecting very small sustained shifts of the process 

mean. Besides, the DEWMA control chart was used to monitor Poisson data. The simulation results show that the 
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DEWMA control chart is more sensitive to small downward process mean shifts than the EWMA control chart [7]. The 

modified EWMA (MEWMA) control chart is highly effective at detecting small and abrupt changes in the mean of 

processes comprising independent normally distributed or autocorrelated observations. Various experimental studies on 

processes involving non-normal distributions [10–12] and real data [13–15] indicate that the MEWMA control chart is 

more effective at detecting changes in the process mean than the EWMA control chart. 

Time-series data are habitually autocorrelated, which can be serially correlated over a long period of discretely timed 

observations. The degree of correlation of the same variable over two successive time intervals can be measured by how 

much the lagged version of the observations of the variable is related to the original observations. For various situations, 

the analysis of autocorrelation helps to determine repeating periodic patterns in the form of a mathematical representation 

of the degree of similarity between the original and lagged versions over a long time period. Autocorrelation can provide 

information about short-term trends to support the prediction of future points with a short holding period. The 

autoregressive moving average (ARMA) model [16–18] is an amalgamation of autoregressive (AR) [19–21] and moving 

average (MA) [22–24] models. 

Control charts have been employed for monitoring and detecting processes in which the observations are 

independently normally distributed [25–27], non-normally distributed [11, 28, 29], or autocorrelated [30–32]. The 

measurement of a control chart’s performance can be undertaken to ensure that it is appropriate for a particular process, 

for which the average run length (ARL) is the most often used evaluation method. It represents the average number of 

observations until an out-of-control signal occurs. Monte Carlo simulation [33, 34] and the numerical integral equation 

(NIE) method [35–37] are the most often used schemes to compute the ARL. Moreover, the exact ARL has been 

employed in several studies [38–42]. From the outcomes of comparative studies, the EWMA control chart is more 

powerful than the CUSUM control chart for monitoring and detecting small and abrupt changes in the mean of a process 

involving autocorrelated observations [43, 44], while the MEWMA control chart is more effective than either of them 

in this scenario [14, 18, 20, 31, 32]. However, deriving the ARL for an autocorrelated process with exponential white 

noise running on a DEWMA control chart using explicit formulas has not previously been reported. Thus, this became 

the focus of the present study. A comparison of explicit formula-derived ARLs of MA(q) processes with exponential 

white noise running on DEWMA, MEWMA, and EWMA control charts is also presented. 

2- The Characteristic of Control Chart Investigation 

2-1- EWMA Control Chart 

The EWMA control chart was the first in the quality control literature proposed by Roberts (1959) [2]. It has been 

widely applied in statistical process control (SPC) due to their performance is more powerful than exist charts in 

continually monitors and detects small changes in the process mean. The past and current observations are considered 

to create the control statistic with their weighted average. The EWMA control statistic can be written by the recursive 

equation as, 

𝑍𝑖 = 𝜆𝑋𝑖 + (1 − 𝜆)𝑍𝑖−1,   𝑖 = 0, 1, 2, . . . , 𝑛. (1) 

where 𝜆 is an exponential smoothing parameter, which is 0 < 𝜆 < 1. The initial value is defined by 𝑍0 = 𝑋0 with the 

target value 𝜇0, 𝑋𝑡 is the process with mean 𝜇 and variance 𝜎2. 

The variance of 𝑍𝑖is 𝜎𝑍𝑡
2 = 𝜎2 (

𝜆

2−𝜆
) (1 − (1 − 𝜆)2𝑡). If 𝑡 gets large, the term (1 − 𝜆)2𝑡 converge to 0. Therefore, the 

general upper control limit (UCL), center line (CL) and lower control limit (LCL) to detect the sequence 𝑍𝑖 are given by 

𝑈𝐶𝐿 = 𝜇0 + 𝐿1𝜎√
𝜆

2−𝜆
, 

(2) 
𝐶𝐿 = 𝜇0, 

𝐿𝐶𝐿 = 𝜇0 − 𝐿1𝜎√
𝜆

2−𝜆
. 

where 𝜇0 is the target mean, 𝜎 is the process standard deviation, and 𝐿1 is the appropriate control width limit. 

2-2- Double EWMA Control Chart 

A DEWMA control chart was the initially introduced by Brown (1962). He indicated a different context to forecast 

future time series observations. Later, Shama & Shamma (1992) developed and evaluated the idea of using the increase 

of the sensitivity of the EWMA control chart to smaller shifts in the process mean via a double exponential weighting 

of moving averages implementation. The recursive control statistic of the DEWMA chart is defined as [45]: 
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𝑍𝑖 = 𝜆2𝑋𝑖 + (1 − 𝜆2)𝑍𝑖−1,  
(3) 

𝑊𝑖 = 𝜆1𝑍𝑖 + (1 − 𝜆1)𝑊𝑖−1, 𝑖 = 1,2, . . .,  

where 𝜆1 and 𝜆2 is an exponential smoothing parameter, which is 0 < 𝜆1, 𝜆2 ≤ 1. The initial value is defined by 𝑍0 =
𝑊0 = 𝑋0 with the target value 𝜇0, 𝑋𝑖  is the process with mean 𝜇 and variance 𝜎2. 

The variance of 𝑊𝑖is 𝜎𝑊𝑡
2 =

𝜆1
2𝜆2

2

(𝜆1−𝜆2)2 𝜎2 (
(1−𝜆2)2[1−(1−𝜆2)2𝑡]

1−(1−𝜆2)2 +
(1−𝜆1)2[1−(1−𝜆1)2𝑡]

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)[1−{(1−𝜆1)(1−𝜆2)}𝑡]

1−(1−𝜆1)(1−𝜆2)
). 

For large values of 𝑡, the asymptotic variance becomes to 𝜎𝑊𝑡
2 =

𝜆1
2𝜆2

2

(𝜆1−𝜆2)2 𝜎2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 −

2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
]. Therefore, the general upper control limit (UCL), center line (CL) and lower control limit (LCL) to 

detect the sequence 𝑊𝑖 are given by: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿2𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
], 

(4) 𝐶𝐿 = 𝜇0, 

𝐿𝐶𝐿 = 𝜇0 − 𝐿2𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
].  

where 𝜇0 is the target mean, 𝜎 is the process standard deviation, and 𝐿2 is the optimal control width limit. 

3- Derivation of Average Run Length 

3-1- Explicit Formula 

There are many methods to evaluate the ARL, one of them is explicit formula which is provide the exact ARL values. 

Various studies have been implemented under different situations of their works both model is based on assumption and 

violate process. 

Autocorrelation is a characteristic of data which shows the degree of similarity between values of the same variables 

over successive time intervals where the basic assumption of instance independence underlines most conventional 

models is infringed. Multitudinous processes of time series modeling have been employed in numerous applications. 

The observation of this study is the moving average in the general order note that by MA(q) process. It can be 

described as follows: 

𝑋𝑖 = 𝜇 + 휀𝑖 − 𝜃1휀𝑖−1 − 𝜃2휀𝑖−2−. . . −𝜃𝑞휀𝑖−𝑞 ,  (5) 

where 𝜇 is the mean of the process, 휀𝑡is a white noise which is assumed to be the exponential distribution, 𝜃𝑡 is a 

coefficient which is |𝜃𝑖| < 1; 𝑖 = 1,2,3, . . . 𝑞. 

Therefore, the Double EWMA statistic for the MA(q) process can be written as: 

𝑊𝑖 = 𝜆1𝜆2[𝜇 + 휀𝑖 − 𝜃1휀𝑖−1 − 𝜃2휀𝑖−2−. . . −𝜃𝑞휀𝑖−𝑞] + 𝜆1(1 − 𝜆2)𝑍𝑖−1 + (1 − 𝜆1)𝑊𝑖−1, (6) 

where 𝑖 = 1, 2, 3, … , 𝑛. We use one side of the control limit (i.e., 𝐿𝐶𝐿 = 0and 𝑈𝐶𝐿 = 𝑢). Then obtain: 

𝑊1 = 𝜆1𝜆2[𝜇 + 휀1 − 𝜃1휀0−. . . −𝜃𝑞휀1−𝑞] + 𝜆1(1 − 𝜆2)𝑍0 + (1 − 𝜆1)𝑊0  (7) 

If 𝑋1 causes the out-of-control stat for 𝑊1 with the starting value 𝑊0 = 𝜔, then: 

𝜆1𝜆2[𝜇 + 휀1 − 𝜃1휀0−. . . −𝜃𝑞휀1−𝑞] + 𝜆1(1 − 𝜆2)𝑍0 + (1 − 𝜆1)𝜔 > 𝑢 or 

𝜆1𝜆2[𝜇 + 휀1 − 𝜃1휀0−. . . −𝜃𝑞휀1−𝑞] + 𝜆1(1 − 𝜆2)𝑍0 + (1 − 𝜆1)𝜔 < 0  

If 𝑋1 causes the in-control stat for 𝑊1, then: 

0 < 𝜆1𝜆2[𝜇 + 휀1 − 𝜃1휀0−. . . −𝜃𝑞휀1−𝑞] + 𝜆1(1 − 𝜆2)𝑍0 + (1 − 𝜆1)𝜔 < 𝑢. 

If can be written in the form as: 

−
𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2
≤ 휀1 ≤ 𝑢 −

𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2
 . 
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The probability that 휀1 satisfies the bounds mentioned above for probability distribution function 휀1 is derived in the 

form: 

[−
𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2
≤ 휀1 ≤ 𝑢 −

𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2
] =  

∫ 𝑓(𝑦)𝑑𝑦
𝑢−

𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2

−
𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2

  

According to the method of Champ and Rigdon [46], the ARL of Double EWMA control chart for the MA(q) model 

can be written in the form of the integral equation as: 

𝐴𝑅𝐿 = 1 + ∫ 𝐿[𝜆1𝜆2[𝑦 + 𝜇 − 𝜃1휀0−. . . −𝜃𝑞휀1−𝑞] + 𝜆1(1 − 𝜆2)𝑍0 +
𝑢−

𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2

−
𝜆1𝜆2[𝜇−𝜃1𝜀0−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝜆1𝜆2

(1 − 𝜆1)𝜔]𝑓(𝑦)𝑑𝑦.  

(8) 

Changing the integral variable, we obtain: 

𝐴𝑅𝐿 = 1 +
1

𝜆1𝜆2
∫ 𝐿(𝜔)𝑓 [

𝑘−𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]−𝜆1(1−𝜆2)𝑍0−(1−𝜆1)𝜔

𝜆1𝜆2
] 𝑑𝜔

𝑢

0
  (9) 

In this study, 휀𝑖is defined to be the exponentially distributed with parameter 𝛼. Therefore, a Fredholm integral 

equation of the second kind for the ARL can be written as: 

𝐴𝑅𝐿 = 1 + 𝑒
𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2
1

𝛼𝜆1𝜆2
∫ 𝐿(𝜔) ⋅ 𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
= 1 + 𝐺(𝜔)𝐴  (10) 

where 𝐺(𝜔) = 𝑒
𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2 and; 

𝐴 =
1

𝛼𝜆1𝜆2
∫ 𝐿(𝜔) ⋅ 𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
  

=
1

𝛼𝜆1𝜆2
∫ [1 + 𝐺(𝜔)𝐴] ⋅ 𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
  

=
1

𝛼𝜆1𝜆2
∫ 𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
+

𝐴

𝛼𝜆1𝜆2
∫ 𝑒

𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2 ⋅ 𝑒
−

𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
  

= −𝛼𝜆1𝜆2 [𝑒
−

𝑢

𝛼𝜆1𝜆2 − 1] − 𝐴𝑒

𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2

𝜆1
[𝑒

−
𝑢

𝛼𝜆2 − 1]  

𝐴 =
−𝛼𝜆1𝜆2[𝑒

−
𝑢

𝛼𝜆1𝜆2−1]

1+
𝑒

𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0
𝛼𝜆1𝜆2

𝜆1
[𝑒

−
𝑢

𝛼𝜆2−1]

  (11) 

Finally, the equation 10 is replaced by equation 11. The ARL of the Double EWMA control chart for the MA(q) 

process with exponential white noise is provided by deriving a Fredholm integral equation of the second kind as follows: 

It can be written in the form: 

𝐴𝑅𝐿 = 1 −
𝜆1𝑒

(1−𝜆1)𝜔
𝛼𝜆1𝜆2 [𝑒

−
𝑢

𝛼𝜆1𝜆2−1]

1+𝑒
−

𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0
𝛼𝜆1𝜆2 +[𝑒

−
𝑢

𝛼𝜆2−1]

  (12) 

when 휀0, 𝜔 and 𝑍0 are the starting value of the process for MA(q) model. The in-control process of ARL corresponds to 

ARL0 when 𝛼0 = 1. An out-of-control process when 𝛼1 > 1, provide the ARL1 values. 

3-2- Numerical Integral Equation 

The numerical integral equation (NIE) is a method of estimation the ARL approach. In this study, it is used to compare 

the accuracy of ARL obtain by explicit formulas method. According to the integral equation in (9), the Gauss-Legendre 

quadrature rule approach is approximated the integral by finite sum of areas of rectangles with base 
𝑢

𝑚
 and heights chosen 

as values of 𝑓 midpoints of the one-side interval which divide [0, 𝑢] into a partition from 0 to u. It can be derived the 

ARL calculation of the integral equation as follows. 
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𝐴𝑅𝐿(𝑎𝑡) = 1 +
1

𝜆1𝜆2
∑ 𝑤𝑗

𝑚
𝑗=1 𝐴𝑅𝐿(𝑎𝑗)𝑓 [

𝑎𝑗−𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]−𝜆1(1−𝜆2)𝑍0−(1−𝜆1)𝜔

𝜆1𝜆2
]  (13) 

where 𝑗 = 1,2,3, . . . , 𝑚, 𝑎𝑗 =
𝑢

𝑚
(𝑗 −

1

2
) and 𝑤𝑗 =

𝑢

𝑚
 

In order to compute the ARL values, the relation of a matrix form can be rewritten in a form as: 

𝐴𝑅𝐿𝑚×1 = 1𝑚×1 + 𝑅𝑚×𝑚𝐴𝑅𝐿𝑚×1 or ( )
1

1 11
−

   = −m m m m m mARL I R  (14) 

where 𝐴𝑅𝐿𝑚×1 = [
𝐴𝑅𝐿(𝑎1)

⋮
𝐴𝑅𝐿(𝑎1)

] , 1𝑚×1 = [
1
⋮
1

], m mI
 is a identity matrix and 𝑅𝑚×𝑚 =

1

𝜆1𝜆2
[

𝑤1𝑓11 ⋯ 𝑤𝑚𝑓1𝑚

𝑤1𝑓11 ⋯ 𝑤𝑚𝑓2𝑚

⋮ ⋮
𝑤1𝑓11 ⋯ 𝑤𝑚𝑓𝑚𝑚

], when 

𝑓𝑖𝑗 = 𝑓(𝑎𝑗 − 𝜆1𝜆2[𝜇 − 𝜃1휀0 − 𝜃2휀2−. . . −𝜃𝑞휀𝑖−𝑞] − 𝜆1(1 − 𝜆2)𝑍0 − (1 − 𝜆1)𝜔). 

Hence, the approximation of ARL by using NIE method for the Double EWMA control chart of MA(q) process is 

expressed in the form as follows: 

𝐴�̃�𝐿 = 1 +
1

𝜆1𝜆2
∑ 𝑤𝑗

𝑚
𝑗=1 𝐴𝑅𝐿(𝑎𝑗)𝑓 [

𝑎𝑗−𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]−𝜆1(1−𝜆2)𝑍0−(1−𝜆1)𝜔

𝜆1𝜆2
]  (15) 

3-3- Existence and Uniqueness of ARL Demonstrate 

Here, Banach’s Fixed-point Theorem is used to show the uniquely exists solution of the integral equation for explicit 

formula. In this section, let 𝑇be an operation in the class of all continuous functions expressed by: 

𝑇(𝐴𝑅𝐿) = 1 +
𝑒

𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2

𝛼𝜆1𝜆2
∫ 𝐿(𝜔) ⋅ 𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
 . 

(16) 

As stated by Banach’s Fixed-point Theorem, if an operator 𝑇 is a contraction, then the fixed-point equation 𝑇(𝐴𝑅𝐿) =
𝐴𝑅𝐿 has a unique solution. To prove that Equation 16 exists and has a unique solution, the following theorem can be 

claimed. 

Banach’s Fixed-point Theorem: 

Let (𝑋, 𝑟)be a complete metric space and 𝑇: 𝑋 → 𝑋be a contraction mapping with contraction constant 0 ≤ 𝑝 < 1 

such that ‖𝑇(𝐴1) − 𝑇(𝐴2)‖ ≤ 𝑝‖𝐴1 − 𝐴2‖ for all 𝐴1, 𝐴2 ∈ 𝑋. Then there exists a unique 𝐴(⋅) ∈ 𝑋such that 𝑇(𝐴𝑅𝐿) =
𝐴𝑅𝐿, i.e., a unique fixed-point in 𝑋 [47]. 

Proof: To show that T in (16) is a contraction mapping for 1 2, [0, ]A A u
 by show that ‖𝑇(𝐴1) − 𝑇(𝐴2)‖ ≤

𝑝‖𝐴1 − 𝐴2‖ for all 𝐴1, 𝐴2 ∈ 𝐶[0, 𝑢] with 0 ≤ 𝑝 < 1 under the norm ‖𝐴‖∞ = 𝑠𝑢𝑝𝑎∈(0,𝑢)|𝐴𝑅𝐿|. From Equations 10 and 

16: 

‖𝑇(𝐴1) − 𝑇(𝐴2)‖∞ = 𝑠𝑢𝑝
𝑎∈(0,𝑢)

|
𝐺(𝜔)

𝛼
∫ (𝐴1(𝜔) − (𝐴2(𝜔))𝑒

−
𝜔

𝛼𝜆1𝜆2𝑑𝜔
𝑢

0
|  

≤ 𝑠𝑢𝑝
𝑎∈(0,𝑢)

|‖𝐴1 − 𝐴2‖∞𝐺(𝜔) [𝑒
−

𝑢

𝛼𝜆1𝜆2 − 1]|  

= ‖𝐴1 − 𝐴2‖∞ 𝑠𝑢𝑝
𝑎∈(0,𝑢)

|𝐺(𝜔)| |𝑒
−

𝑢

𝛼𝜆1𝜆2 − 1|.  

≤ 𝑝‖𝐴1 − 𝐴2‖∞,  

where 𝑝 = 𝑠𝑢𝑝
𝑎∈(0,𝑢)

|𝐺(𝜔)| |𝑒
−

𝑢

𝛼𝜆1𝜆2 − 1| and 𝐺(𝜔) = 𝑒
𝜆1𝜆2[𝜇−𝜃1𝜀0−𝜃2𝜀2−...−𝜃𝑞𝜀𝑖−𝑞]+𝜆1(1−𝜆2)𝑍0+(1−𝜆1)𝜔

𝛼𝜆1𝜆2 ; 0 ≤ 𝑝 < 1. 

From Banach’s Fixed-point Theorem, we get the following result approved to existence and uniqueness of a solution 

of the ARL for MA(q) process on the DEWMA control chart. 

4- Experimental Results 

In this section, the results for evaluating the ARL obtained by explicit formulas and NIE method which is accurate 

method (viewed as the most accurate method) are presented in the term of the absolute percentage relative error (APRE) 

(a measure of the exactness of the ARL), which is given by: 

𝐴𝑃𝑅𝐸(%) =
|𝐴𝑅𝐿−𝐴�̃�𝐿|

𝐴𝑅𝐿
× 100  (17) 

where 𝐴𝑅𝐿and 𝐴�̃�𝐿 are exact and approximation of ARLs derived by explicit formulas and NIE method, respectively, 

as provided by MATHEMATICA. The experimental results are reported in Tables 1 to 3. 
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Table 1. ARLs for MA(1) of Double EWMA using explicit formula and NIE for 𝝁 = 𝟑, 𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝀𝟐 = 𝟎. 𝟎𝟓, ARL0=370 and 500 

𝜽 𝜹 
 ARL0=370   ARL0=500  

Explicit NIE APRE Explicit NIE APRE 

𝜃 = −0.1* 

0.0000 370.50714959 370.57748949 1.898E-04 501.71693916 500.86635583 1.695E-03 

0.0001 200.75916840 200.82436152 3.247E-04 233.81960666 233.69232691 5.444E-04 

0.0003 105.02826510 104.99266205 3.390E-04 113.28697135 113.28454771 2.139E-05 

0.0005 71.19431570 71.18983590 6.292E-05 74.87846828 74.88961468 1.489E-04 

0.0010 39.59828081 39.59553886 6.924E-05 40.69999650 40.70120578 2.971E-05 

0.0050 9.08265365 9.08274598 1.016E-05 9.13463185 9.13471371 8.962E-06 

0.0100 4.87669125 4.87670629 3.085E-06 4.89009036 4.89004937 8.382E-06 

0.0300 2.04768806 2.04768908 4.979E-07 2.04920213 2.04920019 9.480E-07 

0.0500 1.50321171 1.50321081 5.975E-07 1.50374268 1.50374342 4.899E-07 

0.1000 1.14131875 1.14131880 3.829E-08 1.14143235 1.14143233 1.936E-08 

0.6 = − ** 

0.0000 370.78227233 370.94202310 4.308E-04 500.49245685 499.96209703 1.060E-03 

0.0001 202.88130761 202.95987236 3.872E-04 236.32143590 236.24179079 3.370E-04 

0.0003 106.69575092 106.68597687 9.161E-05 115.17721328 115.17720354 8.461E-08 

0.0005 72.47063486 72.47463475 5.519E-05 76.26912000 76.27772115 1.128E-04 

0.0010 40.37691517 40.37831222 3.460E-05 41.51668365 41.51879403 5.083E-05 

0.0050 9.26940425 9.26955445 1.620E-05 9.32335069 9.32333683 1.486E-06 

0.0100 4.97242527 4.97242324 4.083E-07 4.98626511 4.98624029 4.978E-06 

0.0300 2.07965732 2.07965773 1.975E-07 2.08122678 2.08122517 7.714E-07 

0.0500 1.52166260 1.52166304 2.857E-07 1.52221692 1.52221696 3.160E-08 

0.1000 1.14886943 1.14886940 3.012E-08 1.14898865 1.14898872 5.405E-08 

𝜃 = 0.7*** 

0.0000 370.75635234 369.89600209 2.321E-03 502.03825198 500.28123519 3.500E-03 

0.0001 197.23178122 197.47134292 1.215E-03 229.01754145 229.29959142 1.232E-03 

0.0003 102.39383177 102.38531269 8.320E-05 110.30588760 110.28484007 1.908E-04 

0.0005 69.25975195 69.22347006 5.239E-04 72.69192484 72.72898292 5.098E-04 

0.0010 38.39381265 38.40403407 2.662E-04 39.43774963 39.44643909 2.203E-04 

0.0050 8.79978972 8.79986268 8.291E-06 8.84880732 8.84862371 2.075E-05 

0.0100 4.73197650 4.73188934 1.842E-05 4.74436952 4.74439827 6.060E-06 

0.0300 1.99944084 1.99943265 4.094E-06 2.00084288 2.00084544 1.282E-06 

0.0500 1.47545493 1.47545485 5.246E-08 1.47595114 1.47595063 3.443E-07 

0.1000 1.13011547 1.13011534 1.083E-07 1.13021935 1.13021924 1.004E-07 

*𝑢1 = 1.26726 × 10−12 for ARL0=370 and 𝑢2 = 7.69171 × 10−13 for ARL0=500. 

**𝑢1 = 1.26726 × 10−12 for ARL0=370 and𝑢2 = 1.268144 × 10−12 for ARL0=500. 

*** 𝑢1 = 3.45366 × 10−13for ARL0=370 and 𝑢2 = 3.4561 × 10−13 for ARL0=500. 

Table 2. ARLs for MA(2) of Double EWMA using explicit formula and NIE for 𝝁 = 𝟑,𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 = 𝟎. 𝟏, ARL0=370 and 500 

𝜽𝒊 𝜹 
 ARL0=370   ARL0=500  

Explicit NIE APRE Explicit NIE APRE 

𝜃1 = −0.4 

𝜃2 = 0.6* 

0.0000 370.24317768 370.24317777 2.614E-10 500.19993709 500.19992300 2.816E-08 

0.0001 248.98102637 248.98102537 4.037E-09 301.60736291 301.60735801 1.623E-08 

0.0005 108.01120836 108.01120806 2.730E-09 116.80625423 116.80625319 8.879E-09 

0.0010 63.42636995 63.42636975 3.071E-09 66.34036343 66.34036357 2.201E-09 

0.0050 15.12797985 15.12797986 6.478E-10 15.27987449 15.27987451 1.086E-09 

0.0100 8.00471427 8.00471427 3.748E-11 8.04436256 8.04436257 2.735E-10 

0.0300 3.11217326 3.11217326 1.285E-10 3.11680540 3.11680540 6.417E-11 

0.0500 2.13351334 2.13351334 0.000E+00 2.13521632 2.13521632 0.000E+00 

0.1000 1.42665805 1.42665805 0.000E+00 1.42708648 1.42708648 0.000E+00 
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𝜃1 = −0.3 

𝜃2 = −0.7** 

0.0000 370.20283796 370.20283585 5.708E-09 500.12681627 500.12681136 9.813E-09 

0.0001 256.59731214 256.59731270 2.191E-09 312.86473878 312.86473574 9.702E-09 

0.0005 115.41620981 115.41621012 2.692E-09 125.52152553 125.52152525 2.226E-09 

0.0010 68.55863878 68.55863882 6.768E-10 71.98031312 71.98031320 1.086E-09 

0.0050 16.52590941 16.52590941 4.720E-10 16.70844045 16.70844045 5.985E-12 

0.0100 8.73605009 8.73605009 1.717E-10 8.78386334 8.78386333 1.252E-10 

0.0300 3.36496653 3.36496653 0.000E+00 3.37057535 3.37057535 2.967E-11 

0.0500 2.28588039 2.28588039 0.000E+00 2.28795048 2.28795048 0.000E+00 

0.1000 1.50044485 1.50044485 0.000E+00 1.50097338 1.50097338 0.000E+00 

𝜃1 = 0.2 

𝜃2 = 0.8*** 

0.0000 370.56603665 370.56601974 4.563E-08 500.10984438 500.10983336 2.203E-08 

0.0001 244.27859336 244.27859654 1.303E-08 294.49437014 294.49436891 4.188E-09 

0.0005 103.60575138 103.60575341 1.964E-08 111.63413223 111.63413429 1.842E-08 

0.0010 60.42199845 60.42199798 7.805E-09 63.04789082 63.04789115 5.305E-09 

0.0050 14.32458864 14.32458862 9.843E-10 14.45963107 14.45963104 1.743E-09 

0.0100 7.58563562 7.58563562 3.955E-10 7.62081257 7.62081257 4.593E-10 

0.0300 2.96781544 2.96781544 2.696E-10 2.97191445 2.97191445 1.009E-10 

0.0500 2.04679837 2.04679837 0.000E+00 2.04830122 2.04830122 4.882E-11 

0.1000 1.38520315 1.38520315 0.000E+00 1.38557724 1.38557724 0.000E+00 

* 𝑢1 = 5.01687 × 10−8for ARL0=370 and 𝑢2 = 5.0204 × 10−8 for ARL0=500. 

** 𝑢1 = 1.66566 × 10−7for ARL0=370 and 𝑢2 = 1.666832 × 10−7 for ARL0=500. 

*** 𝑢1 = 2.25423 × 10−8for ARL0=370 and 𝑢2 = 2.25581 × 10−8 for ARL0=500. 

Table 3. ARLs for MA(3) of Double EWMA using explicit formula and NIE for 𝝁 = 𝟑, 𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝀𝟐 = 𝟎. 𝟏, ARL0=370 and 500 

𝜽𝒊 𝜹 
 ARL0=370   ARL0=500  

Explicit NIE APRE Explicit NIE APRE 

𝜃1 = −0.3 

𝜃2 = 0.5 

𝜃3 = −0.7* 

0.0000 370.03177426 370.03176210 3.286E-08 500.09716678 500.09716176 1.004E-08 

0.0001 253.27995775 252.27996135 3.948E-03 308.05070039 307.05069931 3.246E-03 

0.0005 112.19315180 112.19315271 8.176E-09 121.73272685 121.73272741 4.553E-09 

0.0010 66.31585426 66.31585389 5.644E-09 69.51582408 69.51582362 6.548E-09 

0.0050 15.91185692 15.91185690 1.244E-09 16.08085596 16.08085595 3.731E-10 

0.0100 8.41452935 8.41452936 6.655E-10 8.45873035 8.45873034 5.084E-10 

0.0300 3.25371247 3.25371247 6.147E-11 3.25888867 3.25888867 9.206E-11 

0.0500 2.21875231 2.21875231 4.507E-11 2.22065970 2.22065970 4.503E-11 

0.1000 1.46780365 1.46780365 0.000E+00 1.46828773 1.46828773 0.000E+00 

𝜃1 = −0.4 

𝜃2 = −0.6 

𝜃3 = −0.8** 

0.0000 370.38904503 370.38904278 6.057E-09 500.04199070 499.04199411 2.000E-03 

0.0001 262.04573909 261.04574060 3.816E-03 320.83371689 319.83371786 3.117E-03 

0.0005 120.96899225 120.96899217 7.002E-10 132.09242254 132.09242271 1.333E-09 

0.0010 72.47974926 72.47974925 1.269E-10 76.30841266 76.30841261 6.395E-10 

0.0050 17.61694426 17.61694426 1.703E-10 17.82485079 17.82485079 2.020E-10 

0.0100 9.30874076 9.30874076 1.074E-10 9.36334882 9.36334882 1.175E-10 

0.0300 3.56363956 3.56363956 0.000E+00 3.57006379 3.57006379 0.000E+00 

0.0500 2.40600670 2.40600670 4.156E-11 2.40838353 2.40838353 4.152E-11 

0.1000 1.55930848 1.55930848 0.000E+00 1.55992088 1.55992088 0.000E+00 

𝜃1 = 0.2 

𝜃2 = 0.4 

𝜃3 = 0.7*** 

0.0000 370.03065404 370.03062745 7.188E-08 500.25466313 500.25461175 1.027E-07 

0.0001 242.27983943 241.27981673 4.128E-03 291.97363681 290.97359760 3.425E-03 

0.0005 101.99589225 101.99589834 5.975E-08 109.81976529 109.81977019 4.462E-08 

0.0010 59.35138828 59.35138612 3.630E-08 61.89923888 61.89923653 3.804E-08 

0.0050 14.04475356 14.04475359 2.563E-09 14.17519108 14.17519102 4.480E-09 

0.0100 7.44012309 7.44012311 1.828E-09 7.47407699 7.47407696 3.586E-09 

0.0300 2.91784125 2.91784125 3.427E-11 2.92179400 2.92179400 2.396E-10 

0.0500 2.01684440 2.01684440 9.916E-11 2.01829209 2.01829209 4.955E-11 

 0.1000 1.37099281 1.37099281 0.000E+00 1.37135170 1.37135170 7.292E-11 

* 𝑢1 = 5.05136 × 10−8for ARL0=370 and 𝑢2 = 5.05492 × 10−8 for ARL0=500. 

** 𝑢1 = 1.8535 × 10−7for ARL0=370 and 𝑢2 = 1.854801 × 10−7 for ARL0=500. 

*** 𝑢1 = 8.34984 × 10−9for ARL0=370 and 𝑢2 = 8.35573 × 10−9 for ARL0=500. 
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The methodology of our process of computation the ARL values by using the explicit formulas and NIE method 

running on the double EWMA control chart for the MA(q) process with exponential white noise is presented in Figure 

1. 

 

Figure 1. The diagram of the research methodology 

Table 1 shows the ARL values for an MA(1)  process with exponential white noise  running on the DEWMA control 

chart when 𝜇 = 3;𝜃 = −0.1,–  0 .6, or 0.7;  𝜆1 = 0.05;  and 𝜆2 = 0.05  for  ARL0  =  370 or  500  .The numerical results were 

obtained after setting in-control process parameter 𝛼0 = 1and out -of-control process parameter  𝛼1 > 1  ( i.e., 𝛼1 = (1 +
𝛿)𝛼0  )for  shift size  𝛿  =  0.0001, 0.0003, 0.0005, 0 .001, 0.005, 0.01, 0 .03, 0.05, 0.1, or 0.5 and where u1 and u2 are the 

upper control limits (UCLs) for ARL0 = 370 and 500, respectively .The results using the two methods indicate that they 

are in excellent agreement since  the APRE values  were  less than 3 .5×10-3 .𝜆1 = 𝜆2 = 0.05,  as is  usually recommended 

for  the EWMA control chart,  was used for computing the ARL  .The ARL results show that the DEWMA control chart 

is very sensitive for detecting  changes in the process mean when the shift size was very small for  𝜆1 = 𝜆2 = 0.1. 

The ARL results for MA(2) and MA(3) processes,  𝛿   = 0.0001, 0 .0005, 0 .001, 0 .005, 0.01, 0.03, 0.05, 0.1, or 0 .5 and 

ARL0  =370 or  500 are given in Tables 2 and 3, respectively  .The other settings for the simulation  were  𝜇 = 3;𝜃1 = −0.1, 

0.2, or  –0.3;𝜃2 = 0.6, –0.7, or 0.8; 𝜆1 = 0.05; and  𝜆2 = 0.05for the MA(2)  process and  𝜇 = 3;𝜃1 = −0.3,   – 0.4, or 0.2;  

𝜃2 = 0.5, –0 .6, or 0 .4;𝜃3 = −0.7, –0.8, or 0.7;  𝜆1 = 0.05; and  𝜆2 = 0.05for the MA(3)  process  .Moreover,  u1 and u2 

are the UCLs for ARL0 = 370 and 500, respectively. The results in Tables 2 and 3 indicate that the exact ARL provided 

by the explicit formulas and the estimated ARLs provided by the NIE method are in good agreement, as indicated by the 

APRE results being close to zero for all of the cases studied. In addition, the ARL1 values were sensitive to small changes 

in the process mean. Consequently, the exact ARL values provided by the explicit formulas can be utilized to efficiently 

and rapidly detect changes in the mean of an MA)q( process with exponential white noise running on a DEWMA control 

chart. 

Tables 4 to 6 report  the ARLs for MA(1), MA(2), and MA(3)  processes running on the DEWMA,  EWMA, and 

MEWMA control charts, respectively  .For these experiments,  𝛿     = 0.0001, 0.0005, 0.001, 0 .005, 0 .01, 0.03, 0.05, 0.1,  

or  0 .5  .Meanwhile,  𝜆1 = 𝜆2 = 𝜆 = 0.05 for the MA(1)  model and  𝜆1 = 𝜆2 = 𝜆 = 0.1 for the MA(2)  and MA(3)  models  .

Moreover, h1 and h2 are the UCLs for the EWMA control chart, b1 and b2 are the UCLs for the MEWMA control chart, 
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and u1 and u2 are the UCLs  for  the DEWMA control chart for ARL0  =  370 and 500, respectively. The experimental 

results show  that the ARL  values provided by the DEWMA control chart for the MA(1)  process with  𝜆1 = 𝜆2 = 0.05  

were much lower than the others for both ARL0  =  370 and 500, which was also the case  for the MA(2)  and MA(3)  

processes, indicating that  it could  detect changes more quickly and more sensitively than the other two control charts  .

These results are graphically presented in Figures 2 to 4. 

Table 4. Comparison ARLs for MA(1) of EWMA, modified EWMA and Double EWMA using explicit formula for 𝝁 = 𝟐, 

𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝀𝟐 = 𝟎. 𝟎𝟓, ARL0=370 and 500 

𝜽 𝜹 
 ARL0=370   ARL0=500  

EWMA MEWMA DEWMA EWMA MEWMA DEWMA 

𝜃 = −0.2* 

0.000 370.420516 370.394639 370.557944 500.151500 500.433051 500.362162 

0.0001 369.763596 356.678265 205.290702 499.263887 475.726593 239.663500 

0.0005 367.148846 310.659489 74.045414 495.730904 397.270443 78.035169 

0.001 363.909285 267.513368 41.348261 491.353694 329.367460 42.554722 

0.005 339.108224 126.699476 9.504206 457.843145 139.103249 9.561361 

0.010 310.713835 76.405097 5.092886 419.477385 80.761050 5.107554 

0.030 220.874463 29.523459 2.120001 298.088755 30.158783 2.121667 

0.050 159.087077 18.314113 1.545020 214.603235 18.558721 1.545612 

0.100 73.919331 9.452589 1.158538 99.526762 9.518188 1.158666 

0.500 1.910715 2.304331 1.000648 2.230536 2.307695 1.000649 

𝜃 = 0.5** 

0.000 370.493400 370.491438 370.496940 500.241764 500.297837 500.248510 

0.0001 369.810536 359.714488 202.350449 499.319111 480.847729 235.929507 

0.0005 367.092993 322.223992 72.205613 495.647297 416.137091 76.006726 

0.001 363.727139 285.085666 40.217627 491.099517 356.217654 41.357351 

0.005 337.999245 148.346904 9.231227 456.337224 165.563359 9.285131 

0.010 308.635388 92.768414 4.952901 416.662193 99.226597 4.966724 

0.030 216.479441 37.189052 2.073137 292.145505 38.188258 2.074709 

0.050 153.934489 23.308205 1.517899 207.637767 23.697520 1.518452 

0.100 69.437034 12.147268 1.147323 93.468856 12.252214 1.147442 

0.500 1.721326 2.909056 1.000513 1.974622 2.914368 1.000514 

*ℎ1 = 9.34 × 10−7 for ARL0=370 and ℎ2 = 1.262 × 10−6 for ARL0=500 on EWMA chart, 

𝑏1 = 3.01952 × 10−1 for ARL0=370 and 𝑏2 = 3.02414 × 10−1 for ARL0=500 on modified EWMA chart, 

𝑢1 = 2.30909 × 10−12 for ARL0=370 and 𝑢2 = 2.31071 × 10−12 for ARL0=500 on double EWMA chart. 

**ℎ1 = 4.639 × 10−7 for ARL0=370 and ℎ2 = 6.268 × 10−7 for ARL0=500 on EWMA chart, 

𝑏1 = 6.12996 × 10−1 for ARL0=370 and 𝑏2 = 6.13825 × 10−1 for ARL0=500 on modified EWMA chart, 

𝑢1 = 1.14666 × 10−12 for ARL0=370 and 𝑢2 = 1.147467 × 10−12 for ARL0=500 on double EWMA chart. 

Table 5. Comparison ARLs for MA(2) of EWMA, modified EWMA and Double EWMA using explicit formula for 𝝁 = 𝟐, 

𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 = 𝟎. 𝟏, ARL0=370 and 500 

𝜽𝒊 𝜹 
 ARL0=370   ARL0=500  

EWMA MEWMA DEWMA EWMA MEWMA DEWMA 

𝜃1 = −0.6 

𝜃2 = −0.3* 

0.000 370.442007 370.688469 370.282277 500.280903 500.404149 500.721193 

0.0001 370.206255 352.379302 262.677817 499.986803 467.617568 322.143935 

0.0005 369.265201 294.245238 121.687138 498.812727 370.512782 133.011189 

0.001 368.093261 243.939769 72.996928 497.350352 294.156968 76.902712 

0.005 358.890000 103.028774 17.763595 485.856911 111.059955 17.976172 

0.010 347.803269 59.834537 9.385927 471.988577 62.467032 9.441781 

0.030 307.678169 22.381213 3.590480 421.571801 22.743925 3.597053 

0.050 273.407974 13.801259 2.422260 378.197982 13.939484 2.424692 

0.100 207.225284 7.124820 1.567313 293.410598 7.161775 1.567941 

0.500 42.853698 1.861519 1.023479 70.935699 1.863427 1.023496 



Emerging Science Journal | Vol. 7, No. 5 

Page | 1780 

𝜃1 = 0.4 

𝜃2 = 0.5** 

0.0000 370.476061 370.431514 370.915331 500.211410 500.336744 500.134946 

0.0001 370.150120 360.755176 251.154930 499.772316 482.841359 304.327726 

0.0005 368.849837 326.630368 109.831066 498.020624 423.599669 118.866553 

0.0010 367.232290 292.099374 64.65599 495.841495 367.282108 67.664410 

0.0050 354.597872 158.330489 15.455183 478.819582 178.076451 15.612815 

0.0100 339.540527 100.768796 8.175341 458.530799 108.413348 8.216519 

0.0300 286.588631 41.214183 3.170985 387.157890 42.433449 3.175800 

0.0500 243.391335 26.011894 2.168898 328.902333 26.490290 2.170670 

0.1000 165.856433 13.679155 1.443691 224.253470 13.808689 1.444139 

0.5000 19.073215 3.319012 1.012751 25.601274 3.325528 1.012760 

*ℎ1 = 1.456 × 10−1 for ARL0=370 and ℎ2 = 7.33 × 10−1 for ARL0=500 on EWMA chart, 

𝑏1 = 1.5039 × 10−1 for ARL0=370 and 𝑏2 = 1.50616 × 10−1 for ARL0=500 on modified EWMA chart, 

𝑢1 = 4.09687 × 10−7 for ARL0=370 and 𝑢2 = 4.09976 × 10−7 for ARL0=500 on double EWMA chart. 

**ℎ1 = 1.4 × 10−2 for ARL0=370 and ℎ2 = 1.905 × 10−2 for ARL0=500 on EWMA chart, 

𝑏1 = 9.4434 × 10−1 for ARL0=370 and 𝑏2 = 9.4544 × 10−1 for ARL0=500 on modified EWMA chart, 

𝑢1 = 6.7721 × 10−8 for ARL0=370 and 𝑢2 = 6.77683 × 10−8 for ARL0=500 on double EWMA chart. 

Table 6. Comparison ARLs for MA(3) of EWMA, modified EWMA and Double EWMA using explicit formula for 𝝁 = 𝟐, 

𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 = 𝟎. 𝟏, ARL0=370 and 500 

𝜃𝑖 𝛿 
 ARL0=370   ARL0=500  

EWMA MEWMA DEWMA EWMA MEWMA DEWMA 

𝜃1 = −0.5 

𝜃2 = −0.3 

𝜃3 = −0.4* 

0.0000 370.232951 370.295033 370.279493 500.242481 500.277843 500.667609 

0.0001 370.028234 350.570618 264.754200 500.025456 464.949528 325.254239 

0.0005 369.210927 288.994227 123.928903 499.159021 362.540635 135.692587 

0.0010 368.192789 236.964955 74.606546 498.079716 284.271431 78.691402 

0.0050 360.185433 97.098726 18.219698 489.592603 104.230015 18.443676 

0.0100 350.510577 55.873910 9.626005 479.341725 58.173296 9.684921 

0.0300 315.212099 20.728554 3.673991 441.993163 21.041206 3.680932 

0.0500 284.670425 12.756672 2.472855 409.788070 12.875514 2.475427 

0.1000 224.413910 6.578182 1.592285 346.933562 6.609904 1.592950 

0.5000 60.260919 1.749892 1.026013 268.238244 1.751513 1.026032 

𝜃1 = 0.4 

𝜃2 = 0.7 

𝜃3 = 0.6** 

0.0000 370.511926 370.321510 370.910954 500.262991 500.618332 500.510253 

0.0001 370.153608 366.614425 246.226216 499.778772 493.865419 297.251211 

0.0005 368.724487 352.494340 105.252142 497.847496 468.572821 113.537613 

0.0010 366.947373 336.292549 61.527071 495.445956 440.362147 64.249208 

0.0050 353.094062 245.649075 14.615966 476.725024 296.872576 14.756613 

0.0100 336.649208 183.425695 7.737339 454.502051 210.532824 7.774002 

0.0300 279.422272 90.305107 3.019985 377.168576 96.397731 3.024261 

0.0500 233.514924 59.393075 2.078103 315.133089 61.959689 2.079673 

0.1000 153.265639 31.500715 1.400116 206.694881 32.200648 1.400508 

0.5000 14.524592 6.374223 1.009737 19.255481 6.398828 1.009744 

*ℎ1 = 3.73 × 10−1 for ARL0=370 and ℎ2 = 1.773 for ARL0=500 on EWMA chart, 

𝑏1 = 1.11203 × 10−1 for ARL0=370 and 𝑏2 = 1.11373 × 10−1 for ARL0=500 on modified EWMA chart, 

𝑢1 = 5.5302 × 10−7 for ARL0=370 and 𝑢2 = 5.5341 × 10−7 for ARL0=500 on double EWMA chart. 

**ℎ1 = 6.06 × 10−3 for ARL0=370 and ℎ2 = 8.14 × 10−3 for ARL0=500 on EWMA chart, 

𝑏1 = 2.2279 for ARL0=370 and 𝑏2 = 2.22977 for ARL0=500 on modified EWMA chart, 

𝑢1 = 3.0429 × 10−8 for ARL0=370 and 𝑢2 = 3.04503 × 10−8 for ARL0=500 on double EWMA chart. 
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(a) ARL for 𝜃 = −0.2 given ARL0=370 (b) ARL for 𝜃 = −0.2 given ARL0=500 

  
(c) ARL for 𝜃 = 0.5 given ARL0=370 (d) ARL for 𝜃 = 0.5 given ARL0=500 

Figure 2. The ARL comparison of the EWMA, modified EWMA and double EWMA charts for MA(1) process 

  
(a) ARL for 𝜃1 = −0.6,𝜃2 = −0.3 given ARL0=370 (b) ARL for 𝜃1 = −0.6,𝜃2 = −0.3 given ARL0=500 

  
(c) ARL for 𝜃1 = 0.4,𝜃2 = 0.5 given ARL0=370 (d) ARL for 𝜃1 = 0.4,𝜃2 = 0.5 given ARL0=500 

Figure 3. The ARL comparison of the EWMA, modified EWMA and double EWMA charts for MA(2) process 
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(a) ARL for 𝜃1 = −0.5,𝜃2 = −0.3,𝜃3 = −0.4 given ARL0=370 (b) ARL for 𝜃1 = −0.5, 2 0.3 = − ,𝜃3 = −0.4 given ARL0=500 

  

(c) ARL for 𝜃1 = 0.4,𝜃2 = 0.7,𝜃3 = 0.6 given ARL0=370 (d) ARL for 𝜃1 = 0.4,𝜃2 = 0.7,𝜃3 = 0.6 given ARL0=500 

Figure 4. The ARL comparison of the EWMA, modified EWMA and double EWMA charts for MA(3) process 

5- Application of Real Data 

It is well-known that commodity prices are subject to volatility over time, which depends on demand  .When the prices 

of energy products including oil and natural gas rise, the prices of agricultural and other essential products also rise due 

to increased transportation costs .Thus, commodity prices play a major role in the economy .Thus, using a control chart 

to anticipate future market changes provides an interesting opportunity. 

The real datasets  used in this study comprise  the price data for major industrial commodities )diesel, gasoline 95, and 

NGV )natural gas for vehicles( prices; unit: Baht( in Thailand. The Box-Jenkins technique was used to determine whether 

the observations were autocorrelated, while the t-statistic was used to assess whether the time-series data follow an 

MA)q( process. Dataset 1 comprises the prices of diesel collected every three months from the third quarter of 2011 to 

the fourth quarter of 2022. The 39 observations were proved to be autocorrelated and suitable for the MA)1( model 

written as follows: 

𝑋𝑖 = 26.947 − 0.649휀𝑖−1 + 휀𝑖, where 휀𝑖~𝐸𝑥𝑝(1.5563) 

Dataset 2 comprises the prices of gasoline 95 from the fourth quarter of 2013 to the fourth quarter of 2022. The 29 

observations were proved to be autocorrelated and suitable for an MA)2( model expressed as follows: 

𝑋𝑖 = 34.405 − 0.852휀𝑖−1 − 0.389휀𝑖−2 + 휀𝑖, where 휀𝑖~𝐸𝑥𝑝(1.4950) 

Dataset 3 comprises the prices of NGV from the third quarter of 2011 to the fourth quarter of 2022. The 39 

observations were proved to be autocorrelated and suitable for an MA)3( model expressed as follows: 

𝑋𝑖 = 13.093 − 0.842휀𝑖−1 − 0.747휀𝑖−2 − 0.753휀𝑖−3 + 휀𝑖, where 휀𝑖~𝐸𝑥𝑝(0.6354). 

The ARLs on the MA)1(, MA)2(, and MA)3( processes comprising diesel, gasoline 95, and NGV prices running on 

a DEWMA control chart for 𝜆1 = 𝜆2 = 𝜆 = 0.1are reported in Tables 7 to 9, respectively. The performance evaluation 

of the proposed scheme was also conducted to assess the ARLs of the processes derived by using explicit formulas 

running on EWMA [30] and MEWMA [23, 31] control charts, where h1 and h2 are the UCLs  for  the EWMA control 

chart,  b1 and b2 are the UCLs  for  the MEWMA control chart, and u1 and u2 are the UCLs  for  the DEWMA control chart 

for ARL0 = 370 and 500, respectively. 
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Table 7. Comparison ARLs for MA(1) for the diesel price of EWMA, modified EWMA and Double EWMA using explicit 

formula for 𝝁 = 𝟐𝟔. 𝟗𝟒𝟕,𝜽 = −𝟎. 𝟔𝟒𝟗, 𝝀𝟏 = 𝝀𝟐 = 𝝀 = 𝟎. 𝟏 when 𝜶𝟎 = 𝟏. 𝟓𝟓𝟔𝟑 given ARL0=370 and 500 

𝛿 

ARL0=370 ARL0=500 

EWMA (ℎ1 =
7.58 × 10−9) 

MEWMA (𝑏1 =
6.0865 × 10−8) 

DEWMA (𝑢1 =
9.3492 × 10−11) 

EWMA (ℎ2 =
1.025 × 10−8) 

MEWMA (𝑏2 =
6.0937 × 10−8) 

DEWMA (𝑢2 =
9.35576 × 10−11) 

0.0000 370.203716 370.716740 370.639850 500.253042 500.217084 500.450172 

0.0001 369.640784 295.317482 251.634933 499.491821 372.029380 305.324007 

0.0005 367.398327 162.887955 110.369658 496.459476 183.773548 119.542412 

0.0010 364.615998 97.437801 65.025627 492.697092 112.624145 68.084105 

0.0050 343.163528 26.615320 15.537699 463.688143 27.622638 15.697846 

0.0100 318.254521 14.171646 8.206145 430.005120 14.310240 8.247845, 

0.0300 254.600096 5.024696 3.164868 319.555180 5.040943 3.169683 

0.0500 236.575442 3.166451 2.155496 239.263742 3.172360 2.157246 

0.1000 88.847375 1.815094 1.426273 119.790975 1.816539 1.426700 

0.5000 2.106560 1.017543 1.007627 2.496338 1.017564 1.007633 

Table 8. Comparison ARLs for MA(2) for the gasoline 95 price of EWMA, modified EWMA and Double EWMA using explicit 

formula for 𝝁 = 𝟑𝟒. 𝟒𝟎𝟓, 𝜽𝟏 = −𝟎. 𝟖𝟓𝟐, 𝜽𝟐 = −𝟎. 𝟑𝟖𝟗, 𝝀𝟏 = 𝝀𝟐 = 𝝀 = 𝟎. 𝟏 when𝜶𝟎 = 𝟏. 𝟒𝟗𝟓𝟎 given ARL0=370 and 500 

𝛿 

ARL0=370 ARL0=500 

EWMA (ℎ1 =
1.518 × 10−9) 

MEWMA (𝑏1 =
1.3274 × 10−10) 

DEWMA (𝑢1 =
1.42052 × 10−12) 

EWMA (ℎ2 =
2.052 × 10−9) 

MEWMA (𝑏2 =
1.329 × 10−10) 

DEWMA (𝑢2 =
1.42152 × 10−12) 

0.0000 370.312651 370.622974 370.503145 500.228959 500.298538 500.034988 

0.0001 369.687810 274.171177 232.190478 499.384312 339.199810 277.107458 

0.0005 367.199808 135.482679 93.471109 496.021086 149.299782 99.953362 

0.0010 364.115217 82.946390 53.680486 491.851400 88.045176 55.775642 

0.0050 340.423239 20.341692 12.560368 459.825089 20.626109 12.663342 

0.0100 313.124381 10.554741 6.660192 422.923072 10.631371 6.686891 

0.0300 225.394810 3.763853 2.638217 304.332115 3.772591 2.641262 

0.0500 163.680166 2.412408 1.842751 220.907577 2.415516 1.843842 

0.1000 76.362943 1.463881 1.282056 102.874018 1.464595 1.282310 

0.5000 1.624144 1.003332 1.002307 1.843704 1.003336 1.002308 

Table 9. Comparison ARLs for MA(3) for the NGV price of EWMA, modified EWMA and Double EWMA using explicit formula 

for 𝝁 = 𝟏𝟑. 𝟎𝟗𝟑, 𝜽𝟏 = −𝟎. 𝟖𝟒𝟐, 𝜽𝟐 = −𝟎. 𝟕𝟒𝟕, 𝜽𝟑 = −𝟎. 𝟕𝟓𝟑,𝝀𝟏 = 𝝀𝟐 = 𝝀 = 𝟎. 𝟏 when𝜶𝟎 = 𝟎. 𝟔𝟑𝟓𝟒 given ARL0=370 and 500 

𝛿 

ARL0=370 ARL0=500 

EWMA(ℎ1 =
3.016 × 10−7) 

MEWMA(𝑏1 =
7.9087 × 10−11) 

DEWMA(𝑢1 =
3.03148 × 10−11) 

EWMA(ℎ2 =
4.077 × 10−7) 

MEWMA(𝑏2 =
7.9287 × 10−11) 

DEWMA(𝑢2 =
4.15585 × 10−11) 

0.0000 370.287689 370.386144 370.380825 500.199155 500.083732 500.521507 

0.0001 369.175418 267.416281 170.697861 498.695599 329.179753 195.721913 

0.0005 364.763097 126.075293 54.398606 492.731070 138.315989 57.310969 

0.0010 359.329419 75.657213 32.536879 485.385883 79.979176 30.639940 

0.0050 318.944221 17.539143 6.882687 430.793607 17.776736 6.884161 

0.0100 275.358308 8.683398 3.397220 371.874636 8.745227 3.755962 

0.0300 156.438698 2.737418 2.151639 211.120380 2.744051 1.687787 

0.0500 91.953642 1.689314 1.205840 123.950169 1.691421 1.305511 

0.1000 27.969293 1.120333 1.050986 37.456806 1.120649 1.071243 

0.5000 1.069228 1.000048 1.000101 1.093582 1.000048 1.000139 

The ARL results for the real processes in Tables 7 to 9 are in good agreement with those from the experimental study. 

The DEWMA control chart was exceptionally good at detecting shifts in the process mean for any magnitude of shift 

size for all of the scenarios tested except for 𝛿 = 0.5  with the MA)3( process )NGV price(, for which the MEWMA 

control chart provides the smallest ARL1. 
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6- Conclusion 

Herein,  the computation of the ARL  of  an  MA)q( process with  exponential white noise running on a  DEWMA control 

chart using explicit formulas is presented .For comparison, the NIE method was applied to approximate the ARL under 

the control limit of the explicit formulas  to check the accuracy of the explicit formulas method  .In the experimental 

study, the parameters for  the control chart and observations were varied to  cover as many cases  as possible  .The 

experimental results provided by using both methods were in excellent agreement with only small APREs. 

In the comparative study of the capability of the control charts, the EWMA and MEWMA control charts were 

compared with the DEWMA control in terms of effectiveness by using the explicit formulas to derive  their ARLs for 

MA)q( processes with exponential white noise  .Both the  experimental study and application using real datasets of the 

prices of major industrial commodities  in  Thailand provided similar ARL results  .Moreover, the proposed procedure  for 

deriving the ARL of MA)q( processes with white noise running on a DEWMA control chart was superior to the others. 

The desired ARL1 values of the DEWMA control chart detected changes in the process mean more quickly for all 

magnitudes of shift size studied. That is to say, the DEWMA control chart is appropriate for monitoring and detecting 

very small shifts in the process mean of MA)q( processes with exponential white noise. In addition, the comparison of 

control charts’ efficiencies revealed that the DEWMA control chart performed the best in almost all cases except for the 

MA)3( model for the NGV price data, with which the MEWMA control chart yielded the smallest ARL for a process 

mean shift size of 0.5. The findings from the ARL evaluation using explicit formulas indicate that the DEWMA control 

chart performed well for most of the investigated scenarios. However, we also discovered that the EWMA and MEWMA 

control charts performed well when the exponential smoothing parameter was 0.05 and - 0.1, respectively, and are thus 

good alternatives for detecting shifts in the mean of MA)q( processes with exponential white noise. 
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