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Abstract 

Locating the rainbow connection number of graphs is a new mathematical concept that combines the 
concepts of the rainbow vertex coloring and the partition dimension. In this research, we determine 

the lower and upper bounds of the locating rainbow connection number of a graph and provide the 

characterization of graphs with the locating rainbow connection number equal to its upper and lower 
bounds to restrict the upper and lower bounds of the locating rainbow connection number of a graph. 

We also found the locating rainbow connection number of trees and regular bipartite graphs. The 

method used in this study is a deductive method that begins with a literature study related to relevant 
previous research concepts and results, making hypotheses, conducting proofs, and drawing 

conclusions. This research concludes that only path graphs with orders 2, 3, 4, and complete graphs 

have a locating rainbow connection number equal to 2 and the order of graph G, respectively. We also 
showed that the locating rainbow connection number of bipartite regular graphs is in the range of    

𝑟 − ⌊
𝑛

4
⌋ + 2 to 

𝑛

2
+ 1, and the locating rainbow connection number of a tree is determined based on 

the maximum number of pendants or the maximum number of internal vertices. 
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1- Introduction 

Graph theory is a necessary field in discrete mathematics. One of the interesting concepts in graph theory is graph 

coloring. Graph coloring has become increasingly popular since almost all problems inconceivable to any discipline can 

be solved by using graph models. The graph coloring problem field in discrete mathematics, such as vertex coloring, is 

an NP-complete problem. Besides that, optimization of vertex coloring is an NP-hard problem. For example, the concept 

of chromatic coloring [1] is one of the solutions to optimizing the time to finish all the schedules without conflicts using 

the discretization algorithm. 

In recent years, various concepts of graph coloring have been developed, and the rainbow connection number of a 

graph, which was first shown in 2008 [2], is one of them. This concept was inspired by secret communications between 

government agencies to secure the distribution of classified information after the terrorist attacks on September 11, 2001, 

which resulted in an observation made by Ericksen [3]. The deadly attack that occurred significantly impacted the 
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security of state data. The incident sparked the realization that intelligence agencies and law enforcement authorities 

were unable to interact with one another through their usual routes. The technology system is a separate entity, and 

shared access is prohibited. In other words, the authorities have no way of cross-checking information from one 

organization to another. Meanwhile, data related to national security must be protected, and procedures must also allow 

access by authorized parties. This problem can be overcome by establishing communication lines between agencies that 

can be mediated by other agencies and that require passwords and firewalls large enough to prevent network breakers or 

hackers but not too large to control [4]. This problem raises the question, "What is the minimum number of passwords 

or keywords required for some paths to share passwords differently during communication between two institutions?" 

This problem can be simulated by using rainbow coloring. This concept has been studied widely with a variety of graph 

operations (e.g., [5–10]). 

Motivated by the theory above, in 2010, Krivelevich & Yuster first studied a new concept in graph coloring, i.e., the 

rainbow vertex connection number of a graph [11]. This concept has undergone significant development. Many 

researchers apply it to various classes of graphs, such as pencil graphs [12], connected graphs [13], star fan graphs [14], 

and some special graphs [15]. Chen et al. [16, 17] provided the rainbow vertex connection of a graph and its complexity 

and showed that it was an NP-hard problem. The NP-hard problem is at least as complex as the NP problem but can be 

much more difficult or complex. Solving the NP-hard problem will lead to the discovery of an algorithm with a 

polynomial running time for all NP problems. Hence, research related to the NP-hard problem is very interesting. 

Therefore, a new topic that combines the concepts of rainbow vertex coloring and partition dimensions [18] was 

introduced in 2021, and the concept is called locating rainbow connection numbers [19]. 

Let 𝐺 be a simple, connected, and undirected graph with order 𝑛. For 𝑘 ∈ 𝑁, the color of vertices of 𝐺 is known as a 

rainbow vertex 𝑘-coloring if there is a function α: V(G) ⟶ {1,2,   … ,  k} so that for each distinct pair of vertices 𝑥, 𝑦 ∈

𝑉(𝐺) there is rainbow vertex 𝑥 − 𝑦-path whose internal vertices are assigned a different color. The rainbow vertex 

connection number of 𝐺, which is given by the equation 𝑟𝑣𝑐(𝐺) = 𝑚𝑖𝑛{𝑘: 𝑘 ∈ 𝑁}, such that 𝐺 has a rainbow vertex 𝑘-

coloring. For 𝑖 ∈ {1, 2, … , 𝑘}, let 𝑅𝑖 be the set of vertices that have the color 𝑖 and Π = {𝑅1, 𝑅2, … , 𝑅𝑘} be an ordered 

partition of 𝑉(𝐺). Writing 𝑟𝑐Π(𝑣) = (𝑑(𝑣, 𝑅1), 𝑑(𝑣, 𝑅2), … , 𝑑(𝑣, 𝑅𝑘)), where 𝑑(𝑣, 𝑅𝑖) = min{ 𝑑(𝑣, 𝑦): 𝑦 ∈ 𝑅𝑖} for 

every 𝑖 ∈ {1,2, … , 𝑘}. Further, we call 𝑟𝑐Π(𝑣) as the rainbow code of 𝑣 of 𝐺 with respect to Π. If 𝑟𝑐Π(𝑣𝑗) ≠ 𝑟𝑐Π(𝑣𝑙) for 

distinct 𝑗, 𝑙 ∈ {1,2, … , 𝑛} then α is called a locating rainbow 𝑘-coloring of 𝐺. The locating rainbow connection number 

of 𝐺 is denoted by the 𝑟𝑣𝑐𝑙(𝐺) = 𝑚𝑖𝑛{𝑘: 𝑘 ∈ 𝑁} so that 𝐺 has a locating rainbow 𝑘-coloring. Every locating rainbow 

𝑘-coloring of 𝐺 is a rainbow vertex coloring of 𝐺, therefore we get 𝑟𝑣𝑐(𝐺) ≤ 𝑟𝑣𝑐𝑙(𝐺). Based on an easy observation 

by Yuster and Krivelevich [11], 𝑟𝑣𝑐(𝐺) is more than or equal to the diameter minus one. Therefore, the following logical 

conclusion holds true. 

Corollary 1.1. If 𝐺 is a simple connected graph and 𝑑𝑖𝑎𝑚(𝐺) denotes a diameter of 𝐺, then 𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑑𝑖𝑎𝑚(𝐺) − 1. 

One of the applications of the locating rainbow connection number is for building security systems (see Figure 1). 

Suppose that 𝐺 represents a system for placing biometric scanning devices at the doors of every room in a building. The 

edges and vertices of graph 𝐺 represent the hallways that connect the doors and the doors of all rooms, respectively. The 

color of the vertex represents the type of biometric scanner. 

 

Figure 1. A building plan with several secret rooms 

Biometric scanning devices can be categorized into several types, such as facial patterns, irises, fingerprints, voices, 

and palms or fingers, with each type utilizing different biometric authentication methods that measure and analyze unique 

characteristics inherent to an individual to confirm their identity. 

In a placement system for building security, it may be tempting to install the same type of biometric scanner at every 

door. However, if a hacker manages to compromise or damage one of the scanners, they can easily access all the rooms 

in the building. Therefore, the most effective way to ensure high security is to equip each door with a different type of 

biometric scanning device. However, this approach can be expensive, especially if there are only a limited number of 
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biometric identifiers available. To address this issue, we aim to minimize the number of scanning device types required 

by using the theory of rainbow vertex connection. The minimum number of device types needed can be expressed as the 

rainbow vertex connection number of a graph. 

To improve the security system, it is essential to take further steps. One possible measure is to assign a unique code 

to each door based on its type of biometric scanning device. This way, if access to certain rooms is compromised or 

damaged, the building owner can easily detect which rooms are affected. This approach can be implemented using the 

concept of partition dimensions. For a visual representation, refer to Figure 2. In this figure, the vertices of G correspond 

to the doors where the scanning device is installed, and each vertex's color indicates the type of scanning device used. 

For instance, the green color represents the type 1 scanning device, so the door equipped with this device is included in 

the 𝑅1 set. Similarly, the light blue color represents the type 2 scanning device, and doors fitted with this device belong 

to the 𝑅2set, and so on for the other device types. 

Suppose the biometric scanner at the door of room 𝑣2 is damaged. The installation system that uses the concept of 

the locating rainbow connection number offers two advantages. First, it is easy to detect room 𝑣2 since each room has a 

unique door code. In this case, a signal will send a unique code (1,0,1,2,2,1,3,4). Second, after identifying the damaged 

room, the building owner can immediately determine the closest rooms to 𝑣2 and increase their security system by using 

the unique code of 𝑣2. Based on that unique code, the security system of the rooms in sets 𝑅1, 𝑅3, and 𝑅6 must be 

improved because these sets contain the rooms closest to 𝑣2. Therefore, these rooms can be the first to be affected by the 

damage to room 𝑣2. For the same reason, the rooms that require security system improvements are those in sets 𝑅4 and 

𝑅5, followed by those in 𝑅7 and 𝑅8 (refer to Figure 2). 

 

Figure 2. A representation of a building plan in a graph 

Taking into consideration the benefits of applying the concept of locating rainbow coloring, we are interested in 

developing it further by applying it to various classes of graphs, thereby enabling a wider range of applications for the 

concept of locating rainbow coloring.  

In Bustan et al. [19], lower and upper bounds for 𝑟𝑣𝑐𝑙(𝐺) were established, with the smallest value being 2 and the 

largest being the order of a graph 𝐺. Consequently, this study identified graphs with locating rainbow connection 

numbers equal to 2 and the order of a graph G, resulting in a new range of values for the locating rainbow connection 

number for restricting the upper and lower bounds of 𝑟𝑣𝑐𝑙(𝐺) to help other researchers determine the 𝑟𝑣𝑐𝑙(𝐺). 

Moreover, in addition to providing characterizations, we determined the locating rainbow connection number for a 

large class of graphs. Additionally, in Bustan et al. [19], the locating rainbow connection number was already determined 

for various simple graph classes, including stars and paths, which are both included in trees. Furthermore, since every 

tree is a bipartite graph, this study also presents the locating rainbow connection number for trees and other bipartite 

graph classes. 

2- Research Methodology 

This study uses the deductive method, which begins with a review of existing literature on the theory of locating 

rainbow coloring, rainbow vertex coloring, partition dimension, and the characteristics of the graphs studied in this paper, 

such as complete graphs, graphs containing cycles, trees, and regular bipartite graphs. Based on the information gathered 

through the literature review, we identified several statements and formulated them as hypotheses regarding the location 

of the rainbow connection number, along with the necessary proof methods to establish them. 
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The proof process is divided into two stages: proving the lower bound and the upper bound. For the lower bound, it 

is known that the value of the locating rainbow connection number of a graph is never less than the diameter minus one, 

the maximum number of leaves adjacent to a vertex, or the number of cut vertices. If the lower bound is trivial, i.e., if it 

satisfies one of the properties, then the proof is straightforward. Otherwise, the proof is established through contradiction 

or contrapositive. For the upper bound, it is known that the maximum value of the locating rainbow connection number 

of a graph is equal to the order of the graph. If it is less than the order, the proof is established through a vertex coloring 

construction, where the given coloring not only shows that there is always a rainbow path between any two vertices but 

also that all vertices have different rainbow codes. 

After going through the proof process, if the given hypothesis is proven to be true, it will be concluded as a lemma, 

theorem, or corollary. However, if the hypothesis is proven false, the research will be repeated by reconsidering the 

hypothesis and the proof methods used. 

The flowchart for this study is presented in Figure 3. 

 

Figure 3. Research process flowchart 

3- Main Results 

All results in this paper are given in this section. In particular, in Subsections 3-1 and 3-2, we provide a 

characterization of graphs by locating rainbow connection numbers that are equal to 2 or their order. In Subsection 3-3 

we determine locating rainbow connection number of trees, and in Subsections 3-4, we consider some regular bipartite 

graphs to calculate the locating rainbow connection number for those graphs. For simplification, denote {𝑛 ∈ 𝑁 | 𝑎 ≤

𝑛 ≤ 𝑏 } by [𝑎, 𝑏]. 

3-1- Graphs with Locating Rainbow Connection Number 𝟐 

In [19, Theorem 2.2], one of the results shows the locating rainbow connection number of paths. In the main theorem 

of this subsection, we show that a path 𝑃𝑛 for 𝑛 ∈ [2,4] is the only graph with 𝑟𝑣𝑐𝑙(𝐺) = 2. The next step is to make 

sure that Lemma 3.1, which will be applied in the proof of Theorem 3.1, is correct. 

Lemma 3.1. If 𝐺 is a simple connected graph of order 𝑛 ≥ 3 which contains a cycle, then 𝑟𝑣𝑐𝑙(𝐺) ≥ 3 

Proof. Suppose that 𝑟𝑣𝑐𝑙(𝐺) is less than or equals 2 and by [19, Lemma 2.1], we get 𝑟𝑣𝑐𝑙(𝐺) = 2. Since 𝑟𝑣𝑐𝑙(𝐺) ≥

𝑟𝑣𝑐(𝐺), based on Corollary 1.1, we have 𝑑𝑖𝑎𝑚(𝐺) ≤ 3. Let 𝐶 = 𝑢, 𝑣, … , 𝑡, 𝑢 be the shortest cycle contained in 𝐺. Since 

𝑟𝑣𝑐𝑙(𝐺) = 2, we consider two cases.  
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First, suppose all vertices in 𝐶 have the same color, say color 1, if 𝐺 ≅ 𝐶, by [19, Lemma 2.1], we have a 

contradiction. Conversely, then there exists 𝑥 ∉ 𝐶 and without loss of generality, let 𝑢𝑥 ∈ 𝐸(𝐺). The cyclegraph has an 

order of at least three, so that if 𝑑𝑖𝑎𝑚(𝐺) ≤ 3, then color 1 can only be used a maximum of three times 

(0,1), (0,2), (0,3), consequently 𝑐(𝑥) = 2. If 𝑥𝑡 ∈ 𝐸(𝐺) or 𝑥𝑣 ∈ 𝐸(𝐺), therefore 𝑟𝑐Π(𝑡) = 𝑟𝑐Π(𝑢) = (0,1) or 

𝑟𝑐Π(𝑥) = 𝑟𝑐Π(𝑢) = (0,1). If 𝑥𝑡 ∉ 𝐸(𝐺) or 𝑥𝑣 ∉ 𝐸(𝐺), thus 𝑟𝑐Π(𝑡) = 𝑟𝑐Π(𝑣) = (0,2), a contradiction.  

Second, suppose all vertices in 𝐶 are assigned with colors 1 and 2. We consider two subcases, the odd cycle, and the 

even cycle. Since we have 2 colors, based on [19, Theorem 2.4] for an odd cycle, there are at least two vertices with the 

same colors and rainbow codes, which is a contradiction.  

For an even cycle, there are two different vertices, 𝑤 and 𝑠, so that 𝑤𝑠 ∈ 𝐸(𝐺) in 𝐶, 𝑐(𝑤) = 1 and 𝑐(𝑠) = 2. Since 

it is an even cycle, we have at least two other vertices in 𝐶, so there are 𝑤𝑦 ∈ 𝐸(𝐺) and 𝑠𝑡 ∈ 𝐸(𝐺). To make all vertices 

have different rainbow codes, 𝑐(𝑦) = 1, 𝑐(𝑡) = 2. Consider 𝑦𝑡, if 𝑦𝑡 ∈ 𝐸(𝐺), then 𝑟𝑐Π(𝑦) = 𝑟𝑐Π(𝑤), a contradiction. 

Conversely, if 𝑦𝑡 ∉ 𝐸(𝐺) by [19, Theorem 2.4], we only have a maximum of two other vertices, which are uncolored.  

Since 𝐺 contains an even cycle, there are only three possible conditions: one vertex in 𝐺 and not in 𝐶, two vertices in 

𝐺 and not in 𝐶, and two vertices in 𝐶. For one vertex in 𝐺 but not in 𝐶 or two vertices in 𝐺 but not in 𝐶, we get 𝑟𝑐Π(𝑡) =

𝑟𝑐Π(𝑠) = (1,0). 

For two vertices in 𝐶, there are at least 𝑟𝑧 ∈ 𝐸(𝐺) in 𝐶, where 𝑟𝑦 ∈ 𝐸(𝐺) and 𝑧𝑟 ∈ 𝐸(𝐺). To get 𝑟𝑐Π(𝑟) ≠ 𝑟𝑐Π(𝑠), 
it must be 𝑐(𝑟) = 1 and 𝑟𝑐Π(𝑧) = 𝑟𝑐Π(𝑤) = (0,1). Therefore, there isa contradiction; thus, 𝑟𝑣𝑐𝑙(𝐺) ≥ 3. 

Furthermore, to prove Theorem 3.1, the adjacency properties of the vertex in the graph will be used. Consider that 

|𝑁(𝑣)| is the number of vertices adjacent to the vertex 𝑣, for 𝑣 ∈ 𝑉(𝐺). 

Theorem 3.1. Let 𝐺 be a connected graph with order 𝑛 ∈ {2,3,4}. Then 𝑟𝑣𝑐𝑙(𝐺) = 2 if and only if 𝐺 is isomorphic 

to a path of order 𝑛. 

Proof. Let 𝐺 be a path graph of order 𝑛. Based on [19, Theorem 2.2], we get 𝑟𝑣𝑐𝑙(𝑃𝑛) = 2 for 𝑛 ∈ [2,4]. Conversely, 

suppose 𝑟𝑣𝑐𝑙(𝐺) = 2. Based on Lemma 3.1, Corollary 1.1, and [19, Lemma 2.2], we have 𝐺 as a tree with 𝑙 ≤ 2 and 

𝑑𝑖𝑎𝑚(𝐺) ≤ 3. This means that the graph has a maximum of three edges with a maximal order of 4, and a vertex that is 

adjacent maximally to two pendants. Hence, the graph with 𝑟𝑣𝑐𝑙(𝐺) = 2 are 𝑃2, 𝑃3, and 𝑃4 as shown in Figure 4. 

 

Figure 4. The locating rainbow 2-coloring of P_2, P_3, and P_4 

3-2- Graphs with Locating Rainbow Connection Number 𝒏 

In Bustan et al. [19], we know that 𝑟𝑣𝑐𝑙(𝐾𝑛) = 𝑛, where 𝐾𝑛 is a complete graph of order 𝑛. Next, we show that 

complete graphs are the only graph classes with 𝑟𝑣𝑐𝑙(𝐺) = 𝑛. We use the cut vertex properties of the graph in order to 

show Theorem 3.1. A vertex 𝑣 ∈ 𝑉(𝐺) is said to be a cut vertex if 𝐺 − 𝑣 make graph 𝐺 disconnected. 

Theorem 3.2. Suppose 𝐺 is a connected graph of order 𝑛 ≥ 3. Then 𝑟𝑣𝑐𝑙(𝐺) = 𝑛 if and only if 𝐺 is isomorphic to 

complete graphs. 

Proof. Suppose that 𝐺 is not a complete graph. Then 𝐺 has two vertices, 𝑢 and 𝑣 of 𝐺 so that 𝑢𝑣 ∉ 𝐸(𝐺). Consider 

the shortest path 𝑃 = 𝑢,𝑤,… , 𝑣 of 𝐺. We have two cases.  

First, 𝑢 and 𝑤 are not cut vertices. We make 𝑐(𝑢) = 𝑐(𝑤) = 1, and color 𝑛 − 1, 𝑛 − 2,… ,2 to other vertices, 

differently. As 𝑢 and 𝑤 are not cut vertices, for every pair of vertices connected by a path containing 𝑢 and 𝑤, there 

exists an alternative path that does not contain 𝑤 and 𝑢, which is obviously a rainbow vertex path. Since all vertices 

besides other than vertices 𝑢 and 𝑤 have different colors, any path connecting every two vertices in 𝐺 and not containing 

vertices 𝑢 and 𝑤 is the rainbow vertex path. 

Furthermore, each vertex with a different color must have a different rainbow code. We only consider vertices 𝑢 and 

𝑤, with 𝑐(𝑢) = 𝑐(𝑤) = 1. Since 𝑃 = 𝑢,𝑤,… , 𝑣 is the shortest path connecting vertices 𝑢 and 𝑣; consequently, 

𝑑(𝑤, 𝑣) < 𝑑(𝑢, 𝑣), so 𝑟𝑐Π(𝑤) ≠ 𝑟𝑐Π(𝑢). 

Second, 𝑢 and/or 𝑤 are cut vertices. Without loss of generality, let 𝑢 be a cut vertex. Since 𝑢 is a cut vertex, there is 

at least one vertex 𝑦 other than vertex 𝑤 adjacent to vertex 𝑢 so that 𝐺 − {𝑢} is disconnected and puts 𝑦 and 𝑤 on 

different components (see Figure 5. for illustration). Next, see the 𝑈 component, which is the subgraph component that 

contains 𝑦 in 𝐺 − {𝑢}. Choose a vertex in 𝑈, say vertex 𝑧, which is the farthest vertex from 𝑢 when in 𝐺. 
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Figure 5. Graph 𝑮 with cut vertex 𝒖 

Next, give color 1 for the vertices 𝑢 and 𝑧, 𝑐(𝑢) = 𝑐(𝑧) = 1, and colors 2,3, … , 𝑛 for the other vertices in 𝐺 

differently. Since 𝑧 and 𝑤 are in two components, 𝑧𝑤 ∉ 𝐸(𝐺). Thus, 𝑑(𝑤, 𝑢) = 1, 𝑑(𝑤, 𝑧) > 1. Therefore, 𝑟𝑐Π(𝑧) ≠
𝑟𝑐Π(𝑤). 

The rainbow vertex coloring of two cases produces the rainbow vertex coloring of 𝐺. Observe that each vertex has a 

unique rainbow code. Therefore, 𝑟𝑣𝑐𝑙(𝐺) ≤ 𝑛 − 1, which is a contradiction. Conversely, according to [19, Theorem 

2.1], 𝑟𝑣𝑐𝑙(𝐺) = 𝑛, where 𝐺 is a complete graph. 

3-3- Locating Rainbow Connection Number of Trees 

In this subsection, we determine the locating rainbow connection number of bipartite graphs, particularly for trees. 

However, we provide both lower and upper bounds for the locating rainbow connection number of bipartite graphs in 

general. Let 𝑎 and 𝑏 be positive integers, and 𝑛 = 𝑎 + 𝑏. A graph 𝐺 with order 𝑛 is called a bipartite graph, denoted by 

𝐵𝑎,𝑏 if there exist independent subsets 𝑈, 𝑉 with |𝑈| = 𝑎 and |𝑉| = 𝑏, such that every edge of the graph connects one 

vertex in 𝑈 to at least one vertex in 𝑉. Note that every path is a bipartite graph. According to Theorem 3.1, graphs with 

locating rainbow connection number 2 are 𝑃𝑛 for 𝑛 = 2,3,4. Thus, based on [19, Theorem 2.1], Corollary 3.2 is true. 

Corollary 3.2. For 𝑎 ≥ 1 and 𝑏 ≥ 2, let 𝐵𝑎,𝑏 be a bipartite graph of order 𝑎 + 𝑏, where 𝐵𝑎,𝑏 ≠ 𝑃3 and 𝐵𝑎,𝑏 ≠ 𝑃4. 

Then 3 ≤ 𝑟𝑣𝑐𝑙(𝐵𝑎,𝑏) ≤ 𝑎 + 𝑏 − 1. 

A star is a bipartite graph 𝐵1,𝑛−1. In [15, Theorem 2.2], we find the locating rainbow connection number of stars, 

which have a locating rainbow connection number equal to the upper bound of Corollary 3.2. It is known that a bipartite 

graph has no odd-length cycles. A tree is a connected acyclic graph. Therefore, every tree is a bipartite graph. Next, in 

Theorem 3.3, we show the locating rainbow connection number of trees using internal vertices and pendants. 

Theorem 3.3. Let 𝑇 be a tree graph with 𝑘 internal vertices, and 𝑙 be the maximum number of pendants adjacent to 

a vertex in 𝑇. Then: 

𝑟𝑣𝑐𝑙(𝑇) = {
𝑙, 𝑘 < 𝑙
𝑘, 𝑘 ≥ 𝑙

   

Proof. Let 𝑝𝑖  be an internal vertex of 𝑇, and 𝑝𝑖,𝑗 is the 𝑗-pendant that is adjacent to the internal vertex 𝑝𝑖  for 𝑗 ∈ [1, 𝑙] 
and 𝑖 ∈ [1, 𝑘]. See Figure 6 for an illustration. 

 

Figure 6. Tree 𝑻 with 𝒌 = 𝟔 and 𝒍 = 𝟕 

First, we prove the lower bound of the locating rainbow connection number of trees. For 𝑘 < 𝑙, based on [15, lemma 

2.2], we get 𝑟𝑣𝑐𝑙(𝑇) ≥ 𝑙. For 𝑘 ≥ 𝑙, suppose 𝑟𝑣𝑐𝑙(𝑇) ≤ 𝑘 − 1. As a result, there are two internal vertices, 𝑢 and 𝑣, so 

that 𝑐(𝑢) = 𝑐(𝑣). Furthermore, since 𝑢 and 𝑣 are not pendants, 𝑑(𝑢) = 𝑑(𝑣) ≥ 2. Therefore, there are 𝑠 and 𝑡 vertices, 

where 𝑠𝑢 ∈ 𝐸(𝑇) and 𝑣𝑡 ∈ 𝐸(𝑇), so that 𝑃 = 𝑠, 𝑢, … 𝑣, 𝑡 in 𝑇. Since every path on 𝑇 is unique, there is no rainbow vertex 

path connecting vertices 𝑠 and vertex 𝑡, which is a contradiction. Thus, 𝑟𝑣𝑐𝑙(𝑇) ≥ 𝑘. 

Next, we show 𝑟𝑣𝑐𝑙(𝑇) ≤ 𝑙 for 𝑘 < 𝑙 and 𝑟𝑣𝑐𝑙(𝑇) ≤ 𝑘 for 𝑘 ≥ 𝑙 by defining a vertex coloring 𝑐: 𝑉(𝑇) ⟷
[1,𝑚𝑎𝑥{𝑘, 𝑙}] as follows: 

𝑐(𝑝𝑖) = 𝑖, for 𝑖 ∈ [1, 𝑙] (1) 
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𝑐(𝑝𝑖,𝑗) = 𝑗, for 𝑗 ∈ [1, 𝑙] and 𝑖 ∈ [1, 𝑘] 

Since all internal vertices are distinct colors, for every two vertices in 𝑇, there is always a rainbow vertex path 

connecting the vertices. Furthermore, we show that the rainbow codes for each vertex are distinct. From the vertex 

coloring above, we have the following. 

 𝑐(𝑝𝑖,𝑗) ≠ 𝑐(𝑝𝑖,𝑞) for 𝑖 ∈ [1, 𝑘], and for distinct 𝑗, 𝑞 ∈ [1,𝑚]. 

 𝑐(𝑝𝑖) ≠ 𝑐(𝑝𝑗) for 𝑖, 𝑗 ∈ [1, 𝑘]. 

 𝑑(𝑝𝑖,𝑗, 𝑅𝑖) = 1 and 𝑑(𝑝𝑞,𝑙 , 𝑅𝑖) > 1 for distinct 𝑖, 𝑞 ∈ [1, 𝑘], and 𝑗, 𝑙 ∈ [1,𝑚]. 

 𝑐(𝑝𝑖,𝑗) = 𝑐(𝑝𝑖) for 𝑖 = 𝑗, 𝑑(𝑝𝑖,𝑗 , 𝑅𝑖+1) = 2 and 𝑑(𝑝𝑖 , 𝑅𝑖+1) = 1 for 𝑖 ∈ [1, 𝑘 − 1] or 𝑑(𝑝𝑖,𝑗, 𝑅𝑖−1) = 2 and 

𝑑(𝑝𝑖 , 𝑅𝑖−1) = 1 for 𝑖 = 𝑘. 

 𝑐(𝑝𝑖,𝑗) = 𝑐(𝑝𝑎) for 𝑖 ≠ 𝑎, but |𝑁(𝑝𝑖,𝑗)| = 1 and |𝑁(𝑝𝑎)| ≥ 2 where there are at least two vertices 𝑧, 𝑤 ∈ 𝑁(𝑝𝑎) 

so that 𝑐(𝑧) ≠ 𝑐(𝑤) ≠ 𝑐(𝑝𝑎). 

Thus, the rainbow codes for each vertex are distinct. The conditions above apply to 𝑘 < 𝑙 and 𝑘 ≥ 𝑙. Therefore, 

𝑟𝑣𝑐𝑙(𝑇) = 𝑘 for 𝑘 ≥ 𝑙 and 𝑟𝑣𝑐𝑙(𝑇) = 𝑙 for 𝑘 < 𝑙. 

3-4- Locating Rainbow Connection Number of Regular Bipartite Graphs 

A bipartite graph with partite sets 𝑈 and 𝑉 with |𝑈| = |𝑉| is called balanced. Let 𝑟 ∈ 𝑁 and 𝑟 ≥ 1. A bipartite graph 

whose vertex has a degree 𝑟 is called a 𝑟-regular bipartite graph. Note that all 𝑟-regular bipartite graphs are balanced. 

Let 𝑉(𝐺) = {𝑢𝑖 ∣ 𝑖 ∈ [1,
𝑛

2
]} ∪ {𝑣𝑗 ∣ 𝑗 ∈ [1,

𝑛

2
]}, such that 𝐸(𝐺) = {𝑢𝑖𝑣𝑗| 𝑖 ∈ [1,

𝑛

2
] , 𝑗 = (𝑖 + 𝑘) 𝑚𝑜𝑑 

n

2
, 𝑘 ∈ [0, 𝑟 − 1]}. 

In Theorem 3.4, we show the sharp lower and upper bounds for 𝑟𝑣𝑐𝑙(𝐺), where 𝐺 is 𝑟-regular bipartite graphs. We first 

verify some lemmas to help prove Theorem 3.4. 

Lemma 3.2. Let 𝐺 be an 𝑟-regular bipartite graph with |𝐺| = 𝑛 ≥ 4, 𝑛 be even, and 𝑑𝑖𝑎𝑚(𝐺) denote the diameter 

of 𝐺. If 𝑟 ≥ ⌊
𝑛

4
⌋ + 1, then 𝑑𝑖𝑎𝑚(𝐺) = 3. 

Proof. Consider 𝑢𝑖𝑢𝑗 and 𝑣𝑖𝑣𝑗 for distinct 𝑖, 𝑗 ∈ [1,
𝑛

2
]. We claim that the set of neighbors of any two vertices in the 

same partition set is not empty. Suppose 𝑁(𝑢𝑖) ∩ 𝑁(𝑢𝑗) = ∅. Then there are at least two vertices 𝑢𝑗 and 𝑢𝑖 so that the 

two vertices do not have the same neighbors in 𝑉. In other words, |𝑁(𝑢𝑖)| + |𝑁(𝑢𝑗)| ≤
𝑛

2
. Meanwhile, by condition of 

𝑟, we have 𝑟 ≥ ⌊
𝑛

4
⌋ + 1. It means |𝑁(𝑢𝑖)| ≥ ⌊

𝑛

4
⌋ + 1 and |𝑁(𝑢𝑗)| ≥ ⌊

𝑛

4
⌋ + 1. Thus, it takes at least (⌊

𝑛

4
⌋ + 1) +

(⌊
𝑛

4
⌋ + 1) = 2 (⌊

𝑛

4
⌋) + 2 vertices in 𝑉, which is contradictory to |𝑁(𝑢𝑖)| + |𝑁(𝑢𝑗)| ≤

𝑛

2
. Therefore, 𝑁(𝑢𝑖) ∩ 𝑁(𝑢𝑗) ≠

∅. The same logic applies to obtaining 𝑁(𝑣𝑖) ∩ 𝑁(𝑣𝑗) ≠ ∅. Thus 𝑑(𝑢𝑖 , 𝑢𝑗) = 𝑑(𝑣𝑖 , 𝑣𝑗) = 2 for distinct 𝑖, 𝑗 ∈ [1,
𝑛

2
]. 

Next, consider the distance between 𝑢𝑖 and 𝑣𝑗, for 𝑖, 𝑗 ∈ [1,
𝑛

2
]. We have 𝑢𝑖𝑣𝑗 ∈ 𝐸(𝐺), 𝑗 = (𝑖 + 𝑘)𝑚𝑜𝑑

𝑛

2
 for 𝑘 ∈

[0, 𝑟 − 1]. For 𝑘 ∈ [𝑟,
𝑛

2
], we obtain 𝑢𝑖𝑣𝑗 ∉ 𝐸(𝐺), but since 𝑟 ≥ ⌊

𝑛

4
⌋ + 1, we have 𝑢𝑖, 𝑣𝑖 , 𝑢𝑗, 𝑣𝑗 . Therefore, we always get 

a path with a maximum length of three, so 𝑑𝑖𝑎𝑚(𝐺) = 3. 

Lemma 3.3. Let 𝐺 be an 𝑟-regular bipartite graph with |𝐺| = 𝑛 ≥ 4, 𝑛 be even, 𝑅𝑎 be a set of vertices with color 𝑎, 

and 𝑟 ≥ ⌊
𝑛

4
⌋ + 1. For any distinct 𝑖, 𝑗 ∈ [1,

𝑛

2
]. 

1. If 𝑑(𝑢𝑖 , 𝑅𝑎) = 2, then 𝑑(𝑢𝑗, 𝑅𝑎) ≠ 3. 

2. If 𝑑(𝑢𝑖 , 𝑅𝑎) = 3, then 𝑑(𝑢𝑗, 𝑅𝑎) ≠ 2.  

Proof.  

1. Given 𝑑(𝑢𝑖, 𝑅𝑎) = 2, there is at least a vertex 𝑢𝑗 for 𝑖 ≠ 𝑗, so that 𝑐(𝑢𝑗) = 𝑎. Based on Lemma 2.2 for 𝑖 ≠ 𝑗 we 

have the intersection of sets 𝑁(𝑢𝑖) and 𝑁(𝑢𝑗) that is not empty. Therefore, 𝑑(𝑢𝑗 , 𝑅𝑎) ≤ 2. 

2. Given 𝑑(𝑢𝑖, 𝑅𝑎) = 3, there is no vertex 𝑢𝑗 ∈ 𝑈 for 𝑖 ≠ 𝑗, such that 𝑐(𝑢𝑗) ≠ 𝑎. Therefore, 𝑑(𝑢𝑖 , 𝑅𝑎) ≠ 2. 

□ 

Lemma 3.4. Let 𝐺 be an 𝑟-regular bipartite graph with |𝐺| = 𝑛 ≥ 4, 𝑛 be even, 𝑅𝑎 be a set of vertices with color 𝑎, 

and 𝑟 ≥ ⌊
𝑛

4
⌋ + 1. If 𝑑(𝑢𝑖 , 𝑅𝑎) = 1 for some 𝑖 ∈ [1,

𝑛

2
], then the maximum number of other vertices in 𝑈 with a distance 

greater than one from 𝑅𝑎 is 
𝑛

2
− 𝑟. 
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Proof. Since 𝑑(𝑢𝑖, 𝑅𝑎) = 1, there exists at least one vertex 𝑣 ∈ 𝑉 such that 𝑣𝑢𝑖 ∈ 𝐸(𝐺) and 𝑐(𝑣) = 𝑎. Each vertex 

𝑣 ∈ 𝑉 is adjacent to 𝑟 vertices 𝑢 ∈ 𝑈. Therefore, the minimum number of vertices in 𝑈 which has a distance of one from 

𝑅𝑎 is 𝑟, and the maximum number of other vertices in 𝑈 with a distance greater than one from 𝑅𝑎 is 
𝑛

2
− 𝑟. 

□ 

Lemma 3.5. Let 𝐺 be an 𝑟-regular bipartite graph with |𝐺| = 𝑛 ≥ 4. Let 𝑟 ≥ ⌊
𝑛

4
⌋ + 1, 𝑛 be even, and 𝑅𝑗 be a set of 

vertices with color 𝑗. Then 

1. 𝑑(𝑢, 𝑅𝑗) ≠ 3 for each 𝑗 ∈ [1, 𝑟 − ⌊
𝑛

4
⌋ + 1]. 

2. 𝑑(𝑢, 𝑅𝑗) = 2 For only one 𝑘 ∈ [1, 𝑟 − ⌊
𝑛

4
⌋ + 1]., there exists an exact one 𝑗 index, such that 𝑑(𝑢, 𝑅𝑗) = 2. 

Proof.  

1. By Lemma 3.2, 𝑑(𝑣, 𝑅𝑗) ∈ {0,1,2,3}. Suppose there is a vertex 𝑢, such that 𝑑(𝑢, 𝑅𝑗) = 3. Without loss of 

generality, let 𝑑 (𝑢1, 𝑅𝑟−⌊𝑛
4
⌋+1
) = 3. Then there is at least a vertex 𝑦 ∈ 𝑉 with 𝑢1𝑦 ∉ 𝐸(𝐺) such that 𝑐(𝑦) =

𝑟 − ⌊
𝑛

4
⌋ + 1 and 𝑐(𝑥) ≠ 𝑟 − ⌊

𝑛

4
⌋ + 1, for every 𝑥 ∈ (𝑉(𝐺) − {𝑦}). Next, based on Lemma 2.3, 𝑐(𝑢𝑖) ≠ 𝑟 − ⌊

𝑛

4
⌋ +

1 for 𝑖 ∈ [1,
𝑛

2
]. Since 𝑟 − ⌊

𝑛

4
⌋ colors can be used to color 𝑣 ∈ 𝑉 with 𝑢1𝑣 ∈ 𝐸(𝐺), at least one color is used as 

much as 
𝑛

2
− 𝑟 + 1 times. Without loss of generality, suppose the color is 2. Since 𝑟 ≥ ⌊

𝑛

4
⌋ + 2, the color 2 is 

used at least twice. Furthermore, from the coloring, at least 𝑟 vertices on 𝑈 have a distance 1 to 𝑅
𝑟−⌊

𝑛

4
⌋+1

 and 𝑅2. 

Therefore, it takes at least 𝑟 different rainbow codes. If color 2 is used exactly twice, then as many 𝑟 − ⌊
𝑛

4
⌋ − 1 

colors can be assigned to those vertices. Meanwhile, if color 2 is used more than twice, then only 𝑟 − ⌊
𝑛

4
⌋ − 2 

can be assigned to those vertices. However, based on Lemma 3.3 and Lemma 3.4, less than 𝑟 of different rainbow 

codes could be formed. We get a contradiction. Thus, 𝑑(𝑢, 𝑅𝑗) ≠ 3 for 𝑗 ∈ [1, 𝑟 − ⌊
𝑛

4
⌋ + 1]. 

2. Without loss of generality, suppose that there exists a vertex 𝑢1 such that 𝑑(𝑢1, 𝑅2) = 2 and 𝑑(𝑢1, 𝑅3) = 2. 

Thus, at least two vertices, 𝑢𝑎 and 𝑢𝑏 are in 𝑈, so that 𝑐(𝑢𝑎) = 2 and 𝑐(𝑢𝑏) = 3. Since 𝑢1 is adjacent to 𝑟 

vertices in 𝑉, at least 
𝑛

2
− 𝑟 + 1 vertices in 𝑣 ∈ 𝑉 with 𝑢1𝑣 ∈ 𝐸(𝐺) have the same color. Furthermore, a 

contradiction is obtained in the same way as the prior proof. Therefore, for every 𝑗 ∈ [1, 𝑟 − ⌊
𝑛

4
⌋ + 1], there exists 

exactly one 𝑗 index, such that 𝑑(𝑢, 𝑅𝑘) = 2. 

Theorem 3.4. Let 𝐺 be an 𝑟-regular bipartite graph with |𝐺| = 𝑛 ≥ 4. If 𝑟 ≥ 2, and 𝑛 is even, then 𝑟 − ⌊
𝑛

4
⌋ + 2 ≤

𝑟𝑣𝑐𝑙(𝐺) ≤
𝑛

2
+ 1. 

Proof. Suppose that 𝑟𝑣𝑐𝑙(𝐺) = 𝑟 − ⌊
𝑛

4
⌋ + 1 and 𝐺 is an 𝑟-regular bipartite graph, partitioned into two sets 𝑈 and 𝑉, 

where |𝑈| = |𝑉| =
𝑛

2
 and 𝑟 ≤ |𝑈|. Furthermore, the proof is divided into two cases as follows. 

1. 𝑟 =
𝑛

2
. 

Since 𝑟𝑣𝑐𝑙(𝐺) < 𝑟 − ⌊
𝑛

4
⌋ + 1, there exist two vertices 𝑢1, 𝑢2 ∈ 𝑈 such that 𝑐(𝑢1) = 𝑐(𝑢2). Note that each vertex 𝑢 ∈

𝑈 is adjacent to 𝑟 vertices of 𝑉(𝐺);since 𝑁(𝑢1) = 𝑁(𝑢2), we have 𝑟𝑐Π(𝑢1) = 𝑟𝑐Π(𝑢2), which is a contradiction. Hence, 

𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑟 − ⌊
𝑛

4
⌋ + 2 

2. 𝑟 <
𝑛

2
. 

We consider two sub-cases as follows: 

a. 𝑟 − ⌊
𝑛

4
⌋ + 1 ≤ 2. 

 Based on Corollary 3.2, we have a contradiction. Thus, 𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑟 − ⌊
𝑛

4
⌋ + 2. 

b. 𝑟 − ⌊
𝑛

4
⌋ + 1 ≥ 3. 

We also divide this subcase into two conditions, for 𝑛 > 𝑟 × 𝑑𝑖𝑎𝑚𝑟−1 and 𝑛 ≤ 𝑟 × 𝑑𝑖𝑎𝑚𝑟−1. By [19, Theorem 2.4], 

we have a contradiction for 𝑛 > 𝑟 × 𝑑𝑖𝑎𝑚𝑟−1. Therefore, 𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑟 − ⌊
𝑛

4
⌋ + 2. Next, we will prove the same for 𝑛 ≤

𝑟 × 𝑑𝑖𝑎𝑚𝑟−1. The proof will be shown by eliminating the rainbow code generated from locating rainbow coloring on 

the graph with 𝑟 − ⌊
𝑛

4
⌋ + 1 colors. Since 𝑟 ≥ ⌊

𝑛

4
⌋ + 2, based on Lemma 3.5, the number of distinct rainbow codes formed 

is (𝑟 − ⌊
𝑛

4
⌋ + 1)

2

. If 𝑛 ≥ (𝑟 − ⌊
𝑛

4
⌋ + 1)

2

+ 1, there are at least two vertices with the same rainbow code. We have a 

contradiction. But if 𝑛 ≤ (𝑟 − ⌊
𝑛

4
⌋ + 1)

2

, then consider the following conditions. 
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1) Let 𝑐 and 𝑠 be two positive integers, 𝑐 be a color assigned to the vertices of 𝐺, and 𝑠 be the number of vertices 

with a distance of more than one from 𝑅𝑐. If we get 𝑠 only from one set 𝑈 or 𝑉, then based on Lemma 3.4, we 

have 𝑠 ≤
𝑛

2
− 𝑟 in 𝐺, and the maximum number of distinct rainbow codes formed is ((𝑟 − ⌊

𝑛

4
⌋ + 1)

2

) −

((𝑟 − ⌊
𝑛

4
⌋ + 1) (2𝑟 − ⌊

𝑛

4
⌋ −

𝑛

2
)). 

2) Suppose we get 𝑠 from sets 𝑈 and 𝑉. Based on Lemma 3.4, we have 𝑠 ≤ 2 (
𝑛

2
− 𝑟) in 𝐺. If 𝑡 is a number of 

colors 𝑐 with 𝑡 ≥ 1, then 𝑠 + 𝑡 ≤ 2 (
𝑛

2
− 𝑟 + 1). 

Based on conditions 1) and 2), at least two vertices have the same rainbow code, which is a contradiction. Thus, 

𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑟 − ⌊
𝑛

4
⌋ + 2. 

Based on the first and second subcases, we obtain 𝑟𝑣𝑐𝑙(𝐺) ≥ 𝑟 − ⌊
𝑛

4
⌋ + 2. Furthermore, we show that 𝑟𝑣𝑐𝑙(𝐺) ≤

𝑛

2
+

1 by defining a rainbow vertex coloring 𝑐: 𝑉(𝐺) ⟶ [1,
𝑛

2
+ 1] as follows: 

𝑐(𝑢𝑖) = 𝑖, for 𝑖 ∈ [1,
𝑛

2
] (2) 

𝑐(𝑣𝑗) =

{
 
 

 
 ⌈

𝑛

4
⌉+1,

𝑛

2
+1,

  for 𝑗=1
for 𝑗=2

            

𝑗−⌊
n

4
⌋,         

𝑗+(⌈
𝑛

4
⌉−1),

   
for 𝑗∈[⌊

𝑛

4
⌋+1,

𝑛

2
]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

Based on the coloring above, we have 𝑐(𝑢𝑖) ≠ 𝑐(𝑢𝑘) for distinct 𝑖, 𝑘 ∈ [1,
𝑛

2
] and 𝑐(𝑣𝑗) ≠ 𝑐(𝑢𝑙) for distinct 𝑗, 𝑙 ∈

[1,
𝑛

2
]. We also have all vertices in sets: {𝑢𝑖 |𝑖 ∈ [1, ⌈

𝑛

4
⌉]} ∪ {𝑣𝑗| 𝑗 ∈ [1, ⌊

𝑛

4
⌋]} and {𝑢𝑘 |𝑘 ∈ [⌈

𝑛

4
⌉ + 1,

𝑛

2
]} ∪ {𝑣𝑙| 𝑙 ∈

[⌊
𝑛

4
⌋ + 1,

𝑛

2
]} assigned distinct colors. Therefore, there exists a rainbow vertex path between any two vertices. Next, we 

show that each vertex has different rainbow codes. Based on the coloring above, we have the following. 

 Each color has been used a maximum of two times, once in 𝑈 and again in 𝑉. 

 Color 
𝑛

2
 is only used at the vertex in 𝑈. 

 Color 
𝑛

2
+ 1 is only used at vertex in 𝑉. 

 𝑑(𝑢𝑖 , 𝑢𝑘) and 𝑑(𝑣𝑗 , 𝑣𝑙) are even, whereas 𝑑(𝑢𝑖, 𝑣𝑗) and 𝑑(𝑣𝑗 , 𝑢𝑖) are odd. 

Thus, the rainbow codes for each vertex are distinct. Therefore, we get a rainbow vertex coloring of 𝐺 at most 
𝑛

2
+ 1 

colors, and all vertices have different color codes. Figure 7 shows the possible rainbow codes of a 6-regular graph with 
𝑛

2
= 7, without entry 3, and containing only one entry 2. 

 

Figure 7. Rainbow codes of a 𝟔-regular graph with 
𝒏

𝟐
= 𝟕, without entry 𝟑, and contain only one entry 𝟐. 
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One of the regular bipartite graphs is the complete bipartite graph 𝐾,𝑎𝑎. Thus, the next theorem determines the locating 

rainbow connection number of the complete bipartite graph 𝐾,𝑎𝑎. Not only that, but we also determined the locating 

rainbow connection number for all complete bipartite graphs in our findings. A complete bipartite graph is a bipartite 

graph whose every two vertices, 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉, are connected by an edge in 𝐸(𝐺). A complete bipartite graph with 

partitions of size |𝑈| = 𝑎 and |𝑉| = 𝑏 is denoted by 𝐾𝑎,𝑏. We now show the locating rainbow connection of the complete 

bipartite graph.  

Theorem 3.5 Let 𝐾𝑎,𝑏 be a complete bipartite graph with 1 ≤ 𝑎 ≤ 𝑏 . Then 

𝑟𝑣𝑐𝑙(𝐾𝑎,𝑏) = {
𝑎, 𝑓𝑜𝑟 𝑎 > 𝑏 

𝑎 + 1, 𝑓𝑜𝑟 𝑎 = 𝑏
   

Proof.  

1. 𝑎 > 𝑏. 

Suppose 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑏) = 𝑎 − 1. Consequently, there exist two vertices 𝑢1, 𝑢2 ∈ 𝑈 such that 𝑐(𝑢1) = 𝑐(𝑢2). Since 

𝑑(𝑢1, 𝑣𝑖) = 𝑑(𝑢2, 𝑣𝑖) for 𝑖 ∈ [1, 𝑏] and 𝑑(𝑢1, 𝑢𝑖) = 𝑑(𝑢2, 𝑢𝑖) = 2 for 𝑖 ∈ [3, 𝑎], we obtain 𝑟𝑐Π(𝑢1) = 𝑟𝑐Π(𝑢2), which 

is a contradiction. Hence 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑏) ≥ 𝑎. Furthermore, to show 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑏) ≤ 𝑎, we define a vertex coloring 

𝑐: 𝑉(𝐾𝑎,𝑏) ⟶ [1, 𝑎] as follows: 

𝑐(𝑢𝑖) = 𝑖, for 𝑖 ∈ [1, 𝑎]; 

𝑐(𝑣𝑗) = 𝑗, for 𝑗 ∈ [1, 𝑏] 
(4) 

 

Figure 8. Rainbow code of 𝑲𝒂,𝒃 for 𝒂 > 𝒃 

In fact, the diameter of a complete bipartite graph 𝐾𝑎,𝑏 is 2, and by coloring graph 𝐾𝑎,𝑏 with 𝑎 colors, we can identify 

a rainbow vertex path connecting any two vertices on graph 𝐾𝑎,𝑏. Additionally, by the vertex coloring above, for 𝑖 = 𝑗 

we get 𝑐(𝑢𝑖) = 𝑐(𝑣𝑗). Because 𝑎 > 𝑏, so 𝑐(𝑣𝑗) ≠ 𝑎. Therefore, 𝑑(𝑢𝑖 , 𝑅𝑎) = 2 for 𝑖 ∈ [1, 𝑎 − 1] and 𝑑(𝑣𝑗 , 𝑅𝑎) = 1 for 

𝑗 ∈ [1, 𝑏], such that each vertex of 𝐾𝑎,𝑏 has a unique rainbow code. Thus, 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑏) = 𝑎. 

2. 𝑎 = 𝑏 

Since the distances between every two vertices in 𝑈 or 𝑉 and other vertices in 𝐾𝑎,𝑎 are the same, every vertex in the 

same partition will be given 𝑎 distinct colors. Consequently, there are two vertices, 𝑢 and 𝑣, where 𝑐(𝑢) = 𝑐(𝑣), so 

𝑟𝑐Π(𝑢) = 𝑟𝑐Π(𝑣), and we obtain a contradiction. Thus, 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑎) ≥ 𝑎 + 1. Next, we show 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑎) ≤ 𝑎 + 1 by 

defining a vertex coloring 𝑐: 𝑉(𝐾𝑎,𝑎) ⟶ [1, 𝑎 + 1] as follows: 

𝑐(𝑢𝑖) = 𝑖, for 𝑖 ∈ [1, 𝑎]; 

𝑐(𝑣𝑗) = 𝑗 + 1, for 𝑗 ∈ [1, 𝑎] 
(5) 

Using the same logic as in the first case of this proof, we always find a rainbow vertex path between any two vertices 

on graph 𝐾𝑎,𝑎. Furthermore, by the vertex coloring above, we have 𝑐(𝑢𝑖) = 𝑐(𝑣𝑗) for 𝑖 = 𝑗 + 1, 𝑖 ∈ [2, 𝑎] and 𝑗 ∈
[1, 𝑎 − 1]. However, 𝑑(𝑢𝑖, 𝑅𝑎+1) = 1 and 𝑑(𝑣𝑗 , 𝑅𝑎+1) = 2, so 𝑟𝑐Π(𝑢𝑖) ≠ 𝑟𝑐Π(𝑣𝑖). Thus, 𝑟𝑣𝑐𝑙(𝐾𝑎,𝑎) = 𝑎 + 1. 
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Figure 9. Rainbow code of 𝑲𝒂,𝒃 for 𝒂 = 𝒃 

𝑟𝑣𝑐𝑙(𝐾𝑎,𝑎) is equal to the upper bound of the 𝑟-regular bipartite graph. Next, we show a class of bipartite graphs 

whose locating rainbow connection number is equal to the lower bound of the locating rainbow vertex connection 

number for regular bipartite graphs. The graph is formed by deleting perfect matching in regular complete bipartite 

graphs, denoted by 𝐾𝑛

2
,
𝑛

2
−𝑀. A perfect matching in 𝐺 is an independent edge set 𝐸(𝐺), such that every vertex in the 

vertex set 𝑉(𝐺) is adjacent to exactly one edge in 𝑀. The result from Theorem 3.6 shows a significant difference in the 

locating rainbow connection number of a graph before and after removing some edges on the graph. 

Theorem 3.6. If 𝐾𝑛

2
,
𝑛

2
 be a complete bipartite graph with 𝑛 ≥ 6, 𝑛 be even, and 𝑀 be a matching in 𝐾𝑛

2
,
𝑛

2
, then 

𝑟𝑣𝑐𝑙 (𝐾𝑛

2
,
𝑛

2
−𝑀) = ⌈

𝑛

4
⌉ + 1. 

Proof. Based on Theorem 3.4 we have 𝑟𝑣𝑐𝑙 (𝐾𝑛

2
,
𝑛

2
) − 𝑀 ≥ ⌈

𝑛

4
⌉ + 1. Next, we show that 𝑟𝑣𝑐𝑙 (𝐾𝑛

2
,
𝑛

2
) − 𝑀 ≤ ⌈

𝑛

4
⌉ + 1 

In Figure 10, we have 𝑟𝑣𝑐𝑙 (𝐾𝑛

2
,
𝑛

2
) −𝑀 ≤ ⌈

𝑛

4
⌉ + 1 for 𝑛 = 6,8. For 𝑛 ≥ 10, we define a rainbow vertex coloring 

𝑐: 𝑉(𝐺) ⟶ [1, ⌈
𝑛

4
⌉ + 1] as follows (𝑖, 𝑗 ∈ [1,

𝑛

2
]): 

𝑐(𝑢𝑖) = {
1, for 𝑖 ∈ [1, ⌈

𝑛

4
⌉ + 1] ;

𝑖 − ⌈
𝑛

4
⌉ , for otherwise.

  (6) 

𝑐(𝑣𝑗) = {
𝑗 + 1, for 𝑗 ∈ [1, ⌈

𝑛

4
⌉] ;

1, for otherwise.
  (7) 

 

Figure 10. Rainbow codes of (a) 𝑲𝟑,𝟑 −𝑴, (b) 𝑲𝟒,𝟒 −𝑴 

By Lemma 3.2, we have 𝑑𝑖𝑎𝑚 (𝐾𝑛

2
,
𝑛

2
) = 3; thus, a rainbow vertex path can be seen between any two vertices with a 

distance of 1 or 2. Each vertex of 𝑈 is adjacent with 
𝑛

2
− 1 vertices of 𝑉, and we also have a rainbow vertex path between 

𝑢𝑖 and 𝑣𝑗 for 𝑖 ≠ 𝑗 (see Figure 11 for an illustration). Next, we show that each vertex of 𝐾𝑛

2
,
𝑛

2
−𝑀 has distinct rainbow 

codes. From the coloring above, we have the following. 

 Color ⌈
𝑛

4
⌉ + 1 is only used once for 𝑣

⌈
𝑛

4
⌉
. 

 𝑐(𝑢𝑖) = 𝑐(𝑣𝑗) = 1 for 𝑖 ∈ [1, ⌈
𝑛

4
⌉ + 1] , 𝑗 ∈ [⌈

𝑛

4
⌉ + 1,

𝑛

2
]. 

𝑑 (𝑢𝑖, 𝑅⌈𝑛
4
⌉+1
) = 1, for 𝑖 ≠ ⌈

n

4
⌉. 
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𝑑 (𝑣𝑗 , 𝑅⌈𝑛
4
⌉+1
) = 2. 

𝑑 (𝑢
⌈
𝑛

4
⌉
, 𝑅

⌈
𝑛

4
⌉+1
) = 3. 

 𝑐(𝑢𝑖) = 𝑐 (𝑣𝑖−(⌈𝑛
4
⌉+1)

), for 𝑖 ∈ [⌈
𝑛

4
⌉ + 1,

𝑛

2
]. 

𝑑 (𝑢𝑖, 𝑅⌈𝑛
4
⌉+1
) = 1. 

𝑑 (𝑣
𝑖−(⌈

𝑛

4
⌉+1)

, 𝑅
⌈
𝑛

4
⌉+1
) ≠ 1  

Thus, we obtain a rainbow vertex coloring of 𝐾𝑛

2
,
𝑛

2
− 𝑓𝑜𝑟

𝑛

2
≥ with ⌈

𝑛

4
⌉ + 1 colors, and all vertices have distinct 

rainbow codes. 

 

Figure 11. Rainbow codes of 𝑲𝟕,𝟕 −𝑴 

4- Conclusion 

We determined the lower and upper bounds of the locating rainbow connection number of a graph and provided the 

characterization of graphs with the locating rainbow connection number equal to its upper and lower bounds, where only 

path graphs with orders 2, 3, 4 and complete graphs have a locating rainbow connection number equal to 2 and the order 

of graph G, respectively. These results can facilitate further research in determining the upper and lower bounds of 

𝑟𝑣𝑐𝑙(𝐺) for any connected graph 𝐺. Additionally, the main result finds a lemma that states that for any graph G that 

contains cycles, 𝑟𝑣𝑐𝑙(𝐺) must be greater than or equal to 3. These results certainly serve as guidelines for determining 

the lower bound of 𝑟𝑣𝑐𝑙(𝐺) for any graph 𝐺 that contains cycles. 

Locating the rainbow connection number of a tree is determined based on the maximum number of pendants or 

internal vertices. A tree is a class of graphs that are classified into other small graph classes, such as path, caterpillar, 

star, and double star. Thus, by determining the locating rainbow connection number of trees, locating rainbow connection 

numbers for other tree graph classes can be determined, which will make it easier for future researchers to identify 

locating rainbow connection numbers from various types of tree graph classesNext, we determined the range of values 

for the locating rainbow connection number of bipartite regular graphs. In addition, we defined regular bipartite graphs 

whose values are equal to the upper and lower bounds. This, of course, minimizes the possibility of value assumptions 

that appear to be related to the locating rainbow connection number of a bipartite regular graph. 
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