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Abstract Neogloboquadrina pachyderma is the most abundant planktonic foraminifera species found in the
modern polar oceans. The δ

18O and δ
13C of N. pachyderma from the Western Arctic Ocean sediments were

analyzed to reveal the implications of the proxies to environmental changes. The δ
18O from N. pachyderma in the

Chukchi Sea reflect the water mass distribution in this area. Heavier δ
18O values were found along the Anadyr

Current (AC) and lighter values in the central and eastern Chukchi Sea. These may reflect the freshwater signal
from the Alaska Coastal Current (ACC) and Bering Sea Shelf Water (BSSW). The light δ

18O signature in the
high Arctic basin comes from the freshwater stored in the Arctic surface layer. The δ

13C distribution pattern in
the Chukchi Sea is also influenced by the current system. High primary productivity along the AC results in heavy
δ
13C. The relatively low primary productivity and the freshwater component from the BSSW and ACC may be

the reason for this light δ
13C signal in the central and eastern Chukchi Sea. Our data reveal the importance of

well ventilated Pacific Water through the Chukchi Sea into the Arctic Ocean.
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0 Introduction

The Arctic Ocean is surrounded by continents and the

largest shelf areas on earth. It is connected to the At-

lantic and Pacific Oceans via narrow Fram Strait and the

shallow Bering Strait, respectively. The Arctic Ocean is

strongly influenced by riverine input, which is responsi-

ble for ∼10% of total global river runoff[1−2]. Seasonal

sea ice variation modulates the heat balance of the Arc-

tic Ocean through the sea-ice albedo effect[3]. Along with

global warming, the fast melting of sea ice amplifies the

change in global climate[4]. The wider open water terri-

tory could be an important area as a future global carbon

sink[5], although some recent studies suggest less amount

of CO2 drawdown in the Arctic Ocean than expected
[6].

It is closely related to biological productivity, water prop-

erties and structure (e. g., freshwater input, ventilation,

stratification) in the Arctic Ocean.

Neogloboquadrina pachyderma(formerly known as N.

pachyderma sinistral form[7]) is the dominant plantonic

foraminifera species in the high latitude oceans. The sta-

ble oxygen and carbon isotopes (δ18O and δ13C) of this

species have become important tools for reconstructing

Arctic surface water properties[8]. They have previously

been used as proxies for surface water properties/ocean
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circulation[9−13], sea ice formation[14] and melt water

events[15−16]. However, those studies are mainly focused

on the Eastern Arctic Ocean[9] and data is still very lim-

ited from the western side of the Arctic Ocean.

In this study, we analyzed the δ18O and δ13C of

N. pachyderma from the surface sediments of the West-

ern Arctic Ocean recovered during the first and second

Chinese National Arctic Research Expeditions. The sed-

iments are from the Chukchi Sea, the Beaufort Sea and

the Canadian Basin, covering a wide area of the West-

ern Arctic Ocean. Because N. pachyderma are likely to

calcify their tests during the summer months[17], we dis-

cuss the relationship between the δ18O and δ13C of N.

pachyderma with summer water properties. We then use

these relationships to examine any implications from this

proxy for paleoceanographic reconstructions in the West-

ern Arctic Ocean.

1 Oceanographic settings

1.1 Ocean currents

The Chukchi Sea is a marginal sea in the Western Arc-

tic Ocean, with an average water depth of ∼50 m. It

connects the Pacific Ocean via the Bering Strait, and is

strongly influenced by the Pacific Ocean[18]. Three wa-

ter masses flow through the Bering Strait from the Pa-

cific Ocean. From west to east they are the nutrient rich

Anadyr Current (AC), characterized by relatively high

salinity and low temperature, the Bering Sea Shelf Wa-

ter (BSSW) and the warm and fresh Alaska Coastal Cur-

rent (ACC) (Figure 1). From the northwest, the Siberian

Coastal Current (SCC) flows into the Chukchi Sea via the

Long Strait[19−21]. The Canadian Basin is dominated by

the clockwise circulating Beaufort Gyre. The Atlantic

water enters the Arctic through Fram Strait and the Ba-

rents Sea and sinks to about 200 m, becoming Arctic

Intermediate Water that circulates anti-clockwise[22−23].

The Arctic Ocean also receives large amount of fresh wa-

ter from the rivers in the surrounding continents. For

example, approximately 307 km3
·a−1 of freshwater and

106 t·a−1 of sediment from the Mackenzie River are trans-

ported to the Beaufort Sea[1−2].

1.2 Temperature and salinity distribution in the

Western Arctic Ocean

According to the hydrological survey during the second

Chinese National Arctic Research Expedition in 2003

Figure 1 Site map and oceanographic setting[18−23] of the

Western Arctic Ocean (see also Table 1). AC: Anadyr Cur-

rent, BSSW: Bering Sea Shelf Water, ACC: Alaska Coastal

Current, SCC: Siberian Coastal Current, CP: Chukchi

Plateau, NR: Northwind Ridge, MR: Mendeleev Ridge, HC:

Herald Canyon. The dashed line denotes the subsurface At-

lantic water.

(Figure 2), the surface water (i.e., 0 m) in the east

Chukchi Sea along the Alaska coast is 2℃–3℃ higher

than the west side, north of 71◦N. Additionally the wa-

ter temperature gradually becomes uniform at high lati-

tudes decreasing from 0℃ to∼–1.5℃ towards north, as a

transitional area from the open water to the sea ice co-

vered water. At 50 m depth, the difference in water

temperature between east and west Chuckchi Sea re-

duces, still showing a cooling trend northward. North

of 71◦N the water temperature is around –1℃—

–1.5℃ whereas in the Beaufort Sea it is 0.5℃ to

1℃ higher than the Chukchi Plateau and Northwind

Ridge area. Due to the shallow Chukchi Sea shelf

area, the hydrological sites for water deeper than

100 m are north of the Chukchi Slope. At 100 m, the

Chukchi Plateau, Northwind Ridge area and the Cana-

dian Basin are uniform in water temperature (–1℃—

–1.5℃). However, the Beaufort Sea is still warmer than
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the other regions. At 150 m, the area of 74◦N to

75◦N, 170◦W is –0.5℃—–1℃, warmer than the surroun-

ding area by ∼0.5℃. From the Canadian Basin towards

the Beaufort Sea, the temperature increases from –1.5℃

to∼–1℃ in the coastal area. Compared to 150 m, at

200 m depth the water temperature at the continental

slope area is 0.5℃ to 1℃ colder, but in the central basin

area it is warmer by about 0.5℃. These features indicate

the influence of the intrusion of warm Atlantic water at

subsurface depth.

The salinity of the Western Arctic show that the

surface water salinity in the Chukchi Sea is low in the

east and high in the west (Figure 2). It manifests the

properties of the ACC and the AC and the high latitude

Arctic basin is characterized by lower salinities due to

high sea ice cover. The lowest salinity (∼28‰) occurs

in the central Canadian Basin. At 50 m, the salinity in

the Canadian Basin (∼31.6‰) is still lower than in the

Chukchi Sea and the continental slope area (∼32.5‰).

The salinity of the Beaufort Sea is ∼31‰. At 100 m,

except in the Beaufort Sea area (<32‰), the salinity in

the Western Arctic is ∼32.7‰. At 150 m, the salinity of

Beaufort Sea area (∼32‰) is slightly lower than other ar-

eas characterized by salinities of 33‰ to 34‰. The sali-

nity distribution pattern at 200 m is similar to that at

150 m, decreasing from ∼34.5‰ in the basin area to-

wards the Beaufort Sea area to ∼33‰. The reversed

salinity distribution pattern through depth indicates the

influence of Atlantic water at intermediate and subsur-

face depths.

A clear characteristic appears in the Alaskan coastal

area around 70◦N. At all depths, the water temperature

in this area is higher, and the salinity is lower than the

surrounding ocean. This indicates the influence of warm,

fresh water from the land (e.g., the Mackenzie River).

The surface water in the high latitude Arctic is cha-

racterized by cold fresh melt water, and the subsurface

water is influenced by warm saline Atlantic water.

2 Materials and methods

We collected 32 surface sediment samples (0–2 cm) from

box cores, multi-cores and gravity cores recovered du-

ring the first and second Chinese National Arctic Re-

search Expeditions (Table 1). Those samples were taken

from the Chukchi Sea, the Beaufort Sea and the Cana-

dian Basin, covering the latitudes 67◦ to 80◦N, and longi-

tude 146◦ to 172◦W in the Western Arctic Ocean[24−25].

Figure 2 Water temperature (℃) and salinity (‰) at dif-

ferent depths in the Western Arctic Ocean, surveyed during

the second Chinese National Arctic Research Expedition. The

black dots denote the hydrological sites from this study.
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Table 1 Location and water depth of the surface sediment samples from the Western Arctic Ocean[24−25]

Site Longitude Latitude Water depth/m Coring device

R03A 169◦0′0′′W 68◦0′0′′N 51 B

R06 169◦0′0′′W 69◦29′43′′N 53 B

R11 169◦39′54′′W 72◦0′50′′N 55 G

R15A 168◦59′26′′W 73◦59′53′′N 175 B

C11 167◦59′3′′W 71◦39′51′′N 48 B

C13 165◦59′51′′W 71◦36′51′′N 38 B

C15 164◦0′46′′W 71◦34′45′′N 43 B

C16 163◦0′52′′W 71◦32′51′′N 57 M

C17 162◦2′1′′W 71◦29′21′′N 57 B

P11 169◦59′37′′W 75◦0′24′′N 167 B

P21 167◦21′38′′W 77◦22′44′′N 562 B

P22 164◦55′59′′W 77◦23′43′′N 320 B

P23 162◦31′5′′W 77◦31′40′′N 2200 B

P24 158◦43′16′′W 77◦48′38′′N 1890 M

P27 156◦0′22′′W 75◦29′33′′N 3050 M

CNIS7 149◦6′55′′W 78◦23′14′′N 3850 B

IS10 151◦50′49′′W 79◦17′ 36′′N 3800 B

B11 156◦19′54′′W 73◦59′42′′N 3500 G

B77 152◦ 22′28′′W 77◦ 31′10′′N 3800 B

B78 147◦1′41′′W 78◦28′43′′N 3850 G

B80A 146◦44′16′′ W 80◦13′25′′N 3750 M

M01 169◦0′46′′W 77◦17′56′′N 1456 B

M03 171◦55′52′′W 76◦32′13′′N 2300 B

M07A 171◦56′35′′W 75◦0′3′′N 388 B

S11 159◦0′14′′W 72◦29′24′′N 40 B

S16 157◦9′50′′W 73◦35′28′′N 2800 B

S26 152◦40′0′′W 73◦0′0′′N 3000 B

P6700 169◦58′38′′W 67◦0′17′′N 47 B

P7100 169◦59′28′′W 70◦59′17′′N 40 B

P7230 168◦38′10′′W 72◦29′33′′N 54 B

P5 157◦21′4′′W 73◦27′12′′N 2600 M

P7 161◦7′17′′W 75◦4′55′′N 1700 M

Notes: B = box corer, M = multi corer and G = gravity corer.

The Chukchi Sea surface sediments were dark gray

to black silty clays and rich in organic carbon due to high

biological productivity and high sedimentation rates at

these sites[24−25]. However, there were low abundances of

the planktonic foraminifera N. pachyderma in the sam-

ples. This is likely due to the dilution of other materials

in this area, or alternatively the shallow water depth of

the Chukchi Sea may not be a favorable environment for

this species. In the deep sea area of the Chukchi Plateau,

the Northwind Ridge, the Beaufort Sea and the Canadian

Basin, the surface sediments are mainly brownish mud,

and rich in N. pachyderma.

The sediments were dried at 50 ℃, and wet–sieved

through a 63 µm mesh. The >63 µm fraction was then

dried and sieved through a 154 µm mesh. 20–25 spec-

imens of the planktonic foraminifera Neogloboquadrina

pachyderma were picked from the 154 to 250 µm size

fraction. The shells were cleaned by ultrasonic agitation.

The stable isotopes of δ18O and δ13C were analyzed using

a Finnigan MAT 252 mass spectrometer. The results are

expressed to the PDB standard. The standard errors of

the measurements were ±0.08‰ for δ18O and ±0.06‰

for δ13C. All the sample preparation and analyses were

carried out in the State Key Laboratory of Marine Geol-

ogy, Tongji University, China.

3 Results

The δ18O distribution pattern from N. pachyderma in

the Western Arctic Ocean can be divided into three ar-

eas (Figure 3):

(a) The Chukchi continental shelf area had the
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heaviest values up to 4.6‰. This site is lacated close to

the Bering Strait. In the central Chukchi sea the δ18O

was relatively lighter (<2.0‰).

(b) In the Chukchi Sea continental slope area, va-

lues were up to 2‰ to 3.5‰ from the area between 71.5◦

and 73◦N.

(c) Lighter values of<2‰ were found in the Chukchi

Plateau, Northwind Ridge and Canadian Basin area.

The most depleted δ13C from N. pachyderma were

found in the central/east Chukchi Sea with values rang-

ing between 0.4‰ and 0.6‰. In the west and north

Chukchi Sea, and in the sea ice covered Canadian Basin,

the Chukchi Plateau and the Northwind Ridge area, rel-

atively heavier δ13C from N. pachyderma were observed

ranging from 0.8‰ to 1.1‰.

4 Discussion

4.1 Age of sediments

The age of the sediments is a key issue in the interpre-

tation of our data. The sedimentation rates vary in dif-

ferent areas, thus even the top 2 cm of sediments can

represent deposition from different ages. However, if the

sediments are from the Holocene, the variation of the iso-

tope is minimal[9]. The Holocene sedimentation rate in

the central Arctic basin is between 0.5 and 1 cm·(ka)−1,

and increases towards the continental margins to 5 to

>10 cm·(ka)−1[26]. The Chukchi Sea is characterized by

a high sedimentation rate due to the high input of terri-

geneous material and bioproductivity responding to sea-

sonal open water and high nutrient supply from the Pa-

cific Ocean[27−29]. In the area of Chukchi Plateau, North-

wind Ridge and Canadian Basin, most of the surface

sediments are characterized by brownish color and rela-

tively high abundance in N. pachyderma, also suggesting

Holocene deposition. Additional AMS14C dating of core

M03 (Figure 1) yields an age of 7–8 ka BP from the top

2 cm[30]. Although more datings from different regions

are needed, the ages of the surface sediments in our study

are likely to be within the Holocene.

4.2 Isotopic signatures of N. pachyderma as pa-

leoceanographic proxies in the Arctic Ocean

N.pachyderma is a typical pycnocline planktonic

foraminifera species. In the Arctic Ocean, the N. pachy-

derma calcifies at variable depths that range from the

mixed surface layer down to a few hundred meters[8,10,31].

The maximum abundances of N. pachyderma are associ-

ated with the chlorophyll maximum in the surface from

∼20 to 80 m[8]. It is generally thought to inhabit the

water column between 50 and 200 m[8,17], although this

varies regionally. At the Fram Strait, the depth distribu-

tion of N. pachyderma suggests a preference of the At-

lantic water underlying the cold polar surface water be-

tween 50 and 200 m[32]. In the outer Laptev and Barents

Seas, the maximum abundance of living N. pachyderma

was between 50 and 100 m depth[12]. In the Nansen

Basin, a latitudinal variation south of 83◦N was found.

The data suggest that N. pachyderma prefers water be-

low the pycnocline at ∼100 m. North of 83◦N maximum

abundance occurred in the upper 50 m[17]. Other investi-

gations show that the habitat of N. pachyderma changes

from ∼150 m in the south to ∼80 m in the north, but

the calcification depth varies between 100 and 200 m[10].

In the North Atlantic Ocean, the heavier/larger

specimens calcify towards the colder, saline layer, and

are thus characterized by heavy isotopic compositions,

and vice versa[33−34]. In contrast, in the Western Arc-

tic Ocean, a reverse linear relationship between shell

weight/size and the δ18O content has been observed[31].

This may reflect the increasing temperature gradient

from the cold surface mixed layer to the top of the warm

intermediate Atlantic waters (150–200 m) where large

specimens calcify. Thus, according to the species habitat,

its isotopic signature reflects the water properties of va-

rious depths in different regions rather than simply sur-

face water.

4.3 Implications of δ18O in N. pachyderma

The δ18O of planktonic foraminifera documents the δ18O

of the seawater, and also changes in water temperature

and salinity[35−36]. The distribution pattern of δ18O from

N. pachyderma in the Western Arctic Ocean reflects the

changes in the water environment.

According to the δ18O and water temperature rela-

tionship, changes of 1℃ water temperature corresponds

to a 0.26‰ change in the δ18O of the foraminifera[35].

But the relationship between δ18O and salinity varies in

different areas. In the Norwegian Sea and Eastern Arctic

Ocean, regression coefficients of 0.61‰ and 0.73‰ δ18O

per‰ salinity have been reported, respectively[37−38]. In

the Eurasian Basin, a coefficient of 0.79 is calculated

for the Arctic surface waters, thus a 1.00‰ change in
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seawater δ18O is equivalent to about a 1.27‰ salinity

change[9]. Meanwhile, the δ18O is also influenced by the

fresh water characterized by depleted δ18O. The circum-

Arctic meteoric water (precipitation and river runoff)

carries a δ18O signature of ∼–20‰[39−41], and the sea

ice melt water ∼–2‰[42−43].

The water temperature in the shallow (∼50 m)

Chukchi Sea shows a strong gradient decreasing from

the Bering Strait to the Chukchi Sea shelf margin at

about 71◦ to 72◦N (Figure 2). However, the latitudi-

nal distribution pattern of δ18O from N. pachyderma

does not totally reflect a temperature gradient. It ap-

pears to follow the current flow and mirror the mixing

of different water masses. Following the AC in the west-

ern Chukchi Sea, the δ18O values from N. pachyderma

decrease from 4.66‰ (P6700) towards ∼3.4‰ (R11 &

P7230) at the continental slope close to Herald Canyon.

This is the main path of AC water entering the Arctic

Ocean. Using the temperature factor (a 1℃ increase =

a 0.26‰ change in δ18O), the δ18O difference could be

explained by a 5℃ of water temperature change. This

generally agrees with the surface temperature gradient

between the core sites, and the salinity differences be-

tween the sites are minor (Figure 2). The sites in the

central Chukchi Sea are bathed in the BSSW and lie more

to the east in ACC water, which carries a considerable

amount of fresh water from the land[44]. Thus, the light

δ18O values in the central and northeast Chukchi Sea

may bear the signal of the freshwater components in the

currents. In the Chukchi Sea continental margin area,

from the Herald Canyon eastward, the generally decrea-

sing δ18O may be related to the mixing of the AC water

with the BSSW and ACC Water. At the shallower site

S11 (∼159◦W), the δ18O may still bear the signal of AC,

which mirrors its eastward extension.

North of the Chukchi Sea continental margin, in an

area of permanent sea ice cover[45], the water tempe-

rature and salinity are uniform at various depths. It

is only slightly fresher and warmer close to the Beau-

fort Sea (Figure 2). The δ18O values are generally

uniform decreasing from the continental margin to-

wards the central Arctic basin (Figure 3). The wa-

ter temperature and salinity changes from the shelf

area to the high Arctic basin cannot explain the

changes in δ18O from N. pachyderma. This pattern

is in agreement with the trend found in the Eas-

tern Arctic Ocean[9]. The heaviest δ18O in the south-

ern Nansen Basin is interpreted to reflect the inflow of

Figure 3 The δ
18O and δ

13C(‰) from N. pachyderma taken from surface sediments in the Western Arctic Ocean. Am-

biguous heavy δ
18O values at sites B11 and P5 are highlighted in yellow.
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Atlantic water at a habitat depth of 50–200 m (for N.

pachyderma). The decreasing trend towards the central

Arctic basin suggests a habitat change of N. pachyderma

as it migrates from deeper layers to shallower fresh wa-

ter depth with isotopically lighter δ18O[9]. Such habitat

change was observed in the southern Nansen Basin[17].

However, a recent plankton tow investigation in the

Makarov Basin (88.4◦N, 176.6◦W) during the fourth Chi-

nese National Arctic Research Expedition (summer 2010)

is not in agreement with the habitat migration. The

plankton tow showed that the maximum abundance of

N. pachyderma occurred between 100 to 150 m (Wang R

J, et al., unpubl. data). Although this plankton tow is

not necessarily representative of the entire Arctic basin,

it may suggest that the light δ18O signal actually comes

from different water sources with a lighter δ18O signa-

ture. The large amount of fresh water in the Arctic

basin is the most likely reason for this. In the Cana-

dian Basin, the Beaufort Gyre keeps fresh water from

the Pacific Ocean (inflow from the Bering Strait) and

river runoff, which dilutes the seawater δ18O in the sur-

face ocean[41,46−48]

Heavy values of δ18O from deep sites southeast of

Northwind Ridge (e.g., ∼3.4‰, B11 and P5, Figure 3)

are ambiguous. They are much heavier than the adja-

cent sites (1.35‰ and 2.1‰ at S16 and S26, respec-

tively). The lithological description of the surface sed-

iments B11 and P5 were grayish to dark grayish mud,

which is different from the brownish mud in other deep

sea surface sediment[24−25]. The grayish sediments are

possibly from a glacial/deglacial deposition characterized

by heavy δ18O values[49]. Additional datings are needed

for better age control of the sediments.

4.4 Implications of δ13C in N. pachyderma

Heavy δ13C values are normally interpreted as good ven-

tilation of surface waters[50]. In the central Arctic, the

permanent sea ice cover prevents the gas exchange be-

tween ocean and atmosphere, thus ventilation is very lim-

ited. In contrast, ventilation mainly occurs in seasonally

ice free areas, such as the shelf areas. However, our data

show an inverse pattern that lighter δ13C values occur in

the central Chukchi Sea whereas heavier δ13C values in

the central Arctic. Thus, ventilation itself may not ex-

plain the δ13C distribution pattern in the Western Arctic

Ocean.

Besides ventilation, biological productivity plays a

major role in the carbon isotopic fractionation and the

δ13C can also indicate nutrient consumption[51]. The car-

bon assimilation by primary productivity and export to

the deep ocean preferentially takes 12C, and thus 13C

is enriched in the surface waters. This effect results in

heavy δ13C in high primary productivity areas and light

δ13C in low productivity area. Satellite observations[52]

indicate that extensive phytoplankton blooms occur du-

ring the summer in the Chukchi Sea and coastal Beau-

fort Sea. The seasonal variation of ice cover is the domi-

nant factor as the ice-edge blooms follows the northward

retreating marginal ice zones and in the central Arctic

basin primary productivity is limited due to the per-

manent sea ice cover. In the west Chukchi Sea, along

the AC, productivity is higher compared to the east

Chukchi Sea, as a response of the high nutrient content

of Anadyr water. More detailed in-situ observations of

biomass distribution indicate other areas in the north-

east Chukchi Sea also have high productivity[53]. This is

also in agreement with the high opal and organic carbon

content in the surface sediments from the corresponding

high productivity areas[54]. Similar to the δ18O distri-

bution, heavy δ13C values in the western Chukchi Sea

correspond to the path of the AC, and in the northeast-

ern Chukchi Sea with high bioproductivity. This area

extends to the Chukchi Sea continental margin. In the

central/eastern Chukchi Sea, sites with light δ13C val-

ues are bathed in the BSSW and ACC. The differences

in δ13C values between the central/eastern and west-

ern/northeastern Chukchi Sea may result from the nu-

trient consumption and primary productivity in the dif-

ferent water masses.

The δ13C of planktonic foraminifera is assumed to

record the δ13C signal of the surface water they live in.

The ACC in the east Chukchi Sea carries considerable

amount of fresh water. The riverine dissolved inorganic

carbon (DIC) is usually depleted in 13C, with δ13C val-

ues of –5‰∼–10‰[9,55]. We assume that the light δ13C

in N. pachyderma from the central and east Chukchi Sea

also reflect the fresh water signal from the ACC.

North of the Chukchi continental margin, in an area

with intensive sea ice cover, the ventilation and biopro-

ductivity is limited. The heavy values (0.8‰ to 1.1‰)

in the Canadian Basin, the Chukchi Plateau and the

Northwind Ridge area are in agreement with a former
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investigation in the central Arctic basin[9]. This was in-

terpreted as the transportation of well ventilated water

from the shelf areas to the central Arctic basin. The light

δ13C at the Fram Strait and southern Nansen Basin were

related to the intrusion of Atlantic water[9]. Although

with high amount of riverine input, the Pacific source

contributes the major part of fresh water in the Cana-

dian Basin[48], which also points to the importance of

the Pacific water to the Arctic Ocean. Obviously, one

of the well ventilated water sources is from the Chukchi

Sea with the inflow of Pacific water and the contribu-

tion of Pacific carbon isotope signal, possibly primarily

from the AC, being of great importance. Other poten-

tial sources, such as the circum Arctic shelf area, are yet

difficult to define, due to the lack of surface water DIC

and N. pachyderma δ13C information from these areas.

4.5 Limitations of this study

In this study we have tried to establish the relation-

ship between the water properties and the δ18O and

δ13C from N. pachyderma. However, due to the lack

of seawater δ18O and δ13C of DIC measurements, our

analysis is difficult. Moreover, in response to the rapid

climate warming in recent years, the meltwater in-

put by sea ice and ice sheet melting has strongly in-

creased, as well as the river runoff. All these con-

tribute to changes in the structure of the water co-

lumn and modify the bioproductivity regime of the Arctic

Ocean. The δ18O and δ13C from N. pachyderma in the

surface sediment does not document these recent environ-

mental changes. Thus error may occur during the rele-

vance analysis and we cannot quantify these at present.

5 Conclusions

The stable isotopes of δ18O and δ13C from the plank-

tonic foraminifera Neogloboquadrina pachyderma were

analyzed from 32 surface sediments retrieved from the

Western Arctic Ocean. The distribution of δ18O in the

Chukchi Sea reflects different water masses entering from

the Pacific Ocean. The depleted δ18O signal in the cen-

tral and eastern Chukchi Sea may be from the fresh water

of the ACC and BSSW, whereas the heavier δ18O car-

ries the signal of the AC. Depleted δ18O values from the

Chukchi Plateau, Northwind Ridge and Canadian Basin

may reflect the surface freshwater in the high latitudes

Arctic basin.

The foraminiferal δ13C in the Chukchi Sea is also

strongly related to different water masses in this region.

Well ventilated Anadyr water and high bioproductivity

result in heavier δ13C values in the western Chukchi Sea.

Lighter δ13C in the central and eastern Chukchi Sea are

related to the relatively lower bioproductivity and the

freshwater component in the BSSW and ACC. Our data

suggest that the Pacific Ocean water is one of the major

components of the well ventilated water in the central

Arctic Ocean.
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