Prelim inary study on particulate organic carbon export fluxes in the Bering Sea

M a H ao(马 豪)¹², Zeng Zh i(曾 志)¹, H e Janhua(何建华)², Y in M ingduan(尹明端)², Chen L iqi(陈立奇)² and Zeng Sh i(曾 实)¹

1 Department of Engineering Physics, T singhua University, Beijing 100084, China; 2 K ey Labora tory of Global Change and Marine A tn ospheric Chemistry, State O ceanic Administration, X iam en 361005, China

Received July 6, 2009

Abstract During the Second Chinese National Arctic Expedition (CH NARE) from July to September 2003, depth profiles of d issolved and particulate ²³⁴Th in upperwarter collected at two stations of BR03 and BR24 in the Bering Sea ²³⁴Th was sampled by using a traditional Fe(OH)₃ co-precipitation technique which is a reliable approach to ²³⁴Th measurement We observed ²³⁴Th excess at station BR03 below the euphotic zone, which was possibly due to the intensive remineralization of particulatematter Particulate organic carbon (POC) export fluxes were estimated from a one-dimensional inteversible steady statemodel of ²³⁴Th fluxes together with measurements of the POC /²³⁴Th ratio on the suspended particles. The POC export fluxes from the euphotic zone were 11. 66 and 11. 69 mmol C m⁻² d⁻¹ at BR03 and BR24 stations, respectively. The ratios of POC fluxes to primary production at the two stations were about 0.5 and 0.59 respectively, probably due to the presence of large phytop lankton (in particular diatoms).

Key words $^{234}{\rm Th}/^{238}{\rm U}$ disequilibria, euphotic zone particulate organic carbon, B ering Sea

1 Introduction

The euphotic zone is an active water layer in the ocean for marine phytoplankton to convert inorganic carbon into organic carbon, resulting in a CO_2 exchange across the atmosphere/ocean interface Moreover, it is an important layer for the production of biogenic matter and for the vertical transport of particles to the deep sea Export flux of particulate organic carbon (POC) from the euphotic zone to the deep ocean is regarded as a critical index of the efficiency of biological pump and it has often been used as a necessary measure ment to determ ine the biogeochemical cycling rates of particle-reactive elements and constituents in the ocean^[1-2].

The estimation of POC export fluxes in the ocean is based on two main approaches including sediment trap deployment and the radioactive isotope tracing method. In the upper ocean, the quantity and quality of sinking materials collected by sediment traps are largely based on the hydrodynamic situation and often involve. "swimmer" related, issues^[2], Re cently the Neutrally Buoyant Sediment Trap has in proved hydrodynam ic problems and can be used to determine the POC flux in the upper ocean. However, the instrument is too expensive to be densely deployed in the investigated area and be widely used

Natural radioactive isotope tracing is an alternative method to determine POC export fluxes and the 234 Th/ 238 U disequilibrium is the most widely used approach 234 Th is a radi oactive nuclidewith very high particle reactivity, produced *in-situ* from the decay of its parent²³⁸U with a steady rate in the ocean ²³⁴Th can be scavenged and removed rapidly with sinking particulate matter, resulting in disequilibrium between²³⁴Th and ²³⁸U, especially in the upper water column The deficiency of 234 Th with respect to 238 U reflects the cycle export and rem ineralization of particles Due to the relatively short half-life of ²³⁴Th (24 1d), it is well suited for tracing biogeochem ical processes in the timescale similar to particle dynam ics in the upper ocean^[3]. As reported by Buesseler *et a* $l^{[4]}$, the ²³⁴Th-²³⁸U disequilibrum technique is proved to be a robust method in the estimation of particle export fluxes from the euphotic zone in the ocean. Fukuchiet al estimated the POC export flux from the euphotic zone of the Bering Sea using sed in ent traps in the ISHTAR (Inner Shelf Transfer And Recycling) Project which concerned biological processes in the seasonal sea ice region of the north Bering Sea^[5]. Chen *et al.* first estimated POC export fluxes at three stations in the southwestern Bering Sea from 234 Th/ 238 U disequilibria^[6]. To our know ledge there are few reports on POC export fluxes in the Bering Sea. Here we report export fluxes of POC from the euphotic zone in the Bering Sea based on ²³⁴Th-²³⁸U disequilibrium data and a steady state box model

2 Study area

Bering Sea is the most northern marginal sea of the Pacific O cean bounded by Siberia A laska and the A leutian Islandsw ith an area of 2.3×10^6 km². The northern portion is connected to A retic O cean by Bering Straitwhich is 80km wide and 50m deep. The warm water flows from the northern Pacific O cean to the Arctic O cean through the Bering Sea and Be

ring Strait The Bering Sea is in triangular form and can be divided into three portions the northern portion of the Bering Sea is characterized by broad continental shelf (accounting for 44% of the total Bering Sea are a); the central and western portion consist of deep basins (accounting for 43% of the total Bering Sea area); the remaining is characterized by the continental slope^[7-9].

Samples were collected at two stations $_{54\%}$ (BR24: 170 78°E, 53 97°N and BR03 176 18°E, 57. 99°N) onboard R/V $^{\prime}$ 'Xuelong' during the second Chinese Nar 160 tional Arctic Expedition (CH NARE) from July to September 2003 At each station, 20L of seawater for each sample was collect

Fig 1 Sampling stations

C Journal Electronic Publishing House. All rights reserved. http://

ed using N isk in bottles in each water depth (i e 0 m, 10 m, 30 m, 50 m, 75 m, 100 m, 150 m and 200 m).

3 Sample analysis

U pon sample collection, a 1 L portion of each sample was filtered through 0 7 μ m glass fiber filters (W ham an GF/F), dried and brought back to the laboratory for POC ar nalysis. The remaining 19 liters of seaw ater were filtered through a 0 45µm membrane filer to obtain samples of water and particles. A fter that, the water samples were co-precipitated with Fe(OH)_3^{[10]}. Finally the beta/alpha sources were prepared with electrodeposition and the radioactivity of 228 Th and 234 Th were detected with low-level α -spectrum / β -counter. In other studies, activities of 234 Th and its yield tracer 228 Th (or 229 Th, 230 Th) were usually measured using a β -counter and α -spectrometer, respectively, so the detector inter-calibration was necessary for the results. In the present study, only one detector was used to measure the activities of 234 Th and 228 Th simultaneously so the detector inter-calibration between α -spectrometer and β -counter was avoided and them easurement error was then reduced $^{(11)}$. For the short half life, 234 Th activities were calculated with the relationship between 238 U and satinity (S): 238 U (dpm \cdot L⁻¹) = 0 07081 \times S⁽¹²⁾. Temperature and salinity were determined by shipborne CTD system.

4 Results and discussion

4.1 hydrolog ic param eters

The depth profiles of ten perature and salinity were listed in table 1. The mixed layer at BR24 and Br03 station could extend to a depth of 50 m with main thermocline and halocline located in the range of 20 to 50m depth. As a marginal sea of North Pacific O cean, the southern part of Bering Sea was connected with the Pacific O cean. BR03 station lay in the Bering Basin and was characterized by typical vertical profiles of ten perature and salinity in the Bering Sea the warm erwaters (> 7 °C) could not extend more than 15m depth and in term ediate colder waters (< 3 °C) between 50 to 200 m. The warm waters also existed at BR24, while the interm ediate cold waters were heated by warm water from the North Pacific O cean and showed a higher temperature than that of BR03.

4.2 Vertical profiles of ²³⁴Th and POC concentrations

V ertical profiles of ²³⁴Th and ²³⁸U activities are given in Table 1 and Fig 2 The particulate fraction accounted for 8% ~ 28% of total ²³⁴Th activities ²³⁴Th activities showed an apparent deficiency to its parent ²³⁸U in the euphotic zone due to the scavenged to and removed with marine particles Below 100m, total ²³⁴Th activities balanced with ²³⁸U. At BR 03, there was a significant excess of ²³⁴Th at 200m, which might be due to intensive remineralization of particles

Table I.	ventear		ns or temp	erature, sammy,	TOC concentrations a		les
Station	Depth (m)	Т (°С)	S	$\begin{array}{c} A_{\rm DTh} \\ \left(\ {\rm dpm} \bullet \ \ {\rm L}^{-1} \ \right)^* \end{array}$	A_{PTh} (dpm • L ⁻¹)	$\begin{array}{c} A_{\mathrm{U}} \\ (\mathrm{dpm} \bullet \mathrm{L}^{-1}) \end{array}$	$\begin{array}{c} \text{POC} \\ (\ \mu_{\rm m} \ o \ \mathbf{b} \ \ L^{-1} \end{array}) \end{array}$
	0	9.490	32, 106	1. 707 ±0. 225	0 237 ±0 019	2 273	13. 056
	10	9.490	32 707	1. 375 ±0. 076	0 316 ±0 025	2 316	9 250
BR24	20	6 431	32 904	1. 224 ±0. 071	0 412 ±0 022	2 3 3 0	8 500
Bottom	30	5.457	33. 022	1. 725 ±0. 130	0 451 ±0 027	2 3 3 8	6 383
depthr	50	4.563	33. 089	1. 211 ±0. 067	0 500 ±0 034	2 343	8 583
3100m	75	3.550	33. 187	1. 447 ±0. 120	0 664 ±0 043	2 3 5 0	8 050
	100	4.050	33. 623	1. 646 ±0. 077	0 331 ±0 024	2 381	11. 528
	150	4.128	33. 840	1. 799 ±0. 145	0 260 ±0 020	2 396	4 264
	0	10 488	33. 054	1. 146 ±0. 087	0 646 ±0 054	2 341	12 167
	10	9.987	33. 069	1.488±0.096	0 438 ±0 031	2 342	12 000
BR03	30	5. 505	33. 094	1. 447 ±0. 105	0 206 ±0 012	2 343	7 041
Bottom	50	2 258	33. 193	1. 329 ±0. 086	0 347 ±0 023	2 3 50	4 771
depthr	75	1.754	33. 207	1. 533 ±0. 074	0 214 ±0 019	2 351	3 073
3870m	100	1.744	33. 236	1. 748 ±0. 125	0 480 ±0 038	2 3 5 3	2 300
	150	2 228	33. 386	1. 834 ±0. 117	0 193 ±0 020	2 364	1 819
	200	3. 523	33. 740	2 215 ±0 139	0 307 ±0 024	2 389	3 438

1 234 m 1

 $1 \, \text{dpm} = 1/60 \, \text{Bq}$

4.3 Scavenging and ren oval rates of ^{234}Th

Estimates of the scavenging and removal rates of²³⁴Th as well as the resident times of dissolved and particulate ²³⁴Th can be determined from an irreversible steady statemodel of thorium scavenging in the water column using the following equation^[13]:

$$\partial A_{\rm Th} / \partial t = \lambda \cdot \left[A_{\rm U} - \left(A_{\rm DTh} + A_{\rm PTh} \right) \right] - P_{\rm Th} + V \tag{1}$$

where A_{II} , A_{DTh} and A_{PTh} represent the activities (dpm • L⁻¹) of ²³⁸U, dissolved ²³⁴Th and particulate ²³⁴Th, and λ is the ²³⁴Th decay constant (0 02876 d⁻¹). The term $P_{\rm Th}$ (dpm • $m^{-3} \cdot d^{-1}$) represents the removal rate of particulate ²³⁴Th due to particle sinking and V, the contributions of advection and diffusion to the ²³⁴Th fluxes

Here the contributions of advection and diffusion are neglected and Eq. (1) is rewrit ten for dissolved and particulate 234 Th in a steady state, respectively

$$J_{\rm Th} = \lambda \cdot (A_{\rm U} - A_{\rm DTh})$$
(2)

$$P_{\rm Th} = J_{\rm Th} - \lambda \cdot A_{\rm DTh} \tag{3}$$

$$\mathcal{T}_{\rm D} = A_{\rm DTh} / J_{\rm Th} \tag{4}$$

$$T_{\rm P} = A_{\rm PTh} / P_{\rm Th}$$
 (5)

where the term J_{Th} (dpm • m⁻³ • d⁻¹) represents the net scavenging rate of dissolved ²³⁴Th on to particles $T_{p}(d)$ and $T_{p}(d)$ are the residence times of ²³⁴Th with respect to particle scavenging and removal respectively

The results calculated from the model mentioned above were given in Table 2 At BR 24, $J_{\rm Th}$ ranged from 16 296 in the surface water to 32 550 dpm \cdot m⁻³ \cdot d⁻¹ at the depth of 150m with an average of 23. 705 dpm \cdot m⁻³ \cdot d⁻¹; PTh ranged from 4 673 dpm \cdot m⁻³

d⁻¹ in the surface water to 19, 962 dpm • m⁻³ • d⁻¹ at the depth of 150m with an average © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.

of 12, 310 dpm \cdot m⁻³ \cdot d⁻¹; τ_{D} ranged from 37. 2d in the surface water to 104.7d at the depth of 150m with an average of 70.916d, τ_{P} ranged from 17.588d in the surface water to 96.514d at the depth of 150m with an average of 42.357d

Fig 2 Depth profiles of 234 Th $/^{238}$ U activity ratios

A t BR 03, $J_{\rm Th}$ ranged from 5 013 in the surface water to 34. 342 dpm \cdot m⁻³ \cdot d⁻¹ 200 m deep with an average of 21. 907 dpm \cdot m⁻³ \cdot d⁻¹; $P_{\rm Th}$ ranged from – 3 817 dpm \cdot m⁻³ \cdot d⁻¹ in the surface water to 19. 852 dpm \cdot m⁻³ \cdot d⁻¹ 200m deep with an average of 11. 735 dpm \cdot m⁻³ \cdot d⁻¹; $T_{\rm b}$ ranged from 33. 383d in the surface water to 441. 799d 200m deep with an average of 115. 378d, $T_{\rm p}$ ranged from – 80. 440d in the surface water to 132. 559d 200m deep with an average of 23. 756d. We found some $P_{\rm Th}$ and $T_{\rm p}$ had negative values at the depth of 200m, which was consistent with the excess of 2^{234} Th mentioned above.

Station	Depth (m)	$ \begin{array}{c} J_{\rm Th} \\ (\rm dpm \ m^{-3} \ d^{-1}) \end{array} $	$P_{\rm Th}$ (dpm m ⁻³ d ⁻¹)	τ _D (d)	т _р (d)
	0	16 296	9. 483	104. 740	24. 978
	10	27. 049	17. 963	50. 851	17. 588
	20	31. 814	19. 962	38 466	20 645
BR 24	30	17. 635	4. 673	97. 823	96 451
DI(24	50	32 550	18 181	37. 212	27.480
	75	25. 968	6 878	55. 724	96 514
	100	21. 136	11. 619	77.872	28 481
	150	17. 188	9.719	104. 643	26 721
	0	34. 342	15. 775	33. 383	40 923
	10	24. 545	11. 958	60 629	36 601
	30	25. 782	19.852	56 121	10 387
BB 03	50	29. 380	19.410	45. 230	17.860
DICOS	75	23. 541	17. 384	65. 116	12 313
	100	17. 412	3. 618	100 393	132 559
	150	15. 237	9. 701	120.378	19.846
	200	5. 013	- 3 817	441. 779	- 80, 440

Table 2 Estimated resident times, scavenging and removal rates

4.4 POC export flux

The euphotic zone could extend to 50m depth at BR24 and BR03 in the Bering Sea, so we chose the depth of 50m as the export layer in the scavenging model to estimate POC export flux es^[14]:

$$F^{B} = F_{\rm PTh} \bullet POC /\!\!A_{\rm PTh} \tag{6}$$

where F^{B} , F_{PTh} and *POC* /A_{PTh} represent POC export fluxes ²³⁴Th export fluxes and POC to particulate ²³⁴Th ratio respectively. The results are listed in Table 3

For limited ship tine, we did not use pump to get large volume of sea water (i e 200 ~ 300L) on board so as to obtain size fractionated particles, so the *POC* A_{PTh} ratios we used in this paper to estimate POC fluxes were ratios in the suspended particles rather than really sinking matters. The POC export fluxes were 11.66 mm ol C m⁻² d⁻¹ at BR24 and 11.69 mm ol C m⁻² d⁻¹ at BR03, respectively. The data lay in the range of results (about 10–15 mm ol C m⁻² d⁻¹) in the neighboring sea area reported by Chen *et al* ^[6] H ow ever, they were much less than those in the northern Bering Sea due to different biological conditions. Moreover, Fukuchi used sed in ent traps to determ in POC fluxes^[5], which often different the form the ²³⁴Th data reported by Buesseler^[15].

Station	Export layer (m)	τ ₀ (d)	τ, (d)	$\frac{POCA_{\rm PTh}}{(\mu{\rm mol}{\rm dpm}^{-1})}$	$\frac{F_{\rm PTh}}{(\rm dpm \ m^{-2} \ d^{-1})}$	$\frac{F^{\mathrm{B}}}{(\mathrm{mmolCm^{-2}}\mathrm{d}^{-1})}$
BR 24	50	57.5	29.8	17.18	678 6	11 66
BR 03	50	52 1	20 5	13 76	849 4	11 69

Table 3 Estimated resident times in the euphotic zone and POC export fluxes

The primary productivity of the euphotic zone in the Bering Sea was 19.8 mm of m^{-2} d^{-1[16]}, so 50% at BR24 and 59% at BR03 of the organic carbon produced by phytoplankton were exported from the euphotic zone. Such high ratios might be because of the exist ence of large phytoplankton biom ass especially diatom s^[2].

4.5 Conclusion

The ²³⁴Th-²³⁸U disequilibria in the upper ocean were used to estimate the resident times and export fluxes of ²³⁴Th as well as POC export fluxes in summer of the Bering Sea A t BR 24, the resident times of dissolved and particulate ²³⁴Th were 57. 5d and 29. 8d respectively, and POC export flux was 11. 66 mmol C m⁻² d⁻¹. A t BR 03, the resident times of dissolved and particulate ²³⁴Th were 52. 1d and 29. 8d respectively, and POC export flux w as 11. 69 mmol C m⁻² d⁻¹. A nd ²³⁴Th activities were excess to ²³⁸U at the depth of 200m, which m ay be because of intensive rem ineralization of particles POC export from the euphotic zone accounted for 50% and 59% of primary productivity, due to the existence of large phytoplank ton in the high latitude seas. The results can be a reference for further understanding the role of the Bering Sea in global carbon cycle

A cknow ledgen ents We wish to thank the crew of R /V. "Xuelong" for their assistance in the provident of th

sample collection during the cruise, Professor Shi Jiuxin at O cean University of China and Zeng W enyi at the Third institute of O ceanography SOA China This work was supported by the Natural Science Foundation of China (NSFC) through grants 40531007, 40676062, 10705019, by National Key Technology R & D Program for the 11th Five-year Plan G rant (2006BAB18B04), and by the commonweal project sponsored by the scientific research foundation of them inistry of science and technology of the people's republic of china (No 2007050228) as well as Chinese IPY Campaign found by MOF and Open Fund of the Key Laboratory of G lobal Change and M arine-A throspheric Chem istry (GCMAC), SOA.

References

- Eppley RW, Peterson B J(1979): Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282 677-680
- BuesselerKO(1998): The decoupling of production and particulate export in the surface ocean Global Biogeochemical Cycles 12 297-310
- [3] Waples JF, Benitez-Nekon CR, Savoye N et al. (2006): An introduction to the application and future use of ²³⁴Th in aquatic systems M arine Chemistry, 100 166-189.
- [4] Buesseler KO, Benitez-Nelson CR, Moran SB et al (2006): An assessment of particulate organic carbon to horim²³⁴ ratios in the ocean and their inpact on the application of²³⁴ Th as a POC flux proxy Marine Chemistry, 100, 213-233.
- [5] FukuchiM, Sasak iH, HattoriH et al (1993): Temporal variability of particulate flux in the northem Bering Sea Continental Shelf Research, 13(5-6): 693-704.
- [6] Chen M, Huang YP, Cai PH et al. (2003) Particulate organic carbon export fluxes in the Canada Basin and Bering Sea as derived from ²²⁴ Th/²³⁸U disequilibria Arctic 56(1): 32-44
- [7] Tang YX, Jiao YT, Zou EM (2001): A prelin inary analysis of the hydrographic features and waterm asses in the Bering Sea and the Chukchi Sea Chinese Journal of Polar Research, 2001, 13(1): 57-68(in Chinese).
- [8] Chen LQ, Gao ZY (2007): Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas Deep Sea Research IJ 54(23-26): 2619-2629.
- [9] Chen LQ, Gao ZY, Wang WQ et al (2003): Spatial variability in the partial pressures of CO₂ in the Bering Basin and its influence to A rctic carbon sinks Science in China(SeriesD), 33(8): 781-790(in Chinese).
- [10] Anderson RF, Fleer AP(1982): Determination of natural actinides and plutonium in marine particulate material Anal Chem., 54: 1142-1147
- [11] Zeng XZ, QiuMH, YinMC et al. (2007): An in-situ analysis and measurement of thorium-²³⁴, uran ir um isotopes in sea water ActaOceanobgica Sinica, 26(3): 73-83.
- [12] Chen J, Edwards RL, Wassenburg GJ (1986): ²³⁸U, ²³⁴U and ²³²Th in seawater, Earth Planet Science Letter, 80, 241-251.
- [13] Coale KH, Bruland KW (1985): ²³⁴Th ²³⁸U disequilibria with in the California Current Linnology and Oceanography, 30(1): 22-33.
- [14] Buesseler KO, Bacon MP, Cochian JK et al (1992): Carbon and nitrogen export during the JGOFS North A tlantic b bon experiment estimated from Th-²³⁴/U-²³⁸ disequilibria Deep-Sea Research IJ 39, 1115-1137.
- [15] BuesselerKO(1991): Do upper-ocean sediment traps provide an accurate record of particle flux? N arture, 353, 420-423.
- [16] Chen M, Huang YP, Guo LD et al. (2002): Biological productivity and carbon cycling in the Arctic Ocean. Chinese Science Bulletin, 47(12): 1037-1040