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1 Introduction
The application of machine learning methods for real-world problems is omnipresentnowadays. In many practical settings large models, such as deep neural networks, areused, which lead to non-convex optimization problems with many parameters andhence are often difficult to handle both theoretically and practically. In contrast, meth-ods derived from convex optimization problems usually possess a distinct theoreticalfoundation that enables an easier interpretation of the resulting models. This is mainlypossible because the solution of a convex optimization problem can be characterizedin a rather simple way. Moreover, convexity also helps to construct efficient solutionmethods, for which rather strong convergence results can be proven.

Support Vector Machines constitute a particular class of machine learning methodswhich is based on the consideration of convex optimization problems. Though thereis a vast amount of works handling particular formulations of the problem in theoryand practice, we aim to formalize the main structure into a general training problemfor which theoretical investigations are still possible. This will be done in Chapter 2after an introductory overview over some well-known examples is given.In Chapter 3, methods from convex analysis are used to derive a dual formulation ofthe general training problem. This formulation is complemented by optimality condi-tions which are useful in the main part of the thesis and provide an additional insightinto the properties of the solution of the training problem and the resulting decisionfunction. In that context, conditions being sufficient for the existence and the partialuniqueness of the solution are provided.The considered duality approach is applied to some particular classification and re-gression problems in Chapter 4 which yields a descriptive interpretation of the opti-mality conditions. Moreover, a smoothing approach for the primal training problemis proposed, and the consequence of dual smoothing for the primal training problemis analyzed. In Chapter 5 the duality theory is further used to derive dual formula-tions and optimality conditions for non-standard training problems, in particular, formulti-class SVMs, for a generalized version of ν-SVMs, and for Subspace SVMs.In Chapter 6, different finite-dimensional formulations of the primal training prob-lem are introduced, and their relationships are discussed in detail. This preliminarywork provides the necessary foundation for the application of practical solution meth-ods to the primal training problem. Furthermore, an important connection to the so-lution of the dual problem is highlighted.



Both views on the training problem are then used to derive and analyze potential so-lution methods. The well-known and state-of-the-art Sequential Minimal Optimization(SMO) method is examined in a general formulation in Chapter 7. In the course of thatchapter, a general convergence framework for methods solving convex optimizationproblems is proposed and used to prove convergence of the dual SMO method undercertain rather non-restrictive assumptions. Following the basic findings, a theoreticallyfounded approach for the detection of fixed variables in the dual training problem isgiven which makes it possible to reduce the computational effort in practice.In Chapter 8, the application of derivative-based solution approaches for the primaltraining problem is considered. After two realizations of first-order methods are intro-duced and analyzed, it is argued that an implementation of Newton’s method is boththeoretically possible and practically efficient under certain conditions.The previously derived properties of the primal training problem are also used af-terwards in Chapter 9 for the derivation of a bilevel hyperparameter optimization ap-proach. It is shown how the formulation of a training problem as system of nonlinearequations can be exploited by means of the implicit function theorem to reduce thebilevel structure of the hyperparameter optimization problem. This idea makes it pos-sible to handle large problems efficiently in practice.The practical methods of Chapters 7 to 9 are finally evaluated in a variety of com-putational tests in Chapter 10. In particular, the SMO method is empirically analyzedwith respect to the newly introduced optimality measures, its dependence on hyperpa-rameters, and the practical performance of the proposed detection method for fixedvariables. Moreover, the first- and second-order methods for the solution of the pri-mal training problem are evaluated practically. Finally, the derived hyperparameteroptimization approach is applied to selected problems.Note that the structure of the present thesis is also visualized in Figure 1.1.
Let us briefly summarize the used notation. Throughout the thesis, we follow theconvention to use lowercase bold characters to denote vectors and uppercase boldcharacters to denote linear operator or matrices. If the underlying vector space is Rn,the components of vector and matrices are denoted by lower indices which are ap-pended to the corresponding plain characters instead of the bold ones. Upper indicesare used to indicate elements of sequences mostly for vectors.For a particular size n ∈ N, the vectors 0 ∈ Rn and 1 ∈ Rn consist of zeros andones, respectively. The ith standard basis vector is denoted by ei ∈ Rn. The identitymatrix of size n is denoted by I ∈ Rn×n. Finally, the term O denotes a zero matrixof appropriate (not necessarily quadratic) size, which should become clear from thecontext.In a general vector space the term 0 is also used to denote the zero vector. When-ever it is needed, ⟨ · , · ⟩ denotes the inner product associated with the particular innerproduct space at hand.
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2 Basics of Support Vector Machines
In this chapter, we give a brief introduction into the idea of Support Vector Machines.First, we start with the summary of different kinds of learning problems. Afterwards,some more specific topics associated with Support Vector Machines are discussed.In the last subsection, we formulate a general training problem which is the basis inthe rest of the work. Additionally, some particular choices for the parts of the generaltraining problem are considered.

2.1 Common Problem Settings
Of course, there is a broad range of possible applications of machine learning algo-rithms. Subsequently, we introduce a set of particular tasks which will be referred toin the course of this chapter.

Commonly, one differentiates machine learning tasks into two problem classes: su-pervised and unsupervised learning problems. In unsupervised learning problems theaim is to extract common patterns from a given dataset. The concrete meaning of theterm pattern depends on the particular application. Typical examples of unsupervisedlearning problems are clustering problems, outlier detection and density estimation.In contrast, for supervised learning problems a relationship between input and out-put values is to be modeled by means of a dataset which contains samples of input-output pairs. The two main examples of supervised learning problems are classifica-tion and regression problems.
As a particular example of an unsupervised learning problem, consider the problemof outlier detection. Here, the main task is to generate a model for the structure of agiven unlabeled dataset

{x1, . . . ,xn} ⊆ X
of n data points. The model should be constructed such that it is able to predictwhether a particular data point is similar (in a specific sense) to the points in the datasetor not. If the given data point does not fit well into the model, it is called an outlier. Ofcourse, the measure of similarity depends on the application at hand. Note that theinput set X is not expected to have any special structure a priori.A simple approach to model similarity is to determine a set which encloses the givendataset. This set should be chosen in a way that it is as tight as possible (in a certain
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sense) but does not overfit the dataset. One possibility to compute such a set is thesearch for the smallest enclosing hypersphere, see [STC04, Section 7.1]. A similar ideais also used in the Support Vector method for novelty detection, see [SWS+99].

On the other hand, there are supervised learning problems. Probably the most fre-quently considered problem in supervised learning is the binary classification problem.In this problem setting, a dataset
{(x1, y1), . . . , (xn, yn)} ⊆ X × Y

with input values xi ∈ X and associated labels yi ∈ Y is given. Each label can only haveone of two predefined labels. Typically, the set of labels is chosen to be Y = {−1, 1}.The classification problem then lies in the construction of a function f : X → Y thatcaptures the relation between the input and the associated output values of a givendataset and generalizes well to unseen data points. A particular approach to treatthis problem by means of Support Vector Machines is described in detail in the nextsubsection. Note that binary classification problems are an important benchmark taskfor the present thesis.
Aside from binary classification problems, many applications result in classificationproblems in which more than one class label is possible for a specific input point. Thisdirectly leads to the notion of multi-class classification problems. Note that it is possi-ble to treat such problems by means of a set of binary classification problem employ-ing different techniques. Two popular approaches to reduce multi-class classificationproblems to binary classification problems are the strategies one-vs-rest and one-vs-one. For more details on these transformations we refer to [Bis06, Subsection 4.1.2].It should be noted that such a transformation implies a certain complexity of the re-sulting problem if the number of classes is high. In these cases, alternative methodscan be more efficient. A different solution strategy will be discussed in Section 5.1.
Another important class of supervised learning problems are regression problems.The difference to classification problems is that the output values yi ∈ Y for the givendataset are not discrete but real-valued. This means that Y ⊆ R.Then, the aim of regression is to determine a function f : X → Y such that f(xi) isclose to yi for all i ∈ {1, . . . ,n} and generalizes well for unseen data points. Of course,the measure of closeness depends on the application at hand. Regression problemsform the second type of benchmark tasks of this thesis.

2.2 Basic Idea of Support Vector Machines
Before we start with an abstract definition of Support Vector Machines (SVMs) we wantto explain the basic idea step by step with the help of simple examples. The followingderivation is roughly based on [SS02, Sections 7.4 and 7.5] and [STC04, Section 7.2].

To start with, let us assume that we are given a data set {(x1, y1), . . . , (xn, yn)} con-sisting of real input vectors xi ∈ Rd and associated output values yi ∈ {−1, +1} for
i ∈ {1, . . . ,n}. A simple visual example is given in Figure 2.2.1a.



14 2.2 Basic Idea of Support Vector Machines

?

(a) Given dataset and point tobe classified

?

(b) Possible separating hyper-planes

!

(c) Optimal separating hyper-plane and Support Vectors
Figure 2.2.1: Example classification problem

Our task is then to solve the binary classification problem, i.e., to find some function
f : Rn → R such that the sign of f(xi) is equal to yi for most of the data points. InFigure 2.2.1a this task is represented by a data point (black circle) with unknown classlabel that should be inferred from the given dataset.

In order to derive the classical formulation of SVMs we proceed in two steps: First,we assume that the dataset is linearly separable, and we seek for a separating hyper-plane with a certain property. Second, we consider the general case where no separat-ing hyperplane exists, and we derive an alternative approach based on the first case.Afterwards, we discuss two other topics related to the classical SVM formulation.
2.2.1 Separable Case
If the data points are linearly separable, a reasonable approach would be to constructa hyperplane such that all points of the same class lie on the same side of the hy-perplane. In general, there are many possibilities to choose separating hyperplaneswhich result in different prediction qualities, see Figure 2.2.1b. One can easily seethat the predicted class label for the given data points depends on the choice of thehyperplane. Obviously, not every possible selection is equally good in this example.

The idea of SVMs is to construct a maximal margin classifier (see [Vap95]), i.e., a hy-perplane that has a maximal distance to the points from each class. This problem istypically formulated as an optimization problem. However, there are several formula-tions for that problem in the literature which are equivalent under certain conditions.Subsequently, we formulate some of these optimization problems and discuss theirbasic properties and relationships.
For a fixed vector w ∈ Rd and a number b ∈ R a hyperplane is given by the equation

⟨w,x⟩ + b = 0. The hyperplane separates the two classes if and only if
(⟨w,xi⟩ + b)yi > 0 for all i ∈ {1, . . . ,n}.

Subsequently, we assume that w ̸= 0 as otherwise the hyperplane cannot separatethe classes in a non-trivial case. It is well known that the distance of some point x to
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the hyperplane can be computed as |⟨w,x⟩ + b|/∥w∥ if w ̸= 0. This means that theproblem of finding a maximal margin classifier can be modeled as

max
w,b

1
∥w∥ min

i∈{1,...,n}
|⟨w,xi⟩ + b|

s.t. (⟨w,xi⟩ + b)yi > 0 for all i ∈ {1, . . . ,n}.
(2.2.1)

Note that this problem is only solvable if there is at least one point in each class. Oth-erwise, the objective function is unbounded.
Now, one can observe that |⟨w,xi⟩+ b| = (⟨w,xi⟩+ b)yi > 0 because yi ∈ {−1, +1}.In order to replace the minimum in the objective function one can introduce an addi-tional variable ξ and use the relation

min
i∈{1,...,n}

|⟨w,xi⟩ + b| = max {ξ | ξ ≤ |⟨w,xi⟩ + b| for all i ∈ {1, . . . ,n}} .

This shows that the problem (2.2.1) is equivalent to
max
w,b,ξ

ξ

∥w∥ s.t. (⟨w,xi⟩ + b)yi ≥ ξ for all i ∈ {1, . . . ,n}. (2.2.2)
Note that it is not necessary to add the constraint ξ > 0 explicitly to problem (2.2.2)because it will be satisfied at a solution of the problem if the classes are linearly sepa-rable. On the other hand, whenever the classes are not linearly separable, the optimalvalue of (2.2.2) is not positive. Nevertheless, any solution of (2.2.2) defines a hyper-plane which could be used as classifier though it lacks the maximal margin property.

There are two issues with the formulation of problem (2.2.2) that we are going todiscuss in the following. First, the objective function of the problem is non-convex. Thismeans that theoretical and practical treatment can be tough. Second, it is possible toscale the variables by some positive factor without changing the value of the objectivefunction and the constraints. In particular, for each solution of the problem there areinfinitely many other solutions. That is because the representation of the hyperplane isnot unique. To avoid this ambiguity one can normalize either one of the variables w, bor ξ. For instance, using the normalizing equation ξ = 1, the problem (2.2.2) can bewritten as
max
w,b

1
∥w∥ s.t. (⟨w,xi⟩ + b)yi ≥ 1 for all i ∈ {1, . . . ,n}. (2.2.3)

Now, the maximization of the term 1/∥w∥ is equivalent to the minimization of 1
2∥w∥2.This gives rise to the convex optimization problem

min
w,b

1
2
∥w∥2 s.t. (⟨w,xi⟩ + b)yi ≥ 1 for all i ∈ {1, . . . ,n}. (2.2.4)

With the additional constraint ξ = 1 the problem does not have a feasible point if thedataset is not linearly separable. This means that the problems (2.2.2) and (2.2.4) arenot equivalent in this case. Depending on the application it may be more reasonableto at the constraint ∥w∥ = 1 to problem (2.2.2) instead.
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In Figure 2.2.1c the optimal hyperplane (solid black) for the example dataset is pre-sented. Additionally, there are two other hyperplanes (dashed blue and red) shown.These supporting hyperplanes arise directly from the maximization of the margin andare defined by the equations ⟨w,x⟩ + b = 1 and ⟨w,x⟩ + b = −1, respectively. Thepoints which are touched by the hyperplanes are commonly called support vectors(SVs) and play an important role in the study of SVMs. In the next subsection, we con-sider the modification of SVMs to the more practical case of non-separable datasets.
2.2.2 Non-Separable Case
In general, a given dataset will not be separable by a simple hyperplane. An examplefor this case is shown in Figure 2.2.2a.

?

(a) Given dataset and point to be classified

!

(b) Optimal hyperplane and Support Vectors
Figure 2.2.2: Example classification problem with dataset that is not linearly separable

If the dataset is not linearly separable, it is necessary to modify problem (2.2.2) asit does not correspond to maximizing the margin anymore. This is the case becauseit is not possible to satisfy the constraint ξ > 0. Thus, one cannot expect to obtain areasonable classifier from the solution of (2.2.3).On the other hand, the problem (2.2.4) has no feasible point. A typical approachto treat this problem is to relax the constraint which ensures that a separating hyper-plane is computed, see [CV95]. A measure for the violation of the constraint is thenadded to the objective function multiplied by a suitable factor C > 0. This leads to theproblem
min
w,b,ξ

1
2
∥w∥2 + C

n∑︂

i=1

ξi

s.t. (⟨w,xi⟩ + b)yi ≥ 1 − ξi, ξi ≥ 0 for all i ∈ {1, . . . ,n}.
(2.2.5)

Now, the objective of the optimization problem is made of two conflicting goals: max-imization of the margin (first term) and minimization of the misclassification (secondterm). This structure is very characteristic of SVMs.
Note that the term margin has a slightly different meaning in the context of prob-lem (2.2.5). While there was an empty space between the two supporting hyperplanesin Figure 2.2.1c, now some data points lie in between these hyperplanes. This means
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that the set of support vectors now consists of all points between the supporting hy-perplanes. The solution of problem (2.2.5) for the example dataset (and a particularchoice of the parameter C) is shown in Figure 2.2.2b. There, also the supporting hy-perplanes and the support vectors are highlighted.
2.2.3 Duality
Observe that problem (2.2.5) is a convex quadratic optimization problem. Hence, itcan be solved quite efficiently by means of standard software. However, if the inputdimension of the dataset is large, it can be helpful to consider the dual optimizationproblem instead. This is a very common approach in the literature as it provides sev-eral advantages.We do not want to provide a detailed derivation of the dual problem here becausethe usual way using Lagrange duality is quite elaborate. Instead, in Chapter 4, we followa more general approach to obtain the dual problem using Fenchel’s duality theory.We refer to [SS02, Section 7.5] for the classical derivation of the dual problem. Thedual problem associated with (2.2.5) is given by

min
α

1
2
α⊤Qα− 1⊤α

s.t. y⊤α = 0,
0 ≤ αi ≤ C for all i ∈ {1, . . . ,n},

(2.2.6)

where the matrix Q ∈ Rn×n is defined by Qij := yiyj⟨xi,xj⟩ for i, j ∈ {1, . . . ,n}.In the same way as its primal problem (2.2.5), the problem (2.2.6) has a convexquadratic objective function and only linear constraints on the variables. Hence, itcan also be solved by means of conventional optimization software. However, somevery efficient methods were constructed which exploit the simple structure with onlybox constraints and a single linear equation. In particular, the Sequential Minimal Opti-mization method proposed by Platt [Pla99] or some of its extension is used very oftendue to its efficiency and simplicity.
2.2.4 Kernel Trick
In general, one cannot expect that a hyperplane is suitable to build a classifier be-cause there is usually no simple linear relationship in the dataset. This is in particularimportant if the input data does not possess a linear structure at all. In these cases it ishelpful to introduce the notion of feature maps. Suppose that the given input points xiare taken from some input space X without special structure and let φ : X → F bea function which maps elements of the input space into a particular inner productspace F . Commonly, the function φ is called feature map and the vectors φ(xi) arecalled feature vectors.Using these definitions, the problems (2.2.5) and (2.2.6) can be considered with xireplaced by φ(xi). After that transformation, problem (2.2.5) determines a hyperplanein the feature space F and the classification is done by evaluating the function

f : X → {−1, 1}, x ↦→ sign(⟨w,φ(x)⟩ + b)
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for any given point x ∈ X .
The dimension of the variables (w, b, ξ) in the primal problem (2.2.5) will be dimF +

1 +n instead of d+ 1 +n, whereas the number of variables in the dual problem (2.2.6)does not change. Moreover, the entries in the matrix Q in problem (2.2.6) dependonly on inner products between features vectors. This important observation leadsto the idea of replacing the inner products by values of a so-called kernel function.Let a kernel function κ : X × X → R be defined by κ(x,x′) := ⟨φ(x),φ(x′)⟩ for all
x,x′ ∈ X . Then, the matrix Q can be computed by means of Qij = yiyjκ(xi,xj) forall i, j ∈ {1, . . . ,n}. Note that it is not necessary to have an explicit formulation of thefeature map if a procedure to evaluate the kernel function is available.

This approach of introducing the feature map and using a kernel function to obtaina nonlinear classification function is commonly called kernel trick. It is quite powerfulif the feature map is defined in a way that the transformed data is linearly separable.An example is shown in Figure 2.2.3. There, two datasets which are not linearlyseparable are shown on the left-hand side. On the right-hand side the images of thedatasets under specially chosen feature maps are presented. In these simple exam-ples it is obvious that there exists a separating hyperplane in the feature space.
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Figure 2.2.3: Examples of polynomial feature maps and separating hyperplane in thefeature space
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Note that, the kernel trick is not only applicable in the dual problem. As we willobserve in Section 3.5, it is also possible to replace the feature map in the primalproblem under non-restrictive assumptions.

2.3 Other Variants of Support Vector Machines
Support Vector Machines are a means to treat various problems in machine learning.The original idea is due to Vapnik (see [Vap63, Vap06]), where he introduced an algo-rithm for the construction of an optimal separating hyperplane. Later on, in [BGV92]the notion of optimal margin classifiers was introduced. The optimization problemproposed in that paper is very close to that of the usual formulation for SVMs. A similaridea was developed by Mangasarian, see [Man65, Man68]. Later on, the approach ofseparating hyperplanes was extended to regression problems in [Vap95, VGS96]. Thelatter approach is sometimes called Support Vector Regression (SVR) in the literature.A vast amount of different ideas extending SVMs to other settings were proposed.Now, it is merely impossible to give a comprehensive overview of the field of SVMs.However, a reasonable introduction to kernel methods and SVMs is given in the book[STC04]. There, different aspects of kernel methods are summarized.

If one wants to apply SVMs to some practical learning problem, there are severalbuilding blocks to choose in a suitable way. In the following, we describe each of theseblocks briefly. A sketch of the relevant parts is presented in Figure 2.3.1 below.

Input
Data
x ∈ X

SVM
f : X → Y

Output
Data
y ∈ Y

kernel function
objective function,

regularization term loss function

data preparation training evaluation of result,
application

Definition of the training problem

Workflow

Figure 2.3.1: Overview of a practical supervised learning problem

2.3.1 Kernel Functions
The learning problem typically starts with the definition of the input and the outputdata format. An important step in the application of kernel methods is the definition ofkernel function which measures the similarity of two data points. In some special cases
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(in particular if the input data consists of high-dimensional real vectors) it is sufficientto consider linear functions. This assumption led to the development of specializedtraining method, see, for instance, [FCH+08]. However, in many cases the input data isnot suitable for this approach since the set of input data has no vector space structurein general. Several examples for kernel functions for images, graphs and text data aregiven in [STC04]. Beyond that, there is a vast amount of research articles concerningthe definition of custom kernel functions for special applications.
2.3.2 Loss Functions
Besides the choice of a kernel function which is related to the input data, the defini-tion of a suitable loss function is necessary. This is closely related to the format of theconsidered output data. Obviously, the choice of the loss function depends on the de-cision problem at hand. For example, the output of the decision function for a binaryclassification problem is a number whose sign predicts the class of the input point. Atypical choice for a loss function in this case is the so-called hinge loss introduced in[BGV92]. But also the squared error loss function can be employed, which is used as abasic approach, for instance, in [SV99]. On the other hand, in regression problems thevalue of the decision function is directly related to the target value of an input point.Here, typical choices for loss functions are the ε-insensitive loss function, see [Vap98],and the squared error loss function, see [SGV98, SVGDB+02]. Some other loss func-tions are proposed, for instance, in [SSM98]. In a general setting, the loss function hasto measure the degree of discrepancy between two output values depending on theparticular learning problem at hand.
2.3.3 Regularization
A third important part in the definition of a training problem is the setting of a regular-ization functional. In most practical applications, it is necessary to not only minimize aloss function as this would lead to severe overfitting to the given dataset. In order toimprove generalization of the resulting decision function, usually a weighted sum ofloss functions (error term) and a suitable regularization term is minimized. We havealready seen an example for such a problem in (2.2.5). Certainly, coming from the ideaof margin-maximization as described in the previous section, the typical choice for aregularization functional is the term 1

2∥w∥2. This choice is also plausible for regressionfunctions of the form
x ↦→ ⟨w,φ(x)⟩ + b

because the term ∥w∥2 can be interpreted as a measure for the non-flatness or non-smoothness (see [SS02, Section 4.3]) of the regression function which should not betoo high.
Of course, it is also possible to use another norm in the regularization term which ischosen based on some prior knowledge about the learning problem. This is especiallyinteresting if a linear feature map is considered. Then, it may be practical to add someterm measuring the non-sparseness of the vector w. In particular, for linear feature
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maps, enforcing a certain sparseness of w implies a selection of features. The mostprominent choice to obtain this is ∥w∥0, the so-called zero-norm, which counts thenumber of non-zero entries in the vector w, cf. [WEST03]. Note that the term ∥w∥0is not a norm in the mathematical sense. Moreover, it is not convex such that solvingthe training problem with zero-norm regularization practically is hard in general. Tocircumvent this problem, one often uses a convex approximation for the zero-normin practice. A prevalent example for this is the one-norm, see [BM98, FM04].

Instead of introducing a penalty on the norm of w it is also possible to add a reg-ularization term which forces the variables of the learning problem to lay in a certainsubset or subspace. We elaborate on this idea briefly in Section 5.3.
Note that the weights associated with each term in the objective function of thetraining problem need to be chosen in a suitable way. This problem will be furtherdiscussed in the context of hyperparameter optimization in Chapter 9.

2.4 A General Training Problem
Now that we have discussed some examples for modeling a particular training prob-lem, our aim is to unify the resulting problems into a common structure. In particular,we want to see different unsupervised and supervised training problems as specialcases of one abstract optimization problem. As we derive properties of the trainingproblem later on, we will state the problem in a rather general structure here. Oncethe theory is established, the results can be applied to special training problems easily.

2.4.1 Definition of the General Training Problem
In Section 2.2, we introduced the classical formulation of an SVM for classification. Inthe following, we generalize the framework to a more general training problem whichis not necessarily a classification problem. By training problem we mean the problemof finding a model function f : X → Y which generates an output value y ∈ Y for anygiven input point x ∈ X such that an unknown relation is approximated.Some prototypical examples for this kind of problem include classification and re-gression problems as presented in Section 2.1. Recall that for binary classificationproblems Y := {−1, 1} and for regression problems Y := R, whereas for multi-classclassification problems, the set Y is some discrete set. Moreover, unsupervised train-ing problems like density estimation problems can also be seen as examples. Forthose problems, the output value is equal to the density, i.e., Y := R+.

All these kinds of problems can be described in a common form. To see this, we con-sider again the example classification problem in (2.2.5). There, we saw that the train-ing problem can be formulated as an optimization problem and that the model func-tion has a particular form. The objective function of the problem is composed of twoparts: one part quantifying the closeness of the model function to the given datasetand another one measuring the regularity of the model function. Subsequently, those
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parts are described by two functionals L and R. A general training problem can bestated as follows.
Definition 2.4.1 (general training problem)
Let H and D be Banach spaces. Suppose that we are given

• a regularization functional R : H → R ∪ {+∞},
• a linear operator T : H → D and
• a loss functional L : D → R ∪ {+∞}.

Then, we say that an optimization problem of the form

min
ω∈H

ψp(ω) (2.4.1)
with the objective function

ψp : H → R ∪ {+∞},
ω ↦→ ψp(ω) := R(ω) + L(Tω)

is a general training problem.

In the setting of a general training problem, the variable vector ω defines the modelfunction f which we are trying to compute. The regularization functional measuresthe degree of regularity of the corresponding model function. The linear operator Tmodels the decisions associated with each input point and the loss functional mea-sures the loss which is associated with the decisions depending on the choice of thevector ω.
In the abstract definition of the general training problem the space D has no pre-defined meaning. Depending on the application at hand, different choices may besuitable. For supervised learning problem which we have in mind, the decisions areusually one real number for each element of the dataset, i.e., the space D is equalto Rn, where n is the number of training samples. In this case, the vector t := Tωconsists of entries ti = [Tω]i for i ∈ {1, . . . ,n}, and each of the entries can be seen asa decision for the ith training sample.Note that there can also be a difference between the decision [Tω]i and the valueof the model function f(xi) as post-processing might be necessary. For example, forbinary classification problems, the decisions are typically real values (i.e., D = Rn),whereas the decision itself is binary. Then, the model function could be defined as

f(xi) = sign([Tω]i).
In the course of the discussion we will assume additional properties on the struc-ture of the spaces H and D when it is necessary. For instance, with the special prob-lem (2.2.5) in mind, one can think of H to be the product space of the feature space Fand R such that ω = (w, b) ∈ F × R. Furthermore, for the formulation of some otherproblems it is convenient to introduce additional variables. In this case the space Hcan be a product space of even more factors.



23

2.4.2 Separable Loss Functionals
The general training problem (2.4.1) captures a wide range of possible applications.Subsequently, we summarize only a small subset of problems and mention other ap-plications and formulations if it is convenient. Particularly, we often focus on separableloss functionals as follows.

Definition 2.4.2 (separable loss functional and loss functions)
Let (Di)ni=1 be a sequence of linear spaces and let D := D1 × · · · ×Dn be the associated
product space. Suppose that ℓi : Di → R∪ {+∞} is convex and lower semi-continuous
for i ∈ {1, . . . ,n}.
The loss functional

L : D1 × · · · × Dn → R ∪ {+∞}

(t1, . . . , tn) ↦→
n∑︂

i=1

ℓi(ti)

is called a separable loss functional. The functions ℓi for i ∈ {1, . . . ,n} are called loss
functions.

Note that a separable loss functional is convex and lower semi-continuous by defini-tion because the loss functions are assumed to be convex and lower semi-continuous.This means that they are indeed suitable for the definition of a general training prob-lem.
Separable loss functionals are present in most of the supervised and unsupervisedlearning problems. Moreover, in many applications the spaces Di are chosen to bethe same space. In this case, we can write Di := D0 for i ∈ {1, . . . ,n}. Particularly, forsupervised learning problems the loss functions typically have the form

ℓi(t) = ℓ(t, yi) for all i ∈ {1, . . . ,n},
where ℓ : D0 × Y → R ∪ {+∞} is some generic loss function which depends on theoutput value.

2.4.3 Standard Decision Operator
In the following, we introduce a special case in which the decision operator is alsodefined in a separable way. The basic idea is to determine a common structure forthat the application of separable loss function makes sense. This idea leads to thefollowing definition of a standard decision operator.

Definition 2.4.3 (standard decision operator)
Suppose that F is a real Hilbert space. Let H = F × R and D = Rn. Suppose that
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feature vectors φi ∈ F are given for i ∈ {1, . . . ,n}. The linear operator defined by

T : F × R → Rn

(w, b) ↦→ [⟨w,φi⟩ + b]ni=1

is called standard decision operator. The space F is called feature space. Moreover, the
function

d : F → R,
φ ↦→ ⟨w,φ⟩ + b

is called decision function.

For instance, this setting is present if a feature map φ : X → H is given and input datapoints xi are mapped to φi := φ(xi) for i ∈ {1, . . . ,n}. Then, we consider real-valueddecisions of the form
ti := [Tω]i = d(φ(xi)) = ⟨w,φ(xi)⟩ + b for i ∈ {1, . . . ,n}.

2.4.4 Standard Regularization Functional
As we have seen in Section 2.2 (cf. problems (2.2.4) and (2.2.5), in particular) the marginmaximization in SVMs is equivalent to the minimization of the term 1

2∥w∥2. Becausethis is a common choice for the regularization functional, we summarize it in the fol-lowing definition.
Definition 2.4.4 (standard regularization functional)
Suppose that F and F0 are real Hilbert spaces. Let H := F × F0 and let λ > 0. Then,
the functional

Rλ : F × F0 → R

(w,w0) ↦→
λ

2
∥w∥2

(2.4.2)
is called standard regularization functional. The coefficient λ is called regularization
parameter.

The presence of the regularization parameter in the definition of the regularizationfunctional makes it possible to model some training problems in a more descriptiveway. On contrast, the usual approach is based on appending a weighting coefficient Cto the loss term, which is indeed equivalent for C = λ−1. However, the scaling of theloss functional leads to another problem formulation in which the interpretation ofoptimality conditions seems a bit less natural.
2.4.5 Standard Training Problem
In general, it is possible to define the loss and regularization functional independentlyof each other. However, a common approach in applications is to combine the two
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special choices presented above. This idea leads to a standard training problem asdefined subsequently.

Definition 2.4.5 (standard training problem)
Consider the training problem (2.4.1). Suppose that

• H = F × R,
• L is a separable loss functional (see Definition 2.4.2),
• T is the standard decision operator (see Definition 2.4.3), and,
• R = Rλ is the standard regularization functional with λ > 0 (see Definition 2.4.4).

Then, problem (2.4.1) is called standard training problem. In this case, the problem has
the form

min
w∈F
b∈R

λ

2
∥w∥2 +

n∑︂

i=1

ℓi(⟨w,φi⟩ + b). (2.4.3)



3 Application of Convex Duality
Theory

The aim of this chapter is to employ convex duality theory to deduce characteristicproperties of the training problem and its solution. In order to do this, we derivea dual training problem that is associated with the optimization problem (2.4.1). Toemphasize the notion of duality, the original training problem (2.4.1) is called primaltraining problem below.
For reference, the basic notations and results of duality theory are briefly summa-rized in Appendix A. Note that the application of Fenchel’s duality theory to particulartraining problems is not a novelty. For instance, in [RL07] a comparable approach isused to derive the dual problem for a training problem with a more specific structureand several practical applications of the result are presented. Moreover, [BH14] alsouse particular formulations of the primal training problem to investigate the corre-sponding dual problem. As a final example, we note that the authors of [GU17] showthat a certain interpretation of the resulting problems is possible for particular choicesof the regularization and loss terms.
The proposed framework is indeed more general than what is known from the liter-ature. It is not only applicable to well-known problems, as summarized in Chapter 4,but also to a broader class of practical problems, some of which are considered inChapter 5.
Subsequently, we apply Fenchel’s duality theory to the general training problem inorder to obtain a formulation of the dual problem and corresponding optimality condi-tions (Section 3.1). The general form is gradually specialized to separable loss function-als (Section 3.2), to the standard decision operator (Section 3.3), and to the standardtraining problem (Section 3.4). As a straightforward consequence of the optimalityconditions we summarize a formulation of the Representer theorem (Section 3.5), thenotion of support vectors, and particular dual optimality conditions (Section 3.6). Fi-nally, we explore the existence (Section 3.7) and uniqueness (Section 3.8) of solutionsin more detail.
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3.1 Dual Training Problem and Optimality Conditions
By construction, the definition of the training problem (2.4.1) has the form of the primaloptimization problem given by (A.3.2). As a basis for building the connection betweenthose two problems, we identify f = R, g = L, and, A = T . In order to focus theinvestigation later on and to apply the convex duality theory, we restrict ourselves toconvex training problems. The following assumption summarizes the problem settingwhich we want to consider subsequently.

Assumption 3.1.1 (convex training problem)
Suppose that a training problem as in Definition 2.4.1 is given. We assume that

• the regularization functional R is convex and lower semi-continuous,
• the loss functional L is convex and lower semi-continuous, and,
• the operator T is bounded.

Moreover, we assume a certain regularity condition which is satisfied by virtually allpractical problems. This assumption is needed in order to satisfy the conditions of thebasic duality theorem stated in Theorem A.3.2.
Assumption 3.1.2 (regularity of training problem)
We assume that there exists a vector ω ∈ dom(R) such that L is continuous at Tω.

This assumption is not too restrictive because the regularization functional and theloss functional are usually finite-valued in most applications. If we consider a loss func-tional which can attain infinite values, the assumption forces that the combination ofthe regularization functional and the loss functional does not lead to difficulties. Forinstance, it is satisfied if there exists a point which is strictly feasible in the sense that
Rω is finite and Tω lies in the interior of dom(L). Note that this condition is stronglyrelated to the Slater condition, see [BL10].

With these preliminaries, we reconsider the training problem in (2.4.1). Then, wecan apply Theorem A.3.2 to obtain the dual training problem as follows.
Corollary 3.1.3 (duality for the general training problem)
Suppose that Assumption 3.1.1 and Assumption 3.1.2 are satisfied.
Then, the dual training problem associated with (2.4.1) is

min
α∈D⋆

ψd(α), (3.1.1)
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with the dual objective function defined by

ψd : D⋆ → R ∪ {+∞},
α ↦→ ψd(α) := R⋆(T ⋆α) + L⋆(−α).

In particular,
(a) the dual training problem (3.1.1) has a solution, and
(b) the inequality

∆pd(ω,α) := ψp(ω) + ψd(α) ≥ 0 (3.1.2)
is satisfied for all ω ∈ H and α ∈ D⋆ with equality if and only if ω and α are
solutions of the primal and dual training problem, respectively.

Proof. We apply Theorem A.3.1 and Theorem A.3.2 with f := R, g := L, and, A := T .In the convex analysis literature, the dual problem is usually stated as a maximizationproblem. In order to get a convex minimization optimization problem in the dual, weswap the sign of the objective here. This implies that the weak duality inequality (A.3.1)has also to be rewritten appropriately.
Finally, let us state the optimality conditions from Theorem A.3.2 in terms of thegeneral training problem. Those conditions will be used extensively to state optimalityconditions for particular training problems subsequently.

Theorem 3.1.4 (optimality conditions for the general training problem)
Suppose that Assumption 3.1.1 and Assumption 3.1.2 are satisfied.
Then, a vector ω ∈ H is a solution of the primal training problem (2.4.1) if and only if
there exists α ∈ D⋆ such that

T ⋆α ∈ ∂R(ω) and −α ∈ ∂L(Tω). (3.1.3)
In this case, α is a solution of the dual training problem (3.1.1). Moreover, these condi-
tions are equivalent to

ω ∈ ∂R⋆(T ⋆α) and Tω ∈ ∂L⋆(−α)

In the following subsections our aim is to compute the terms, that are used in the def-inition of the dual problem and the corresponding optimality conditions, for particularspecial cases.

3.2 Separable Loss Functionals
Since most of the training problems are stated using separable loss functionals, wecompute the subdifferential and the convex conjugate for this particular class of func-tionals first.
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Proposition 3.2.1 (subdifferential and conjugate of separable loss functionals)
Let L be a separable loss functional as in Definition 2.4.2.
Then, its subdifferential is given by

∂L(t1, . . . , tn) = ∂ℓ1(t1) × · · · × ∂ℓn(tn). (3.2.1)
If the loss functions ℓi for i ∈ {1, . . . ,n} are proper, the convex conjugate has the form

L⋆(α) =
n∑︂

i=1

ℓ⋆i (αi) (3.2.2)
for all α ∈ D⋆. Moreover, the subdifferential of L⋆ is given by

∂L⋆(α) = ∂ℓ⋆1(α1) × · · · × ∂ℓ⋆n(αn). (3.2.3)
Proof. Let t = (t1, . . . , tn) ∈ D. If t /∈ dom(L), there exists some index i ∈ {1, . . . ,n}such that ti /∈ dom(ℓi). This means that both sides of the equation (3.2.1) are equal tothe empty set.Now, suppose that t ∈ dom(L). Then, ti ∈ dom(ℓi) for all i ∈ {1, . . . ,n}. Since thespace D is the product of the spaces D1, . . . ,Dn, its dual space can be represented asthe product of the dual spaces of the factors, i.e., D⋆ = D⋆

1 × · · ·×D⋆
n. By means of thesum rule for the convex subdifferential it follows that

∂L(t) = ∂
n∑︂

i=1

ℓi(ti) =
n∑︂

i=1

∂tℓi(ti),

where ∂t denotes that the subdifferential is taken with respect to the variable t (in-stead of a single factor ti only). Observe that each term on the right-hand side of thisequation can be written as
∂tℓj(tj) = {α ∈ D⋆ | ℓj(sj) − ℓj(tj) ≥ ⟨α, s− t⟩ for all s ∈ D}

=

{︄
α ∈ D⋆

⃓⃓
⃓⃓ ℓj(sj) − ℓj(tj) ≥

n∑︂

i=1

⟨αi, si − ti⟩ for all s ∈ D
}︄

= {0} × · · · × {0} × ∂ℓj(tj) × {0} × · · · × {0}.

Then, the equation (3.2.1) follows immediately. Finally, a direct calculation shows thatthe convex conjugate of the loss functional is given by
L⋆(α) = sup

t∈D
{⟨α, t⟩ − L(t)}

= sup
t∈D

{︄
n∑︂

i=1

(⟨αi, ti⟩ − ℓi(ti))

}︄

=
n∑︂

i=1

sup
ti∈Di

{⟨αi, ti⟩ − ℓi(ti)} =
n∑︂

i=1

ℓ⋆i (αi),



30 3.3 Regularization with Standard Decisions

where the properness of the loss functions is used to exchange the supremum and thesum to obtain the next-to-last equality. This shows that equality (3.2.2) holds. Finally,equation (3.2.3) follows directly from (3.2.2).
This means that the subdifferential and the convex conjugate function of a separableloss functional can be easily computed if the corresponding terms are known for thedefining loss functions. Note that the latter are usually much easier to compute inpractice.

3.3 Regularization with Standard Decisions
In this section we investigate the common regularization approach for the case of stan-dard decision as in Definition 2.4.3 and Definition 2.4.4. First, observe that the adjointoperator of the standard decision operator can be computed directly as follows.

Proposition 3.3.1 (adjoint of standard decision operator)
Let T : F × R → Rn be the standard decision operator as in Definition 2.4.3.
Then, the adjoint operator is given by

T ⋆ : Rn → F × R,

α ↦→
(︄

n∑︂

i=1

αiφi,1⊤α

)︄
.

Proof. The form of the adjoint operator can be directly verified as the equations
⟨α,T (w, b)⟩ =

n∑︂

i=1

αi(⟨w,φi⟩ + b) =

⟨︄
w,

n∑︂

i=1

αiφi

⟩︄
+ b

n∑︂

i=1

αi

=

⟨︄
(w, b),

(︄
n∑︂

i=1

αiφi,1⊤α

)︄⟩︄

hold for all (w, b) ∈ F × R.
Moreover, it is possible to compute the convex conjugate of the standard regular-ization functional as follows.

Proposition 3.3.2 (conjugate function of standard regularization functional)
Let R : F × F0 → R be the standard regularization functional as in Definition 2.4.4.
Then, the subdifferential can be computed as

∂R(w,w0) = {λw} × {0} (3.3.1)
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and the dual conjugate of R is given by

R⋆(w⋆,w⋆
0) =

{︄
1
2λ∥w⋆∥2 if w⋆

0 = 0,
∞ otherwise.

Moreover, the subdifferential of R⋆ is given by

∂R⋆(w⋆,w⋆
0) =

{︄
1
λ
w⋆, if w⋆

0 = 0,
∅, otherwise.

(3.3.2)

Proof. Because the function R is continuously differentiable, its subdifferential is asingleton that only contains the derivative due to Proposition A.1.3. Thus, the equa-tion (3.3.1) can be easily verified.By definition of the convex conjugate (see Definition A.2.1) we obtain
R⋆(w⋆,w⋆

0) = sup
(w,w0)∈F×F0

{⟨(w⋆,w⋆
0), (w,w0)⟩ − R(w,w0)}

= sup
w∈F

{︃
⟨w⋆,w⟩ − λ

2
∥w∥2

}︃
+ sup

w0∈F0

{⟨w⋆
0,w0⟩} .

Note that the second term is infinite whenever w⋆
0 ̸= 0. Moreover, we can rewrite thefirst term as

sup
w∈F

{︃
⟨w⋆,w⟩ − λ

2
∥w∥2

}︃
= − inf

w∈F

{︃
λ

2
∥w∥2 − ⟨w⋆,w⟩

}︃
.

Taking the necessary and sufficient optimality conditions for convex optimization prob-lems into account, the infimum on the right-hand side is attained at the point w ∈ Fwith λw = w⋆. Thus, the term is equal to 1
2λ∥w⋆∥2.In order to compute the subdifferential of R⋆, we note that (w,w0) ∈ ∂R⋆(w⋆,w⋆

0)if and only if (w⋆,w⋆
0) ∈ ∂R(w,w0) = {λw} × {0}. This proves equation (3.3.2).

A special case which is very frequently used in applications is the combination ofstandard decisions and the standard regularization functional. For reference, we writedown the terms for this combination in the following proposition. In order to simplifythe notation, we introduce the notion of the kernel matrix first.
Definition 3.3.3 (kernel matrix)
Let {φi}ni=1 ⊆ F be a set of feature vectors as in Definition 2.4.3. Then, the matrix

K ∈ Rn×n with Kij = ⟨φi,φj⟩ for i, j ∈ {1, . . . ,n}

is called kernel matrix.

Then, we can compute the conjugate of the regularization functional for standard de-cisions as follows.



32 3.3 Regularization with Standard Decisions

Proposition 3.3.4 (conjugate regularization functional for standard decisions)
Let T : F × R → Rn be the standard decision operator as in Definition 2.4.3 and let
R : F × R → R be the standard regularization functional (2.4.2) with λ > 0. Then,

R⋆(T ⋆α) =

{︄
1
2λα

⊤Kα, if 1⊤α = 0,
∞, otherwise.

(3.3.3)

Proof. Equation (3.3.3) is an immediate consequence of Proposition 3.3.1 and Propo-sition 3.3.2, when it is used that
⃦⃦
⃦⃦
⃦

n∑︂

i=1

αiφi

⃦⃦
⃦⃦
⃦

2

=
n∑︂

i=1

n∑︂

j=1

αiαj⟨φi,φj⟩ = α⊤Kα.

Whenever the general training problem is considered, it is not immediately clearwhether it has a unique solution. This is because the ordinary regularization func-tional (2.4.2) does not yield a strictly convex optimization problem in general. To im-prove this situation, one could alternatively use the term
Rλ,µ(w, b) :=

λ

2
∥w∥2 +

µ

2
b2 (3.3.4)

with regularization parameters λ > 0 and µ > 0. Then, the functional Rλ,µ is uniformlyconvex and a training of the form (2.4.1) with this regularization has a unique solu-tion. For reference, the following proposition summarizes the basic properties of thefunctional Rλ,µ.
Proposition 3.3.5 (conjugate function of uniformly convex regularization functional)
LetRλ,µ be the regularization functional defined in (3.3.4) with λ > 0 and µ ≥ 0. If µ = 0,
then Rλ,µ = Rλ with Rλ as defined in (2.4.2) and the subdifferential and the conjugate
function is given by Proposition 3.3.2. If µ > 0, then it follows that

∂Rλ,µ(w, b) = {λw} × {µb} (3.3.5)
and

R⋆
λ,µ(w

⋆, b⋆) =
1
2λ

∥w⋆∥2 +
1
2µ

(b⋆)2. (3.3.6)

Proof. Because the function Rλ,µ is continuously differentiable, its subdifferential isa singleton which only contains the derivative due to Proposition A.1.3. This meansthat (3.3.5) follows immediately. Moreover, by definition of the convex conjugate weobtain
R⋆
λ,µ(w

⋆, b⋆) = sup
(w,b)∈F×R

{⟨(w⋆, b⋆), (w, b)⟩ − R(w, b)}

= sup
w∈F

{︃
⟨w⋆,w⟩ − λ

2
∥w∥2

}︃
+ sup

b∈R

{︂
b⋆b− µ

2
b2
}︂

.
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However, this implies (3.3.6) because the suprema are attained exactly at the points
w = λ−1w⋆ and b = µ−1b⋆, respectively.

3.4 Duality for the Standard Training Problem

Because the standard training problem is a particular interesting setting which is suit-able to represent many practical learning problems, we provide a specialization of thegeneral duality theorem here for reference. Taking the findings from the previoussubsections together, we can conclude the following assertion.
Corollary 3.4.1 (dual problem for standard training problems)
Consider a standard training problem as in Definition 2.4.5 and suppose that Assump-
tion 3.1.2 holds.
Then, the dual training problem associated with (2.4.3) is

min
α∈Rn

1
2λ

α⊤Kα +
n∑︂

i=1

ℓ⋆i (−αi) s.t. 1⊤α = 0. (3.4.1)
In particular, this problem is always solvable.

Proof. The assertion follows directly from Corollary 3.1.3 using Proposition 3.2.1 andProposition 3.3.4.

It is also possible to obtain a particular characterization of the dual solution if oneconsiders standard training problems only. This leads to the following specializationof the optimality conditions.
Corollary 3.4.2 (optimality conditions for standard training problems)
Consider a standard training problem as in Definition 2.4.5 and suppose that Assump-
tion 3.1.2 holds.
Then, a vector (w, b) ∈ F ×R is a solution of the primal training problem (2.4.3) if and
only if there exists some vector α ∈ Rn such that

1⊤α = 0, (3.4.2)
w =

1
λ

n∑︂

i=1

αiφi, (3.4.3)
and

−αi ∈ ∂ℓi(⟨w,φi⟩ + b) for all i ∈ {1, . . . ,n}. (3.4.4)
In particular, α is a solution of the dual training problem (3.4.1) in this case.
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Proof. The assertion follows directly from Theorem 3.1.4 using Proposition 3.2.1 andProposition 3.3.4.
In the same way, the dual conditions of Theorem 3.1.4 can be used to derive opti-mality conditions for the dual training problem as follows.

Corollary 3.4.3 (dual optimality conditions for standard training problems)
Consider a standard training problem as in Definition 2.4.5 and suppose that Assump-
tion 3.1.2 holds.
Then, a vector α ∈ Rn is a solution of the dual training problem (3.4.1) if and only if
there exists (w, b) ∈ F ×R such that the conditions (3.4.2), (3.4.3) and (3.4.4) are satis-
fied. In particular, the pair (w, b) is a solution of the primal training problem (2.4.3) in
this case.

3.5 Finite-dimensional Representation of the Solution
One of the theoretical questions associated with the general training problem (2.4.1) iswhether its solution can be characterized by means of the given input data. In partic-ular, this is important because the definition of the training problem in an infinite-dimensional space prevents the direct application of numerical methods. Using asuitable representation of the solution set, we are able to derive an equivalent finite-dimensional optimization problem which can be treated numerically.

A basic theorem that paves the way for a finite-dimensional representation of thesolution is the so-called Representer Theorem which dates back to an article aboutspline interpolation, see [KW70]. Another formulation of the theorem in [SHS01] at-tracted attention later on because it enabled a method for solving nonlinear SupportVector Machines practically. Over the years many other theoretical investigations as-sociated with the Representer Theorem in different problem settings have been con-ducted. For instance, in a recent paper [BRG19] the authors derive an application ofthe theory to deep kernel learning problems.
Using our problem setting, a first formulation of the finite-dimensional representa-tion property of the solution is the following theorem which is a direct consequenceof the optimality conditions summarized in Corollary 3.4.2.

Corollary 3.5.1 (Representer Theorem)
Consider a standard training problem as in Definition 2.4.5 and suppose that Assump-
tion 3.1.2 holds.
Then, every solution (w, b) of the primal training problem (2.4.3) satisfies

w =
1
λ

n∑︂

i=1

αiφi, (3.5.1)
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whereα ∈ Rn is a solution of the dual training problem (3.4.1). In particular, the optimal
decision function (see Definition 2.4.3) has the form

d(φ) =
1
λ

n∑︂

i=1

αi⟨φi,φ⟩ + b. (3.5.2)

Proof. The assertion follows immediately from Corollary 3.4.2.
As a conclusion of this subsection, we also want to present a more general version ofthe Representer Theorem which follows directly from the general optimality conditionsgiven in Theorem 3.1.4. It is very similar to the Nonparametric Representer Theoremstated in [SHS01, Theorem 1].

Corollary 3.5.2 (Representer Theorem, general version)
Consider a training problem as in Definition 2.4.1. Suppose that Assumption 3.1.1 and
Assumption 3.1.2 hold. Let T be the standard decision operator (see Definition 2.4.3)
and let R = h ◦ Rλ with

• Rλ defined by (2.4.2) with λ > 0 and
• a convex, lower-semicontinuous, strictly increasing function h : R+ → R.

Then, any solution (w, b) of the primal training problem (2.4.1) satisfies

w ∈ span{φ1, . . . ,φn}. (3.5.3)
Proof. Under the present assumptions one can apply a particular version of the chainrule for the convex subdifferential (see [BC11, Corollary 16.72]) to obtain
∂R(w, b) = ∂(h ◦ Rλ)(w, b) = {cω⋆ | (c,ω⋆) ∈ ∂h(Rλ(w, b)) × ∂Rλ(w, b)}

= {c · (w⋆, b⋆) | c ∈ ∂h(Rλ(w, b)), (w⋆, b⋆) ∈ ∂Rλ(w, b)}

for any (w, b) ∈ F × R. On the other hand, the subdifferential of the regularizationfunctional is given by ∂Rλ(w, b) = {(λw, 0)}, see Proposition 3.3.2. This means that
∂R(w, b) = {c · (w⋆, b⋆) | c ∈ ∂h(Rλ(w, b)), w⋆ = λw, b⋆ = 0}

= {(cλw, 0) | c ∈ ∂h(Rλ(w, b))} .

Because the function h is strictly increasing, it follows that c > 0 for all c ∈ ∂h(Rλ(w, b)).Using Proposition 3.3.1 and the left-hand part of (3.1.3), we obtain
w = (cλ)−1

n∑︂

i=1

αiφi and 1⊤α = 0.

Hence, (3.5.3) is true for any solution (w, b) of (2.4.1).
A particular consequence of the Representer Theorem is that one can replace thepossibly infinite-dimensional variable w ∈ F in the training problem (2.4.1) by means
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of
w =

n∑︂

i=1

αiφi

with some other finite-dimensional variable α ∈ Rn. This means that the trainingproblem can be transformed into a finite-dimensional optimization problem underthe assumptions of Corollary 3.5.2. This approach will be discussed in more detaillater on in Chapter 6, where we especially investigate the relationship between theprimal training problem and the corresponding finite-dimensional formulation.

3.6 Interpretation of Optimality Conditions
Whereas we used the first part of the optimality conditions in (3.1.4) in Section 3.5to obtain a particular finite-dimensional representation of the solution, the secondpart also leads to interesting observations. The evaluation and interpretation of theresulting properties is the aim of this section. We start this approach by writing downthe yet unused conditions for the particular setting.

Corollary 3.6.1 (characterization of loss derivative)
Consider a general training problem as in Definition 2.4.1 with a separable loss func-
tional (see Definition 2.4.2). Suppose that Assumption 3.1.1 and Assumption 3.1.2 hold.
Then, for any solution ω ∈ H of the primal training problem (2.4.1) and any solu-
tion α ∈ D⋆ of the dual training problem (3.1.1) it follows that

−αi ∈ ∂ℓi([Tω]i) for all i ∈ {1, . . . ,n}. (3.6.1)
Proof. Under the present assumptions, we can apply the right-hand part of (3.1.3)together with (3.2.1) to obtain (3.6.1).

The previous corollary has a rather descriptive interpretation. It means that eachcomponent αi of the dual variable vector (which is associated with exactly one lossfunction) has a value which is equal to the negative slope of the corresponding lossfunction at the optimal decision value. In practice, each loss function is often associ-ated with exactly one training sample. This means that the value αi can be interpretedas a sensitivity of the training problem with respect to the ith training sample.
A particular consequence of this observation leads to an idea which is closely relatedto the classical notion of support vectors. One possible definition of the term supportvector is the following.

Definition 3.6.2 (support vector)
Consider a training problem with standard decisions according to Definition 2.4.3. Sup-
pose that Assumption 3.1.1 and Assumption 3.1.2 hold. Then, the vector φi ∈ F is
called support vector if there exists a solution α of the dual training problem (3.1.1)
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such that αi ̸= 0.

Note that this definition is not strictly equivalent to the definition given in the Sub-sections 2.2.1 and 2.2.2, where geometric features of the optimization problems wereused. Though, in Section 4.3 we will elaborate on the relationship after the introduc-tion of the necessary loss functions.
We also have to point out that the preceding definition of support vectors does nothave the form which is typically used in the literature. Typically, one would simply saythat φi is a support vector if αi ̸= 0 for some fixed solution α of the dual problem.Strictly speaking the definition is not accurate if the dual solution is not uniquely de-fined. In this situation it might happen that there are different solutions with zero andnon-zero coefficients αi for some fixed i ∈ {1, . . . ,n}, and it is not obvious whetherthe belonging vector φi should be called a support vector or not. This is why we usethe more precise definition above.
Keeping in mind that the optimal decision function has the form (3.5.2), we can seethat only support vectors contribute to the generated decision. Moreover, from thepractical point of view, the number of nonzero coefficients in the decision functionhas an outstanding importance because it generally is proportional to the computa-tional effort which is needed to evaluate the decision function. Formally, the numberof terms in the decision function is equal to the number of loss functions (or trainingsamples) which can be quite high in practice. This means that it is desirable to deter-mine formulations of the training problem which tend to have sparse solutions andstill capture the important parts of the learning problem. Here, by sparse we meanthat only a relatively small portion of the training samples leads to nonzero dual co-efficients in the solution, i.e., the number of support vectors is limited in a suitableway.
In the formulation of the necessary optimality conditions in Corollary 3.6.1 it wasessential to know a solution of the primal training problem. In contrast, the followingstatement presents necessary and sufficient optimality conditions in terms of the dualvariables only.

Corollary 3.6.3 (dual optimality conditions)
Consider a standard training problem as in Definition 2.4.5. Suppose that Assump-
tion 3.1.1 and Assumption 3.1.2 hold.
Then, a vector α ∈ Rn is a solution of the dual training problem (3.4.1) if and only if

1⊤α = 0 (3.6.2)
and there exists b ∈ R such that

−αi ∈ ∂ℓi

(︄
1
λ

n∑︂

j=1

αj⟨φi,φj⟩ + b

)︄
for all i ∈ {1, . . . ,n}. (3.6.3)



38 3.7 Notes on the Existence of Solutions

Proof. If the primal training problem (2.4.1) is a standard training problem, we canproceed as in the proof of the Representer Corollary 3.5.1 to see that the left part of(3.1.3) is equivalent to
w =

1
λ

n∑︂

i=1

αiφi and 1⊤α = 0.

Using the first equation and the representation for the subdifferential of the lossfunctional in Proposition 3.2.1, we can see that the right part of (3.1.3) is equivalentto (3.6.3). This proves that the conditions (3.6.2) and (3.6.3) are necessary and suffi-cient for the optimality of α in the dual training problem (3.1.1).

Remark 3.6.4 (rewritten dual optimality conditions)
It is easy to see that (3.6.3) can be written equivalently as

b ∈
n⋂︂

i=1

(︄
∂ℓ⋆i (−αi) −

1
λ

n∑︂

j=1

αj⟨φi,φj⟩
)︄

(3.6.4)
because the subdifferential can be inverted in the sense that −αi ∈ ∂ℓi(ti) it and only if
ti ∈ ∂ℓ⋆i (−αi).

Note that the assertion of Corollary 3.6.3 provides a unification of the different formu-lation of dual optimality conditions and determination strategies for b in
• [BGV92, Section 2.2] for Support Vector Classification,
• [SS04, Section 1.4] for ε-insensitive Support Vector Regression, and
• [CL11, Subsection 4.1.5] for a general SVM formulation.

Certainly, the above list is not exhaustive and many other variants of dual optimalityconditions (depending on the particular training problem) exist in the literature.

3.7 Notes on the Existence of Solutions
One natural question concerning the training problem is whether it has a solutionat all. In order to answer the question certainly, it is necessary to require additionalassumptions in general to rule out particular edge cases. Two of such edge cases arepresented in the following examples.The first example shows that it is possible to have an unbounded objective functionin the general context.

Example 3.7.1 (unbounded training problem)
Consider a standard training problem with F := R and a single training sample φ1 := 0
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with loss function ℓ1(t) := t. Then, the training problem (2.4.3) is given by

min
w,b∈R

λ

2
w2 + b.

This problem has no solution because the objective function is unbounded for b→ −∞.

A second example shows that even the boundedness of the objective function doesnot guarantee the solvability of the training problem.
Example 3.7.2 (training problem with unattained infimum value)
Consider a standard training problem with F := R and a single training sample φ1 := 0
with loss function ℓ1(t) := log(1 + exp(t)). Then, the training problem (2.4.3) is given by

min
w,b∈R

λ

2
w2 + log(1 + exp(b)).

This problem has no solution because

inf
w,b∈R

{︃
λ

2
w2 + log(1 + exp(b))

}︃
= 0

for w = 0 and b→ −∞, but the value is not attained at any (w, b) ∈ R2.

The common issue in both examples is that there exists a direction for the variable b,in which the loss term is not increasing. Of course, this case is not typical for practicalapplications. With this observation in mind, we can formulate a sufficient conditionwhich implies solvability of the training problem in practice, for instance, the following.
Definition 3.7.3 (coercive function)
A function f : H → R∪{+∞} is called coercive, if for every sequence {xk}k∈N ⊆ H with
limk→∞ ∥xk∥ = ∞ it follows that limk→∞ f(xk) = ∞.

The following result is derived in [Ale19] and shows a rather general setting, in whichcoercivity is sufficient for solvability of an optimization problem.
Corollary 3.7.4 (minimizers of coercive functions, [Ale19, Corollary 5.6])
Let H be a real Hilbert space and let f : H → R∪ {+∞} be lower semi-continuous and
coercive. Then, the function f is bounded from below and attains a minimizer.

In the special context of a standard training problem, the following proposition pro-vides a sufficient condition for the coercivity of the objective function.
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Proposition 3.7.5 (sufficient condition for coercivity)
Consider a standard training problem as in Definition 2.4.5. Suppose that Assump-
tion 3.1.1 holds and let dom(ψp) ̸= ∅. Moreover, suppose that all loss functions are
bounded from below, and let there be i+, i− ∈ {1, . . . ,n} such that

lim
t→∞

ℓi+(t) = ∞ and lim
t→−∞

ℓi−(t) = ∞.

Then, the objective function of the primal training problem (2.4.3) is coercive. In partic-
ular, this problem has a solution.

Proof. Let {(wk, bk)}k∈N ⊆ dom(ψd) be an unbounded sequence. Subsequently, weconsider two cases.
Case 1: The sequence {wk}k∈N is unbounded.Since we assumed that the loss functions are bounded from below, there exist con-stants Bi ∈ R such that

λ

2
∥wk∥2 +

n∑︂

i=1

ℓi(⟨wk,φi⟩ + bk) ≥ λ

2
∥wk∥2 +

n∑︂

i=1

Bi.

This implies that the objective function is unbounded for k → ∞.
Case 2: The sequence {wk}k∈N is bounded.Then, the sequence {bk}k∈N must be unbounded, i.e., either bk → ∞ or bk → −∞. Inthe first case, we obtain

λ

2
∥wk∥2 +

n∑︂

i=1

ℓi(⟨wk,φi⟩ + bk) ≥
n∑︂

i∈{1,...,n}\{i+}

Bi + ℓi+(⟨wk,φi+⟩ + bk).

Because the sequence {wk}k∈N is bounded and limt→∞ ℓi+(t) = ∞, the right-handside is unbounded. The same follows for the case bk → −∞ if one considers the lossfunction ℓi− .
Taking both parts together, we showed that the objective function is coercive. Theexistence of a solution for the training problem directly follows from Corollary 3.7.4.

Note that the stated requirements on the loss functions are virtually always satisfiedfor practical problems. In particular the classical examples for training problems thatwe consider in Chapter 4 naturally have the required properties.

3.8 Distance Estimation and Uniqueness of Solutions
From the mathematical point of view, another interesting question associated with thegeneral training problem (2.4.1) is under which conditions it has a unique solution. Inorder to approach this question, we want to apply the distance estimation result ofTheorem A.4.2 subsequently.
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Corollary 3.8.1 (distance estimation using regularization-induced measure)
Consider the general training problem (2.4.1). Suppose that Assumption 3.1.1 and As-
sumption 3.1.2 hold. Let the regularization operator be defined by R := Rλ with λ > 0.
Suppose that ω̄ = (w̄, w̄0) ∈ F × F0 and ᾱ ∈ D⋆ are solutions of (2.4.1) and (3.1.1),
respectively. Moreover, let α ∈ D⋆ be some arbitrary dual point.
Then,

∥w − w̄∥ ≤
√︃

2
λ
∆pd(ω, ᾱ) ≤

√︃
2
λ
∆pd(ω,α) (3.8.1)

for any ω = (w,w0) ∈ F × F0, where ∆pd denotes the primal-dual optimality gap
defined in (3.1.2). In particular, the first component of the solution of problem (2.4.1)
is unique in the sense that for any solution (w,w0) ∈ F × F0 of (2.4.1) it holds that
w = w̄.

Proof. Let ω̄ = (w̄, w̄0) ∈ F × F0 be a solution of the training problem (2.4.1) andsuppose that ω = (w,w0) ∈ dom(R). Then, we can compute the directional derivativeof Rλ as
R◦
λ(ω̄, (d,d0)) = λ⟨w̄,d⟩.

This implies that the Bregman distance between ω and ω̄ is given by
DRλ

(ω, ω̄) =
λ

2
∥w∥2 − λ

2
∥w̄∥2 − λ⟨w̄,w − w̄⟩ = λ

2
∥w − w̄∥2.

Note that T ⋆ᾱ ∈ ∂R(ω̄) is satisfied because of the optimality conditions of Theo-rem 3.1.4. By means of Theorem A.4.2, this implies that
λ

2
∥w − w̄∥2 = DRλ

(ω, ω̄) ≤ ∆pd(ω, ᾱ). (3.8.2)
Thus, the first inequality in (3.8.1) holds. To see that the second inequality is also true,note that ψd(ᾱ) ≤ ψd(α) since ᾱ is a solution of the dual training problem. This implies

∆pd(ω, ᾱ) = ψp(ω) + ψd(ᾱ) ≤ ψp(ω) + ψd(α) = ∆pd(ω,α),

such that (3.8.1) follows directly.Finally, suppose that ω ∈ F × F0 is also a solution of the training problem. Then,
∆pd(ω, ᾱ) = 0, and by means of (3.8.2) it follows that λ

2∥w − w̄∥2 = 0, i.e., w = w̄. Thisproves the uniqueness of the first component of the solution.
The corollary also shows a way to obtain an estimate for the distance of the first com-ponent of the primal variables to the solution (which is unique in with respect to thatcomponent). This could be used to evaluate the quality of the corresponding decisionfunction. Note that we cannot obtain any information about the second componentof the variable vector (which corresponds to the bias term). However, this is a naturalproperty because the second component of the solution is not necessarily unique.
Subsequently, we want to apply Theorem A.4.2 again to derive distance estimateswhich are based on the property of the loss functions. As a preliminary result, wecompute the Bregman distance for separable loss functionals in the following lemma.
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Lemma 3.8.2 (Bregman distance for separable loss functionals)
Let L be a separable loss functional. Then,

DL(t, t̄) =
n∑︂

i=1

Dℓi(ti, t̄i) for all t, t̄ ∈ dom(L).

Proof. Let t, t̄ ∈ dom(L). Because D = D1 × · · · ×Dn, we can write t = (t1, . . . , tn) ∈ D.The same notation can be used for t̄ and z ∈ D. Then, by definition of the directionalderivative, we obtain
L◦(t̄, z) = lim

h↘0

1
h
(L(t̄ + hz) − L(t̄))

= lim
h↘0

1
h

(︄
n∑︂

i=1

ℓi(t̄i + hzi) −
n∑︂

i=1

ℓi(t̄i)

)︄

=
n∑︂

i=1

lim
h↘0

1
h
(ℓi(t̄i + hzi) − ℓi(t̄i)) =

n∑︂

i=1

ℓ◦i (t̄i, zi)

for any z ∈ D. Then, the Bregman distance can be computed as
DL(t, t̄) = L(t) − L(t̄) − L◦(t̄, t− t̄)

=
n∑︂

i=1

ℓi(ti) − ℓi(t̄i) − ℓ◦i (t̄i, ti − t̄i) =
n∑︂

i=1

Dℓi(ti, t̄i).

This proves the assertion of the lemma.
With these particular terms for the Bregman distance induced from the loss func-tions, a distance estimation in the spirit of Corollary 3.8.1 is possible.

Corollary 3.8.3 (distance estimation using a loss-induced measure)
Consider the general training problem (2.4.1). Suppose that Assumption 3.1.1 and As-
sumption 3.1.2 hold. Let L be a separable loss functional. Suppose that ω̄ ∈ H and
ᾱ ∈ D⋆ are solutions of (2.4.1) and (3.1.1), respectively. Moreover, let ω ∈ H be some
arbitrary point satisfying Tω ∈ dom(L).
Then, for all α ∈ D⋆ it follows that

n∑︂

i=1

Dℓi(Tω,T ω̄) ≤ ∆pd(ω, ᾱ) ≤ ∆pd(ω,α).

Proof. Because the proof follows the same lines as that of Corollary 3.8.1 but usesLemma 3.8.2 to rewrite the left-hand side, we omit the detailed steps here.



4 Examples of Classification and
Regression Problems

Up to now, we did not assume too much structure on the functions which make upthe general training problem. This section aims to apply the previous general resultsto some special training problems. Note that for most of the considered problemsthe dual formulations are already known in the literature to some extent. However,we summarize those formulations here for reference and provide some slight gener-alizations where appropriate.
All the exemplary problems of this chapter follow the structure of a standard trainingproblem according to Definition 2.4.5. In particular, we consider different formulationsof classification (Section 4.1) and regression problems (Section 4.2). Afterwards, theoptimality conditions derived in the previous chapter are applied to some particulartraining problems (Section 4.3). In order to prepare for the application of derivative-based training methods, a principle for the construction of smooth loss function isintroduced (Section 4.4). Finally, we briefly show that a smoothing of the KKT systemfor a dual Support Vector Classification problem results in a particularly smoothed lossfunction in the primal training problem (Section 4.5).

4.1 Binary Classification Problems
In the classical version of Support Vector Machines (see also Subsection 2.2.2) the so-called hinge loss function is used for each training sample. As mentioned in the intro-duction of the standard regularization term in Definition 2.4.4, we omit the weightingparameter C in front of the loss term. Instead, we introduce the weighting coefficientas part of the regularization term.

4.1.1 Classical Support Vector Classification
Taking all ingredients together, we obtain the dual training problem for (2.2.5) withparameter C := λ−1 as follows. A visualization of the loss functions and the associatedconjugate functions and subdifferentials is given in Figure 4.1.1a.
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Proposition 4.1.1 (Support Vector Classification)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {−1, 1}n be a vector of
labels and c ∈ Rn

>0 a vector of weights for a binary classification problem. Consider the
sample-weighted Support Vector Classification problem

min
w,b

λ

2
∥w∥2 +

n∑︂

i=1

ci max{0, 1 − yi(⟨w,φi⟩ + b)} (4.1.1)
with a parameter λ > 0. The dual optimization problem associated with (4.1.1) is given
by

min
α

1
2λ

α⊤Kα− y⊤α (4.1.2a)
s.t. 1⊤α = 0, (4.1.2b)

αi ∈ ciyi[0, 1] for all i ∈ {1, . . . ,n}, (4.1.2c)
where the term yi[0, 1] denotes the interval [yi, 0] if yi < 0.

Proof. The problem is a standard training problem. This means that Corollary 3.4.1 isapplicable with
ℓi(t) := ci max{0, 1 − yit}

for i ∈ {1, . . . ,n} as loss functions. Now, consider a single index i ∈ {1, . . . ,n}. Becausethe loss function is differentiable at all points except for t = yi, the subdifferential canbe easily computed as
∂ℓi(t) =

⎧
⎪⎨
⎪⎩

{0} if yit > 1,
−ciyi[0, 1] if yit = 1,
{−ciyi} if yit < 1.

This means that, by definition of the conjugate function, we obtain
ℓ⋆i (α) = sup

t∈R
{αt− ci max{0, 1 − yit}} = sup

t∈R
{min{αt, (α + ciyi)t− ci}}.

This term is infinite if the linear functions in both terms of the minimum are eitherboth decreasing (α < 0 and α < −ciyi) or increasing (α > 0 and α > −ciyi), i.e., if
α /∈ [min{0,−ciyi}, max{0,−ciyi}]. Because yi ∈ {−1, 1}, this condition can also bewritten as α /∈ −ciyi[0, 1].On the other hand, if α ∈ −ciyi[0, 1], the supremum is attained at the intersection ofthe linear functions. This is exactly the point t = y−1

i = yi. Hence, the supremum hasthe value yiα in this case. Taking both cases together, it follows that
ℓ⋆i (α) =

{︄
yiα, if α ∈ −ciyi[0, 1],
∞, otherwise.

Taking everything together, we obtain the dual objective function, where the regular-
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ization term is given by (3.3.3), and

L⋆(−α) =
n∑︂

i=1

ℓ⋆i (−αi) =

⎧
⎪⎨
⎪⎩
−

n∑︂

i=1

yiαi, if αi ∈ ciyi[0, 1] for all i ∈ {1, . . . ,n},

∞, otherwise.

Finally, note that for the minimization problem only points with finite objective functionvalues need to be considered. For this reason, constraints in the formulation of (4.1.1)are added. The constraints (4.1.2c) ensure that the loss functional is finite. In the sameway, the constraint (4.1.2b) implies a finite value of the regularization functional.
Note that the dual problem (4.1.2) is not strictly identical to the dual problem (2.2.6)proposed in the introduction. First, this is due to the weighting, which is not presentin the original formulation. By choosing ci = 1 for all i ∈ {1, . . . ,n} one can obtainthe classical problem with uniform weights. Now, we want to mention briefly, how totransform one representation of one dual problem to the other equivalently. If thevariables αi in (4.1.2) are replaced by yiλαi, the resulting factor λ in the objective func-tion does not change the problem and can be omitted. Then, is easy to see that theobjective function and the constraints of both problems are equal when the relation
C = λ−1 is used.
4.1.2 Maximal Margin Classifier
In the same way as above, the dual training problem for the maximal margin classifier(see Subsection 2.2.1) can be derived. The result is stated in the following proposition.The employed loss functions are shown in Figure 4.1.1b.

Proposition 4.1.2 (dual problem for maximal margin classifier)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {−1, 1}n be a vector
of labels for a binary classification problem. The dual problem of the maximal margin
classifier

min
w,b

1
2
∥w∥2 s.t. yi(⟨w,φi⟩ + b) ≥ 1 for all i ∈ {1, . . . ,n}

is given by
min
α

1
2
α⊤Kα− y⊤α

s.t. 1⊤α = 0,
yiαi ≥ 0 for all i ∈ {1, . . . ,n}.

Proof. The problem has the form of a standard training problem with λ = 1 and lossfunctions
ℓi(t) :=

{︄
0, if yit ≥ 1,
∞, otherwise.
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For these loss functions the conjugate functions can be computed as

ℓ⋆i (−α) = sup
t∈R

{−αt− ℓi(t)} = − inf
t∈R:yit≥1

{αt} = − inf
t∈R:t≥1

{αyit} = −
{︄
yiα, if yiα ≥ 0,
∞, otherwise.

The remaining arguments to show that the dual problem has the particular form arethe same as in the proof of Proposition 4.1.1.

4.1.3 Logistic Regression Support Vector Classification

Besides the previous two classical formulations of SVMs for classification problems,one could also think of a combination of the logistic regression approach with thestandard SVM regularization term. The resulting problem is presented in the followingproposition together with its dual problem. See also Figure 4.1.1c for a plot of the lossfunctions and the corresponding conjugate functions. For a more detailed discussionof the logistic regression problem we refer to [Bis06, Section 4.3].
Proposition 4.1.3 (logistic regression)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {−1, 1}n and c ∈ Rn

>0
be vectors of labels and weights for a binary classification problem. The dual problem
of the logistic regression SVM

min
w,b

λ

2
∥w∥2 +

n∑︂

i=1

ci log(1 + exp(−yi(⟨w,φi⟩ + b)))

is given by

min
α

1
2λ

α⊤Kα +
n∑︂

i=1

(︃
q

(︃
1 − yi

ci
αi

)︃
+ q

(︃
yi
ci
αi

)︃)︃

s.t. 1⊤α = 0,
αi ∈ ciyi[0, 1] for all i ∈ {1, . . . ,n},

where q : R → R ∪ {+∞} denotes the function

q(x) =

⎧
⎪⎨
⎪⎩

x log(x) if x > 0,
0, if x = 0,
∞ if x < 0.

(4.1.3)

Proof. As we have seen in the previous propositions, the problem has the form of astandard training problem. Here, the loss functions have the form
ℓi(t) := ci log(1 + exp(−yit))
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for i ∈ {1, . . . ,n}. We first compute the first derivative

ℓ′i(t) = −ciyi
exp(−yit)

1 + exp(−yit)
= −ciyi

1
1 + exp(yit)

and the second derivative
ℓ′′i (t) = ci

exp(yit)
(1 + exp(yit))2 .

From this, we can see that ℓ′′i (t) > 0 for all t ∈ R, i.e., the loss functions are strictlyconvex. Then, we can compute the conjugate loss functions by means of the definitionas
ℓ⋆i (−α) = sup

t∈R
{−αt− ℓi(t)} = − inf

t∈R
{αt+ ℓi(t)}. (4.1.4)

Since the function ℓi is continuously differentiable, the derivative of the term with re-spect to t must vanish at the point where the infimum is attained. This is the caseif
α = −ℓ′i(t) = ciyi

1
1 + exp(yit)

.

The right-hand side of this equation can only have values in ciyi(0, 1), i.e., the infimumcan only be attained for α ∈ ciyi(0, 1). Moreover, solving this equation for t, it followsthat
exp(yit) =

ciyi
α

− 1 and t = yi log
(︂ciyi
α

− 1
)︂

.

Then, we get
ℓ⋆i (−α) = −yiα log

(︂ciyi
α

− 1
)︂
− log

(︃
1 +

(︂ciyi
α

− 1
)︂−1
)︃

= −yiα
(︃

log
(︃

1 − yi
ci
α

)︃
− log

(︃
yi
ci
α

)︃)︃
+ log

(︃
1 − yi

ci
α

)︃

=

(︃
1 − yi

ci
α

)︃
log
(︃

1 − yi
ci
α

)︃
+
yi
ci
α log

(︃
yi
ci
α

)︃

= q

(︃
1 − yi

ci
α

)︃
+ q

(︃
yi
ci
α

)︃

for α ∈ ciyi(0, 1). The edge cases α = 0 and α = ciyi need to be considered separately.In both cases one can easily verify by means of (4.1.4), that ℓ⋆i (−α) = 0. This shows
that ℓ⋆i (−α) = q

(︂
1 − yi

ci
α
)︂

+ q
(︂
yi
ci
α
)︂ for all α ∈ ciyi[0, 1]. Finally, note that ℓ⋆i (−α) = ∞

if α /∈ ciyi(0, 1) is easy to see using (4.1.4). The form of the dual problem is then givenby Corollary 3.4.1.

4.2 Regression Problems
For regression problems real-valued labels yi for i ∈ {1, . . . ,n} are given. Then, thevalue of the decision function for the ith data point should be as close as possible
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to the value of yi for all i ∈ {1, . . . ,n}. However, the measure of closeness whichdetermines the loss function depends on the application at hand. Note that some lossfunctions can be more appealing than others from a practical point of view. We willgive some more detailed explanation in Subsection 8.4.4. Subsequently, we considerthree particular examples of regression problems.
4.2.1 Least-Squares Support Vector Machine
The first example uses the squared error as a loss function. With this choice, theresulting problem is called Least-Squares Support Vector Machine (LS-SVM). We sum-marize the problem together with the associated dual training problem in the followingproposition. An exemplary loss function and the corresponding derivative and conju-gate function are visualized in Figure 4.2.1a.

Proposition 4.2.1 (Least-Squares Support Vector Machine)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ Rn and c ∈ Rn

>0 be
vectors of labels and weights for a regression problem. The dual problem of the sample-
weighted Least-Squares Support Vector Machine

min
w,b

λ

2
∥w∥2 +

1
2

n∑︂

i=1

ci(⟨w,φi⟩ + b− yi)2

is given by

min
α

1
2λ

α⊤Kα +
n∑︂

i=1

ciα
2
i − y⊤α

s.t. 1⊤α = 0.

Proof. Note that the problem is a standard training problem with uniformly convexloss functions
ℓi(t) :=

ci
2

(t− yi)2 for i ∈ {1, . . . ,n}.

In order to compute the conjugate loss function we employ (4.1.4) to get
ℓ⋆i (−α) = − inf

t∈R

{︂
αt+

ci
2

(t− yi)2
}︂
=

1
2ci

α2 − αyi,

where we used that the infimum is attained at the point t = yi − α
ci

. The form of thedual problem follows directly from Corollary 3.4.1.
4.2.2 ε-Support Vector Regression
A second example, which we consider, is the so-called ε-Support Vector Regression(ε-SVR). It results from the definition of loss functions that are zero for values within adistance of at most ε from the given labels and increase linearly away from this range.
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The particular training problem and its dual form is summarized in the subsequentproposition. An ε-insensitive loss function and its conjugate function are visualized inFigure 4.2.1b.

Proposition 4.2.2 (ε-Support Vector Regression)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ Rn and c ∈ Rn

>0 be
vectors of labels and weights for a regression problem. The dual problem of the sample-
weighted ε-Support Vector Regression problem

min
w,b

λ

2
∥w∥2 +

n∑︂

i=1

ci max{0, |⟨w,φi⟩ + b− yi| − ε} (4.2.1)
is given by

min
α

1
2λ

α⊤Kα− y⊤α + ε
n∑︂

i=1

|αi|

s.t. 1⊤α = 0,
αi ∈ ci[−1, 1] for i ∈ {1, . . . ,n}.

Proof. Again, the problem is a standard training problem and Corollary 3.4.1 can beapplied. Subsequently, we compute the conjugate of the loss functions
ℓi(t) := ci max{0, |t− yi| − ε}.

By definition, it follows that
ℓ⋆i (−α) = sup

t∈R
{−αt− ci max{0, |t− yi| − ε}} .

One can easily see that ℓ⋆i (−α) = ∞ whenever α /∈ ci[−1, 1]. Moreover, we have
−αt− ci max{0, |t− yi| − ε} ≤ −αt

for all t ∈ R and equality holds for all t ∈ [yi− ε, yi + ε]. This shows that the supremumin the definition of the conjugate loss is attained for t = yi+ ε if α < 0 and for t = yi− εif α ≥ 0, i.e., at t = yi − sign(α) for α ∈ ci[−1, 1]. Thus,
ℓ⋆i (−α) =

{︄
−yiα + ε|α| if α ∈ ci[−1, 1],
∞, otherwise.

The form of the dual problem then follows from Corollary 3.4.1.
4.2.3 Hard ε-Support Vector Regression
As a third example, we consider a formulation of a regression problem where themodel function is required to match the given labels up to some sample-dependenttolerance εi > 0.
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Proposition 4.2.3 (hard ε-Support Vector Regression)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ Rn and ε ∈ Rn

>0 be
vectors of labels and tolerances for a regression problem. Assume that there exists some
(w̄, b̄) ∈ F × R such that

|⟨w̄,φi⟩ + b̄− yi| < εi for all i ∈ {1, . . . ,n}. (4.2.2)
Consider the hard ε-Support Vector Regression problem

min
w,b

λ

2
∥w∥2 +

n∑︂

i=1

χR+(εi − |⟨w,φi⟩ + b− yi|), (4.2.3)
where

χR+ : R → R ∪ {+∞},

t ↦→ χR+(t) :=

{︄
0, if t ≥ 0,
∞, otherwise,

denotes the characteristic function of the set R+. Then, the dual problem of (4.2.3) is
given by

min
α

1
2λ

α⊤Kα− y⊤α +
n∑︂

i=1

εi|αi|

s.t. 1⊤α = 0.

(4.2.4)

Proof. First, note that the existence of (w̄, b̄) ∈ F × R with (4.2.2) guarantees thatAssumption 3.1.2 is satisfies. Then, we consider loss functions
ℓi(t) = χR+(εi − |t− yi|) =

{︄
0, if |t− yi| ≤ εi,
∞, otherwise

for i ∈ {1, . . . ,n}. It is easy to see that the conjugate loss function can be computedas
ℓ⋆i (−α) = sup

t∈R
{−αt− ℓi(t)} = sup

t:|t−yi|≤εi
{−αt} = εi|α| − yiα.

Hence, the form of the dual training problem (4.2.4) can be verified by means of Corol-lary 3.4.1.

4.3 Interpretation of Optimality Conditions Revisited
With some practical training problems at hand, we can now revisit the results of Sec-tion 3.5 and Section 3.6 to gain some insight into the properties of the solution. Inthe following subsections, we consider the typical examples for classification and re-gression problems, and give a more practical interpretation of the conditions (4.3.2)for those examples. For simplicity, we focus on uniformly weighted training problems
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and note that the subsequent observations can be easily transferred to the weightedformulations.

Recall that, in this context, the decision function can be represented by
d(φ) =

1
λ

n∑︂

i=1

αi⟨φi,φ⟩ + b (4.3.1)
due to Corollary 3.5.1 with α ∈ Rn being a solution of the dual training problem. More-over, following Corollary 3.6.3, the vector α satisfies

−αi ∈ ∂ℓi(d(φi)) for all i ∈ {1, . . . ,n}. (4.3.2)
This observation has a very natural interpretation considering the structure of thetraining problem. First, the influence of one loss function ℓi (or training sample) on thedecision function is equal to the value of the corresponding dual variable αi. Second,this value is equal to the negative slope of the loss function at the optimal decision.Of course, it is in general not possible to use this observation to argue for each lossfunction independently, because the optimal decision function usually depends on thecollection of all loss functions. However, the characterization is still quite representa-tive if one considers the final values depending on the optimal solution of the trainingproblem.
4.3.1 ... for Support Vector Classification
Recall that, in the typical formulation of a binary classification problem, loss functionsof the form

ℓi(t) = max{0, 1 − yit} for i ∈ {1, . . . ,n}
are used, and the corresponding subdifferential is given by

∂ℓi(t) =

⎧
⎪⎨
⎪⎩

{0} if yit > 1,
−yi[0, 1] if yit = 1,
{−yi} if yit < 1,

(4.3.3)

for i ∈ {1, . . . ,n}, see Proposition 4.1.1. In the following, we discuss the necessaryconditions (4.3.2) for this special case.First, note that yid(φi) > 1 implies αi = 0. This means that any training sample forwhich the decision function has a magnitude of more than one in the correct directiondoes not contribute to the decision function itself. Associated with this observationthere are two important consequences.On the one hand, one can conclude that adding and removing of such “non-critical”training samples from the training problem does not change the decision function atall. We want to summarize this observation in the following proposition.
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Proposition 4.3.1 (adding and removing non-support vectors for SVC)
Consider a Support Vector Classification problem as given in Proposition 4.1.1 with uni-
form weights c = 1. Suppose that (w, b) ∈ F × R is a solution of the primal training
problem (4.1.1), and let d denote the generated decision function.
Then, the problem can be modified in two possible ways without changing the solution:

(a) for any i ∈ {1, . . . ,n} with yid(φi) > 1, the ith loss function can be removed from
the problem, and

(b) any new training sample (φj, yj) ∈ F × {−1, 1} satisfying yjd(φj) > 1 can be
added.

Proof. Suppose that (w, b) ∈ F × R and α ∈ Rn are solutions of the problems (4.1.1)and (4.1.2), respectively.
First, let i ∈ {1, . . . ,n} with yid(φi) > 1. Because of (4.3.2) and (4.3.3), it followsthat αi = 0. This means that the ith term can be removed from the original decisionfunction without changing it. Now, consider the training problem without the ith lossfunction and the ith component of the decision operator. Then, it is easy to see (due toCorollary 3.6.3) that the dual point resulting from removing the ith component fromthe vector α is still optimal for the new dual problem. In particular, the optimalityconditions from Corollary 3.4.2 are still satisfied, which means that (w, b) is also optimalfor the reduced problem.
On the other hand, let (φj, yj) ∈ F × {−1, 1} with yjd(φj) > 1 be given and con-sider the training problem with this sample added. Then, one zero component can beappended to the dual point α. However, the resulting dual point is feasible for the aug-mented training problem and satisfies the optimality conditions from Corollary 3.4.2.Thus, (w, b) is again optimal for the new training problem.

The idea of Proposition 4.3.1 could be used to construct suitable strategies for in-cremental learning problems (or online learning), where only a specific subset of thetraining set is considered at a particular time. We do not want to elaborate on thisidea here and refer to [CP00] for a promising approach in this direction.

The second consequence of the observation above is that for support vectors it fol-lows that yid(φi) ≤ 1. This has a close connection to the geometrical motivation ofSVMs as introduced in Section 2.2. Support vectors (in the sense of Definition 3.6.2)either fall into or lie at the boundary of the space between the two separating hyper-planes as discussed in Subsection 2.2.2. Note that this condition is only necessaryand not sufficient for being a support vector. Hence, it might happen that a supportvector φi in the sense of Subsection 2.2.2 (lying in or at the boundary of the space be-tween the separating hyperplanes) does not satisfy αi ̸= 0, i.e., is not a support vectorin the sense of Definition 3.6.2.
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4.3.2 ... for ε-insensitive Support Vector Regression
Similar to the previous investigation, we can proceed to gain insight in the special caseof regression problems. As a first example, we consider the ε-insensitive loss function

ℓi(t) = max{0, |t− yi| − ε}

used in Proposition 4.2.2. For this function a simple computation shows that the sub-differential is given by

∂ℓi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{−1}, if t < yi − ε,
[−1, 0], if t = yi − ε,
{0}, if yi − ε < t < yi + ε,
[0, 1], if t = yi + ε,
{1}, if t > yi + ε.

Considering again the necessary optimality condition (4.3.2) we can observe thatαi = 0whenever d(φi) ∈ (yi− ε, yi + ε) holds. In other words, support vectors correspond tocertain “outliers” in the sense that they satisfy |d(φi)−yi| ≥ ε. In the same fashion as forclassification problems, we can formulate a proposition which states that non-supportvectors do not contribute to the optimal decision function.
Proposition 4.3.2 (adding and removing non-support vectors for ε-SVR)
Consider an ε-SVR problem as given in Proposition 4.2.2 with uniform weights c = 1.
Suppose that (w, b) ∈ F×R is a solution of the training problem (4.2.1) and let d denote
the generated decision function.
Then, the problem can be modified in two possible ways without changing the solution:

(a) for any i ∈ {1, . . . ,n} with |d(φi) − yi| < ε, the ith loss function can be removed
from the problem, and

(b) any new training sample (φj, yj) ∈ F×R satisfying |d(φi)−yi| < ε can be added.

Proof. The proof is basically identical to that of Proposition 4.3.1.
As a secondary result, we can see that the choice of the tube parameter ε ≥ 0 alsoregulates the number of support vector. The larger, the parameter is chosen, themore training samples tend to fall into the ε-insensitve tube of the loss function. Ofcourse, this argumentation only works intuitively, and we have not derived any theo-retical guarantees here.
Furthermore, one can retrospectively estimate the influence of a single training sam-ple on the decision function by means of the previous discussion and the shape of thedecision function given by (4.3.1). Whereas training samples with predictions insidethe ε-insensitive range of the loss functions do not contribute to the decision func-tion, there are two other possible cases to consider: samples with a prediction errorof exactly ε and samples with an error greater than ε.
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The absolute value of the weight αi in the decision function associated with the for-mer training samples is somewhere between zero and one. For the latter, the absolutevalue of the corresponding weight is equal to (but not greater than) one. This showsthat the influence of outliers is fundamentally bounded when the ε-insensitive lossfunction is used in the problem definition. Finally, note that the sign of the weight isequal to the sign of the negative error value, i.e., the weight tries to level out the errorin some sense.

4.3.3 ... for Least-Squares Support Vector Machine
As a second class of regression problems, we want to investigate a Least-Squares Sup-port Vector Machine. For a given training dataset, the loss functions have the form

ℓi(t) =
1
2
(t− yi)2,

see Proposition 4.2.1. Because the loss function is continuously differentiable, thesubdifferential at a given point is equal to the singleton set containing the derivativeonly, i.e.,
∂ℓi(t) = {ℓ′i(t)} = {t− yi}.

From the necessary optimality condition (4.3.2) it immediately follows that αi = yi − t.
At this point, we cannot make straightforward observations as in the previous sub-sections. This is due to the fact that the term yi − t (which is equal to the regressionerror) will typically be nonzero. As a consequence, in the solution of LS-SVM virtually alltraining samples will generate support vectors. Strictly speaking, one could argue thatthe term “Support Vector Machine” is not really applicable for this kind of problem.
Having said that, it is still possible to gain some insight from the optimality condi-tions. The conditions say that each term αi is proportional to the negative error of theassociated training sample. Taking into account the representation of the decisionfunction in (4.3.1), this means that the contribution of a single training sample to thedecision function is proportional to the error made by the decision function. In par-ticular, training samples which are true outliers tend to perturb the optimal decisionfunction badly.

4.4 Differentiable Approximations of Loss Functions
Up to now, we considered loss functions that were mainly motivated from a theoreticalpoint of view. The aim was to construct training problems which are able to generatedecision functions for a particular application. In particular, there was no special fo-cus on the practicability, i.e., on solving the resulting training problems. For instance,derivative-based solution methods require a differentiable objective function. Further-more, for the application of Newton-type methods one usually requires the objectivefunction to be at least twice differentiable.
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Of course, we have already discussed some examples of smooth loss functions, forinstance in Proposition 4.1.3 for binary classification problems and in Proposition 4.2.1for regression problems. However, these particular examples have non-zero deriva-tive everywhere and thus lead to a high number of support vectors as we have seen inthe previous sections. To overcome this drawback it is helpful to consider smooth ap-proximations of loss functions which have zero derivative on some appropriate subset.Later on, in Section 8.4, we will see that it is also desirable to consider loss functionsfor which the second derivative vanishes on a substantially large subset.

4.4.1 A Construction Principle
Subsequently, we want to introduce a simple approach for the construction of twicedifferentiable loss functions. We restrict our investigation to the max-function

m : R → R+,
x ↦→ m(x) := max{x, 0},

because it is the common building block for many loss functions that are frequentlyused for the formulation of classification and regression problems. The followingproposition outlines an approach for the construction of smooth approximations forthe maximum function.
Proposition 4.4.1 (smooth approximation of the max-function)
Let h : R → R+ be an integrable function satisfying

(a)
∫︂ ∞

−∞
h(x) dx = 1 and

(b) h(x) = h(−x) for all x ∈ R.
Then, the function ˆ︁m : R → R+ defined by

ˆ︁m(x) =
∫︂ x

−∞

∫︂ t

−∞
h(s) ds dt

is continuously differentiable with

ˆ︁m′(x) =
∫︂ x

−∞
h(s) ds for all x ∈ R. (4.4.1)

If h is continuous, the function ˆ︁m is twice continuously differentiable with

ˆ︁m′′(x) = h(x) for all x ∈ R. (4.4.2)
In any case, ˆ︁m approximates m from above in the sense that

ˆ︁m(x) ≥ m(x) for all x ∈ R, (4.4.3)
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lim
x→−∞

ˆ︁m(x) −m(x) = 0, lim
x→∞

ˆ︁m(x) −m(x) = 0, (4.4.4)
and,

max
x∈R

|ˆ︁m(x) −m(x)| = ˆ︁m(0). (4.4.5)
If furthermore,

(c) there exists some δ > 0 such that h(x) = 0 for x ∈ R \ (−δ, δ),
the approximation is exact outside the interval (−δ, δ), i.e.,

ˆ︁m(x) = m(x) for all x ∈ R \ (−δ, δ). (4.4.6)
In addition, the approximation error is bounded by

max
x∈R

|ˆ︁m(x) −m(x)| ≤ δ

2
. (4.4.7)

Proof. By means of the fundamental theorem of calculus we obtain that ˆ︁m is continu-ously differentiable, and its derivative has the form given in (4.4.1). In the same way itfollows that the function is twice continuously differentiable if h is continuous and thesecond derivative is given by (4.4.2). Moreover, by definition of ˆ︁m, we directly get
ˆ︁m(x) ≥ 0 for all x ∈ R

and
lim

x→−∞
ˆ︁m(x) −m(x) = lim

x→−∞
ˆ︁m(x) = 0.

Then, the symmetry of h can be used to obtain
∫︂ 0

−∞

∫︂ t

−∞
h(s) ds dt =

∫︂ ∞

0

∫︂ −t

−∞
h(s) ds dt =

∫︂ ∞

0

∫︂ ∞

t

h(s) ds dt.

This implies
ˆ︁m(x) =

∫︂ x

−∞

∫︂ t

−∞
h(s) ds dt

=

∫︂ 0

−∞

∫︂ t

−∞
h(s) ds dt+

∫︂ x

0

∫︂ t

−∞
h(s) ds dt

=

∫︂ ∞

0

∫︂ ∞

t

h(s) ds dt+
∫︂ x

0

(︃
1 −

∫︂ ∞

t

h(s) ds
)︃

dt

=

∫︂ ∞

x

∫︂ ∞

t

h(s) ds dt+ x.

(4.4.8)

Hence, it follows that
ˆ︁m(x) ≥ x for all x ∈ R

and
lim
x→∞

ˆ︁m(x) −m(x) = lim
x→∞

ˆ︁m(x) − x = 0.

Taking both parts together, one can see that (4.4.3) and (4.4.4) hold.
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Now, we can estimate the value of |ˆ︁m(x)−m(x)| by considering two cases. For x ≤ 0the difference is given by

ˆ︁m(x) −m(x) = ˆ︁m(x) =
∫︂ x

−∞

∫︂ t

−∞
h(s) ds dt ≥ 0,

which is increasing in x. For x ≥ 0 equality (4.4.8) shows
ˆ︁m(x) −m(x) = ˆ︁m(x) − x =

∫︂ ∞

x

∫︂ ∞

t

h(s) ds dt ≥ 0,

which implies that the difference is decreasing in x. Thus, the largest difference isattained at the point x = 0. This proves (4.4.5).Lastly, if the function h satisfies property (c), we directly obtain from the definitionof ˆ︁m that ˆ︁m(x) = 0 = m(x) for x ≤ −δ and from (4.4.8) that ˆ︁m(x) = x = m(x) for x ≥ δ.Hence, (4.4.6) is true. The estimate on the approximation error is equal to
ˆ︁m(0) =

∫︂ ∞

0

∫︂ ∞

t

h(s) ds dt =
∫︂ δ

0

∫︂ δ

t

h(s) ds dt ≤
∫︂ δ

0

1
2
dt =

δ

2
,

which shows (4.4.7).
4.4.2 Examples of Smooth Approximation of the Maximum

Function
Building on the idea of the previous proposition, we list three different examples fordifferentiable approximations of the maximum function. All the subsequent examplesare visualized in Figure 4.4.1. We start with the simplest possible example for a twicedifferentiable approximation, namely a piecewise cubic function.

Example 4.4.2 (approximation using a piecewise polynomial of degree 3)
Let h : R → R+ be a piecewise linear function defined by h(x) = max{0, 1 − |x|}. Then,
the function ˆ︁m defined by

ˆ︁m(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x < −1,
1
6(1 + x)3, if − 1 ≤ x < 0,
x+ 1

6(1 − x)3, if 0 ≤ x < 1,
x, if x ≥ 1

is an approximation for m with continuous second derivative.

In some applications it can be necessary to have an approximation of the maximumfunction with differentiable second derivative. The following function is a possible ex-ample for this case.
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Example 4.4.3 (approximation using a piecewise polynomial of degree 6)
Let h : R → R+ be a piecewise polynomial function defined by

h(x) =

{︄
15
16(x

2 − 1)2, if − 1 ≤ x ≤ 1,
0, otherwise.

Then, the function ˆ︁m defined by

ˆ︁m(x) =

⎧
⎪⎨
⎪⎩

0, if x < −1,
1
32 (x

6 − 5x4 + 15x2 + 16x+ 5) , if − 1 ≤ x < 1,
x, if x ≥ 1

is an approximation for m with differentiable second derivative.

Finally, we propose a third example for an approximation of the maximum functionwhich is rather easy to compute but does not possess a continuous second derivative.The latter fact implies that its applicability for practical methods may be restricted.Nevertheless, its simple form is very attractive from a computational point of view.
Example 4.4.4 (approximation using a piecewise polynomial of degree 2)
Let h : R → R+ be a piecewise constant function defined by

h(x) =

{︄
1, if −1 ≤ x ≤ 1,
0, otherwise.

Then, the function ˆ︁m defined by

ˆ︁m(x) =

⎧
⎪⎨
⎪⎩

0, if x < −1,
1
4(1 + x)2, if −1 ≤ x < 1,
x, if x ≥ 1

is an approximation for m which is continuously differentiable but not twice differen-
tiable.

4.4.3 Convex Conjugate of Approximations
The basic property of all proposed approximations for the maximum function is thatthey are differentiable. This means that they are also essentially smooth (see Defi-nition A.5.2). Thus, Theorem A.5.3 implies that the corresponding convex conjugatefunctions are essentially strictly convex.Consequently, the dual training problem has a unique solution if all loss functions inthe primal training problem are defined with the help of differentiable approximations
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of the maximum function. This property might be helpful for practical applications,in particular in the construction of dual training methods. Additionally, the specialdefinition of the approximation makes it possible to compute the convex conjugate asfollows.

Proposition 4.4.5 (convex conjugate of approximations of the maximum function)
Let ˆ︁m be an approximation of the maximum function according to Proposition 4.4.1
and suppose that h is strictly positive on the interval (−δ, δ) and zero everywhere else.
Then, the convex conjugate of this function is given by

ˆ︁m⋆(α) =

{︄
α (ˆ︁m′)−1 (α) − ˆ︁m

(︁
(ˆ︁m′)−1 (α)

)︁
, if α ∈ [0, 1]

∞, otherwise.
(4.4.9)

Proof. First, note that for α /∈ [0, 1] the conjugate function is infinite because from theequations in (4.4.4) it follows that
ˆ︁m⋆(α) = sup

x∈R
{αx− ˆ︁m(x)} = lim

x→−∞
(αx− ˆ︁m(x)) = lim

x→−∞
αx− lim

x→−∞
ˆ︁m(x) = ∞

if α < 0, and
ˆ︁m⋆(α) = sup

x∈R
{αx− ˆ︁m(x)} = lim

x→∞
(αx− ˆ︁m(x)) = lim

x→∞
(α− 1)x+ lim

x→∞
(x− ˆ︁m(x)) = ∞

if α > 1. At the boundary points of the interval (i.e., for α = 0 and α = 1) using (4.4.4)again we obtain
ˆ︁m⋆(0) = sup

x∈R
{−ˆ︁m(x)} = lim

x→−∞
(−ˆ︁m(x)) = 0

and
ˆ︁m⋆(1) = sup

x∈R
{x− ˆ︁m(x)} = lim

x→∞
(x− ˆ︁m(x)) = 0.

For α ∈ (0, 1), we can use that the supremum in the definition is attained at a point
x̄ ∈ [−δ, δ] which satisfies α ∈ ∂ ˆ︁m(x̄). Since we consider differentiable functions, thisis equivalent to α = ˆ︁m′(x̄).In the particular case when the defining function h is strictly positive on the interval
(−δ, δ), the function ˆ︁m′ is strictly increasing there and hence can be inverted. Then, thepoint x̄ is given by x̄ = (ˆ︁m′)−1(α). Taking all parts together, we see that the conjugatefunction is equal to (4.4.9).

For sake of completeness, we use the previous result to obtain the convex conjugatefunction for the two easier examples introduced in the previous subsection. Note thatthe results are only listed briefly here and any longer calculation is omitted for brevity.We start with the simpler approximation, which uses a piecewise quadratic function.
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Example 4.4.6 (continuation of Example 4.4.4)
Let the function ˆ︁m be defined according to Example 4.4.4.
Then, the derivative is given by

ˆ︁m′(x) =

⎧
⎪⎨
⎪⎩

0, if x < −1,
1
2(1 + x), if − 1 ≤ x < 1,
1, if x ≥ 1

and its convex conjugate can be computed by means of (4.4.9) as

ˆ︁m⋆(α) =

{︄
α(α− 1), if α ∈ [0, 1],
∞, if α /∈ [0, 1].

It should be emphasized that the form of the conjugate function in the previous exam-ple is convenient for the formulation of the dual problem since it is simply quadraticon its domain, which is rather easy to handle in practice. Especially, this means thatthe general structure of the dual problem does not change if the loss functions in theprimal training problem are approximated in this way and well-known approaches forthe solution of the dual problem are still applicable.
For the following example using a piecewise cubic function for the approximationof the maximum function the calculations are a bit more elaborate but neverthelessstraightforward.

Example 4.4.7 (continuation of Example 4.4.2)
Let the function ˆ︁m be defined according to Example 4.4.2.
Then, the derivative is given by

ˆ︁m′(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x < −1,
1
2(1 + x)2, if − 1 ≤ x < 0,
1 − 1

2(1 − x)2, if 0 ≤ x < 1,
1, if x ≥ 1

and its convex conjugate can be computed by means of (4.4.9) as

ˆ︁m⋆(α) =

⎧
⎪⎪⎨
⎪⎪⎩

α
(︂

2
√

2
3

√
α− 1

)︂
if α ∈ [0, 1

2 ],

(1 − α)
(︂

2
√

2
3

√
1 − α− 1

)︂
if α ∈ (1

2 , 1],

∞, if α /∈ [0, 1].

Finally, we note briefly that a scaling of the approximated maximum function leads toa particular scaling of its conjugate. Of course, this observation is also true for generalconvex function.
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Observation 4.4.8 (scaling of approximate maximum functions)
Let ˆ︁m(x) be some approximation of the maximum function and δ > 0. Then,

ˆ︁mδ(x) := δ ˆ︁m
(︁
δ−1x

)︁

is a scaled version of this approximation with

ˆ︁m⋆
δ(α) = sup

x∈R
{αx− ˆ︁mδ(x)} = sup

x∈R
{αx− δ ˆ︁m

(︁
δ−1x

)︁
} = sup

y∈R
{δαy − δ ˆ︁m(y)} = δ ˆ︁m⋆(α).

For the functions considered in the previous examples, the scaling by some param-eter δ ∈ (0, 1) leads to a reduction of the area, where the function is nonlinear whilekeeping its characteristic shape. In particular, the original maximum function is ob-tained in the limit δ → 0.

4.5 Dual View on Smoothed Optimality Conditions

Instead of the change of the loss functions in the primal problem, it is also possibleto consider a modification of the dual problem in order to realize certain propertiesof the solution. One example is the regularization approach which we discuss in thefollowing. For illustration purposes, we focus on a single practical training problem butmention that the same idea can equally be applied to other problems. We consider thedual Support Vector Classification problem (4.1.1) in the slightly modified formulation
min
α

1
2λ

α⊤Kα− y⊤α

s.t. 1⊤α = 0 and 0 ≤ Y α ≤ 1,
(4.5.1)

where Y := diag(y1, . . . , yn) denotes the diagonal matrix consisting of the labels. Forthis problem, the necessary and sufficient optimality conditions can be written as
1
λ
Kα− y + b1 = u− v,

1⊤α = 0,
0 ≤ Y α ⊥ u ≥ 0,

0 ≤ 1 − Y α ⊥ v ≥ 0.

(4.5.2)

On the other hand, the dual training problem (4.5.1) can also be treated by means ofbarrier function approach, which leads to a problem of the form
min
α

1
2λ

α⊤Kα− y⊤α− δ
n∑︂

i=1

(log(yiαi) + log(1 − yiαi))

s.t. 1⊤α = 0 and 0 < Y α < 1

(4.5.3)
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with some parameter δ > 0. This problem is again convex such that necessary andsufficient conditions for optimality can be stated as
1
λ
Kα− y + b1 = u− v,

1⊤α = 0,
Y α > 0, u > 0, u ◦ Y α = δ1,

1 − Y α > 0, v > 0, v ◦ (1 − Y α) = δ1,

(4.5.4)

where ◦ denotes the component-wise product, and we introduced artificial variables
ui = δ(yiαi)−1 and vi = δ(1− yiαi)−1 for i ∈ {1, . . . ,n} to represent some terms occur-ring in the gradient of the objective function.

In this form it is also easily noticeable that the optimality system (4.5.4) of the prob-lem with barrier function can be interpreted as a smoothed version of the associatedsystem (4.5.2) for the original problem (4.5.1), where the complementarity constraintis replaced by an approximated complementarity condition. Of course, this corre-spondence is well-known in the context of barrier function approaches, cf. [NW06,Chapter 19].
At this point, we can take a step back and note that this problem can be seen as adual formulation of a standard training problem as given in Corollary 3.4.1. The struc-ture of the corresponding primal problem is summarized in the following proposition.

Proposition 4.5.1 (dual smoothing for Support Vector Classification)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {−1, 1}n be a vector
of labels for a binary classification problem. Let δ > 0 and λ > 0 be fixed parameters.
Consider the Support Vector Classification problem

min
w,b

λ

2
∥w∥2 +

n∑︂

i=1

ˆ︁mδ (1 − yi(⟨w,φi⟩ + b)) (4.5.5)
with ˆ︁mδ(x) := δ ˜︁m

(︁
x
δ

)︁
and ˜︁m : R → R defined by

˜︁m(x) :=
x

2

⎛
⎝1 +

x

2
1

1 +
√︂

1 +
(︁
x
2

)︁2

⎞
⎠− log

(︄
2

(︄
1 +

√︃
1 +

(︂x
2

)︂2
)︄)︄

. (4.5.6)

Then, the dual optimization problem associated with (4.5.5) is given by (4.5.3).
Proof. Instead of verifying the statement directly, we start from the smoothed dualproblem (4.5.3) and take some steps to derive the associated primal problem. Thederivation in this direction is much more insightful as it shows how the approximationof the loss function is obtained.

First, we observe that the problem (4.5.3) has the form of the dual problem for a
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standard training problem (see Corollary 3.4.1) with

ℓ⋆i (α) =

{︄
αyi − δ(log(−yiα) + log(1 + yiα)), if yiα ∈ (−1, 0),
∞, otherwise.

(4.5.7)

In accordance with Section 4.1 and Section 4.4, we expect that the loss functions havethe form ℓi(t) = ˆ︁mδ(1−yit), where ˆ︁mδ is some approximation of the maximum function
m(x) = max{0,x} depending on the parameter δ. A simple computation shows that

ℓ⋆i (α) = sup
t∈R

{αt− ˆ︁mδ(1 − yit)}

= sup
r∈R

{αyi(1 − r) − ˆ︁mδ(r)}

= αyi + sup
r∈R

{r(−yiα) − ˆ︁mδ(r)}

= αyi + ˆ︁m⋆
δ(−yiα).

This, together with equation (4.5.7), leads to

ˆ︁m⋆
δ(β) =

{︄
−δ(log(β) + log(1 − β)), if β ∈ (0, 1),
∞, otherwise.

Then, we can compute the function ˆ︁mδ from
ˆ︁mδ(x) = ˆ︁m∗∗

δ (x) = sup
β∈(0,1)

{βx+ δ(log(β) + log(1 − β))}. (4.5.8)

Because the term in the supremum tends to minus infinity for β ↘ 0 and β ↗ 1, thesupremum is attained at the unique point β where the derivative vanishes, i.e., thepoint satisfying
x

δ
+

1
β
− 1

1 − β
= 0.

For x = 0, the solution is given by β = 1
2 . Otherwise, the equation is equivalent to

β(β − 1) +
δ

x
(2β − 1)

= β2 − 2β
(︃

1
2
− δ

x

)︃
− δ

x

=

(︃
β −

(︃
1
2
− δ

x

)︃)︃2

− δ

x
−
(︃

1
2
− δ

x

)︃2

= 0.

One can check that the unique solution of this equation in the interval (0, 1) is equal
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to
β =

1
2
− δ

x
+ sign(x)

√︄(︃
1
2
− δ

x

)︃2

+
δ

x

=
1
2

⎛
⎝1 − 2δ

x
+ sign(x)

√︄
1 +

(︃
2δ
x

)︃2
⎞
⎠

=
1
2

(︃
1 +

1
x

(︂√︁
x2 + (2δ)2 − 2δ

)︂)︃

=
1
2

(︂
1 + σ

(︂ x
2δ

)︂)︂

with
σ(x) := x

(︂√
1 + x2 − 1

)︂
=

x

1 +
√

1 + x2
.

Moreover,
1 − σ2(x) =

1 + 2
√

1 + x2 + 1 + x2 − x2

(1 +
√

1 + x2)2
=

2
1 +

√
1 + x2

.

This implies that
β(1 − β) =

1
4

(︂
1 + σ

(︂ x
2δ

)︂)︂(︂
1 − σ

(︂ x
2δ

)︂)︂
=

1
4

(︂
1 − σ2

(︂ x
2δ

)︂)︂
=

1
2
· 1

1 +
√︂

1 +
(︁
x
2δ

)︁2 .

Plugging this term into (4.5.8), we obtain ˆ︁mδ(x) = δ ˜︁m
(︁
x
δ

)︁ with ˜︁m as defined in (4.5.6).
A visual presentation of the resulting loss function is given in Figure 4.5.1. This ex-ample shows that the application of a barrier approach (or equivalently a smoothingof the KKT system) can actually be interpreted as a certain smoothing of the loss func-tions in the primal training problem.
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ℓ⋆i (α)
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∂ℓi(t) α

∂ℓ⋆i (α)

(a) Hinge loss function

t

ℓi(t) α

ℓ⋆i (α)

t

∂ℓi(t) α

∂ℓ⋆i (α)

(b) Indicator loss function (Maximal Margin Classifier)

t

ℓi(t) α

ℓ⋆i (α)

t

∂ℓi(t) α

∂ℓ⋆i (α)

(c) Logistic regression loss function
Figure 4.1.1: Examples of loss functions for classification problems together with theirconjugate functions and subdifferentials: yi = +1 in blue and yi = −1 inred
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t

ℓi(t)

α

ℓ⋆i (α)

t

ℓ′i(t)

α

(ℓ⋆i )′(t)

(a) Squared loss function

t

ℓi(t)

α

ℓ⋆i (α)

t

∂ℓi(t)

α

∂ℓ⋆i (α)

(b) ε-insensitive loss function with ε = 1
2

Figure 4.2.1: Examples of loss functions for regression problems together with theirconjugate functions and subdifferentials with labels yi = 1
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(a) for Example 4.4.4
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(b) for Example 4.4.2
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ˆ︁m(x)
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ˆ︁m′(x)

x
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(c) for Example 4.4.3
Figure 4.4.1: Approximations for the maximum function m

t

ℓi(t)

α

ℓ⋆i (α)

t

∂ℓi(t)
α

∂ℓ⋆i (α)

Figure 4.5.1: Regularized classification loss functions for τ = 1
10 together with the con-jugate function and subdifferential: yi = +1 in blue and yi = −1 in red, cf.Figure 4.1.1a



5 Examples of Non-Standard Training
Problems

The examples of the previous chapter followed the common structure of a standardtraining problem. In the present chapter, we aim to apply the duality framework toproblems which are not as typical. In particular, three different classes of trainingproblems are investigated which deviate from the standard training problem eitherbecause of a different loss structure or a change in the regularization term.
We start with the derivation of dual formulations for multi-class classification prob-lems (Section 5.1) which goes beyond what is known from the literature. Afterwards,we use duality theory to gain insight into the structure of ν-SVMs (Section 5.2). Fi-nally, the same theory is applied to Subspace SVMs in order to derive a relationshipto classical SVMs (Section 5.3).

5.1 Multi-Class Classification Problems
In the case of multi-class classification the output value yi assigned with a given inputpoint xi can have one of several values υj ∈ Y := {υ1, . . . , υr} which have no spe-cific order in general. Hence, the loss functions for binary classification and regressionproblem cannot be applied directly without further adaptation. Of course, as men-tioned briefly in Section 2.1, multi-class classification problems can be reduced to aset of binary classification problem. However, this is only practical if the number isclasses is not too high.

A fundamentally different way to handle multi-class classification problems is to de-fine a problem specific loss function. An idea that is typically used for the constructionof artificial neural networks is based on the soft-max loss function [Bis06, Section 4.2].It is a generalization of the logistic regression loss function which is also frequently ap-plied for modeling binary classification problems. This loss function can be translatedto fit into the general training problem structure as follows.First, we assume without loss of generality that Y = {1, . . . , r} for some r ∈ N.Then, we consider a separable loss functional with Di := Rr for i ∈ {1, . . . ,n}, andwe suppose that T is defined in a way that ti = [Tω]i is a real-valued vector. Eachcomponent of the vector ti corresponds to exactly one class in Y . This means that the
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training problem consists of finding a vector ω ∈ H such that the largest value in thevector ti is at the position which corresponds to the class of the output value yi foreach i ∈ {1, . . . ,n}. For instance, the value of

exp(ti,yi)∑︁r
k=1 exp(ti,k)

can be interpreted as the probability that the ith input point belongs to the class yi.Thus, a suitable training problem would be to find a decision function that maximizesthe likelihood of the correct class prediction. Equivalently, the logarithm of the likeli-hood can be maximized. The resulting term is also called categorical cross-entropy.
Suppose that a feature vector φi ∈ F is given for each data point. Then, a naturalchoice of a decision operator would be

T : (F × R)r → (Rr)n,
(wk, bk)rk=1 ↦→ ((⟨wk,φi⟩ + bk)rk=1)

n
i=1 ,

(5.1.1)
which is basically a concatenation of r standard decision operators. Then, the notion ofstandard regularization can be naturally extended for this operator. Hence, we obtaina formulation of a multi-class Support Vector Machine as follows.

Proposition 5.1.1 (multi-class SVM)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {1, . . . , r}n be a vector
of labels for a multi-class classification problem. The dual problem of the multi-class
Support Vector Machine

min
(wk,bk)rk=1

λ

2

r∑︂

k=1

∥wk∥2 +
n∑︂

i=1

log

(︄
r∑︂

k=1

exp (⟨φi,wk⟩ + bk)

)︄
− (⟨φi,wyi⟩ + byi)

is given by

min
α∈(Rn)r

1
2λ

r∑︂

k=1

α⊤
kKαk +

n∑︂

i=1

r∑︂

k=1

q(δkyi − [αk]i)

s.t. 1⊤αk = 0 for all k ∈ {1, . . . , r},
1⊤αi = 0, αi < eyi for all i ∈ {1, . . . ,n},

where the function q is defined according to (4.1.3).
Proof. In order to state the dual problem using Corollary 3.1.3, we need to computethe adjoint of the decision operator (5.1.1) and the conjugate functions of the regular-ization functional

R(ω) =
λ

2

r∑︂

k=1

∥wk∥2
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and of the loss functions
ℓi(t) := log

(︄
r∑︂

k=1

exp(tk)

)︄
− tyi

which define the separable loss functional.Note that the dual space is D⋆ = ((Rr)n)⋆ = ((Rr)⋆)n = (Rr)n, which can also beidentified with (Rn)r. Hence, for some element α ∈ D⋆ we write α = (αk)rk=1 ∈ (Rn)ror α = (αi)ni=1 ∈ (Rr)n depending on which representation makes the notation easier.The conjugate function of the regularization functional can be computed easily, be-cause it decomposes into known parts. The dual space of the product space H =
(F × R)r can be identified with the product of the corresponding dual spaces. More-over, the product spaces of the Hilbert spaces F and R can be identified with theirselves, i.e., H⋆ = (F × R)r. This means, we can write ω⋆ = (w⋆

k, b⋆k)rk=1 ∈ H⋆. It followsthat
R⋆(ω⋆) = sup

ω∈H
{⟨ω⋆,ω⟩ − R(ω)}

= sup
ω∈H

{︄
r∑︂

k=1

(⟨w⋆
k,wk⟩ + b⋆kbk) −

λ

2

r∑︂

k=1

∥wk∥2

}︄

=
r∑︂

k=1

sup
(wk,bk)∈F×R

{︃
⟨w⋆

k,wk⟩ + b⋆kbk −
λ

2
∥wk∥2

}︃

=

{︄
1
2λ

∑︁r
k=1 ∥wk∥2, if b⋆1 = · · · = b⋆r = 0,

∞, otherwise,

(5.1.2)

where the last equality follows as in the proof of Proposition 3.3.2.In order to compute the adjoint of T , we identify the dual space of D = (Rr)n withthe space (Rn)r. Then, we can write
T ⋆ : (Rn)r → (F × R)r,

α ↦→ T ⋆α =

(︄
n∑︂

i=1

[αk]iφi,1⊤αk

)︄r

k=1

(5.1.3)

using the same computation as in the proof of Proposition 3.3.1.The final part is the computation of ℓ⋆i in order to obtain L⋆ by means of Proposi-tion 3.2.1. Since the loss function is continuously differentiable, we can compute thegradient
∇ℓi(t) =

(︃
exp(tl)∑︁r
k=1 exp(tk)

)︃r

l=1
− eyi =

(︄
r∑︂

k=1

exp(tk)

)︄−1

(exp(tl))rl=1 − eyi .

Then, the supremum in the definition
ℓ⋆i (β) = sup

t∈Rr

{⟨β, t⟩ − ℓi(t)}
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is attained at a point t if and only if β = ∇ℓi(t). By summing up the entries of β weobtain the necessary condition

1⊤β = 1⊤∇ℓi(t) =
(︄

r∑︂

k=1

exp(tk)

)︄−1 r∑︂

l=1

exp(tl) − 1 = 0.

Moreover, for each l ∈ {1, . . . , r} it must hold that βl > −δlyi and
log(βl + δlyi) = tl − log

(︄
r∑︂

k=1

exp(tk)

)︄
(5.1.4)

in this case. Hence, we get
⟨β, t⟩ =

r∑︂

l=1

βl log(βl + δlyi) + log

(︄
r∑︂

k=1

exp(tk)

)︄
1⊤β =

r∑︂

l=1

βl log(βl + δlyi).

Finally, note that by means of (5.1.4) for l = yi it follows that
log(βyi + 1) = tyi − log

(︄
r∑︂

k=1

exp(tk)

)︄
= −ℓi(t).

This shows that
ℓ⋆i (β) =

r∑︂

k=1

βk log(βk + δkyi) + log(βyi + 1)

=
r∑︂

k=1

(βk log(βk + δkyi) + δkyi log(βk + δkyi))

=
r∑︂

k=1

(βk + δkyi) log(βk + δkyi)

=
r∑︂

k=1

q(βk + δkyi)

for β ∈ Rr with 1⊤β = 0 and β > −eyi for all k ∈ {1, . . . , r}. If β = −eyi ,
ℓ⋆i (β) = sup

t∈Rr

{−tyi − ℓi(t)} = sup
t∈Rr

{︄
− log

(︄
r∑︂

k=1

exp(tk)

)︄}︄
= ∞.

Finally, the dual problem is given by means of Corollary 3.1.3.
In the following, we consider another approach to treat multi-class classificationproblems using Support Vector Machines. Suppose that the vector of decisions isnormalized in the sense that 1⊤ti = 1 and 0 ≤ ti,k ≤ 1 for all k ∈ {1, . . . , r} and all

i ∈ {1, . . . ,n}. Then, the values can be interpreted as probabilities and the probabilityof right predictions is equal to
n∏︂

i=1

ti,yi .

This leads to an alternative formulation of a multi-class Support Vector Machines whichis presented in the following proposition.
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Proposition 5.1.2 (simplified multi-class SVM)
Suppose that {φi}ni=1 ⊆ F are given feature vectors and let y ∈ {1, . . . , r}n be a vector
of labels for a multi-class classification problem. The dual problem of the simplified
multi-class Support Vector Machine

min
(wk,bk)rk=1

λ

2

r∑︂

k=1

∥wk∥2 −
n∑︂

i=1

log (⟨φi,wyi⟩ + byi)

s.t.
r∑︂

k=1

⟨φi,wk⟩ + bk = 1 for all i ∈ {1, . . . ,n},

⟨φi,wk⟩ + bk ≥ 0 for all k ∈ {1, . . . , r} and i ∈ {1, . . . ,n}

is given by

min
α∈(Rn)r

1
2λ

r∑︂

k=1

α⊤
kKαk +

n∑︂

i=1

r∑︂

k=1

w([αi]yi − minαi) − [αi]yi , (5.1.5)
where w(x) := x− (1 + log(x)) for x ≥ 1 and w(x) := 0 otherwise.

Proof. The computation of the conjugate function associated with the regularizationterm has already been conducted in the proof of Proposition 5.1.1. Thus, we only needto compute the conjugate of the loss functions
ℓi(t) := − log(tyi) +

{︄
0, if 1⊤t = 1 and t ≥ 0,
∞, otherwise

of the separable loss functional. By definition, the conjugate of ℓi is given by
ℓ⋆i (β) = sup

t∈Rr

{⟨β, t⟩ − ℓi(t)} = sup
t≥0

1⊤t=1

{⟨β, t⟩ + log(tyi)}

This means that we need to compute the optimal value of the optimization problem
max
t∈Rr

⟨β, t⟩ + log(tyi)

s.t. 1⊤t = 1 and t ≥ 0

to obtain the value of the conjugate loss function. Note that the problem has a con-tinuous objective function and that the feasible set is non-empty and compact. Thismeans that there exists always a solution of this problem. Moreover, the constraints
1⊤t = tyi +

∑︂

k ̸=yi

tk = 1

and t ≥ 0 imply that tyi ≤ 1 and hence log(tyi) ≤ 0. Thus,
⟨β, t⟩ + log(tyi) ≤ ⟨β, t⟩ ≤ max{βk | k ∈ {1, . . . , r}} =: βmax
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for all feasible t ∈ Rr. Note that the maximum on the right-hand side of the inequalitycan be obtained if it is equal to βyi . Otherwise, δ := βmax−βyi > 0 and we can estimatethe value of the objective function by

⟨β, t⟩ + log(tyi) =
∑︂

k ̸=yi

βktk + βyityi + log(tyi)

≤ βmax

∑︂

k ̸=yi

tk + (βmax − δ)tyi + log(tyi)

= βmax − δtyi + log(tyi).

(5.1.6)

Subsequently, we consider two cases:
(a) If δ ≤ 1, it follows that 1 − δ ≥ 0 and hence

⟨β, t⟩ + log(tyi) ≤ βmax + (1 − δ)tyi − 1 ≤ βmax − δ = βyi

holds by means of (5.1.6), log(tyi) ≤ tyi − 1, and tyi ≤ 1. It is easy to see that thisupper bound is attained at the point t̄ := eyi .
(b) If δ > 1, we can use (5.1.6) again to derive

⟨β, t⟩ + log(tyi) ≤ βmax − 1 + log
(︃

1
δ

)︃
.

Now, let k ∈ argmax{βk | k ∈ {1, . . . , r}}. Then, the value on the right-hand sideis attained at the feasible point t̄ := 1
δ
eyi +

(︁
1 − 1

δ

)︁
ek since

⟨β, t̄⟩ + log(t̄yi) = βk

(︃
1 − 1

δ

)︃
+ βyi ·

1
δ

+ log
(︃

1
δ

)︃
= βmax − 1 + log

(︃
1
δ

)︃
.

Taking both cases together, it can be seen that
ℓ⋆i (β) = βyi +

{︄
0, if βyi ≥ maxβ − 1,
maxβ − βyi − 1 − log(maxβ − βyi), if βyi < maxβ − 1.

Finally, the dual problem stated in the proposition can be obtained by means of Propo-sition 3.2.1, equations (5.1.2) and (5.1.3), and, the definition in Corollary 3.1.3.
At first sight, the dual problem (5.1.5) does not seem to be tractable easily in practice.However, by means of the substitution minαi = ηi, it can be written equivalently as aconstrained optimization problem

min
α∈(Rn)r

1
2λ

r∑︂

k=1

α⊤
kKαk +

n∑︂

i=1

r∑︂

k=1

w([αi]yi − ηi) − [αi]yi

s.t. αi ≥ ηi1 for all i ∈ {1, . . . ,n}

with a differentiable objective function.
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5.2 ν-Support Vector Machines
Considering the practical importance of limiting the number of support vectors (as dis-cussed in Section 3.6) and the corresponding behavior of some typical training prob-lems presented in the previous chapter, one could try to incorporate an additionalrestriction into the training problem from the beginning. This is the aim of the presentsection and leads to the idea of ν-SVMs, see [CL01, CL02]. The optimization problemwhich we derive here is not new, but the motivation and procedure of derivation differssignificantly from that of the literature. In particular, we aim to embed the underlyingidea into the primal-dual framework.

For this reason, reconsider the dual problem (3.4.1) associated with a standard train-ing problem. In order to force the dual solution to be sparse, it would be reasonable toadd the constraint ∥α∥0 ≤ νn to the dual problem, where ∥α∥0 denotes the numberof nonzero components of α and ν ∈ [0, 1] is the maximum portion of support vectors.However, this constraint is not convex and hence would not help if we want to applyconvex duality theory. To circumvent this problem, a common approach is to replacethe term ∥ · ∥0 by an appropriate approximation. The closest convex approximation(in a particular sense) for this function is the absolute norm ∥ · ∥1. Thus, we follow upthe lines and examine what happens if the constraint ∥α∥1 ≤ νn is added to the dualtraining problem.
Subsequently, we want to explain the details of possible primal problems comingfrom the introduction of the additional constraint rather than just proposing a partic-ular problem. For this reason, our aim is to identify each part of the particular dualtraining problem with a suitable term in the general dual training problem (3.1.1). Westart by noting that the conjugate of the loss functional already matches that of a sep-arable loss functional given by Proposition 3.2.1, which means that it is not necessaryto modify the loss functional in the primal training problem.
On the other hand, both constraints, 1⊤α = 0 and ∥α∥1 ≤ νn, can be incorporatedinto the regularization functional if the decision operator is defined in the right way.To see this, consider the dual regularization term of the form

R⋆(T ⋆α) =

{︄
1
2λα

⊤Kα, if 1⊤α = 0 and ∥α∥1 ≤ νn,
∞, otherwise.

(5.2.1)
One possible choice of parts in the primal training problem that match this definitionis summarized in the following proposition.

Proposition 5.2.1 (first characterization of ν-SVM)
Suppose that {φi}ni=1 ⊆ F are given feature vectors. Let H = F ×Rn. Suppose that the
decision operator is defined by

T (w,β) := (⟨w,φi⟩ + βi)ni=1 (5.2.2)
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and the regularization operator is defined by

R(w,β) :=
λ

2
∥w∥2 +

νn

2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
. (5.2.3)

Then, equation (5.2.1) is satisfied.
If L is a separable loss functional, a primal formulation of the ν-SVM is given by

min
w,β

λ

2
∥w∥2 +

n∑︂

i=1

ℓi(⟨w,φi⟩ + βi) +
νn

2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
. (5.2.4)

Proof. First, we easily observe that
⟨(w,β),T ⋆α⟩ =

n∑︂

i=1

αi⟨w,φi⟩ + ⟨β,α⟩ = ⟨(⟨w,φi⟩)ni=1 + β,α⟩ = ⟨T (w,β),α⟩,

i.e., the adjoint decision operator is given by
T ⋆α =

(︄
n∑︂

i=1

αiφi,α

)︄
. (5.2.5)

In the next step, we show that the conjugate of the proposed regularization operatorequal to
˜︁R(w⋆,β⋆) :=

{︄
1
2λ∥w⋆∥2, if 1⊤β⋆ = 0 and ∥β⋆∥1 ≤ νn,
∞, otherwise.

(5.2.6)
For this reason, note that the R is convex and lower semicontinuous. This means that
R = R∗∗, i.e., it is sufficient to show that the conjugate of ˜︁R is equal to R in order toprove that ˜︁R is actually the conjugate of R. A straightforward calculation shows that

˜︁R⋆(w,β) = sup
w⋆,β⋆

{⟨(w,β), (w⋆,β⋆)⟩ − ˜︁R(w⋆,β⋆)}

= sup
w⋆

{︃
⟨w,w⋆⟩ − 1

2λ
∥w⋆∥2

}︃
+ sup

β⋆:1⊤β⋆=0, ∥β⋆∥1≤νn
{⟨β,β⋆⟩}.

Here, the first term is equal to λ
2∥w∥2, and it remains to consider the second term. Wecan see that

⟨β,β⋆⟩ =
∑︂

i:β⋆
i ≥0

βiβ
⋆
i +

∑︂

i:β⋆
i <0

βiβ
⋆
i ≤

nmax
i=1

βi
∑︂

i:β⋆
i ≥0

β⋆i +
n

min
i=1

βi
∑︂

i:β⋆
i <0

β⋆i .

Using the fact that
∑︂

i:β⋆
i ≥0

β⋆i =
1
2

⎛
⎝∑︂

i:β⋆
i ≥0

β⋆i −
∑︂

i:β⋆
i <0

β⋆i

⎞
⎠ =

1
2
∥β⋆∥1 and ∑︂

i:β⋆
i <0

β⋆i = −1
2
∥β⋆∥1
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for all β⋆ with 1⊤β⋆ = 0 together with the inequality ∥β⋆∥1 ≤ νn we obtain
⟨β,β⋆⟩ ≤

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
1
2
∥β⋆∥1 ≤

νn

2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
.

On the other hand, the right-hand side of this inequality is attained at the point
˜︁β⋆ = νn

2
(ei − ej) with i ∈ argmaxni=1 βi and j ∈ argminni=1 βi.

Since this point also satisfies 1⊤ ˜︁β⋆ = 0 and ∥˜︁β⋆∥1 ≤ νn, it follows that
sup

β⋆:1⊤β⋆=0, ∥β⋆∥1≤νn
{⟨β,β⋆⟩} =

νn

2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
.

This shows that the conjugate of ˜︁R is actually the function R defined according (5.2.3),i.e., R⋆ = ˜︁R. By taking together (5.2.5) and (5.2.6) we can see that the equality (5.2.1)holds indeed.
Formally, a primal training problem can be defined by using the definitions of Tand R from Proposition 5.2.1 together with a suitable separable loss functional. How-ever, the interpretation of the decision operator in (5.2.2) is a bit problematic becausethe decision has a sample-dependent offset βi instead of the usual bias term presentin other formulations. In particular, this means that it is not obvious how to derive anappropriate decision function from the solution of the training problem.
In a next step, we want to illustrate the differences between the standard trainingproblem (2.4.3) and the corresponding ν-SVM problem (5.2.4). Comparing these twoproblems, we can see that there are two basic differences. On the one hand, there issample-dependent bias term in each loss function of (5.2.4) instead of the indepen-dent bias in (2.4.3). On the other hand, the minimal and the maximal value of thesebias terms are used in another term of the regularization functional. Because of theadditional term

νn

2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃
,

in the objective function, the spread of the individual bias terms cannot be too largein a solution of the training problem. Moreover, the new regularization term does notdependent on the mean value of the individual offsets which means that these offsetscan actually replace an overall bias as it is the case in the standard training problem.
One could also argue that a natural choice for the definition of a sample-indepen-dent bias term in a decision function would be the mean value between the minimumand the maximum, i.e., to define a decision function

d(φ) := ⟨w,φ⟩ + b with b :=
1
2

(︃
n

min
i=1

βi +
nmax
i=1

βi

)︃
.

Using this idea together with an artificial variable
c =

1
2

(︃
nmax
i=1

βi −
n

min
i=1

βi

)︃

measuring the maximal distance from the bias, we can write the ν-SVM training prob-lem equivalently as follows.
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Proposition 5.2.2 (second characterization of ν-SVM)
The problem (5.2.4) is equivalent to

min
w,b,c,δ

λ

2
∥w∥2 +

n∑︂

i=1

ℓi(⟨w,φi⟩ + b+ δi) + νnc s.t. − c1 ≤ δ ≤ c1. (5.2.7)

This formulation of the ν-SVM training problem sheds some light on the behavior ofthe resulting decision function. Whereas in the standard formulation of the trainingproblem, the decision function is chosen in a way to minimize the loss directly, the ν-SVM formulation allows additionally for the compensation of particular mispredictions.The parameter ν controls how much cost has to be paid for these compensations. Es-pecially, together with the observations from Section 4.3, this means that the decisionoffsets are aligned such that the portion of outliers (or almost falsely predicted sam-ples) is potentially reduced in order to meet the dual constraint ∥α∥1 ≤ νn.
In a last step, our aim is to get rid of the variables δi in the formulation of the primaltraining problem. This is possible by restricting our investigation to monotone lossfunctions. For classification problems this is no true restriction because there lossfunctions are usually monotone. In the case of regression problems each loss functioncan be easily decomposed into the sum of a non-increasing and a non-decreasingpart. We summarize an equivalent formulation of the ν-SVM training problem in thesubsequent proposition.

Proposition 5.2.3 (third characterization of ν-SVM)
Suppose that each loss function ℓi is either non-increasing or non-decreasing and let

si :=

{︄
−1, if ℓi is non-decreasing,
+1, if ℓi is non-increasing

for i ∈ {1, . . . ,n}.

Then, problem (5.2.7) is equivalent to

min
w,b,c

λ

2
∥w∥2 +

n∑︂

i=1

ℓi(⟨w,φi⟩ + b+ sic) + νnc s.t. c ≥ 0. (5.2.8)

Proof. We show that (5.2.8) is equivalent to (5.2.7) and refer to Proposition 5.2.2 forthe equivalence to (5.2.4). Since the variables δi in (5.2.7) only occur in the loss termsand the loss functions are monotone, it is possible to determine the optimal values ofeach variable. Hence, we consider the ith loss term and distinguish two cases:
• If the ℓi is non-decreasing, the variable δi should be chosen as small as possiblein order to minimize the loss term. Due to the constraint −c ≤ δi, the minimalvalue is equal to −c = sic.
• If the ℓi is non-increasing, the variable δi should be chosen as large as possible inorder to minimize the loss term. Due to the constraint δi ≤ c, the maximal value
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is equal to c = sic.
Taking both cases together, it follows that there exists a solution of (5.2.7) (which is notnecessarily unique) such that δ = cs. Thus, δ in (5.2.7) can be replaced by cs leadingto the equivalent problem (5.2.8).

Finally, we come back to the dual formulation of the training problem. This consid-eration is especially important in order to obtain the corresponding optimality condi-tions.
Proposition 5.2.4 (dual ν-SVM training problem)
Suppose that the assumptions of Proposition 5.2.3 are satisfied. The dual problem as-
sociated with (5.2.8) is given by

min
α∈Rn

1
2λ

α⊤Kα +
n∑︂

i=1

ℓ⋆i (−αi)

s.t. 1⊤α = 0 and ∥α∥1 ≤ νn.

(5.2.9)

Proof. Strictly speaking, a proof that the dual problem has actually the proposed formis not necessary because the primal problem is equivalent to (5.2.4) and that problemwas constructed to be the dual of (5.2.9). However, we present a full derivation hereto make sure that everything is working as we expected.First, we formulate problem (5.2.8) as a general training problem by using H = F ×
R× R and defining

T (w, b, c) := (⟨w,φi⟩ + b+ sic)
n
i=1 and R(w, b, c) :=

λ

2
∥w∥2 + νnc.

Then, using a straightforward computation, we obtain
T ⋆α =

(︄
n∑︂

i=1

αiφi,1⊤α, s⊤α

)︄

and
R⋆(w⋆, b⋆, c⋆) =

{︄
1
2λ∥w⋆∥2, if b⋆ = 0 and c⋆ ≤ νn,
0, otherwise.

Finally, note that by Theorem 3.1.4 and Proposition 3.2.1 it follows that
−αi ∈ ∂ℓi(T (w, b, c)) for all i ∈ {1, . . . ,n}.

Because of the definition of si and the fact that the subdifferential for non-decreasingfunctions can only contain non-negative values, we get that |αi| = siαi ≥ 0 for all
i ∈ {1, . . . ,n}. Thus,

s⊤α =
n∑︂

i=1

siαi =
n∑︂

i=1

|αi| = ∥α∥1.

This means that (5.2.9) is actually the dual problem associated with (5.2.8) due to Corol-lary 3.1.3.
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Of course, the presence of the constraint ∥α∥1 ≤ νn in the dual problem does notguarantee that the solution (and hence the decision function) is sparse. In particular,the level of sparseness also depends on the concrete choice of the decision functions.In the extreme case, on could think of the definition of the training problem using lossfunctions not having zeros in the subdifferential. One example for this is the logisticregression loss function used in Proposition 4.1.3. Here, the additional constraint inthe dual ν-SVM formulation cannot lead to a sparsification of the dual solution.
In this view, one could expect that for Least-Squares Support Vector Machines asimilar observation is true because of the discussion in Subsection 4.3.3. However, inorder to apply Proposition 5.2.3 it is necessary to split the loss functions into a non-increasing and a non-decreasing part. In this context, a canonical choice would be toconsider the decomposition

ℓi(t) =
1
2
(t− yi)2 =

1
2

max{t− yi, 0}2 +
1
2

max{yi − t, 0}2.

Then, each one-sided loss function can actually have zeros in the subdifferential andthe addition of the constraint ∥α∥1 ≤ νn will generally lead to a sparser solution. Thisis because the resulting loss function (using the sample-dependent offset sic in (5.2.8))is equivalent to some ε-insensitive version of the squared loss function. Note that theamount of insensitivity (usually defined by the parameter ε) is equal to the optimalvalue of c. This value is not known beforehand and depends on the choice of thesparseness parameter ν.

5.3 Subspace Support Vector Machines
Another particularly interesting approach to obtain a sparse solution is the idea ofReduced-Set Support Vector Machines as introduced in [Bur96, BS96]. In its originalform, a standard training problem is solved and after that another optimization prob-lem is considered to approximate the found solution by means of a suitable reducedset of expansion vectors.

Subsequently, we follow the basic idea of restricting the solution to some pre-defin-ed subset. Of course, in its usual presentation, the motivation behind these methodsis not to introduce regularization to the training problem but to simplify the structureof the resulting decision model function. However, it is clear that any restriction of thevariables describing the model function implies a certain regularization. Moreover, us-ing convex duality theory, the interpretation of the subspace method as regularizationmechanism gives rise to some insight.
We start by defining the regularization functional associated with a Subspace Sup-port Vector Machine as follows.

Definition 5.3.1 (subspace regularization functional)
Let Fs ⊆ F be a closed subspace of F and fix λ > 0.



80 5.3 Subspace Support Vector Machines

Then, the subspace regularization functional is defined by

RFs : F × R → R ∪ {+∞}

(w, b) ↦→
{︄
λ
2∥w∥2, if w ∈ Fs,
∞, otherwise.

Subsequently, we compute the subdifferential and convex conjugate of the subspaceregularization functional.
Proposition 5.3.2 (properties of the subspace regularization functional)
Let Fs ⊆ F be a closed subspace of F .
Then, the subdifferential of RFs is given by

∂RFs(w, b) =

{︄
{(w⋆, b⋆) ∈ F × R | PFsw

⋆ = λw, b⋆ = 0}, if w ∈ Fs,
∅, otherwise

(5.3.1)
and its conjugate is equal to

R⋆
Fs

(w⋆, b⋆) =

{︄
1
2λ∥PFsw

⋆∥2, if b⋆ = 0,
∞, otherwise,

(5.3.2)
where PFs denotes the projection operator onto the subspace Fs.

Proof. We consider the defining inequality
RFs(w̃, b̃) −RFs(w, b) ≥ ⟨(w⋆, b⋆), (w̃, b̃) − (w, b)⟩ (5.3.3)

for the subdifferential of RFs at a fixed point (w, b) ∈ F × R according to Defini-tion A.1.2. First, note that this inequality cannot hold if (w, b) /∈ Fs × R because inthis case RFs(w, b) = ∞ by definition. On the other hand, the inequality is triviallysatisfied if (w̃, b̃) /∈ Fs × R. Hence, let (w, b), (w̃, b̃) ∈ Fs × R. Then, the left-hand sideof (5.3.3) can be written as
RFs(w̃, b̃) −RFs(w, b) =

λ

2
(︁
∥w̃∥2 − ∥w∥2)︁

Because the inequality (5.3.3) has to hold for arbitrary b̃ ∈ R and the left-hand side isindependent of b̃, it follows that b⋆ = 0. This means that the right-hand side of (5.3.3)is equal to
⟨(w⋆, b⋆), (w̃, b̃) − (w, b)⟩ = ⟨w⋆, w̃ −w⟩ = ⟨PFsw

⋆, w̃ −w⟩.
Note that the introduction of the projection operator PFs does not change the valuebecause w, w̃ ∈ Fs. By taking both parts together, we can observe that the inequal-ity (5.3.3) is equivalent to

λ

2
∥w̃∥2 − ⟨PFsw

⋆, w̃⟩ ≥ λ

2
∥w∥2 − ⟨PFsw

⋆,w⟩.
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Recall that this inequality must hold for all w̃ ∈ Fs. It is easy to see that the term on theleft-hand side attains its minimal value for w̃ = λ−1PFsw

⋆. Finally, in order for (5.3.3)to hold for all (w̃, b̃) ∈ F × R, it is necessary that
0 ≥ λ

2
∥w∥2 − ⟨PFsw

⋆,w⟩ +
1
2λ

∥PFsw
⋆∥2 =

1
2λ

∥λw − PFsw
⋆∥2,

i.e., PFsw
⋆ = λw. This shows that the subdifferential of RFs is given by (5.3.1).In order to compute the conjugate of RFs we use the definition from Definition A.2.1to obtain

R⋆
Fs

(w⋆, b⋆) = sup
(w,b)∈F×b

{⟨(w⋆, b⋆), (w, b)⟩ − RFs(w, b)}

= sup
(w,b)∈Fs×b

{︃
⟨(PFsw

⋆, b⋆), (w, b)⟩ − λ

2
∥w∥2

}︃

=

⎧
⎨
⎩

sup
w∈Fs

{︁
⟨PFsw

⋆,w⟩ − λ
2∥w∥2

}︁
, if b⋆ = 0,

∞, otherwise.

The supremum in the last term is attained for w = λ−1PFsw
⋆, which proves (5.3.2).

Having the subdifferential and the convex conjugate of the subspace regularizationoperator at hand, we can proceed to derive the dual optimization problem and opti-mality conditions for a general formulation of a Subspace Support Vector Machine.
Corollary 5.3.3 (dual problem for Subspace SVM)
Let Fs ⊆ F be a closed subspace of F . Suppose that T is the standard decision operator
and L is a separable loss functional such that Assumption 3.1.2 is satisfied with R =
RFs .
Then, the dual training problem associated with

min
w∈Fs
b∈R

λ

2
∥w∥2 +

n∑︂

i=1

ℓi(⟨w,φi⟩ + b) (5.3.4)
is given by

min
α∈Rn

1
2λ

α⊤Ksα +
n∑︂

i=1

ℓ⋆i (−αi) s.t. 1⊤α = 0, (5.3.5)
where Ks ∈ Rn×n is the projected kernel matrix defined by

[Ks]ij = ⟨PFsφi,PFsφj⟩ for i, j ∈ {1, . . . ,n}.

Proof. By taking together the results of Proposition 3.3.1 and Proposition 5.3.2, we get

R⋆
Fs

(T ⋆α) =

⎧
⎪⎪⎨
⎪⎪⎩

1
2λ

⃦⃦
⃦⃦
⃦PFs

n∑︂

i=1

αiφi

⃦⃦
⃦⃦
⃦

2

, if 1⊤α = 0,

∞, otherwise.
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Then, the term can be simplified using
⃦⃦
⃦⃦
⃦PFs

n∑︂

i=1

αiφi

⃦⃦
⃦⃦
⃦

2

=

⃦⃦
⃦⃦
⃦

n∑︂

i=1

αiPFsφi

⃦⃦
⃦⃦
⃦

2

=
n∑︂

i=1

n∑︂

j=1

αiαj ⟨PFsφi,PFsφj⟩ = α⊤Ksα.

Finally, we apply Corollary 3.1.3 together with Proposition 3.2.1 to obtain the dual prob-lem as stated in (5.3.5).
For sake of completeness, we also provide a detailed formulation of the optimalityconditions for the Subspace SVM as follows.

Corollary 5.3.4 (optimality conditions for Subspace SVM)
Let the assumptions of Corollary 5.3.3 be satisfied.
Then, (w, b) ∈ F ×R is a solution of (5.3.4) if and only if there exists α ∈ Rn such that

1⊤α = 0, (5.3.6)
λw =

n∑︂

i=1

αiPFsφi, (5.3.7)
and

−αi ∈ ∂ℓi(⟨w,φi⟩ + b) for all i ∈ {1, . . . ,n}. (5.3.8)
In this case, α is also a solution of the dual problem (5.3.5).

Proof. The optimality conditions follow directly from Theorem 3.1.4, Proposition 3.2.1,and Proposition 5.3.2.
Now, we can compare the dual and the optimality conditions of the Subspace SVMwith that of the standard SVM given in Corollary 3.4.1 and Corollary 3.4.2. First, wecan see that the only difference between the dual problems (3.4.1) and (5.3.5) is in thedifferent choice of the kernel matrix, namely K and Ks, respectively. Furthermore,the new optimality conditions (5.3.6) and (5.3.8) are identical to the conditions (3.4.2)and (3.4.4) of the standard training problem. The only difference in the optimalityconditions lies in (5.3.7), where an additional projection is present opposed to thecase of (3.4.3).



6 Reformulations of the Primal
Training Problem

In this chapter, we consider some particular aspects connected to the training of Sup-port Vector Machines using finite-dimensional problems. In particular, we present dif-ferent formulations of the primal training problem and investigate their relationships.Moreover, the relation to a dual optimality system is considered. This preliminary worksubstantially extends what is known from the literature and lays the foundation for theapplication of derivative-based primal training methods in Chapter 8.
Initially, we state a simple finite-dimensional formulation of the training problem(Section 6.1) which is then refined by means of suitably defined bijections (Section 6.2).The applied idea immediately leads to another finite-dimensional problem formulation(Section 6.3) retaining the uniformly convex part in the objective function of the orig-inal training problem. Finally, we discuss the relation between the finite-dimensionalformulations of the primal training problem and the associated dual problem (Sec-tion 6.4). By means of these investigations we are able to define a system of nonlinearequations which is equivalent to the training problem under certain assumptions (Sec-tion 6.5).

6.1 First Finite-Dimensional Formulation

Recall that, due to the Representer Theorem (stated in Corollary 3.5.1), for any solu-tion (w, b) ∈ F × R of the primal training problem, it follows that
w =

1
λ

n∑︂

i=1

αiφi, (6.1.1)
where α ∈ Rn is a solution of the associated dual training problem. In the following,we focus on the primal formulation of the training problem only and ignore the factthat α ∈ Rn is closely related to a dual solution for a moment.A first finite-dimensional formulation of the training problem is based solely on theprevious observation. Plugging the representation ofw of (6.1.1) into the original train-
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ing problem (2.4.3), we obtain the problem
min
α∈Rn

b∈R

ψpf(α, b) (6.1.2)
with the objective function defined by

ψpf(α, b) :=
1
2λ

α⊤Kα +
n∑︂

i=1

ℓi

(︃
1
λ

[Kα]i + b

)︃
, (6.1.3)

where the kernel matrix K is defined according to Definition 3.3.3. We call this prob-lem the finite-dimensional primal training problem. The equivalence between the pri-mal training problem (2.4.3) and problem (6.1.2) can be formulated as follows.
Proposition 6.1.1 (equivalent primal training problem)
Let (2.4.3) be a standard training problem according to Definition 2.4.5. Then, the opti-
mization problems (2.4.3) and (6.1.2) are equivalent in the sense that

• if (w, b) ∈ F × R is a solution of the primal training problem (2.4.3), then there
exists some α ∈ Rn such that (6.1.1) holds and (α, b) is a solution of the finite-
dimensional primal training problem (6.1.2), and

• if (α, b) ∈ Rn × R is a solution of the finite-dimensional primal training prob-
lem (6.1.2), then (w, b) with w defined according to (6.1.1) is a solution of the
primal training problem (2.4.3).

As we have seen in Section 3.8 (particularly, in Corollary 3.8.1), the w-part of the solu-tion is unique if the standard regularization operator is used. This is exactly the settingthat we consider here. However, the substitution of the vector w by its expansion candestroy this uniqueness as it may introduce additional ambiguity.In the formulation of the training problem in (6.1.2) this can be seen from the factthat any offset δ ∈ ker(K) can be added to the variable α without changing the objec-tive function at all. When training methods are under consideration, this degenerationproperty can lead to additional difficulties. We will discuss the resulting issues and howto handle them later on in the subsequent sections.
Remark 6.1.2 (application of ν-SVMs)
Note that the assertion of Proposition 6.1.1 is also true for the ν-SVM training problem
introduced in (5.2.8) if the additional variable c ∈ R is added. This means that most
of the observations and computations below can be transferred to this problem, which
can have beneficial properties for practical application. We do not present every step for
that problem here in order to keep the presentation simple.

Subsequently, the finite-dimensional training problem (6.1.2) forms the basis of ourinvestigation. Of course, the main motivation for considering (6.1.2) instead of (2.4.3)is that it is written in terms of a finite number of variables. This means that it is quitestraightforward to treat it practically using standard optimization methods.
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While considering the primal formulation of the training problem, we want to studythe application of gradient-based optimization methods and second-order methods.For this reason, we present the particular form of the gradient of the objective func-tion ψpf in the following proposition.

Proposition 6.1.3 (gradient of the training objective function)
Let (2.4.3) be a standard training problem according to Definition 2.4.5 and let ψpf be
defined according to (6.1.3). If the loss functions ℓi (i ∈ {1, . . . ,n}) are differentiable, the
gradient of ψpf is given by

∇ψpf(α, b) =

⎛
⎝

1
λ
K(α + g(α, b))

1⊤g(α, b)

⎞
⎠ (6.1.4)

with
gi(α, b) := ℓ′i

(︃
1
λ

[Kα]i + b

)︃
for i ∈ {1, . . . ,n}. (6.1.5)

Moreover, for the application of second-order methods it is necessary to compute theHessian of the objective function. This is done in the following proposition.
Proposition 6.1.4 (Hessian of the training objective function)
Let ψpf be defined according to (6.1.2). If the loss functions ℓi (i ∈ {1, . . . ,n}) are twice
differentiable, the Hessian of ψpf is given by

∇2ψpf(α, b) =
1
λ

⎛
⎝K + 1

λ
KHK KH1

1⊤HK λ1⊤H1

⎞
⎠

with
hi(α, b) := ℓ′′i

(︃
1
λ

[Kα]i + b

)︃
for i ∈ {1, . . . ,n}

and the diagonal matrix H := diag(h(α, b)).

The previous observations will be used in Chapter 8 for the construction of efficientprimal training methods.

6.2 Equivalent Formulation using a Bijection

Now, we come back to the consideration of the equivalence relation between the prob-lems (2.4.3) and (6.1.2) given in Proposition 6.1.1 and its implications to the applicationof training methods. For the moment we postpone the discussion of problems associ-ated with the possible non-uniqueness of the variable b in the solution and concentrate
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on the relation between the variables w and α.
As we have argued above, the finite-dimensional problem (6.1.2) has no unique so-lution if the kernel matrix has non-trivial null space. In order to construct an equivalenttraining problem without losing the partial uniqueness, we consider two particular bi-jective linear operators subsequently.

Proposition 6.2.1 (bijections between Fn and ker(K)⊥)
Let Fn := span{φ1, . . . ,φn} be the finite-dimensional subspace of F generated by the
feature vectors φ1, . . . ,φn ∈ F . Denote the associated kernel matrix according to Def-
inition 3.3.3 by K. Let K 1

2 denote the square root (i.e., the unique symmetric positive
semi-definite matrix satisfying (K

1
2 )2 = K) of the positive semi-definite matrix K.

Then, we have the following two bijections.
(a) The linear operator

Φ : ker(K)⊥ → Fn,

α ↦→ Φα :=
1
λ

n∑︂

i=1

αiφi

(6.2.1)
is bijective.

(b) It holds that ker(K) = ker(K
1
2 ) and the linear operator

K
1
2 : ker(K)⊥ → ker(K)⊥

is bijective.

Proof. Suppose that α, ᾱ ∈ ker(K)⊥ satisfy Φα = Φᾱ. Then, multiplication of theequation by φi ∈ Fn for i ∈ {1, . . . ,n} yields the equation Kα = Kᾱ. This meansthat α− ᾱ ∈ ker(K). But we also have that α− ᾱ ∈ ker(K)⊥ by definition. Thus, thedifference lies in ker(K) ∩ ker(K)⊥ = {0}, i.e., α = ᾱ, which proves part (a).
In order to check the facts about K 1

2 in part (b), we first note that the square rootof the positive semi-definite matrix K is uniquely defined, cf. [HJ12, Theorem 7.2.6].Suppose that K = V ΣV ⊤ is the spectral decomposition of K with an orthogonalmatrix V and a non-negative diagonal matrix Σ. Then, the square root of K is givenby K
1
2 = V Σ

1
2V ⊤. Using this representation it is easy to see that

ker(K) = ker(V ΣV ⊤) = ker(ΣV ⊤) = ker(Σ
1
2V ⊤) = ker(V Σ

1
2V ⊤) = ker(K

1
2 ).

Moreover, the symmetry of K 1
2 implies that im(K

1
2 ) = ker((K

1
2 )⊤)⊥ = ker(K

1
2 )⊥.

Hence, K 1
2 (seen as a linear operator on ker(K)⊥) clearly is a bijection.

As a first consequence of this proposition, we obtain an optimization problem whichis equivalent to the original training problem in the sense that there is a bijection be-tween feasible points. This means that the uniqueness of solutions is preserved nat-urally.
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Proposition 6.2.2 (equivalent primal training problem)
Let (2.4.3) be a standard training problem according to Definition 2.4.5.
Then, the optimization problem (2.4.3) is equivalent to

min
α∈Rn

b∈R

ψpf(α, b) s.t. α ∈ ker(K)⊥ (6.2.2)
in the sense that (w, b) ∈ F ×R is a solution of the (2.4.3) if and only if (α, b) ∈ Rn×R
is a solution of (6.2.2) and Φα = w.

Note that problem (6.2.2) is not suitable for applications because the constraint α ∈
ker(K)⊥ cannot be handled in practice due to a large size of the kernel matrix K.Nevertheless, it provides a convenient basis for further theoretical investigations.

6.3 Second Finite-Dimensional Formulation

Aside from the additional constraint α ∈ ker(K)⊥ in (6.2.2), there is another possibledownside associated with the finite-dimensional formulations in (6.1.2) and (6.2.2). Af-ter the transformation ofw using the linear operatorΦ, the resulting objective functionhas not a uniformly convex part anymore. On the one hand, this possibly results in aloss of uniqueness of the solution as we have already mentioned above. On the otherhand, it can prevent the application of Newton’s methods because of zero eigenval-ues of the Hessian matrix. To circumvent this problem, we apply the second bijectiveoperator of Proposition 6.2.1 that makes it possible to recover the original structureof the regularization term as follows.
Proposition 6.3.1 (another equivalent primal training problem)
Let (2.4.3) be a standard training problem according to Definition 2.4.5.
Then, the optimization problem (2.4.3) is equivalent to

min
α̃∈Rn

b∈R

ψ̃pf(α̃, b) (6.3.1)
with

ψ̃pf(α̃, b) :=
1
2λ

∥α̃∥2 +
n∑︂

i=1

ℓi

(︃
1
λ

[K
1
2 α̃]i + b

)︃
(6.3.2)

in the sense that (w, b) ∈ F ×R is a solution of (2.4.3) if and only if (α̃, b) ∈ Rn×R is a
solution of (6.3.1) and ΦK− 1

2 α̃ = w. In particular, the solution satisfies α̃ ∈ ker(K)⊥

such that the term K− 1
2 α̃ is well-defined.

Proof. To see that the problems are equivalent, we use the two bijections Φ and K
1
2

proposed in Proposition 6.2.1. First, the bijective transformation w = Φα between
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w ∈ Fn and α ∈ ker(K)⊥ yields that problem (2.4.3) is equivalent to (6.1.2) if theconstraint α ∈ ker(K)⊥ is added. Second, in the same way, the problem (6.1.2) is
equivalent to (6.3.1) with α̃ = K

1
2α under the additional constraints α ∈ ker(K)⊥ and

α̃ ∈ ker(K)⊥, respectively. Taking both transformations together, the equivalencebetween (6.1.2) and (6.3.1) follows, again with the additional constraint α̃ ∈ ker(K)⊥.
Finally, we show that it is not necessary to add this constraint because any solutionof the problem satisfies it anyway. For this purpose, let (α̃, b) ∈ Rn × R and suppose

that α̃ = α̃0 + α̃1 with α̃0 ∈ ker(K) and α̃1 ∈ ker(K)⊥. Then, K 1
2 α̃ = K

1
2 α̃1 and weobtain

ψ̃pf(α̃, b) =
1
2λ

∥α̃0∥2 +
1
2λ

∥α̃1∥2 +
n∑︂

i=1

ℓi

(︃
1
λ

[K
1
2 α̃1]i + b

)︃
=

1
2λ

∥α̃0∥2 + ψ̃pf(α̃
1, b).

This means that the point (α̃, b) can only be a solution of problem (6.3.1) if α̃0 = 0,i.e., the condition α̃ ∈ ker(K)⊥ is necessary for optimality and the constraint would beredundant in (6.3.1).

In order to prepare for the application of derivative-based methods in Chapter 8,we state the form of the gradient and the Hessian of the objective function ψ̃pf below.The given formulas can be verified by means of simple computations.
Proposition 6.3.2 (gradient and Hessian of the second training objective function)
Let (2.4.3) be a standard training problem according to Definition 2.4.5 and let ψ̃pf be
defined according to (6.3.2).
Then, we obtain the following representations for the first and second-order derivatives
of ψ̃pf .

(a) If the loss functions ℓi for i ∈ {1, . . . ,n} are differentiable, the gradient of ψ̃pf is
given by

∇ψ̃pf(α̃, b) =

⎛
⎝

1
λ
(α̃ + K

1
2 g̃(α̃, b))

1⊤g̃(α̃, b)

⎞
⎠ (6.3.3)

with g̃i(α̃, b) := ℓ′i

(︂
1
λ
[K

1
2 α̃]i + b

)︂
for i ∈ {1, . . . ,n}.

(b) Moreover, if the loss functions ℓi for i ∈ {1, . . . ,n} are twice differentiable, the
Hessian of ψ̃pf is given by

∇2ψ̃pf(α̃, b) =
1
λ

⎛
⎝I + 1

λ
K

1
2H̃K

1
2 K

1
2H̃1

1⊤H̃K
1
2 λ1⊤H̃1

⎞
⎠

with h̃i(α̃, b) := ℓ′′i

(︂
1
λ
[K

1
2 α̃]i + b

)︂
for i ∈ {1, . . . ,n} and H̃ := diag(h̃(α̃, b)).
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6.4 Review of Dual Optimality Conditions

In the remaining part of this chapter, we focus on the connection between the dualtraining problem (3.4.1) and the finite-dimensional primal training problem (6.1.2). Forthe derivation of the latter problem we already used the Representer Theorem (cf.Corollary 3.5.1) which indicates that the two problems must be related in some sense.However, there is no simple one-to-one relation between thos problems in general.This claim is illustrated by the following example.
Example 6.4.1 (difference between dual and finite-dimensional primal problem)
Consider a standard training problem given by the training samples

φ1 := 0, ℓ1(t) =
1
2
(t− 1)2,

φ2 := 0, ℓ2(t) =
1
2
(t+ 1)2.

Then, K = O ∈ R2×2, and the conjugate loss functions are given by

ℓ⋆1(−α1) =
1
2
α2

1 − α1 =
1
2
(α1 − 1)2 − 1

2
,

ℓ⋆2(−α2) =
1
2
α2

2 + α2 =
1
2
(α2 + 1)2 − 1

2
.

For the different formulation of the training problem, we obtain the following:
(a) The finite-dimensional primal training problem in (6.1.2) reads as

min
α1,α2,b∈R

1
2
(b− 1)2 +

1
2
(b+ 1)2.

Thus, any point (α, b) ∈ R2 × R with b = 0 is a solution of this problem.
(b) The finite-dimensional primal training problem with additional constraint given

by (6.2.2) has the unique solution (α, b) = (0, 0) ∈ R2 ×R, because ker(K) = R2

implies ker(K)⊥ = {0}.
(c) The dual problem is given by

min
α∈R2

1
2
(α1 − 1)2 +

1
2
(α2 + 1)2 − 1 s.t. α1 + α2 = 0.

This problem has the unique solution α = (1,−1) ∈ R2.
This shows that the solution of the dual problem is generally not equal to the α-part of
the solution of the problems (6.1.2) or (6.2.2).

Because of the previous observations, we cannot expect to obtain the dual solutiondirectly by solving problem (6.1.2). However, in view of the optimality conditions given
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in Corollary 3.6.3 one can indeed expect that it is possible to fix this issue. We startthe discussion by refining the previous statement about dual optimality conditions.
Corollary 6.4.2 (system of conditions for the dual training problem)
Consider a standard training problem as in Definition 2.4.5 and suppose that Assump-
tion 3.1.2 holds. Consider the system of conditions

−αi ∈ ∂ℓi

(︄
1
λ

n∑︂

j=1

αj⟨φi,φj⟩ + b

)︄
for all i ∈ {1, . . . ,n},

1⊤α = 0.

(6.4.1)

(a) A point α ∈ Rn is a solution of the dual training problem (3.4.1) if and only if there
exists some b ∈ R such that the system (6.4.1) is satisfied.

(b) For any solution (α, b) ∈ Rn×R of (6.4.1), the point (w, b) ∈ F×R with w = Φα
is a solution of the primal training problem (2.4.3).

(c) Any solution of the system (6.4.1) is also a solution of the finite-dimensional primal
training problem (6.1.2).

Proof. Assertion (a) is already given in Corollary 3.6.3 and assertion (b) follows fromCorollary 3.4.2. Hence, it remains to show that assertion (c) is correct. For this reason,let (α, b) ∈ Rn × R be a solution of (6.4.1). Of course, (α, b) is also a feasible pointfor (6.1.2). Then, because (w, b) with w = Φα is optimal for (2.4.3), the point (α, b)must also be a solution of (6.1.2), cf. Proposition 6.1.1.
Now there is still one open question, namely whether it is possible to obtain a solu-tion of the dual training problem from a solution of (6.1.2). In the following, we showthat one cannot expect that a simple procedure solves this problem in general. Theexample follows a similar structure as the previous Example 6.4.1 and reinforces theobservation of the latter.

Example 6.4.3 (choice of a dual solution)
Consider a standard training problem given by the training samples

φi := 0 and ℓi(t) := |t| for i ∈ {1, 2, 3}.

Then, K = O ∈ R3×3, and the conjugate loss functions are given by

ℓ⋆i (−α) =

{︄
0, if α ∈ [−1, 1],
∞, otherwise,

for i ∈ {1, 2, 3}.
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(a) The primal training problem is given by

min
w∈F
b∈R

λ

2
∥w∥2 + 3|b|

and has the unique solution (w, b) = (0, 0) ∈ F × R.
(b) The dual training problem is given by

min
α∈R3

0 s.t. α1 + α2 + α3 = 0, α ∈ [−1, 1]3.

Any feasible point of this problem is also a solution.
(c) The finite-dimensional formulation in (6.1.2) can be written as

min
α∈R3

b∈R

3|b|

and has solutions (α, b) ∈ R3 × R with arbitrary α ∈ R3 and b = 0.
This shows again that the solution sets of the problems (3.4.1) and (6.1.2) are in general
not equal. Note that any solution of the second problem nevertheless leads to the same
primal solution under the transformation w = Φα.
Finally, we consider the optimality conditions given in Corollary 3.4.3. It is easy to see that
the equation (3.4.3) is always satisfied because w = 0 follows from φi = 0. Moreover,
from (3.4.4) it follows that

−αi ∈ [−1, 1] for i ∈ {1, 2, 3}

and the equation 1⊤α = 0 must additionally be satisfied for a dual solution according
to (3.4.2).
Notably, this example shows that for the definition of a dual solution it is not sufficient
to consider the conditions (3.4.4) alone. For instance, choosing α1 = α2 = 1 first makes
it impossible to find a dual solution because the two remaining conditions α3 ∈ [−1, 1]
and 1⊤α = 0 are then incompatible.

6.5 Formulation as a System of Nonlinear Equations

A possible approach to circumvent the previously described problem is to make surethat the dual solution is unique. Under appropriate conditions (for instance Assump-tion 3.1.2), it follows that the dual training problem is solvable due to Corollary 3.1.3.For a standard training problem this assertion is also given in Corollary 3.4.1. In orderto state a sufficient condition for the uniqueness of the solution, we can use the rela-tionship between essential strict convexity and essential smoothness summarized inTheorem A.5.3. This observation leads directly to the following assertion.
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Proposition 6.5.1 (unique dual solution)
Consider a standard training problem as in Definition 2.4.5 with essentially differentiable
loss functions and suppose that Assumption 3.1.2 holds.
Then, the dual training problem (3.4.1) has a unique solution.

Proof. Due to Corollary 3.4.1, the dual training problem has a solution. Moreover,because the loss functions are essentially smooth, the conjugate loss functions ℓ⋆i areessentially strictly convex for all i ∈ {1, . . . ,n} due to Theorem A.5.3. This implies thatthe objective function of the dual training problem (3.4.1) is also essentially strictlyconvex. Thus, the solution of this problem must be unique.
For differentiable loss functions, the assertion of Corollary 6.4.2 can be further re-fined as follows. Note that we use differentiable instead of only essentially smoothfunctions to simplify the presentation here. In an analog way, the system can be writtendown in a more general context. However, then it is necessary to add conditions whichguarantee that the derivative of the loss functions exists at the considered points.

Corollary 6.5.2 (system of nonlinear equations for the training problem)
Consider a standard training problem as in Definition 2.4.5 with differentiable loss func-
tions and suppose that Assumption 3.1.2 holds. Consider the system of nonlinear equa-
tions

F (α, b) :=

⎛
⎝α + g(α, b)

1⊤α

⎞
⎠ =

⎛
⎝0

0

⎞
⎠ (6.5.1)

with g defined in (6.1.5).
(a) A point α ∈ Rn is a solution of the dual training problem (3.4.1) if and only if there

exists some b ∈ R such that the system (6.5.1) is satisfied.
(b) For any solution (α, b) ∈ Rn×R of (6.5.1), the point (w, b) ∈ F×R with w = Φα

is a solution of the primal training problem (2.4.3).
(c) Any solution of the system (6.5.1) is also a solution of the finite-dimensional primal

training problem (6.1.2).
In a next step, we want to make a connection between the primal training problemand the associated system of nonlinear equations for the case that the solution of theformer is unique.

Proposition 6.5.3 (system of nonlinear equations for the training problem)
Consider a standard training problem as in Definition 2.4.5 with differentiable loss func-
tions and suppose that Assumption 3.1.2 holds. Suppose that the primal training prob-
lem (2.4.3) has a unique solution (w⋆, b⋆) ∈ F × R. Then, the following assertions are
valid.
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(a) The system (6.5.1) has a unique solution (α⋆⋆, b⋆⋆).
(b) The point α⋆⋆ is equal to the unique solution of the dual training problem (3.4.1)

and b⋆⋆ satisfies (3.6.4).
(c) The point (α⋆⋆, b⋆⋆) is a solution of the finite-dimensional primal training prob-

lem (6.1.2).
(d) It holds that (w⋆, b⋆) = (Φα⋆⋆, b⋆⋆) for (w⋆, b⋆) with Φ as defined in Proposi-

tion 6.2.1.

Proof. We first show, that system (6.5.1) and problem (3.4.1) are solvable. For thispurpose, let (w⋆, b⋆) ∈ F × R denote the unique solution of problem (2.4.3). Then, itis easy to see that the point α⋆⋆ ∈ Rn defined by
α⋆⋆i = −ℓ′i(⟨w⋆,φi⟩ + b⋆) for i ∈ {1, . . . ,n} (6.5.2)

is a solution of (3.4.1) because it satisfies the optimality conditions given in Corol-lary 3.4.3. This means that (w⋆, b⋆) and α⋆⋆ are solutions of the primal and dual train-ing problem, respectively, and w⋆ = Φα⋆⋆ follows. Moreover, it follows that the point
(α⋆⋆, b⋆⋆) with b⋆⋆ := b⋆ is a solution of system (6.5.1). This shows the existence ofsolutions for (3.4.1) and (6.5.1).Now, let (α⋆⋆, b⋆⋆) ∈ Rn × R be a solution of (6.5.1). It follows that α⋆⋆ is a solutionof the finite-dimensional primal training problem (6.1.2) because ∇ψpf(α⋆⋆, b⋆⋆) = 0,cf. Proposition 6.1.3. Due to Proposition 6.1.1, the point (w, b⋆⋆) with w = Φα⋆⋆ isa solution of (2.4.3). But since the solution of this problem is unique, w = w⋆ and
b⋆⋆ = b⋆. This means that, (6.5.2) is a part of the system (6.5.1) and hence (α⋆⋆, b⋆⋆)is the unique solution of this system. Additionally, assertion (b) follows by means ofProposition 6.5.1. Moreover, (c) follows from ∇ψpf(α⋆⋆, b⋆⋆) = 0.



7 Sequential Minimal Optimization
for the Dual Training Problem

After the extensive theoretical investigation of the primal and dual training problem,we want to focus on solution methods subsequently. A well known and state-of-the-art method for training SVMs is the so-called Sequential Minimal Optimization (SMO)method, which is the subject of the present chapter.
We start by explaining the basic idea of the approach (Section 7.1). Then, we derivea more detailed theoretical overview concerning the formulation of dual optimalityconditions (Section 7.2) and the relationship between so-called violating pairs and thedirectional derivative of the objective function (Section 7.3). Motivated by the previ-ous findings, we propose a convergence framework (Section 7.4) using a particularlydefined first-order optimality measure which can help to prove convergence for gen-eral iterative methods for convex optimization problems. In particular, this frameworkpaves the way for a novel approach providing a simple convergence proof for a broadclass of SMO-type methods (Section 7.8). As intermediate steps, a connection be-tween violating pairs and the first-order optimality measure is considered (Section 7.5),a new optimality measure is introduced (Section 7.6), and working set selection rulesare recalled and extended (Section 7.7). Afterwards, some ideas for improving thepractical performance of this type of solution method are presented (Section 7.9). Fi-nally, the well-known shrinking approach is justified with further theoretical results(Section 7.10) extending what is known in the literature.

7.1 Basic Idea of Decomposition Methods
As initial point for deriving a solution method for the dual training problem, we sum-marize the necessary assertions from Section 3.1. To keep the notation simple, werestrict the subsequent investigation to the standard training problem. Note that themajor part of the following considerations can be transferred to similar training prob-lem (for instance the ν-SVM and its dual problem in Proposition 5.2.4) without toomany modifications.

Recall that the dual problem for a standard training problem can be written as
min
α∈Rn

ψd(α) s.t. 1⊤α = 0 (7.1.1)
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with an objective function ψd defined by

ψd(α) :=
1
2λ

α⊤Kα +
n∑︂

i=1

ℓ⋆i (−αi)

according to Corollary 3.4.1. By observing the structure of this problem, one can seethat there is an obvious linear constraint 1⊤α = 0, which has to be handled by asolution method in a certain way. Moreover, there are some implicit constraints whichare implied by the domain of the conjugate loss functions. By this we mean that theconstraint −αi ∈ dom(ℓ⋆i ) can be added to the problem for each i ∈ {1, . . . ,n}. Thesebound constraints can be written as α ∈ dom(ψd) for short. The combination of bothkinds of constraints must be handled suitably in the derivation of solution methods.
Recall that Assumption 3.1.2 ensures that there always exists a solution of this prob-lem due to Corollary 3.4.1. In particular, there exists a feasible point

α0 ∈ {α ∈ dom(ψd) | 1⊤α = 0}.

Now, the basic idea of decomposition methods is to start from such a feasible pointand update a restricted set of variables in each step of the method. The potential inrealizing this kind of strategy is that the considered subproblems are far easier to solvethan the original problem. Moreover, a deliberate implementation of the approachmakes it is possible to reduce the memory demands by not computing the full kernelmatrix at once.
Because of the equality constraint 1⊤α = 0 which is present in problem (7.1.1) itis necessary to update at least two variables in order to improve the objective func-tion value while preserving feasibility of the iterates. This leads directly to the ideaof Sequential Minimal Optimization (SMO) in which a subproblem with two variablesis solved exactly at each step. Later on we will see that it is already sufficient to re-strict the update to two variables in order to obtain convergence of a decompositionmethod if the choice of the variables is done suitably and the update leads to a suffi-cient improvement.

7.2 Optimality Conditions Revisited
Subsequently, we consider the dual optimality conditions again from a practical pointof view. For this purpose, let α ∈ dom(ψd) satisfying 1⊤α = 0 be chosen arbitrarily.Following Remark 3.6.4, the vector α is optimal if and only if there exists some b ∈ Rsatisfying

b ∈
n⋂︂

i=1

(︄
∂ℓ⋆i (−αi) −

1
λ

n∑︂

j=1

αj⟨φi,φj⟩
)︄

. (7.2.1)
Because the subdifferential of the conjugate loss function (depending on a single vari-able only) is equal to a closed interval, this condition can also be written as

b ∈
n⋂︂

i=1

[︁
b−i (α), b+i (α)

]︁ (7.2.2)
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with
b−i (α) := inf ∂ℓ⋆i (−αi) − d̃i(α) and b+i (α) := sup ∂ℓ⋆i (−αi) − d̃i(α), (7.2.3)

where we used the abbreviation
d̃i(α) :=

1
λ

n∑︂

j=1

αj⟨φi,φj⟩.

Note that the vector containing the entries d̃i(α) for i ∈ {1, . . . ,n} can be writtenshortly as d̃(α) = 1
λ
Kα. Using this term, the values of b−i (α) and b+i (α) can be easilyobtained if the conjugate loss functions are given in a closed form. In particular, this isthe common case for the practical applications which we consider. In order to avoidfurther issues coming from infinite values of b−i or b+i , we suppose that the followingcondition is satisfied.

Assumption 7.2.1 (non-degenerate dual problem)
Consider a dual training problem of the form (7.1.1). We assume that for each α ∈
dom(ψd) with 1⊤α = 0 there exist indices i+, i− ∈ {1, . . . ,n} such that

b−i−(α) > −∞ and b+i+(α) <∞.

Note that this assumption is not restrictive in practice because it basically demandsthat a given point cannot lay either on the lower or on the upper bound of the domainof each conjugate loss function at the same time.
An immediate observation from the optimality condition in (7.2.1) is the followingequivalent formulation.

Observation 7.2.2 (practical optimality condition for the dual training problem)
A vectorα ∈ dom(ψd) satisfying 1⊤α = 0 is optimal for the dual training problem (7.1.1)
if and only if

r(α) := nmax
l=1

b−l (α) −
n

min
l=1

b+l (α) ≤ 0, (7.2.4)
with b−l (α) and b+l (α) as defined in (7.2.3). We will call the function r defined above
violation measure for the dual training problem.

Indeed, this is true because the inequality (7.2.4) is satisfied if and only if the intersec-tion of all intervals in (7.2.2) is non-empty. Then, any
b⋆ ∈

[︃
nmax
l=1

b−l (α),
n

min
l=1

b+l (α)
]︃

(7.2.5)
satisfies (7.2.2) and the equivalent condition (7.2.1).For practical purposes it is convenient to make a note of the following fact.
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Observation 7.2.3 (computational effort for the violation measure)
By definition of r it directly follows that the evaluation of the violation measure is possible
in O(n) steps.

Recall that the w-part of the solution of the primal training problem is uniquely deter-mined due to Corollary 3.8.1 and can be determined from a solution of the dual prob-lem using the Representer Theorem, see Corollary 3.5.1. Now, by means of (7.2.5) itis also possible to find optimal values of the variable b in the primal training problem.This idea gives rise to the definition of another optimality measure which is based onthe primal-dual gap as follows.
Observation 7.2.4 (induced primal-dual gap)
For any dual feasible point α ∈ dom(ψd), the point ω(α) := (w(α), b(α)) ∈ F × R
defined by

w(α) :=
1
λ

n∑︂

i=1

αiφi and b(α) :=
1
2

(︃
nmax
l=1

b−l (α) +
n

min
l=1

b+l (α)
)︃

is a feasible estimate for a primal solution based on α. Moreover, the induced primal-
dual gap

∆⋆(α) := ∆pd(ω(α),α)

is an optimality measure, i.e., ∆⋆(α) ≥ 0 for all α ∈ dom(ψd) and ∆⋆(α) = 0 if and
only if α is a solution of (7.1.1).

An important theoretical question is whether the optimality measure can be used toestimate the distance of a given point to the solution set of the optimization prob-lem. This is also a desirable property in practice because it enables the definition ofstopping criteria in iterative methods which lead to approximate solutions with certainguaranteed properties. In the subsequent example we show that we cannot expectthe violation measure to be useful for this purpose in general.
Example 7.2.5 (piecewise constant violation measure)
Consider a dual training problem (7.1.1) with n = 2 samples and conjugate loss func-
tions

ℓ⋆1(−α1) :=

{︄
α1, if α1 ≥ 0,
∞, otherwise,

and ℓ⋆2(−α2) :=

{︄
0, if α2 ≤ 0,
∞, otherwise.

Let K := O ∈ R2×2. Then, dom(ψd) = {α ∈ R2 | α1 ≥ 0 and α2 ≤ 0}, and we can
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compute

b−1 (α) = inf ∂ℓ⋆1(−α1) = −1, b+1 (α) = sup ∂ℓ⋆1(−α1) =

{︄
−1, if α1 > 0,
∞, if α1 = 0,

,

b+2 (α) = sup ∂ℓ⋆2(−α2) = 0, b−2 (α) = inf ∂ℓ⋆2(−α2) =

{︄
0, if α2 < 0,
−∞, if α2 = 0,

.

For any α ∈ dom(ψd) with 1⊤α = 0, it follows that

nmax
l=1

b−l (α) =

{︄
−1, if α2 = 0,
0, if α2 < 0,

and
n

min
l=1

b+l (α) =

{︄
0, if α1 = 0,
−1, if α1 > 0,

which yields

r(α) =

{︄
−1, if α1 = 0,
1, if α1 > 0

due to the definition in (7.2.4). Now, it can be seen that the unique solution of the
problem is given by α⋆ = (0, 0) because of Observation 7.2.2. On the other hand,
r(α) = 1 for all non-optimal α, which means that the value of r cannot be used to
derive any information about the distance between α and the solution.

Note that the definition of the problem is chosen to result in a rather simple structure,which can be analyzed easily by hand. However, the resulting problem usually alsooccurs for practical problems that are not constructed in that particular way.

7.3 Maximal Violating Pair and Directional Derivative
As we have seen in Observation 7.2.2 the difference between the maximal value in
{b−l (α)}nl=1 and the minimal value in {b+l (α)}nl=1 plays an important role for the con-clusion of optimality. This immediately leads to the idea that variables associated withpairs realizing a high value for this difference should be chosen to be optimized in adecomposition method. Subsequently, we argue that the resulting strategy can beeasily motivated theoretically because it corresponds to the use of the steepest de-scent direction. Note that the choice of violating pairs for the selection of the workingsets dates back to [KSBM01], see also [CL11] and [FCL05]. It can be formalized asfollows.

Definition 7.3.1 (maximal violating pair)
Let α ∈ dom(ψd) with 1⊤α = 0 be given. A pair (i, j) ∈ {1, . . . ,n}2 of indices with

i ∈ argmax
l∈{1,...,n}

b−l (α) and j ∈ argmin
l∈{1,...,n}

b+l (α) (7.3.1)



99
is called maximal violating pair (MVP).

Observe that a maximal violating pair can be determined in O(n) step according toObservation 7.2.3.
In order to see that the definition of the MVP is closely connected to the direction ofthe steepest descent (in a certain sense which we have make clear later), we use thefollowing observation.

Proposition 7.3.2 (violation and directional derivative)
The directional derivatives of ψd (cf. Definition A.4.1) in the directions ±ei are given by

ψ◦
d(α; ei) = −b−i (α) and ψ◦

d(α;−ei) = b+i (α) (7.3.2)
for all α ∈ dom(ψd) and all i ∈ {1, . . . ,n}. In particular,

ψ◦
d(α; ei − ej) = b+j (α) − b−i (α) for all i, j ∈ {1, . . . ,n} (7.3.3)

and
r(α) = max

(i,j)∈{1,...,n}2

{︁
−ψ◦

d(α; ei − ej)
}︁ (7.3.4)

for all α ∈ dom(ψd).

Proof. It is well-known that the directional derivative of a convex scalar function can becharacterized by means of its subdifferential, see [BL10, Theorem 3.1.8], for instance.A short calculation yields that the subdifferential of ψ(i)
d (τ) := ψd(α + τei) is given by

∂ψ
(i)
d (τ) =

1
λ
Kii +

1
λ

[Kα]i − ∂ℓ⋆i (−(αi + τ)). =
1
λ
Kii + d̃i(α) − ∂ℓ⋆i (−(αi + τ)).

In particular, we obtain
ψ◦
d(α; ei) =

(︂
ψ

(i)
d

)︂◦
(0; 1) = sup ∂ψ(i)

d (0) = d̃(α) + sup−∂ℓ⋆i (−αi) = −b−i (α).

In the same way it follows that
ψ◦
d(α;−ei) =

(︂
ψ

(i)
d

)︂◦
(0;−1) = sup−∂ψ(i)

d (0) = sup ∂ℓ⋆i (−αi) − d̃(α) = b+i (α).

This shows that (7.3.2) is indeed correct. In the same way, one can see that (7.3.3)holds. Finally, observe that (7.3.4) follows directly from the definition of r in (7.4.1)and (7.3.3).
The relation given in (7.3.4) shows that the optimality condition which we derived inObservation 7.2.2 is directly connected to a particular descent direction. Namely, wesee that whenever r(α) > 0 (i.e., the point α is not optimal due to Observation 7.2.2)there exists a feasible direction of the form ei − ej with a pair of indices (i, j) that isa descent direction for the dual objective function ψd. Here, feasibility of the directionmeans that
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(a) the objective function is finite for all points in that direction which are sufficientlyclose to α, and
(b) the linear constraint of problem (7.1.1) remains satisfied by construction because

1⊤(α + τ(ei − ej)) = 1⊤α = 0.

The directional derivative is only a local measure of the ascent (or descent) of objec-tive function. In order to incorporate information about the possible step size in aparticular direction, we additionally consider the following terms.
Definition 7.3.3 (bounds on α and maximal feasible step size)
We define

αi := sup dom(ℓ⋆i (− · )) and αj := inf dom(ℓ⋆j(− · ))
and denote by

ϵij(α) := min
{︁
αi − αi,αj − αj

}︁ (7.3.5)
the maximal feasible step size (or almost feasible step size, if the domain of a conjugate
loss function is open) for the pair (i, j) at the point α.

7.4 A General Convergence Framework
In order to prove convergence of the class of decomposition methods which will beintroduced below, we first provide some more general convergence framework. Forthis purpose, we suppose subsequently that the considered objective function is dif-ferentiable on its domain in the following sense.

Assumption 7.4.1 (differentiability of convex function on its domain)
Let ψ : Rn → R ∪ {+∞} be a convex function and suppose that ψext : D → R is a
convex and continuously differentiable function defined on an open set D ⊇ dom(ψ)
such that ψext(α) = ψ(α) for all α ∈ dom(ψ).

7.4.1 First-Order Optimality Measure
In the setting of Assumption 7.4.1, we can use the differentiability of ψext to define aparticular optimality measure as follows.

Theorem 7.4.2 (first-order optimality measure)
Let Assumption 7.4.1 be satisfied and define R : dom(ψ) × R+ → R ∪ {+∞} by

R(α, ρ) := sup
{︁
−∇ψext(α)⊤(α̃−α)

⃓⃓
α̃ ∈ dom(ψ) ∩ B(α, ρ)

}︁
, (7.4.1)
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Then, for all ρ > 0 it holds that

(a) R(α, ρ) ≥ 0 for all α ∈ dom(ψ)

(b) R(α, ρ) = 0 if and only if α is a minimizer of ψ, and,
(c) the function α ↦→ R(α, ρ) is continuous on dom(ψ).

Proof. First, note that for all α ∈ dom(ψ) and all ρ > 0, it follows that R(α, ρ) ≥ 0 be-cause α ∈ dom(ψ) ∩ B(α, ρ), i.e., assertion (a) is certainly true.Moreover, since the function ψext is continuously differentiable on an open set con-taining dom(ψ), a point α ∈ dom(ψ) is a minimizer of ψ if and only if
∇ψext(α)⊤(α̃−α) ≥ 0 for all α̃ ∈ dom(ψ). (7.4.2)

In particular, this implies that R(α, ρ) = 0 for all ρ > 0, i.e., any minimizer α of ψsatisfies R(α, ρ) = 0.On the other hand, let α ∈ dom(ψ) with R(α, ρ) = 0 for some ρ > 0. In the following,we show that (7.4.2) is satisfied. For this purpose, let α̃ ∈ dom(ψ) be chosen arbitrarily.If ∥α̃−α∥ ≤ ρ, we directly obtain
−∇ψext(α)⊤(α̃−α) ≤ R(α, ρ) = 0.

If ∥α̃−α∥ > ρ, consider the point
ˆ︁α := α + ρ

α̃−α

∥α̃−α∥ =

(︃
1 − ρ

∥α̃−α∥

)︃
α +

ρ

∥α̃−α∥α̃ ∈ dom(ψ).

Then, it follows that
−∇ψext(α)⊤(α̃−α) = −∇ψext(α)⊤(ˆ︁α−α)

∥α̃−α∥
ρ

≤ R(α, ρ)
∥α̃−α∥

ρ
= 0

because ∥ˆ︁α − α∥ = ρ. Taking both cases together, we see that (7.4.2) holds, i.e., α isa minimizer of ψ. This proves part (b).In order to prove part (c), let {αk}k∈N ⊆ dom(ψ) be some sequence with α⋆ :=
limk→∞ αk ∈ dom(ψ). Because ψ is continuously differentiable on dom(ψ), it followsthat limk→∞∇ψext(αk) = ∇ψext(α⋆). Let α̃ ∈ dom(ψ) be chosen arbitrarily.If ∥α̃−αk∥ ≤ ρ it follows that

−∇ψext(αk)⊤(α̃−αk) ≤ R(αk, ρ).

Otherwise, considering the point ˆ︁αk := αk + ρ α̃−αk

∥α̃−αk∥ ∈ dom(ψ) ∩ B(αk, ρ) we get
−∇ψext(αk)⊤(α̃−αk) = −∇ψext(αk)⊤(ˆ︁αk −αk)ρ−1∥α̃−αk∥ ≤ R(αk, ρ)ρ−1∥α̃−αk∥.

Then, for α̃ ∈ dom(ψ)∩B(α⋆, ρ) using the triangle inequality to estimate ∥α̃−αk∥ thisimplies
−∇ψext(αk)⊤(α̃−αk) ≤ R(αk, ρ)ρ−1 (︁∥α̃−α⋆∥ + ∥α⋆ −αk∥

)︁

≤ R(αk, ρ)
(︁
1 + ρ−1∥α⋆ −αk∥

)︁
.
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Taking both cases together, it is shown that
−∇ψext(αk)⊤(α̃−αk) ≤ R(αk, ρ)

(︁
1 + ρ−1∥α⋆ −αk∥

)︁
.

Hence, we obtain
−∇ψext(α⋆)⊤(α̃−α⋆) = −∇ψext(αk)⊤(α̃−αk)

− (∇ψext(α⋆) −∇ψext(αk))⊤(α̃−αk)
−∇ψext(α⋆)⊤(αk −α⋆)

≤ R(αk, ρ)
(︁
1 + ρ−1∥α⋆ −αk∥

)︁

+ ∥∇ψext(α⋆) −∇ψext(αk)∥ · ∥α̃−αk∥
+ ∥∇ψext(α⋆)∥ · ∥αk −α⋆∥.

Taking the limit k → ∞, this implies
R(α⋆, ρ) = sup

{︁
−∇ψext(α⋆)⊤(α̃−α⋆)

⃓⃓
α̃ ∈ dom(ψ) ∩ B(α⋆, ρ)

}︁

≤ lim inf
k→∞

R(αk, ρ). (7.4.3)
In the same way as above, we get

−∇ψext(α⋆)⊤(α̃k −α⋆) ≤ R(α⋆, ρ)
(︁
1 + ρ−1∥αk −α⋆∥

)︁
,

for α̃k ∈ dom(ψ) ∩ B(αk, ρ), which can be used to obtain
−∇ψext(αk)⊤(α̃k −αk) = −∇ψext(α⋆)⊤(α̃k −α⋆)

−∇ψext(α⋆)⊤(α⋆ −αk)
− (∇ψext(αk) −∇ψext(α⋆))⊤(α̃k −αk)

≤ R(α⋆, ρ)
(︁
1 + ρ−1∥αk −α⋆∥

)︁

+ ∥∇ψext(α⋆)∥ · ∥α⋆ −αk∥
+ ∥∇ψext(αk) −∇ψext(α⋆)∥ · ∥α̃k −αk∥

Rearranging the terms shows that
(︁
1 + ρ−1∥αk −α⋆∥

)︁−1
(︂
−∇ψext(αk)⊤(α̃k −αk)

− ∥∇ψext(α⋆)∥ · ∥α⋆ −αk∥
− ∥∇ψext(αk) −∇ψext(α⋆)∥ · ∥α̃k −αk∥

)︂
≤ R(α⋆, ρ).

Now, taking the supremum over all α̃k ∈ dom(ψ) ∩ B(αk, ρ) and considering the limit
k → ∞ shows that

lim sup
k→∞

R(αk, ρ) ≤ R(α⋆, ρ). (7.4.4)
By taking together the inequalities (7.4.3) and (7.4.4) it is shown that α ↦→ R(α, ρ) iscontinuous on dom(ψ).
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Remark 7.4.3 (about the norm in the optimality measure)
Note that the properties of the function R do not depend on the particular choice of the
norm which defines the neighborhood B(α, ρ) in the definition of R. Most notably, one
could also use the maximum norm there, which can make the evaluation of R easier in
certain cases.

7.4.2 Convergence under Sufficient Decrease Condition

As a tool to formulate appropriate assumptions for proving convergence to minimiz-ers, we consider the following notion of a forcing function which was introduced andapplied in [Dan70].
Definition 7.4.4 (forcing function, cf. [Dan70, Definition 3.1])
A function c : R+ → R+ satisfying

lim
k→∞

c(rk) = 0 =⇒ lim
k→∞

rk = 0

for any sequence {rk}k∈N ⊆ R+ is called forcing function.

Using this definition and the first-order optimality measure defined in Theorem 7.4.2,we can formulate the following general convergence framework for methods solvingconvex optimization problems. In order to guarantee convergence to a global opti-mizer, we only require a sufficient decrease of the objective function value in an infi-nite number of iterations and the convergence of the corresponding subsequence ofiterates.
Theorem 7.4.5 (convergence under sufficient decrease condition)
Suppose that the assumptions of Theorem 7.4.2 are satisfied. Let c : R+ → R+ be
a forcing function and let {αk}k∈N ⊆ dom(ψ) be a sequence of points such that the
sequence {ψ(αk)}k∈N is non-increasing and bounded from below. Suppose that there
exists a convergent subsequence {αk}k∈K of {αk}k∈N such that

ψ(αk) − ψ(αk+1) ≥ c(R(αk, ρ)) (7.4.5)
holds for some ρ > 0. Then,

lim
k→∞

ψ(αk) = inf
α∈Rn

ψ(α)

and any accumulation point of {αk}k∈N is a minimizer of ψ.

Proof. Because the sequence of function values is non-increasing and bounded frombelow, the limit ψ⋆ := limk→∞ ψ(αk) exists. Let {αk}k∈K with α̃ := limk∈K αk be a
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subsequence of {αk}k∈N such that (7.4.5) holds for all k ∈ K . In particular, we obtain
lim
k∈K

c(R(αk, ρ)) = 0,

which implies lim
k→∞

R(αk, ρ) = 0.
Because the function α ↦→ R(α, ρ) is continuous due to Theorem 7.4.2(c), it followsthat R(α̃, ρ) = 0. Using Theorem 7.4.2(a) we obtain that α̃ is a minimizer of ψ. Finally,since the sequence of function values is non-increasing, we get

ψ⋆ = lim
k→∞

ψ(αk) = inf
α∈Rn

ψ(α) = ψ(α̃),

which also shows that any accumulation point of the sequence {αk}k∈N must be aminimizer of ψ.
Note that the assertions of Theorem 7.4.2 and Theorem 7.4.5 do not depend onthe particular structure of the dual training problem (7.1.1). In particular, those resultscould also be applied to other optimization problems.
Moreover, a condition comparable to (7.4.5) also occurs in the literature for thedefinition of efficient step sizes in the context of unconstrained optimization problems,see, for instance, [GK99, Definition 4.5]. There, a particular direction is considered, andthe condition restricts the choice of the step size. In contrary, the condition (7.4.5)leaves more room because it does not explicitly assume a line search approach.
In the following, we apply the previous result to a particular iterative optimizationframework for solving convex optimization problems, which is still general enoughto capture some typical applications. For this reason, we consider two possible linesearch approaches for which it can be shown that a sufficient decrease is possibleunder assumptions that are not too restrictive.

7.4.3 Exact Line Search
We start with a setting using an exact line search as follows.

Lemma 7.4.6 (decrease with exact line search)
Let Assumption 7.4.1 hold and suppose that ∇ψext is Lipschitz continuous on the level
set Lψext(ψ(α0)) for some α0 ∈ dom(ψ). Let αk ∈ Lψ(ψ(α0)) and dk ∈ Rn be given
such that

αk + dk ∈ dom(ψ) (7.4.6)
and

rk := −∇ψext(αk)⊤dk > 0. (7.4.7)
Then, any point αk+1 := αk + τkd

k with

τk ∈ argmin
τ∈[0,1]

ψext(αk + τdk) (7.4.8)
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satisfies

ψ(αk) − ψ(αk+1) ≥ min
{︃
rk
2

,
r2
k

2L∥dk∥2

}︃
. (7.4.9)

Proof. Let αk ∈ Lψ(ψ(α0)) and dk ∈ Rn satisfying (7.4.6) be given. Observe that theLipschitz continuity of ∇ψext implies that the function value can be estimated fromabove by a quadratic function (see, for instance, [Zho18]), which yields
ψext(αk + τdk) − ψext(αk) ≤ τ∇ψext(αk)⊤dk +

L

2
τ 2∥dk∥2 = −τrk +

L

2
τ 2∥dk∥2 (7.4.10)

for all τ ∈ [0, 1] with L > 0 denoting the Lipschitz constant of ∇ψext. In the following,we determine the minimal value of the right-hand side over τ ∈ [0, 1], which results inan upper bound for the actual descent because
ψ(αk) − ψ(αk+1) = ψext(αk) − ψext(αk + τkd

k) ≥ ψext(αk) − ψext(αk + τdk) (7.4.11)
for all τ ∈ [0, 1] due to the step size rule (7.4.8).Let us consider the unconstrained minimum of the right-hand side in (7.4.10). Forthis reason, note that condition (7.4.7) implies dk ̸= 0. This means that the minimalvalue is attained at

τ ⋆k :=
rk

L∥dk∥2
. (7.4.12)

We now consider two cases:
• If τ ⋆k ≤ 1, the inequalities (7.4.10) and (7.4.11) imply that

ψ(αk) − ψ(αk+1) ≥ r2
k

2L∥dk∥2
.

• Otherwise, τ ⋆k > 1, which is equivalent to rk > L∥dk∥2. Hence, (7.4.10) and (7.4.11)can be used with τ = 1 to obtain
ψ(αk) − ψ(αk+1) ≥ rk −

L

2
∥dk∥2 >

rk
2

.

Because at least one of these two cases must occur, we conclude that (7.4.9) holds.
Note that the basic question for the application of the previous result is whetherit is possible to construct a direction satisfying (7.4.6) and (7.4.7). Subsequently, wewill see that this is rather easy in the context of decomposition methods for the dualtraining problem.

7.4.4 Armijo-Type Step Size Selection
On the other hand, one could ask whether the computation of the step size accordingto the exact line search rule (7.4.8) is actually necessary. In order to provide an answerto this question, we show that a similar descent result also holds if an approximate linesearch rule is established instead.
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Lemma 7.4.7 (decrease with Armijo-type step size)
Let Assumption 7.4.1 hold and suppose that ∇ψext is Lipschitz continuous on the level
set Lψext(ψ(α0)) for some α0 ∈ dom(ψ). Choose constants η ∈ (0, 1) and σ ∈ (0, 1).
Let αk ∈ Lψ(ψ(α0)) and dk ∈ Rn be given such that (7.4.6) and (7.4.7) holds. De-
fine αk+1 := αk + τkd

k with τk being the largest value in the set {ην | ν ∈ {0, 1, . . . }}
satisfying the Armijo condition

ψext(αk + τkd
k) ≤ ψext(αk) + στk∇ψext(αk)⊤dk. (7.4.13)

Then, the point αk+1 satisfies

ψ(αk) − ψ(αk+1) ≥ min
{︃
σrk, 2ησ(1 − σ)L−1 r2

k

∥dk∥2

}︃
. (7.4.14)

Proof. As in the proof of Lemma 7.4.6, we consider two cases.
• If the condition (7.4.13) is satisfied for τk = 1, it can be used together with (7.4.7)to obtain

ψext(αk) − ψext(αk+1) = ψext(αk) − ψext(αk + dk) ≥ −σ∇ψext(αk)⊤dk = σrk.

• Otherwise, the condition (7.4.13) must be violated for η−1τk, which reads as
ψext

(︁
αk + η−1τkd

k
)︁
> ψext(αk) + ση−1τk∇ψext(αk)⊤dk = ψext(αk) − ση−1τkrk.

On the other hand, we can use the fact that ∇ψext is Lipschitz as in (7.4.10) with
τ := η−1τk to obtain

ψext
(︁
αk + η−1τkd

k
)︁
≤ ψext(αk) − η−1τkrk +

L

2
τ 2
k

η2 ∥d
k∥2

with L > 0 denoting the Lipschitz constant of ∇ψext. By taking both inequalitiestogether and rearranging the terms, we get
τk
η2

(︃
−η(1 − σ)rk +

L

2
τk∥dk∥2

)︃
> 0.

Note that dk ̸= 0 because of (7.4.7). Hence, from (7.4.6) it follows that
τk > 2η(1 − σ)L−1 rk

∥dk∥2
.

Finally, the combination of this inequality with (7.4.13) and (7.4.7) shows that
ψext(αk) − ψext(αk+1) ≥ στkrk ≥ 2ησ(1 − σ)L−1 r2

k

∥dk∥2
.

Since αk ∈ Lψ(ψ(α0)) ⊆ dom(ψ) by assumption and αk+1 = αk + τkd
k ∈ dom(ψ) dueto (7.4.6) and the convexity of ψ, it follows that ψ(αk)−ψ(αk+1) = ψext(αk)−ψext(αk+1).Thus, we conclude from the two cases that (7.4.14) holds.
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Now, there is still an open question which is whether we are able to find a feasibledirection (satisfying (7.4.6)) such that the decrease of the objective function (accordingto (7.4.9) or (7.4.14), respectively) is large enough for the application of Theorem 7.4.5.Particularly, it would be helpful to determine directions such that the value of the di-rectional derivative rk defined in (7.4.7) can be estimated by R(αk, ρ).

7.5 Violating Pairs and First-Order Optimality
Note that the evaluation of the functionR for given point α ∈ dom(ψ) and radius ρ > 0is not trivial in general. In particular, one cannot expect the problem to be solvable inlinear time (opposed to what we observed about the violation measure r in Observa-tion 7.2.3). For this reason, we want to derive some relationships between R and rsubsequently, which sheds some light on the application of the previous convergenceresult. In order to use the definition of R, suppose that the dual objective functionmeets the condition in Assumption 7.4.1 as follows. Simultaneously, we make someassumptions preventing certain edge cases resulting from degenerate variables.

Assumption 7.5.1 (non-degenerated dual problem with smooth objective function)
Consider the dual training problem (7.1.1) and let α and α be defined according to
Definition 7.3.3.

(a) Let αi < αi for all i ∈ {1, . . . ,n}.
(b) Let 1⊤α < 0 < 1⊤α.
(c) Suppose that there exists some continuously differentiable function ψd,ext : D → R

defined on an open set D ⊇ dom(ψd) such that ψd,ext(α) = ψd(α) for all α ∈
dom(ψd)

Note that part (a) of the assumption prevents cases in which some variables are ei-ther fixed to some particular value (if their bounds are equal) or induce infeasibility ofthe dual problem (if the associated conjugate loss function is nowhere finite-valued).Similarly, part (b) avoids cases where it is not possible to find a feasible point becauseof the linear constraint or there is only one feasible point (in which all variables arefixed to their lower or upper bound). Finally, part (c) ensures that the gradient of theobjective function is available (but has to be used in the right way if some variable laysat its lower or upper bound). In the setting of Assumption 7.5.1 it is possible to definethe optimality measure R from Theorem 7.4.2 as follows.
Definition 7.5.2 (optimality measure for dual problem)
Suppose that Assumption 7.5.1 holds. For the dual training problem, we define R ac-
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cording to (7.4.1) with

ψ(α) :=

{︄
ψd(α), if α ∈ dom(ψd) and 1⊤α = 0,
+∞, otherwise,

and ψext = ψd,ext.

Note that if the objective function of the dual problem is differentiable as proposedabove, the directional derivatives can be computed easily and some parts of the pre-viously introduced notation simplifies as follows.
Remark 7.5.3 (partial derivatives of dual objective function)
If the dual objective function is differentiable in the sense of Assumption 7.5.1, it follows
by means of Proposition 7.3.2 that

b−i (α) =

{︄
−∇ψd,ext(α)⊤ei, if αi < αi,
−∞, if αi = αi

and

b+i (α) =

{︄
−∇ψd,ext(α)⊤ei, if αi > αi,
∞, if αi = αi

for all α ∈ dom(ψd).

Additionally, a first result shows that the violation term provides an upper bound forthe optimality measure. This observation is consistent with the fact that r(α) ≤ 0whenever α is a solution of the dual training problem, cf. Observation 7.2.2 and The-orem 7.4.2.
Lemma 7.5.4 (connection between violation and optimality measure – first part)
Let Assumption 7.5.1 hold. Then,

R(α, ρ) ≤ ρ
√
nr(α) (7.5.1)

for all α ∈ dom(ψ) with r(α) > 0.

Proof. Suppose that α, α̃ ∈ dom(ψ) with r(α) > 0 are given. Note that α, α̃ ∈ dom(ψ)and α̃i > αi implies αi < αi for i ∈ {1, . . . ,n}. In the same way we get αi > αi for
i ∈ {1, . . . ,n} with α̃i < αi. Then, by means of Remark 7.5.3 and the definition of r
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in (7.2.4) we obtain

−∇ψd,ext(α)⊤(α̃−α) =
n∑︂

i=1

−∇ψd,ext(α)⊤ei(α̃i − αi)

=
∑︂

i:α̃i>αi

b−i (α)(α̃i − αi) −
∑︂

j:α̃j<αj

b+i (α)(αj − α̃j)

≤ nmax
l=1

b−l (α)
∑︂

i:α̃i>αi

(α̃i − αi) −
n

min
l=1

b+l (α)
∑︂

j:α̃j<αj

(αj − α̃j).

By definition of ψ we have 1⊤α = 0 and 1⊤α̃ = 0 such that it follows that
∑︂

j:α̃j<αj

(αj − α̃j) = −
∑︂

j:α̃j>αj

(αj − α̃j) =
∑︂

j:α̃j>αj

(α̃j − αj),

i.e., the previous equation implies
−∇ψd,ext(α)⊤(α̃−α) ≤

(︃
nmax
l=1

b−l (α) −
n

min
l=1

b+l (α)
)︃ ∑︂

i:α̃i>αi

(α̃i − αi)

= r(α)
∑︂

i:α̃i>αi

(α̃i − αi)

≤ r(α)∥α̃−α∥1

≤ r(α)
√
n∥α̃−α∥.

Finally, taking the supremum over α̃ ∈ dom(ψ)∩B(α, ρ), this shows that (7.5.1) holds.
Note that it is not possible to estimate the value of R(α, ρ) from below by meansof r(α) in general. This is due to the fact that in the definition of r a unit step sizeis implicitly used which may be much larger than the maximal feasible step which isenforced in the definition of R. However, one can obtain an estimate by scaling thevalue of r appropriately as proposed in the following statement.

Lemma 7.5.5 (connection between violation and optimality measure – second part)
Let Assumption 7.5.1 hold. Let α ∈ dom(ψ) with r(α) > 0 be given and let i, j ∈
{1, . . . ,n} satisfy

b−i (α) − b+j (α) ≥ ωr(α). (7.5.2)
Then,

ωmin{ϵij(α), ρ}r(α) ≤ R(α,
√

2ρ). (7.5.3)
Proof. Given α ∈ dom(ψ) and ϵij(α) defined in (7.3.5), we find that

α̃(t) := α + t(ei − ej) ∈ dom(ψ)

for all t < ϵij(α). Moreover, ∥α − α̃(t)∥ = t∥ei − ej∥ =
√

2t. Using the definition of R,Remark 7.5.3 and condition (7.5.2) it follows that
R(α,

√
2ρ) ≥ −∇ψd,ext(α)⊤(α̃(t) −α) = t(b−i (α) − b+j (α)) ≥ tωr(α) (7.5.4)
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for all t < min{ϵij(α), ρ}. Finally, taking the supremum over all t < min{ϵij(α), ρ} weobtain (7.5.3).
Of course, the inequality (7.5.3) is not always sufficient to obtain a strong relationbetween r and R because the factor on the left-hand side can be arbitrarily small ingeneral. On the other hand, we did not prove that this inequality cannot be improved.However, the steps in the proof suggest that there are actually cases in which theweak bound is attained (at least up to some constant factor). This means that the se-lection of a maximal violating pair (according to Definition 7.3.1) or some approximateviolating pair (satisfying (7.5.2)) is not sufficient to guarantee convergence by meansof Theorem 7.4.5 in general.There are at least two possibilities to close this theoretical issue. One could try toemploy another approach to prove convergence, which is certainly feasible and wasdone for instance in [CFL06]. Closely connected to this approach is the idea to incor-porate a certain procedure into the decomposition method preventing degenerationover the steps, see for instance [PS05]. A second possible remedy to close the the-oretical gap is to restrict the working set selection by means of a certain sufficientcondition as we will see below.

7.6 Definition and Properties of a Bound-Aware
Violation Measure

The assertion of the previous Lemma 7.5.5 together with Proposition 7.3.2 motivatesthe following definition of a bound-aware violation measure, which is the main subjectof the present section.
Definition 7.6.1 (bound-aware violation measure)
The value

r⋄(α, ρ) := max
i,j

{︁
min{ϵij(α), ρ}

(︁
b−i (α) − b+j (α)

)︁}︁

for α ∈ dom(ψd) and ρ > 0 (where a term of the form 0 · (−∞) is interpreted as 0) is
called bound-aware violation measure.

To start with an investigation of the introduced measure, we are interested in thecomputational effort which is needed to compute the bound-aware violation measure.We observed in Observation 7.2.3 that the computation of the violation measure r ispossible in O(n) runtime. At first sight, one would expect the computation of r⋄ totake O(n2) operations. However, using a certain transformation of the term, one canget a lower computational effort as follows.
Remark 7.6.2 (computational effort for the bound-aware violation measure)
Denote by δ+

i := min{αi−αi, ρ} and δ−j := min{αj−αj, ρ} the maximal step size for αi
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(in positive direction) and αj (in negative direction). Then, the bound-aware violation can
be computed by means of

r⋄(α, ρ) = max
i,j

{︁
min{ϵij(α), ρ}

(︁
b−i (α) − b+j (α)

)︁}︁

= max

{︄
max
j

max
i:δ+i ≥δ−j

{︁
δ−j
(︁
b−i (α) − b+j (α)

)︁}︁
,

max
i

max
j:δ+i ≤δ−j

{︁
δ+
i

(︁
b−i (α) − b+j (α)

)︁}︁
}︄

= max

{︄
max
j

{︄
δ−j

(︄
max
i:δ+i ≥δ−j

b−i (α) − b+j (α)

)︄}︄
,

max
i

{︄
δ+
i

(︄
b−i (α) − min

j:δ+i ≤δ−j
b+j (α)

)︄}︄}︄
.

In particular, using sorted lists for the evaluation of the inner terms, it is possible to
compute the value in O(n log n) steps. Moreover, a particular violating pair can be
determined during this computation.

Similar to what we have seen in Example 7.2.5, the bound-aware violation measurecan also be discontinuous which we discuss in the following example. However, thekey point in the construction of this example is the fact that the conjugate loss functionis not smooth enough.
Example 7.6.3 (piecewise constant bound-aware violation measure)
Consider a dual training problem (7.1.1) with n = 2 samples and conjugate loss func-
tions

ℓ⋆1(α1) := |α1| and ℓ⋆2(α2) := 0.

Let K := O ∈ R2×2. Then, dom(ℓ⋆i ) = R, which implies that αi = −∞ and αi = ∞ for
i ∈ {1, 2}. This means that ϵij(α) = ∞ for i, j ∈ {1, 2} and hence min{ϵij(α), ρ} = ρ
for all α ∈ R2. Moreover, we can compute

∂ℓ⋆1(α1) =

⎧
⎪⎨
⎪⎩

{−1}, if α1 < 0,
[−1, 1], if α1 = 0,
{1}, if α1 > 0,

which yields

b−1 (α) =

{︄
1, if α1 < 0,
−1, if α1 ≥ 0

and b+1 (α) =

{︄
1, if α1 ≤ 0,
−1, if α1 > 0.

On the other hand, ∂ℓ⋆2(α2) = {0} and b−2 (α) = b+2 (α) = 0 for all α ∈ R2. Finally, it
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follows immediately from the definition that

r⋄(α, ρ) =

{︄
0, if α = 0,
ρ, otherwise.

Even though there is a possibility for r⋄ to be discontinuous, one can expect it to becontinuous if the conjugate loss functions defining the problem are continuously dif-ferentiable on an open set containing their domain. This observation is summarizedin the following proposition.
Proposition 7.6.4 (continuous bound-aware violation measure)
Let Assumption 7.5.1 hold and ρ > 0. Then, α ↦→ r⋄(α, ρ) is continuous.

Proof. First, consider an arbitrary point α ∈ dom(ψd) and a pair (i, j) ∈ {1, . . . ,n}2.If αi = αi or αj = αj , it follows that ϵij(α) = 0 from the definition of ϵij in (7.3.5). In thiscase,
min{ϵij(α), ρ}

(︁
b−i (α) − b+j (αk)

)︁
= 0

(using the convention that 0 · (−∞) = 0 according to Definition 7.6.1). Otherwise,following Remark 7.5.3 the conditions αi < αi and αj > αj imply that
min{ϵij(α), ρ}

(︁
b−i (α) − b+j (αk)

)︁
= −min{ϵij(α), ρ}∇ψd,ext(α)⊤(ei − ej). (7.6.1)

Note that this equation is true in both cases, which is the fundamental idea of theremaining part of the proof.Let a sequence {αk}k∈N ⊆ dom(ψd) with α⋆ = limk→∞αk be given. By Assump-tion 7.5.1, limk→∞∇ψd,ext(αk) = ∇ψd,ext(α⋆). Let (ik, jk) denote a pair of indices suchthat
r⋄(αk, ρ) = min{ϵikjk(αk), ρ}

(︁
b−ik(α

k) − b+jk(α
k)
)︁

= −min{ϵikjk(αk), ρ}∇ψd,ext(αk)⊤(eik − ejk)

for all k ∈ N, where the second equation follows by means of (7.6.1). The sequencecan be decomposed into subsequences with index sets
Kij := {k ∈ N | ik = i and jk = j}

for (i, j) ∈ {1, . . . ,n}2. In order to determine the value of limk→∞ r⋄(αk, ρ) it is sufficientto consider only those pairs (i, j) for which the set Kij contains infinitely many items.Hence, it follows that
lim sup
k→∞

r⋄(αk, ρ) = max
(i,j):|Kij |=∞

lim sup
k∈Kij

{︁
min{ϵikjk(αk), ρ}

(︁
b−ik(α

k) − b+jk(α
k)
)︁}︁

= max
(i,j):|Kij |=∞

lim
k∈Kij

{︁
−min{ϵij(αk), ρ}∇ψd,ext(αk)⊤(ei − ej)

}︁

= max
(i,j):|Kij |=∞

{︁
−min{ϵij(α⋆), ρ}∇ψd,ext(α⋆)⊤(ei − ej)

}︁

= max
(i,j):|Kij |=∞

{︁
min{ϵij(α⋆), ρ}

(︁
b−i (α⋆) − b+j (α⋆)

)︁}︁

≤ r⋄(α⋆, ρ).
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On the other hand,

r⋄(αk, ρ) = −min{ϵikjk(αk), ρ}∇ψd,ext(αk)⊤(eik − ejk)
≥ −min{ϵij(αk), ρ}∇ψd,ext(αk)⊤(ei − ej)

for any (i, j) ∈ {1, . . . ,n}. Considering the limit k → ∞ on the right-hand side andmaximizing it with respect to (i, j), it also follows that
lim inf
k→∞

r⋄(αk, ρ) ≥ r⋄(α⋆, ρ).

Taking the previous considerations together, it follows that
lim
k→∞

r⋄(αk, ρ) = r⋄(α⋆, ρ),

i.e., the function α ↦→ r⋄(α, ρ) is indeed continuous.
Subsequently, we also summarize fundamental properties of the bound-aware vio-lation measure, which connect its value to the value of the first-order optimality mea-sure introduced in Theorem 7.4.2. The following two lemmas are the natural transla-tions of Lemma 7.5.4 and Lemma 7.5.5 to the present setting.

Lemma 7.6.5 (bound-aware violation and optimality measure – first part)
Let Assumption 7.5.1 hold. Then,

R(α, ρ) ≤ nr⋄(α, ρ) (7.6.2)
for all α ∈ dom(ψ) with r⋄(α, ρ) > 0.

Proof. Subsequently, we follow the lines of the proof of Lemma 7.5.4. First, we useRemark 7.5.3 and 1⊤α = 1⊤α̃ = 0 to get
−∇ψd,ext(α)⊤(α̃−α) =

∑︂

i:αi<αi

b−i (α)(α̃i − αi) +
∑︂

i:αi=αi

b+i (α)(α̃i − αi)

=
∑︂

i:αi<αi

(︁
b−i (α) − b+j (α)

)︁
(α̃i − αi)

+
∑︂

i:αi=αi

(︁
b+i (α) − b+j (α)

)︁
(α̃i − αi)

for any j ∈ {1, . . . ,n}. If j ∈ {1, . . . ,n} is chosen such that b+j (α) = minnl=1 b
+
l (α), thesecond sum on the right-hand side is non-positive. Thus, we obtain

−∇ψd,ext(α)⊤(α̃−α) ≤
∑︂

i:αi<αi

(︁
b−i (α) − b+j (α)

)︁
(α̃i − αi)

≤ max
j

∑︂

i:αi<αi

(︁
b−i (α) − b+j (α)

)︁
(α̃i − αi)

≤ nmax
j

max
i:αi<αi

(︁
b−i (α) − b+j (α)

)︁
(α̃i − αi)

≤ nmax
j

max
i:αi<αi

(︁
b−i (α) − b+j (α)

)︁
min {αi − αi, ρ}

≤ nmax
i,j

(︁
b−i (α) − b+j (α)

)︁
min {αi − αi, ρ} .

(7.6.3)
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In the same way (and by changing the roles of i and j) we can show that
−∇ψd,ext(α)⊤(α̃−α) ≤

∑︂

j:αj>αj

(︁
b+j (α) − b−i (α)

)︁
(α̃j − αj)

for i ∈ {1, . . . ,n} with b−i (α) = maxnl=1 b
−
l (α). Hence, it also follows that

−∇ψd,ext(α)⊤(α̃−α) ≤ nmax
i,j

(︁
b−i (α) − b+j (α)

)︁
min

{︁
αj − αj, ρ

}︁
. (7.6.4)

Finally, taking together (7.6.3) and (7.6.4) proves (7.6.2).

Lemma 7.6.6 (bound-aware violation and optimality measure – second part)
Let Assumption 7.5.1 hold. Then,

r⋄(α, ρ) ≤ R(α,
√

2ρ) (7.6.5)
for all α ∈ dom(ψ) and ρ > 0.

Proof. Subsequently, we follow the lines of the proof of Lemma 7.5.5. Let (i, j) ∈
{1, . . . ,n}2 be chosen such that

min{ϵij(α), ρ}
(︁
b−i (α) − b+j (α)

)︁
= r⋄(α, ρ).

By definition, α̃ := α+ t(ei−ej) ∈ dom(ψ)∩B(α,
√

2ρ) for all t ∈ (0, ρ). Using the samecomputation as in inequality (7.5.4) we get
R(α,

√
2ρ) ≥ t(b−i (α) − b+j (α)) ≥ min{ϵij(α), ρ}

(︁
b−i (α) − b+j (α)

)︁
= r⋄(α, ρ).

This proves (7.6.5).
The combination of the previous two lemmas shows that the value of the bound-aware violation measure r⋄ is actually comparable to the value of the first-order op-timality measure R. This makes it easily possible to apply the convergence result ofTheorem 7.4.5 together with Lemma 7.4.6 or Lemma 7.4.7 to some particular realiza-tion of a decomposition method as we will see below.

7.7 Working Set Selection Rules
In the history of the development of the SMO method several possibilities for choosingthe working set were proposed. The aim of each of the approaches is to improve theconvergence speed of the overall method while keeping the computational effort forthe selection relatively low.The first approaches are based solely on the idea of violating pairs, i.e., pairs ofvariables violating the optimality conditions of the dual training problem. If the cor-responding variables are updated appropriately, a certain amount of improvement inthe objective function is realized, cf. [OFG97, Pla99].
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Note that [Pla99] claims that this is already sufficient to guarantee convergence,which is not true in general because the improvement of the objective function valuecould be vanishing over time if unsuitable pairs are chosen.
A particularly popular choice is the selection of a maximal violating pair, cf. Defini-tion 7.3.1. In general, determining a violating pair takes O(n) operations.In the more recent development of SMO methods, the idea of second-order ap-proximations for the working set selection has been established. This approach aimsto approximate the expected improvement of the objective function value based onits curvature information which is easily accessible for quadratic functions, see [FCL05,CL11].A pair of variables is then chosen by first fixing one variable according to the first-order rule (7.3.1) and afterwards a second one that is feasible (i.e., can be altered in thegiven direction) and maximizes the predicted descent. The latter is computed usingthe unconstrained minimum of the remaining scalar quadratic function, for which aclosed-form solution exists. This selection rule can be formally described as follows.

Definition 7.7.1 (maximal unbounded decrease pair)
Let α ∈ dom(ψ) be given and let (i1, j2) ∈ {1, . . . ,n}2 be a maximal violating pair.
Determine

j1 ∈ argmin
j∈{1,...,n}

min
t∈R

ψd,ext(α + t(ei1 − ej))

and
i2 ∈ argmin

i∈{1,...,n}
min
t∈R

ψd,ext(α + t(ei − ej2)).

A pair (i1, j1) or (i2, j2) yielding the smaller objective function value above is called max-
imal unbounded decrease pair.

This definition is an extension of the working set selection using second order infor-mation proposed in [FCL05] because the quadratic approximation (using Taylor’s the-orem) of ψd,ext is exact for quadratic objective functions.
The overall process of checking all possible candidates (for fixed first variable) canbe conducted in n steps. This means that the determination of a working set basedon second-order information as described above is not significantly more expensivethan computing a maximal violating pair. Because such a selection improves the con-vergence speed of the SMO method generally, it is preferred in practice.
Finally, note that it is also possible to compute the actual decrease of the objectivefunction value when selecting a second variable in a second-order selection proce-dure. Since this does not result in too much additional computational effort (at leastfor quadratic objective functions), we would argue that this strategy is preferable ingeneral. Hence, we summarize this idea in the following.
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Definition 7.7.2 (maximal decrease pair)
Let α ∈ dom(ψd) with 1⊤α = 0 be given and let (i1, j2) ∈ {1, . . . ,n}2 be a maximal
violating pair. Determine

j1 ∈ argmin
j∈{1,...,n}

min
t∈R

ψd(α + t(ei1 − ej))

and
i2 ∈ argmin

i∈{1,...,n}
min
t∈R

ψd(α + t(ei − ej2)).

A pair (i1, j1) or (i2, j2) yielding the smaller objective function value above is called max-
imal decrease pair.

It should be pointed out that a maximum decrease pair as proposed above maximizesthe decrease only partially because it fixes one index by means of the maximal violat-ing pair strategy first. In order to obtain a pair which actually maximizes the decrease,an exhaustive search over all pairs is necessary in general. For completeness, we in-troduce this working set selection strategy subsequently.
Definition 7.7.3 (total maximal decrease pair)
Let α ∈ dom(ψd) with 1⊤α = 0 be given. We call a pair of indices

(i, j) ∈ argmin
(i,j)∈{1,...,n}2

min
t∈R

ψd(α + t(ei − ej))

a total maximal decrease pair.

7.8 Convergence of SMO
In the following, we briefly discuss the proposed strategies from a theoretical pointof view with the focus on convergence guarantees. As a general restriction on theworking set selection rule, the following definition is helpful. It will be the basis of aconvergence of the concrete realization of the SMO method.

Definition 7.8.1 (ω-violating pair)
Let α ∈ dom(ψd) with 1⊤α = 0. A pair of indices (i, j) ∈ {1, . . . ,n}2 satisfying

min{ϵij(α), ρ1}
(︁
b−i (α) − b+j (α)

)︁
≥ ωr⋄(α, ρ1) (7.8.1)

is called (bound-aware) ω-violating at α ∈ Rn for ρ1 > 0.

Using the notion of ω-violating pairs, it is possible to define a rather general algorithm,for which convergence can be proven as follows.
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Algorithm 7.8.1: Sequential Minimal Optimization method
Input:starting point α0 ∈ {α ∈ dom(ψd) | 1⊤α = 0},parameters ω > 0, ρ0 > 0 and ρ1 ∈ (0, ρ0]

1 for k = 0, 1, 2, . . . do
2 if r(αk) ≤ 0 then
3 Stop: αk is optimal due to Observation 7.2.2.
4 Determine an ω-violating pair (ik, jk) ∈ {1, . . . ,n}2 for ρ1.
5 Define the direction dk := min{ϵikjk(αk), ρ0} (eik − ejk).
6 Compute a step size τk such that (7.4.8) or (7.4.13) holds.
7 Update αk+1 := αk + τkd

k.
Now, a convergence result for this method can be derived from the general conver-gence framework given by Theorem 7.4.5 as follows.

Corollary 7.8.2 (convergence of SMO method with ω-violating pairs)
Let Assumption 7.5.1 hold and suppose that ∇ψd,ext is Lipschitz continuous on the level
set Lψd,ext(ψ(α0)). Let ρ0 > 0. Then, for any direction of the form

dk = min
{︁
ϵikjk(αk), ρ0

}︁
(eik − ejk)

with (ik, jk) ∈ {1, . . . ,n}2 being ω-violating pairs at αk for some ρ1 ∈ (0, ρ0] the con-
ditions (7.4.6) and (7.4.7) are satisfied. In particular, any accumulation point of the
resulting iterative scheme

αk+1 := αk + τkd
k

with exact line search (7.4.8) or Armijo-type line search (7.4.13) for τk is a solution
of (7.1.1).

Proof. It is easy to see that 1⊤(αk + dk) = 0, i.e., condition (7.4.6) follows directly.Moreover, because ϵikjk(αk) > 0, the definition of dk and Remark 7.5.3 implies
rk = −∇ψext(αk)⊤dk = min

{︁
ϵikjk(αk), ρ0

}︁ (︁
b−ik(α

k) − b+jk(αk)
)︁
.

Then, due to the definition of ω-violation in (7.8.1) with ρ1 ≤ ρ0 and Lemma 7.6.5, itfollows that
rk ≥ ωr⋄(αk, ρ1) ≥

ω

n
R(αk, ρ1).

In a final step, we apply the result of Lemma 7.4.6 or Lemma 7.4.7, respectively, anduse that ∥dk∥ ≤
√

2ρ0. In the case of an exact line search, condition (7.4.9) impliesthat (7.4.5) holds for ρ := ρ1 with
c(r) := min

{︃
ω

2n
r,

ω2

4Lρ2
0n

2 r
2
}︃

,

which is indeed a forcing function in the sense of Definition 7.4.4. Similarly, for theArmijo-type line search rule (7.4.13), condition (7.4.5) with ρ := ρ1 is satisfied with the
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forcing function
c(r) := min

{︃
σω

n
r,
ησ(1 − σ)ω2

Lρ2
0n

2 r2
}︃

because of (7.4.14). This means that Theorem 7.4.5 can be applied to conclude con-vergence (in the sense that any accumulation point of the generated sequence is asolution of the dual training problem).
Observe that there are two different step size parameters ρ0 and ρ1 to choose inthe implementation of Algorithm 7.8.1. The first one determines the maximum lengthof the direction vector dk and is needed generally for theoretical purposes only, cf.Corollary 7.8.2. If all variables have bound-constraints, the value of ρ0 can be chosenlarge enough to ensure that the minimum in the definition of dk is not capped artifi-cially. In particular this makes sense if the step size is selected by means of an exactline search because otherwise the steps would be unnecessarily small. On the otherhand, the parameter ρ1 controls the working set selection and should be chosen ina way to reflect the expected step size such that the first-order descent prediction isreasonable.

7.9 Implementation and Complexity Analysis
In this section, we extend on the practical realization of the general SMO method pre-sented in Algorithm 7.8.1. First, an investigation of the per-step complexity of thealgorithm is conducted. In a second subsection, an argumentation concerning theconvergence speed is proposed.

7.9.1 Discussion of Complexity
Subsequently, we consider the overall complexity of a single step of Algorithm 7.8.1and approaches to keep the computational effort as low as possible. In accordancewith the common argumentation for the application of decomposition methods, weassume that it is not feasible to compute and save the kernel matrix efficiently. This isthe usual assumption for large datasets and leads to the situation that the entries ofthe matrix K must be computed on demand. We will also briefly discuss the possibilityof caching which enables some sort of reuse of the computed data below.

To start with an investigation of the overall effort, observe that the SMO methodconsists of three major parts:
• the working set selection (or determination of search direction) in lines 2 to 5,
• the step size determination in line 6, and
• the update of variables in line 7.

During the selection of the working set, it is theoretically important to determine an
ω-violating pair according to Definition 7.8.1. At least this is necessary in an infinitenumber of steps to obtain convergence from Corollary 7.8.2. Given that the value of
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the kernel expansion [Kαk]i is available for all i ∈ {1, . . . ,n}, it is possible to computesuch a pair in O(n log n) steps as we have seen in Remark 7.6.2. Practically, however, itis also sufficient to select working sets related to the maximal violating pair. In particu-lar, the determination of a maximal violating pair (or some appropriate approximation)is sufficient if the sequence of associated maximal feasible step sizes ϵikjk(αk) remainsbounded from below. Only if the value of ϵikjk(αk) gets too small, it would be neces-sary to determine a (bound-aware) ω-violating pair in order to guarantee convergenceby means of Corollary 7.8.2. This reduces the effort to O(n) steps in practice.

In the same way, the determination of a maximal decrease pair (as proposed in Def-inition 7.7.2), which helps to increase the convergence speed in practice, can also bedone quite efficiently. In this case it is also necessary to have second-order informa-tion at hand, which means that some columns of the kernel matrix must be computed.However, since some of these values are needed for the step size computation andthe update later on anyway, the additional effort is not significant. Of course, it is the-oretically necessary to ensure that the selected pair is ω-violating, which would lead to
O(n log n) operations. However, this issue is not relevant practically because maximaldecrease pairs usually yield a sufficient descent.

Although the update step in line 7 of the algorithm is trivial because only two vari-ables are touched, we want to point out that the effort is larger in the overall contextas it is also helpful to consider the update of the kernel expansion here. Note that thisupdate can be conducted by means of the relation Kαk+1 := Kαk + τkK(eik − ejk).This means that the update involves the computation of two columns of the kernelmatrix K and their weighted sum, which takes again O(n) operations. This reducesthe computational effort of the subsequent step drastically because it is than not nec-essary to compute the value from scratch (which would take O(n2) operations in theworst case to compute all values of the matrix K).
Finally, consider the effort of the step size selection rule. We focus on the exact stepsize (7.4.8) here. For this problem, the objective function (depending on the step size τonly) can be computed as
ψd(αk + τ(ei − ej)) = ψd(αk) − ℓ⋆i (−αki ) − ℓ⋆j(−αkj ) (7.9.1a)

+
τ 2

2λ
(Kii +Kjj − 2Kij) +

τ

λ
([Kαk]i − [Kαk]j) (7.9.1b)

+ ℓ⋆i (−αki − τ) + ℓ⋆j(−αkj + τ). (7.9.1c)
The structure of the objective function is the following:

• The term on the right-hand side of (7.9.1a) does not depend on τ and hence itcan be ignored when solving the subproblem (7.4.8).
• The term in (7.9.1b) consists of a quadratic part and a linear part. By definition ofthe kernel matrix, Kii+Kjj−2Kij ≥ 0 and the factor is strictly positive if and onlyif φi ̸= φj . The factor [Kαk]i− [Kαk]j , which defines the linear part in (7.9.1b) iseasily computable if the vector Kαk is known. However, this is the case becausethis term is typically updated iteratively in the SMO method.
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• Finally, the structure of the last term in objective function (7.9.1c) depends onthe particular choice of the loss functions. For instance, for the classical SupportVector Classification training problem considered in Proposition 4.1.1 the conju-gate loss function is affine linear on a closed interval and infinite otherwise. Thismeans that the terms in (7.9.1c) introduce a linear term and simple bounds onthe variable τ .Similarly, the training problem for ε-Support Vector Regression (see Proposi-tion 4.2.2) can be rewritten in a way that the conjugate loss functions have thesame structure (by doubling the number of variables in the dual problem).Note that an approximation of the maximum function in these problems by thepiecewise quadratic approximation proposed in Example 4.4.4 leads to an addi-tional quadratic term in the objective function, which does not change the fun-damental structure of the subproblem. However, many other loss functions leadto non-quadratic terms in (7.9.1c), which are not as easy to handle in the sub-problem as the quadratic terms which we observed above.
These considerations show that the subproblem can be solved very easily for com-monly considered training problems and certain extensions thereof. Basically, the so-lution of problem (7.4.8) can be obtained by computing the root of a quadratic functionand projecting it onto a fixed interval. This operation can be implemented efficiently.

This leads to an overall effort of one step of the SMO method of O(n) operation (atleast in most of the steps). Hence, the method is applicable to treat the dual trainingproblem also for a large number of training samples.
As we mentioned above, the computational effort of one step could be lowered if asuitable strategy for caching of the computed parts of the kernel matrix is employed.The idea which makes it possible to use caching is the fact that only a rather smallportion of variables is updated during successive steps. In particular, those variableswhich are at their lower or upper bound are not subject to change in the later phase ofthe optimization process. For instance, in the state-of-the-art implementation of theSMO method of LIBSVM a simple least-recently-used caching strategy is employed,cf. [CL11, Subsection 5.2]. However, a more extensive discussion of possible cachingstrategies is out of scope of the present work.
Besides the caching of kernel function values, there is another prominent tech-nique that helps to improve the performance of the SMO method. An approach calledshrinking aims to reduce the effort of O(n) operations per step to some lower num-ber. The basic idea is that a large portion of the variables will be at their bound, a factwhich can possibly be detected rather early in the optimization process. If a variableis expected to stay at its bound, it is not necessary to consider it in the working setselection. Moreover, the corresponding value for the kernel expansion is not neededin the subsequent steps of the SMO method in this case. This means that the num-ber variables (and hence the computational effort of each step) can be reduced to acertain set of active variables. We come back to this idea below in Section 7.10.
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7.9.2 Notes on the Convergence Speed
We want to briefly argue that the step size and descent can be estimated asymptot-ically by means of known measures. For this reason, recall that an exact line searchprocedure generates a step size in the order of

τk ∼
rk

L∥dk∥2
,

see (7.4.12). Here, the only factor which is independent of k and hence could be usedas a guide for the value of ρ1 is L−1, where L is the Lipschitz constant of ∇ψd,ext. Theprevious approximation can also be used to obtain that
∥αk+1 −αk∥ = τk∥dk∥ ∼ rk

L∥dk∥
, (7.9.2)

which gives an approximation of the distance between subsequent points.On the other hand, the value of the constant L is also important in the estimationof the descent. Especially, because of (7.4.9) and since rk is asymptotically small, onecan expect the descent of the objective function in each step to be in the order of
ψ(αk) − ψ(αk+1) ∼ r2

k

2L∥dk∥2
. (7.9.3)

For particular problem classes, the Lipschitz constant can be estimated as the follow-ing example shows.
Example 7.9.1 (Lipschitz continuous gradient for classical dual SVM problem)
For the dual problem of the classical SVM problem presented in Proposition 4.1.1, it can
be used that

ψd,ext(α) =
1
2λ

α⊤Kα− y⊤α.

In particular, we can compute

∇ψd,ext(α) = λ−1Kα− y,

which yields the estimate

∥∇ψd,ext(α) −∇ψd,ext(α̃)∥ = λ−1∥K(α− α̃)∥ ≤ λ−1∥K∥ · ∥α− α̃∥.

Thus, ∇ψd,ext is Lipschitz continuous with a constant L := λ−1∥K∥.

Note that similar computations are possible for other training problems. In doing so,one can observe that the order of the Lipschitz constant in the estimated is governedby the value λ−1∥K∥ for any standard training problem. This observation is impor-tant practically because the value of L determines the convergence speed of the SMOmethod crucially.
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7.10 Detection of Fixed Variables for Shrinking
As we have seen in Subsection 7.9.1, it is practically very important to determine theset of fixed variables (i.e., variables at their bound for some solution) in order to applya shrinking procedure. The determination of fixed variables is closely connected tothe identification of active constraints. The latter problem is, for instance, consideredin [FFK98], where the notion of an identification function is introduced and appliedto KKT systems of nonlinear programs with inequality constraints. This approach wasalso used in [LL10] for special versions of SVMs.

In the following, we propose a similar approach which makes use of the optimalitymeasure R defined in (7.4.1) instead and exploits the particular structure of the dualtraining problem. To start with, let us consider the following estimates on the optimalvalue of the bias variable in the primal training problem.
Proposition 7.10.1 (estimate on the optimal bias value)
Let Assumption 7.5.1 hold and let α ∈ dom(ψ) be given. Suppose that the minimizing
set A of ψ is not empty and that ∇ψd,ext is Lipschitz continuous on Lψ(ψ(α)). Then, for
any solution (w⋆, b⋆) ∈ F × R of the primal training problem (2.4.3) it follows that

sup
i:αi<αi−dist[α,A]

b−i (α)−L dist[α,A] ≤ b⋆ ≤ inf
i:αi>αi+dist[α,A]

b+i (α)+L dist[α,A]. (7.10.1)

Proof. Let α⋆ ∈ A be any point with ∥α⋆−α∥ = dist[α,A]. Because ∇ψd,ext is assumedto be Lipschitz continuous, it follows that
|∇ψd,ext(α)⊤ei −∇ψd,ext(α⋆)⊤ei| ≤ ∥∇ψd,ext(α) −∇ψd,ext(α⋆)∥

≤ L∥α−α⋆∥
= L dist[α,A]

(7.10.2)
for all i ∈ {1, . . . ,n}.If no index i ∈ {1, . . . ,n} with αi > αi + dist[α,A] exists, the infimum in (7.10.1) eval-uates to infinity, which means that the inequality holds trivially. Otherwise, let i ∈
{1, . . . ,n} with αi > αi + dist[α,A] be chosen arbitrarily. Then, it follows directlyfrom (7.3.2) that

b+i (α) = ψ◦
d(α;−ei) = −∇ψd,ext(α)⊤ei. (7.10.3)

Additionally, we obtain that
|αi − α⋆i | ≤ ∥α−α⋆∥ = dist[α,A],

which implies α⋆i +dist[α,A] ≥ αi. This means that α⋆i > αi because of the assumptionthat αi > αi + dist[α,A]. However, if α⋆i > αi, following (7.10.3) we also get b+i (α⋆) =
−∇ψd,ext(α⋆)⊤ei. Now, the optimality of α⋆ together with (7.10.2) implies
b⋆ ≤ b+i (α⋆) = −∇ψd,ext(α⋆)⊤ei ≤ −∇ψd,ext(α)⊤ei + L dist[α,A] = b+i (α) + L dist[α,A],

cf. condition (7.2.5). Thus, the upper bound in (7.10.1) is proven. In order to see thatthe lower bound is also valid, the same argumentation can be used.
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Next, we show how a bound on the optimal bias value of the type (7.10.1) can beutilized to derive conditions which imply that certain variables attain their lower orupper bound at the optimum.

Proposition 7.10.2 (detection of fixed variables)
Let Assumption 7.5.1 hold and let α ∈ dom(ψ) be given. Suppose that the minimizing
set A of ψ is not empty and that ∇ψd,ext is Lipschitz continuous on Lψ(ψ(α)). If b⋆ ∈
[b−, b+] holds for any solution (w⋆, b⋆) ∈ F × R of the primal training problem (2.4.3),
there exists a solution α⋆ ∈ Rn of the dual training problem (7.1.1) such that

α⋆i = αi for all i ∈ {1, . . . ,n} with −∇ψd,ext(α)⊤ei < b− − L dist[α,A](7.10.4a)
and

α⋆i = αi for all i ∈ {1, . . . ,n} with −∇ψd,ext(α)⊤ei > b+ + L dist[α,A].(7.10.4b)
Proof. Let α⋆ be a solution of (7.1.1) with ∥α − α⋆∥ = dist[α,A] and let i ∈ {1, . . . ,n}with −∇ψd,ext(α)⊤ei < b− − L dist[α,A] be given. Then, (7.10.2) and (7.2.5) yield that

−∇ψd,ext(α⋆)⊤ei ≤ −∇ψd,ext(α)⊤ei + L dist[α,A] < b− ≤ b⋆ ≤ b+i (α⋆).

If α⋆i > αi, Proposition 7.3.2 implies −∇ψd,ext(α⋆)⊤ei = b+i (α⋆), which would contra-dict the above inequality chain, i.e., α⋆i = αi must hold. This proves (7.10.4a). Condi-tion (7.10.4b) follows in the same way.

Remark 7.10.3 (detection of fixed variables in practice)
At this point, the application of the previous propositions does not seem to be practical
because the conditions are formulated by means of the distance of a given point α ∈
dom(ψ) to the solution set of the optimization problem. However, for practical applica-
tions it would be sufficient to estimate the value of dist[α,A] from above in the following
sense. Let q1, q2, q3 : Rn → R+ be functions, which satisfy

max{L, 1} dist[α,A] ≤ qj(α) for j ∈ {1, 2, 3} (7.10.5)
for all α in a suitable subset of dom(ψ) and consider some arbitrary vector α satisfying
this condition. Then, under the assumptions of Proposition 7.10.1, (7.10.1) holds, which
implies that b− ≤ b⋆ ≤ b+ for any solution (w⋆, b⋆) ∈ F × R of (2.4.3) with

b− := b−(α) := sup
i:αi<αi−q1(α)

b−i (α) − q2(α) (7.10.6a)
and

b+ := b+(α) := inf
i:αi>αi+q1(α)

b+i (α) + q2(α). (7.10.6b)
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Furthermore, any i ∈ {1, . . . ,n} with

−∇ψd,ext(α)⊤ei < b− − q3(α)

also satisfies the condition in (7.10.4a). Hence, we can conclude that there exists a so-
lution α⋆ ∈ Rn of (7.1.1) with α⋆i = αi. Accordingly, condition (7.10.4b) can be used to
detect variables which can be fixed to their upper bound.

In order to make the practical application of the previous ideas possible we assumethat the optimality measure R provides a certain error bound. A similar condition isconsidered in [LL10]. In that paper the authors investigate some special formulationsof the training problem and choose the natural residual for the corresponding linearcomplementarity problem as optimality measure.
Assumption 7.10.4 (error bound condition)
Let Assumption 7.5.1 hold and denote by A the solution set of the dual training prob-
lem (7.1.1). Fix ρ > 0. Suppose that there exists a constant K > 0 such that

dist[α,A] ≤ KR(α, ρ) (7.10.7)
for all A ∈ dom(ψ).

With the help of the previous assumption we formulate a framework in which it ispossible to derive an upper bound of the type (7.10.5). This paves the way for theapplication in SMO optimization methods. In particular, we show how to construct acomputable estimate for the set of variables which are fixed in an optimal solution andprove that this estimate is asymptotically correct.
Corollary 7.10.5 (practical estimation of fixed variables)
Let α ∈ dom(ψ) be given and suppose that Assumption 7.10.4 is satisfied. Moreover,
suppose that the minimizing set A of ψ is not empty and that ∇ψd,ext is Lipschitz con-
tinuous on Lψ(ψ(α)). Define the index sets

I(α) :=
{︁
i ∈ {1, . . . ,n}

⃓⃓
−∇ψd,ext(α)⊤ei < b−(α) − q3(α)

}︁ (7.10.8a)
and

I(α) :=
{︁
i ∈ {1, . . . ,n}

⃓⃓
−∇ψd,ext(α)⊤ei > b+(α) + q3(α)

}︁
, (7.10.8b)

where the estimates b−(α) and b+(α) are defined according to (7.10.6) with

qj(α) := r⋄(α, ρ)η for j ∈ {1, 2, 3} (7.10.9)
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for some ρ > 0 and η ∈ (0, 1). Let α satisfy

dist[α,A] ≤ (max{L, 1}(Kn)η)−
1

1−η , (7.10.10)
where L denotes the Lipschitz constant of ∇ψd,ext and K is the constant from Assump-
tion 7.10.4. Then, there exists a solution α⋆ ∈ A of the dual training problem (7.1.1)
such that

α⋆i = αi for all i ∈ I(α) and α⋆i = αi for all i ∈ I(α).

Proof. The main idea in the following is to combine Assumption 7.10.4 with the resultsof Proposition 7.10.1 and Proposition 7.10.2. By assumption, all preconditions of thesepropositions are satisfied. Moreover, by means of (7.10.7) and Lemma 7.6.5 we obtain
dist[α,A] ≤ KR(α, ρ) ≤ Knr⋄(α, ρ).

This inequality together with (7.10.9) and (7.10.10) implies that
dist[α,A] = dist[α,A]1−η dist[α,A]η

≤ dist[α,A]1−η(Kn)ηr⋄(α, ρ)η

= dist[α,A]1−η(Kn)ηqj(α)

≤ 1
max{L, 1}qj(α),

for all j ∈ {1, 2, 3}, i.e., (7.10.5) holds. Finally, the assertion of the corollary followsaccording to Remark 7.10.3.
Note that it is also possible to use the classical violation measure r for the definitionof qj if the inequality (7.10.10). However, because {r(αk)}k∈N does not necessarily con-verge to zero if {αk}k∈N converges to some solution of the dual training problem (seeExample 7.2.5), the value of qj may not be meaningful in this case. Hence, the resultingindex sets possibly contain only few elements and the prediction is not very expres-sive. In contrast, the definition using the bound-aware measure r⋄ works because ofits continuity (due to Proposition 7.6.4).
Furthermore, it should be noted that the assertion of Corollary 7.10.5 is only a the-oretical justification of the shrinking approach because it is in general not possible todetermine whether the inequality (7.10.10) is satisfied. This means that practically, thefunctions qj (j ∈ {1, 2, 3}) can be chosen in any suitable way such that a relation ofthe type (7.10.5) can be expected (at least asymptotically). For the application of theframework for detecting fixed variables this is relevant because the values of b−(α)and b+(α) can be infinite if q1(α) is too large since the index set considered in thesupremum and infimum, respectively, can be empty. In order to obtain any estimation,it is thus necessary to keep q1 relatively small while maintaining (7.10.5) asymptotically.A reasonable approach would be to use

q1(α) := c1r
⋄(α, ρ1)η1
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with ρ1 > 0, η1 ∈ (0, 1) and c1 > 0.One can also see that it is not necessary to distinguish between q2 and q3 from apractical point of view because only their sum is relevant for the definition of the indexsets in (7.10.8). Hence, only the sum has to be defined, which could have the form
q2(α) + q3(α) := c2r

⋄(α, ρ2)η2

with ρ2 > 0, η1 ∈ (0, 1) and c2 > 0. Of course, the choice of the parameters is an openquestion here and should be considered in the practical application, for instance forshrinking.
Finally, we want to emphasize that the correct prediction of fixed variables is notonly helpful in the context of the SMO method. It can also be used to obtain a simpleroptimization problem, which is equivalent to the dual training problem and can besolved exactly in some particular settings as follows.

Remark 7.10.6 (equivalent training problem without bound constraints)
Suppose that Assumption 7.5.1 holds. Assume that there exists a solution α⋆ of (7.1.1)
and an index set I⋆ ⊆ {1, . . . ,n} such that

αi = α⋆i for all i ∈ I⋆ (7.10.11)
and

αi ∈ (αi,αi) for all i ∈ {1, . . . ,n} \ I⋆. (7.10.12)
Then, any solution of the reduced problem

min
α∈Rn

ψd,ext(α)

s.t. 1⊤α = 0,
αi = α⋆i for all i ∈ I⋆

(7.10.13)

is also a solution of the dual training problem (7.1.1).
The detection of variables satisfying (7.10.11) is possible by means of Corollary 7.10.5.On the other hand, the set of free variables in (7.10.12) can also be detected asymp-totically by means of a function of the form (7.10.9) if an error bound condition holds.Also note that one can easily verify whether a particular solution of the reduced prob-lem (7.10.13) is also a solution of the original dual training problem by checking ap-propriate optimality conditions.Finally, it should be pointed out that the solution of (7.10.13) can be obtained froma system of n−|I⋆|+1 linear equations if the objective function ψd,ext is quadratic. Thisis in particular the case for the classical SVM training problems.



8 Optimization Methods for the
Solution of the Primal Training
Problem

The aim of this chapter is to introduce some particular methods for the solution of theprimal training problem and discuss their practical applicability. For ease of presen-tation, we restrict the investigation again to the standard training problem as definedin Definition 2.4.5. However, note that many of the observations made below are alsotrue or can be adapted in a suitable manner for other problem formulations. Through-out the chapter we assume that the loss functions defining the training problem areconvex and sufficiently smooth. For the investigation of practical methods, we con-sider the finite-dimensional problem formulations introduced in Chapter 6.
We start this chapter with a brief summary of descent-based optimization methods(Section 8.1). Afterwards, we consider two first-order methods, namely the simplegradient descent method (Section 8.2) and a preconditioned one (Section 8.3). Forthe latter it is argued that sparse updates could occur theoretically and would lead toa reduction of the computational effort. This idea is then extended and transferredto a second-order method (Section 8.4). The particular formulation of a globalizedNewton method is argued to be a new promising approach for the solution of theprimal training problem. Because the structure of the Newton system is very similarto the linearization of the system of nonlinear equations introduced in Section 6.5, webriefly investigate the latter at the end of this chapter (Section 8.5).

8.1 Basic Idea of Descent-Based Methods
Before the practical application of optimization methods makes sense, it should beassured that the training problem has a solution in the first place. For this reason, wesuppose that the objective function of (2.4.3) is coercive. Recall that Proposition 3.7.5provides sufficiently weak conditions which guarantee coercivity. Note that the coer-civity of the original objective function ψp does not necessarily imply that the objectivefunction ψpf of the finite-dimensional training problem (6.1.3) is also coercive. How-ever, solvability of problem (6.1.3) is still guaranteed.
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Because the training problem is supposed to be convex, several classes of optimiza-tion methods will generate sequences converging to a global solution of the problemin general. So the main question is not whether some algorithm is able to find a solu-tion but how fast (and under which additional assumptions) it is able to find it.Of course, the precise definition of the term ‘fast’ depends on the considered appli-cation. On the one hand, the theoretical convergence rate can be a suitable measure.On the other hand, one also has to consider the computational complexity and thememory consumption of a particular method. In order to assess the overall perfor-mance of a particular training algorithm, both parts are important to consider.
In the following, we restrict our investigation to iterative optimization methods whichyield a descent of the objective function at each iteration. Such an iterative methodcan be characterized by a sequence of points

zk+1 := zk + τkd
k for k ∈ {0, 1, . . . } with ψpf(zk+1) ≤ ψpf(zk), (8.1.1)

where z0 := (α0, b0) ∈ Rn+1 denotes a suitable starting point and τk ∈ R and dk ∈ Rn+1

denote the step size and the direction at the kth step, respectively.
If the loss functions are continuously differentiable, the training problems (6.1.2) and(6.3.1) are finite-dimensional convex optimization problems with continuously differ-entiable objective functions. Hence, classical derivative-based optimization methodsare applicable. In the general case of non-smooth convex loss functions, the applica-tion of subgradient methods is still possible. However, we do not follow this approachhere because it would go beyond the scope of this work.
Obviously, loss functions are generally not differentiable in many of the exampletraining problems introduced in Chapter 4. If the non-smoothness comes from in-finite values of the objective function (which model constraints in some sense), anapproximate reformulation of the training problem is not obvious and the solutionmethods below might not be appropriate. Then, it could be suitable to apply methodsfor constrained optimization method which we only mention here for completeness.For other examples, assuming smooth loss functions is not too restrictive becauseis it possible to use smooth approximations in many cases as proposed in Section 4.4.From the practical point of view, an approximation of an originally non-smooth prob-lem (or a smooth formulation of it in the first place) is sufficient in most cases as longas certain fundamental properties of the loss functions are retained.

8.2 Simple Gradient Descent Method
Probably the simplest approach to solve the training problem is to use the negativegradient as search direction and define a particular line search strategy for the deter-mination of the step size. In the general iterative scheme (8.1.1) this means that thedirection is chosen as dk := −∇ψ(zk). For the step size it is sufficient to use Armijo’sstep size rule to obtain convergence, see [GK99, Satz 8.9]. In the reference it is shownthat each accumulation point of the generated sequence {zk}k∈N is a stationary pointof the optimization problem. However, because the training problem is convex, each
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stationary point is a solution of the problem. The overall algorithm is presented inAlgorithm 8.2.1.

Algorithm 8.2.1: Gradient Descent Method
Input: z0 ∈ Rn+1, parameters η0 > 0, η ∈ (0, 1) and σ ∈ (0, 1)

1 for k = 0, 1, 2, . . . do
2 if ∇ψpf(zk) = 0 then
3 Stop: zk is a solution of (6.1.2).
4 Compute dk := −∇ψpf(zk).
5 Let τk ∈ {η0 · ηℓ | ℓ ∈ {0, 1, 2, . . . }} be the largest number satisfying

ψpf(zk + τkd
k) ≤ ψpf(zk) + στk∇ψpf(zk)⊤dk.

6 Update zk+1 := zk + τkd
k.

Observe that the computationally most expensive part of the method is in the eval-uation of the gradient in step 4. According to the particular formula given in (6.1.4), forthe computation of the gradient it is necessary to evaluate entries of the vector g(zk)for the current point zk = (αk, bk). For this reason, the values of the decision function,i.e.,
tki =

1
λ

[Kαk]i + bk for i ∈ {1, . . . ,n}, (8.2.1)
are needed. In a naive implementation, the computation of the values requires n2

operations because of the matrix-vector product. Moreover, the whole kernel matrixis needed and has to be computed if it is not already known.
The computational effort can be reduced if only non-zero entries of the vector αk

are considered. Obviously, vanishing entries do not contribute to the decision values.This leads to a reduced complexity of n · nkNZ (where nkNZ denotes the number of non-zero entries in αk) and for the computation only those columns of the kernel matrixassociated with non-zero entries in αk are actually needed.
Whenαk is close to a solution of the training problem, the entries of the vector whichcorrespond to non-support vectors of the problem are close to zero. However, thisobservation does not help to reduce the computational effort in practice, because onecannot expect entries of αk to be exactly equal to zero in general. This means that nkNZwill not be significantly smaller than n and one still needs about n2 operations for thecomputation of the gradient.
Furthermore, given the values of g(zk), it is necessary to compute another matrix-vector product with the kernel matrix in ∇ψpf(zk), cf. (6.1.4). In this second step, thecorresponding vector in the product is

rk := αk + g(zk). (8.2.2)
Again, only those columns of K with non-zero entry in the vector rk are needed. Notethat due to (3.6.3), rk = 0 if αk is a solution of the dual problem and bk is chosen
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suitably. Unfortunately, as we have seen in Section 6.4 the solution of the trainingproblem (6.1.2) is not necessarily a dual solution. However, as this difference onlyhappens in certain degenerate cases, one can expect rk to be close to zero usually.Of course, it is not clear whether some entries of rk are exactly zero. In general, for thegradient descent method one cannot expect to obtain exactly vanishing components.This means that the computation of the gradient usually requires n2 operations andthe evaluation of the whole kernel matrix.
This observation and the fact that the gradient descent method has a low conver-gence rate makes the practical application of the method not very attractive. Hence,we consider alternative approaches in the following.

8.3 Preconditioned Gradient Descent Method
While the finite-dimensional formulation in (6.1.2) is quite straight-forward, the secondformulation (6.3.1) seems impractical at the first sight because the square root of thekernel matrix is needed therein. Subsequently, we will show it is possible to bypassthe explicit computation of K 1

2 .

8.3.1 General Idea and Derivation
In the same way as in the original gradient descent approach (8.1.1), we consider aniterative scheme of the form

z̃k+1 := z̃k + τkd̃
k for k ∈ {0, 1, . . . }, (8.3.1)

where z̃0 := (α̃0, b0) ∈ Rn+1 denotes a suitable starting point and τk ∈ R and d̃
k ∈

Rn+1 denote the step size and the direction at the kth step, respectively. As direction,we choose the componentwisely scaled negative gradient of the function ψ̃pf at thecurrent iterate, i.e.,
d̃
k

:= −W∇ψ̃pf(z̃
k) (8.3.2)

with a diagonal matrix
W :=

⎛
⎝ I 0

0⊤ λ−2

⎞
⎠ .

The factor λ−2 for the scaling of b is motivated by practical experiments where it can beobserved that the bias term converges relatively slow without that correction. Partiallythis can already be seen from the structure of the problem (6.3.1) because there thevariable α̃ is scaled by the factor λ−1 in the loss term but b is not.
Because we used the relation α̃ = K

1
2α to derive problem (6.3.1) in Section 6.3 wecould also identify the generated sequence {z̃k}k∈N := {(α̃k, bk)}k∈N with a sequence

{zk}k∈N := {(αk, bk)}k∈N using the relation α̃k = K
1
2αk. This means that the gradient
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given in (6.3.3) can be written as

∇ψ̃pf(z̃
k) =

⎛
⎝

1
λ
(α̃k + K

1
2 g̃(z̃k))

1⊤g̃(z̃k)

⎞
⎠ =

⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠
⎛
⎝

1
λ
(αk + g(zk))

1⊤g(zk)

⎞
⎠ . (8.3.3)

Hence, we can write the update rule in (8.3.1) as
⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠ zk+1 =

⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠ zk − τk

⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠W

⎛
⎝

1
λ
(αk + g(zk))

1⊤g(zk)

⎞
⎠ .

Note that each term in this equation is pre-multiplied by the same matrix. Conse-quently, we can define an explicit iterative scheme for the sequence {zk}k∈N, namely

zk+1 := zk − τk
λ

⎛
⎝αk + g(zk)

1
λ
1⊤g(zk)

⎞
⎠ . (8.3.4)

This shows that the gradient descent method for the second formulation of the train-ing problem given in (6.3.1) can also be interpreted as an iterative optimization of theform (8.1.1) with the direction
dk :=

1
λ

⎛
⎝αk + g(zk)

1
λ
1⊤g(zk)

⎞
⎠ . (8.3.5)

Note that this method can also be seen as a preconditioned version of the simplegradient descent method. According to the argumentation given in Section 6.3, thesequence defined by (8.3.4) is not necessarily the only one which leads to (8.3.1) underthe equation α̃k = K
1
2αk. In theory, the value of αk is only uniquely determined if thekernel matrix is invertible. However, the sequence defined in (8.3.4) seems to be anatural choice even if the kernel matrix is not invertible because of its simple form.

8.3.2 Practical Implementation
In order to proceed with the step size selection in the resulting gradient descent
method, we also need to derive an explicit term for the descent estimate ∇ψ̃pf(z̃

k)⊤d̃
k.

By definition of the direction d̃
k and using (8.3.3), we obtain

−∇ψ̃pf(z̃
k)⊤d̃

k
=

1
λ2

(︁
(rk)⊤Krk + (1⊤g(zk))2)︁

with rk as defined in (8.2.2). Again, the term can be computed explicitly using theiterates zk = (αk, bk) only. Thus, the explicit knowledge of the iterates z̃k = (α̃k, bk)
and the computation of the matrix K

1
2 is not necessary at all. We summarize theresulting training method in Algorithm 8.3.1.
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Algorithm 8.3.1: Preconditioned Gradient Descent Method
Input: z0 ∈ Rn+1, parameters η0 > 0, η ∈ (0, 1) and σ ∈ (0, 1)

1 for k = 0, 1, 2, . . . do
2 Compute g(zk) and rk := αk + g(zk).
3 if rk = 0 and 1⊤g(zk) = 0 then
4 Stop: zk is a solution of (6.1.2).
5 Compute dk according to (8.3.5).
6 Let τk ∈ {η0 · ηℓ | ℓ ∈ {0, 1, 2, . . . }} be the largest number satisfying

ψpf(zk + τkd
k) ≤ ψpf(zk) −

στk
λ2

(︁
(rk)⊤Krk + (1⊤g(zk))2)︁ . (8.3.6)

7 Update zk+1 := zk + τkd
k.

Observe that the convergence of Algorithm 8.3.1 to a solution of the primal trainingfollows by means of the well-known convergence properties of the gradient method(cf. [GK99, Satz 8.9]) because the method is a realization of the gradient descentmethod for the problem (6.3.1) and the variables are translated appropriately.

8.3.3 Discussion of the Computational Effort

With these preliminary considerations, we want to focus on the practical applicationof the preconditioned gradient descent method defined in Algorithm 8.3.1. In thesame way as in the previous section, we note that the realization of one gradient stepaccording to (8.3.4) involves the computation of the vectors g(zk) and rk. Again, forthe evaluation of the value of g(zk), the values of the decision functions accordingto (8.2.1) are needed. This means that the computational effort for the computationof g(zk) and rk is proportional to n · nkNZ.
At first sight, the situation is not significantly different from what we have observedbefore because the number of non-zero entries in αk can be high, too. However, con-sidering the update rule (8.3.4) there is hope to accomplish zero entries. This is be-cause the training problem is often constructed in way that leads to a limited numberof support vectors at optimum. In particular, the loss functions usually have vanishingderivative in a (typically infinitely) large interval. Moreover, a large portion of the opti-mal decision values fall into the corresponding interval which leads to a high numberof non-support vectors.In addition, typically chosen loss functions are not only zero in some interval but alsoaffine linear in a large range. In particular this is true for the training problems con-sidered in Proposition 4.1.1, Proposition 4.2.2, and the corresponding approximateformulations using smooth loss functions as introduced in Section 4.4. This meansthat gi(z) is often constant for z close to zk. If the sequence {zk}k∈N converges tosome point z⋆, this fact can be used practically. We summarize the idea in the follow-ing observation.
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Observation 8.3.1 (loss function with affine linear part)
Consider a standard training problem with continuously differentiable loss functions.
Suppose that z⋆ = (α⋆, b⋆) is a solution of (6.1.2). Let

ϱi(ti) := inf {|t− ti| | t ∈ R, ℓ′(t) ̸= ℓ′(ti)}

for i ∈ {1, . . . ,n} denote the distance between ti and the closest point where the deriva-
tive of ℓi changes its value. Then, for all i ∈ {1, . . . ,n} with

ϱi

(︃
1
λ

[Kα⋆]i + b⋆
)︃
> 0 (8.3.7)

there exists an ϵi > 0 such that
gi(z) = gi(z⋆)

for all z ∈ B(z⋆, ϵi).

In order to discuss the practical implication of this observation, let z⋆ := limk→∞ zkdenote the limit point of the generated sequence. Then, gi(zk) = gi(z⋆) whenever
ϱi(t⋆i ) > 0 and k is large enough. Since the vector g(z⋆) has zero components for allnon-support vectors, this will also be true for g(zk) if ϱi(t⋆i ) > 0. Then, the upper partof (8.3.4) yields

αk+1
i := αki −

τk
λ

(αki + gi(zk)) (8.3.8)
for i ∈ {1, . . . ,n}. This implies that αk+1

i = −gi(zk) if the step size is chosen as τk = λ.In view of the Armijo step size rule according to (8.3.6), τk = λ follows if the initial stepsize is chosen as η0 := λ and no further reduction is needed. Indeed, the selection ofthe initial step size of λ is quite natural when the training problem in (6.3.1) is underconsideration because of the quadratic regularization term 1
λ
∥α̃∥2, which would beminimized in one gradient descent step with this step size.

Due to (8.3.8) a step size of λ generally leads to αk+1
i = −gi(zk). In the case that

gi(zk) = gi(z⋆) this implies that αk+1
i is updated to a value such that the ith componentof the optimality conditions (6.5.1) is exactly satisfied. Moreover, no further updatehappens at the subsequent step if gi(zk+1) = gi(zk) because rk+1

i = 0. It follows thatthe update usually affects only a relatively small subset of the training set, namelythe set of those training samples for which the decision function value falls into thenonlinear region of the loss function.
Subsequently, we want to note that only a smaller part of the kernel matrix is actuallyneeded for the realization of one update step. First, observe that the decision functionvalues can be updated iteratively as

tk+1 =
1
λ
Kαk+1 + bk+11

= tk +
1
λ
K(αk+1 −αk) + (bk+1 − bk)1

= tk − τk
λ2Krk + (bk+1 − bk)1.

(8.3.9)
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Hence, only the columns of K associated with non-zero entries of rk are needed.Following the previous discussion, it can be assumed that these are not too many.Furthermore, the set of non-zero entries in rk can be assumed to change not toodrastically, i.e., it makes sense to use a caching procedure if the columns of the kernelmatrix are computed on demand.
Using the update rule in (8.3.9), the computation of g(zk) in step 2 of Algorithm 8.3.1involves only n operations. Moreover, a similar update procedure can be used for theevaluation of the objective function in (8.3.6). Then, the overall computational effortfor one step in Algorithm 8.3.1 is proportional to n · nkNZ(r), where nkNZ(r) denotes thenumber of non-zero entries of rk.

8.3.4 Shrinking of the Training Problem
Finally, we want to mention an approach which makes it possible to reduce the compu-tational effort even more. The idea is basically the same as in the shrinking procedurewhich is applied commonly in implementations of the SMO method as discussed inSubsection 7.9.1.

Above we noted that the update rule (8.3.8) leads to exact updates (in the sense that
αk+1
i = −gi(zk+1)) in certain cases. Whenever the value of the ith decision functionstays in the same linear region of the ith loss function, no further update is happeningto the variable αi in the subsequent steps. In practice this means that the variable canactually be ignored in the update routine. Moreover, it is not necessary to update the
ith decision function value anymore because it is not relevant for the following stepsof the optimization method.The preceding consideration leads to the idea of shrinking. After a predefined num-ber of steps of the optimization routine, all variables which qualify for shrinking (be-cause they satisfy a particular condition) are removed from the set of active variables.For those variables we omit the evaluation of the decision values and the loss terms en-tirely. Possible shrinking rules can be derived following the idea of Observation 8.3.1.Instead of the original training problem (6.1.2) a reduced problem of the form

min
αI∈RI

b∈R

1
2λ

α⊤
I (KIIαI + KIĪαĪ) +

∑︂

i∈I

ℓi

(︃
1
λ

[Kα]i + b

)︃

with active set I ⊆ {1, . . . ,n} and fixed set Ī := {1, . . . ,n} \ I is considered. Notethat the objective function is only used for the estimation of the descent condition in(8.3.6), and it is necessary to compute the term KIĪαĪ (which occurs in the first andthe second part of the objective function) only once because αĪ is kept fixed.
Of course, we cannot be certain that the selection of the estimated set of fixed vari-ables is correct. So, in general it is necessary to check whether the shrunk index setis still feasible for which it is essential to re-evaluate the ith decision value. Since thisevaluation is computationally expensive, one has to aim for a tradeoff between shrink-ing (which makes each subsequent step less expensive) and conservative selection ofthe shrunk index set (which prevents excessive re-evaluation of the decision functionvalues).
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8.3.5 Potential Application of Error Bound Conditions

In order to apply the shrinking idea practically, one could hope to obtain an errorbound condition (EBC) for the solution set of the training problem by using a suitableset of first-order optimality conditions, for instance those defined in Corollary 3.4.2 or(for smooth loss functions) by the system (6.5.1). For the latter system an error boundcondition holds if there exists some constant K > 0 such that
dist[(α, b),Z⋆] ≤ K∥F (α, b)∥ for all (α, b) ∈ Rn × R, (8.3.10)

where
Z⋆ := {(α, b) ∈ Rn × R | F (α, b) = 0}

denotes the set of solutions of the system. Note that it is also sufficient that (8.3.10)holds locally (i.e., for all α in some neighborhood of Z⋆) for a practical application.Indeed, a condition of the form (8.3.10) could help to derive an asymptotically exactestimate for the index set satisfying (8.3.7).
In the differentiable setting, in which the system (6.5.1) is defined, one can expectthat the condition (8.3.10) is satisfied at least locally. However, such a condition is notavailable in the general case as we can see in the following example.

Example 8.3.2 (violated error bound condition)
Consider the problem

min |b| (8.3.11)
which can be seen as a part of a training problem. Then, the unique solution of the
problem is given by b⋆ = 0 and hence any feasible point b ∈ R has a distance of |b| > 0
to the solution set. On the other hand, the ordinary first-order optimality condition is

0 ∈ ∂|b| =

⎧
⎪⎨
⎪⎩

−1, if b < 0,
[−1, 1], if b = 0,
1, if b > 0.

In particular, the value of the subgradient contains no information about the distance
of a point b ̸= 0 to the solution set. Thus, the first-order optimality condition cannot be
used to form an error bound condition in this example.

Note that the structure of the previous problem also occurs if the w-part of the so-lution is fixed to its optimal value (which is unique in many applications due to Corol-lary 3.8.1). Then, the remaining problem (i.e., optimizing b only) has a piecewise linearobjective function similar to that of (8.3.11) in many practical applications in particularfor the classical SVM in (4.1.1) and the ε-SVR in (4.2.1).
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8.4 Application of Newton’s Method
Building on the investigation of equivalent problems for the training problem in Chap-ter 6 we aim to derive a particular realization of Newton’s method in the following.The resulting solution method basically follows the lines of the preconditioned gra-dient descent method presented in Algorithm 8.3.1 but uses another choice for thedefinition of the direction, namely the Newton direction, in each step.

Note that a similar approach was also proposed in [LM01], where the primal prob-lem is treated in its original form (comparable to the standard training problem (2.4.3))and smoothed versions of the classification loss functions are considered. In con-trast to this, we describe the Newton method in a more general framework, whichenables the application to a broader class of training problems and allows for a moreefficient computation in certain cases. Furthermore, similar ideas are used in the ap-plication of weighted Least Squares Support Vector Machines [SDBLV02], the Itera-tive Re-Weighted Least Square procedure [PCNVADAR00] and the Lagrangian SupportVector Machines [FM03]. However, we do not pursue an extensive comparison to ourapproach here. In a nutshell, the most important drawback of these methods is thatthe application to large-scale is not feasible in practice. In contrast, our method aimsat tackling exactly this problem.
Subsequently, we start with a version of a globalized Newton method based on adescent approach for a particular objective function. It is justified that this methodconverges to some solution of the training problem under rather weak assumptions.Moreover, we motivate that each step of the method can be conducted with a relativelylow computational effort, if the starting point is not too far from the solution of theproblem.

8.4.1 Analysis of the Newton System
For the application of Newton’s method to the training problem (6.1.2) one could con-sider the system of linear equations

∇2ψpf(α, b)

⎛
⎝δ

δ0

⎞
⎠ = ∇ψpf(α, b). (8.4.1)

However, the Hessian matrix of the objective function ψpf is not guaranteed to beinvertible. In particular, if the kernel matrix is singular, the matrix ∇2ψpf(α, b) is alsosingular for all (α, b) ∈ Rn×R, which can be easily observed from the form provided byProposition 6.1.4. Thus, a restriction to the subspace ker(K)⊥ as proposed in Propo-sition 6.2.2 seems a reasonable way to handle this issue. This leads again to the useof the second finite-dimensional formulation of the primal training problem given byProposition 6.3.1. As in the derivation of the preconditioned gradient descent methodabove, we will see, that it is actually not necessary to compute K
1
2 explicitly in order toapply Newton’s method because all algorithmic steps can be transferred to the vari-ables of the first finite-dimensional training problem.
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To start with an explanation of this observation, we examine the gradient and theHessian of the objective function ψ̃pf . Using the representation of the derivatives inProposition 6.3.2, we consider the Newton system for problem (6.3.1), which is givenby

∇2ψ̃pf(α̃, b)

⎛
⎝ δ̃

δ0

⎞
⎠ = ∇ψ̃pf(α̃, b). (8.4.2)

As the function ψ̃pf is convex its Hessian is at least positive semi-definite. Moreover,
since ψ̃pf is also uniformly convex with respect to α̃ one would expect that the Hessianis positive definite in most cases. In the following proposition we identify under whichconditions this is the case.

Proposition 8.4.1 (positive definiteness of ∇2ψ̃pf )
Consider a standard training problem according to Definition 2.4.5 with twice continu-
ously differentiable loss functions. Let ψ̃pf be defined according to (6.3.2).
Then, the Hessian matrix ∇2ψ̃pf(α̃, b) is positive definite if and only if 1⊤h̃(α̃, b) > 0.

Proof. First, note that 1⊤h̃(α̃, b) = 0 if and only if h̃(α̃, b) = 0 because the loss functionsare convex and the vector h̃(α̃, b) consists of the second derivatives. Then, it is easyto see that the matrix
λ∇2ψ̃pf(α̃, b) =

⎛
⎝I + 1

λ
K

1
2H̃K

1
2 K

1
2H̃1

1⊤H̃K
1
2 λ1⊤H̃1

⎞
⎠

is not invertible if H̃ = O, i.e., if 1⊤h̃(α̃, b) = 0.Now, suppose that 1⊤h̃(α̃, b) > 0. A well-known fact is that a matrix is positivedefinite if and only if its Schur complement is positive definite, cf. [HJ12, Theorem7.7.7]. For the block matrix λ∇2ψ̃pf(α̃, b) there are two possibilities to form a Schurcomplement. Subsequently, we consider the form
I +

1
λ
K

1
2H̃K

1
2 − 1

λ1⊤H̃1
K

1
2H̃11⊤H̃K

1
2 = I +

1
λ
K

1
2

(︃
H̃ − 1

1⊤H̃1
H̃11⊤H̃

)︃
K

1
2 .

It remains to show that this matrix is positive definite. Fur this purpose, let γ ∈ Rn besome arbitrary vector. Then, by means of the Cauchy–Schwarz inequality we obtain
γ⊤H̃11⊤H̃γ = (γ⊤H̃1)2 =

(︂
(H̃

1
2γ)⊤H̃

1
21
)︂2

≤ ∥H̃
1
2γ∥2 · ∥H̃

1
21∥2 = γ⊤H̃γ · 1⊤H̃1.

This implies that
γ⊤
(︃
H̃ − 1

1⊤H̃1
H̃11⊤H̃

)︃
γ ≥ 0,

i.e., the Schur complement of λ∇2ψ̃pf(α̃, b) is positive definite. Hence, the Hessian
matrix ∇2ψ̃pf(α̃, b) is also positive definite if 1⊤h̃(α̃, b) > 0.
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8.4.2 Efficient Solution of the Newton System
As the theory indicates that Newton’s method can be used to solve the training prob-lem, the question arises whether an efficient implementation is possible in practice.Following the assertion of Proposition 8.4.1, we suppose that 1⊤h̃(α̃, b) > 0 holdswhen we consider the Newton system such that it is solvable by assumption. Then,taking into account the relations α̃ = K

1
2α and δ̃ = K

1
2δ, the Newton system (8.4.2)can be written as

1
λ

⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠
⎛
⎝I + 1

λ
H̃K H̃1

1⊤H̃K λ1⊤H̃1

⎞
⎠
⎛
⎝δ

δ0

⎞
⎠ =

⎛
⎝K

1
2 0

0⊤ 1

⎞
⎠
⎛
⎝

1
λ
(α + g(α, b))

1⊤g(α, b)

⎞
⎠ (8.4.3)

Because of the special structure of the Hessian matrix, we can now observe that itis possible to compute a solution of the Newton system rather efficiently. The basicprocedure to do this is summarized in Algorithm 8.4.1 and justified in the subsequentproposition.
Algorithm 8.4.1: Solution of the Newton system (8.4.1)
1 Let J := {i ∈ {1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n} \ J .
2 Compute

δJ̄ := αJ̄ + gJ̄(α, b). (8.4.4)
3 Compute

aJ := H−1
JJ(αJ +gJ(α, b))− 1

λ
KJJ̄δJ̄ and a0 := 1⊤αJ −1⊤gJ̄(α, b). (8.4.5)

4 With Q := H−1
JJ + 1

λ
KJJ compute

pJ := Q−1aJ and qJ := Q−11 (8.4.6)
5 Compute

δ0 :=
1⊤pJ − a0

1⊤qJ
and δJ := pJ − δ0qJ . (8.4.7)

The major advantage of the application of Algorithm 8.4.1 for the solution of theNewton system is that a part of the solution (namely all variables with indices belongingto the set J̄ ) can be determined very easily due to (8.4.4). The remaining part of thevariables is then defined by the solutions of two systems of linear equations with thesame system matrix which can be rather small (depending on the size of the indexset J ), cf. (8.4.6) and (8.4.7).Of course, the sizes of the sets J and J̄ depend on the current point and the par-ticular choice of the loss functions. We will discuss this issue again later on in Subsec-tion 8.4.4.
In the following proposition we show that Algorithm 8.4.1 actually yields a solution
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of the Newton system (8.4.1). Furthermore, we state the relation between the Newtonsystem and another related system of linear equations.

Proposition 8.4.2 (solution of the Newton system)
Consider a standard training problem according to Definition 2.4.5 with twice continu-
ously differentiable loss functions. Let (α, b) ∈ Rn × R satisfy 1⊤h(α, b) > 0.
Then, the system

⎛
⎝I + 1

λ
HK H1

1⊤HK λ1⊤H1

⎞
⎠
⎛
⎝δ

δ0

⎞
⎠ =

⎛
⎝α + g(α, b)

λ1⊤g(α, b)

⎞
⎠ (8.4.8)

has a unique solution which is computed by means of Algorithm 8.4.1. Moreover, this
solution is also a solution of the Newton system (8.4.1) and of the system (8.4.2) with δ̃ =

K
1
2δ and α̃ = K

1
2α. In particular, (δ, δ0) is an ascent direction for ψpf at (α, b) if and

only if (α, b) is not a solution of the finite-dimensional primal training problem (6.1.2).
Proof. Because the loss functions are convex, the entries of the vector h(α, b) are non-negative. Let J := {i ∈ {1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n} \ J . Then, thesystem (8.4.8) can be written in blocks as

⎛
⎜⎜⎝

I + 1
λ
HJJKJJ

1
λ
HJJKJJ̄ HJJ1

O I 0

1⊤HJJKJJ 1⊤HJJKJJ̄ λ1⊤HJJ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δJ

δJ̄

δ0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

αJ + gJ(α, b)

αJ̄ + gJ̄(α, b)

λ1⊤g(α, b)

⎞
⎟⎟⎠ .

In this representation, it is easy to see that δJ̄ given by (8.4.4) is uniquely determined.It remains to consider the reduced system
⎛
⎝I + 1

λ
HJJKJJ HJJ1

1⊤HJJKJJ λ1⊤HJJ1

⎞
⎠
⎛
⎝δJ

δ0

⎞
⎠ =

⎛
⎝ãJ

ã0

⎞
⎠ (8.4.9)

with right-hand side
⎛
⎝ãJ

ã0

⎞
⎠ :=

⎛
⎝αJ + gJ(α, b)

λ1⊤g(α, b)

⎞
⎠−

⎛
⎝

1
λ
I

1⊤

⎞
⎠HJJKJJ̄δJ̄ .

By summing up the first block of equations in (8.4.9), we obtain
1⊤δJ +

1
λ
1⊤HJJKJJδJ + 1⊤HJJ1δ0 = 1⊤ãJ .

Now, subtracting λ−1 times the second block of (8.4.9) from this equation, it followsthat the reduced system is equivalent to
⎛
⎝I + 1

λ
HJJKJJ HJJ1

1⊤ 0

⎞
⎠
⎛
⎝δJ

δ0

⎞
⎠ =

⎛
⎝ ãJ

1⊤ãJ − 1
λ
ã0

⎞
⎠ .



140 8.4 Application of Newton’s Method

Note that
1⊤ãJ = 1⊤(αJ + gJ(α, b)) − 1

λ
1⊤HJJKJJ̄δJ̄ = 1⊤αJ − 1⊤gJ̄(α, b) +

1
λ
ã0.

This means that the second term of the right-hand side is equal to a0 := 1⊤αJ −
1⊤gJ̄(α, b) as defined in (8.4.5). Lastly, because HJJ is invertible (as a diagonal matrixwith only positive entries), the system is equivalent to

⎛
⎝H−1

JJ + 1
λ
KJJ 1

1⊤ 0

⎞
⎠
⎛
⎝δJ

δ0

⎞
⎠ =

⎛
⎝aJ

a0

⎞
⎠

with aJ := H−1
JJ ãJ as defined in (8.4.5). Because the kernel matrix KJJ is positive semi-definite, it follows that the matrix Q := H−1

JJ + 1
λ
KJJ is positive definite. In particular,it is invertible and the term 1⊤Q−11 is positive. This means that the upper block of theprevious system can further be rewritten as

δJ + Q−11δ0 = Q−1aJ . (8.4.10)
Moreover, summing up both sides of the equation yields

δ0 =
1⊤Q−1aJ − a0

1⊤Q−11
.

This together with (8.4.10) and the equation for δJ̄ in (8.4.4) shows that the solutionof system (8.4.8) is uniquely determined. Note that the definitions in (8.4.7) of Algo-rithm 8.4.1 are equal to the terms above with the vectors pJ and qJ previously com-puted in (8.4.6).It is easy to see that the solution of (8.4.8) also satisfies the Newton system (8.4.1)because the latter equation is implied by the former when the first block of equationsis multiplied by K. It also directly follows that (δ̃, δ0) with δ̃ = K
1
2δ is a solution of the

system (8.4.2) if one uses that α̃ = K
1
2α and (8.4.3).Finally, we use the equivalence between the problems (6.1.2) and (6.3.1) to showthat the direction (δ, δ0) is an ascent direction for ψpf at (α, b) if and only if (α, b) isnot a solution of (6.1.2). If (α, b) solves problem (6.1.2), it follows that ∇ψpf(α, b) = 0

and there exists no ascent direction. Otherwise, the point (α̃, b) with α̃ = K
1
2α is notoptimal for (6.3.1). Because (under the presumption that 1⊤h(α, b) = 1⊤h̃(α̃, b) > 0)the Hessian∇2ψ̃pf(α̃, b) is positive definite, i.e., the Newton direction (δ̃, δ0) is an ascent

direction for ψ̃pf at (α̃, b). Finally, by construction, (δ, δ0) is also an ascent direction
for ψpf at (α, b) because ψpf(α, b) = ψ̃pf(K

1
2α, b).

8.4.3 Formulation of Newton’s Method
In conclusion of the previous observations, we want to formulate a particular real-ization of a globalized Newton method, which makes it possible to infer guaranteed
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convergence. In particular, we introduce a line search procedure to ensure a suffi-cient decrease of the objective function in each step. Additionally, in order to avoiddegenerated directions, a fallback to the search direction from the preconditionedgradient descent method is applied if necessary. The resulting method is summarizedin Algorithm 8.4.2. In the definition of the algorithm we use the terms

∇ψ̃pf(z̃)⊤d̃ =

⎛
⎝

1
λ
K

1
2 (α + g(α, b))

1⊤g(α, b)

⎞
⎠

⊤⎛
⎝K

1
2δ

δ0

⎞
⎠ =

1
λ
r⊤Kδ + 1⊤g(z)δ0, (8.4.11)

see (6.3.3), and
∥d̃∥ =

√︂
δ⊤Kδ + δ2

0 (8.4.12)
with the identification d̃ = (K

1
2δ, δ0).

Algorithm 8.4.2: Newton’s method for the primal training problem
Input: z0 ∈ Rn+1, parameters µ > 0, p > 2, η ∈ (0, 1) and σ ∈ (0, 1

2)
1 for k = 0, 1, 2, . . . do
2 Compute g(zk) and rk := αk + g(zk).
3 if rk = 0 and 1⊤g(zk) = 0 then
4 Stop: zk is a solution of (6.1.2).
5 if 1⊤h(zk) > 0 then
6 Compute dk,N as solution of (8.4.8) with (α, b) := zk.
7 Compute Rk := −∇ψ̃pf(z̃

k)⊤d̃
k,N and ∥d̃k,N∥ according to (8.4.11) and(8.4.12).

8 if dk,N is available and Rk ≤ −µ∥d̃k,N∥p then
9 Define dk := dk,N .

10 else
11 Compute dk according to (8.3.5).
12 Compute Rk := 1

λ2 (rk)⊤Krk + (1⊤g(zk))2.
13 Let τk ∈ {ηℓ | ℓ ∈ {0, 1, 2, . . . }} be the largest number satisfying

ψpf(zk + τkd
k) ≤ ψpf(zk) − στkRk.

14 Update zk+1 := zk + τkd
k.

In the same way as for the convergence of the preconditioned gradient descentmethod in Section 8.3 it is also possible to obtain convergence for Algorithm 8.4.2. Todo this, we interpret the method as a realization of Newton’s method for the objectivefunction ψ̃pf as defined in (6.3.1). With this approach the convergence of the algorithmto solutions of the training problem follows immediately by means of [GK99, Satz 9.5].
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8.4.4 Practical Remarks
It should be noted that the efficiency of the proposed implementation of Newton’smethod highly depends on the fact that only a small proportion of the kernel matrix isneeded in each step. In Algorithm 8.4.1 for the solution of the Newton system this isalready reflected partially. However, the full realization of Newton’s method accordingto Algorithm 8.4.2 requires more steps, in which certain columns of K are potentiallyneeded. This is especially the case for the line search step (line 13) which requires thevalue of ∇ψ̃pf(z̃)⊤d̃ given by (8.4.11). To estimate the effort for its computation, thesparseness structure of the step vector dk can be used as follows.

Similarly to the argumentation for the preconditioned gradient descent method inSubsection 8.3.3, it is also possible to find out that one step of Newton’s method canhave a remarkable effect on particular training samples. To do this, we consider a fixedstep k in the following. Let i ∈ {1, . . . ,n} be some index with hi(αk, bk) = 0. Then, the
ith component of the Newton direction is equal to

δki = αki + gi(αk, bk).

When the Newton method is considered, one usually expects the step size to be equalto one. In particular, close to a non-degenerated solution of the problem, the unit stepsize is guaranteed in theory, cf. [GK99, Lemma 9.9]. If the full step length τk = 1 isaccepted, the update yields for the ith component that
αk+1
i = αki − τkδ

k
i = −gi(αk, bk). (8.4.13)

This property is especially useful if the derivate of the ith loss function is not changedby the update, i.e., if gi(αk+1, bk+1) = gi(αk, bk). Note that this can happen quite oftenif the loss function is defined piecewise and is affine linear for a large range, cf. Ob-servation 8.3.1. In this case, the update (8.4.13) implies that the ith component of theoptimality conditions is satisfied exactly at the next step because
αk+1
i + gi(αk+1, bk+1) = αk+1

i + gi(αk, bk) = 0.

This means especially that the ith variables does not need any update in the next stepof the method if hi(αk+1, bk+1) = 0. However, this condition can be expected to besatisfied very frequently for certain classes of loss functions.
Observation 8.4.3 (partial exactness of the Newton update)
Consider a standard training problem as in Definition 2.4.5 with twice differentiable loss
functions.
Then, the ith variable is not updated in the subsequent step of Algorithm 8.4.2 if

• the step size of τk = 1 is accepted,
• hi(αk, bk) = hi(αk+1, bk+1) = 0, and
• gi(αk+1, bk+1) = gi(αk, bk).
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It should be emphasized again that, as argued above, all the required conditions arenot implausible in practical applications. In particular, loss functions derived by meansof some smooth approximation of the maximum function (according to Section 4.4)are suitable to promote these conditions.

On the other hand, the conditions of Observation 8.4.3 are not very useful if a stepis taken starting from a point far from the solution of the problem. This is because onecannot expect the values of the first and second derivative of the loss functions to stayconstant when a significant update of the variables (and hence of the decision functionvalues) is necessary. Thus, it is desirable to start from an appropriate approximationof the solution, which can be obtained, for instance, by means of the SMO method.

8.5 Properties of the Jacobian

In this section, we want to analyze the Jacobian of the functionF defining system (6.5.1)in detail. By construction, the Jacobian of F is closely connected to the Newton sys-tems (8.4.1) and (8.4.2). In particular, its structure is very similar to that of the systemmatrix which occurs in the reduced Newton system (8.4.8). Moreover, it is neededlater on in Section 9.2 for the application of the implicit function theorem to obtainsensitivity information for the solution. The subsequent proposition summarizes ba-sic observations about the structure of the Jacobian matrix and the associated Newtonsystem.
Proposition 8.5.1 (invertibility of the Jacobian matrix)
Consider a standard training problem as in Definition 2.4.5 with twice continuously dif-
ferentiable loss functions. Let F be defined according to (6.5.1). Consider the Jacobian
matrix

F ′(α, b) =

⎛
⎝I + 1

λ
H(α, b)K H(α, b)1

1⊤ 0

⎞
⎠ .

(a) The matrix F ′(α, b) is invertible if and only if 1⊤h(α, b) > 0.
(b) If F ′(α, b) is invertible, the solution of the system of linear equations

F ′(α, b)

⎛
⎝u

u0

⎞
⎠ =

⎛
⎝v

v0

⎞
⎠ (8.5.1)

can be computed by means of Algorithm 8.5.1.
(c) Any solution of (8.5.1) satisfies ui = vi for all i ∈ {1, . . . ,n} with hi(α, b) = 0.

Proof. The basic idea of the proof follows the lines of Proposition 8.4.2. Let J := {i ∈
{1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n} \ J . Then, system (8.5.1) can be written in
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blocks as ⎛
⎜⎜⎝

I + 1
λ
HJJKJJ

1
λ
HJJKJJ̄ HJJ1

O I 0

1⊤ 1⊤ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uJ

uJ̄

u0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

vJ

vJ̄

v0

⎞
⎟⎟⎠ .

Thus, it immediately follows that uJ̄ := vJ̄ is uniquely determined, i.e., assertion (c) isverified.It remains to consider the reduced system
⎛
⎝I + 1

λ
HJJKJJ HJJ1

1⊤ 0

⎞
⎠
⎛
⎝uJ

u0

⎞
⎠ =

⎛
⎝vJ − 1

λ
HJJKJJ̄vJ̄

v0 − 1⊤vJ̄

⎞
⎠ ,

which can also be written as
⎛
⎝H−1

JJ + 1
λ
KJJ 1

1⊤ 0

⎞
⎠
⎛
⎝uJ

u0

⎞
⎠ =

⎛
⎝H−1

JJvJ − 1
λ
KJJ̄vJ̄

v0 − 1⊤vJ̄

⎞
⎠ =:

⎛
⎝aJ

a0

⎞
⎠ (8.5.2)

because the matrix H is positive definite.Moreover, the matrix Q := H−1
JJ + 1

λ
KJJ is also positive definite. This means that thesolution of the remaining system can be obtained by solving two smaller systems of lin-ear equations according to (8.5.3). Finally, computing the solution by means of (8.5.4)is possible. Hence, the matrix F ′(α, b) is invertible.Note that the whole solution procedure is based on the existence of H−1

JJ , i.e., onthe fact that J contains at least one index. This implies assertion (a).

Algorithm 8.5.1: Solution of the system (8.5.1)
1 Let J := {i ∈ {1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n} \ J .
2 Compute uJ̄ := vJ̄ .
3 Compute aJ := H−1

JJvJ − 1
λ
KJJ̄vJ̄ .

4 Compute a0 := v0 − 1⊤vJ̄ .
5 With Q := H−1

JJ + 1
λ
KJJ compute

pJ := Q−1aJ and qJ := Q−11 (8.5.3)
6 Compute

u0 :=
1⊤pJ − a0

1⊤qJ
and uJ := pJ − u0qJ . (8.5.4)

One interesting observation concerning the solution of (8.5.1) using Algorithm 8.5.1is that only the part of the kernel matrix associated with the index set J is neededin the computations. That part can be seen as a kind of active set. We follow thisargumentation later on in Subsection 9.2.2.
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In the following, we also present an adapted solution method for a system of linearequations which has the transposed Jacobian as system matrix. Again, this will behelpful in Section 9.2.

Proposition 8.5.2 (solution of the system with transposed Jacobian matrix)
Under the assumptions of Proposition 8.5.1, the system with the transposed Jacobian

F ′(α, b)⊤

⎛
⎝u

u0

⎞
⎠ =

⎛
⎝v

v0

⎞
⎠ (8.5.5)

can be solved by means of Algorithm 8.5.2 for all (α, b) with 1⊤h(α, b) > 0.

Proof. With J := {i ∈ {1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n}\J the system (8.5.5)can be written in block form as
⎛
⎜⎜⎝

I + 1
λ
KJJHJJ O 1

1
λ
K J̄JHJJ I 1

1⊤HJJ 0⊤ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uJ

uJ̄

u0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

vJ

vJ̄

v0

⎞
⎟⎟⎠ .

Motivated by the computations in the proof of the previous proposition, we considerthe part ⎛
⎝H−1

JJ + 1
λ
KJJ 1

1⊤ 0

⎞
⎠
⎛
⎝HJJuJ

u0

⎞
⎠ =

⎛
⎝vJ

v0

⎞
⎠

first and remember that uJ̄ = vJ̄ − 1
λ
K J̄JHJJuJ − 1u0. This system has the samematrix as the system (8.5.2) in the previous proof. Hence, the same solution techniqueis applicable. We do not go into the details here and refer to Algorithm 8.5.2 for theremaining steps.

Algorithm 8.5.2: Solution of the system (8.5.5)
1 Let J := {i ∈ {1, . . . ,n} | hi(α, b) > 0} and J̄ := {1, . . . ,n} \ J .
2 With Q := H−1

JJ + 1
λ
KJJ compute

pJ := Q−1vJ and qJ := Q−11

3 Compute
u0 :=

1⊤pJ − v0

1⊤qJ
and uJ := H−1

JJ(pJ − u0qJ).

4 Compute uJ̄ := vJ̄ − 1
λ
K J̄J(pJ − u0qJ) − 1u0.



9 Hyperparameter Optimization for
Support Vector Machines

In general, training problems depend on a set of hyperparameters. An obvious ex-ample for such a hyperparameter is the regularization parameter λ in the definition ofthe standard training problem, see Definition 2.4.5. But there are many possible othersources of hyperparameters, which will be discussed later on in Subsection 9.1.3.
Clearly, the values of hyperparameters influence the characteristics and hence theperformance of the resulting decision function. This implies immediately that a suit-able choice for those values is crucial for practical applications, cf. [Bur98]. In a generalcontext, the problem arising from this requirement is called model selection problem.If this problem is formulated as an optimization problem, it is also referred to as hy-perparameter optimization problem.
The aim of the present chapter is to discuss the latter problem (Section 9.1) and toformulate a particular solution approach which is based on the formulation of suffi-ciently smooth training problems and the application of the implicit function theorem(Section 9.2). The proposed idea is closely based on the preliminary work in [FLL+15]but extends the setting to more general training problems. In particular, we are ableto exploit the sparsity of the solutions of the training problems (which is naturally notpresent in the LS-SVM considered earlier) to make the approach applicable to evenlarger problems in practice.

9.1 Formulation of a Bilevel Optimization Problem

The problem of hyperparameter optimization occurs naturally after the definition of aparticular training problem which depends on parameters that are fixed and not deter-mined by the solution of the problem. In the following, we consider the formulation ofthe resulting problem in terms of a bilevel optimization problem. Before starting withthis formulation, we summarize related approaches known from the literature.
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9.1.1 Summary of Approaches in the Literature

A simple and well-established idea for the determination of suitable hyperparametervalues is to apply a grid search procedure. In this approach, the training problem issolved for a fixed set of hyperparameter values (which are usually chosen to lie on agrid) and the resulting decision function is validated by computing the performanceon some part of the dataset which was left out from the training. In a more elabo-rated approach, the performance of particular selections of hyperparameter values ismeasured by means of cross-validation, i.e., the training and validation is conductedfor multiple splits of the given dataset.Since the number of grid points scales exponentially with the number of hyperpa-rameters, the grid search idea is only feasible for a rather small number of hyperpa-rameters. Furthermore, this approach only considers discrete parameter values suchthat only a coarse selection is performed.
A general idea to reduce the practical effort of the grid search procedure is to applysome general purpose optimization routine that does not exploit the special structureof the underlying objective function. For instance, one could use a pattern searchmethod as proposed in [MB02] or a genetic algorithm following [ÜMOB05]. Althoughthese ideas may work for practical problems, an improvement could be expected ifone takes the structural properties of the problem into account.
For instance, if classical Support Vector Machines are used for classification prob-lems, particular performance estimates (or performance bounds) can be computedfrom the solution of the training problem, cf. [CV99, CVBM02]. Similar measures canalso be computed for regression problems, see [CL05]. These measures can then beused to determine suitable values for the hyperparameters and the overall approachis shown to yield good results in practice. Unfortunately, there is no guarantee thatthe used performance bounds correspond to the true performance of the generateddecision function. Moreover, it cannot be assumed that the resulting objective func-tion which is considered for the optimization is differentiable. Due to these possibledifficulties and the restriction to a particular problem structure, we do not considerthis approach subsequently.
One of the first approaches that uses the notion of bilevel optimization explicitly tomodel the hyperparameter optimization problem is given in [BHJ+06, KBHP08] andwas extended in [MBB11]. The authors propose to consider a bilevel optimizationproblem in which the upper level problem has an objective function measuring thevalidation error while the lower level problem consists of one or more training prob-lems.We also discuss and formalize this basic idea later on in Subsection 9.1.2. In thepreviously mentioned papers, the bilevel optimization problem is transformed into anonlinear optimization problem by replacing the lower level problem with its optimalityconditions. The resulting problem is treated practically by means of general-purposeoptimization tools. Due to the reformulation, a lot of the problems’ structure is lostsuch that the proposed method is restricted to relatively small datasets. See also[LLZ22] for a more recent approach using a similar idea.
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Instead of considering the bilevel optimization problem in its entirety, it is also pos-sible to follow an implicit function approach. To use this idea, it is usually assumedthat the solution of the lower level problem is unique and that there is some optimal-ity condition which can be used to compute derivatives of the solution with respect tothe hyperparameters. This has the advantage that the size of the overall problem istremendously reduced compared to the bilevel reformulation approach because thelower and upper level problems are treated alternately and not in parallel.Some authors propose to consider optimality which yield differentiability for almostall values of hyperparameters, see, for instance, [Sch05, KSC06, JS20]. In other ap-proaches, the loss term in the training problem is chosen in a way that differentia-bility is satisfied without further assumptions, see [DFN07] for log-linear models and[FLL+15] for Least Squares Support Vector Regression. Subsequently, we follow thesame basic idea and argue for the use of smoothed training problems for which it canbe shown that the solution is differentiable with respect to hyperparameters.
9.1.2 Formulation of the General Idea
In order to derive a bilevel optimization model for the hyperparameter selection prob-lem, we consider each part of the problem sequentially. We start with the lower levelproblem consisting of one or more training problems. To keep the notation simple,only a single problem is considered initially and a possible extension to the setting ofmultiple independent training problems is discussed later on in Subsection 9.1.4.

Letϑ ∈ Θ be a vector of hyperparameters which are present in the training problem.Then, a parameter-dependent training problem following the original structure of thegeneral training problem (2.4.1) can be formulated as
min
ω∈H

R(ω,ϑ) + L(Tω,ϑ), (9.1.1)
where R(ω,ϑ) and L(Tω,ϑ) denote the parameter-dependent regularization andloss terms, respectively. Note that the value of ϑ is fixed for the training problemand determines the characteristics of the problem. In particular, this means that a dif-ferent choice of ϑ will in general result in a different solution, which leads to a differentdecision function. For short, we let

Z(ϑ) := {ω ∈ H | ω solves (9.1.1) with parameter ϑ}
denote the solution set of the training problem for ϑ ∈ Θ. Then, problem (9.1.1)constitutes the lower level problem of the bilevel problem which is introduced in thefollowing.

In order to define the upper level problem, we let E : H × Θ → R be a functionmeasuring the performance of a vector ω for a fixed parameter ϑ ∈ Θ. Since a vec-tor ω ∈ H is usually identified with a particular decision function, the value E(ω,ϑ)can also be interpreted as the performance of the underlying decision function. In themost common formulations of the hyperparameter optimization problem, the func-tion E is composed of a particular error measure evaluated by means of a dataset
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which is not used in the training problem, such that it represents a validation error.Of course, it is also possible to consider certain other performance estimates as dis-cussed in the previous subsection. The performance measure E is then used as ob-jective function in the upper level problem as follows.

Taking together the training problem defined in (9.1.1) and the performance mea-sure given by E, the hyperparameter optimization problem can be stated as
min
ω∈H
ϑ∈Θ

E(ω,ϑ) s.t. ω ∈ Z(ϑ). (9.1.2)
If the solution set of the lower level problem is not unique, one commonly distinguishesbetween two different variants of the bilevel optimization problem. In this setting,the problem (9.1.2) is an example for a bilevel optimization problem in an optimisticformulation. Here, optimistic means that the solution of the lower level problem canbe chosen in favor of the upper level objective. In contrast, a pessimistic formulationof the hyperparameter optimization problem could be stated as

min
ϑ∈Θ

max
ω∈Z(ϑ)

E(ω,ϑ).

In this formulation the solution of the lower level problem is chosen against the upperlevel objective. Since we are targeting a setting in which the solution of the lower levelproblem is unique for each hyperparameter choice, we do not discuss the implicationsof the two different formulations further and use (9.1.2) as a basis for the subsequentconsiderations.

9.1.3 Parameter-Dependent Standard Training Problem
Of course, it is possible to consider the hyperparameter optimization problem in itsgeneral form as stated above. However, in order to make the problem better under-standable and easier to apply in practice, we restrict our further investigation to stan-dard training problems in the sense of Definition 2.4.5. Recall that the definition of astandard training problem is generally sufficient to formalize training problems origi-nating from classification and regression problems. Thus, in the following, we considera parameter-dependent standard training problem of the form

min
w∈F
b∈R

λ(ϑ)
2

∥w∥2 +
∑︂

i∈Ntr

ℓi(⟨w,φi(ϑ)⟩ + b,ϑ). (9.1.3)
Note that we used an index set Ntr instead of the full set N := {1, . . . ,n} in the def-inition of the training problem (9.1.3). This notation simplifies the description of theupper level problem in the following.

In the previous training problem the particular choice of the hyperparameter vec-tor ϑ determines
(a) the value of the regularization parameter λ,
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(b) the values of the feature vectors φi(or equivalently the values in the kernel matrix K), and
(c) the shape of the loss functions.

Depending on the application, not all of these dependencies are necessarily present ina particular training problem. The presence of the hyperparameter λ occurs quite nat-urally through the definition of the standard training problem. Moreover, the depen-dency of the feature vectors on hyperparameters can be easily motivated by meansof the kernel trick, cf. Subsection 2.2.4.
Example 9.1.1 (kernel parameters and Gaussian kernel function)
Suppose that the feature vectors φi(ϑ) are defined by the transformation of given input
points x1, . . . ,xn ∈ X under a parameter-dependent feature map φ : X × Θ → F ,
i.e., φi(ϑ) := φ(xi,ϑ) for i ∈ {1, . . . ,n}. Then, such a feature map can also be defined
implicitly by

⟨φi(ϑ),φj(ϑ)⟩ = κ(xi,xj,ϑ)

with a parameter-dependent kernel function κ : X × X × Θ → R having certain prop-
erties, see [Bis06, Chapter 6] and [SS02, Chapter 13].
A prominent example for a kernel function is the Gaussian kernel function defined by

κ(x, x̃,ϑ) := exp
(︁
−γ∥x− x̃∥2)︁

for real input vectors x, x̃ ∈ Rd with a scaling parameter γ > 0, which is generally also
part of the vectorϑ. In some applications, the structure of the Gaussian kernel function is
used to derive a kernel function with more degrees of freedom. For instance, a common
approach is to consider a function of the form

κ(x, x̃,ϑ) := exp
(︁
−∥Γ(ϑ)(xi − xj)∥2)︁

with a parameter-dependent matrix Γ(ϑ) ∈ Rd′×d. Practically, the latter matrix is often
chosen as diagonal matrix which scales each component of the input vectors xi inde-
pendently.

The third group of hyperparameters is of those that determine the shape of the lossfunctions or the weighting of training samples (or classes in classification problems).Those hyperparameters are called loss parameters. One obvious example is the pa-rameter ε in the ε-Support Vector Regression problem (4.2.1). Going a bit further, theparameter ν in the general ν-Support Vector Machine (5.2.4) is another example ofthis type, which, however, does not fit into the setting of standard training problems.
For each solution of the standard training problem (9.1.3) it is possible to define theresulting decision function according to Definition 2.4.3. Because the feature vectorsare supposed to be dependent on ϑ, the definition has to be modified slightly. Forthis reason, we consider a parameter dependent feature vector φ(ϑ) ∈ F and the
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parameter-dependent decision function defined by

d(φ(ϑ)) := ⟨w,φ(ϑ)⟩ + b,

which also depends on the particular choice of the solution (w, b) ∈ F × R of thetraining problem (9.1.3).
9.1.4 Formulation of the Upper Level Problem
In order to formulate the hyperparameter optimization problem concretely, we con-sider an approach for which a given dataset is split into parts that are used for trainingand performance estimation, respectively.
Performance Estimation from a Validation Set

In the simplest setting, the dataset is split once into two parts identified by the indexsets Ntr and Nval. For each element i ∈ Nval a particular error measure Li : R×ϑ → Ris used to define the overall performance measure by
E((w, b),ϑ) :=

∑︂

i∈Nval

Li(⟨w,φi(ϑ)⟩ + b,ϑ).

Then, the resulting hyperparameter optimization problem is stated as
min
ϑ∈Θ

E((w, b),ϑ)

s.t. (w, b) solves (9.1.3). (9.1.4)
The problem associated with this simple approach is that the given dataset is not ex-ploited efficiently in general. On the one hand, the size of the dataset that is usedfor the training procedure is made smaller. This implies that the generated decisionfunction is usually less precise. On the other hand, the performance measure which iscomputed from the validation set may not represent the true performance appropri-ately. This is especially the case if the validation set is small or chosen in an unsuitableway. To circumvent these issues, a common approach is the application of a cross-validation as discussed next.
Performance Estimation using Cross-Validation

The basic idea of a cross-validation procedure is to split the given dataset into two ormore parts. We refer to the partition by means of the index sets N1 ∪ · · · ∪ NQ = N .For each index set the corresponding part is left out from a training problem and theresulting decision function is evaluated by means of that part. Formally, the resultinghyperparameter optimization problem can be written as
min
ϑ∈Θ

Q∑︂

q=1

∑︂

i∈Nq

Li(⟨wq,φi(ϑ)⟩ + bq,ϑ)

s.t. (wq, bq) solves (9.1.3) with Ntr := N \Nq for q ∈ {1, . . . ,Q}.
(9.1.5)
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If the considered partition is disjoint, each element of the dataset is used in exactlyone term of the objective function and in all except for one of the training problems.This means that the whole dataset is used more efficiently than in the case of a singlevalidation set. Hence, one could expect to obtain better performance estimates for theoptimization procedure. On the other hand, it should be emphasized that the effortwhich is needed to evaluate the performance grows (approximately linearly) with thenumber of parts in the partition. Thus, it is necessary to make a compromise betweenthe quality of the estimates and the computational effort in practice.
At first sight, it is not obvious that this problem also matches the structure of thegeneral hyperparameter optimization problem introduced in (9.1.2). However, if alltraining problems are accumulated into a single one of the form

min
ω

Q∑︂

q=1

⎛
⎝λ(ϑ)

2
∥wq∥2 +

∑︂

i∈N\Nq

ℓi(⟨wq,φi(ϑ)⟩ + bq,ϑ)

⎞
⎠

with variables ω := ((w1, b1), . . . , (wQ, bQ)) ∈ H := (F × R)Q, and the upper levelobjective function is defined by
E(ω,ϑ) :=

Q∑︂

q=1

∑︂

i∈Nq

Li(⟨wq,φi(ϑ)⟩ + bq,ϑ),

this is indeed the case. Of course, a rewriting of this manner withdraws the structureof the lower level which actually consists of Q independent optimization problems.This means that it is generally not desirable to use this formulation as a starting pointfor practical applications, and the explicit problem formulation in (9.1.5) should bepreferred.

9.2 An Implicit Function Approach
The aim of this section is the application of the implicit function theorem in order toobtain sensitivity information for the solution of the training problem and, particularly,for the resulting decision function. In view of Proposition 6.5.3, we consider the systemof nonlinear equations

F (α, b;ϑ) :=

⎛
⎝α + g(α, b;ϑ)

1⊤α

⎞
⎠ =

⎛
⎝0

0

⎞
⎠ , (9.2.1)

where g(α, b;ϑ) is defined in the same way as in (6.1.5) but with an additional de-pendency on the hyperparameter vector ϑ. Recall that, this system is equivalent tothe training problem (9.1.3) if the solution of this problem is unique due to Proposi-tion 6.5.3. Moreover, the decision function resulting from the solution of the trainingproblem can easily be computed from the solution of (9.2.1).
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Now, the question is under which assumptions a derivative of the solution of thesystem (9.2.1) with respect to the hyperparameters is available and how it can be com-puted practically. In order to make the following steps possible, we require a strongercondition than Assumption 3.1.2 to be satisfied.

Assumption 9.2.1 (unique solution of the training problem)
Consider a parameter dependent standard training problem (9.1.3) with twice continu-
ously differentiable loss functions. Let problem (9.1.3) have a unique solution (w⋆, b⋆)
and suppose that ∑︂

i∈Ntr

ℓ′′i (⟨w⋆,φi(ϑ)⟩ + b⋆,ϑ) > 0 (9.2.2)
is satisfied for all ϑ ∈ Θ.

Note that for problems with twice differentiable loss functions, the condition (9.2.2)is virtually always satisfied. Additionally, it is possible to add an artificial loss term whichis uniformly convex in order to force this condition theoretically. This could be, forinstance, a quadratic penalty for the bias multiplied with a sufficiently small factor suchthat the original problem is not perturbed too much.

9.2.1 Application of the Implicit Function Theorem
If Assumption 9.2.1 is satisfied, the solution of the system (9.2.1) is unique for eachvalue of ϑ ∈ Θ. In this case, let z : Θ → RNtr × R with z(ϑ) = (α(ϑ), b(ϑ)) denote theunique solution of that system.

Using the solution mapping z, it is possible to reformulate the hyperparameter op-timization problem (9.1.4) equivalently as
min
ϑ∈Θ

∑︂

i∈Nval

Ef(z(ϑ),ϑ), (9.2.3)
with the objective function

Ef(z,ϑ) := E ((Φ(ϑ)α, b),ϑ) ,

where w = Φ(ϑ)α and the linear operator Φ(ϑ) is defined by
Φ(ϑ)α :=

1
λ(ϑ)

∑︂

i∈Ntr

αiφi(ϑ).

Note that the latter representation of w is introduced in Corollary 3.5.1 and formallydefined in (6.2.1). Here, it is used in the appropriate parameter-dependent formula-tion. Observe that the same reformulation of the bilevel optimization problem canbe used to transform the hyperparameter optimization problem with cross-validationwhich was introduced in (9.1.5).
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Now, the resulting problem (9.2.3) is a nonlinear optimization problem, which de-pends only on the hyperparameter vectorϑ, whereas the variables of the former lowerlevel problem are only implicitly a part of the problem. Note that the structure of theset Θ can include certain constraints on the values of ϑ such that the characteristicsof the problem (9.2.3) depends on the choice of Θ.
As mentioned above, due to Proposition 6.5.3 the solution of the finite-dimensionalstandard training problem associated with (9.1.3) is then uniquely characterized bythe equation

F (z(ϑ),ϑ) = 0 (9.2.4)
for each fixed hyperparameter ϑ ∈ Θ. For the function F defining the system, we let

F ′(z(ϑ),ϑ) :=
∂F

∂z
(z(ϑ),ϑ)

denote the partial derivative with respect to the training variables in accordance to thenotation of Section 6.5. Then, the implicit function theorem can be used to computesensitivity information of the solution of (9.2.4) as follows.
Proposition 9.2.2 (derivative of the decision function w.r.t. hyperparameters)
Suppose that Assumption 9.2.1 holds.
Then,

F ′(z(ϑ),ϑ)
∂z

∂ϑ
(ϑ) +

∂F

∂ϑ
(z(ϑ),ϑ) = 0, (9.2.5)

i.e.,
∂z

∂ϑ
(ϑ) = − (F ′(z(ϑ),ϑ))−1 ∂F

∂ϑ
(z(ϑ),ϑ), (9.2.6)

With the help of the solution mapping z (which is implicitly defined by the trainingproblem) and its derivative, that is given by (9.2.6), the reduced hyperparameter op-timization problem (9.2.3) can be treated by means of derivative-based optimizationmethods.This is the fundamental idea of the proposed hyperparameter optimization method.To show that the computation of the derivatives from (9.2.6) can be performed effi-ciently, we consider some particular aspects subsequently.
9.2.2 Sensitivity Analysis for Particular Training Samples
First, we consider the system (9.2.4) together with the derivatives (9.2.6) and Algo-rithm 8.5.1. Recall that for the realization of Newton’s method discussed in Subsec-tion 8.4.4 we found that there are some variables with vanishing entries in the Newtondirection. In the same way, we can observe that the derivative of certain variables alsovanishes as follows.
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Proposition 9.2.3 (sensitivity of particular coefficients)
Suppose that Assumption 9.2.1 holds and let the loss functions be independent of the
hyperparameter vector ϑ. Consider a fixed hyperparameter vector ϑ ∈ Θ.
Then,

∂αi(ϑ)
∂ϑ

= 0 for all i ∈ Ntr with hi(z(ϑ),ϑ) = 0. (9.2.7)
Proof. A simple computation shows that

∂gi
∂ϑ

(z,ϑ) = ℓ′′i

(︃
1

λ(ϑ)
[K(ϑ)α]i + b,ϑ

)︃
∂

∂ϑ

(︃
1

λ(ϑ)
[K(ϑ)α]i

)︃

= hi(z,ϑ)
∂

∂ϑ

(︃
1

λ(ϑ)
[K(ϑ)α]i

)︃

for i ∈ Ntr. This means that the vector
∂F

∂ϑ
(z,ϑ) =

⎛
⎝

∂g
∂ϑ

(z,ϑ)

0⊤

⎞
⎠

occurring in the system (9.2.5) contains zero entries for all i ∈ Ntr with hi(z(ϑ),ϑ) = 0.Together with (9.2.5) and Proposition 8.5.1(c) this directly implies (9.2.7).
Note that the variables which are considered in the proposition play also an impor-tant role in the application of Newton’s method. In particular, we have seen in Ob-servation 8.4.3 that those variables are potentially determined exactly by the method.Moreover, if a smooth approximation of the maximum function is used in the defini-tion of the training problem, those variables can easily be identified with dual variablesthat lie strictly between their bounds.This observation also shows a close connection to other hyperparameter optimiza-tion approaches, which use dual optimality conditions for the derivation of sensitivitysuch as [Sch05] and [KSC06].

9.2.3 Derivatives of the Validation Error Measure
If we consider the reduced problem (9.2.3) together with the derivative of the solutionmapping z given by Proposition 9.2.2, we are of course able to compute the derivativeof the validation error measure with respect to the hyperparameters. For the practicalcomputation in a straightforward manner, according to (9.2.5), a single linear systemof the form

F ′(z(ϑ),ϑ)
∂z

∂ϑp
(ϑ) +

∂F

∂ϑp
(z(ϑ),ϑ) = 0

has to be solved for each component ϑp of the hyperparameter vector ϑ.In the following proposition, we summarize an approach which reduces the effortto the solution of a single system of linear equations for all hyperparameters using anelementary transformation.
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Proposition 9.2.4 (efficient computation of derivatives of the validation error)
Suppose that Assumption 9.2.1 holds. Consider a fixed hyperparameter vector ϑ ∈ Θ.
Define

γ :=
(︁
F ′(z(ϑ),ϑ)⊤

)︁−1
(︃
∂Ef

∂z
(z(ϑ),ϑ)

)︃⊤

. (9.2.8)
Then, the derivative of the validation error with respect to the hyperparameter vector is
given by

∂

∂ϑ
Ef(z(ϑ),ϑ) =

∂Ef

∂ϑ
(z(ϑ),ϑ) − γ⊤∂F

∂ϑ
(z(ϑ),ϑ) (9.2.9)

Proof. Due to the chain rule and by means of (9.2.6) it follows that
∂

∂ϑ
Ef(z(ϑ),ϑ) =

∂Ef

∂ϑ
(z(ϑ),ϑ) +

∂Ef

∂z
(z(ϑ),ϑ)

∂z

∂ϑ
(ϑ)

=
∂Ef

∂ϑ
(z(ϑ),ϑ) − ∂Ef

∂z
(z(ϑ),ϑ)F ′(z(ϑ),ϑ)−1∂F

∂ϑ
(z(ϑ),ϑ).

Thus, it is easy to see that (9.2.9) holds with the definition of γ in (9.2.8).
Note that the system of linear equations (9.2.8) can be solved efficiently by meansof Algorithm 8.5.2. This shows that the effort for computing the derivatives of the ob-jective function of the problem (9.2.3) can be reduced significantly if the number ofhyperparameters is high. For a practical investigation of the presented hyperparame-ter optimization approach we refer to Section 10.4 below.



10 Computational Study
In the present chapter, we consider selected methods from the previous chaptersin practical applications. After the introduction of an artificial training problem (Sec-tion 10.1), we consider the two basic approaches for the solution of the training prob-lem, namely the dual SMO method investigated in Chapter 7 (Section 10.2) and theprimal training methods of Chapter 8 (Section 10.3). Finally, we apply the hyperparam-eter optimization idea discussed in Chapter 9 to some particular practical problems(Section 10.4).

10.1 Definition of Dataset and Training Problem
To get an idea of the behavior of the considered methods in practice, we define aparticular artificial dataset stating a classification problem which is then used repeat-edly. For this purpose, we start with a set of n points {xi}ni=1 ⊆ R2, which are sampledfrom a two-dimensional standard uniform distribution, i.e., a uniform distribution onthe square [0, 1]2. Unless otherwise noted, a dataset of size n = 1,000 is considered.In order to create a classification problem, each point xi is associated with a label
yi ∈ {−1, +1} defined by

yi :=

{︄
+1, if f(xi) ≥ 0,
−1, if f(xi) < 0,

where f(x) := sin(4π[x]1)·sin(4π[x]2). With this definition, the dataset forms a checker-board pattern, which is visualized in Figure 10.1.1, where elements with yi = 1 arecolored in red and elements with yi = −1 are blue. Note that a similar dataset wasalso used in [MM01].
For this dataset, we consider the classical Support Vector Classification problem asintroduced in Proposition 4.1.1 with uniform weighting, i.e., ci = 1 for all i ∈ {1, . . . ,n}.With each point xi a feature vector φi ∈ F is associated implicitly such that the innerproducts are the values of the Gaussian kernel function, namely

⟨φi,φj⟩ = κ(xi,xj) = exp
(︁
−γ∥xi − xj∥2)︁

with some scaling parameter γ > 0.
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Figure 10.1.1: Training dataset with n = 1,000 randomly chosen elements following acheckerboard pattern
Depending on the choice of the regularization parameter λ and the scaling param-eter γ, different forms of decision functions are realized by the solution of the trainingproblem. In order to observe a representative behavior of the training method, wefirst identify a set of parameters, which results in a decision function which seems tobe reasonable. Here, the evaluation of a particular decision function is not conductedrigorously but with a sense of proportion.
A short trial of different parameter settings showed that choosing λ = 10−3 and

γ = 30 yields suitable results. Note that values in a similar range are also obtained fromthe hyperparameter optimization approach which will be conducted in Section 10.4. Inorder to support the parameter choice further, the resulting decision functions for dif-ferent values of the hyperparameters are presented in Figure 10.1.2. Moreover, thesedifferently chosen parameter values are also the basis for the practical investigationof the SMO method below.
In the visualization of the decision functions in Figure 10.1.2 one can observe thewell-known behavior that
• small values for the regularization parameter λ lead to an overfitting to the un-derlying dataset, whereas large values result in underfitting, and
• a small value for the scaling parameter γ produces smoother decision bound-aries (underfitting), whereas a large value leads to rather jagged ones (overfitting).

Another fact about the parameter choice that should be emphasized here (and whichis also well-known from practical applications) is that it strongly determines the run-time of the solution method. In particular a choice of a small regularization parame-ter λ (which corresponds to a large value of C in the classical SVM formulation) leadsto an increased amount of necessary steps in the optimization procedure. On theother hand, the problem gets computationally easier for large values of the scalingparameter γ.
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Figure 10.1.2: Generated decision boundaries (i.e., zero level sets of the generateddecision functions) for different parameter settings

10.2 Sequential Minimal Optimization
In this section, we want to substantiate the previously derived theoretical results bymeans of a particular training problem. For this purpose, we implemented and applieda prototypical algorithm using the Python programming language. The computationswere conducted on an AMD Ryzen 9 5900X processor with 64 GB of memory underPython 3.10.8 and NumPy 1.23.5, cf. [HMvdW+20].

Subsequently, different quantities are reported for each step of the optimizationmethod. For instance, we study the values of optimality measures for a given point αk,namely
• the violation measure r(αk) defined in Observation 7.2.2,
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• the primal-dual gap ∆⋆(αk) defined in Observation 7.2.4
• the bound-aware violation measure r⋄(αk, ρ) with maximal step size ρ := λ de-fined in Definition 7.6.1,
• the distance of the current point to the solution Dk := ∥αk −α⋆∥, and,
• the dual objective gap Vk := ψd(αk) − ψd(α⋆).

Note that a maximal step size of ρ = λ is used for the evaluation of the bound-awareviolation measure because the step size is expected to scale with the value λ, which willbe observed later on empirically. Moreover, the solution of the dual training problemis unique for the considered problem such that the value of Dk is well-defined.
Additionally, we consider
• the distance between two subsequent points

τ̃ k := ∥αk+1 −αk∥/
√

2 = τk∥dk∥/
√

2,

• the decrease of the objective function value
∆ψkd := ψd(αk+1) − ψd(αk),

and
• the value of the normalized directional derivative

r̃k :=
√

2rk/∥dk∥

with rk := −∇ψd,ext(αk)⊤dk according to (7.4.7).
The latter term plays a major role in the proposed convergence proof of the SMOmethod. For instance, the step length τ̃ k is expected to be proportional to r̃k accordingto (7.9.2), whereas the decrease is asymptotically in the order of r̃2

k due to (7.9.3).The factor √
2 in the definition of τ̃ k and r̃k is added in order to cancel out the term

∥eik − ejk∥, which is a part of ∥dk∥. One effect of this scaling is that the value of r̃kis then directly connected to r(αk) for directions corresponding to maximal violatingpairs, cf. Definition 7.3.1 and Proposition 7.3.2.
10.2.1 Working Set Selection
Subsequently, we examine the behavior of the SMO method depending on the chosenworking set selection strategy. In particular, in each step of the SMO method we select

• a maximal violating pair (MVP) according to Definition 7.3.1,
• a bound-aware maximal violating pair (baMVP), i.e., a pair realizing the valueof r⋄(αk,λ) defined in Definition 7.6.1,
• a maximal decrease pair (MDP) according to Definition 7.7.2,
• a maximal unbounded decrease pair (MuDP) according to Definition 7.7.1,
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• a total maximal decrease pair (tMDP) according to Definition 7.7.3.

Recall that the MuDP selection rule is used in state-of-the-art implementations of theSMO method, cf. [FCL05, CL11].
To obtain a broad overview, all five selection strategies are compared by means ofthe development of the optimality measures in Figure 10.2.1. Because the values ofthe considered measures are fluctuating, only the minimal value obtained so far isvisualized for each step. Of course, the particular performance of the selection ruledepends on the choice of the parameters in the training problem. This means thatsmall differences in the behavior should not be over-interpreted. However, one couldexpect that large differences can be pointed down to the concrete selection method.
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Figure 10.2.1: Development of the optimality measures for different working set selec-tion rules

From the graphs it is obvious to see that there is a vast difference between theselection methods using only first-order information (MVP and baMVP) and the onesusing second-order information (MDP, MuDP and tMDP). Hereby it should be pointedout that the visualization of the measures over the number of steps can be misleadingbecause the computational effort for each step differs. Recall that the realizationsof the selection rules MVP, MDP and MuDP take O(n) operations each. In contrast,for baMVP and tMDP the number of operations is O(n2) (or O(n log n) using some
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additional sorting in the implementation), because all pairs are considered. This factmust be taken into account for the evaluation of the results below.
Considering the first-order selection rules only, one can see that there is virtually nodifference in the development of the primal-dual gap and the bound-aware violationmeasure. On the other hand, the progress of the simple violation measure (see Fig-ure 10.2.1(c)) differs significantly in the beginning. That is due to the fact that with thebaMVP rule there is no immediate demand for the handling of variables correspond-ing to large values of r(αk). As a byproduct, this observation shows that the valueof r(αk) might not be an appropriate optimality measure because there exist pointswhich are close to optimality (in terms of the other measures) but yield rather highvalues for the simple violation measure, cf. also Example 7.2.5.
Another observation here is that practically (i.e., for the relevant optimality mea-sures) there is no difference between MVP and baMVP which means that it is notrecommendable to use the baMVP rule at all because of its higher runtime per step.On the other hand, recall that the baMVP is still necessary for the application of theconvergence theory proposed in Section 7.4.
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Figure 10.2.2: Development of the optimality measures for second-order working setselection rules

For the second-order selection rules presented in Figure 10.2.2, the overall picturedoes not allow for definitive conclusions. One could argue that the tMDP rule alwaysperforms best. But as said before, the gain of performance is paid for by a dispropor-tionately high computational effort per step. This means that the application of thetMDP rule is not usable in practice. Nevertheless, it is interesting to observe that theconvergence speed (per step) of the conventional rules could be improved.
Comparing the other two rules, we see that they perform very similar in the begin-ning of the optimization procedure, where selecting the MDP yields a marginally smalladvantage. Towards the end of the training process, this advantage turns into a slightdisadvantage. Unfortunately, it is not clear whether this behavior is characteristic fromthe evaluation of a single training problem.
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10.2.2 Comparison of Optimality Measures

In this subsection, we analyze the relations between the previously introduced mea-sures empirically. We start with the setting of the previous subsection and visualizethe values of the simple violation measure and the primal-dual optimality gap depend-ing on the associated value of the bound-aware violation measure at each step of theSMO method. To highlight the different behavior of the violation measures, which wasalready noted in Figure 10.2.1, the values are presented for the MVP and the baMVPselection rule independently in Figure 10.2.3. The presentation of the other selec-tion rules is omitted here, because the observed behavior is not significantly differentfrom that of the MVP rule. Note that the value of the bound-aware violation mea-sure is scaled by the factor λ−1 in order to match the order of magnitude of the otheroptimality measures.

(a) Application of MVP selection (b) Application of baMVP selection
Figure 10.2.3: Comparison of optimality measures

It can be seen that the relation between the bound-aware violation measure and theprimal-dual gap is almost identical for both selection approach. For the consideredrealizations of the training method, both optimality measures seem to be in a similarorder of magnitude (visualized by the bisecting line).
On the other hand, the simple violation measure behaves differently. In the caseof MVP selection, the values of r(αk) and r⋄(αk,λ)/λ are almost equal with a few ex-ceptions which deviate only slightly. This means that the values could be used equallyin applications (for instance for the definition of a suitable termination criterion or asreference value in a shrinking approach following Section 7.10). For the baMVP selec-tion rule the image is not as clear because no apparent relation can be observed forlarger values. Note that we have already seen this kind of relation in Figure 10.2.1(c)and discussed this issue in the previous subsection. Nevertheless, we observe in thisexample that

r(αk) ≈ r⋄(αk,λ)/λ (10.2.1)
for small values.
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10.2.3 Behavior of Directional Derivative
In Figure 10.2.4 we consider the relation between the bound-aware violation measureand the value of the directional derivative in the direction dk for two different workingset selection rules.

(a) Application of MVP selection (b) Application of baMVP selection
Figure 10.2.4: Development of rk compared to r⋄(αk,λ)

Recall from the discussion in Subsection 7.9.2 and the definition of the SMO methodin Algorithm 7.8.1 that there is a close connection between both values if the baMVPselection strategy is applied. The difference comes from the idea that the parame-ters ρ0 and ρ1 are chosen to allow for large steps in the step size computation on theone hand while keeping the descent estimates suitable for the working set selectionon the other hand. For the particular realization of the method the values ρ0 = 1and ρ1 = λ are used. This implies that there is at most a factor of λ between thevalues of r⋄(αk,λ) and rk for baMVP selection. This theoretical bound is visualizedas additional line in the figure. Note that this relation is not forced for the simpleMVP selection such that rk can be smaller than r⋄(αk,λ), which is also observed inFigure 10.2.4(a).Asymptotically, the values of rk are strictly larger than r⋄(αk,λ) and often close to
r⋄(αk,λ)/λ. Using the relation observed in Figure 10.2.3, this means that it can beexpected that rk is in order of r(αk).

In Figure 10.2.5 the values of r(αk) and r̃k are compared for two different workingset selection rules. Note that the MVP strategy is not considered here, because byconstruction it holds that r(αk) = r̃k in that case. For the MDP rule one can observethat both measures behave similarly, whereas this is only true for smaller values whenbaMVP selection is applied. But for the latter rule, one can observe that both valuesare very close asymptotically, i.e.,
r̃k ≈ r(αk) ≈ r⋄(αk,λ)/λ,

using (10.2.1).
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(a) Application of MDP selection (b) Application of baMVP selection
Figure 10.2.5: Development of r̃k compared to r(αk)

Because it is fairly expensive to compute the value of r⋄(αk,λ) in each step andbased on the previous findings that there is a strong connection to the value of r(αk)for small values, we use the simple violation measure as a baseline instead of thebound-aware violation measure from now on.

10.2.4 Relations between the Measures
In another experiment, we consider the relation between the proposed measures forsmall values. In order to observe asymptotic behavior in a reasonable amount of time,we restrict our investigation to the MDP selection rule and skip the computation ofthe bound-aware violation measure. The obtained results are visualized for differentparameter choices in Figure 10.2.6.

The plots show that there is an apparent relation between the considered quantities.In particular, the simple violation measure r(αk) and the step size τk is always in thesame order of magnitude as the primal-dual gap and the distance of the current pointto the solution. To obtain the same observation for the decrease of the objectivefunction ∆ψkd , the square roots of the values are visualized. This shows that ∆ψkd is inthe order of r(αk)2, which supports the decrease condition (7.4.9) if one considers thatthe values of r̃k, r⋄(αk,λ)/λ and r(αk) are all proportional to each other empirically.

10.2.5 Parameter Dependency of Relations
Note that the previously found relations are not very sensitive with respect to changesin the scaling parameter γ. In contrast, a change of the regularization parameter λintroduces a shift of the points in the log-log plot, which corresponds to a variationof the relationship by means of some factor. To analyze this behavior empirically, weconsider the problem for fixed γ = 30 and varying parameter λ. For each fixed valueof λ we assume that the relation between a measure vk and the gap r(αk) can beapproximately described by

vk ≈ c(λ) · r(αk), (10.2.2)
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Figure 10.2.6: Relation between the primal-dual gap and the simple violation measure,the step size and the decrease of the objective function
which has been observed in Figure 10.2.6. The SMO algorithm is conducted with theMDP rule for varying value of λ and is stopped after a maximum iteration number of
500,000 or whenever r(αk) < 10−10.

Using the obtained results, the factor c(λ) is estimated by means of a linear regres-sion over all measured points with 10−9 ≤ r(αk) ≤ 10−3, which is the region, wherethe linear behavior is observed. Note that the linear regression yields a constant termof approximately zero for (10.2.2), such that it makes sense to omit it in the first place.The resulting values are visualized in Figure 10.2.7.
From the visualization of the fitted parameters, one can conclude that there is alinear tendency in the log-log space for all considered measures. Only the values ofDk
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Figure 10.2.7: Development of the factor c(λ) for the relation assumed in (10.2.2)

and Vk do not show a tight linear relation. Hence, these measures are not consideredsubsequently. In the following, a linear regression will be applied for all other measures(after taking the logarithm of λ and c(λ), respectively) to estimate the parameters ofthe underlying functions. The result of this regression is already shown in Figure 10.2.7and the resulting relationships can be summarized as
∆⋆(αk) ≈ 5.770 · λ−0.04 · r(αk),

τ̃ k ≈ 1.648 · λ0.958 · r(αk),
∆ψkd ≈ 0.427 · λ0.989 · r(αk)2,
r̃k ≈ 0.707 · λ0.014 · r(αk).

Together with the observation that r⋄(αk,λ) ≈ r(αk) (which is true unless the baMVPstrategy is used) and the very small exponent for λ in the first and fourth approxima-tion, we find that
r⋄(αk,λ) ≈ r(αk) ≈ 0.173∆⋆(αk) ≈ 1.415r̃k.

Moreover, the fact that the exponents for λ in the other two expressions are approx-imately equal to one, we end up with the further approximations
τ̃ k ≈ 1.648 · λ · r⋄(αk,λ) ≈ 2.331 · λ · r̃k

and
∆ψkd ≈ 0.427 · λ · r⋄(αk,λ)2 ≈ 0.855 · λ · r̃2

k.This confirms the decrease condition (7.9.3) and also matches the theoretical stepsize (7.9.2). The factor λ which occurs in both approximation can be explained bymeans of the Lipschitz constant in the theoretical estimates and the observation that
L−1 ∼ λ∥K∥−1, cf. Example 7.9.1.
10.2.6 Observation for Problems with Smoothed Maximum

Function
In order to prepare for the application of derivative-based methods for the solution ofthe primal training problem, we now change the training problem by using a smooth



168 10.2 Sequential Minimal Optimization

approximation ˆ︁mδ of the maximum function according to Observation 4.4.8 with δ = 1
4and compare the newly observed results with the previous ones. Because the dualproblem is easier to solve for quadratic loss functions, we first consider the function ˆ︁mdefined in Example 4.4.4 and exchange it later if more smoothness is needed in theprimal training problem.
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Figure 10.2.8: Behavior of the optimality measures for a problem smoothed maximumfunction and MDP working set selection

The visualization of the results in Figure 10.2.8 shows that the values of the violationmeasures r(αk) and r⋄(αk,λ)/λ behave in the same way as before, whereas there isa fundamental change in the development of the primal-dual gap. In particular, onecan see that the values of ∆⋆(αk) and Vk are only comparable in the smooth setting.Here, we observe empirically that
∆⋆(α) ∼ r(αk)2.

Further computational experiments show that this relationship is also present forsmaller values of δ, which means that it is caused by the smoothness of the primaltraining problem.
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As a secondary result we find that

Dk ∼ r(αk) ∼ r⋄(αk,λ)/λ,

which means that the error bound condition (7.10.7) is observed in practice.

10.2.7 Number of Support Vectors and Active Set
In order to get an idea of the dependency of the method’s performance on the regu-larization parameter we consider the development of the number of support vectorsand the number of iterations in Figure 10.2.9. The computational setting is the sameas in previous subsection.
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Figure 10.2.9: Behavior of the SMO method for different values of the parameter λ
The increase of the number of support vectors in the upper part of Figure 10.2.9(a)is related to the fitting quality of the decision function. As we have already argued inSection 10.1, for larger values of the regularization parameter λ, the resulting decisionfunction tends to under-fit. In this case, many training samples have to be misclassifiedby the solution of training problem, which leads to a high fraction of nonzero variablesin the solution. Following Subsection 4.3.1, extremely misclassified training sampleslead to variables withαi = yi. This means that the associated variables are fixed at theirbound in the dual problem. Note that a similar argumentation is possible for otherformulations of the training problem, in particular for ε-Support Vector Regression.
The lower part of Figure 10.2.9(a) shows the development of the number of freevariables depending on λ, which cause the major part of the computational effort inthe SMO method, cf. Subsection 7.9.1. One can observe that this number is relativelysmall and does not change significantly for varying λ. This means that the shrinkingapproach is very helpful to reduce the computational effort per step if the correct setof active variables can be detected successfully.
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10.2.8 Application of the Shrinking Approach
In order to evaluate the approach for detecting fixed variables introduced in Sec-tion 7.10, we consider the application of Corollary 7.10.5 for the practical setting. Inparticular, we investigate the behavior of the index sets predicted by means of (7.10.8)during the optimization process compared to the set of variables attaining the corre-sponding bound at the solution of the training problem.Let α⋆ ∈ Rn be a solution of the dual training problem. In practice this solution isunique such that the set of variables attaining a bound depends only on the trainingproblem. We consider the sets of indices

I⋆ := {i ∈ {1, . . . ,n} | α⋆i = αi} and I
⋆ := {i ∈ {1, . . . ,n} | α⋆i = αi}

associated with variables at the lower and upper bound, respectively. Then,
I⋆f := {1, . . . ,n} \ (I⋆ ∩ I⋆)

is the index set of variables, which are strictly between the bounds at the solution. Forthe evaluation of the prediction, the ratio of false detections (of variables at the bound)
Rfalse :=

|I(α) \ I⋆| + |I(α) \ I⋆|
|I⋆| + |I⋆|

and the ratio of missing detections (of variables at the bound)
Rmissing :=

|I⋆ \ I(α)| + |I⋆ \ I(α)|
|I⋆| + |I⋆|

are considered.From a practical point of view it is desirable to realize a detection which has a lownumber of missing detections because every variable, which is detected to be at thebound, can be removed from the optimization problem according to Proposition 4.3.1and the argumentation at the end of Subsection 7.9.1, see also Subsection 8.3.4 for theaccording discussion in the primal training setting. On the other hand, it is necessarynot to overestimate the set of fixed variables, i.e., to keep the value of Rfalse equalto zero or at least close to zero. Otherwise, shrinking would lead to subproblemswhich are not equivalent to the original one and additional effort has to be made in asubsequent recovery strategy.
During the process of the SMO method, the development of the values of Rfalseand Rmissing can be observed given that the solution of the problem is precomputed.For the subsequent visualization, we compute those values every 10 steps. Note thatwe use r(αk) instead of r⋄(αk,λ) for the determination of the index sets in order toavoid the computation of r⋄(αk,λ).
The behavior of the detection approach for a fixed training problem and param-eter c2 = 1 while varying the parameters η = η1 = η2 and c1 is visualized in Fig-ure 10.2.10. Note that the choice of η = 1 is not justified by the theory but servesas a limiting baseline for the practical evaluation.
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Figure 10.2.10: Performance of the detection for different parameters: a vertical linemarks the last step at which a nonzero value of Rfalse and Rmissing, re-spectively, occurs
In the graphics, a vertical line is added to highlight the number of steps which arenecessary in order to obtain a perfect detection of variables at the bound. For theparticular training problem, the ratio of false detection drops relatively fast, whereasmuch more steps are needed in order to obtain a completely correct detection.
For the choice of the parameters for the detecting functions it is necessary to find atradeoff between conflicting goals. From the visualization it can be seen that the valueof c1 mainly determines at which step the first detection occurs. However, there is nosignificant change in the performance of the estimation from that step on. Moreover,one cannot observe an obvious shift of the vertical lines for varying c1, i.e., the precisechoice of that parameter is not critical.On the other hand, the choice of η significantly changes the quality of the estimates.As indicated before, there is a tradeoff to make because a smaller value of η helps toprevent false detection in the early phase, whereas a larger value leads to a faster re-duction of Rmissing later on. With regard to the application of the shrinking idea insidethe SMO method, a fast decline of false predictions is essential because any false pre-diction results in additional effort of the necessary post-processing step. In contrast, itis possible that the reduction of the computational effort by means of early shrinking



172 10.2 Sequential Minimal Optimization

outweighs this cost. Unfortunately, one cannot expect to obtain a universally valid rulefrom this kind of argumentation because the overall performance gain introduced bythe shrinking heuristic highly depends on the characteristics of the training problemat hand.
To demonstrate the possible effect of shrinking on the runtime, the training problemis considered for n = 10,000 training samples and the SMO method is applied with andwithout shrinking for different tolerance values in the termination criterion. In orderto make the runtime of the SMO method competitive, the best identified approachso far is implemented in the Nim programming language, which is compiled using theNim Compiler in version 1.6.8. This implementation is also used in the subsequentsubsection.
The SMO method is stopped if the value of r(αk) falls below a predefined tolerancelevel and the measured runtimes are visualized in Figure 10.2.11. This figure showsthat there is a significant reduction of the runtime if shrinking is applied. Moreover,the application of the shrinking approach makes it particularly possible to reduce thetime of the steps in the later phase of the optimization. This can be seen from thefact that the increase of the runtime for a reduced termination tolerance is far lessimportant if shrinking is used. This means that is especially important to implementshrinking if the training problem has to be solved with a higher precision.

(a) SMO method without shrinking (b) SMO method with shrinking
Figure 10.2.11: Runtime (measured in seconds) for different choices of the terminationcriterion

10.2.9 Performance for Increasing Problem Size
In a final subsection, we briefly investigate the dependence of the runtime of the SMOmethod on the size of the dataset and the values of the regularization parameter.Note that, it is practically not reasonable to use a first-order method as SMO with avery strict termination criterion. However, as we have noted previously, the applicationof shrinking makes it possible to obtain points with a rather small violation measurein reasonable runtimes. Thus, we consider the SMO method which is terminated if
r(αk) ≤ 10−8. The results are shown in Figure 10.2.12.
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(a) Number of steps needed to meet the ter-mination criterion (b) Runtime (measured in seconds)

Figure 10.2.12: Development of runtime and number of steps of SMO method for dif-ferent choices of problem size and regularization parameter
From the visualization in Figure 10.2.12(a) it can be seen that the number of stepswhich are needed to meet the termination criterion grows approximately in the or-der of n0.6. Practically, this number scales similar to the number of variables whichare strictly between their bounds at the solution. The latter number is visualized forincreasing problem size in Figure 10.2.13. Of course, the fact that the number of itera-tions scales with the number of free variables can be expected for first-order methods.

Figure 10.2.13: Number of variables which are strictly between the bounds at the so-lution for training problem of varying size with λ = 10−3

On the other hand, the runtime scales approximately in the order of n1.6. This seemsto be inconsistent with the observed number of iterations and the idea that each stephas a computational effort in the order of the number of variables in the reducedproblem, which is approximately equal to the number of free variables because of theshrinking approach. However, even though the termination tolerance is set relativelylow, the major share in runtime is taken by the first phase of the SMO method beforethe shrinking can actually be applied.
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In Figure 10.2.12(a) one can also see that the number of iterations is strongly influ-enced by the value of the regularization parameter whereas the effect on the runtimeis not as strong but still noticeable. A smaller value of λ leads to an increased numberof steps and a higher runtime. This implies that it is desirable to avoid unnecessarilysmall values for λ in practice in order to keep the training time as small as possible.Unfortunately, this is not always feasible because the value of the regularization pa-rameter also determines the quality of the resulting decision function. Hence, it ispractically necessary to find a tradeoff between the runtime of the training methodand the desired precision.

10.3 Methods for the Primal Training Problem
The focus in this section is on the application of the methods for solving the primaltraining problems which were introduced in Chapter 8, namely

• the simple gradient descent method according to Algorithm 8.2.1,
• the preconditioned gradient descent method according to Algorithm 8.3.1, and
• the realization of Newton’s method according to Algorithm 8.4.2.

We consider the same training problem as in the previous section but with a smoothapproximation of the maximum function in the problem formulation. This setting hasalready been introduced in Subsection 10.2.6.
10.3.1 Performance of First-Order Methods
In the first experiments, we only consider the first two methods because the complex-ity of Newton’s method per step is not comparable to that of the other ones. Rightfrom the start, it should be emphasized that the simple gradient method is in generalnot applicable practically because the full kernel matrix is needed in each step, whichleads to a tremendous computational effort per step. Moreover, even though Subsec-tion 8.3.3 suggests that some effort can be reduced for the preconditioned gradientdescent method, this approach is not very relevant in practice as we will see in the fol-lowing. For comparison, the methods were applied each with 1,000,000 steps and withthe parameters η0 = λ, η = 1

10 , and σ = 1
10 . The development of some problem-specificoptimality measures are visualized in Figure 10.3.1.

The direct comparison of the simple and preconditioned gradient descent methoddemonstrates a drastic difference in the convergence speed. While the performanceis almost equal during in the first phase, a faster convergence is noticeable for the pre-conditioned version later on. In addition, the computational cost per step of the simplegradient method is slightly higher than that of the preconditioned method because anadditional matrix-vector multiplication is needed for the computation of the direction.This also reinforces the fact that the preconditioned gradient descent method shouldbe preferred practically.Note that the preconditioned gradient descent method stops prematurely after
282,527 steps because of numerical instabilities. Those led to insufficient precision
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(a) Application of the simple gradient descentmethod (b) Application of the preconditioned gradi-ent descent method
Figure 10.3.1: Development of optimality measures for the application of first-orderprimal training methods
such that no further descent for the objective function was possible numerically. Ofcourse, the same problem would occur for the simple gradient descent method if theiteration process was proceeded.

Even though the optimality measures are not directly comparable to that of thedual SMO method in the previous section, a rough comparison of Figure 10.3.1 andFigure 10.2.8 implies that the primal methods are outperformed by the SMO method.On the one hand, it is obvious that the dual method takes far fewer steps to obtain lowvalues for the optimality measures. On the other hand, the cost per step is tremen-dously lower than that of the primal methods. Of course, this observation is basedon a single training problem. But there is no compelling reason for assuming that thisbehavior should be significantly different for other training problems. This means thatthe first-order primal training methods considered here do not seem to be recom-mendable for practical applications.
10.3.2 Empirical Evaluation of an Error Bound Condition
In order to evaluate the possibility that the optimality system satisfies an error boundcondition of the form (8.3.10), we examine the relation between the distance of a givenpoint to the solution and the computed optimality measures. The values, which wererecorded in the process of the preconditioned gradient descent method, are visual-ized in Figure 10.3.2.

For the particular training problem and in the application of the preconditioned gra-dient descent method we find that empirically the error bound condition holds for theiterates because
∥F (zk)∥ ∼ ∥zk − z⋆∥ = dist[zk,Z⋆]

holds asymptotically. In Figure 10.3.2(a) we can also observe that the norm of the gra-
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(a) Relation between ∥F (zk)∥ and other opti-mality measures (b) Relation between ∥F (zk)∥ and partial dis-tances
Figure 10.3.2: Empirical behavior of particular measures compared to ∥F (zk)∥

dients for both considered problems are fluctuating whereas the values of ∥F (zk)∥and the distance fairly align. This indicates that the norm of the system of nonlinearequations is a far better measure to estimate the distance than the norm of the gra-dients. We can also see that
ψpf(zk) − ψpf(z⋆) ∼ ∥F (zk)∥2 ∼ ∥zk − z⋆∥2,

which is of course justified by the fact that the objective function is locally quadratic.
Finally, Figure 10.3.2(b) shows that the distances of both parts of the variables be-have quite similar asymptotically. There is a difference between those values, whichcan be described by a factor asymptotically, because the term ∥αk − α⋆∥ captures nvariables, whereas the other term captures only a single one. However, both parts ofthe distance converge in the same order of magnitude. This observation supports thepreconditioning approach introduced by the scaling matrix W in (8.3.2) because thedistance term for the bias dominates practically without this scaling.

10.3.3 Comparison of Newton’s Method and SMO
In a final experiment in this section, we consider the performance of Newton’s methodfor an increasing number of training samples and different choices of the regulariza-tion parameter. The size of the training set is chosen in the range between n = 100and n = 40,000 training samples. In the particular implementation of the method thekernel matrix is precomputed once in order to reduce the overall runtime. Of course,this is only feasible for this relatively small problem size because of memory limits. Theresults for the application of Newton’s method to the training problem are presentedin Figure 10.3.3.
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(a) Number of needed steps (b) Runtime (measured in seconds)
Figure 10.3.3: Development of runtime and number of steps of Newton’s method fordifferent choices of problem size and regularization parameter

One can observe that the number of steps needed for the convergence of Newton’smethod is more or less independent of the problem size, but increases for smallerchoices of the regularization parameter. On the other hand, the runtime of Newton’smethod shows empirically a quadratic growth, i.e., the empirical complexity of New-ton’s method is worse than that of the SMO considered in Subsection 10.2.9.
Note that the difference here is that it makes not a great difference to terminateNewton’s method early by means of some inexact termination criterion because ofthe fast asymptotic convergence rate and the fact that the final steps are relativelycheap due to vanishing second derivatives of many loss functions. Practically, the ap-plication of Newton’s method generally yields a more precise solution of the trainingproblem, whereas the SMO method has to be stopped with an approximate solution.This means that the comparison of both approaches is not fully appropriate. Never-theless, the runtime of both methods is presented in Figure 10.3.4 for different choicesof the regularization parameter.

Figure 10.3.4: Comparison between Newton’s method and SMO method with respectto the runtime (measured in seconds)
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One can observe that the runtime of Newton’s method is better than that of theSMO method only for medium-sized training problems. For small problems the overallruntime is very low such that the comparison is not quite expressive. This meansthat a noticeable difference in the performance of the considered methods occursprimarily for problems with more than a few thousand training samples. It should beemphasized that this observation possibly depends on the structure of the particulardataset and that the behavior can actually be different in practical applications.
Moreover, the better performance of the SMO method can also be used to gener-ate sufficiently good starting points for Newton’s method. This is particularly usefulif the problem size is very large because then the application of Newton’s method ispractically not feasible due to memory constraints and the large expected runtime.However, by switching from the SMO method to Newton’s method it is possible to ob-tain very precise solutions of the training problem which are needed, for instance, forthe application of the derivative-based hyperparameter optimization approach. Thelatter will be considered in the following subsection.

10.4 Practical Application of Hyperparameter
Optimization

In this section, we evaluate the hyperparameter optimization approach proposed inChapter 9 for practical problems. For each of the considered problems, we use thecross-validation error minimization problem proposed in (9.1.5) combined with the im-plicit function approach discussed in Section 9.2. For the resulting optimization prob-lem, in which the hyperparameter vector ϑ consists of the hyperparameters λ and γ,the lower level training problems are solved by means of a combination of the SMOmethod and Newton’s method as considered in the previous sections. Instead of op-timizing the parameters directly, the terms log(λ) and log(γ) are considered in (9.1.5).This idea is commonly applied in practice (cf., for instance, [KSC06]) and improvesthe scaling while implicitly enforcing the non-negativity of the parameter values. Themethod L-BFGS-B in scipy.optimize.minimize of SciPy 1.9.3 (cf. [VGO+20]) is used todetermine a locally optimal point of the hyperparameter optimization problem.
10.4.1 Consideration of the Artificial Dataset
In a first experiment, we consider the relation between the hyperparameter valuesdetermined by the optimization approach and the number of training samples. Forthis reason, a dataset of the form introduced in Section 10.1 is used with a number oftraining points varying between n = 100 and n = 10,000. The classical Support VectorClassification problem as summarized in Proposition 4.1.1 with a smooth approxima-tion of the maximum function according to Subsection 10.2.6 is used as a trainingproblem in the lower level problem. Moreover, the validation loss functions in theupper level problem are also chosen as a smoothed version of hinge loss, i.e.,

Li(t) := ˆ︁mδ(1 − yit)
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with δ = 1

4 and ˆ︁m defined according to Example 4.4.2. The optimization is startedwith an initial guess of λ = 10−2 and γ = 4, and the parameters are restricted tosatisfy λ ∈ [10−4, 1] and γ ∈ [10−12, 104]. Note that the lower bound on λ is chosenrelatively large in order to avoid unnecessarily high solution times. In Figure 10.4.1 theobtained hyperparameter values are visualized.

(a) Determined value for the scaling parame-ter γ (b) Determined value for the regularizationparameter λ
Figure 10.4.1: Development of the determined parameter values depending on theproblem size: values obtained from the optimization approach and log-log linear fit

The plots in Figure 10.4.1(a) suggest that the determined value for the scaling param-eter γ is more or less unaffected by the change in the number of training samples. Onthe other hand, the values for the regularization parameter shown in Figure 10.4.1(b)tend to become smaller for larger datasets. Indeed, as a result of the log-log linear fit,we obtain that
γ⋆(n) ≈ 22.869 · n0.044 and λ⋆(n) ≈ 12.091 · n−1.305.

Note that these relations are also consistent with the parameter values γ = 30 and λ =
10−3 chosen in Section 10.1 for n = 1,000.

This behavior of the hyperparameter values is understandable because the scalingis not affected by the number of training samples, such that an optimal value of γcan be expected to be more or less independent of n. On the other hand, if a largeramount of training samples is available, the effect of overfitting is reduced. Hence,the decision function could be adapted more tightly to the given dataset which is onlypossible for smaller values of the regularization parameter λ.
10.4.2 Application to Real-World Regression Problems
In this subsection, we consider real-world regression problems and define particulartraining problems according to the ε-Support Vector Regression (ε-SVR), cf. Propo-sition 4.2.2. In each problem, the maximum function in the loss functions of (4.2.1)
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is replaced by a smooth approximation ˆ︁mδ according to Observation 4.4.8 with ˆ︁m asdefined in Example 4.4.2 and δ = ε
4 .Additionally, we employ the Least Squares Support Vector Machine (LS-SVM) as de-fined in Proposition 4.2.1. Note that it is not necessary to apply the SMO method forthis problem because Newton’s method terminates with the exact solution after thefirst step since the objective function of the training problem is quadratic.

The validation loss functions in the upper level problem are chosen as a smoothedversion of the absolute error, namely
Li(t) := ˆ︁mδ(t− yi) + ˆ︁mδ(yi − t) (10.4.1)

with δ = 1
10 and ˆ︁m defined according to Example 4.4.4. This means that the validationloss is proportional to the squared loss for small errors and equal to the absolute lossfor large errors. In the literature this term is known as Huber loss, cf. [Hub64]. Forreference, we also consider the squared loss function

Li(t) := (t− yi)2. (10.4.2)
The optimization is started with an initial guess of λ = 10−2 and γ = log(2)/d, where ddenotes the number of attributes of the input vectors. As already mentioned in theprevious examples, a restriction of the parameter range is practically important in or-der to prevent high training times. Here, we use a slightly larger area of λ ∈ [10−6, 1]and γ ∈ [10−12, 104].

Note that we do not consider the parameter ε within the hyperparameter optimiza-tion but apply the approach for different fixed values. This is because the value of εdetermines the number of support vectors in the final solution, which (depending onthe particular application) should be better defined by the user. For most problems, asmaller value of ε leads to a better performance and an increased number of supportvectors.
Subsequently, we mostly adopt the testing procedure of [FLL+15], which can besummarized as follows. Each of the considered datasets is randomly split into twoparts for 30 times. In fact, 80% of the dataset is used for the hyperparameter optimiza-tion routine and a subsequent training, whereas the remaining 20% of the dataset isused to compute error measures. For datasets with more than 1,000 elements, weadditionally consider random samplings of 1,000 elements for the whole evaluationprocedure.
For each split, the resulting training subset is normalized to have zero mean andunit variance in each component of the input vectors. The same transformation isapplied to the left-out test set. In order to simplify the selection of the parameter εand the smoothing parameter in the validation loss, the labels of the training set arealso normalized to zero mean and unit variance. Afterwards, the generated decisionfunction is modified to undo this transformation for the evaluation on the test set.
The optimization routine is stopped after a time limit of 600s if it does not reach thedefault termination criterion earlier. In every case, the best parameter value found
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so far is used to obtain the decision function. Once the training is carried out and adecision function f is computed, the test error is evaluated as

MSE =
1

|Ntest|
∑︂

i∈Ntest

(f(xi) − yi)
2 and MAE =

1
|Ntest|

∑︂

i∈Ntest

|f(xi) − yi| .

The results are shown in Table 10.4.1.
MSE MAE

dataset size Li ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM
pyrim 74 (10.4.1) 0.00656 0.00625 0.00645 0.00597 0.0532 0.0512 0.0526 0.0491

(10.4.2) 0.00780 0.00780 0.00745 0.00814 0.0559 0.0535 0.0548 0.0554
triazines 186 (10.4.1) 0.0244 0.0239 0.0237 0.0232 0.107 0.109 0.111 0.110

(10.4.2) 0.0251 0.0246 0.0238 0.0233 0.112 0.112 0.111 0.110

mpg 392 (10.4.1) 6.50 6.58 7.37 6.63 1.81 1.84 1.98 1.82
(10.4.2) 6.47 6.66 7.53 6.58 1.81 1.84 2.01 1.82

housing 506 (10.4.1) 10.8 10.9 11.9 9.54 2.10 2.17 2.43 2.07
(10.4.2) 10.9 10.5 12.4 9.75 2.12 2.16 2.47 2.08

spacega 1,000 (10.4.1) 0.0133 0.0127 0.0128 0.0127 0.0849 0.0845 0.0854 0.0845
(10.4.2) 0.0130 0.0128 0.0127 0.0125 0.0848 0.0849 0.0852 0.0848

3,107 (10.4.1) 0.0110 0.0109 0.0113 0.0110 0.0760 0.0757 0.0773 0.0755
(10.4.2) 0.0109 0.0110 0.0112 0.0110 0.0759 0.0764 0.0779 0.0764

abalone 1,000 (10.4.1) 4.72 4.61 4.56 4.53 1.50 1.50 1.52 1.53
(10.4.2) 4.67 4.61 4.56 4.53 1.50 1.50 1.52 1.53

4,177 (10.4.1) 4.46 4.47 4.40 4.37 1.45 1.46 1.48 1.49
(10.4.2) 4.45 4.45 4.40 4.37 1.45 1.46 1.48 1.49

cpusmall 1,000 (10.4.1) 19.1 20.0 32.6 18.7 2.70 2.96 3.66 2.70
(10.4.2) 19.2 19.5 28.6 19.5 2.72 2.96 3.75 2.73

8,192 (10.4.1) 10.6 10.4 18.1 9.06 2.22 2.47 3.34 2.16
(10.4.2) 10.7 10.2 15.8 8.89 2.22 2.47 3.22 2.17

Table 10.4.1: Final test error estimates: the lowest values in each row (and all valueswhich are at most 1% higher) are written in boldface type
It can be seen that the value of the MSE is in most cases best if the LS-SVM is applied.Of course, this is rather natural because this model is using the squared error alreadyin the objective function of the training problem. The only notable difference occurs forthe dataset mpg where the ε-SVR with parameter ε = 0.1 performs best with respect
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to the MSE. Because of the relatively small number of data points this suggests thatthe loss term in this training problem is able to handle outliers better than that of theLS-SVM for that particular dataset.On the other hand, the considered formulation of ε-SVR yields comparable or betterresults than the LS-SVM in terms of the MAE measure for most of the datasets. Thisis also explainable because the loss function in the training problem is basically an
ε-insensitive absolute error term. The actual performance depends on the choice ofthe parameter ε, and there is a trend that better values can be observed for smallervalues of ε. However, the best values are not always obtained for the smallest choiceof ε. This observation can be explained by the idea that the parameter ε also regulatesoverfitting such that larger values can actually improve the generalization performancefor a particular regression problem.A last observation which we want to make from Table 10.4.1 is that there is no ob-vious trend on which upper level loss function yields a better performance. In mostcases there is no significant difference between the two proposed measures but onlya very slight advantage of (10.4.1). Hence, in order to keep the presentation short, werestrict the further investigations to the application of (10.4.1) only.

For each of the trials, we additionally capture the runtime and the number of ob-jective function evaluations. It should be emphasized that the latter value may not bevery meaningful because the evaluation time corresponds to the training time. Hence,it essentially depends on the hyperparameter values, i.e., on the point for which theobjective function is evaluated. The obtained values are summarized in Table 10.4.2.
runtime [s] number of function evaluations

dataset size ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM
pyrim 74 1.3 1.5 2.2 0.1 32.4 33.5 46.4 14.5
triazines 186 6.1 3.8 3.3 0.1 42.3 34.2 32.6 18.0
mpg 392 6.5 3.1 1.3 0.2 22.2 20.8 19.9 14.6
housing 506 16.3 6.6 2.6 0.3 26.3 23.4 21.6 12.0
spacega 1,000 41.5 35.6 20.7 2.2 21.8 22.7 20.4 17.2

3,107 361.1 265.8 141.4 16.2 18.5 20.3 19.2 14.4
abalone 1,000 26.6 19.6 13.7 1.9 23.3 22.9 22.9 17.1

4,177 300.3 224.5 139.2 41.0 18.2 18.5 18.0 15.7
cpusmall 1,000 53.2 17.1 24.8 1.7 29.1 21.7 33.5 15.4

8,192 600.0 560.5 600.0 130.8 4.2 12.5 15.6 12.1
Table 10.4.2: Runtime (measured in seconds) and number of function evaluations dur-ing the hyperparameter optimization

From these results it can be observed that the runtime of the LS-SVM strictly domi-nates that of the other models. As mentioned earlier, this can be expected because the
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solution of each training problem is obtained after a single step of Newton’s method(i.e., by means of the solution of a single system of linear equations). In contrast, thecomputation of the solution of an ε-SVR training problem usually encompasses the ap-plication of the SMO method and some further steps of Newton’s method. Of course,one could hope that each of the steps are somewhat easier because of the sparse-ness induced by the structure of the training problem. Note that it can be seen thatthe runtime decreases for increasing value of ε which indicates that sparseness is in-deed helpful. However, this effect is not strong enough to compete with the LS-SVMas the considered datasets are relatively small. However, the sparseness property isessential for larger problems because the LS-SVM then leads to large systems of linearequations which cannot be solved practically due to memory limits.Considering the number of function evaluation presented in Table 10.4.2 one cansee that those are usually higher for the ε-SVR compared to the LS-SVM. Here, it shouldbe emphasized that the hyperparameter optimization problem is not always solvedsuccessfully within the time limit of 600s for the larger dataset with small values of εsuch that the numbers in these cases are not suitable for a comparison. Nevertheless,the hyperparameter optimization problem seems to be more complicated if the ε-SVR training problems are considered. This could be expected because the shape ofthe decision function depends less smoothly on the hyperparameters as the set ofsupport vectors can vary quickly.

In a last step, we compare the final objective function value and the fraction ofsupport vectors in the decision function for each of the considered settings, cf. Ta-ble 10.4.3.
objective function value fraction of support vectors

dataset size ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM ε = 0.1 ε = 0.25 ε = 0.5 LS-SVM
pyrim 74 0.402 0.404 0.425 0.391 0.84 0.64 0.50 1.00
triazines 186 0.639 0.654 0.672 0.660 0.90 0.78 0.61 1.00
mpg 392 0.249 0.253 0.271 0.248 0.75 0.49 0.23 1.00
housing 506 0.241 0.249 0.275 0.241 0.74 0.45 0.23 1.00
spacega 1,000 0.419 0.417 0.422 0.416 0.87 0.68 0.44 1.00

3,107 0.388 0.387 0.394 0.386 0.85 0.65 0.40 1.00
abalone 1,000 0.469 0.469 0.476 0.478 0.87 0.69 0.46 1.00

4,177 0.456 0.457 0.462 0.465 0.86 0.68 0.45 1.00
cpusmall 1,000 0.154 0.167 0.203 0.153 0.61 0.30 0.11 1.00

8,192 0.128 0.139 0.229 0.124 0.56 0.24 0.09 1.00
Table 10.4.3: Obtained objective function values and fraction of support vectors
First, note that the obtained objective function values lie in a comparable rangefor the ε-SVR with small parameter ε and the LS-SVM. In contrast, for larger values
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of ε, it happens that the ε-SVR model is not able to fit the validation set because ofthe incorporated insensitivity which results in a perceptibly larger objective functionvalue. This property could help to prevent overfitting if many hyperparameters are tobe optimized.Finally, consider the fraction of support vectors presented in the right part of Ta-ble 10.4.3. By definition, this ratio is equal to one for the LS-SVM because it does notinduce any sparsity. On the other hand, it is clear that the number of support vec-tors decreases for increasing value of ε if the ε-SVR is applied. This fact has alreadybeen observed previously in terms of the runtime. Since the labels for all datasetswere normalized to unit variance, the relation between the value of ε and the fractionof support vectors is comparable over all datasets. By comparing these values to theassociated objective function values, it can be also observed that less support vectorare necessary if the model can made to fit better to the dataset.



11 Summary and Outlook

In this thesis we considered the application of Fenchel’s duality theory and gradient-based methods for the training and hyperparameter optimization of Support VectorMachines. We could show that the dualization of convex training problems is possibletheoretically in a rather general formulation. For training problems following a specialstructure (for instance, standard training problems) we found that the resulting opti-mality conditions can be interpreted concretely. This approach immediately led to thewell-known notion of support vectors and a formulation of the Representer Theorem.The proposed theory was applied to several examples such that dual formulationsof training problems and associated optimality conditions could be derived straight-forwardly. Furthermore, we considered different formulations of the primal trainingproblem which are equivalent under certain conditions. We also argued that the rela-tion of the corresponding solutions to the solution of the dual training problem is notalways intuitive. Based on the previous findings, we considered the application of cus-tomized optimization methods to the primal and dual training problems. A particularrealization of Newton’s method was derived which could be used to solve the primaltraining problem accurately. Moreover, we introduced a general convergence frame-work covering different types of decomposition methods for the solution of the dualtraining problem. In doing so, we were able to generalize well-known convergenceresults for the SMO method. Additionally, a discussion of the complexity of the SMOmethod and a motivation for a shrinking strategy reducing the computational effortis provided. In a last theoretical part, we considered the problem of hyperparame-ter optimization. We argued that this problem can be handled efficiently by meansof gradient-based methods if the training problems are formulated appropriately. Fi-nally, we evaluated the theoretical results concerning the training and hyperparameteroptimization approaches practically by means of several example training problems.
Although we considered a multitude of examples and discussed several practicalissues concerning the training and hyperparameter optimization for SVMs, there arestill open problems. For instance, we could not investigate the application of the non-standard training problems elaborately. In this context one could ask whether the so-lution of the proposed multi-class SVM training problems is practically feasible. Prob-ably it is possible to derive a particular SMO-type method following the same strat-egy as in Chapter 7. Similarly, it would be interesting to consider the ν-SVM trainingproblem following the proposed framework which would lead to sparser solutions in
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a certain sense. On the other hand, the efficiency of the proposed training methodscould be investigated further. In particular, the theoretical shrinking approach shouldbe evaluated in practice because there are still many open parameters to choose ap-propriately. Moreover, we could not thoroughly discuss the question when the switchfrom the dual SMO method to the primal Newton method should be done in orderto reduce the training time efficiently. Lastly, the proposed hyperparameter optimiza-tion approach is only outlined sketchily. For instance, a generalization to other types oftraining problems would be possible without too much effort. In addition, it would beinteresting to consider approaches which could lower the overall runtime of the pro-cedure. A particular idea in this direction could be to apply a suitable sampling strat-egy instead of cross-validation. Furthermore, the behavior of the proposed methodshould be evaluated more extensively by means of other benchmark problems.



A Definitions and Basic Theory

In this chapter, some basic definitions and assertions from the field of convex analysisare summarized. This summary is primarily here for recapitulation and reference. Fora more detailed introduction we refer to the monographs [BZ05] and [BC11]. Through-out the whole chapter, we suppose that H be a real Banach space and H⋆ the topo-logical dual space of H.

A.1 Convexity and Convex Subdifferential

We start with the well-known definition of a convex function and associated terms.
Definition A.1.1 (convex function; domain; proper function)
Let C ⊆ H be a convex set and let f : C → R ∪ {+∞}.

• The function f is convex if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

for all x,y ∈ C and all t ∈ (0, 1).
• The function f is strictly convex if the inequality above is strictly satisfied for all
x,y ∈ C and all t ∈ (0, 1).

• The domain of f is denoted by

dom(f) := {x ∈ C | f(x) < +∞}.

• The function f is proper if dom(f) ̸= ∅.

Convex functions play an important role in optimization because of many reasons.For instance, the lower level set Lf (c) := {x ∈ H | f(x) ≤ c} is convex for eachvalue c ∈ R. This property helps to construct descent methods which are able to solveconvex optimization problems globally.
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One important object which is commonly associated with convex functions is theso-called convex subdifferential. It is defined as follows.
Definition A.1.2 (convex subdifferential)
Let f : H → R ∪ {+∞} be a proper function. We define the convex subdifferential of f
at x ∈ H by

∂f(x) := {x⋆ ∈ H⋆ | f(y) − f(x) ≥ ⟨x⋆,y − x⟩ for all y ∈ H}.

The elements of ∂f(x) are called subgradients of f at x.

Note that the convex subdifferential is also well-defined for non-convex functions.However, we restrict our investigation to convex function below. A consequence ofthe definition of the subdifferential is that is compatible with the usual notion of differ-entiability in the following sense. For the precise definition of the set core(dom f) andGâteaux differentiability used in the following proposition we refer to [BZ05, pages 114and 121].
Proposition A.1.3 (differentiability of convex functions [BZ05, Corollary 4.2.9])
Let f : H → R ∪ {−∞, +∞} be a convex function and let x̄ ∈ core(dom f). Then, f is
Gâteaux differentiable at x̄ if and only if f has a unique subgradient at x̄ (in which case
this subgradient is the derivative).

In fundamental calculus the notion of continuous functions is very important. If oneconsiders functions which may attain infinite function values, continuity is not a suit-able property anymore. Luckily, there is a straightforward generalization of continuityin this case which helps to transfer many helpful properties to extended real-valuedfunctions. We define lower semi-continuity of functions as follows.

Definition A.1.4 (lower semi-continuous function)
The function f : H → R ∪ {−∞, +∞} is called lower semi-continuous if

lim inf
x→x̄

f(x) ≥ f(x̄)

for all x̄ ∈ H.

A.2 Convex Conjugates

Another fundamental object in convex analysis is the convex conjugate of a function.In particular, it will be used to define the dual optimization problem.
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Definition A.2.1 (convex conjugate)
Let f : H → R ∪ {−∞, +∞}. The convex conjugate of f is defined by

f ⋆ : H⋆ → R ∪ {−∞, +∞},
x⋆ ↦→ f ⋆(x⋆) := sup

x∈H
{⟨x⋆,x⟩ − f(x)} .

Recall that the convex conjugate of a convex function is again convex. Furthermore,if the function f is lower semi-continuous, the original function can be reconstructedfrom its conjugate, see [BL10, Theorem 4.2.1]. Thus, the conjugation is a bijectiveoperator on the set of convex lower semi-continuous functions.A fundamental property of the subdifferential which follows directly from its defini-tion is the following.
Proposition A.2.2 (Fenchel–Young inequality [BL10, Proposition 3.3.4])
Let f : H → R ∪ {+∞}. Suppose that x⋆ ∈ H⋆ and x ∈ dom(f). Then,

f(x) + f ⋆(x⋆) ≥ ⟨x⋆,x⟩.

Equality holds if and only if x⋆ ∈ ∂f(x).

As consequence of this inequality one can see that there is a close relationship be-tween the subdifferential and the conjugate function as follows.
Proposition A.2.3 (inverse of subdifferential, [BL10, Section 4.2, Exercise 7])
Let f : H → R ∪ {+∞} and suppose that x ∈ H and x⋆ ∈ H⋆ are points satisfying
x⋆ ∈ ∂f(x). Then, x ∈ ∂f ⋆(x⋆). Moreover, if f is convex and lower semi-continuous, it
follows that x⋆ ∈ ∂f(x) if and only if x ∈ ∂f ⋆(x⋆).

A.3 Convex Duality
An immediate consequence of the Fenchel–Young inequality is the following notationof weak duality which is the starting point of the investigation of the dual optimizationproblem.

Theorem A.3.1 (weak duality [BZ05, Theorem 4.4.2])
LetH andD be Banach spaces, let f : H → R∪{−∞, +∞} and g : D → R∪{−∞, +∞}
be convex functions and letA : H → D be a bounded linear map. Then, the weak duality
inequality

f(x) + g(Ax) ≥ −f ⋆(A⋆y⋆) − g⋆(−y⋆) (A.3.1)
is satisfied for all x ∈ H and y⋆ ∈ D⋆.
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The following theorem shows how a dual optimization problem can be derived. It alsoprovides necessary and sufficient optimality conditions which relates solutions of theprimal and the dual optimization problem.
Theorem A.3.2 (convex duality [BP12, Theorem 3.53])
Let H and D be Banach spaces, let f : H → R ∪ {+∞} and g : D → R ∪ {+∞} be
proper, convex and lower semi-continuous functions and A : H → D be a bounded
linear map. Suppose that there exists x̄ ∈ H such that f(x̄) < +∞ and g is continuous
at Ax̄. Then, the optimal values of

inf
x∈H

f(x) + g(Ax) (A.3.2)
and

max
y∈D⋆

−f ⋆(A⋆y) − g⋆(−y) (A.3.3)
coincide. In particular, the dual problem (A.3.3) has a solution.
Moreover, the following two properties are equivalent:

(i) (x,y⋆) ∈ H ×D⋆ is a couple of solutions for (A.3.2) and (A.3.3).
(ii) (x,y⋆) ∈ H ×D⋆ satisfies the system

A⋆y⋆ ∈ ∂f(x) and − y⋆ ∈ ∂g(Ax).

Consequently, a particular optimality measure can be defined as follows.
Definition A.3.3 (primal-dual optimality gap)
The term

∆pd(x,y⋆) := f(x) + g(Ax) − (−f ⋆(A⋆y⋆) − g⋆(−y⋆))

is called the primal-dual optimality gap for the pair (x,y⋆) ∈ H ×D⋆.

By means of the weak duality theorem Theorem A.3.1, it is easy to see that
∆pd(x,y⋆) ≥ 0

and equality holds if and only if (x,y⋆) is a couple of solutions for (A.3.2) and (A.3.3).This means that ∆pd(x,y⋆) = 0 is a necessary and sufficient optimality condition. Inparticular, this fact can be used in the construction and investigation of optimizationmethods because it is rather easy to evaluate the primal-dual gap. We summarize theprevious observation in the following proposition.
Proposition A.3.4 (optimality condition using primal-dual gap)
Suppose that the assumptions of Theorem A.3.2 are satisfied and let (x,y⋆) ∈ H ×D⋆.
Then, x is a solution of (A.3.2) and y⋆ is a solution of (A.3.3) if and only if∆pd(x,y⋆) = 0.
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A.4 Bregman Distance
For any proper convex function a distance measure can be defined as follows. Lateron in this appendix, we will derive a relationship between this distance measure andthe primal-dual optimality gap.

Definition A.4.1 (Bregman distance and directional derivative, c.f. [Res04])
Let f : H → R ∪ {+∞} be a proper convex function. The function

Df : dom f × dom f → R+ ∪ {+∞},
(y,x) ↦→ Df (y,x) := f(y) − f(x) − f ◦(x,y − x)

is called the Bregman distance (also: Bregman divergence) with respect to f . Here,
f ◦(x, z) denotes the directional derivative of f at x in direction z, i.e.,

f ◦(x, z) := lim
t↘0

f(x + tz) − f(x)
t

.

It is worth noting that the function Df is not a metric in general because it is not nec-essarily symmetric and can violate the triangle inequality. Nevertheless, it can be usedas a distance measure in a certain way.
In the following theorem we propose a general distance estimate based on the no-tion of the primal-dual gap and the Bregman distance. In its proof only basic propertiesof the primal and dual optimization problem are used. Nevertheless, we are not awareof any publication containing this basic assertion.

Theorem A.4.2 (Bregman distance estimation)
Consider the pair of optimization problems (A.3.2) and (A.3.3) under the assumptions
of Theorem A.3.2. Then, for all x, x̄ ∈ dom(f) and ȳ ∈ D⋆ satisfying A⋆ȳ ∈ ∂f(x̄) it
holds that

Df (x, x̄) ≤ ∆pd(x, ȳ), (A.4.1)
Moreover, for all x, x̄ ∈ dom(f) and ȳ ∈ D⋆ satisfying Ax ∈ dom(g), Ax̄ ∈ dom(g)
and −ȳ ∈ ∂g(Ax̄) it holds that

Dg(Ax,Ax̄) ≤ ∆pd(x, ȳ). (A.4.2)
Proof. Let x̄ ∈ H and ȳ ∈ D⋆ and suppose that A⋆ȳ ∈ ∂f(x̄). Then, from Proposi-tion A.2.2 it follows that

f(x̄) + f ⋆(A⋆ȳ) = ⟨A⋆ȳ, x̄⟩.
Moreover, the definition of the subdifferential implies

f ◦(x̄, z) ≥ ⟨A⋆ȳ, z⟩
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for all z ∈ H. Taking both parts together, we obtain
Df (x, x̄) = f(x) − f(x̄) − f ◦(x̄,x− x̄)

≤ f(x) − f(x̄) + ⟨−A⋆ȳ,x− x̄⟩
= f(x) + ⟨−A⋆ȳ,x⟩ − f(x̄) + ⟨A⋆ȳ, x̄⟩
= f(x) + ⟨−ȳ,Ax⟩ + f ⋆(A⋆ȳ)

Furthermore, by means of the Fenchel–Young inequality (see Proposition A.2.2) it fol-lows that
⟨−ȳ,Ax⟩ ≤ g(Ax) + g⋆(−ȳ)

for all x ∈ H. Together with the inequality above, this shows that (A.4.1) holds. Usingsimilar computations it can be shown that the inequality (A.4.2) is true.
Note that, under the assumptions of Theorem A.4.2 one can also show the corre-sponding dual assertions. We summarize these statements subsequently for sake ofcompleteness.

Theorem A.4.3 (Bregman distance estimation, dual form)
Consider the pair of optimization problems (A.3.2) and (A.3.3) under the assumptions
of Theorem A.3.2. Let ȳ ∈ dom(g⋆) and x̄ ∈ H. Then, for all x̄ ∈ H and y, ȳ ∈ dom(g⋆)
satisfying Ax̄ ∈ ∂g⋆(−ȳ) it holds that

Dg⋆(y, ȳ) ≤ ∆pd(x̄,y).

Moreover, for all x̄ ∈ H and y, ȳ ∈ dom(g⋆) satisfying A⋆ȳ ∈ dom(f ⋆), A⋆y ∈ dom(f ⋆)
and x̄ ∈ ∂f ⋆(A⋆ȳ) it holds that

Df⋆(A⋆y,A⋆ȳ) ≤ ∆pd(x̄,y).

A.5 Strict-Smooth Duality
As a last part of this chapter, we want to present an assertion which connects convexityand differentiability of a function and its conjugate, respectively. To be precise, we usethe terms of essential strict convexity and essential smoothness which are basicallyrestrictions of well-known properties to the domain of a convex function. To startwith, consider essentially strictly convex functions.

Definition A.5.1 (essentially strictly convex, cf. [BL10, page 35])
A convex function f is called essentially strictly convex if it is strictly convex on any convex
subset of dom(∂f).

Moreover, let essentially smoothness be defined as follows.
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Definition A.5.2 (essentially smooth, cf. [BL10, page 37])
A convex function f is called essentially smooth if it is Gâteaux differentiable on dom(∂f).

With the terms of essential strict convexity and essential smoothness, the connectionbetween convexity and differentiability of the conjugate functions can be stated asfollows.
Theorem A.5.3 (strict-smooth duality, [BL10, Theorem 4.2.5])
A proper closed convex function is essentially strictly convex if and only if its conjugate
is essentially smooth.

The basic consequence of the previous assertion is that smoothness of the primalobjective function translates into extra convexity of the dual objective function. Thisproperty on its part helps to conclude that the dual problem has a unique solution inparticular settings. On the other hand, strict convexity in the primal problem immedi-ately implies a certain smoothness of the objective function in the dual problem.
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