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Notation
In this thesis we try to stick to the following notation policy.

• The domains of interest, as subsets of Rd, are denoted by Ω with possible super- or
subscripts.

• Boundary portions of Ω are denoted by Γ with possible super- or subscripts.

• x is usually an element of Ω.

• t is always a “time” parameter.

• Scalar values use Greek letters α, γ, λ.

• Vectors in Rd use lowercase Latin letters u, v.

• Matrices are written in uppercase Latin letters A, P, Q.

• Standard continuum mechanics quantities, such as σ and ϵ, do not follow the rules
above.

• Local quantities use standard fonts, while global functions (on Ω) are boldfaced:

p = p(x) for x ∈ Ω.

• Dual pairings are given is sharp brackets ⟨·, ·⟩.

• The scalar product of two vectors is written by a single dot a · b for a, b ∈ Rd.

• Matrix scalar products are written using two dots A : B for A, B ∈ Rn×m.

• Multiplications of tensors C and matrices M are written as CM .

• The identification operator ≡ is used whenever two functions are equal in the
pointwise meaning, i.e., for f , g : D → R

f ≡ g ⇔ f(x) = g(x)

for all (or almost all, depending on the function space) x ∈ D.
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Why do we Differentiate between Small- and Finite-Strain
Plasticity?
This thesis covers two fundamental models of continuum mechanics: small-strain plas-
ticity and finite-strain plasticity. Although the two models have a similar name, the
mathematical theory involved is very different. However, we are able to show that the
finite-strain plasticity model is an extension of the small-strain model.

In the first part, we cover the topic of small-strain plasticity. After an introduction to
the continuum mechanics model, a numerical approximation scheme leads to convex but
nonsmooth minimization problems. The assumption of small strains allows us to justify
a number of linearizations of the continuum mechanics model. Hence, the minimization
problems have a simple form, but their solution is non-trivial due to the nonsmoothness.
Therefore, an efficient solver is presented to handle these problems.

The second part of this thesis deals with the theory of finite-strain plasticity. No
linearizations are applied to the continuum mechanics model. Therefore, the mathematical
theory is more involved and we have to consider nonlinear manifold spaces to describe the
problem and the solutions. A numerical approximation scheme again leads to nonsmooth
minimization problems. However, these problems are not convex. Hence, another method
has been developed to handle these minimization problems numerically. An interesting
property of the solver is that it constructs a series of small-strain plasticity problems.
These small-strain plasticity problems can be solved efficiently by methods from the first
part of this thesis. Therefore, we consider the second part of this thesis as an extension
of the first part, both in terms of the continuum mechanics model and the solution
algorithms.
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Part I.

An Efficient and Globally Convergent
Minimization Algorithm for

Small-Strain Plasticity Minimization
Problems
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1. Introduction

Small strain plasticity problems are of great interest in engineering. Over the decades,
much progress has been made in modeling the physical problem and in improving the
solution algorithms. Small-strain plasticity is one of the most studied areas. The
fundamental assumption of small strains allows a variety of convenient simplifications of
the physical interactions of the quantities involved.

The content of this part of the thesis is based on the collaboration with Oliver Sander,
resulting in the published article [30]. In this thesis, we extend that article in several
places by introducing another nonsmooth yield function in Section 2.4 and new hardening
laws in Section 2.6. The general structure of this topic, including the article [30], is taken
in large parts from the monograph by Weimin Han and B. Daya Reddy [16]. This book
gives a comprehensive overview of possible further ideas of small-strain plasticity. We
consider the parts of this book to the extent that we can establish a solid foundation for
the problem of small-strain plasticity without at the same time going beyond the scope
of this thesis. Several aspects from the extended theory could easily be adopted in this
thesis, while other parts would require extensive changes.

This part of the thesis is structured as follows. The physical strong form of the
small-strain plasticity model is constructed from scratch in Chapter 2. In Chapter 3,
equivalent variational formulations of the strong formulation are presented. An algebraic
form of the variational problems is presented in Chapter 4, followed by the introduction
of solution algorithms in Chapter 5. Finally, in Chapter 6, several numerical tests are
performed to demonstrate the efficiency of the algorithms.

13





2. Strong Formulation of Small-Strain
Plasticity

We begin with an overview of important results from continuum mechanics. Most of
the results are taken from [16, Part I], including the majority of the notation. Intended
variations in the notation are made in order to fit consistently to the second part of this
thesis about finite-strain mechanics. It should be mentioned that other commonly used
notations exist in literature.

2.1. Kinematics
The physical problem is defined over an open and bounded domain Ω ⊂ Rd. We will also
refer to Ω as the initial state. In this thesis we consider only d ∈ {2, 3} since these are
the relevant cases for continuum mechanics. The physical observation we want to explain
here is the change of the shape of the domain undergoing external loads. This change in
shape is modeled by a time-dependent deformation field y : Ω× [0, T ]→ Rd, such that
for a time point t ∈ [0, T ], the value of y(x, t) describes the current position of x ∈ Ω.
Hence, the current domain at time t is given by

Ωy,t := y(Ω, t).

Besides the deformation field, we will use the displacement field u : Ω × [0, T ] → Rd,
defined by

u(x, t) := y(x, t)− x.

A representation of deformation and displacement is visualized in Figure 2.1.
Although the deformation and the displacement field describe the shape change well,

they are no suitable quantity for measuring local deformations. This becomes obvious if
we consider a rigid body motion given by the deformation field

y(x, t) = Q(t)x + b(t) (2.1)

with an orthogonal matrix Q(t) and a vector b(t) for all t. This describes for instance the
movement of a pen on the desk, if the pen is given by Ω. For those rigid body motions,
no local deformation takes place.

Therefore, we will construct another quantity (the strain) on Ω which will be invariant
under rigid body motions. To this end, we consider a point x ∈ Ω, and two direc-
tions a, b ∈ Rd, such that x + a and x + b are in Ω. The goal is to capture both changes
in the length scales and in the angle between a and b. The scalar product ⟨a, b⟩ captures
both of these.

15



2. Strong Formulation of Small-Strain Plasticity

Ω

Ωy,t

x

y(x, t)

u(x, t) := y(x, t)− x

F (t)

Figure 2.1.: Deformation of the two-dimensional initial state (solid lines) to the deformed
state (dashed lines) at time t.

After the deformation at time t, the deformed directions are given by y(x+a, t)−y(x, t)
and y(x + b, t)− y(x, t), respectively, in the deformed body. The situation is displayed in
Figure 2.2.

x

y(x)

a
x + a

b

x + b

y(x + a)

y(x + b)

Ω

Ωy

Figure 2.2.: Location of x and the directions a and b in the initial state (left), and in the
deformed state (right). Dependency on t is omitted for readability.

The infinitesimal change of the scalar product of a and b is given by

S(x; a, b) := lim
h→0

⟨y(x + ha, t)− y(x, t), y(x + hb, t)− y(x, t)⟩ − ⟨ha, hb⟩
h2 . (2.2)

If we assume that y is sufficiently smooth, we can write

y(x + ha, t) = y(x, t) + h∇y(x, y) a +O(h2)

16



2.1. Kinematics

where ∇ is the gradient operator with respect to x ∈ Ω. Plugging this into the scalar
products leads to

⟨y(x + ha, t)− y(x, t), y(x + hb, t)− y(x, t)⟩ = ⟨h∇y(x, y) · a, h∇y(x, y) · b⟩+O(h3)

= h2aT
(︂
∇y(x, t)T∇y(x, t)

)︂
b +O(h3).

Inserting this into (2.2) results in

S(x; a, b) = aT
(︂
∇y(x, t)T∇y(x, t)− I

)︂
b.

Now we use ∇u = ∇y− I to obtain

S(x; a, b) = aT
(︂
∇u(x, t) +∇u(x, t)T +∇u(x, y)T∇u(x, t)

)︂
b.

Hence, the local change of the deformation can be expressed as a bilinear form independent
of the directions a, b.

Definition 2.1.1 (Strain tensor). For a differentiable displacement field u : Ω× [0, T ]→ Rd

the strain tensor is given by

E = E(u) := 1
2
(︂
∇u +∇uT +∇uT∇u

)︂
.

Remarks 2.1.2.

(i) E is called the St. Venant–Green strain tensor.

(ii) Often we find the equivalent definition

E = E(y) := 1
2
(︂
∇yT∇y− I

)︂
if the deformation field y is the quantity of interest.

(iii) For a rigid body motion (2.1), we have E = 0. Our introductory motivation for the
strain of rigid body motions is therefore fulfilled.

The connection of strain and displacement is obviously not linear, which makes both
analysis and numerical handling of the problem complicated. This is studied in detail in
the second part of this thesis. In the theory of small strains the following name-giving
assumption is made: ∥∇u∥ is small in a given norm. This implies that ∥E∥ is also small
in the same norm. We will never specify what small means exactly in practice since it
is a model choice made beforehand. This choice is justified afterwards when numerical
results match real observations. For a small ∇u, the quadratic term ∇uT∇u can be
neglected in practice.

Definition 2.1.3 (Small-Strain Tensor). For a given differentiable displacement field
u : Ω× [0, T ]→ Rd the small-strain tensor is

ϵ(u) := 1
2
(︂
∇u +∇uT

)︂
.
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2. Strong Formulation of Small-Strain Plasticity

2.2. Forces and Stress
Now we introduced quantities that describe the current form of the material undergoing
the deformation process. Next, external load is studied. In continuum mechanics, load is
described by forces. Let ∂Ω denote the boundary of Ω. The total force F that acts on Ω
is given by the integral of the acceleration times the material mass density ρ

F =
∫︂

Ω
ρü dx ∈ Rd.

The total force F is split into volumetric and surface parts. Formally, there are force
densities b : Ω× [0, T ]→ Rd and s : ∂Ω× [0, T ]→ Rd such that

F (t) =
∫︂

Ω
b(x, t) dx +

∫︂
∂Ω

s(x, t) dS. (2.3)

A crucial result from continuum mechanics states that there is a time-dependent,
symmetric matrix field σ : Ω× [0, T ]→ Rd×d which represents the force density s, cf. [16,
Section 2.2]

Proposition 2.2.1 (Cauchy stress at small strains). Assuming that ∥∇u∥ is small there
is a differentiable and symmetric matrix field σ : Ω× [0, T ]→ Rd×d such that

s(x, t) = σ(x, t) · n(x)

for the outer normal n(x) of ∂Ω at x. Furthermore, we can express the total force F (t)
by

F (t) =
∫︂

Ω
div(σ(x, t)) + b(x, t) dx.

The div-operator is the row-wise divergence with respect to x.

Remark 2.2.2. Later on in the second part of this thesis in Section 7.3 a more detailed
insight into the origin of the stress tensor field σ will be given. There it will also be stated
why the assumption that ∥∇u∥ is small plays a crucial role in the proposition above.

The results above can be formulated for each subset Ω′ ⊆ Ω. Hence we conclude the
strong pointwise equation

div(σ) + b = ρü in Ω× [0, T ].

This is called the balance of linear momentum. Under the further assumption that the
process of deformation is slow and independent of the rate of the external variables, the
equation simplifies more. But first, let us formalize what rate-independence is precisely,
cf. [22, Definition 1.2.1].

Definition 2.2.3 (Rate-independent process). Let [0, T ] a time interval, and F the
external load. Consider a process depending on F with a solution q = q(t) in the
time interval [0, T ]. We call the system (F, q) rate-independent, if for every α > 0 the
time-scaled control t ↦→ F (αt) obtains a time-scaled solution t ↦→ q(αt).
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2.3. Elastic and Plastic Strain

In other words, the process is independent of time-scaling. An immediate consequence
of rate-independent solutions q is that speed q̇ and acceleration q̈ cannot be part of a
rate-independent system. In this thesis we consider only rate-independent processes and
remove the acceleration term from our system.

Definition 2.2.4 (Quasi-static balance of momentum). For a rate-independent deforma-
tion process we consider the balance of moment linear momentum

−div(σ) = b in Ω× [0, T ]. (2.4)

2.3. Elastic and Plastic Strain

ϵ
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plastic loading
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(A)

(B)

(C)

(D)

Figure 2.3.: Simplified stress–strain diagram for a loading–unloading test for d = 1 and
plastic behavior.

In this section we want to connect the strain ϵ to the stress σ. A typical experiment to
introduce this topic is given by a tensile test with a metal wire. We fix the wire on one
end an apply an increasing pull load on the other end. After the maximal load is reached,
the load is reduced back to zero. A simplified linear stress–strain curve is displayed in
Figure 2.3.

What we can see are three different segments of the stress–strain curve. We start at
an initial stress- and strain-free state (A). During the loading phase the increase of the
stress reaches a critical stress value σ0 at (B). Now the slope changes until we arrive
at the maximal load, and hence the maximal stress at (C). During unloading, starting
at (C), the stress decreases linearly until we arrive at (D). There is a remaining strain
without any stress.

If the maximal stress is small enough that we never reach σ0 at the first place, then the
connection between σ and ϵ is linear. This is called elastic behavior and generates the
elastic strain e. After the critical stress σ0 has been reached, an irreversible strain occurs.
Irreversibility is understood in a way that further external load is necessary to return to
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2. Strong Formulation of Small-Strain Plasticity

the initial state. This kind of strain is called the plastic strain p and does not depend on
the current load, but rather on the history of previous loads1. This phenomenon is visible
in Figure 2.3. In the moment of decreasing the stress (C), there is already a portion p of
the total strain ϵ created. This remains unchanged till the end (D).

In order to put this into a mathematical context, we recall the definition of the
small-strain tensor

ϵ = ϵ(u) := 1
2
(︂
∇u + (∇u)T

)︂
.

This needs to be decomposed into the elastic strain e and the plastic strain p. How the
decomposition is done in detail is not obvious at all. In our motivational experiment
above, we use an additive split.

ϵ = e + p, (2.5)

which will be the starting point for the small-strain theory. In [20] the product decompo-
sition

ϵ = ep

was introduced. In fact, this will be used for the finite strain theory later in the second
part of this thesis and discussed there in detail. The additive decomposition (2.5) allows
us to work completely in a linear vector space setting, since we only rely on sums and
differences in the strain space.

An important vector space is given by the space of symmetric matrices

Sd := {A ∈ Rd×d, AT = A}.

We have
ϵ(x), σ(x) ∈ Sd ∀x ∈ Ω.

An important subspace of the above is given by the trace-tree, symmetric matrices

Sd
0 := {A ∈ Sd, tr(A) = 0},

where the trace is the sum over the diagonal elements

tr(A) :=
d∑︂

i=1
Aii.

We assume that the plastic strain p is volume-preserving [16, page 52]. This is realized
by

p(x) ∈ Sd
0 ∀x ∈ Ω.

We assume that p(t) does not correspond to the current stress σ(t), since the current
plastic strain depends only on the load history. Hence, the stress only depends on the

1In [15] the current plastic strain is described as a model parameter for a fixed point in time and only
the evolution ṗ is a quantity of interest.
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2.4. Yield Stress

elastic strain e. In this part of this thesis we only consider a linear connection between
the stress and the elastic strain. This is realized by a fourth order tensor H such that

σ = H : e. (2.6)

This is called Hooke’s law. For the one dimensional case we see this law as the linear
connection from (A) to (B) in Figure 2.3. In general, H contains d4 components, but
from demanding symmetry on both σ and ϵ some degrees of freedom are already fixed.
If the material properties are independent of the coordinate system, we have symmetry
of H in all components. In this case there are only two main components left: A bulk
and a shear component. These are described by two scalar parameters λ and µ (called
Lamé parameters), such that

H : e = λ tr(e)I + 2µe. (2.7)

2.4. Yield Stress

Hooke’s law only holds for elastic processes. Therefore, we have to extend the elastic
theory. We assume that the additional plastic strain p evolves only if a certain amount
of stress is reached, namely the yield stress. The connection to the stress field σ is given
by a function

ϕ : Sd → R

which can be interpreted as a measure of the stress values. We will refer to the function
above as yield function. Once the yield function is established, we say a yield stress is
reached if for x ∈ Ω

ϕ(σ(x)) = 0.

For the construction of yield functions, we use that a yield stress is given at the value
zero. We postulate that negative values indicate elastic behavior. We call the set of
stresses that induce purely elastic material responses the elastic region.

Definition 2.4.1. For a yield function ϕ : Sd → R elastic region is

E(ϕ) := {σ ∈ Sd : ϕ(σ) ≤ 0}.

Determining a suitable yield function ϕ requires engineering knowledge. We restrict
ourself to convex yield functions that only depend on the singular values of σ.

Two major classes of yield functions can be found in the literature. The first class is
rather simple and creates elastic regions E with smooth boundary. On the other hand,
the second class is more involved with a nonsmooth boundary of the elastic region. Of
course, special numerical methods are necessary to deal with nonsmooth components.

Convexity of the yield function implies directly that the elastic region is also convex
[8]. For both cases (smooth and nonsmooth) a classical candidate is considered in detail
in the following.
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2. Strong Formulation of Small-Strain Plasticity

2.4.1. Von Mises Yield Criterion
The von Mises yield criterion creates smooth elastic regions. It was developed such that
hydrostatic stresses σ = γI should not lead to plastic deformation. This is achieved by
considering only the deviatoric part dev(σ) := σ − 1

d tr(σ)I of the stress.
Then we combine this with the Frobenius norm to arrive at the yield function

ϕVM(σ) := ∥dev(σ)∥F − σ0. (2.8)

The scalar value σ0 > 0 is an experimentally measured quantity. If we only consider the
singular values σ1, . . . , σd of σ, the elastic region E as an infinite cylinder centered at the
origin, and orientated parallel to the (1, . . . , 1)T vector. The cylinder intersects at the
axes at the coordinate

√︂
d

d−1σ0, as seen in Figure 2.4 for the case d = 3.

E

√︂
3
2σ0

σ1

σ3σ2

Figure 2.4.: Elastic region of the von Mises yield function in three-dimensional principal
space. The view is along the (1, 1, 1)T -vector.

Remark 2.4.2. The von Mises yield function is sometimes defined with a scaled σ0 as

ϕVM(σ) := ∥dev(σ)∥F −

√︄
d− 1

d
σ0.

This ensures that the intersection is at σ0 but we have to carry the factor
√︂

d−1
d thought

all computations. This is why we stick to original definition (2.8).

2.4.2. Tresca Yield Criterion
A classical candidate for a nonsmooth elastic region is the Tresca yield criterion. Instead
of measuring the total deviatoric stress, like the von Mises yield function, the Tresca yield
criterion measures the shear stress. The shear stress is given by the maximal difference
in the singular values σ1, . . . , σd of σ. Thus, we define

ϕTr(σ) := max
i,j=1,...,d

|σi − σj | − σ0. (2.9)
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2.5. Plastic Strain Evolution

Again, σ0 > 0 is an experimentally measured value. Note that the Tresca yield function
is not affected by hydrostatic stresses like the von Mises criterion. For d = 3, the
geometry of the elastic region is displayed in Figure 2.5. We can see that the boundary
is nonsmooth. The intersection with the principal axes is directly given at σ0.

E

σ0

σ1

σ3σ2

Figure 2.5.: Elastic region of the Tresca yield function in three-dimensional principal
space. The view is along the (1, 1, 1)T -vector.

In two dimensions the von Mises and Tresca yield function are equivalent if we use a
scaled yield stress σ0.

Lemma 2.4.3. Let d = 2 and σ ∈ S2. Then

∥dev(σ)∥F = 1√
2
|σ1 − σ2|.

Proof. Consider the eigenvalues σ1, σ2 of σ. The eigenvalues of the deviatoric part of σ
are σ1 − 1

2(σ1 + σ2) and σ2 − 1
2(σ1 + σ2), respectively, which is ±1

2(σ1 − σ2). Hence the
Frobenius norm is given by 1√

2 |σ1 − σ2| and the proof is complete.

2.5. Plastic Strain Evolution

In order to determine the evolution of the plastic strain, we can use the Maximum Work
Principle [15, 16, 31]. We are not giving a derivation of the following result in this
thesis. The interested reader is invited to follow the stated sources for a more in-depth
discussion of the origin. There the origin of the term “work” is explained in the context
of thermodynamical considerations in the stress–strain space.

Proposition 2.5.1 (Maximum Work Principle). Consider a stress σ ∈ Sd with ϕ(σ) = 0.
Assume that d

dtϕ(σ) > 0. Then we have an evolution of the plastic strain ṗ ∈ Sd
0 which

satisfies
ṗ : σ ≥ ṗ : τ ∀τ ∈ E .
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2. Strong Formulation of Small-Strain Plasticity

Recall that in this thesis the elastic region E is a convex set. Therefore, equivalent
characterizations of the Maximum Work Principle are possible using convex analysis
(cf. [8]). We recall some tools for the following results.

Definition 2.5.2 (Normal cone). Let V a vector space, V ′ its dual, E ⊆ V a convex
subset and x ∈ E. We call

NE(x) := {µ ∈ V ′ : ⟨µ, y − x⟩ ≤ 0 ∀y ∈ E}

the normal cone of E at x.

A direct consequence is that NE(x) = {0} if x is not at the boundary of E . We can
reformulate the Maximum Work Principle as

ṗ ∈ NE(σ)

for any stress σ ∈ E . The normal cone is the outer normal of the boundary if E is smooth
at σ. For the Tresca yield criterion, at one of the corners of E , the cone looks like shown
in Figure 2.6.

σ1

σ2σ3

ṗ

E

Figure 2.6.: Normal cone (grey) at a nonsmooth boundary point of the elastic region E

Another tool from convex analysis is the subdifferential as an extension of the classical
derivative.

Definition 2.5.3 (Convex subdifferential). Let V a vector space, V ′ its dual, ϕ : V → R
convex and x ∈ V . We call the set

∂ϕ(x) := {µ ∈ V ′ : ϕ(y) ≥ ϕ(x) + ⟨µ, y − x⟩ ∀y ∈ V }

the subdifferential of ϕ at x.

If ϕ is differentiable at x, we have ∂ϕ(x) = {∇ϕ(x)}. Since the boundary of the elastic
region E is the level set of the yield function ϕ, we can characterize the normal cone
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2.6. Hardening

of E directly by the subdifferential of the yield function ϕ. Note that the normal cone is
infinite. Hence, we have no information about the size of its elements. Therefore, there
is a scalar γ > 0, called the plastic multiplier, such that

ṗ ∈ γ ∂ϕ(σ).

We have only an evolution in p if we reach a stress σ with ϕ(σ) = 0. Hence, we demand

γ > 0, ϕ(σ) ≤ 0, γϕ(σ) = 0 (2.10)

to hold simultaneously.

2.6. Hardening
In the idealized stress–strain curve in Figure 2.3, we are now able to describe the evolution
of a plastic strain p after arriving at (B). We need to introduce a concept to describe
the appearing plastic loading slope. Moreover, we notice that stresses beyond the yield
stress σ0 are reached, which is not covered by the theory for far. In addition, the value
of p seems to depend on the stress. This is contrary to the previously stated assumptions
on p.

We introduce a concept of a changing elastic region E depending on the history of
events. This is called hardening. In order to track these changes, we need to introduce
internal variables. Formally, there are internal variables which become part of the stress,
and other internal variables which become part of the plastic strain. These variables
keep track of the history of plastic effects and of changes of the elastic region.

The detailed definition of the internal variables depends on the underlying hardening
model. In literature [16, 31] two main categories of hardening are described.

2.6.1. Kinematic Hardening
Until now, the elastic region was always at a fixed place in the stress space. In the
kinematic hardening model we assume that E can move in the direction of the plastic
evolution ṗ [31, Section 1.2.4.1]. In mathematical terms there exists an internal stress
variable a ∈ Sd, called back stress. The back stress tracks the movement of the elastic
region. Since the internal variables affect the yield function, a modified variant of ϕ is
defined. The modified variant ϕkin for the kinematic stress Σkin := (σ, a) takes the form

ϕkin(σ, a) := ϕ(σ + a)

and shows therefore directly the movement of the elastic region.
From thermodynamics [16, Section 2.7], we postulate the existence of a corresponding

internal plastic strain variable α ∈ Sd. We only consider linear connections between a
and α [16, 31]

∃k1 > 0 : a = −k1α. (2.11)

In theory, however, nonlinear connections are possible as well.
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2. Strong Formulation of Small-Strain Plasticity

The corresponding kinematic plastic strain is denoted by Pkin := (p, α). In Figure 2.7
an example for d = 2 is shown in the principal space. In this picture the stress σ reaches
the boundary of the initial elastic region and causes a movement towards a new center
at −a.

σ1

σ2

σ

−a

Figure 2.7.: Kinematic hardening in principal stress space for d = 2. The initial elastic
region is represented by solid lines. The moved elastic region is dashed with
new center at −a.

2.6.2. Isotropic Hardening

Besides moving the elastic region as in the kinematic hardening above, growth of the
elastic region is another possibility to reach larger stress values. We consider for simplicity
that the region grows uniformly (isotropically) in all directions. The simplest way to
achieve this it to increase the value of σ0 in the yield functions (2.8) and (2.9). Technically,
we add a negative scalar2 g ≤ 0 to the yield function to obtain

ϕiso(σ, g) := ϕ(σ) + g.

There is again a corresponding scalar internal variable η of the plastic strain. The
internal variable η describes the influence of the growth parameter g on the plastic strain.
The isotropic stress is defined by Σiso := (σ, g), and, correspondingly, the isotropic plastic
strain by the pair Piso := (p, η).

In Figure 2.8, an example for d = 2 is shown in principal stress space, where a yield
stress is reached and a growth of the elastic region follows.

2We usually denote scalars by Greek letters, but we stick to the notation of [16].
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2.6. Hardening

σ1

σ2

σ

Figure 2.8.: Isotropic hardening in principal stress space for d = 2. The initial elastic
region is represented by solid lines. The grown elastic region is shown by
dashed lines.

For the connections of g and η multiple variants are studied in this thesis. We consider
linear connections, e.g., [16, Secion 3.5]

∃k2 ≥ 0 : g = −k2η. (2.12)

In addition, we also consider a more complex nonlinear connection from [32, page 393]

g(η) = −(k∞ − σ0)(1− e−βη)

with non-negative constants k∞ ≥ σ0 and β.
We want to consider both linear and nonlinear isotropic hardening at the same time.

Therefore we define the isotropic hardening relationship

g(η) = −(k∞ − σ0)(1− e−βη)− k2η. (2.13)

Remarks 2.6.1. The isotropic hardening connection (2.13) has the following properties.
(i) g is continuous and strongly monotone decreasing.

(ii) We have definiteness
0 = g(η)⇔ η = 0. (2.14)

(iii) We only consider growth of the elastic region, hence g ≤ 0. From monotonicity and
the equation above we conclude that

η ≥ 0. (2.15)
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2. Strong Formulation of Small-Strain Plasticity

2.7. Generalized Formulation

In this thesis we combine both kinematic and isotropic hardening. We define the
generalized stress

Σ := (σ, a, g) ∈ Sd × Sd
0 × R≤0

as a tuple of the stress σ, the plastic back-stress a, and the isotropic hardening variable
g. Likewise the generalized plastic strain is

P := (p, α, η) ∈ Sd
0 × Sd

0 × R≥0.

The combined yield function in the generalized stress space is

Φ(Σ) := ϕ(σ + a) + g.

We define the generalized elastic region

E := {Σ : Φ(Σ) ≤ 0}.

Since ϕ is a convex function, Φ is a convex function, and hence E is a convex set.
With the generalized stress Σ and plastic strain P a thermodynamical framework can

be developed. This is left out in this thesis, detail are found in [16, Section 3] with the
same notation of this thesis. There it is also stated that the Maximum Work Principle
still holds for the generalized framework.

Proposition 2.7.1 (Generalized Maximum Work Principle). Let Σ = (σ, a, g) be a
generalized yield stress, i.e., Φ(Σ) = 0. Further let d

dtΦ(Σ) > 0. Then we have an
evolution of the generalized plastic strain P = (p, α, η) characterized by

Ṗ ⋄ Σ := ṗ : σ + α̇ : a + η̇ : g ≥ T ⋄ Σ ∀T ∈ E. (2.16)

In Figure 2.9 a two dimensional example of the changing elastic region is given for
combined kinematic and isotropic hardening. The ratio between movement and growth
is determined by the hardening parameters k1, k2, k∞ and β of the previous sections.

Since E is convex set, we can again write

Ṗ ∈ NE(Σ) (2.17)

or, equivalently,
Ṗ ∈ γ · ∂Φ(Σ)

for the subdifferential ∂Φ(·) of Φ and a plastic multiplier γ. In detail, we have

Ṗ =

⎛⎜⎝ṗ
α̇
η̇

⎞⎟⎠ ∈ γ ·

⎛⎜⎝∂ϕ(σ + a)
∂ϕ(σ + a)
{1}.

⎞⎟⎠
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σ1

σ2

σ

−a

Figure 2.9.: Kinematic and isotropic hardening in principal stress space for d = 2. The
initial elastic region is represented by solid lines. The new elastic region is
dashed with new center at −a. The dashed arrow demonstrates that elastic
unloading to zero stress is possible in the new elastic region.

From the above, we have the pointwise condition ṗ = α̇. If we assume that p = α = 0 for
the initial state at t = 0, we can conclude that for all t

p = α. (2.18)

If we return to the idealized stress–strain curve in Figure 2.3, the plastic loading from
(B) to (C), and the elastic unloading path from (C) to (D) have not been discussed yet.
The changes in internal variables a and g allow stresses σ to be greater than σ0, because
the elastic region moves and grows. Once we decrease the stress at (C), we are in a
situation as displayed in Figure 2.9. The stress-free state is contained in the new elastic
region. No further plastic strain evolution takes place while unloading from (C) to (D).
Hence, the last part is purely elastic.
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3. Variational Formulations of Small-Strain
Plasticity

The generalized Maximum Work Principle is the starting point for variational formulations
of the small-strain plasticity problem. From here, we have to choose what variables will
be the unknowns of the global system of equations. Basically, we have two options.

The first possibility is the dual formulation. In this form, we start start directly with
the inclusion Ṗ ∈ NE(Σ) (2.17). In this form we can eliminate the generalized plastic
strain P by other, already known, conditions on Σ. The generalized stress is one of the
unknowns of this form.

The other form is the primal formulation. Here, we want to eliminate the generalized
stress Σ from the model. Therefore, we need to introduce further structures to express Σ
directly in terms of Ṗ . Then the generalized plastic strain P is one of the unknowns.

Both formulations exist in literature. One benefit of the dual formulation is that we
use the physically measurable stress to describe the unknowns. In contrast, the plastic
strain is a model quantity that cannot be measured directly. Nevertheless, the primal
formulation leads to series of nonsmooth minimizing problems after a suitable time
discretization, while the dual formulation does not.

3.1. Excursus: Dual Formulation of Plasticity

Before we dive directly into the primal formulation of plasticity we give a short overview
how the plasticity problem is treated in the dual formulation. The reader can skip the
following section since its contents will not play a role in the rest of this thesis.

In this section, no details about the specific function spaces of the solutions are given.
In the dual form, the displacement field u, and the global stress fields σ, a and g are
the quantities of interest. For simplicity, only a linear form of kinematic and isotropic
hardening is considered. Furthermore, only volumetric forces b are present, and no
surface forces s, as defined in (2.3).

We can express the plastic variables in terms of the stress variables

α = − 1
k1

a, η = − 1
k2

g

with positive coefficients k1, k2 > 0, cf. (2.11) and (2.12). From the generalized Maximum
Work Principle (2.17), we incorporate the definition of the normal cone

⟨Ṗ, Σ̃−Σ⟩ ≤ 0 ∀Σ̃ ∈ E.
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3. Variational Formulations of Small-Strain Plasticity

For a volumetric force density b we have the balance of momentum (2.4)

−div(σ) = b.

With that in mind, we define the time-dependent linear load functional ⟨l(t), ·⟩ by

⟨l(t), u⟩ := −
∫︂

Ω
b(t) · u dx.

A bilinear form b(·, ·) is introduced by

b(u, σ) := −
∫︂

Ω
ϵ(u) : σ dx.

Using the symmetry of the arguments one can show by integrating by parts1 that

b(ũ, σ) =
∫︂

Ω
div(σ) · ũ = ⟨l(t), ũ⟩ ∀ũ.

Under the assumption that the Hooke tensor H from (2.6) is invertible we define the
bilinear stress–stress mapping

a(σ, σ̃) :=
∫︂

Ω
σ : H−1σ̃ dx,

and additional bilinear functions for the generalized variables

c1(α, α̃) :=
∫︂

Ω

1
k1

α : α̃ dx,

c2(g, g̃) :=
∫︂

Ω

1
k2

g · g̃ dx.

Altogether, we define the generalized bilinear form

A(Σ, Σ̃) := a(σ, σ̃) + c1(α, α̃) + c2(g, g̃).

The explicit form of (2.17) is∫︂
Ω

ṗ : (σ̃ − σ) + ȧ : (α̃−α) + η̇ · (g̃− g) dx ≤ 0.

Using both
α̇ = −k1ȧ and ġ = −k2η̇,

and Hooke’s law (2.6)

ϵ(u̇) = ṗ + ė = ṗ + H−1σ̇ ⇒ ṗ = ϵ(u̇)−H−1σ̇,

1This is done in detail in Section 3.3.

32
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we arrive at∫︂
Ω

ϵ(u̇) : (σ̃ − σ)⏞ ⏟⏟ ⏞
−b(u̇,σ̃−σ)

−H−1σ̇ : (σ̃ − σ)⏞ ⏟⏟ ⏞
a(σ̇,σ̃−σ)

− 1
k1

α̇ : (α̃−α)⏞ ⏟⏟ ⏞
c1(α̇,α̃−α)

− 1
k2

ġ · (g̃− g)⏞ ⏟⏟ ⏞
c2(ġ,g̃−g)

dx ≤ 0.

This can be shortened to

A(Σ̇, Σ̃−Σ) + b(u̇, σ̃ − σ) ≥ 0 ∀Σ̃ ∈ E. (3.1)

Together with the previously stated linear constraint

b(ũ, σ) = ⟨l(t), ũ⟩ ∀ũ (3.2)

the dual formulation will result in a classical quadratic inequality on a convex set with a
linear constraint.

Further numerical treatment of this variational problem is out of the scope of this
thesis and therefore intentionally omitted. A detailed description of the construction of
the fully discrete problem and numerical solution strategies is given in in [16, Section 13].

3.2. Support Functions and Dissipation

In this section we want to investigate a necessary tool for the primal formulation of
plasticity. We want to express the global system of equations in terms of the generalized
plastic strain P and the displacement u. Hence, we need a description of the generalized
plastic strain in terms of the generalized stress Σ. The results of this section are pointwise
results, i.e., we consider P = P(x), Σ = Σ(x), etc. for x ∈ Ω.

We start with polar functions from convex analysis.

Definition 3.2.1 (Polar function). Let V a vector space, V ′ its dual. Consider a convex
function Φ := V → R ∪ {∞}. We call

dom Φ := {v ∈ V : Φ(v) <∞}

the domain of Φ. Then we can define the polar function

Φ∗ : V ′ → R ∪ {∞}, Φ∗(v∗) := sup
v∈dom Φ

⟨v∗, v⟩ − Φ(v).

If we compute the subdifferential for both Φ and Φ∗, we can show an important
property.

Theorem 3.2.2 ( [8, Corollary 5.2]). Let V a vector space and Φ: V → R convex, lower
semicontinuous and dom Φ ̸= ∅. Furthermore, let Φ∗ the polar function of Φ. Then we
have

x∗ ∈ ∂Φ(x) ⇔ x ∈ ∂Φ∗(x∗).

33



3. Variational Formulations of Small-Strain Plasticity

The proof of this is rather lengthy but it offers the reader a journey through the basics
of convex analysis.

We return to plasticity by connecting polar functions to the generalized elastic domain E.
Note that E is closed. We define the indicator function of E by

χE(Σ) :=
{︄

0 Σ ∈ E
∞ Σ /∈ E.

Note that χE is a convex function if and only if E is a convex set. The subdifferential
of χE is empty outside of E and {0} within χE. At the boundary point Σ ∈ ∂E we have

Q ∈ ∂χE(Σ) ⇔ χE(Σ̃) ≥ χE(Σ) + ⟨Q, Σ̃− Σ⟩

for all Σ̃ inside or outside of E. If Σ̃ is outside of E the right side is always true. If Σ̃ ∈ E
the equivalence above is equal to

0 ≥ ⟨Q, Σ̃− Σ⟩.

This is exactly the generalized flow rule (2.17)

Q ∈ NE(Σ)

with Q = Ṗ . Hence, we can conclude that a plastic flow fulfills

Ṗ ∈ ∂χE(Σ). (3.3)

We want to apply Theorem 3.2.2 to (3.3) and therefore define the polar function
of χE(Σ). For indicator functions this polar function is also called support function of E,
and in the context of plasticity, dissipation function.

Definition 3.2.3 (Dissipation function). For a given generalized elastic region E we
define the dissipation function

D : Sd
0 × Sd

0 × R≥0 → R ∪ {∞}, D(P ) := sup
Σ∈E

P ⋄ Σ.

Note that the definition of the dissipation function is simpler than for general polar
functions since the indicator function is zero within E. With the dissipation function at
hand, we use Theorem 3.2.2 and formulate the connection of dissipation function and
the yield function

Σ ∈ ∂D(Ṗ ) ⇔ Ṗ ∈ ∂Φ(Σ). (3.4)

We can give explicit formulas of the dissipation functional for both the von Mises and
the Tresca flow rule.

Theorem 3.2.4 (Explicit dissipation functions). Let Φ(Σ) := ϕ(σ + a)− g denote the
generalized yield function with the internal variables a, g, and let σ0 > 0. Moreover,
consider the generalized plastic strain P = (p, η) without α, since α is eliminated by
identifying with p (2.18).
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3.2. Support Functions and Dissipation

(i) If ϕ = ϕVM is the von Mises yield function (2.8), then

DVM(P ) = DVM(p, η) =
{︄

σ0 ∥p∥F ∥p∥F ≤ η

∞ otherwise,
(3.5)

where ∥·∥F denotes the Frobenius norm.

(ii) If ϕ = ϕTr is the Tresca yield function (2.9), then

DTr(P ) = DTr(p, η) =
{︄

σ0 ∥p∥2 ∥p∥2 ≤ η

∞ otherwise,
(3.6)

where ∥·∥2 denotes the spectral norm. Since p is symmetric, this norm is equivalent
to the absolute value of the largest eigenvalue.

Proof. Proofs can be found in [29], but we recall them here for a better understanding of
the generalized yield functions.

(i) The generalized elastic region is given by

EVM = {∥dev(σ + a)∥F − σ0 + g ≤ 0}.

Note that g ≤ 0, since we only consider growth of the elastic region. Moreover, from
(2.18) we have P ⋄ Σ = p : (σ + a) + ηg. Hence, the dissipation function is given by

D(P ) = D(p, η) = sup
g≤0

{︄
sup

σ+a∈Sd

{p : (σ + a) + ηg, ∥dev(σ + a)∥F − σ0 + g ≤ 0}
}︄

= sup
g≤0

{︄
sup

σ+a∈Sd

{p : dev(σ + a), ∥dev(σ + a)∥F ≤ σ0 − g}+ ηg

}︄
.

In the second line we use that p is trace-free. Since dev(σ + a) is only restricted by
the Frobenius norm, the scalar product with p is maximized if it is parallel to p.
The scalar product of parallel arguments is the product of the norms. Hence, the
inner supremum satisfies

sup
σ+a∈Sd

{p : dev(σ + a), ∥dev(σ + a)∥F ≤ σ0 − g} = (g − σ0) ∥p∥F .

This inserted into the outer supremum leads to

D(p, η) = sup
g≤0
{(σ0 − g) ∥p∥F + ηg} = sup

g≤0
{(∥p∥F − η)g + σ0 ∥p∥F } .

Then the supremum is given for either g = 0 or g → −∞, depending on the sign of
∥p∥F − η.

(ii) The proof for the Tresca yield criterion reuses some techniques from (i). Nevertheless,
some rather technical details need to be considered, and therefore we decided to
put this into Appendix A.1.
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3. Variational Formulations of Small-Strain Plasticity

Both norms ∥·∥F and ∥·∥2 are convex by the triangle inequality and the positive
1-homogeneity (∥γp∥ = γ ∥p∥ for γ ≥ 0). Nevertheless, computing derivatives of these
norms is different.

Lemma 3.2.5.

(i) The Frobenius norm ∥·∥F : Rd×d → R : A ↦→ ∥A∥F is smooth everywhere, except at
A = 0.

(ii) For A ̸= 0 we have

∇∥A∥F = A

∥A∥F
.

(iii) The subdifferential of the Frobenius norm at A = 0 is

∂ ∥0∥F = {B ∈ Rd×d : ∥B∥F ≤ 1}.

(iv) On the vector space of symmetric matrices, the spectral norm ∥S∥2 is differentiable
if and only if the dominant eigenvalue (the eigenvalue with the largest absolute
value) of S is unique. We call a dominant eigenvalue σ∗ unique, if it has algebraic
multiplicity one.

Proof. (i) and (ii) are trivially shown by using the definition of the Frobenius norm. (iii)
is a direct consequence of the positive 1-homogeneity of the Frobenius norm. (iv) follows
from the equivalent definition

∥S∥2 = max
i=1,...,d

|σi|

for the eigenvalues σi of S. It is easy to see that the maximum function

(σ1, . . . , σd) ↦→ max
i=1,...,d

|σi|

is smooth if and only if the maximum is uniquely determined by one of the σi. Moreover
let P(S, σ) = det(S − σI) the characteristic polynomial of S. Each eigenvalue fulfills
P(S, σi(S)) = 0. Since P is a polynomial in the arguments, we can derive by S and get

∇SP(S, σi(S)) +∇σP(S, σi(S))∇σi(S) = 0.

Therefore, since ∇σP(S, σi(S)) ∈ R,

∇σi(S) = −∇SP(S, σi(S))
∇σP(S, σi(S))

is defined if and only if ∇σP(S, σi(S)) ̸= 0. This is true if and only if the eigenvalue σi

has algebraic multiplicity one.
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3.3. Variational Formulation of Primal Plasticity

3.3. Variational Formulation of Primal Plasticity

Now we have everything together to state the primal formulation of plasticity in the
weak form. In contrast to the quick introduction of the dual formulation in Section 3.1,
a more detailed overview is given here. In contrast to the previous section, we consider
the global functions such as u and P over Ω and use boldface notation again.

First, we need to define suitable function spaces for the unknowns. We consider the
displacement u and the (generalized) plastic strain P = (p, η). All other appearing
quantities can be deduced from there for a given point in time t: The stress σ is given by
Hooke’s law (2.6) together with the additive split of the strain (2.5). The internal stress
variables a and g are given by the hardening relations (2.11) and (2.13), respectively.
Note that we identify p = a (2.18) in the plastic strain space. Hence, in summary,
the generalized stress Σ = (σ, a, g) is explicitly computable from the displacement and
generalized plastic strain. Moreover, the evolution of the plastic strain is now defined
thanks to the duality of the dissipation function and the yield function (3.4).

In the following we introduce the explicit spaces for the unknowns. The choice is made
such that we allow as much numerical flexibility as possible, but are still able to show
existence results.

The displacement u needs to be weakly differentiable, since want to define the
strain ϵ(u). Consider additionally Dirichlet boundary values on a subset Γ of the
boundary of Ω. In the terms of continuum mechanics Dirichlet conditions are usually
only applied to the displacement field u with the condition that u|Γ ≡ 0. Together with
the Dirichlet boundary an obvious choice for the function space of u is

V :=
(︂
H1

Γ(Ω)
)︂d

=
{︂

v ∈ H1(Ω,Rd) : v|Γ ≡ 0
}︂

. (3.7)

In contrast, the resulting stress σ only requires integrability for the upcoming scalar
products and we choose the simple L2 space

Q := L2(Ω,Sd) (3.8)

for the stress.
Similarly, the plastic strain p takes trace-free symmetric values, but has no regularity

assumptions. Therefore, it is taken from Q0, which is defined by Q restricted to trace-free
matrices. The scalar field η for isotropic hardening is taken from

M := L2(Ω).

Combined, the product space of the appearing unknowns w := (u, p, η) is

W := V ×Q0 ×M.

Note that W is a Hilbert space with a standard scalar product inherited from the factor
Hilbert spaces.
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3. Variational Formulations of Small-Strain Plasticity

Starting point of the weak formulation is the flow rule in Ṗ given in terms of the
subdifferential of the dissipation function (3.4)

Σ ∈ ∂D(Ṗ),

which is understood pointwise in Ω. Explicitly written, it is

D(P̃) ≥ D(Ṗ) + Σ ⋄
(︂
P̃− Ṗ

)︂
∀P̃ = (p̃, η̃) ∈ Q0 ×M

using the generalized scalar product ⋄ from (2.16). By the identification α̇ = ṗ
and Ṗ = (ṗ, η̇) we have

D(p̃, η̃) ≥ D(ṗ, η̇) + σ : (p̃− ṗ) + a : (p̃− ṗ) + g · (η̃ − η̇) ∀(p̃, η̃) ∈ Q0 ×M.

Now, we use the hardening laws a = −k1α = −k1p (2.11) and Hooke’s law (2.6)
σ = He = H(ϵ(u)− p) to eliminate the stress variables σ and a from the inequality and
arrive at

D(p̃, η̃) ≥ D(ṗ, η̇) + (H(ϵ(u)− p)− k1p) : (p̃− ṗ)
+ g(η) · (η̃ − η̇) ∀(p̃, η̃) ∈ Q0 ×M.

(3.9)

A second component of the primal formulation is the balance of momentum−div(σ) = b
(2.4) for the volumetric force vector field b from (2.3). Multiplication with a displacement
field ũ− u̇ ∈ V yields∫︂

Ω
b · (ũ− u̇) dx =

∫︂
Ω
−div(σ) · (ũ− u̇) dx. (3.10)

We want to perform an integration by parts to resolve the div-operator on the stress. Note
that the displacement field is a vector field u = (u1, . . . , ud)T , and that σ = (σ1| . . . |σd)T

is a matrix field with columns σi. The divergence is applied columnwise. Hence, we
obtain ∫︂

Ω
−div(σ) · u dx =

d∑︂
i=1

∫︂
Ω
−div(σi)ui dx

=
d∑︂

i=1

∫︂
Ω

σi · ∇ui dx−
d∑︂

i=1

∫︂
∂Ω

uiσi · n dS.

(3.11)

A first observation from the above is that for a symmetric σ the scalar product with ∇u
only depends on the symmetric part of ∇u. This is the small strain tensor ϵ(u):

d∑︂
i=1

σi · ∇ui dx = 1
2σ :

(︂
∇u +∇uT

)︂
= σ : ϵ(u). (3.12)

Second, the Cauchy stress σ (see Proposition 2.2.1) is given such that σ · n = s for the
outer normal n. Hence the last term in (3.11) is the outer surface force field acting on
the displacement:

d∑︂
i=1

∫︂
∂Ω

uiσi · n dS =
∫︂

∂Ω
u · (σ · n) dS =

∫︂
∂Ω

u · s dS.
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3.3. Variational Formulation of Primal Plasticity

The remaining σ in (3.12) is eliminated by Hooke’s law σ = H(ϵ(u)− p). Now we can
rewrite (3.10) without stress components as∫︂

Ω
b · (ũ− u̇) dx =

∫︂
Ω

H(ϵ(u)− p) · (ϵ(ũ)− ϵ(u̇)) dx−
∫︂

∂Ω
(ũ− u̇) · s dS. (3.13)

If we add the equation (3.13) to an integrated version of the inequality (3.9), then we
obtain an inequality with w(t) := (u(t), p(t), η(t)) ∈W in the form

a(w(t), w̃− ẇ(t)) + j(w̃)− j(ẇ(t)) ≥ ⟨l(t), w̃− ẇ(t)⟩ ∀w̃ ∈W. (3.14)

Here, the function a represents the stored energy of the elastic parts (ϵ(u)− p) and the
plastic hardening and is given by

a : W ×W → R,

a(w, w̃) :=
∫︂

Ω
H(ϵ(u)− p) : (ϵ(ũ)− p̃) + k1p : p̃− g(η) · η̃ dx.

(3.15)

The functional is linear in the second component, and even bilinear if g(η) is linear in η.
The nonsmooth dissipation components are given by the functional

j : W → R,

j(w) :=
∫︂

Ω
D(p, η) dx,

(3.16)

which only depends on the plastic components. The missing component is the load
functional that stores both the volumetric forces b and the surface forces s as a linear
functional. This functional acts on the displacement

⟨l(t), ·⟩ : W → R,

⟨l(t), w⟩ :=
∫︂

Ω
b(t) · u, dx +

∫︂
∂Ω

u · s(t) dS

which is of course time-dependent, since this functional controls the deformation process
of our material.
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4. Discretization
Now the primal formulation of small-strain plasticity is complete. The next step is
to discretize the function spaces and the time interval in order to make the problem
accessible for computers. We start with the time discretization since it enables us to
reformulate the inequality as minimization problems.

4.1. Time Discretization
In inequality (3.14), all unknown functions w = (u, p, η) are space- and time-dependent.
Moreover, both the evolution ẇ and the value w appear in the inequality. We replace
this time derivative with a simple backwards difference scheme. Therefore, we divide the
time interval [0, T ] into equal pieces of length ∆t. We set tn := n∆t for the n-th time
step. Let wn ≈ w(tn) denote the time-discrete approximation of the solution at time tn.
Now we simply replace the evolution of w by

ẇ(tn) ≈ wn −wn−1
∆t

=: ∆wn

∆t
.

With these changes the inequality (3.14) becomes

a

(︃
wn, w̃− ∆wn

∆t

)︃
+ j(w̃)− j

(︃∆wn

∆t

)︃
≥
⟨︃

l(t), w̃− ∆wn

∆t

⟩︃
∀w̃ ∈W. (4.1)

Note that j(·), induced by a canonical matrix norm, is 1-homogeneous, and hence

j(∆wn
∆t ) = j(∆wn)

∆t .

Furthermore, a(·, ·) is linear in the second argument, and therefore (4.1) is equal to

a(wn, ∆tw̃−∆wn) + j(∆tw̃)− j(∆wn) ≥ ⟨l(t), ∆tw̃−∆wn⟩ ∀w̃ ∈W. (4.2)

Since W is a vector space, we can neglect the factor ∆t without changing the inequality.
We arrive at

a (wn, w̃−∆wn) + j(w̃)− j (∆wn) ≥ ⟨l(t), w̃−∆wn⟩ ∀w̃ ∈W. (4.3)

Our next step is to transform this inequality into an equivalent minimization problem.
To this end, we apply [8, Chapter II, Proposition 2.2] which states the following.

Theorem 4.1.1. Let V a vector space and F : V → R divided into F = F1 + F2, such
that both F1 and F2 are lower semi-continuous and convex. Moreover, we assume that F1
is Gâteaux-differentiable with differential F ′

1. Then for v ∈ V the two statements are
equivalent:
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4. Discretization

(i) v is a minimizer of F ,

(ii) ⟨F ′
1(v), ṽ − v⟩+ F2(ṽ)− F2(v) ≥ 0 ∀ṽ ∈ V .

Since both a(wn, ·) and ⟨l(t), ·⟩ are linear, they will form the linear functional (ii) in the
theorem above with v = ∆wn. To achieve this, we have to enforce the direct dependence
of a(wn, ·) on ∆wn. This is done by shifting a(·, ·) in the second component. Since wn−1
is assumed to be known at time tn, we define

an(w, w̃) := a(w + wn−1, w̃). (4.4)

If we use wn = wn−1 + ∆wn we can rewrite (4.3) as

an (∆wn, w̃−∆wn) + j(w̃)− j (∆wn) ≥ ⟨l(t), w̃−∆wn⟩ ∀w̃ ∈W. (4.5)

Next, we want to define the objective functional from (i) in Theorem 4.1.1 and then we
will compute its differential. Let us introduce a bilinear form z : W ×W → R given by

z(w, w̃) :=
∫︂

Ω
H(ϵ(u)− p) : (ϵ(ũ)− p̃) + k1p : p̃ dx. (4.6)

Note that z(·, ·) and a(·, ·) from (3.15) coincide if we do not consider isotropic hardening
and hence, no terms of g and η. For a fixed time step tn let Ln : W → R given by

Ln(∆wn) := 1
2z(∆wn, ∆wn)−

∫︂
Ω

Gn(∆ηn) dx + j(∆wn)− ⟨ln, ∆wn⟩+ z(wn−1, ∆wn)

with the isotropic hardening integral

Gn(η) =
∫︂ η+ηn−1

0
g(s) ds, (4.7)

which is to be understood pointwise in Ω. The differential with respect to the function η
is given by

DGn(η) = g(η + ηn−1).

For Theorem 4.1.1, the objective function is given by F = Ln with the splitting F2 = j
and F1 = Ln− j. The variables in our case are v = ∆wn and ṽ = w̃. In order to compute
the Gâteaux-derivative, we briefly recall its definition.

Definition 4.1.2. Let V a vector space, V ′ is dual, and F : V → R. We call F ′(u; v)
the directional derivative of F at u ∈ V in the direction v ∈ V if

F ′(u; v) = lim
h→0+

F (u + hv)− F (u)
h

,

provided the limit exists. Let u ∈ V . If there is a u′ ∈ V ′ with

⟨u′, v⟩ = F ′(u; v) ∀v ∈ V

then we call u′ the Gâteaux-differential of F at u and ⟨F ′(u), ·⟩ := ⟨u′, ·⟩ the Gâteaux-
derivative.
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4.1. Time Discretization

Let us compute the directional derivative of F1 = Ln − j at ∆wn in an arbitrary
direction w̃. We make use of the (bi-)linearity of the components and get

lim
h→0+

F1(∆wn + hw̃)− F1(∆wn)
h

= z(∆wn, w̃)−
∫︂

Ω
g(ηn−1 + ∆ηn)η̃ dx− ⟨ln, w̃⟩+ z(wn−1, w̃)

= an(∆wn, w̃)− ⟨ln, w̃⟩.

Note that the integral over the g term is included in the definition of the bilinear
form a(·, ·) (3.15), and the shift by ηn−1 is incorporated by an(·, ·) (4.4). Hence, it follows
that

⟨F ′
1(∆wn), w̃⟩ = an(∆wn, w̃)− ⟨ln, w̃⟩.

Plugging this into (4.5) is precisely (ii) in Theorem 4.1.1 with F2 = j. Hence, have the
equivalent formulation of the small-strain primal plasticity problem with discretized time
at tn given by

Minimize Ln(∆wn) (4.8)

among all ∆w ∈ W . The next wn is given by applying the increment to the previous
time step

wn := wn−1 + ∆wn.

Lemma 4.1.3. If we have both linear kinematic hardening with k1 > 0 and isotropic
hardening g with the assumptions from Section 2.6.2, then the functional Ln is strictly
convex and coercive.

Proof. Since g(0) = 0 (2.14), g ≤ 0 and strongly monotone decreasing (pointwise), we
can conclude that −G (4.7) is strictly convex and coercive. The nonsmooth component j
inherits convexity and coercivity directly from the matrix norm. The linear terms of Ln

have no impact on the claim. Hence, the last term of interest is 1
2z(w, w) from (4.6).

This is indeed V -elliptic [16, Lemma II.7.2], i.e., there is an α > 0 with

z(w, w) ≥ α ∥w∥2V .

Since z is symmetric and bilinear, it follows that it is also strictly convex and coercive.

Remark 4.1.4. In the case of no isotropic hardening, we eliminate g and η from our
equations and have a smaller functional space W = V ×Q0 (see [30]). The lemma above
still holds ins this setting.

From the Lemma 4.1.3, we can directly conclude the theorem below.

Theorem 4.1.5. The minimization problem (4.8) has a unique solution.
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4. Discretization

4.2. Eliminating Internal Variables

We state the time discrete primal problem of small-strain plasticity in the form of a
minimization problem in the increment of the unknowns ∆wn = (∆un, ∆pn, ∆ηn) at
time tn. From Section 3.2, we know that ∥∆pn∥ ≤ ∆ηn for the minimizer of Ln (with ∥·∥
either the Frobenius or the spectral norm). As it turns out, the connection is even
stronger in the time-discrete setting.

Theorem 4.2.1. Let ∆w = (∆u, ∆p, ∆η) minimize Ln. Then

∥∆p∥ = ∆η

holds almost everywhere.

Proof. The proof follows the argumentation of [2, Example 5]. If ∆w is the minimizer
of Ln, then ∆η is the minimizer for fixed (∆u, ∆p). The contribution of ∆η in Ln is
only given by the term

∫︁
Ω−Gn(∆η) dx with the constraint ∆η ≥ ∥∆p∥. Since −Gn is

monotone increasing for ∆η ≥ 0, the minimizer obtains the smallest admissible value
if ∆η = ∥∆p∥ almost everywhere.

Theorem 4.2.1 allows us to replace

(un, pn, ηn) := (un−1, pn−1, ηn−1) + arg min Ln(∆u, ∆p, ∆η)

by the reduced step

(un, pn) := (un−1, pn−1) + arg min L̃n(∆u, ∆p)
ηn := ηn−1 + ∥∆pn∥

(4.9)

for the reduced functional

L̃n(∆u, ∆p) := Ln(∆u, ∆p, ∥∆p∥).

Tracking the iterates ηn cannot be discarded, since ηn appears in the next increment
functional Ln+1, see (4.7). Eliminating η does not lead to a minimization problem that
is more difficult than the original one.

Lemma 4.2.2. Let Ln be strictly convex and coercive. Then L̃n is also strictly convex
and coercive.

Proof. Since −Gn is strictly convex and monotone increasing for positive values and the
spectral norm is also convex, the composition −Gn(∥·∥) is convex [1, Proposition 8.21].
The strict convexity of L̃n is preserved since the z(·, ·) term (4.6) in Ln is strictly convex
(see the proof of Lemma 4.1.3) and independent of ∆η. The coercivity follows directly
from the coercivity of Ln.
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4.3. Space Discretization

4.3. Space Discretization
We are interested in computing one increment step

wn := wn−1 + ∆wn

for a fixed point in time tn. The isotropic variable ∆ηn is eliminated. For sake of
simplicity we abuse the notation from before and write from now on

w := (∆un, ∆pn) ∈W := V ×Q0

for the unknown of our minimization problem.
A standard finite element discretization is used. Therefore, let T be a triangulation of

the initial domain Ω.

Displacement The function space of displacements un

V =
(︁
H1

Γ(Ω)
)︁d

is approximated by first-order Lagrangian elements with values in Rd. A basis of the
displacement space is given by the nodal basis {ϕi(x)}i=1,...,Nu on Nu grid nodes with
the Lagrangian property

ϕi(xk) = δik

for the grid nodes xk ∈ T . Using this basis, the discrete approximation of the deformation
field is

uh(x) :=
Nu∑︂
i=1

d∑︂
j=1

uijϕi(x) ej (4.10)

with canonical unit vectors ej ∈ Rd. It is characterized by the real-valued coeffi-
cients uij ∈ R.

Plastic Strain The plastic strain p is a function from

Q0 = L2(Ω, Sd
0).

The plastic strain p is approximated by zero-order (element-wise constant) elements with
values in Sd

0, since no derivatives of p are to be computed. Let Np be the number of
grid elements and let {θi}

Np

i=1 denote the set of scalar zero-order basis functions with the
property

θi|Tk
≡ δik

for the grid elements Tk of T .
For the plastic strain component a basis of the vector space Sd

0 of trace-free symmetric
matrices needs to be chosen. Different choices are possible but we stick to the choice
done in [30] since it offers some numerical advantages as seen later.
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4. Discretization

Remark 4.3.1. The dimension of Sd
0 is given by

dp := d2 + d

2 − 1.

For d = 2 the space S2
0 is only two-dimensional. An obvious basis choice is an

orthonormal basis (with respect to the Frobenius inner product)

B1 := 1√
2

(︄
1 0
0 −1

)︄
and B2 := 1√

2

(︄
0 1
1 0

)︄
.

One can easily verify the orthonormality of this basis. For d = 3 the space S3
0 is by the

lemma above 5-dimensional. Hence we need five basis matrices, for example

B1 := 1√
2

⎛⎜⎝1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , B2 := 1√
6

⎛⎜⎝1 0 0
0 1 0
0 0 −2

⎞⎟⎠ ,

B3 := 1√
2

⎛⎜⎝0 1 0
1 0 0
0 0 0

⎞⎟⎠ , B4 := 1√
2

⎛⎜⎝0 0 1
0 0 0
1 0 0

⎞⎟⎠ , B5 := 1√
2

⎛⎜⎝0 0 0
0 0 1
0 1 0

⎞⎟⎠ .

This also forms an orthonormal basis of S3
0 under the Frobenius inner product. Therefore,

for both d = 2 and d = 3, it also defines an isometry between Rdp equipped with the
Euclidean norm ∥·∥2 and Sd

0 with the Frobenius norm.
Lemma 4.3.2. Let {B1, . . . , Bdp} an orthonormal basis of Sd

0 with respect to the Frobenius
inner product. Then, for each a ∈ Rdp, we have⃦⃦⃦⃦

⃦
dp∑︂

j=1
ajBj

⃦⃦⃦⃦
⃦

F

= ∥a∥2 . (4.11)

Proof. This follows directly form the orthonormality of the basis:⃦⃦⃦⃦
⃦

dp∑︂
j=1

ajBj

⃦⃦⃦⃦
⃦

2

F

=
⟨︄ dp∑︂

i=1
aiBi,

dp∑︂
j=1

ajBj

⟩︄
=

dp∑︂
i=1

dp∑︂
j=1

aiajδij =
dp∑︂

j=1
a2

j = ∥a∥22 .

Remark 4.3.3. We have no equivalent expression of
⃦⃦⃦∑︁dp

j=1 ajBj

⃦⃦⃦
2

in terms of a norm
of a.

The global discrete plastic strain function is given by

ph(x) :=
Np∑︂
i=1

dp∑︂
j=1

pijθi(x) Bj .

It is characterized by scalar coefficients pij ∈ R.
Although the isotropic hardening variable is η is eliminated from the minimization

problem, we still need to track finite element approximations for the update step (4.9).
For compatibility with the discrete plastic strain, we use zero-order elements with values
in R.
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4.3. Space Discretization

Assembly of the Algebraic Problem For a better handling we view the coefficients uij

and pij not as matrices in RNu×d, or RNp×dp , respectively, but rather as a (block) vector

u ∈ RNud, p ∈ RNpdp

where we address by ui the i-th block of size d, and by pi the i-th block of size dp. Then
we can represent the plastic strain on the element Ti by

B(pi) :=
dp∑︂

j=1
pijBj .

Sometimes we refer to the coefficient vector which is the composition of both u and p as

w ∈ RNud+Npdp , w :=
(︄

u
p

)︄
.

We assemble the algebraic representation (in terms of the coefficient vector w) of the
reduced increment functional L̃n. We abuse the notation and also denote the algebraic
form of the objective functional by L̃n. The quadratic part of L̃n, namely the bilinear
form z (4.6) is assembled into a matrix A ∈ R(Nud+Npdp)×(Nud+Npdp) with a 2× 2 block
structure

A =
(︄

E C
CT P

)︄
. (4.12)

The Nud×Nud displacement part, partitioned into d× d blocks is given by

(Eij)kl :=
∫︂

Ω
H(ϵ(ϕiek) : (ϵ(ϕjel) dx,

where i, j = 1, . . . , Nu select the nodal basis functions and k, l = 1, . . . , d the space
directions. For the Hooke tensor H we only consider an isotropic material (2.6). Therefore
we have

He : ẽ = λ tr(e) tr(ẽ) + 2µe : ẽ. (4.13)
The plastic strain part of size Npdp ×Npdp, divided into dp × dp blocks is block-diagonal,
since the zero-order basis functions have disjoint support. The stiffness matrix on the
element Ti is given by

(Pii)kl :=
∫︂

Ω
H(θiBk) : (θiBl) + k1θ2

i Bk : Bl dx.

Moreover, all matrices Bi are trace-free, and hence we have with (4.13)

(Pii)kl =
∫︂

Ω
(2µ + k1)θ2

i Bk : Bl⏞ ⏟⏟ ⏞
=δkl

dx. (4.14)

Hence, P is diagonal, since the basis {Bk} is orthonormal. The mixed displacement–plastic
strain coupling matrix C of size Nud×Npdp is defined by

(Cij)kl :=
∫︂

Ω
H(ϵ(ϕiek) : (θiBl) dx.
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4. Discretization

The two linear components of L̃n are assembled into a vector

b ∈ RNud+Npdp , b =:
(︄

bu

bp

)︄
. (4.15)

The dissipation function j(·) and the isotropic hardening term Gn of L̃n depend on p
only. We can simply rewrite the integral over Ω by a sum of the integrals over the grid
elements Ti, since we have a zero-order basis. The resulting algebraic functional is

L̃n(w) = 1
2wT Aw − bT w +

Np∑︂
i=1

∫︂
Ti

−Gn(∥B(pi)∥) + σ0 ∥B(pi)∥ dx.

Since pi is constant on Ti, we can replace the integral by a factor ωi, which is the volume
of Ti, i.e.,

ωi :=
∫︂

Ω
θi dx =

∫︂
Ti

dx. (4.16)

The final form of the algebraic minimization functional is

L(w) = 1
2wT Aw − bT w +

Np∑︂
i=1

ωiφ(pi) (4.17)

with
φ : Rdp → R, φ(p) := −Gn(∥B(p)∥) + σ0 ∥B(p)∥ . (4.18)

Remarks 4.3.4.

(i) From (4.7) and (2.13), the explicit form of −Gn(η) is

−Gn(η) = (k∞ − σ0)
(︃

η + ηn−1 + 1
β

e−β(η+ηn−1)
)︃

+ 1
2k2(η + ηn−1)2.

(ii) From convexity and coercivity of both −Gn and the matrix norm, we conclude that
φ is convex, coercive and lower semi-continuous.

(iii) However, due to the norm we also conclude that φ is not differentiable.

4.4. Excursus: Primal Plasticity with Gradient Regularization
The presented model of small-strain primal plasticity does not contain any gradient
terms of the plastic strain. However, in certain applications this may be an important
ingredient. For instance, plasticity problems at finite strains, as given in the second part
of this thesis, require gradient regularization for the existence theory.

To demonstrate the implementation of gradient regularization on the easier problem of
small-strain plasticity, a small overview is given in this section.
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4.4. Excursus: Primal Plasticity with Gradient Regularization

Formally, a gradient-regularized model has gradient terms of the internal variables in
the global form a(·, ·) from (3.15). In [16, Sec. 7.3.2] the Gurtin model that contains
a gradient of the plastic strain field p is given. If we consider a quadratic case with
kinematic hardening only, the bilinear form in becomes

ã(w, w̃) :=
∫︂

Ω
H(ϵ(u)− p) : (ϵ(ũ)− p) + (Rp) : p̃ + S(∇p)

...∇p̃ dx.

In that form R and S are forth-order or sixth-order tensors, respectively, and

A
... B :=

d∑︂
i,j,k=1

AijkBijk

is the contraction over three indices. The simplest model is given by R ≡ k1 id, and S ≡
k2 id. In that case ã is a symmetric bilinear form. The gradient-regularized model is set
in the function space

W := V × Q̃0.

We reuse the H1-space V (3.7) for the displacement field u, and the extend the L2-
space Q0 (3.8) to an H1-space

Q̃0 := {p ∈ H1(Ω,Sd
0), p = 0 on Γ},

where Γ is a nonempty part of ∂Ω. After a time discretization, as in Section 4.1, we
arrive at a minimization problem

Minimize L(∆wn) := 1
2 ã(∆wn, ∆wn) + j(∆wn) + linear terms

with the nonsmooth dissipation functional j from (3.16) that only depends on ∆pn. The
finite element discretization of ∆wn from Section 4.3 is not suitable here, since we need
at least continuous finite elements to approximate the plastic strain field ∆pn. Therefore,
we use Lagrange elements for both the displacement field and the plastic strain. As a
result, we arrive at an algebraic form similar to (4.17). The quadratic and linear parts
are assembled into a matrix Ã and a vector b̃, such that

L(w) := 1
2wT Ãw − b̃

T
w +

∫︂
Ω

D

⎛⎝Nu∑︂
i=1

dp∑︂
j=1

pijϕ(x)Bj

⎞⎠ dx.

We use the first-order finite element basis ϕi and the number of nodal points Nu from
the displacement (4.10). Since the finite element functions are not piecewise constant we
cannot simply write the dissipation term as a sum, in contrast to (4.17). Therefore, we
approximate L by a lumped sum

L̃(w) := 1
2wT Ãw − b̃

T
w +

∫︂
Ω

Nu∑︂
i=1

ϕ(x) dx ·D

⎛⎝ dp∑︂
j=1

pijBj

⎞⎠ .
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4. Discretization

Since the finite elements of the plastic strain are of first-order, they have no disjoint
support. This leads to a sparse, but non-diagonal part P̃ in the 2× 2 block structure

Ã =
(︄

Ẽ C̃

C̃ P̃

)︄
,

cf (4.12) and (4.14).
Later in the numerical treatment of small-strain plasticity problems without gradient

regularization, the diagonal structure of P will be advantageous, as seen in Section 5.3,
especially (5.8). Nevertheless, we can adopt the numerical scheme to the sparse P̃ .
The detailed treatment of this case is presented in the second part of this thesis in
Section 10.6.2.
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5. Minimization Algorithms for Small-Strain
Primal Plasticity

The algebraic minimization problem (4.8) is nonsmooth. Hence, special solvers are needed
to find the minimizer numerically. In this section, two candidates are presented.

5.1. Predictor–Corrector Methods
In engineering, the classical approach to solve a minimization problem of the kind (4.17) is
to consider the two main components u and p of the solution separately and minimize the
objective functional alternating between these components [16, 31]. Minimization with
respect to the displacement field is usually called a predictor step, while minimization
with respect to the plastic strain is called the corrector. For better performance, the
predictor step can have additional information of the plastic strain included. Therefore,
we consider different predictor strategies.

In the most simple case the predictor step is the so-called elastic predictor and
minimizes the objective functional only with respect to the displacements. All plastic
strain components are fixed in this stage. Since all nonlinear and nonsmooth terms depend
only on plastic strains, the resulting functional is quadratic. This can be minimized by
solving a linear system.

The result of the elastic predictor needs most likely a correction of the plastic strain,
since a purely elastic result was computed. This correction is called the corrector step.
In this step we minimize the objective functional with respect to the plastic strain. In
the corrector step the displacement is fixed. Sure, from occurring nonlinearities and non-
differentiabilities, this part is more involved, but we can make use of the special structure
of the problem (4.17). Since the coupling matrix P from (4.12) is block-diagonal, and the
dissipation is given by a sum of the block-coefficients pi, the blocks of p are independent
of each other. Hence, minimization of the plastic strain can be done independently for
each of the blocks.

For each block component pi the minimization problem is of the form

L̃(pi) := 1
2pT

i Piipi − rT
i pi + φi(pi)

for a linear part ri resulting form the restriction to the plastic strain component. How the
minimization of this nonsmooth problem is done efficiently is given in detail in Section 5.3.

The beauty of these predictor–corrector methods is their simplicity. In both steps,
the minimization problems are easy to implement and analyze. Nevertheless, up to the
knowledge of the author, no global convergence results of this alternating componentwise
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5. Minimization Algorithms for Small-Strain Primal Plasticity

minimization strategy exists. Moreover, by decoupling u and p in the predictor and
corrector steps, the method turns out to be not as efficient as other methods that
consider w = (u, p) as a whole.

In order to improve this simple predictor–corrector scheme, various modifications,
especially for the elastic predictor step, are found in literature. The more sophisticated
predictor–corrector approach from [16, Section 12.2] uses a tangent predictor. This means
that we enrich the elastic predictor from before with second order information of the
plastic strain. To this end, at iteration step k, we identify the blocks pk

i in which the
dissipation functional φ(pk

i ) is smooth, and replace φ = φ(pk
i + δp) by

φ̄k
i (δp) :=

{︄
φ(pk

i ) +∇φ(pk
i )T δp + 1

2δpT∇2φ(pk
i )δp if φ is smooth at pi,

0 else.

For the quadratic part of L(w) from (4.17) we also formulate the second Taylor expansion
in wk. The new quadratic increment objective functional is

L̄
k(δw) := 1

2δwT Aδw − (b−Awk)T δw +
Np∑︂
i=1

ωiφ̄
k
i (δpi).

Minimizing L̄
k(δw) is equal to computing a Newton-like step on L. Hence the name

tangent predictor. The correction step, which corrects all plastic blocks (including the
nonsmooth blocks) is the same as before.

Convergence in the functional value can be shown [16] if the tangent predictor does
not create an energy increase. This can be guaranteed by applying a line search to the
predictor. To this end, after each predictor step with L̄

k, let δwk denote the unique
minimizer of the tangent predictor step. Instead of simply updating wk ← wk + δwk, we
compute a γk > 0, such that

L(wk + γkδwk) ≤ L(wk)

and update wk ← wk + γkδwk instead. This modified step is called consistent tangent
predictor. Still this algorithm has two downsides:

• No global convergence proof in the argument w is found in literature.

• The quadratic predictor functionals L̄
k need to be solved exactly.

Therefore, to overcome these problems, the TNNMG algorithm is presented in the next
section.

5.2. The TNNMG Algorithm
The Truncated Nonsmooth Newton Multigrid Method (TNNMG) is a generic method
for solving block-separable, convex minimization problems. It was introduced in [11] and
works well for small-strain plasticity problems with smooth elastic regions [30]. In this

52



5.2. The TNNMG Algorithm

thesis the case of nonsmooth elastic regions, induced by the Tresca yield function (2.9),
is also covered. TNNMG extracts second order information from the objective functional
and tries to perform a Newton-like iteration step

w ← w + L′′(w)−1L′(w)

on the whole space of unknowns in order to approach the minimizer. Since L is not
differentiable, we cannot compute gradients and hessians. Therefore, we need a modified
Newton step.

Newton methods are generally good if we are already close to the minimizer, but
we have poor performance (or even no convergence) if we are far from the minimizer.
TNNMG is able to overcome this problem and we can even provide a global convergence
result, as seen later. In order to apply TNNMG to our minimization problem (4.8), we
start by quickly describing the general procedure.

TNNMG assumes a block-separable structure of the problem. For this we need two
properties of the problem. First, the solution space is partitioned into orthogonal
subspaces

RN =
m∏︂

i=1
RNi , (5.1)

where, Ni ≥ 0 and
∑︁m

i=1 Ni = N . In order to address the i-th subspace we use the
canonical restriction operator

Ri : RN → RNi .

We call Wi the subspace of RN that corresponds to the i-th block RNi . This simply
means that all elements of Wi have zeroes at entries not belonging to the i-th block. The
second property we demand is that the objective functional is separated in the nonsmooth
parts according to the partition above. This means that our problem takes the form

L(w) = J0(w) +
m∑︂

i=1
φi(Riw) (5.2)

with a “smooth” part J0 and (possibly) nonsmooth parts. In detail, we demand
that J0 : RN → R is twice differentiable. The separated parts φi : RNi → R ∪ {∞}
are supposed to be proper, convex and lower semi-continuous, but not necessarily differ-
entiable. All in all, the objective functional L has to be strictly convex and coercive to
ensure the existence and uniqueness of a solution.

5.2.1. TNNMG Stages
TNNMG is an iterative solver. Let ν be the iteration counter and wν ∈ RN the current
iterate. In order to get the next iterate wν+1, we perform a TNNMG step, that consists
of four major stages:

(1) Nonlinear presmoothing

(2) Inexact truncated linear correction

53



5. Minimization Algorithms for Small-Strain Primal Plasticity

(3) Projection

(4) Line search

(1) Nonlinear Presmoothing At this first stage we perform the following steps

1. Set w̃0 = wν

2. For i = 1, . . . , m do:
compute w̃i = arg min

w̃∈w̃i−1+Wi

L(w̃) (5.3)

3. Set wν+ 1
2 := w̃m

Line 2 iterates through all subspaces Wi, defined by the partition of the solution space
(5.1). The minimization problems of line 2 are low-dimensional. Since L is strictly convex
and coercive, each of these subproblems always has a unique solution.

In the convergence proof given later it turns out this first stage of TNNMG alone is
enough to achieve global convergence, and the other stages are used for acceleration.

(2) Inexact Truncated Linear Correction At this stage the Newton-like step is performed
on L. It can be described as follows.

1. Determine a subspace Wν ⊂ RN , such that L|Wν is twice differentiable at wν+ 1
2

2. Compute an inexact Newton correction cν ∈Wν

cν ≈ −
(︂
L′′(wν+ 1

2 )|Wν×Wν

)︂−1
L′(wν+ 1

2 )|Wν (5.4)

We will try to find a maximal subspace Wν in which the functional L is indeed twice
differentiable. Usually, we can easily determine which degrees of freedom of the solution
space are currently “stuck” at a non-differentiable position and simply exclude them from
the subspace Wν .

Inexactness of the Newton step is understood as follows: Solving the linear correction
problem (5.4) can be done directly with numerical exactness, or inexactly by using
iterative approximation schemes. In the latter case we will use a geometric multigrid step
to compute an approximation (5.4). Details about such a multigrid step are presented in
Appendix A.2.

(3) Projection The domain of L (the subset of RN where L <∞) may be a real subset
of RN . For instance, in the dissipation functions (3.6) and (3.5) we have the constraint
η ≤ ∥p∥ if we do not eliminate η from the system. The Newton correction added to the
current iterate wν+ 1

2 + cν may point outside the domain of L. Hence, we need to project
into the domain of L.
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5.2. The TNNMG Algorithm

1. Compute the projection cν
pr = P

dom L−wν+ 1
2
(cν), i.e., compute cν

pr such that wν+ 1
2 + cν

pr

is closest to wν+ 1
2 + cν in dom L in a given norm.

The norm used in the projection step is usually the Euclidean norm. Nevertheless, for
our reduced problem (4.17) with eliminated η, this stage can be skipped.

(4) Line Search Finally, we further compute a suitable step size of the projected Newton
correction cν

pr, such that we have no increase in the value of L.

1. Compute ρν ∈ [0,∞), such that L(wν+ 1
2 + ρνcν

pr) ≤ L(wν+ 1
2 )

2. Set wν+1 = wν+ 1
2 + ρνcν

pr

This can be computed quickly as it is just a one-dimensional optimization problem with
a strictly convex L.

5.2.2. Convergence of TNNMG

In summary, repeated application of all four stages of TNNMG leads to a sequence
(wν)ν∈N of iterates. We have a global convergence result for this method.

Theorem 5.2.1. Let L : RN → R ∪ {∞} be strictly convex, coercive, proper, lower
semi-continuous, and block-separably nonsmooth. Then the sequence wν produced by the
TNNMG algorithm will converge to the unique minimizer of L.

This is the convergence statement as it applies to the algorithm discussed in this
manuscript. The proof in [11] actually holds under weaker assumptions on L. It also
allows for the local minimization problems (5.3) to be solved inexactly under certain
conditions. This can save additional run-time when solving (5.3) exactly is expensive
(see, e.g., [10]), but will not be pursued here.

Remarks 5.2.2. The TNNMG algorithm is closely related to the consistent tangent
predictor–corrector (ctPC) approach from Section 5.1. The differences are :

• TNNMG loops over all degrees of freedom in the nonlinear smoothing stage.

• The linear correction stage is not necessarily solved exactly in TNNMG.

• ctPC cannot handle restricted domains of L.

Otherwise, the general procedure, including the line search in the end are basically the
same. The predictor step of ctPC corresponds to the last three stages of TNNMG while
the corrector step is closely related to the first TNNMG stage.
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5. Minimization Algorithms for Small-Strain Primal Plasticity

5.3. Application to Primal Small-Strain Plasticity Problems

Applying the TNNMG algorithm to a particular problem now means constructing a
decomposition (5.1) such that the objective functional takes the block-separable form
(5.2), and specializing the four steps for the particular functional. In this paper the
subspaces Wi are chosen as follows. Let Nu denote the number of grid vertices and Np

the number of grid elements. For the displacement coefficients we construct Nu blocks
of size d, i.e., Ni = d for i = 1, . . . , Nu. For the plastic strain we construct similarly Np

blocks of size dp, i.e., Ni = dp for i = Nu + 1, . . . , Nu + Np. Using this partition each
plastic strain coefficient block pi is in its own subspace Wi in terms of (5.1). Therefore,
the nonsmooth parts are separated in the objective function L from (4.17).

The first stage of a TNNMG iteration consists of solving minimization problems in local
displacement and plastic strain subspaces. While TNNMG convergence theory allows
for certain forms of inexact smoothers [11], we show here how the local minimization
problems for both von Mises and Tresca dissipation increment functionals can be solved
numerically exactly. For the occurring matrices in the following recall the definitions at
(4.12).

5.3.1. Minimizing in Displacement Subspaces

In case of minimization for a displacement tuple ui ∈ Rd, one has to minimize a quadratic
functional

Ldisp
i (ui) := 1

2uT
i Eiiui − rT

i ui + const, (5.5)

with constant terms depending on the plastic strain. The linear term ri ∈ Rd is

ri := bu
i −

∑︂
i ̸=j

Eijuj −
∑︂
i ̸=j

Cijpj ,

with bu
i from (4.15). The functional (5.5) has a unique minimizer u∗

i , because it the
restriction of a strictly convex and coercive functional. Hence, the matrix Eii is positive
definite and therefore invertible. Since Eii is symmetric, the minimizer u∗

i can be
computed by solving the linear system

Eiiu
∗
i = ri.

Since this is only a d × d system, we can it directly without drawbacks in runtime or
stability.

5.3.2. Minimizing in Plastic Strain Subspaces

Minimizing in a plastic strain subspaces is more difficult than in the displacement
subspaces. The main problem is in the nonsmooth dissipation and hardening functional

φi(pi) := −Gn(∥B(pi)∥) + σ0 ∥B(pi)∥
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5.3. Application to Primal Small-Strain Plasticity Problems

derived in (4.18). The restricted functional for the i-th plastic strain subspace is

Lplast
i (pi) := 1

2pT
i Piipi − rT

i pi + ωiφi(pi) + const, (5.6)

with constant terms depending on the displacement, and ωi :=
∫︁

Ω θi dx. Since P is
block-diagonal, the linear term ri here is just

ri := bp
i −

∑︂
i ̸=j

Cjiuj (5.7)

with bp
i taken from (4.15). Recall (4.13), i.e., that we have

pT
i Piipi = ωi(2µ + k1) ∥pi∥22 . (5.8)

The local functional Lplast
i is continuous, strictly convex and coercive, and thus a unique

minimizer p∗
i ∈ Rdp exists. For the further treatment of the local minimizers, we

distinguish between von Mises and the Tresca dissipation function.

Von Mises Dissipation

In this section we consider ∥·∥ = ∥·∥F . For better readability we use the isometry (4.11)
and identify

P ∗ := B(p∗
i ), R := B(ri) ∈ Sd

0.

Lemma 5.3.1. If we use von Mises dissipation, the minimizer of (5.6) is P ∗ = 0 if and
only if

∥ri∥2 = ∥R∥F ≤ σ0 − g(ηn−1).

Proof. We show that each direction S ∈ Sd is an ascending direction in P ∗. Recall that
DG(0) = g(ηn−1) from (4.7). Moreover, from the positive 1-homogeneity of the norm we
have

∇∥·∥F (0)[S] = ∥S∥F .

The directional derivative is then given by

∇Lplast
i (0)[S] = −R : S+(σ0−g(ηn−1)) ∥S∥F ≥ −∥R∥F ∥S∥F +(σ0−g(ηn−1)) ∥S∥F ≥ 0.

If ∥R∥F > σ0 − g(ηn−1), we have ∇∥·∥F (0)[R] < 0 and hence, P ∗ ̸= 0.

From Lemma 5.3.1, we can determine a priori whether the minimizer is zero or not.
Hence, let us characterize the minimizer for the case that it is not zero.

Lemma 5.3.2. If ∥R∥F > σ0 − g(ηn−1), the functional Lplast
i is smooth around the

minimizer P ∗ ̸= 0. Then, the minimizer satisfies

0 = 1
ωi
∇Lplast

i (P ∗) = (2µ + k1)P ∗ −R +
[︂
σ0 − g

(︁
∥P ∗∥F + ηn−1

)︁]︂ P ∗

∥P ∗∥F

=
(︄

2µ + k1 +
σ0 − g

(︁
∥P ∗∥F + ηn−1

)︁
∥P ∗∥F

)︄
P ∗ −R.
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Since in the lemma above the term in parenthesis is positive, we can conclude
that P ∗ = γR for a positive γ. To determine γ, we have to solve the nonlinear equation

(2µ + k1)γ +
σ0 − g

(︁
γ ∥R∥F + ηn−1

)︁
∥R∥F

= 1. (5.9)

We note that the left hand side is strictly monotone increasing in γ. Moreover, for γ = 0,
the left hand side is smaller than one, since ∥R∥F > σ0 − g(ηn−1). On the other hand,
for γ → ∞, the left and side goes also to infinity. We can conclude that there is a
unique γ since the left hand side is continuous in γ.

The reduction to a one dimensional problem can be interpreted as a closest point
projection onto the elastic region, as described in, e.g., [31]. Since in the von Mises case
this region is point-symmetric, the projection direction is given directly by the direction
to the center of the elastic region. In the case of linear isotropic hardening (g(η) = −k2η),
we can determine γ directly by

(2µ + k1 + k2) ∥R∥F γ = ∥R∥F − k2ηn−1 ⇒ γ = ∥R∥F − k2ηn−1
(2µ + k1 + k2) ∥R∥F

.

This also covers the case of no isotropic hardening (k2 = 0) and no kinematic harden-
ing (k1 = 0).

The general nonlinear case (5.9) is solved by a damped Newton method.

Tresca Dissipation

The case of Tresca dissipation is more involved, since the dissipation function includes the
spectral norm. We consider the relevant space dimensions d = 2 and d = 3 separately.

For the case d = 2, note that for any p ∈ S2
0 with eigenvalues λ1(p), λ2(p) = −λ1(p) we

have

∥p∥2 = max
{︁
|λ1(p)|, |λ2(p)|

}︁
= |λ1(p)| = 1√

2

√︂
λ1(p)2 + λ2(p)2 = 1√

2
∥p∥F , (5.10)

and therefore the Tresca dissipation functional is proportional to the von Mises dissipation.
Hence, it is already covered in the previous section. For the case d = 3 the five-dimensional
problem can be reduced to two dimensions, because the eigenvectors of B(p∗

i ) can be
computed from ri alone. This has been inspired from a similar result in [28].

Lemma 5.3.3. Assume that the material is isotropic (2.7). Let ri ∈ R5 be the linear
factor of (5.7) and R := B(ri) ∈ S3

0 the corresponding trace-free symmetric matrix. Then
the matrix representation of the minimizer B∗ := B(p∗

i ) has the same eigenvectors as R.

Proof. Using that B : Rdp → Sd
0 is an isometry, we can express Lplast

i in terms of matrices

L̂
plast
i : S3

0 → R ∪ {∞}, L̂
plast
i (P ) := ωi

2 HP : P −R : P + ωiφ̂i(P ) + const, (5.11)
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5.3. Application to Primal Small-Strain Plasticity Problems

where φ̂i(P ) := φi(B−1(P )). If the Hooke tensor H describes an isotropic material the
functional L̂

plast
i takes the form

L̂
plast
i (P ) = (2µ + k1)ωi

2 P : P −R : P + ωiφ̂i(P ) + const, (5.12)

and its subdifferential is

∂L̂
plast
i (P ) = (2µ + k1)ωiP −R + ωi∂φ̂i (P ) . (5.13)

Since φ̂i only depends on the spectral norm, we can express it by a lower semi-continuous,
convex scalar function

φ̄i : R→ R, φ̄i(ν) := −Gn(ν) + σ0ν, (5.14)

such that
φ̂i(P ) = φ̄i(∥P∥2).

Then we can express the subdifferential by

∂φ̂i(P ) =
{︁
α ∂ ∥·∥2 (P ) : α ∈ ∂φ̄(·)(∥P∥2)

}︁
.

See, e.g., [1] for a proof. Hence, each element of the subdifferential of φ̂ is a scalar
multiple of an element of the subdifferential of the spectral norm. Let λ : S3 → R3,
λ(A) := (λ1(A), λ2(A), λ3(A))T be the eigenvalue mapping. Then (∥·∥∞ ◦ λ)(A) = ∥A∥2
holds. We can apply [1, Proposition 24.63] since ∥·∥∞ is symmetric, i.e., independent of
the order of the arguments, and convex. We get

∂ ∥·∥2 (P ) =
{︂

V diag(y)V T : y ∈ ∂ ∥λ(P )∥∞ , V ∈ SO(3) : P = V diag(λ(P ))V T
}︂

.

If P is the minimizer of (5.12) we have 0 ∈ ∂L̂
plast
i (P ). Then, (5.13) yields

R ∈ (2µ + k1)ωiP + ωi∂φ̂i (P ) .

Hence R has the same principal axes as P .

With the eigenvectors of the minimizer P ∗ known, we can reformulate the minimization
problem (5.11) in the three-dimensional space of eigenvalues λ1(P ), λ2(P ), λ3(P ). As P ∗

is trace-free we can further eliminate λ3(P ) by setting λ3(P ) = −λ1(P ) − λ2(P ). To
write the functional L̂ in terms of two eigenvalues of P we compute

∥B(p)∥2 = max{|λ1|, |λ2|, |λ3|} = max{|λ1|, |λ2|, |λ1 + λ2|}

and
∥B(p)∥F =

√︂
λ2

1 + λ2
2 + λ2

3 =
√︂

2λ2
1 + 2λ2

2 + 2λ1λ2.

Let νi denote the eigenvalues of R and λi the eigenvalues of P . As P and R have the
same principal axes the scalar product reduces to

P : R = tr(P T R) = (ν1 − ν2)⏞ ⏟⏟ ⏞
=:ν̃1

λ1 + (ν2 − ν3)⏞ ⏟⏟ ⏞
=:ν̃2

λ2.
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Using the equations above, the resulting objective functional in two variables is given by

L̃i(λ1, λ2) := ωi

[︃2µ + k1
2 (2λ2

1 + 2λ2
2 + 2λ1λ2) + φ̄i

(︁
m(λ1, λ2)

)︁]︃
−ν̃1λ1 − ν̃2λ2 + const,

(5.15)

with
m(λ1, λ2) := max{|λ1|, |λ2|, |λ1 + λ2|}. (5.16)

The scalar function φ̄i (5.14) is smooth The nondifferentiability of Lplast
i only originates

from the function m. Nevertheless, L̃i is piecewise smooth on the decomposition shown
in Figure 5.1.

λ1

λ2

A1

A2

A3

A4

A5

A6

λ1

λ2

E1E2

E3

E4

E5

E6

Figure 5.1.: Six open areas A1, . . . , A6 ⊂ R2 and six open edges E1, . . . , E6 ⊂ R2

On each of the six open areas A1, . . . , A6 and edges E1, . . . , E6 the maximum term can
be expressed as

m(λ1, λ2)|C = αC
1 λ1 + αC

2 λ2 (5.17)
with the following coefficients:

Case A1 A2 A3 A4 A5 A6 E1 E2 E3 E4 E5 E6

αC
1 1 −1 −1 0 1 0 1 −1 0 0 0 1

αC
2 1 −1 0 1 0 −1 0 0 1 −1 1 0

The set P :=
{︁
{0}, A1, . . . , A6, E1, . . . , E6

}︁
is a disjoint partition of R2. Since L̃i has a

unique minimizer, the minimizer is contained in exactly one C ∈ P. The zero point is a
special case, because we can check a priori whether the minimizer is zero.

Lemma 5.3.4. Consider Tresca dissipation and let L̃i be as in (5.15) with the linear
factor ν̃ = (ν̃1, ν̃2)T . If

ν̃ ∈ ωi · ∂ [φ̄i(m(·, ·))] (0, 0), (5.18)
then λ1 = λ2 = 0 is the unique minimizer of L̃i.
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5.3. Application to Primal Small-Strain Plasticity Problems

Proof. L̃i is strictly convex and coercive. Therefore, we have existence of a unique
minimizer. The subdifferential of L̃ at zero is

∂L̃i(0, 0) = ωi · ∂ [φ̄i(m(·, ·))] (0, 0)− ν̃. (5.19)

Moreover, 0 ∈ ∂L̃i(0, 0) is a sufficient condition for the minimizer. Hence, if
ν̃ ∈ ωi · ∂ [φ̄i(m(·, ·))] (0, 0), the claim follows.

With the lemma above, we can summarize the computation of the minimizer by the
following procedure. We have to carefully choose the correct order of the 13 elements of
the set P :=

{︁
{0}, A1, . . . , A6, E1, . . . , E6

}︁
. Therefore, we will consider the case zero, the

open areas Ai, and the line segments Ei separately.
For L̃i as in (5.15), consider the following steps:

(1) Use Lemma 5.3.4) and check whether the minimizer is zero:
• Check whether

ν̃ ∈ ωi · ∂ [φ̄i(m(·, ·))] (0, 0).

• If it holds: Return (0, 0).

(2) For each C ∈ {A1, . . . , A6}:
• Restrict L̃i to C using (5.17).
• Extend L̃i|C canonically to R2.
• Compute the unique minimizer λC of the smooth extension.
• If λC ∈ C: Return λC .

(3) Set S := ∅. For each C ∈ {E1, . . . , E6}:
• Restrict L̃i to C using (5.17).
• Extend L̃i|C canonically to the infinite line in R2 containing C.
• Compute the unique minimizer λC of the smooth 1D extension1.
• If λC ∈ C: Add λC to the set S.

(4) Return the optimal candidate λ ∈ S.

Remarks 5.3.5. If we found a minimizer λC in (2) we can stop immediately and skip
(3) and (4), since λC is contained in the interior of C, and the restriction L̃i|C is strictly
convex. In (3) multiple candidates may appear, as shown in Figure 5.2. Therefore we
have to consider all 6 edges and choose the optimal point in the end.

In the following we will show the explicit application of the algorithm above for
certain scenarios of small-strain plasticity with hardening. The following characterization
of ∂m(0, 0) follows directly from [1, Theorem 18.5].

1To be precise here: On the edges Ei the maximum functional m (5.17) depends only on one variable.
Formally, we replace m̃(λ) := m(λ, λ)|C and compute the unique minimizer of m̃
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λ1

λ2

E1E2

E3

E4

E5

E6

λE1

λE4

Figure 5.2.: Level sets of a convex function with global minimum on E6 and local minima
λE1 , λE4 on the restrictions E1 and E4, respectively

Lemma 5.3.6. For m from (5.16), we have

∂m(0, 0) = conv{±e1,±e2,±(e1 + e2)}

for the canonical unit vectors e1, e2 ∈ R2.

Example 5.3.7 (Linear hardening). For the case of linear kinematic and linear isotropic
hardening (2.12) the nonlinearity Gn is given by

−Gn(∆η) = k2ηn−1∆η + k2
2 ∆η2 + const

for a positive scalar k2 > 0. After eliminating ∆η as described in Section 4.2, the objective
functional reduces to

L̃(λ1, λ2) = ωi

[︃2µ + k1
2 (2λ2

1 + 2λ2
2 + 2λ1λ2)− ν̃1λ1 − ν̃2λ2

+ k2
2 m(λ1, λ2)2

+ (k2ηn−1 + σ0) m(λ1, λ2)
]︃

+ const.

For step (1) of the algorithm above, use Lemma 5.3.6 and compute

∂ [φ̄i(m(·, ·))] (0, 0) = (k2ηn−1 + σ0) conv{±e1,±e2,±(e1 + e2)}.

By Lemma 5.3.4 the condition

ν̃ ∈ (k2ηn−1 + σ0) conv{±e1,±e2,±(e1 + e2)}
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5.3. Application to Primal Small-Strain Plasticity Problems

holds if and only if the minimizer is at zero. If it is not, restrict L̃ to the 12 cases shown
in Figure 5.1. For each of these cases, the problem is quadratic:

L̃i(λ1, λ2)|C = ωi

[︃2µ + k1
2 (2λ2

1 + 2λ2
2 + 2λ1λ2) + k2

2 (αC
1 λ1 + αC

2 λ2)2

+ (k2ηn−1 + σ0)(αC
1 λ1 + αC

2 λ2)
]︃

− ν̃1λ1 − ν̃2λ2 + const

with C ∈ {Ai, Ei : i ∈ {1, . . . , 6}}. Therefore, we can compute the steps (2)–(4) of the
algorithm above directly.

Example 5.3.8 (Nonlinear saturated isotropic hardening). If we extend the previous
example by nonlinear saturated hardening as given in (2.13), the nonlinearity Gn takes
the form

−Gn(∆η) = k2ηn−1∆η + k2
2 ∆η2 + (k∞ − σ0)

(︃
∆η + θn

β
e−β∆η

)︃
+ const

with positive scalars k∞ ≥ σ0, k2, β and θn := e−βηn−1 . For using Lemma 5.3.4, we
compute

∂ [φ̄i(m(·, ·))] (0, 0) =
(︁
k2ηn−1 + σ0 + (k∞ − σ0)(1− θn)

)︁
conv{±e1,±e2,±(e1 + e2)}

and can easily check whether the minimizer is zero with Lemma 5.3.4. For the other
cases, the restriction is given by

L̃(λ1, λ2)|C = ωi

[︃2µ + k1
2 (2λ2

1 + 2λ2
2 + 2λ1λ2) + k2

2 (αC
1 λ1 + αC

2 λ2)2

+ (k∞ − σ0)θn

β
e−β(αC

1 λ1+αC
2 λ2) + (k2ηn−1 + k∞)(αC

1 λ1 + αC
2 λ2)

]︃
− ν̃1λ1 − ν̃2λ2 + const

with C ∈ {Ai, Ei i ∈ {1, . . . , 6}}. In each case, the minimization problem is convex and
can be solved by globally converging damped Newton steps. In practice, this converges
in a few steps to the unique minimizer.

5.3.3. Determining Maximal Differentiable Subspaces
In the TNNMG linear correction stage, for the linear correction step (5.4), we have to
determine the maximal subspace Wν in which the functional is differentiable. For von
Mises dissipation this is easy, since each component is non-differentiable only in the zero
point.

However, the spectral norm of the Tresca dissipation has indeed non-trivial subspaces
of non-differentiability. The spectral norm of symmetric matrices is differentiable if and
only if the dominant eigenvalue (in terms of the absolute value) is unique. Only the
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relevant cases d = 2, 3 are considered here. Recall that for d = 2 Tresca dissipation is
equal to von Mises dissipation (5.10). For d = 3, the eigenvalues of trace-free matrices
satisfy λ1 + λ2 + λ3 = 0. We can divide all configurations of the eigenvalues into three
disjoint cases.

(i) one dominant eigenvalue |λ1| > max{|λ2|, |λ3|}

(ii) two dominant eigenvalues λ1 = −λ2 ̸= 0, and λ3 = 0

(iii) all eigenvalues are zero

In case (i), the spectral norm is differentiable. In case (ii) we conclude that the current
plastic strain component P in matrix has the spectrum

{λ,−λ, 0}.

Since symmetric matrices have orthogonal eigenvectors there are two unit vectors a, b ∈ R3

with a ⊥ b such that
P = λ(aaT − bbT ).

Nevertheless, the spectral norm restricted to the one-dimensional space{︂
γ · (aaT − bbT ) : γ ∈ R

}︂
is differentiable in P . For the case (iii) there is no non-trivial subspace, in which the
spectral norm is differentiable.

5.4. Efficient Implementation of Norm Derivatives

For a start, we need fast and robust methods to compute the value, gradient and hessian
of the Frobenius norm or the spectral norm of trace-free symmetric matrices in order to
compute the Newton-like linearization step (5.4). The basis of Sd

0 was chosen such that
for a p ∈ Rdp , which induces a trace-free and symmetric matrix B = B(p) :=

∑︁dp

i=1 Bipi,
we always have the isometry ∥B∥F = ∥p∥2. Deriving the Frobenius norm is relatively
easy and can be done directly by

∇∥B(·)∥F (p) = p

∥B(p)∥F
, ∇2 ∥B(·)∥F (p) = I

2 ∥B(p)∥F
− ppT

∥B(p)∥3F
. (5.20)

This is well-defined as long as p ̸= 0, which is the only non-differentiable point. Moreover,
in two dimensions we further have the equivalence of von Mises and Tresca dissipation
since ∥B(p)∥F =

√
2 ∥B(p)∥2. Therefore, we can use the same formula above to obtain

the gradient and the hessian of the spectral norm in p. In the three-dimensional case we
actually need to compute the eigenvalues of B(p) first.
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Lemma 5.4.1. For a symmetric, trace-free matrix B ∈ S3
0 the eigenvalues are explicitly

given by

λi(B) = si

√︃
2
3 ∥B∥F cos

(︄
1
3 arccos

(︃
− det(B)

√
54

∥B∥3F

)︃
+ ri

)︄
(5.21)

for i = 1, 2, 3 with s = (−1, 1,−1) and r = (π
3 , 0,−π

3 ).

Proof. We have
∥B∥2 = max{|λ1(B)|, |λ2(B)|, |λ3(B)|} (5.22)

for the eigenvalues λ1(B), λ2(B), λ3(B) of B. These values are the roots of characteristic
polynomial

B(λ, B) := det(λI −B) = λ3 − 1
2 ∥B∥

2
F λ− det(B) = 0, (5.23)

The roots of this cubic equation can be computed directly by Cardano’s method. This
common result can be found in monographs like [7]. No second order terms appear in
the characteristic polynomial since B is trace-free. This saves us the generally necessary
transformation step of Cardano’s method in order to achieve the reduced form

λ3 + αλ + β = 0

of the third order polynomial.

Deriving the eigenvalues with respect to the matrix is possible if and only if the
dominant eigenvalue is unique. To check this, we can compute the eigenvalues using
the lemma above. It is not wise to directly attack the equation (5.21). It will lead to a
lengthy chain rule application which is error-prone and difficult to implement. Instead,
we use the implicit formula (5.23) for B = B(p) and derive both sides by p to obtain

3λ2∇pλ− λp− 1
2 ∥B(p)∥2F ∇pλ−∇p det(B(p)) = 0,

where λ is the dominant eigenvalue. Recall that ∇p

(︂
1
2 ∥B(p)∥2F

)︂
= ∇p

(︂
1
2 ∥p∥

2
2

)︂
= p.

Moreover, det(B(p)) is a third-order polynomial in p and therefore easy to derive. Hence,

∇pλ = ∇p det(B(p)) + λp

3λ2 − 1
2 ∥B(p)∥2F

is a direct formula for the gradient of the spectral norm. We have to switch the sign of
the result, if the dominant eigenvalue is negative. For completeness, the denominator is
never zero, since λ is the dominant eigenvalue and hence,

3λ2 > λ2
1 + λ2

2 + λ2
3 = ∥B∥2F >

1
2 ∥B∥

2
F .

For the hessian of the dominant eigenvalue, we derive (5.23) once more to obtain

6λ∇pλ(∇pλ)T + 3λ2∇2
pλ− 2∇pλp− λI − 1

2 ∥B(p)∥2F ∇
2
pλ−∇2

p det(B(p)) = 0,
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which can be solved for ∇2
pλ as long as 3λ2 ̸= 0. If λ is the unique dominant eigenvalue

it cannot be zero. If the dominant eigenvalue is negative, we have to switch the sign of
the hessian of the eigenvalue to get the hessian of the spectral norm.

Another numerically critical part is to stably determine whether the dissipation
functionals (3.5) and (3.6) with the terms

∥B(p)∥F and ∥B(p)∥2

are smooth around p ∈ Rdp . The case of the Frobenius norm is rather easy, since only
p = 0 is a non-differentiable point. Numerically, the condition p ≠ 0 is not stable, since
for p→ 0 the hessian in (5.20) becomes infinite large. Therefore, a criterion ∥p∥2 > 10−10

is used in practice to determine differentiability.
For the spectral norm differentiability is equivalent to the uniqueness of the dominant

eigenvalue. From the zero trace of B(p) we know that

λ is not uniquely dominant ⇔ spectrum(B(p)) = {λ, 0,−λ}.

We use this property by computing the eigenvalues λ1 ≥ λ2 ≥ λ3 of B(p) by Car-
danos’s method and implement the check whether |λ2| > 10−10 in order to determine
differentiability numerically.
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6. Numerical Results

In this section we test the implementation of the solution algorithms from Chapter 5
applied to the algebraic minimization problem (4.17).

Several test scenarios are considered. A first model choice is the dissipation function.
In this part of the thesis, the von Mises dissipation (3.5) and the Tresca dissipation
(3.6) are studied. Tests for the von Mises dissipation are performed in two and three
dimensions. We restrict the tests for the Tresca dissipation to three dimensions, since in
two dimensions both dissipation functions are equivalent, cf. Lemma 2.4.3 and (5.10).

The considered solvers for the resulting minimization problems are TNNMG and
the predictor–corrector method with a consistent tangent predictor (ctPC). From Re-
marks 5.2.2 both algorithms are related, and therefore suitable for a comparison. While
the algorithmic parameters of ctPC are fixed, we have some freedom in the application
of TNNMG. Each TNNMG iteration uses one application of the local smoother, which is
in this case an exact block Gauss–Seidel method, as presented in Section 5.3. We have
to choose the solver for the linear correction steps (5.4). We will solve these problems
inexactly with a single geometric multigrid step (Appendix A.2) for an inexact solution.
On the coarsest grid level, the direct solver CHOLMOD [3] is used.

The material parameters, as well as the domain, boundary conditions and load are
given for each test separately.

6.1. Von Mises Dissipation with Kinematic Hardening

The results of this section are taken from [30]. We give an overview of the aspects,
which are the most relevant for this thesis. That article treats only the case of primal
small-strain plasticity with linear kinematic hardening. For convenience, we therefore
recall the objective functional after space and time discretization. Since there is no
isotropic hardening present, we set G ≡ 0 in (4.7). We eliminate the isotropic hardening
variable completely from our system. Hence, the discrete objective functional (4.17) takes
the form

L(w) = 1
2wT Aw − bT w +

Np∑︂
i=1

ωiσ0 ∥pi∥2 (6.1)

for the yield stress σ0, cf. Section 2.4, and the shape function integrals ωi (4.16). Note
that we used the isometry ∥B(p)∥F = ∥p∥2 between the matrix valued B(p) ∈ Sd

0 and
the vector p ∈ Rdp (4.11).

67



6. Numerical Results

6.1.1. Two-Dimensional Test
The first numerical test in [30] is in two dimensions. All length specifications are
measured in millimeters (mm). For a test body we consider a square [−10, 10]2, measured
in mm, with a circular hole in the center with a radius of one millimeter. We apply a
symmetric pulling force on both the upper and the lower edge. Since we investigate only
isotropic materials the resulting displacement and plastic strain will be point-symmetric
to the center of the square. Hence, we can consider only the upper left quarter and
set appropriate boundary values. To this end, we consider the domain Ω = [0, 10]2 \ C,
where C is the circle with radius one millimeter at the center. To justify the reduction
to the upper left quarter, we state the sliding boundary values on the displacement
field u = (u1, u2)

u1(10, x2) = 0 ∀x2 ∈ [1, 10], u2(x1, 0) = 0 ∀x1 ∈ [0, 9]

on the bottom and right edge.
The initial grid covering Ω consists of 176 triangular grid elements. For the multigrid

solvers we will create a grid hierarchy of several uniform global refinements (levels) of
this grid. In Figure 6.1 the domain with sliding boundary conditions on the displacement

levels elements vertices
1 176 105
2 704 385
3 2 816 1 473
4 11 264 5 761
5 45 056 22 785
6 180 224 90 625
7 720 896 361 473
8 2 883 584 1 443 841

Figure 6.1.: From [30]. Left: The domain Ω including sliding boundary conditions.
Middle: Initial (coarse) grid covering Ω. Right: Number of grid elements
and vertices of several uniform grid refinements

field, as well as the initial coarse grid are visualized. Moreover, a table of the number
of grid elements and grid vertices are given for several uniform grid refinements. The
maximal number of grid levels is 8 since it is the maximal level to fit into the memory of
the test machine (32 GB). We choose an isotropic material for this test. The material
parameters below are measured in N/mm2. The Lamé parameters (2.7) are

λ = 6.5 · 106, µ = 107.

The yield stress σ0 and the kinematic hardening parameter k1 (2.11) are set to

σ0 = 450, k1 = 3 · 106.
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6.1. Von Mises Dissipation with Kinematic Hardening

We apply a surface force to the top edge of the square (Γ := [0, 10] × {10}) by the
time-dependent load functional

⟨l(t), u⟩ := 100t

∫︂
Γ

u2 dS

that acts on the second component of the displacement field.
In total 20 time steps are computed. The discrete time points are ti := i for i ∈ {1, 2, . . . , 20}.

Figure 6.2.: From [30]. Plastic strain result for the time steps 3, 4, 5 and 6

The resulting evolution of a plastic strain is displayed in Figure 6.2. The initial value is
zero. One can clearly see that the plastic strain starts to evolve at the hole in the center
and then rapidly covers almost the complete domain. Before time step 3 the material
behaves completely elastic, and after time step 6 it is completely plastic.

A relative stop criterion is used for both algorithms during the simulations. In each
time step ti the solver iteration stops once the energy norm ∥·∥A (with the matrix A
(4.12)) of the current correction correction drops below 10−7 of the norm of the first
correction.
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Figure 6.3.: From [30]. Number of iterations until convergence for the 20 time steps. Left:
TNNMG. Right: Predictor–Corrector

In Figure 6.3 for each time step the number of necessary steps to achieve the relative
convergence criterion are given for both solution algorithms. The different lines indicate
the number of grid levels of the multigrid hierarchy, thus the resolution of the solution.
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6. Numerical Results

For the TNNMG method one can see that the number of iterations seems to be bounded
from above for increasing grid levels for most of the time steps. For the first time
steps (purely elastic) the number is at most 10, followed by a peak at time step 4 with
45 iterations on 8 grid levels. This step indicates the transmission to an elastoplastic
process, hence the active set (the degrees of freedom in which the objective functional is
nonsmooth) changes. From time step 5 on the iterations are again bounded by 20. For
the ctPC method the number are significantly smaller. With a peak at time step 6 with
11 iterations the numbers are generally below 10 for all other time steps. Note that on
one level TNNMG degenerates to an exact solver of a Predictor–Corrector type, and
hence the iteration numbers for this level are equal in both diagrams.

We conclude that the ctPC method yields about half of the required iteration numbers
of TNNMG for plastic processes after time step 5.

We also investigate the required wall time for both solvers since a single ctPC step is
likely more time consuming than an inexact multigrid step of TNNMG. To this end, the
wall times of both algorithms for the time steps are presented in Figure 6.4.
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Figure 6.4.: From [30]. Normalized wall time for the computation of the 20 time steps.
Left: TNNMG. Right: Predictor–Corrector

For a better comparability we display the normalized wall-time: On one grid level this
is the original wall time. On all other levels it is scaled inversely proportional to the
number of degrees of freedom. This is a good tool to recognize a linear dependence of
the wall time depending on the number of degrees of freedom. In this case all lines for
the different numbers of grid levels coincide. It seems to be the case for the TNNMG
algorithm. Apart from the first 5 time steps (elastic–plastic transition), the normalized
wall times coincide. Hence, we conclude that TNNMG has a wall time linearly dependent
on the number of degrees of freedom, as expected for a multigrid solver. On the other
hand, the ctPC solver does show a superlinear time dependence. For one grid level both
algorithms are comparable. However, for the other grid levels, the necessary wall time
for the ctPC solver is much higher for TNNMG. On the finest grid level 8 the required
wall time of the ctPC algorithm is about five times higher than the one of TNNMG. We
have no mathematical explanation for the jump of the wall times between 6 and 7 grid
levels. We suppose it arises from caching effects in the hardware.

In summary, we conclude that TNNMG has superior performance to the ctPC solver
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6.1. Von Mises Dissipation with Kinematic Hardening

for large grids.
In [30] additional tests are presented: First of all, the memory consumption of TNNMG

is about half of the one of ctPC, which is 5 GB vs. 10 GB on 8 grid levels. Direct solvers
are very memory consuming for large problems. To overcome this issue, a combination of
ctPC and repeated multigrid steps is considered and tested. Even then TNNMG turned
out to be the fastest solver.

Another test is done for a lower values of the hardening parameters k1. It turned out
that the minimization problem becomes ill-conditioned in this case causing TNNMG to
require an unbounded number of iterations for increasing grid levels, while the direct
solvers of ctPC are not affected by small values of k1. To improve this situation for
TNNMG, a Schur complement technique is applied resulting in better condition numbers
and hence, better performance.

6.1.2. Three-Dimensional Test

A three dimensional test with the same material properties as in the previous Section 6.1.1
is also considered in [30] and quickly presented here.

levels elements vertices
1 25 168
2 200 942
3 1 600 6 108
4 12 800 43 512
5 102 400 327 408
6 819 200 2 537 952

Figure 6.5.: From [30]. Left/Middle: Geometry, boundary conditions and initial grid of
the 3D test object. Right: Number of grid entities for grid refinements

The test body is given in a bounding box [0, 4]× [0, 7]× [0, 1] (measured in millimeters)
with two notches, as seen in Figure 6.5. The initial coarse grid containing 25 cubical
elements as well as the number of grid elements and grid vertices for various uniform
grid refinements are given in this figure.

Note that due to the curse of dimensionality the number of grid entities, and therefore
the degrees of freedom of the discrete problem are growing much quicker than in the two
dimensional case. Hence, we consider only up to 6 grid levels, since another refinement
did not fit into the memory of the test machine.

Boundary conditions are given by sticky Dirichlet conditions at the bottom face

u(x1, 0, x3) = 0 ∀(x1, x3) ∈ [0, 4]× [0, 1]
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6. Numerical Results

and a surface load term is applied to the top face Γ = [0, 4] × {7} × [0, 1] by the
time-dependent load functional

⟨l(t), u⟩ := 20t

∫︂
Γ

u2 dS

acting on the second (upward facing) component of the displacement.
Again, we consider 20 time steps ti := i and use the same solver options as in the

previous test in Section 6.1.1.

Figure 6.6.: From [30]. Plastic strain result for the time steps 5, 10, 15 and 20

In Figure 6.6 the evolution of the plastic strain in the test body is shown for the time
steps 5, 10, 15 and 20. Starting from time step 5 a plastic strain starts to develop at
the narrowest part of the test body. Until the last time step 20 a majority of the test
body has a nonzero plastic strain. Displacement is not shown since it is negligible in this
small-strain test.

In Figure 6.7 the numbers of necessary iteration steps for both solution algorithms for
solving the problem in the 20 time steps are shown. First of all, we were not able to
compute solutions of the ctPC solver for 6 levels due to insufficient memory on the test
machine for the direct solver. We notice that the number are again comparable for one
grid level since both solvers are of the same type in this case. For an increasing number
of grid levels TNNMG shows increasing iteration numbers that seem to converge to an
upper bound little above 30 iterations. Moreover, the numbers tend to become large
with increasing time steps. This happens most likely because the number of activated
components of the plastic strain increases faster with expanding plastic strain. On the
other hand, the iteration numbers for the ctPC solver are almost unaffected by the grid
fineness and the time step. With at most 7 steps the total number is much lower than on
the TNNMG side.
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Figure 6.7.: From [30]. Number of iterations until convergence for the 20 time steps. Left:
TNNMG. Right: Predictor–Corrector
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Figure 6.8.: From [30]. Normalized wall time for the computation of the 20 time steps.
Left: TNNMG. Right: Predictor–Corrector

The normalized wall times for the 20 time steps are given in Figure 6.8. For TNNMG
we see again a linear time dependence on the wall time on the number of degrees of
freedom. On the contrary, ctPC shows a superlinear dependence. As a result, for 5 grid
levels, the TNNMG method is about 10 times faster than the ctPC method. Moreover,
the memory consumption at 5 grid levels of ctPC is about 6700 MB compared to only
729 MB of TNNMG [30].

This demonstrates that direct solvers such as CHOLMOD have a huge time consumption
applied to solving discretized problems of three dimensional PDEs on fine grids. Even on
6 grid levels TNNMG consumes about only 3500 MB. Overall, we can show the efficiency
of TNNMG both in the wall time and in the memory consumption.

6.2. Three-Dimensional Tresca Dissipation

In this test, we consider only kinematic hardening for better comparability with the
previous von Mises tests. Hence, we still set formally G ≡ 0 in (4.7), and therefore do
not consider any isotropic hardening variable η at all. The objective functional (4.17)
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6. Numerical Results

takes now the form

L(w) = 1
2wT Aw − bT w +

Np∑︂
i=1

ωiσ0 ∥B(pi)∥2 (6.2)

with the spectral norm ∥·∥2.
For best comparison to the numerical test in Section 6.1.2 we reuse the domain, the

sticky boundary conditions and initial grid, as shown in Figure 6.5.
However, material parameters in this test are chosen differently from Section 6.1.2.

We consider a yield stress σ0 = 450, Lamé parameters (2.7) µ = 8 · 105 and λ = 1.2 · 106,
as well as a kinematic hardening paramter k1 = 41080. The mentioned parameters are
measured in N/mm2.

External forces are again given as surface forces at the top face Γ of the shape (x2 = 7).
We consider the time-dependent load functional

⟨l(t), u⟩ := 300t

∫︂
Γ

u2 dS.

We compute the solutions for 20 time steps ti := i for i from 1 to 20. The loading force
and the time steps are chosen such that we have a comparable material behavior as in
the three dimensional von Mises test case.

In detail, we have again about 4 elastic steps with no appearing plastic strain, followed
by a plastic evolution. Finally, at time step 20, a majority of the domain has a nonzero
plastic strain.

Apart from the slightly different material model the solver-specific options are equal
to the ones from Section 6.1.2.
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Figure 6.9.: Number of iterations until convergence for the 20 time step on difference
grid resolutions Left: TNNMG. Right: Predictor–Corrector

The necessary iteration steps for TNNMG, and the ctPC solver to compute the solutions
for the 20 time steps are displayed in Figure 6.9.

In contrast to the equivalent results with von Mises dissipation in Figure 6.7 the
number are almost the same on all grid levels for both algorithms.

The reason is the spectral norm ∥B(pi)∥2 in the discrete objective functional (6.2).
While the Frobenius norm has exactly one nondifferentiable point at zero, the spectral
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6.2. Three-Dimensional Tresca Dissipation

norm is nonsmooth at every matrix with non-unique dominant eigenvalue. This increases
the degree of nonsmoothness. Hence, minimization with nonsmooth Newton methods,
like TNNMG and ctPC, is more difficult.

Recall that TNNMG computes anyway only inexact nonsmooth Newton steps. Hence,
comparably smooth cases, like von Mises dissipation, the total iteration numbers are
already high. In contrast, the exact and direct Newton steps of the ctPC method
require a low number of iterations for convergence (cf. Figure 6.7). However, for Tresca
dissipation, there is no advantage of computing exact Newton steps, since the Newton
corrections will likely “cross” a nondifferentiability of the objective functional. Therefore,
the minimization of the objective functional relies more on the nonsmooth local solvers
from the first stage of TNNMG and the corrector step of ctPC from Section 5.3.

In the von Mises case, TNNMG is already superior in the wall time measurements
compared to the ctPC method, as seen in Figure 6.8. We expect this gap to be even
larger in the Tresca case. The normalized wall times for Tresca dissipation are shown in
Figure 6.10.
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Figure 6.10.: Normalized wall-time for the computation of the 20 steps solutions for
different refinement levels. Left: TNNMG. Right: Predictor–Corrector

The TNNMG solver shows again a linear wall time dependence on the number of degrees
of freedom as all lines tend to coincide. The ctPC with the direct solver CHOLMOD
starts with a linear wall time behavior for the first 3 levels. This is followed by a quadratic
wall time dependency from level 3 to 4. The reason for the linear start is simply that
direct solvers are very efficient for small linear problems. The wall time is dominated
by the overhead of the grid and solver structures for coarse grids. And grid-dependent
routines are usually linear in the grid size, and hence in the degrees of freedom of the
problem.

Clearly, TNNMG is the faster algorithm with a gap of factor 8 compared to the
Predictor–Corrector at 4 grid levels. Computations with more than 4 grid levels exceed
the possible measurable wall time on the test machine. We conjecture that the gap in
the wall times of TNNMG and ctPC will be even larger for finer grids.

Additional extensions of the ctPC method to a numerically exact multigrid solver for
the elastic predictor step (as in [30] for von Mises dissipation) are not considered here. It
will most likely reduce the quadratic wall time dependence of CHOLMOD to a linear
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6. Numerical Results

one, but as seen in the number of iterations (Figure 6.9), there is no advantage in solving
the Newton steps exactly. Hence, this improvement strategy for the ctPC solver cannot
outperform TNNMG.

6.3. Isotropic Hardening
The last numerical test extends the two-dimensional example from [30]. We want to
investigate the impact of isotropic hardening on the wall time of the presented solvers.
This test covers both Tresca and von Mises dissipation, since they are equivalent in two
dimensions (Lemma 2.4.3).

We reuse the two dimensional grid from Section 6.1.1. Boundary values as well as the
grid hierarchy are unchanged.

For a better investigation of the influence of isotropic hardening we choose a load
functional such that we consider two complete hysteresis loops. This is achieved by the
load functional

⟨l(t), u⟩ := 450 · sin(4πt)
∫︂

Γ
u2 dS.

on the top edge Γ of the domain for time t in [0, 1]. The time interval [0, 1] is divided
into 100 equal parts. In this benchmark, we use either kinematic or isotropic hardening
only. In the isotropic case we use the non-linear isotropic hardening functional

g(η) = (σ0 − k∞)(1− e−βη)− k2η,

as from (2.13). For a better comparison to the kinematic case we use k2 = k∞ = 41080 N/mm,
β = 1 and reuse the other material parameters from Section 6.2.
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Figure 6.11.: Hysteresis for two force loops. Left: kinematic hardening. Right: isotropic
hardening

In Figure 6.11 the resulting hysteresis curves for pure kinematic and pure isotropic
hardening are given. We compute the average displacement in the x2 component over the
domain as a drop-in of the usually used strain measurement of these hysteresis curves.

For the kinematic hardening test (with k1 = 41080 N/mm) the hysteresis curve is the
expected parallelogram. The isotropic result shows the development of a growing elastic
region after plastic work occurred, visible as the shrinking width of the parallelogram.
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6.4. Conclusion

For both simulations we use the TNNMG solver with the same solver options as given
in Section 6.2. The total time for all 100 homotopy steps does not depend on the chosen
hardening functional, as seen in Figure 6.12.
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Figure 6.12.: Total run time for the hysteresis loop with 100 homotopy steps

6.4. Conclusion
First of all, we highlight that the TNNMG algorithm outperforms the Predictor–Corrector
method in all test cases. This was already demonstrated in [30] for the von Mises case.
In this thesis we are able to show that the performance gap between the TNNMG and
ctPC solver is even larger.

In summary, TNNMG turns out to be a simple and easy to use algorithm with high
efficiency for highly nonsmooth objective functionals. Another advantage of TNNMG is
its form of an algebraic black box solver. There are only few parameters to set, especially
no problem-depending control-parameters.

Another result addresses isotropic hardening. As seen in the last test case the plastic
material behavior depends heavily on the considered hardening rule. Nevertheless, the
solvers are not affected by this. For all considered hardening rules the wall times and the
number of iterations are comparable. The reason is most likely that isotropic hardening
rules lead to smooth parts of the objective functional. The critical parts for the quality
of the solvers are the nonsmooth components arising from the dissipation functionals.
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Part II.

An Efficient and Globally Convergent
Minimization Algorithm for

Finite-Strain Plasticity Problems
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7. Introduction to Finite-Strain Mechanics

The restriction to small strains may not be appropriate in certain situations. Therefore,
in this section we present a rigorous continuum mechanics model of finite-strain plasticity.
Although the structure of this chapter is similar to Chapter 2 in the first part of this
thesis, each section introduces new mathematical aspects since we drop the assumption
of small strains.

7.1. Kinematics
7.1.1. Deformation
Similar to the first part of this thesis, the kinematics are formulated in the physically
meaningful space dimensions two and three. Hence, the we have d ∈ {2, 3}. The domain
Ω ⊂ Rd is again closed and bounded. In the theory of small strains the displacement field

u : Ω→ Rd

is the kinematic quantity of interest, since in the first part of this thesis we have the
fundamental assumption that ∇u is in some sense small. In the second part of the thesis,
this assumption is dropped. Hence, there is no practical difference between using either
the displacement field u and directly considering the deformation field

y : Ω→ Rd, y(x) = u(x) + x.

For an illustration of y and u consider Figure 2.1 in the first part of this thesis. The
theory of finite-strain mechanics is usually formulated in terms of the deformation field
y, and we will follow this path. Since we do not consider the effects of rigid body
motions, only spatial derivatives of the deformation field will contribute to the strain of
the material. The spatial gradient of the deformation field is given by

F := ∇y = ∇u + I,

and is directly connected to ∇u by a unit matrix shift.

7.1.2. Strain Tensors
In the first part there is already a definition of the strain tensor given, cf. Definition 2.1.1.
For finite strains, multiple definitions of strains are found in the literature. The one
introduced before is the so-called Green–St. Venant strain tensor and it is repeated here
for completeness.
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Definition 7.1.1 (Green–St. Venant Strain). Let F : Ω→ Rd×d deformation gradient
field. Then we call

E := 1
2
(︂
FT F− I

)︂
(7.1)

the Green–St. Venant strain tensor.

Another frequently found strain tensor is the (right) Cauchy–Green strain tensor.

Definition 7.1.2 (right Chauchy–Green Strain). Let F : Ω→ Rd×d deformation gradient
field. Then we call

C := FT F (7.2)

the (right) Cauchy–Green strain tensor.

Remark 7.1.3. The Green–St. Venant strain tensor is zero for rigid motions y = Qy + q
with an orthogonal Q ∈ SO(d) and q ∈ Rd.

7.1.3. Decomposition of the Deformation Gradient

In the first part of this thesis we introduced the plastic strain variable by splitting the
small-strain tensor

ϵ = 1
2
(︂
∇u +∇uT

)︂
additively into the elastic part e and the plastic part p, such that,

ϵ = e + p. (7.3)

For finite strains, the decomposition into elastic and plastic parts is not applied to the
Green–St. Venant strain tensor E, but rather directly to the deformation gradient F.
Moreover, we do not consider an additive split, but a multiplicative splitting

F = FelP. (7.4)

This multiplicative split was introduced by [20]. It is used throughout this part of the
thesis. At a first glance, this looks to be in complete contrast to the additive split (7.3).
In the following we will clarify that this is actually just an extension of the additive split
used in the small-strain case. In the small-strain case, we assume that both e and p are
pointwise small, i.e., there is a h : Ω→ R with small values and

max{∥e∥ , ∥p∥} ≤ h. (7.5)

Next, we want to express Fel and P in terms of e and p. The required tool for this is
the exponential function of matrices. For a matrix A ∈ Rd×d the matrix exponential is
given by

exp(A) :=
∞∑︂

i=0

Ai

i! .
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It is well-known (e.g., [18]) that the matrix exponential is well-defined for all matrices
with quadratic shape. If the norm of A is small, then the exponential series above decays
quickly. Hence, we have

exp(A) = I + A +O(∥A∥2) ≈ I + A for ∥A∥ → 0.

Now we use the matrix exponential to set

Fel := exp(e), P := exp(p).

If we assume (7.5), then we have

F = FelP = e + p + I +O(h2),

and hence,
E = 1

2
(︂
FT F− I

)︂
= e + p +O(h2).

In summary, the additive split of the small-strain tensor ϵ can be transferred into
multiplicative split of F (7.4) by using the matrix exponential. Note that both Fel and
P are in general allowed to be non-symmetric.

7.2. Ranges
7.2.1. Matrix Manifolds
We use matrix groups for the ranges of the elastic strain Fel and the plastic strain P. This
is more advanced than the vector space approach in small-strain plasticity. However, this
allows us to use the multiplicative split of the deformation gradient F = FelP without
leaving the matrix group structure.

The deformation field y describes the deformed domain Ωt = y(Ω). Hence, from the
integral transformation formula∫︂

Ω(y)
dx̂ =

∫︂
Ω
|det(∇y)| dx

we conclude that det(F) = det(∇y) is the local volume transformation density. From a
mechanical point of view, we do not allow a degenerate material with vanishing volume,
i.e., we postulate det(y) > 0. The set of matrices equipped with this property forms the
multiplicative group

GL(d)+ := {A ∈ Rd×d : det(A) > 0}, (7.6)

which forms a subgroup of the generalized linear group, where the constraint det(A) ̸= 0
is given. Furthermore, we assume that plastic effects do not change the volume, cf. [22,
Chapter 4.2.1]. Hence, the range of the plastic strain is equipped with the stronger
constraint det(∇y) = 1. Again, since the determinant is multiplicative, this forms another
matrix group

SL(d) := {A ∈ Rd×d : det(A) = 1}, (7.7)
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called the special linear group. Obviously, SL(d) is a subgroup of GL(d)+. In summary,
we consider GL(d)+ for the range of the elastic strain

Fel(x) ∈ GL(d)+ for almost all x ∈ Ω,

whereas the plastic strain takes values in SL(d)

P(x) ∈ SL(d) for almost all x ∈ Ω.

Note that the “for almost all” statement is already placed here to comply with the
embedding into Sobolev spaces later on.

7.2.2. Plastic Spin

Plastic spin has different meanings and definitions along the history on finite-strain con-
tinuum mechanics. An excessive overview is given in [5]. In this thesis, whenever we refer
to plastic spin we indicate to the rotational parts of the plastic range. These rotational
parts can be introduced formally by the orthogonal part of the polar decomposition of
the values of P.

Lemma 7.2.1 ([18, Theorem 8.1]). For any regular matrix P ∈ Rd×d there is a unique
polar decomposition into an orthogonal matrix L and a unique symmetric, positive definite
matrix V , such that

P = LV.

Remark 7.2.2. By applying the polar decomposition to the transpose P T = LV , we get
immediately another decomposition

P = V R

with the orthogonal matrix R := LT on the right side.

From the global pointwise polar decomposition P = LV, we associate the rotational
part L with the plastic spin. In this thesis we cover both the general plastic range SL(d),
and the case of spinless plasticity. For the latter, we introduce the set

SL(d)+
sym := {A ∈ SL(d) : A is symmetric and positive definite} (7.8)

for the range of the plastic strain without spin. Then, for each P with values in SL(d)+
sym,

we have can identify L ≡ I in the polar decomposition. Note that SL(d)+
sym is not a

matrix group under matrix multiplication since the product of two symmetric matrices is
in general not symmetric. Further numerical treatment of this set is given in Section 9.2.2.
For now, we will use the general case of the plastic strain with spin until further notice.
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7.3. Stress Tensors
At small strains we postulate the existence of the Cauchy stress tensor field σ : Ω→ Sd,
such that,

−div(σ) = b
for the volumetric force density field b (2.3). The existence of the Cauchy stress tensor on
the initial domain requires the gradient of the displacement field, and hence the strain E,
to be small [16, Chapter 2.2]. At finite strains, we have to distinguish whether we postulate
the physical quantities on the initial domain Ω, or on the deformed domain Ωy := y(Ω).
From the mathematical point of view it is does not matter to consider the initial domain Ω
all the time. However, in the real world, forces are in fact applied to the deformed body,
since the initial state may not be available. We revisit Proposition 2.2.1 from the first
part of this thesis without the assumption of a small strain tensor. This form is found in,
e.g., [4, Chapter II.2.3].

Proposition 7.3.1 (Cauchy Stress at finite strains). Let y : Ω→ R3 be a smooth defor-
mation field, and set Ωy := y(Ω) for the deformed domain. Moreover, let by : Ωy → Rd

a volumetric force density field on the deformed domain, and let sy : ∂Ωy → Rd a surface
force density field on the boundary of the deformed domain, such that the total force is
given by

F y :=
∫︂

Ωy
by dxy +

∫︂
∂Ωy

sy dS.

Then there is a differentiable and symmetric matrix field σ : Ωy → Rd×d such that

sy(xy) = σ(xy) · n(xy)

for the outer normal n(xy) of ∂Ωy at xy, and furthermore

F y =
∫︂

Ωy
div(σ) + by dxy.

We call the field σ : Ωy → Rd×d the Cauchy stress tensor.

Remark 7.3.2. Note that all appearing quantities in the proposition above are time-
dependent. For notational simplicity the dependency on the time is not explicitly written.

From a computational point of view, the Cauchy stress is not convenient because it is
defined on the deformed domain, which is usually unknown beforehand. To resolve this
problem, the Piola transformation comes into play. Without going into detail here, this
transformation allows us to back-trace functionals on the deformed domain back to the
initial domain. An excessive introduction can be found in [4, Chapter II.2.5]. In our case,
we define a new stress field T : Ω→ Rd×d, which acts as the counterpart of σ on Ωy.

Definition 7.3.3 (First Piola–Kirchhoff Stress). Let y : Ω→ R3 be a smooth deformation
field, Ωy := y(Ω) the deformed domain. Furthermore, let σ : Ωy → Rd×d be the Cauchy
stress tensor field. We define the first Piola–Kirchhoff stress tensor field by

T : Ω→ Rd×d, T(x) := det(∇y(x)) σ(y(x))∇y(x)−T .
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Remark 7.3.4. For small strains, we can assume that ∇u ≈ 0, and hence ∇y ≈ I.
Therefore, we have T(x) ≈ σ(y(x)). From Dirichlet data on parts of ∂Ω we can
furthermore assume that y(x) ≈ x, and therefore T(x) ≈ σ(x) can be identified.

Now we have again a stress quantity T directly given on the initial domain Ω. A
disadvantage is the lack of symmetry. While the Cauchy stress tensor is symmetric, the
first Piola–Kirchhoff stress tensor is generally not. To overcome this issue, we simply
enforce symmetry by a multiplication from the left with ∇y−1 and arrive at the second
Piola–Kirchhoff stress tensor.

Definition 7.3.5 (Second Piola–Kirchhoff Stress). Let T : Ω→ Rd×d be the first Piola–
Kirchhoff stress tensor field induced by the smooth deformation field y : Ω→ Rd. Then
the symmetric second Piola–Kirchhoff stress tensor field is defined by

Σ : Ω→ Sd, Σ(x) = ∇y−1T(x).

Remark 7.3.6. At small strains, where ∇y ≈ I, the first and second Piola–Kirchhoff
stress tensors can be identified.

7.4. Material Laws
7.4.1. Hyperelastic Materials
Next, we introduce elastic material models that interact with the just defined Piola–
Kirchhoff stresses. In the case of small-strain elasticity, we assume the existence of a
symmetric fourth-order Hooke tensor H (2.6). Translated into the notation of this part
of the thesis, H linearly connects the second Piola–Kirchhoff stress tensor Σ to the
Green–St. Venant strain tensor E (7.1), or alternatively, to the Cauchy–Green strain
tensor C (7.2), by

Σ = H E = 1
2H(C− I). (7.9)

To extend this linear case to more general ones, we postulate an elastic energy density
function

Wel : Ω× Rd×d → R

which depends on the actual point x ∈ Ω for possibly heterogeneous material properties,
and on the deformation gradient ∇y(x) = F(x), from which we can compute the strains
E(x) and C(x). We call a material hyperelastic, if we have the connection to the first
Piola–Kirchhoff stress

T(x) = ∂

∂F
Wel(x, F(x)) (7.10)

for almost all x ∈ Ω. A fundamental axiom of elastic materials is frame-indifference [4,
Chapter 3]. In short, this means that rotations of the coordinate system (not rotations of
the domain Ω) do not change the behavior of the material. This can be mathematically
modeled by

Wel(x, F ) = Wel(x, QF )
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for all orthogonal matrices Q. From the polar decomposition F = LV into an orthogonal
L and a symmetric, positive definite V , we conclude that Wel does only depend on the
s.p.d. part V . Since the square root of s.p.d. matrices is always well-defined we can avoid
the polar decomposition by introducing another elastic energy density Ŵ el, with the
property

Wel(x, F ) = Ŵ el(x, F T F )

for almost all x ∈ Ω and F ∈ Rd×d. Note that the Cauchy–Green strain tensor is precisely
C = F T F . A consequence from the definition of hyperelastic materials (7.10) is that

Σ(x) = 2 ∂

∂C
Ŵ el(x, C(x)) (7.11)

for the second Piola–Kirchhoff stress Σ. Back to (7.9), the corresponding hyperelastic
material that combines the hyperelastic scheme and the linear Hooke’s law (7.9) is the
St. Venant–Kirchhoff material.

Definition 7.4.1 (St. Venant–Kirchhoff Material). Let H ∈ R(d×d)×(d×d) a fourth-order
tensor. Moreover, we assume that H fulfills the symmetry conditions

HA : B = HB : A = HBT : A = HBT : AT

for any matrices A, B ∈ Rd×d. Additionally, we demand that HA : A > 0 for all A ̸= 0,
i.e., H is positive definite. The elastic energy density of a St. Venant–Kirchhoff material
is given by

WSVK(x, F ) := 1
2HE : E = 1

8H(C − I) : (C − I) =: Ŵ SVK(x, C)

for the strain tensors C = F T F and E = 1
2(C − I).

The St. Venant–Kirchhoff material model forms a quadratic energy in terms of the
strain.

Lemma 7.4.2. If we assume a linear connection of the stress and the strain (7.9), then
the St. Venant–Kirchhoff material model fulfills

2 ∂

∂C
Ŵ SVK(x, C) = Σ,

as well as
∂

∂F
WSVK(x, F ) = T.

Proof. The first statement follows directly from the symmetry of H, such that,

∂

∂C
Ŵ SVK(x, C) = 1

4H(C − I) = 1
2HE = 1

2Σ.

The second property is not trivial, since we have to carefully derive the strain E by F .
To this end, it is always worth to take a look at the directional derivative of WSVK in
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the F -component in an arbitrary direction D. Note that for E(F ) = 1
2(F T F − I) we

have E(F + hD) = E(F ) + h
2 (DT F + F T D + hDT D). Then we get

∇F WSVK(x, F )[D]

= lim
h→0

WSVK(x, F + hD)−WSVK(x, F )
h

= lim
h→0

HE(F + hD) : E(F + hD)−HE(F ) : E(F )
2h

= lim
h→0

hHE(F ) : (DT F + F T D + hDT D)
2h

= HE(F ) : F T D,

where the symmetry properties of H are used. Since for the Frobenius inner product
(AB) : C = B : (AT C) holds for any A, B, C ∈ Rd×d, we arrive at

∇F WSVK(x, F )[D] = (F HE(F )) : D.

Hence,
∂

∂F
WSVK(x, F ) = F HE(F )) = F Σ = T.

The isotropic variant of a St. Venant–Kirchhoff material is described by only two
degrees of freedom, such that,

WSVK(x, F ) = λ

2 tr(E)2 + µ ∥E∥2F (7.12)

for the Lamé parameters µ, λ > 0 and the Green–St. Venant strain tensor E. This
corresponds to (2.7) for small strains in the first part of this thesis.

7.4.2. Polyconvex Materials
In this thesis we also include polyconvex materials, which provide nonlinear stress-strain
relations. Besides the deformation gradient F , we also consider the determinant det(F ),
and the cofactor matrix cof(F ) := det(F )F −T .

Definition 7.4.3 (Polyconvex Material).

(i) In two dimensions we call a material Wel polyconvex, if

Wel(x, F ) = W (x, F, det(F ))

for a convex W : Ω× R2×2 × R→ R.

(ii) In three dimensions we call a material Wel polyconvex, if

Wel(x, F ) = W (x, F, cof(F ), det(F ))

for a convex W : Ω× R3×3 × R3×3 × R→ R.
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Remarks 7.4.4.

(i) There are definitions of polyconvex materials for d /∈ {2, 3} [22, page 238].

(ii) St. Venant–Kirchhoff materials are not polyconvex [22, page 239].

We will investigate two families of polyconvex materials. Both of them are homogeneous
materials, i.e., they only depend on the deformation gradient F and not on x ∈ Ω. The
first one is the three dimensional Ciarlet variant of the Mooney-Rivlin material [4, page
189]

WMR(F ) := a ∥F∥2F + b ∥cof(F )∥2F + c det(F )2 − d ln(det(F )) + e (7.13)

with positive parameters a, b, c, d ≥ 0 and e ∈ R. This obviously matches the definition
of polyconvexity. In two dimensions we set b = 0. Mooney–Rivlin materials are nonlinear.
Nevertheless, we can choose the parameters according to a given St. Venant–Kirchhoff
material, s.t., they correspond at small strains with given Lamé parameters λ and µ
(7.12). We can approximate a Mooney–Rivlin energy by the system of equations

3a + 3b + c + e = 0
2a + 4b + 2c− d = 0

2b + 2c = λ

2
−2b− 2c + d = µ,

(7.14)

which is taken from [4, p. 186]. Then, it is shown that

WMR(F ) = WSVK(F ) +O(∥E∥3F )

for E → 0. There is still one degree of freedom left open in the constants a, b, c, d, e. This
degree of freedom can be used to control the weight of the term c det(F )2 − d ln(det(F ))
that acts as a penalty term for det(F ). By the second line 2a + 4b + 2c − d = 0 it
is assured that the minimum of WMR(x, γI) is obtained for γ = 1, hence the energy
penalizes non-volume preserving behavior.

Another polyconvex material considered in this thesis is an Ogden material in the form
(cf. [4, 22])

WOgden(F ) :=
N∑︂

i=1
αi tr (Cpi) +

M∑︂
j=1

βj tr cof (Cqj ) + V (det(F )) (7.15)

with αi, βj > 0, and pi, qj ≥ 2 for all appearing i, j, and the Cauchy–Green strain
tensor C = F T F . Moreover, V : (0,∞)→ R is a convex function. Ogden materials are
very flexible because a variety of factors and exponents can be selected. Furthermore,
Ogden materials play a crucial role in the existence theory of solutions for finite-strain
plasticity problems later in Section 8.6. Note that the Ciarlet variant of the Mooney–
Rivlin material (7.13) is a special case of an Odgen material (7.15) with M = N = 1, as
well as p1 = q1 = 2, and V (ξ) = cξ2 − d ln(ξ) + e.
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7. Introduction to Finite-Strain Mechanics

All so far considered elastic material models have in common that they can be expressed
in terms of the principal values of the elastic strain. Without going into detail on this
property we formulate another, weaker result.

Lemma 7.4.5. All considered materials (7.12), (7.13) and (7.15) are isotropic, i.e.,

Wel(x, F ) = Wel(x, FQ)

for any orthogonal matrix Q ∈ SO(d).

Proof. This is easily verified by the invariance of orthogonal similarity transformations
of the Frobenius norm, the determinant and the trace of a matrix.
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8. Energetic Formulation of
Rate-Independent Finite-Strain Plasticity

8.1. Plastic Energy and Back Stress
In this section we will take a closer look at the multiplicative decomposition F = FelP
(7.4) and at the corresponding dual variables of the components. For the sake of simplicity
we do not consider hardening in this section. The influence of kinematic hardening is
discussed in Section 8.2. Moreover, dependence of the energy densities on x ∈ Ω is
not considered. First of all, we recall that the hyperelastic materials from Section 7.4.1
depend on the elastic component Fel = FP−1. To formally track the components, we
define a plastic energy density

Wpl : GL(d)+ × SL(d)→ R, Wpl(F, P ) := Wel(FP −1) = Wel(Fel).

Again a main assumption is frame-indifference (cf. Section 7.4.1), such that, there is a
Ŵ pl : GL(d)+ × SL(d)→ R with

Wpl(F, P ) = Ŵ pl(F T F, P ) = Ŵ pl(C, P ).

From C = F T F = P T F T
el FelP we can recover the elastic Green strain tensor Cel := F T

el Fel
by

Cel = P −T CP −1.

With this at hand we have

Ŵ pl(C, P ) = Ŵ el
(︂
P −T CP −1

)︂
= Ŵ el(Cel)

for the frame-indifferent elastic energy Ŵ el.
From Ŵ pl several quantities can be deduced. Since plastic deformation is not related

to stress, the second Piola–Kirchhoff stress (7.11) is given by

Σ = 2 ∂

∂C
Ŵ pl(C, P ). (8.1)

To express Σ in terms of derivatives of Ŵ el we consider the directional derivative in C in
the direction D, which fulfills

⟨Σ, D⟩ = 2∇Ŵ el
(︂
P −T CP −1

)︂
[P −T DP −1]

= 2 ∇Ŵ el
(︂
P −T CP −1

)︂
:
(︂
P −T DP −1

)︂
= 2

(︂
P −1∇Ŵ el

(︂
P −T CP −1

)︂
P −T

)︂
: D.
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Hence, we identify
Σ = 2 P −1∇Ŵ el(Cel)P −T . (8.2)

The corresponding negative derivative of Ŵ pl in P is called the back stress

Q := − ∂

∂P
Ŵ pl(C, P ). (8.3)

To rewrite this in the elastic energy Ŵ el we first note that for the matrix inverse
i(P ) := P −1 we have in direction D

I = i(P )P ⇒ 0 = ∇i(P )[D]P + i(P )D ⇒ i(P )[D] = −P −1DP −1. (8.4)

Then we have by symmetry of C and ∇Ŵ el

⟨Q, D⟩ = −∇Ŵ el(Cel)
[︂
∇i(P )[D]T CP −1 + P −T C∇i(P )[D]

]︂
= −∇Ŵ el(Cel) :

(︂
−P −T DT Cel − CelDP −1

)︂
= −∇Ŵ el(Cel) :

(︂
−2 CelDP −1

)︂
=
(︂
2Cel∇Ŵ el(Cel)P −T

)︂
: D.

Therefore, we identify
Q = 2Cel∇Ŵ el(Cel)P −T . (8.5)

In summary, we have an explicit form of the second Piola–Kirchhoff stress tensor Σ
associated to the strain tensor C, and a corresponding back-stress tensor Q associated
to the plastic strain P . Both of these stress-like variables play an important role in the
formulation of yield stresses, which lead to plastic effects.

8.2. Kinematic Hardening

To derive an easy model of kinematic hardening similar to the small-strain case is not
trivial and requires a careful identification of the used deformation mappings [15, Section
5.5]. To avoid these technical challenges, we rely on the formulation given in [22, Example
4.2.2]. There, kinematic hardening is given by an energetic formulation as a hardening
energy density

Whd : SL(d)× Rd×d×d → R, (P, Z) ↦→Whd(P, Z)

on the space of plastic strains, and a tensor-valued (possibly neglected) second argument.
For a rigorous existence theory pointwise evaluation of the plastic strain are not sufficient
since spatial gradient terms of the global plastic strain function P : Ω → SL(d) are
necessary (see Theorem 8.6.1). Hence, we will use the global formulation of a hardening
energy

Whd(P) :=
∫︂

Ω
Whd(P(x),∇P(x)) dx,
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where (∇P)ijk := ∂xk
Pij describes the componentwise derivative. In this thesis we will

follow [22, Example 4.2.2] and use

Whd(P, Z) := k1 ∥P∥p1
F + k2 ∥Z∥p2

F

for non-negative hardening parameters k1, k2, and exponents p1, p2 > 1. The Frobenius
norm of the 3-tensor Z is defined componentwise by

∥Z∥F :=

⎛⎝ d∑︂
i,j,k=1

Z2
ijk

⎞⎠ 1
2

.

Note that for k2 = 0 and p1 = 2 we have the linear kinematic hardening functional from
the small-strain case, cf. the middle term in (3.15). This global hardening term enriches
the plastic strain energy from Section 8.1, such that, we consider the global plastic energy

Wpl(F, P) :=Wel(FP−1) +Whd(P). (8.6)

The hardening term changes the nature of the plastic back-stress Q from Section 8.1. Since
the hardening depends on the plastic strain P, an additional plastic strain information
enters Q. We do not want to formalize the effect of the plastic strain on Q, since it
requires a technical investigation of what we understand by the partial derivative ∂

∂P Whd
in a pointwise sense, while the hardening term depends globally on the spatial gradient
∇P. Nevertheless, in the small-strain setting (k2 = 0 and p1 = 2) we get an additional
term −k1P for Q, which is consistent to the linear kinematic hardening in the yield
function, cf. (2.11).

Regarding a yield function: Kinematic hardening is the movement of the elastic region
E of admissible stresses. In both [15, Section 5.2] and [21, Section 2] a yield function1

Φ : Rd×d → R, S ↦→ Φ(S)

is proposed, such that the convex elastic region is (as in the small-strain case) given by

E := {S ∈ Rd×d : Φ(S) ≤ 0}.

For now it not clear what the variable S is precisely. The idea is to use a stress-like
quantity that does only depend on elastic quantities, and, furthermore, is related to
a partial derivative of the plastic energy Wpl with respect to P . This enables us to
formulate a plastic strain driven energetic formulation later. In [15, Section 2.2] it is
suggested that we consider

S := QP T

for the back-stress Q given in (8.3)2. This choice of S can be justified by two reasons.
First, note that from (8.5) we see that in the case of no hardening (Whd ≡ 0) that

QP T = 2Cel∇Ŵ el(Cel)
1The domain Rd×d is used for simplification. See [15, Section 2.2] for a general statement.
2However, in [15] Q is defined slightly different, but equivalent, such that S = P T Q.
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depends only on elastic quantities. This is reasonable since stresses depend only on elastic
processes as long as the elastic region is fixed. The second reason is of a more technical
nature: Yield stresses are usually determined by properties of the eigenvalues of S. If we
consider S as a linear operator between a domain and a range space, then eigenvalues
are only meaningful if both of these spaces are the same. The deformation field y is a
function from the reference domain Ω to the deformed domain Ωy.

We follow the ideas of [15, Section 5] and call A the range manifold of the deformation
in Ω, and B the range manifold of the deformation in Ωy. Of course, we have in both
cases A = B = Rd in our setting, but for technical reasons we stick here to the general
variant. Therefore, for each x ∈ Ω the deformation gradient F = ∇y(x) is a linear
mapping TA → TB between the tangential spaces. By the multiplicative decomposition
F = FelP this scheme is enriched by an intermediate manifold C, such that P : TA → TC,
and Fel : TC → TB. In this setting the back-stress Q (8.3) is a mapping TA∗ → TC∗ in
the dual spaces. Hence, to make domain and range of S equal, we need another mapping
TC∗ → TA∗. This is a property of the adjoint operator P T . Then S = QP T is an
operator of the type TC∗ → TC∗.

In summary, we have a yield function depending on the back stress Q and the plastic
strain P , such that S = QP T is a stress-like elastic variable that determines the admissible
stresses. The explicit form of the yield function is not stated in this thesis for the finite-
strain case, since it opens the door for technical complications which are not discussed
here. However, we need the yield function for analytical purposes later.

8.3. Plastic Flow
Similar to the small-strain case, the plastic evolution Ṗ is defined via plastic flow rules, cf.
(2.10). Therefore, we use a yield function Φ = Φ(S) for the stress-like variable S = QP T ,
as discussed in the previous section. Recall that the current plastic strain P = P(t) at
time t acts as a constant problem parameter, whereas we consider only the evolution
Ṗ as the plastic quantity of interest, cf. [15]. This idea is used for the yield function Φ
which may depend as well on the fixed P. By Lemma A.3.5, we can express the evolution
of the plastic strain P by a trace-free matrix B, such that Ṗ = BP holds. Hence, the
evolution Ṗ can described by B only, since P itself is known. From now on we switch to
local quantities B = B(x), etc. Following [21, Section 2] and [15, Section 2.2], the flow
rule in the finite-strain setting is given by

B = ṖP −1 = λ∂Φ(S)

where plastic evolution occurs if and only if a critical stress is reached, i.e.,

λ ≥ 0, Φ(S) ≤ 0, λΦ(S) = 0

holds simultaneously. Therefore, we can define the elastic region E from the yield function
Φ by

E := {S : Φ(S) ≤ 0}.
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The following ideas are taken from [21, Section 2]. Similar to Section 3.2, we define a
convex polar function – or dissipation function – corresponding to E by

∆ : sl(d)→ R, ∆(B) := sup
S∈E
⟨B, S⟩, (8.7)

on the tangential space sl(d) = TI SL(d). Note that B = ṖP −1 ∈ sl(d). Applying the
convex analysis Theorem 3.2.2 we have again that

B ∈ NE(S) ⇔ S ∈ ∂∆(B). (8.8)

We want to extract Q from S = QP T in order to have derivative information with respect
to P , cf. (8.3). To this end, we define

∆̂(P, Ṗ ) := ∆(B) = ∆(ṖP −1) (8.9)

to separate the components of B.

Remark 8.3.1. Note that ∆̂ is rate-independent in the sense of Definition 2.2.3, i.e.,
for a time-scaled Q(t) := P (αt) we have Q̇ = αṖ , and therefore ∆̂(Q, Q̇) = α∆̂(P, Ṗ ) for
every α ∈ R. Hence, for a time-scaled input we have a scaled output without changing
the solution path t→ P (t).

A computation similar to the one in Section 8.1 leads to

∂

∂Ṗ
∆̂(P, Ṗ ) = ∂∆(ṖP −1)P −T .

Therefore, from S = QP T and (8.8) we conclude that

S ∈ ∂∆(ṖP −1) ⇔ Q = SP −T ∈ ∂

∂Ṗ
∆̂(P, Ṗ ) (8.10)

is an equivalent form of the flow rule. Together with the original definition of Q in (8.3),
we conclude that

0 ∈ ∂

∂P
Ŵ pl(C, P ) + ∂

∂Ṗ
∆̂(P, Ṗ ) (8.11)

is the final form of the plastic flow in this section.

8.4. Global Formulation
To find a global form of the different components of the sections above a small review of
the necessary ingredients is given. First of all, the unknown quantities over the domain
Ω are given by the deformation field

y : Ω→ Rd
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which assigns each particle x ∈ Ω the new position y(x), and hence defines the deformed
domain by Ωy := y(Ω). Note that y is also implicitly time-dependent. Like in the small-
strain setting, we do not consider any higher derivatives above first-order information,
such that internal inertial forces are not considered. Time is a model parameter defining
the path from the initial state to the deformed domain. This path is also called homotopy.

The other main variable in our model is the field of plastic strains

P : Ω→ SL(d)

that keeps track of the history of the plastic effects. An implicit time-dependence is
assumed too, of course. From y and P the field of elastic strains Fel can be recovered,
and hence the Piola–Kirchhoff stresses T and Σ. Additional internal variables of the
plastic strain are not necessary since only kinematic hardening is considered in this part
of the thesis. Note that the internal variable of the hardening effects are identified by
the plastic strain itself, cf. (2.18). Therefore, the system of unknowns is complete.

So far the energy counting in all presented effects is defined as the plastic energy

(y, P) ↦→ Wpl(∇y, P)

in (8.6). External load controlling the deformation process are not mentioned yet.
Therefore, we introduce a volumetric force density b and a surface force density s

b : Ω→ Rd, s : ∂Ω→ Rd,

acting on the test body and its boundary, respectively. Similar to Section 2.2 in the first
part, the second Piola–Kirchhoff stress Σ (8.1) fulfills

−div Σ = b (8.12)

in Ω. Note that the divergence is understood componentwise. To include the forces b
and s formally into the energetic model, we define the load functional

l(y) :=
∫︂

Ω
b : y dx +

∫︂
∂Ω

s : y dS

acting on the deformation field. To underline the linear behavior and to highlight the
time-dependence, it is sometimes written as a linear functional

⟨l(t), y⟩ :=
∫︂

Ω
b(t) : y dx +

∫︂
∂Ω

s(t) : y dS. (8.13)

Now we have everything at hand to define the global energy

E(y, P) :=Wel(∇yP−1) +Whd(P) + ⟨l(t), y⟩. (8.14)

We can directly derive a first lemma from this energy statement. It arises from the
independence of all plastic components on y, and from the direct connection between
the stress Σ, the hyperelastic energy (7.11) for hyperelastic materials, and the force
equilibrium (8.12).
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Lemma 8.4.1 (Elastic Equilibrium [21, 22]). Let the global energy E in (8.14) depend
smoothly on y. Then a plastic material with a hyperelastic elastic energy fulfills

∇yE(y, P) = 0. (8.15)

The second global statement is the integrated version of the plastic flow (8.11) from
the previous section. The pointwise local inclusion of zero can be integrated, such that

0 ∈ ∂PE(y, P) + ∂Ṗ∆̂(P, Ṗ) (8.16)

holds for the (time-dependent) plastic strain field P. In [21, Section 2] it is shown that a
time integration of the flow rule (8.16) leads to

E(y(0), P(0)) +
∫︂ t

0
⟨l̇(s), y(s)⟩ ds = E(y(t), P(t)) +

∫︂ t

0
∆̂(P(s), Ṗ(s)) ds, (E)

which is called energy balance.

Remark 8.4.2. The energy balance highlights the following fact. The time-dependent
derivative of the load term l̇(s) is a physical work term if integrated in time. Nevertheless,
there is a gap between the energy E at the initial state t = 0 to an arbitrary time point.
This gap is given by the integral over ∆̂. The portion of energy that is lost is called
dissipated energy. If no plastic evolution occurs (Ṗ ≡ 0), and hence ∆̂ ≡ 0, then no
energy is dissipated.

We can derive another statement from (8.15)&(8.16). They are equivalent in terms of
the directional derivative statements

∇yE(y, P)[z] = 0
∇PE(y, P)[D] + ∆̂(P, D) ≥ 0

(8.17)

for each compatible direction (z, D) that does not violate possible boundary constraints
on the deformation field. Whereas the first line is obvious, the second line is not. To
verify the second line, we notice that ∆̂ is 1-homogeneous in the second component (that
is precisely the rate-independence from Remark 8.3.1). From [21, Section 2] we have

⟨∂Ṗ∆̂(P, Ṗ), D⟩ = ∆̂(P, D)

for every compatible D.
A closer look at (8.17) reveals the following. For every fixed P the first condition states

that y is a critical point. This is a necessary condition for a global minimizer of E by
assuming that there is a global minimizer. On the other hand, for a fixed y the second
condition of (8.17) states that for each direction D the decrease of the energy in this
direction must not be larger than the “distance” of P and D given by ∆̂. Note that the
length of D does not matter, since both terms are 1-homogeneous in D.

The form (8.17) holds only information for a fixed point in time. To transform this
onto a solution notion along the whole time axis [0, T ], an integrated version of ∆̂ needs
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to be introduced. As already mentioned in Remark 8.4.2, this is the total dissipation of
the plastic strain solution path t→ P(t). Formally we define the distance between two
plastic strain states P1, P2 ∈ SL(d) by

D(P1, P2) :=

inf
{︃∫︂ 1

0
∆̂(P (s), Ṗ (s)) : P ∈ C1([0, 1]; SL(d)), P (0) = P1, P (1) = P2

}︃ (8.18)

as the length of the shortest differentiable path from P1 to P2 in SL(d) using the metric
∆̂. Since ∆̂ : SL(d) × T SL(d) → R measures objects on sl(d) (the tangential space at
the unit matrix), it is also called a Finsler metric. The global version of this distance
between two plastic strain fields P1 and P2 is naturally given by

D(P1, P2) :=
∫︂

Ω
D(P1(x), P2(x)) dx. (8.19)

Note that D defines a quasimetric in the space of plastic strain fields, since D(P1, P2) =
0 ⇔ P1 ≡ P2, and the triangle inequality holds as an immediate consequence of the
definition by shortest paths. It is only a quasimetric since we cannot assume symmetry,
though. With a global distance function at hand, we can formulate a variant of (8.17)
that detaches from the local point of view of the current P. We formulate the global
energy stability

E(y(t), P(t)) ≤ E(ỹ, P̃) +D(P(t), P̃) (S)

for all deformation fields ỹ compatible to boundary values, and all plastic strain fields P̃.
This complies to the necessary minimization conditions of (8.17).

Remarks 8.4.3.

(i) If the process is purely elastic, we have D ≡ 0, and then (S) is a minimization
problem in y.

(ii) The definition of (S) can be relaxed by allowing the distance of each path from P(t)
to P̃, and not just the shortest one.

At this point, we are able to define the concept of solutions of the finite-strain plasticity
problem. Since the presented system is energy driven, the solutions are called energetic
solutions.

Definition 8.4.4 (Energetic Solution). Let y : [0, T ]× Ω→ R3 be a deformation field
fulfilling possible boundary conditions on ∂Ω, and P : [0, T ] × Ω → SL(d) be a plastic
strain field. Moreover, let y and P fulfill both the energy balance (E) and the global
stability criterion (S) for all t ∈ [0, T ]. Then we call the path t ↦→ (y(t, ·), P(t, ·)) an
energetic solution.
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8.5. Von Mises Dissipation
So far the dissipation function (8.7) was never specified explicitly. A von Mises type
yield function for a norm ∥·∥ on the stress space is proposed in [15, Section 4] in the form

Φ(S) := ∥dev(S)∥ − σ0

for finite-strain mechanics, similar to the small-strain case in Section 2.4.1. The operator
dev denotes the deviator of a matrix. In [21, page 65] the corresponding dissipation
function (8.7) is explicitly given by

∆(ξ) :=
(︂
σ2

0 ∥sym(ξ)∥2F + σ2
1 ∥anti(ξ)∥2F

)︂ 1
2 , (8.20)

with the symmetric sym(ξ) := 1
2

(︂
ξ + ξT

)︂
and the antisymmetric anti(ξ) := 1

2

(︂
ξ − ξT

)︂
parts. This defines a metric on sl(d) if σ0, σ1 > 0.

However, the case of σ1 = 0 is of special interest later on. Unfortunately, in this case

∆sym(ξ) := σ0 ∥sym(ξ)∥F (8.21)

is not a metric on sl(d), since all antisymmetric, trace-free matrices ξ in sl(d) fulfill
∆(ξ) = 0. In the symmetric case there is an explicit form of the dissipation distance
(8.18).
Theorem 8.5.1 (cf. [21, Corollary 6.2] ). For P1, P2 ∈ SL(d), and ∆ = ∆sym, as in
(8.21), we have for the dissipation distance (8.18)

D(P1, P2) = σ0
⃦⃦⃦

log
(︂
δP δP T

)︂ 1
2
⃦⃦⃦

F
, where δP := P2P −1

1 .

Another result of the von Mises dissipation is the invariance under matrix multiplication
from the right. We show the special case of our interest (multiplication with P −1

1 )
Lemma 8.5.2. For P1, P2 ∈ SL(d) and ∆ from (8.20), we have

D(P1, P2) = D(I, δP )

for the corresponding increment defined via δP = P2P −1
1 .

Proof. In order to prove the equality of the above dissipation distances, we consider the
original definition of D in (8.18), and introduce the sets of connecting paths

Π :=
{︂

P ∈ C1(︁[0, 1], SL(d)
)︁
: P (0) = P1, P (1) = P2

}︂
and

δΠ :=
{︂

δP ∈ C1(︁[0, 1], SL(d)
)︁
: P (0) = I, P (1) = δP = P2P −1

1

}︂
.

With these definitions at hand, the transformation T : Π → δΠ, T (P ) := PP −1
1 is

a bijection between these sets. We observe for P ∈ Π(P1, P2), the corresponding
T := T (P ) ∈ δΠ(P1, P2) and any s ∈ [0, 1] that

Ṗ (s)P (s)−1 =
(︁
Ṗ (s)P −1

1
)︁(︁

P (s)P −1
1
)︁−1 = Ṫ (s)T (s)−1

which directly implies equal length of the transformed path induced by the Finsler
metric.
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From the original definition of D in (8.18) it is clear that D is only a distance function
of SL(d) if, and only if, the dissipation function ∆ (8.7) is a metric on sl(d).

In order to keep the distance properties by using the general linear group SL(d)
including antisymmetric components (cf. Section 7.2.2), we assume that σ1 > 0, in the
limit sense that σ1 → 0. Then we may still utilize Theorem 8.5.1 in this case and accept
the resulting model error.

Another possibility is to consider no plastic spin, and thus relying on the symmetric
plastic range SL(d)+

sym (7.8). As mentioned in [22, Remark 4.2.9], we have to redefine
the split of the plastic dissipation functional (8.9) by

∆̂(P, Ṗ ) := ∆
(︂
P − 1

2 ṖP − 1
2
)︂

,

and arrive at another dissipation distance D+
sym defined by the shortest path in SL(d)+

sym.
That special case is analyzed in depth in Section 9.2.1. Nevertheless, the computations
of Section 8.3 yield equivalent results in that case.

8.6. Existence Theory

In this section we investigate sufficient analytical criteria for the existence of energetic
solutions (in terms of Definition 8.4.4) for the global rate-independent finite strain
problem (E)&(S). For convenience, we recall the problem here. We denote by Y the
function space of deformation functions y : Ω × [0, T ] → Rd with respect to possible
boundary values, and by P the function space of plastic strains P : Ω× [0, T ]→ SL(d).
The particular definition of the solution space Q := Y × P is given later. The task is to
find a q = (y, P) : Ω× [0, T ]→ Q, such that,

E(t, y(t), P(t)) ≤ E(t, ỹ, P̃) +D(P(t), P̃) ∀(ỹ, P̃) ∈ Q

E(0, y(0), P(0)) +
∫︂ t

0
⟨l̇(s), y(s)⟩ ds = E(t, y(t), P(t)) +

∫︂ t

0
∆̂(P(s), Ṗ(s)) ds

(S&E)

for each point in time t ∈ [0, T ]. Note that we highlight the explicit time-dependency of
the energy E : [0, T ]×Q → R ∪ {∞}, which is most of the times implicitly assumed.

The main existence result for en energetic solution of the above stated problem is based
on Theorem 4.2.1 in [22]. A list of conditions is given there, which is summarized below.

First of all, we need to specify the solution space Q = Y × P. For the space of
deformation yields Y we simply assume the first-order Sobolev space

y(t) ∈ Y := W
1,pdf

Γ
(︁
Ω,Rd)︁ (8.22)

with d < pdf <∞, and a Dirichlet boundary Γ ⊂ ∂Ω with positive measure. Furthermore,
there are some prescribed boundary values

y|Γ ≡ g.
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Of course, we need weak differentiability to be able to compute the deformation gradi-
ent F = ∇y. The high regularity pdf simply arises from polyconvex materials (cf. Sec-
tion 7.4.2) to be able to integrate the determinant on F which is a polynomial of degree d.
The plastic strain functions are given by

P(t) ∈ P := W 1,pgr (Ω, SL(d)) ∩ Lppl(Ω, SL(d)) (8.23)

with regularity parameters 1 < pgr, ppl <∞. Explicit conditions on these parameters are
to be given later.

The conditions on the energies begin with the hyperelastic elastic energy Wel from
Sections 7.4.1 and 7.4.2. Moreover, Wel is elliptic in the sense that

Wel(Fel) ≥ a + c ∥Fel∥pel
F (8.24)

for a growth rate pel > 1, and constants a ∈ R, c > 0. The additional kinematic hardening
energy Whd from Section 8.2 takes the form

Whd(P, Z) := k1 ∥P∥
ppl
F + k2 ∥Z∥

pgr
F (8.25)

with k1, k2 > 0, and ppl, pgr > 1 This completes the assumption on the plastic energy
parts, as given in (8.6).

The parameters pel and ppl of the energetic quantities need to fulfill the inequality

1
pel

+ 1
ppl

<
1
d

(8.26)

in order to prepare an application of Hölder techniques in the proof of the theorem below.
The other main component is dissipation. In Section 8.4 an abstract dissipation

distance D is introduced, and a specific choice of the von Mises dissipation is given
in Section 8.5. We assume that D is given by a von Mises distance, and that it is a
quasidistance in the classical sense, i.e., D fulfills the triangle inequality, and, further-
more, D(P1, P2) = 0 if and only if P1 ≡ P2. Symmetry of D is not needed.

As far as the external influences are concerned, we rely on the load functional l, as
given in (8.13). We assume that both appearing force fields s and b are sufficiently
smooth, cf. [22, Remark 4.2.5].

Theorem 8.6.1 ([22, Theorem 4.2.1]). Under the assumptions stated above in this
Section there exists an energetic solution (y, P) : [0, T ]→ Y ×P to the rate-independent
system (S&E)

The existence theorem above requires a long list of conditions. As discussed in the
following remarks, some of them may not match practical needs.

Remarks 8.6.2.

(i) Existence of an energetic solution is already ensured under weaker, but more technical
conditions. We avoid these by restricting to certain polyconvex material models and
von Mises dissipation in this thesis. See the original source [22] for more details.
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(ii) The existence Theorem 8.6.1 requires pretty strong regularity and growth assumptions
on the material, especially the inequality (8.26). Classical kinematic hardening (see
Part I, Chapter 3) yields a hardening energy with ppl = 2, that already contradicts
(8.26). Say, we use twice the regularity ppl = 4 for the hardening energy, then we
need pel > 4 in two dimensions (d = 2), and even pel > 12 for d = 3.

(iii) The Mooney-Rivlin energy (7.13) has pel = 2 and is therefore not applicable for
Theorem 8.6.1.

(iv) For the Ogden energy (7.15), pel is given by the lowest exponent pi with αi ̸= 0.
Hence, by (ii) only high exponents are possible in order to comply with Theorem 8.6.1.

(v) Whether or not the von Mises dissipation D defines a qausimetric depends on the
particular choice of the range of the plastic strain and on the inclusion or exclusion
of plastic spin. See Section 8.5 for more details.

Another question that arises in the context of existence is the uniqueness of the solution.
Unfortunately, there are very simple counterexamples indicating that there no uniqueness
results.

Example 8.6.3 (Ambiguity of the Solution in two Dimensions). Here is a sketch of
a counterexample without any actual numerical treatment involved. It is an observa-
tion that probably everyone knows from the real world. Consider a two-dimensional
rod Ω = [0, 10]× [0, 1]. We assume that the material is isotropic, so it has no direc-
tional preference. We also assume for simplicity that the dissipation distance satis-
fies D(I, P) = D(I,−P) (this is actually true for the von Mises dissipation and no plastic
spin, as seen in Theorem 8.5.1). Then, we apply an external force to both ends of the
rod such that we compress the rod. Now there are basically two natural outcomes for the
resulting deformed domain Ωy. Either the rod stays straight and reduces it’s length, or
the rod bends. The situation is visualized in Figure 8.1. In the case that the rod bends,
both the upward and downward bending will result in the same energy, and in the same
dissipation distance to the initial configuration. Therefore, the solution cannot be unique.

Ωy

Ωy

Ωy

Figure 8.1.: Compression test of a rod with multiple possible natural outcomes.
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9.1. Time Discretization
The definition of the global energy stability (S) leads to a natural scheme for a time
discretization. Consider a partition of the time interval [0, T ] into the discrete time
points 0 = t0 < t1 < . . . < tN = T for N ∈ N. Of course, we assume that a suit-
able

(︁
y0, P0)︁ ∈ Y × P is given at the initial time step t0. The idea of a natural discretiza-

tion scheme is that we assume yk−1, Pk−1 to be known for the current time step tk.
Then, regarding the inequality (S), for the current time step tk we want to minimize
the energy E while having to keep the dissipation distance D to the previous plastic
strain Pk−1 small. Therefore, we arrive at the time-discrete minimization problems
below.

Find
(︁
y1, P1)︁, . . . ,

(︁
yN , PN)︁ ∈ Q such that for k ∈ {1, . . . , N} :(︁

yk, Pk)︁ minimizes (y, P) ↦→ E
(︁
tk, y, P

)︁
+D(Pk−1, P) .

(9.1)

The existence of minimizers
(︁
y1, P1)︁, . . . ,

(︁
yN , PN

)︁
can be shown by weaker assump-

tions than the ones we need for Theorem 8.6.1 for the time-continuous case. But, however,
the stated assumptions in Section 8.6 imply the necessary conditions for solution of the
time-increment problem above. Details on the particular conditions are found in [22,
Chapter 2.1.2].

Theorem 9.1.1 ([22, Proposition 2.1.4]). The time-incremental minimization problems
from (9.1) have a solution for any partition of the time interval [0, T ] if the assumptions
of Theorem 8.6.1 are fulfilled.

Similar to the time-continuous problem (S&E) we cannot hope for uniqueness of the
solution, since we can simply repeat Example 8.6.3 from the preceding section.

9.2. Reformulation of the Minimization Problem
In order to attack the minimization problems (9.1) numerically, we will employ several
transformation steps. The goal will be to reach an equivalent formulation without having
to deal with the manifold range of the solution space Q, especially the nonlinear plastic
strain range SL(d). Space discretization and finding proper finite element spaces for
the solution approximations is analytically and numerically easier if we have to deal
with a problem set in a vector space. The canonical vector space corresponding to the
manifold SL(d) is the tangential space at the unit matrix, which is called the Lie algebra
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and is usually denoted by sl(d). Therefore, we want to construct a mapping from sl(d)
to SL(d). This requires slightly different techniques depending on the presence of plastic
spin. Thus, we study both cases separately.

9.2.1. Without Plastic Spin
In the case of no plastic spin, or spinless plasticity, we restrict the plastic range to the
positive definite, symmetric matrices, as already discussed in Section 7.2.2. Recall the
spinless plastic range

P(x) ∈ SL(d)+
sym :=

{︂
A ∈ SL(d) : A is symmetric and positive definite

}︂
.

Inspired by [22, Remark 4.2.9] we introduce the mapping

SL(d)+
sym × T SL(d)+

sym → sl(d)+
sym : (P, ξ) ↦→ P − 1

2 ξP − 1
2

into the tangential space at the unit matrix. See Appendix A.3.2 for more details.
Note that sl(d)+

sym = Sd
0 is the vector space of trace-free symmetric matrices. Using

the mapping above for the von Mises dissipation (cf. Section 8.5) we note that we can
assume σ1 = 0 since anti(ξ) = 0 for all ξ ∈ sl(d)+

sym. Hence,

∆̂(P, Ṗ ) = ∆(P − 1
2 ṖP − 1

2 ) = σ0
⃦⃦
sym(P − 1

2 ṖP − 1
2 )
⃦⃦

F
= σ0

⃦⃦
P − 1

2 ṖP − 1
2
⃦⃦

F

defines a metric, since on SL(d)+
sym

σ0
⃦⃦
P − 1

2 ṖP − 1
2
⃦⃦

F
= 0 ⇔ Ṗ = 0.

Remark 9.2.1. Although it seems more elegant to use the symmetric mapping into sl(d)+
sym

above, we can still keep using the original dissipation metric
⃦⃦

sym
(︂
Ṗ (s)P (s)−1

)︂ ⃦⃦
F

on
the tangential bundle SL(d)+

sym×T SL(d)+
sym, as introduced in (8.9). This way we avoid in-

terfering with the derivation of the energetic system. From the invariance of the Frobenius
norm of the symmetric part under symmetric similarity transformations (Lemma A.4.1)
we can conclude that both choices induce the same metric, i.e.,⃦⃦⃦

sym
(︂
P (s)− 1

2 Ṗ (s)P (s)− 1
2
)︂⃦⃦⃦

F
=
⃦⃦⃦
sym

(︂
P (s)

1
2 P (s)− 1

2 Ṗ (s)P (s)− 1
2 P (s)− 1

2
)︂⃦⃦⃦

F

=
⃦⃦⃦
sym

(︂
Ṗ (s)P (s)−1

)︂⃦⃦⃦
F

.

In order to use Theorem 8.5.1 note that P2P −1
1 is in general not in SL(d)+

sym, even
if P1, P2 ∈ SL(d)+

sym. Therefore, we introduce the symmetric increment operator

δP +
sym = δP +

sym(P1, P2) := P
− 1

2
1 P2P

− 1
2

1 ∈ SL(d)+
sym (9.2)

for two matrices P1, P2 ∈ SL(d)+
sym. We will neglect the arguments since they are usually

clear from the context.
In order to show that Theorem 8.5.1 still holds in SL(d)+

sym we show a small auxiliary
result first that corresponds to Lemma 8.5.2.
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Lemma 9.2.2. For P1, P2 ∈ SL(d)+
sym we have for the

D(P1, P2) = D(I, δP +
sym).

Proof. Similar to the proof of Lemma 8.5.2, we introduce the sets of connecting paths

Π(P1, P2) :=
{︂

P ∈ C1(︁[0, 1], SL(d)
)︁
: P (0) = P1, P (1) = P2

}︂
and

δΠ(P1, P2) :=
{︂

δP ∈ C1(︁[0, 1], SL(d)
)︁
: P (0) = I, P (1) = δP +

sym

}︂
.

Note that we intentionally define the paths in SL(d) since for now we cannot assume
that a minimizing path takes values only in SL(d)+

sym. The corresponding transformation

mapping T : Π(P1, P2)→ δΠ(P1, P2), T (P ) = P
− 1

2
1 PP

− 1
2

1 is again bijective. We observe
for P ∈ Π(P1, P2), the corresponding T := T (P ) ∈ δΠ(P1, P2) and any s ∈ [0, 1] that

Ṫ (s)T (s)−1 = P
− 1

2
1 Ṗ (s)P − 1

2
1
(︁
P

− 1
2

1 P (s)P − 1
2

1
)︁−1 = P

− 1
2

1 Ṗ (s)P (s)−1P
1
2

1 .

Hence the norm of the symmetric part fulfills⃦⃦⃦
sym

(︂
Ṫ (s)T (s)−1

)︂⃦⃦⃦
F

=
⃦⃦⃦
sym

(︂
Ṗ (s)P (s)−1

)︂⃦⃦⃦
F

by invariance under symmetric similarity transformations (see Lemma A.4.1). Therefore,
the dissipation distance is invariant under the transformation T .

Symmetric Dissipation Distance With the properties above at hand we conclude from
Theorem 8.5.1 that

D(I, δP +
sym) = σ0

⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

holds for the shortest path from I to δP +
sym defined on the general group SL(d)! We define

the dissipation distance D+
sym as in (8.18) but only for differentiable paths in SL(d)+

sym.
Since the shortest path is from a subset of the admissible path from D, we get

D+
sym(I, δP +

sym) ≥ σ0
⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

.

Nevertheless, we can show the equality.

Lemma 9.2.3. Let δP ∈ SL(d)+
sym. The von Mises dissipation distance from I to δP +

sym
in SL(d)+

sym is explicitly given by

D+
sym(I, δP +

sym) = σ0
⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

. (9.3)

Proof. Consider the path

P : [0, 1]→ SL(d)+
sym, P (t) := exp(t log(δP +

sym)),
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with connects I and δP +
sym within SL(d)+

sym. From

Ṗ (t) = log(δP +
sym)P (t),

the dissipation distance of this path is given by∫︂ 1

0
σ0
⃦⃦
Ṗ (t)P (t)−1⃦⃦

F
dt =

∫︂ 1

0
σ0
⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

dt = σ0
⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

.

Hence, we also have D+
sym(δP ) ≤ σ0

⃦⃦⃦
log

(︂
δP +

sym

)︂⃦⃦⃦
F

and thus the desired equality.

Global Reformulation With the above reformulations in mind, we can write the global
time-incremental minimization problems (9.1) in the displacement y and in the plastic
increment δP+

sym. To express the next unknown state Pk, we define the inverse increment
operator

I+
sym(P, δP +

sym) := P
1
2 δP +

sym P
1
2 , (9.4)

such that
δP +

sym = P
− 1

2
1 P2P

− 1
2

1 ⇔ P2 = I+
sym(P1, δP +

sym).
As a consequence, each of the minimization problems from (9.1) can be considered in the
equivalent form

Find (yk, δPk) that minimizes E
(︂
yk, I+

sym

(︂
Pk−1, δPk

)︂)︂
+D+

sym(δPk)

and set Pk := I+
sym

(︂
Pk−1, δPk

)︂
,

(9.5)

where we abbreviate δP = δP+
sym for better readability. Note that from Lemma 9.2.3 the

dissipation distance depends only on δP+
sym, and hence the unit matrix as an argument

is dropped in the formulation above.

Tangential Space In the spinless case of plasticity, the lemma below is essential.

Lemma 9.2.4. Let Sd
0 :=

{︂
A ∈ Rd×d : AT = A, trace(A) = 0

}︂
denote the trace-free

symmetric matrices. Then, the canonical matrix exponential

exp : Sd
0 → SL(d)+

sym, exp(A) :=
∞∑︂

i=0

Ai

i!

is bijective.
Proof. First of all, the eigenvalue decomposition of symmetric matrices A = V JV T

into an orthogonal V (containing the eigenvectors) and a diagonal J (containing the
eigenvalues) has the property

exp(A) = V exp(J)V T .

An immediate consequence is that the determinant of the range of the matrix exponential
is always one if the domain is trace-free. Moreover the scalar exponential function is
a bijective mapping from R → (0,∞). Hence, we can prescribe both eigenvalues and
eigenvectors in Sd

0 and SL(d)+
sym at the same time which determines matrices uniquely.
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9.2. Reformulation of the Minimization Problem

This allows to rewrite the global problem (9.5) again in terms of δP+
sym = exp(δB) for

a uniquely determined δB mapping x ∈ Ω to matrices from S3
0:

Find (yk, δBk) that minimizes E
(︂
yk, I+

sym
(︁
Pk−1, exp(δBk)

)︁)︂
+D+

sym(exp(δBk))

and set Pk := I+
sym

(︂
Pk−1, exp(δBk)

)︂
,

(9.6)

where the term exp(δB) is understood pointwise. Now the log term in the dissipation
functional from Lemma 9.2.3 cancels out. In summary, the objective functional of the
time-discrete increment problem at time step tk is given by

L+
sym(yk, δBk) := E

(︂
y, I+

sym
(︁
Pk−1, exp(δBk)

)︁)︂
+ σ0

∫︂
Ω

⃦⃦
δBk(x)

⃦⃦
F

dx . (9.7)

Remarks 9.2.5.

(i) The objective functional L+
sym is defined over the vector space Y × B where the

deformation function space Y is already given in (8.22), and B is a suitable Sobolev
space over Ω with values in Sd

0. Hence, no manifold-valued spaces appear in this
equivalent formulation.

(ii) The reformulated dissipation term of L+
sym corresponds to the von Mises dissipation

in the small-strain case in the first part of this thesis, cf. (3.5).

9.2.2. With Plastic Spin

The case of included plastic spin needs a careful treatment in order to arrive at similar
minimization functionals as seen above in the spinless case. Now we consider the general
matrix group SL(d) for the plastic range, but we stick to the case of von Mises dissipation
(cf. Section 8.5). Therefore, we consider the dissipation function ∆ from (8.20), given by

∆(ξ) :=
(︂
σ2

0 ∥sym(ξ)∥2F + σ2
1 ∥anti(ξ)∥2F

)︂ 1
2 ,

and the resulting dissipation distance D (8.18). As already discussed before, D is only
a quasi-metric on SL(d) (and therefore sufficient for the existence theory) if and only
if σ0, σ1 > 0. On the other hand, unfortunately, we have only an explicit form of the
dissipation distance D in the case of σ1 = 0. This explicit form is given in Theorem 8.5.1
by

D(δP ) = D(I, δP ) = σ0
⃦⃦⃦
log

(︂
δP δP T

)︂ 1
2
⃦⃦⃦

F

for the increment δP = P2P −1
1 between the plastic states P1 and P2 in SL(d). Recall

from Lemma 8.5.2 that we can neglect the dependency on the unit matrix and hence
express D only in the increment δP . For the general case σ1 no explicit expression is
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9. Discrete Problem

known to the author. However, an implicit form of the dissipation function is given in in
[21, page 86]. If we take the full Frobenius norm (σ0 = σ1) in (8.20), then we have

Dσ1=σ0(δP )

= min
{︂

σ0 (∥S∥2F + ∥A∥2F )
1
2 : ST = S, AT = −A, δP = exp(S −A) exp(2A)

}︂
.

(9.8)

Lemma 9.2.6. If we assume that the plastic increment δP is symmetric, then we have

D(δP ) = σ0 ∥log (δP )∥F

independent of σ1 > 0.

Proof. From the implicit formula (9.8), we see that S = log(δP ) and A = 0 is an
admissible choice and yields

Dσ1=σ0(δP ) ≤ σ0 ∥log (δP )∥F .

The equality is established by considering the case σ1 = 0. In this case the equality follows
from Theorem 8.5.1. However, for a fixed σ0 and an arbitrary σ1 > 0 the dissipation
function fulfills

∆σ1>0(ξ) ≥ ∆σ1=0(ξ),

and therefore,
Dσ1>0(δP ) ≥ Dσ1=0(δP ).

This shows that S = log(δP ) and A = 0 is indeed the optimal choice.

Symmetric Increments Lemma 9.2.6 states that symmetric plastic increments are
favorable, since we have an explicit expression of the dissipation distance in this case. In
the following we want to motivate why assuming that δP is symmetric can be justified
in practice.

Let the two plastic strain states P1 and P2 in SL(d) be close to each other. Then, the
increment δP = P2P −1

1 is close the unit matrix. In other words, we can assume that

∥δP − I∥F = ε

for a small ε > 0. From orthogonality of the symmetric part sym(δP ) and the antisym-
metric part anti(δP ) of the plastic increment we have

∥δP∥2F = ∥sym(δP )∥2F + ∥anti(δP )∥2F .

The norm is the antisymmetric part of δP is small since

∥anti(δP )∥F = 1
2

⃦⃦⃦
δP − δP T

⃦⃦⃦
F

= 1
2

⃦⃦⃦
(δP − I)− (δP − I)T

⃦⃦⃦
F

≤ 1
2
(︂
∥δP − I∥F +

⃦⃦⃦
(δP − I)T

⃦⃦⃦
F

)︂
= ∥δP − I∥F = ε.
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9.2. Reformulation of the Minimization Problem

On the other hand, the norm of the symmetric part fulfills

∥sym(δP )∥2F = ∥δP∥2F − ∥anti(δP )∥2F ≥ 1− ε2,

since δP ∈ SL(d) has at least one singular value greater or equal to one. Therefore, we
can assume that δP is symmetric if we consider small increment steps in the time-discrete
problem. We formulate the main assumption of the case of included plastic spin:

δP is symmetric in the time-discrete problem formulation. (9.9)

Since we assume that δP ≈ I, we can also conclude that we have positive definiteness,
i.e.,

δP ∈ SL(d)+
sym.

In order to investigate the consequences of this assumption, we introduce the inverse
increment operator

I(P, δP ) := δP P, (9.10)

which is used to recover the current plastic strain from the increment, i.e,

P2 = I(P1, δP ) ⇔ δP = P2P −1
1 .

Note that symmetry of the plastic increment δP does not in imply symmetry of the
plastic strain itself since products of symmetric matrices are generally not symmetric.
Therefore, we are not in the case of spinless plasticity.

With the above stated assumptions at hand, we can reformulate the time-incremental
minimization problem in terms of the plastic increments.

Find (yk, δPk) that minimizes E
(︂
yk, δPk Pk−1

)︂
+D(δPk)

and set Pk := δPk Pk−1.
(9.11)

Since the space of unknowns of the minimization problems is now the same as in the
spinless case, we can utilize Lemma 9.2.4 to express δP bijectively by a field of symmetric,
trace-free matrices δB. Then, the minimization takes place again in a vector space
setting, and we arrive at the global problem similar to (9.6)

Find (yk, δBk) that minimizes E
(︂
y, exp(δBk) Pk−1

)︂
+D(exp(δBk))

and set Pk := exp(δBk)Pk−1
(9.12)

By Lemma 9.2.6 the exp and the log terms cancel out in the explicit dissipation form.
This leads to the objective functional at time step tk

L(yk, δBk) := E
(︂
yk, exp(δBk)Pk−1

)︂
+ σ0

∫︂
Ω

⃦⃦
δBk(x)

⃦⃦
F

dx . (9.13)

Note that the Remarks 9.2.5 also apply for L.
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Nonsymmetric Plastic Increments A nonsymmetric plastic increment δP does not
allow the reformulation in the tangential space of symmetric, trace-free matrices as
described above. Nevertheless, we can still take advantage of the cancellation of exp
and log in the dissipation distance by assuming that σ1 = 0 in the von Mises dissipation
(8.20). By doing so we lose the quasidistance properties of the dissipation distance D,
and thus sufficient existence conditions for the energetic solution. In certain applications,
however, this may not have a negative effect. Instead of considering the tuple (y, δP)
in the increment problems (9.11), we consider the triple (y, δP, δL), where δP is a
matrix field of symmetric, positive definite matrices, and δL is a matrix field of rotations
in SO(d), keeping track of the orthogonal parts of the plastic increment. We use that
polar decomposition

δL δP
is always well-defined and we can represent all matrix fields in SL(d) by this split.

We can again go back to the space of trace-free, symmetric matrices Sd
0 and arrive at

the objective functionals

L̃(yk, δBk, δLk) := E
(︂
yk, δLk exp(δBk)Pk−1

)︂
+ σ0

∫︂
Ω

⃦⃦⃦
δBk(x)

⃦⃦⃦
F

dx .

The main difficulty of this form is an efficient space discretization of the manifold-
valued δLk function. In this thesis we concentrate in the following on the first two
presented objective functionals L+

sym (9.7) and L (9.13) only.

9.3. Space Discretization
The global increment problems (9.6) and (9.12) will be discretized in space by finite
element methods. The resulting objective functionals (9.7) and (9.13) depend on three
functions over Ω that need to be discretized. There is the deformation field y, the
tangential plastic increment δB with values in Sd

0, and the previous plastic strain Pk−1

with values in SL(d). We consider a conforming triangulation T of the domain Ω by a set
of m geometric elements T1, . . . , Tm ∈ T . We denote by n the number of vertices v1, . . . , vn

of the resulting grid.

9.3.1. Discrete Function Spaces
Deformation Field The first function to be discretized is the displacement field y : Ω→ Rd

that is given as a first-order Sobolev function from the function space Y (8.22). Hence,
it is canonical to use first-order Lagrange finite elements for an approximation yh of y.
To this end, consider the nodal basis {ϕi}i=1,...,n in d dimensions with the Lagrange
property ϕi(vj) = δij for the vertices vj of the grid. Then the discrete approximation of
the deformation field is given by

yh(x) :=
n∑︂

i=1

d∑︂
j=1

ȳij ϕi(x) ej (9.14)
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9.3. Space Discretization

with canonical unit vectors ej ∈ Rd and real-valued coefficients ȳij .

Tangential Plastic Increment The tangential plastic increment δB : Ω→ Sd
0 is also a

first-order Sobolev function since we need derivative information for the chain rule in
the gradient term in the hardening functional (cf. Section 8.2). Therefore, first-order
Lagrange finite elements are again suitable. A basis of Sd

0 is given in [30, Section 3.2] by

B1 := 1√
2

(︄
1 0
0 −1

)︄
, B2 := 1√

2

(︄
0 1
1 0

)︄
of the two dimensional space S2

0 if d = 2. For the case d = 3, the basis matrices for the
five-dimensional space S3

0 are

B1 := 1√
2

⎛⎜⎝1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , B2 := 1√
6

⎛⎜⎝1 0 0
0 1 0
0 0 −2

⎞⎟⎠ ,

B3 := 1√
2

⎛⎜⎝0 1 0
1 0 0
0 0 0

⎞⎟⎠ , B4 := 1√
2

⎛⎜⎝0 0 1
0 0 0
1 0 0

⎞⎟⎠ , B5 := 1√
2

⎛⎜⎝0 0 0
0 0 1
0 1 0

⎞⎟⎠ .

In general, we have the dimension

dp := d2 + d

2 − 1

for the space Sd
0 , cf. Remark 4.3.1 in the first part of this thesis. The choice of the bases

above forms an orthonormal bases of Sd
0 corresponding to the Frobenius inner product.

Therefore, it defines an isometry between Rdp equipped with the Euclidean norm ∥·∥ 2
and Sd

0 with the Frobenius norm, as⃦⃦⃦ dp∑︂
j=1

ajBj

⃦⃦⃦
F

= ∥a∥2 (9.15)

holds for all a ∈ Rd. In summary, the discrete plastic strain field is represented by

δBh(x) :=
n∑︂

i=1

dp∑︂
j=1

b̄ij ϕi(x) Bj

with scalar coefficients b̄ij .
Some numerical tricks can be applied to evaluate the objective functionals L (9.13)

and L+
sym (9.7). Since first-order Lagrangian shape functions are non-negative, the

dissipation term can be approximated by a lumped sum∫︂
Ω
∥δBh(x)∥F dx ≈

n∑︂
i=1

∫︂
Ω

⃦⃦⃦ dp∑︂
j=1

b̄ij ϕi(x) Bj

⃦⃦⃦
F

dx

=
n∑︂

i=1

∫︂
Ω

ϕi(x) dx
⃦⃦
b̄i

⃦⃦
2 =:

n∑︂
i=1

γi

⃦⃦
b̄i

⃦⃦
2.

(9.16)
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9. Discrete Problem

In this form we separate the block components of the plastic strain. This is a structural
necessity for the TNNMG solver from Section 5.2.

We will also consider the case k2 = 0 in the hardening functional (8.25). In this
case no gradient information is needed. Thus, we can choose zero-order (piecewise
constant) Lagrange finite elements to decrease the number of degrees of freedom of the
fully discrete problem. Hence, consider a zero order basis {θi}i=1,...,m with the Lagrange
property θi|Tj ≡ δij for the grid elements Tj ∈ T . By reusing the bases of Sd

0 from above,
the zero-order discrete approximation of δB is given by

δBh(x) :=
m∑︂

i=1

dp∑︂
j=1

b̄ij θi(x) Bj .

Since zero-order approximations are piecewise constant, and each base function θi has
support only on one grid element, so no lumping of the dissipation as in (9.16) is necessary.
We have the exact sum

∫︂
Ω
∥δBh(x)∥F dx =

m∑︂
i=1

∫︂
Ω

⃦⃦⃦⃦
⃦⃦ dp∑︂

j=1
b̄ij θi(x) Bj

⃦⃦⃦⃦
⃦⃦

F

dx

=
m∑︂

i=1

∫︂
Ω

ϕi(x) dx
⃦⃦⃦
b̄i

⃦⃦⃦
2

=:
m∑︂

i=1
γi

⃦⃦⃦
b̄i

⃦⃦⃦
2

,

where γi = |Ti| is the volume of the grid elements in this case.

Previous Plastic Strain The discretization of the previous plastic strain Pk−1 may need
more advanced methods since it takes values in the nonlinear matrix manifold SL(d). In
the case of zero-order finite elements for δBh, we can simply choose the same zero-order
Lagrange basis {θi} and approximate Pk−1 by

Pk−1
h (x) :=

m∑︂
i=1

P̄ i θi(x)

for SL(d)-valued coefficients P̄ i.
If gradients of the plastic strain are present in the hardening model (k2 > 0), then a

different approach is required. We need to construct a finite element space of weakly
differentiable functions with values in SL(d). Various such spaces have been constructed
in [17] under the name of Geometric Finite Elements. However, the construction and
evaluation of these special finite elements is expensive and complicated in implementation.
Since this is beyond the scope of this thesis, a simpler approach is used.

We use the extrinsic vector space Rd×d of SL(d) for the range of the previous plastic
strain and discretize this vector space by first-order Lagrange finite elements. Hence,
the coefficients correspond to the vertices vj of the grid. On each grid vertex vj we
demand Pk−1

h (vj) ∈ SL(d). From the nonlinear nature of SL(d) an evaluation of Pk−1
h at

an arbitrary point x ∈ Ω returns most likely a value not in SL(d). Hence, we compute

112



9.3. Space Discretization

the orthogonal projection of Pk−1
h (x) onto SL(d) for each evaluation. Therefore, this

method is called projection-based finite element method. Details about how to compute
those projections are found in the Appendix A.3.

A missing numerical details is that the first-order finite element spaces of δBh and Pk−1
h

are generally not compatible. We combine explicit computations of values in SL(d) (by
the matrix exponential) with a projection-based method. In order to avoid complicated
analytical obstacles and implementation issues, we neglect this problem in the hope that
the overall discretization error dominates error quantities arising form this incompatibility.
The update product (9.6) for the next approximated plastic strain Pk

h is then simply
computed at the grid vertices to determine new coefficients.

Gradients of Pk−1
h are not projected for reasons of simplicity. Since these gradients are

only used to regularize the model, we assume that a precise evaluation of the gradients is
not necessary and decide to accept the additional discretization error.

9.3.2. Discrete Plastic Strain Gradients
We still need a proper implementation of the plastic strain gradient for the hardening
energy (8.25). Depending on the underlying plastic strain range this procedure differs
and is formulated for both SL(d)+

sym and SL(d) separately.

Symmetric range SL(d)+
sym The plastic increment between two plastic states P1 and

P2 is given in the form

δP +
sym = δP +

sym(P1, P2) := P
− 1

2
1 P2P

− 1
2

1 ∈ SL(d)+
sym

in (9.2). In order to invert the increment and compute the current plastic strain we need
the operator

I+
sym(P, δP +

sym) := P
1
2 δP +

sym P
1
2

from (9.4). We lift this to the discrete and global level, and replace the plastic increment
by the exponential mapping from the tangential space. The resulting current plastic
strain at time step tk is therefore given by

Ph(x) =
(︂
Pk−1

h (x)
)︂ 1

2 exp
(︂
δBk

h(x)
)︂(︂

Pk−1
h (x)

)︂ 1
2

with the discretized global functions described in the previous section.
The gradient ∇Ph(x) can be expressed by combining the product rule and the chain

rule. It takes the form

∇Ph(x) =∇
(︃(︂

Pk−1
h (x)

)︂ 1
2
)︃

exp
(︂
δBk

h(x)
)︂(︂

Pk−1
h (x)

)︂ 1
2

+
(︂
Pk−1

h (x)
)︂ 1

2∇ exp
(︂
δBk

h(x)
)︂ [︂
∇δBk

h(x)
]︂ (︂

Pk−1
h (x)

)︂ 1
2

+
(︂
Pk−1

h (x)
)︂ 1

2 exp
(︂
δBk

h(x)
)︂
∇
(︃(︂

Pk−1
h (x)

)︂ 1
2
)︃

.
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To compute this numerically, we need the Fréchet-derivative of the matrix square root
and of the matrix exponential.

The Fréchet-derivative of the matrix square root of a matrix A in direction E can be
obtained by setting s(A) := A

1
2 and deriving s(A)2 −A = 0 in direction E. This leads to

the Sylvester-like equation
s(A)X + Xs(A) = E, (9.17)

which has the unique solution X = ∇s(A)[E] ∈ Rd×d if all eigenvalues of s(A) are positive
[18, Sec. B.14.]. This is the case for A ∈ SL(d)+

sym. The square root A
1
2 is also well-defined.

For symmetric A and small d ∈ {2, 3} the problem (9.17) is a linear equation with only
few unknowns, and it can be solved directly. Furthermore, A

1
2 can be computed by the

eigenvalue decomposition of A, which can be computed directly for d ∈ {2, 3}.
The Fréchet-derivative ∇ exp(A)[E] of the matrix exponential of A in direction E can

be computed by evaluating

exp
(︄

A E
0 A

)︄
=
(︄

exp(A) ∇ exp(A)[E]
0 exp(A)

)︄

and extracting the upper right block [18, Sec. 10.6]. The matrix exponential itself is
computed by the Scaling and Squaring Method [18, Sec. 10.3.], which is presented in
Appendix A.5. With these tools at hand, we can numerically compute the gradient∇Ph(x)
at any point x ∈ Ω.

General range SL(d) In the general case, the plastic increment between two plastic
states P1 and P2 is given by

δP = δP (P1, P2) := P2P −1
1 ∈ SL(d)

in (9.10). The resulting current plastic strain at time step tk is here given by

Ph(x) = exp
(︂
δBk

h(x)
)︂
Pk−1

h (x).

The gradient ∇Ph(x) is therefore again given by combining the product rule and the
chain rule. The result is simpler than in the other case above. We get

∇Ph(x) =∇ exp
(︂
δBk

h(x)
)︂ [︂
∇δBk

h(x)
]︂

Pk−1
h (x)

+ exp
(︂
δBk

h(x)
)︂
∇
(︃

Pk−1
h (x)

)︃
.

How we construct the gradient of the exponential function is already given in the other
case above.
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9.3.3. Discrete Minimization Functional
The space discretization of the deformation field yk and the tangential plastic incre-
ment δBk is now complete with the finite element spaces presented above. We arrive at
an algebraic minimization functional

L(w̄) = L(ȳ, b̄) := E
(︂
yk

h, I∗(︁Pk−1
h , exp(δBk

h)
)︁)︂

+ σ0

r∑︂
i=1

γi

⃦⃦⃦
b̄i

⃦⃦⃦
2

(9.18)

in the coefficients w̄ = (ȳ, p̄), and the inverse increment operator I∗ = I (9.10) for the
case of plastic spin, and I∗ = I+

sym (9.4) without plastic spin. The sum term is defined
with r ∈ {n, m}, i.e., either the number of grid vertices n if we approximate the plastic
increment by first-order elements, or the number of grid elements m in the zero-order
case, respectively. The space of the coefficients is simply given by

w̄ = (ȳ, p̄) ∈ RN1 × RN2 = RN

for the total number of deformation coefficients N1 = dn, and the number of plastic
increment coefficients N2 = rdp. Since the finite element spaces of the appearing
unknowns are linear, the coefficient space is too.

Remarks 9.3.1.

(i) The energy term E is smooth since all internal components are differentiable in the
coefficients.

(ii) Nevertheless, we cannot expect convexity of E in the coefficients w̄.

(iii) The dissipation term is precisely the same as in the small-strain fully discrete case
(4.17) without isotropic hardening.
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The discrete objective functional L (9.18) is defined in the space of the coefficients w̄ ∈ RN ,
where N is the total number of unknowns. By the reformulations performed in Section 9.2,
we are able to remove all nonlinearities from the domain space. As a consequence, we
receive a rather complicated structure within L itself. We notice that L has two properties,
both of which complicate the numerical treatment for the minimization. First, L is
nonconvex, which prevents us from using standard Newton-like minimization techniques.
And second, there are nonsmooth components in the dissipation term, which even blocks
the application of first-order gradient methods. To the author’s knowledge, there is
no stable and efficient algorithm for minimizing such functionals with a convergence
guarantee to local minimizers for an arbitrary initial value.

To fill this gap, a Proximal Newton method was developed in collaboration with
Anton Schiela and Bastian Pötzl. In the following, the solver, its main properties and
implementation aspects are presented. Furthermore, the application to the discrete
minimization problems of finite-strain plasticity is given. A great overview of the
development of Proximal Newton methods in recent years, combined with a deep analysis
of the properties given in this thesis, can be found in the article [26]. In a follow-up
article [25] we improve the Proximal Newton method by introducing inexactness criteria,
which are briefly given in Section 10.4. The main statements of this chapter, as well as a
majority of the notation, are taken from these two articles.

10.1. General Setting
The Proximal Newton method is designed to solve composite minimization problems of
the form

min
x∈X

F (x) := f(x) + g(x). (10.1)

The minimization problem is defined on a real Hilbert space (X, ⟨·, ·⟩X) with the cor-
responding scalar product. We have the induced norm ∥v∥X =

√︁
⟨v, v⟩X and the dual

space X∗. In the minimization problem above the functions f, g : X → R ∪ {∞} take
different roles.

The first component f is called the smooth part of the objective functional F . To
ensure that the steps in the following sections are well-defined we demand at least
that f ∈ C1(X), and that the first derivative is Lipschitz-continuous. Moreover, we
assume that for each x ∈ X there is a linear mapping Hx : X → X∗ with an upper bound

∥Hx∥X→X∗ ≤M

117



10. The Inexact Proximal Newton Method

of the operator norm for some M > 0. Furthermore, we demand an ellipticity constraint

(Hxv)(v) ≥ κ1(x) ∥v∥2X ∀v ∈ X

with κ1(x) ∈ R depending on x ∈ X. We want to emphasize that κ1(x) can take
negative values. Additionally, we demand that the mapping Hx is connected to f by the
semi-smoothness condition⃦⃦

f ′(y)− f ′(x)−Hx(y − x)
⃦⃦

X∗ = o(∥y − x∥X) ∀x, y ∈ X. (10.2)

Remark 10.1.1. Consider a twice continuously differentiable f ∈ C2(x) and choose
Hx := f ′′(x). If there is a lower bound m ∈ R independent of x ∈ R, s.t.,

(Hxv)(v) ≥ m

for every x, v,∈ X, then f satisfies the properties stated above.

In contrast to f the second component g is not assumed to be differentiable. Therefore,
we call g the nonsmooth part of F . We only demand that g is lower semi-continuous and
satisfies a convexity bound of the form

g(sx + (1− s)y) ≤ sg(x) + (1− s)g(y)− κ2
2 s(1− s) ∥x− y∥2X

with a κ2 ∈ R. Note that negative values of κ2 extent the classical notion of convexity,
whereas g is called strong convex for a positive κ2.

However, for a fast local convergence result, we assume that κ1(x) + κ2 > 0 near
optimal solutions of (10.1), cf. [26, Theorem 1].

10.2. Proximal Newton Steps
The Proximal Newton method is an iterative method for solving the minimization problem
(10.1). Consider an arbitrary initial iterate x0 ∈ X. Then one Proximal Newton step
consists of two main parts, as described below.

10.2.1. Second-Order Model Problems
In order to find the next iterate, we reduce the complexity of the original minimization
problem. Therefore we replace the smooth part f around x in (10.1) by a second-order
model. Since we have no convexity properties of f at hand, we regularize the second-order
model by an additional quadratic regularization term ω

2 ∥δx∥2X with a given weight ω ≥ 0.
A similar replacement of g is not possible due to the nondifferentiability. Hence, the
descent of the value in g is given directly. The resulting second-order minimization
functional λx,ω : X → R is given by

λx,ω(δx) := f ′(x)δx + 1
2(Hxδx)(δx) + ω

2 ∥δx∥2X + g(x + δx)− g(x). (10.3)
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We denote the minimizer, providing it exists, by

∆x(ω) := arg minδx∈X λx,ω(δx) . (10.4)

From the convexity and ellipticity bounds on f and g in Section 10.1 we get immediately
the following result:

Lemma 10.2.1 ([26, Proposition 1]). If ω > −(κ1(x) + κ2) a unique solution ∆x(ω)
always exists.

Of course, usually we do not know κ1(x) and κ2 beforehand. Thus, the minimization
(10.4) may fail in practice. In this case, we abort the computation of the Proximal Newton
step and retry with a larger regularization weight. How to choose the regularization
weights is discussed in Section 10.3.

10.2.2. Sufficient Decrease Criterion
In the case that the minimization (10.4) succeeded, we do not update the current iterate x
right away. The increment step ∆x(ω) may not be a descent step, i.e, F (x+∆x(ω)) ≥ F (x)
is possible. Furthermore, even if ∆x(ω) is a decrease step, the decrease may not be
sufficiently large for a global convergence of the Proximal Newton method.

Therefore, an easy to check sufficient decrease criterion was developed in [26]. After
the increment step ∆x(ω) is computed, we check whether

F (x + ∆x(ω))− F (x) ≤ γλx,ω(∆x(ω)) (10.5)

holds for the second-order model λx,ω (10.4) and a fixed decrease parameter γ ∈ (0, 1).
Although it is not at all obvious that this inequality is holds for a sufficiently large
regularization weight ω, it can be shown that it does [26, Lemma 3]. Details are
intentionally omitted because this result requires lengthy and technical calculations.

In summary, if the sufficient decrease criterion is not satisfied, we reject the current
Proximal Newton step and retry with a larger regularization weight ω.

If the sufficient decrease criterion is fulfilled, then the iterate is updated via

xk+1 := xk + ∆x(ω).

Moreover, we update the regularization weight according to the strategies described in
Section 10.3. We stop the iteration, once a termination criterion is satisfied. Possible
such criteria are given in Section 10.5.

10.3. Choice of Regularization Weights
The regularization parameter ω ≥ 0 plays a major role in the formulation of the Proximal
Newton steps. Both the minimization of the second-order model (10.3), and the acceptance
of the sufficient decrease criterion (10.5) are only successful for sufficiently large values
of ω.
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On the other hand, large values of ω lead to small increments ∆x(ω) of the second-order
model (10.3). This is due to the penalization of large increments by the regularization
term ω

2 ∥δx∥2X . So we have to find strategies to keep ω as large as possible to compute
admissible increments ∆x(ω), and at the same time keep ω as small as possible to avoid
too small increments.

10.3.1. A Simple Strategy

A very simply approach is taken in [26] and [25]. In this approach, we start with an
arbitrary initial weight ω > 0. Each time a Proximal Newton step fails (due to the
failing minimization or the descent criterion) we double the value of ω for the next try.
If a step was successful, we want to make ω to decay quickly to zero for a fast local
convergence. Hence, we multiply ω by 2−n, where n is the number of consecutively
successful Proximal Newton steps. This first strategy will be denoted by [ω]1 in the
numerical tests in Chapter 11.

10.3.2. Adaptive Strategies

More sophisticated strategies are currently being investigated in [19] and in Bastian
Pötzl’s dissertation [24]. The main idea is to compare a predicted decrease with the actual
decrease in the values of F from (10.1). For the minimizer ∆x(ω) of the second-order
model (10.3), the actual decrease is given by

ared(x, ω) := F
(︁
x + ∆x(ω)

)︁
− F (x),

while the predicted decrease of the second-order model is

pred(x, ω) := λx,ω
(︁
∆x(ω)

)︁
.

In the case ared ≈ pred, the prediction of the second order model matches the actual
measurements on the original functional F . Therefore, we can assume that a small
weight ω is sufficient for the next step. In the other cases, a penalization routine is
established based on control strategies in other research areas.

One strategy is taken from the step size control in the numerics of ordinary differential
equations [6, Chapter 5.2]. From there, we can define a damping prefactor function that
provides appropriate regularization weights for the next step. In the numerical results,
we will refer to this strategy by the notation [ω]2.

Another approach originates in numerical schemes of semi-smooth Newton methods
[33]. In this approach, we want to reach ared ≈ pred in the next step, so we assume
equality in the sufficient decrease criterion (10.5) and rearrange it for ω. This third
strategy is denoted by [ω]3 in the numerical results.

Another advantage of these more sophisticated strategies is that we do not need
to distinguish whether the sufficient decrease criterion (10.5) is satisfied or not. We
can can prove that they increase or decrease the regularization weight appropriately.
Unfortunately, introducing more details about these strategies opens a new topic unrelated
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to the rest of this thesis and is therefore intentionally omitted. For a comprehensive
introduction and numerical realization of [ω]2 and [ω]3, we encourage the reader to take
a closer look at [24].

10.4. Inexactness Criteria
Solving the second-order model problem (10.3) is generally nontrivial. Although the
smooth part f is replaced by a quadratic approximation, it is still a nonsmooth optimiza-
tion problem due to the nonsmooth part g. Special solvers are necessary to treat those
kind of problems, as already seen in the first part of this thesis in Chapter 5.

A current drawback of the current form of the Proximal Newton method is that
it states that ∆x(ω) is a minimizer, so it is computed with numerical exactness. To
overcome the problem of time-consuming computation of numerically exact solutions, we
introduce certain inexactness criteria for the solver of the second-order model problems
(10.3). These inexactness criteria reduce the wall time of solving the second-order model
problems while preserving convergence results.

A detailed overview of the derivation of these criteria can be found in [25], resulting from
a collaboration with Bastian Pötzl and Anton Schiela. In general, we need to preserve
two properties: Local convergence near the minimizer ∆x(ω), and global convergence far
from the minimizer.

10.4.1. Local Criterion
Local convergence is ensured by a relative error criterion. Therefore, let ∆s(ω) denote
the current iterate of the inner solver of the second-order model problems (10.3). In the
case of a converging solver we have ∆s(ω)→ ∆x(ω). The local convergence criterion is
said to be satisfied when

∥∆x(ω)−∆s(ω)∥X
∥∆x(ω)∥X

≤ η (10.6)

applies to a parameter η ∈ (0, 1). This criterion is generally of an analytical nature, since
we do not know the exact minimizer ∆x(ω). Nevertheless, the application of certain
algorithms, such as TNNMG (Section 5.2), allows us to evaluate (10.6) in practice, cf.
Section 10.6.4. A necessary condition of the parameter η is that we need η → 0 during
the progressing computation of Proximal Newton steps. In [25], a simple choice is

η = qk,

is considered, where k is the number of the current Proximal Newton iteration and q ∈ (0, 1)
can be chosen as a problem parameter.

10.4.2. Global Criterion
Global convergence can be preserved if the decrease F (x + ∆s(ω))− F (x) of the inexact
Proximal Newton step is below the corresponding decrease of another converging method.
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Of course, this only makes sense if each iteration step of the other method is easier to
compute than a Proximal Newton step. A natural choice is a Proximal Gradient method,
where we use first-order model problems, such as (10.3), just without the second-order
term (Hxδx)(δx). Unfortunately, even such first-order problems are as difficult to solve
as the original second-order problem.

One solution of this was to introduce a subgradient model of F given by

λµ
x,ω̂(δx) := f ′(x)δx + µ δx + ω̂

2 ∥δx∥2X ,

where µ ∈ ∂g(x) is a (theoretically arbitrary) Fréchet-subderivative of g at x. For a
sufficiently high regularization weight ω̂ this has a minimizer ∆x(ω̂)µ. The subgradient
model can be minimized efficiently since it is a quadratic problem with a scaled fixed
quadratic part. The resulting global convergence criterion is then given by the inequality

λx,ω
(︁
∆s(ω)

)︁
≤ λµ

x,ω̂

(︁
∆xµ(ω̂)

)︁
, (10.7)

where we compare the current decrease in the second-order model problem (10.3) with the
decrease in the subgradient model problem. In [25] a necessary value of the corresponding
regularization weight of the subgradient method is derived by

ω̂ = −∥f
′(x) + µ∥2X∗

2λx,ω
(︁
∆s(ω)

)︁ , (10.8)

where numerical tricks can be used to efficiently evaluate this dual norm term. Another
crucial property is that

ω̂ < ω̂max (10.9)

for some large algorithmic bound ω̂max > 0. To keep ω̂ small in practice, we use a
subgradient µ that makes ∥f ′(x) + µ∥X∗ small. If the subdifferential of the nonsmooth
part g has a certain structure that we can use, then an optimal µ can be found.

10.5. Convergence Properties
The convergence results presented here cover both the case of the numerically exact
minimization of the second-order model problems (10.3), as well as the inexact solution
presented in Section 10.4. If we consider inexact solutions and both the local condition
(10.6) and the global conditions (10.7)&(10.9) are satisfied, then we set

∆x(ω) := ∆s(ω)

to be the inexact minimizer of the second-order model (10.3).
To investigate analytical and numerical convergence, a closer look is taken at the

sufficient decrease criterion (10.5). This criterion is used to decide whether or not to
accept a proximal Newton step. On the left side we have a direct difference of the function
values

F
(︁
x + ∆x(ω)

)︁
− F (x).
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In practice, this suffers from numerical cancellations, especially as the increments ∆x(ω)
become smaller. On the right hand side of (10.5) we have

γλx,ω
(︁
∆x(ω)

)︁
,

which also suffers from numerical cancellations in the second-order model (10.3). There-
fore, this criterion is not suitable near a minimizer.

To improve this situation, we are currently experimenting with the criterion

[︁
f ′(︁x + ∆x(ω)

)︁
− f ′(x)−Hx

(︁
∆x(ω)

)︁]︁
∆x(ω) ≤ 1− γ

2 ω ∥∆x(ω)∥2X

as a more stable alternative to (10.5) when we are close to convergence of the proximal
Newton method. We are able to show that this criterion is eventually satisfied for a
sufficiently large ω.

The Proximal Newton iteration stops when the increment ∆x(ω) and the regularization
weight become small. Regarding inexactness, the local convergence parameter η (10.6)
should also be small to guarantee accurate solutions at the local minima of F . To combine
these considerations, we use the criterion

1 + ω

1− η
∥∆x(ω)∥X ≤ ε (10.10)

for some ε > 0. We set η = 0 in the case of numerically exact minimization of the
second-order model problems (10.3).

We are finally able to establish the global convergence result of the Proximal Newton
method:

Theorem 10.5.1 ([26, Theorem 2]). Let all assumptions in Section 10.1 be satisfied.
Moreover, the second-order problems in Section 10.2 are solved either exactly or inexactly,
so that in the latter case the local and global criteria of Section 10.4 are satisfied. If
each Proximal Newton step satisfies the sufficient decrease criterion (10.5), then all
accumulation points of the sequence of iterates xk generated by the Proximal Newton
method are stationary points of the problem (10.1).

Remark 10.5.2. The requirements of Section 10.1 are automatically met if we have the
following setting:

(i) The objective functional F has a global minimum.

(ii) The smooth part f is twice continuously differentiable with a lower ellipticity bound
given in Remark 10.1.1.

(iii) We use the Hessian matrix f ′′(x) for the linear operator Hx.

(iv) The nonsmooth part g is convex with κ2 = 0.
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10. The Inexact Proximal Newton Method

10.6. Application to Finite-Strain Plasticity

Recall the fully discrete minimization problem (9.18)

L(w̄) = L(ȳ, b̄) := E
(︂
yk

h, I∗(︁Pk−1
h , exp(δBk

h)
)︁)︂

+ σ0

r∑︂
i=1

γi

⃦⃦⃦
b̄i

⃦⃦⃦
2

.

Note that the domain of L is the space of coefficients in RN . The Proximal Newton
method can be defined directly on the space RN , since it is a Hilbert space. However,
this leads to grid-dependent results. For each refinement of the grid, the basis and the
underlying Hilbert space of the method change. Therefore, we define our method directly
on the Lagrange finite element space

Qh = Yh × Bh.

Here, Yh is the first-order Lagrange space of the deformation field, and Bh the Lagrange
space for the tangential plastic increment. The order of the latter is zero or one, depending
on the gradient regularization of the plastic strain in the hardening energy. In any case,
the product space Qh is a subspace of an H1 space and inherits a canonical scalar product.
Therefore, it is a Hilbert space and suitable for the Proximal Newton method.

We can identify a function in Q by the coefficients w̄ = (ȳ, b̄). Thus, we minimize (9.18)
in the coefficients. Nevertheless, we use the norm ∥·∥X of the finite element space X = Qh

for the regularization term of the Proximal Newton steps.
The smooth part of (9.18) is given by

f(w̄) := E
(︂
yk

h, I∗(︁Pk−1
h , exp(δBk

h)
)︁)︂

,

where we use the linear mappings

ȳ ↦→ yk
h(ȳ), b̄ ↦→ δBk

h(b̄)

for the coefficients w̄ = (ȳ, b̄) into the finite element spaces.
We conclude that f is at least twice continuously differentiable, since it is a combination

of a number of smooth functions. First, there is the linear mapping from the coefficients w̄
into Lagrange finite element spaces Qh = Yh ×Ph. As an absolutely convergent power
series, the matrix exponential is also a smooth function. Moreover, the computation of
the inverse is well-defined in SL(d), and the derivatives of the inverse can be expressed
explicitly, as already considered in (8.4). The same approach leads to the second derivative.
Finally, the elastic energies are polyconvex (Section 7.4.2) with smooth functions W .
Therefore, we can also assume differentiability.

The nonsmooth part is given by

g(w̄) := σ0

r∑︂
i=1

γi

⃦⃦⃦
b̄i

⃦⃦⃦
2

, (10.11)
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which is obviously convex in w̄, since the Euclidean norm is, and all appearing coefficients
are positive. We can skip the formulation in the finite element space Bh here, since the
basis was chosen to be isometric to the coefficient space, cf. (9.15).

In summary, by Remark 10.5.2, all requirements for the application of the Proximal
Newton method are met.

10.6.1. Solving Second-Order Subproblems with TNNMG

From the special form of the nonsmooth part (10.11), we see similarities to the nonsmooth
part of the small-strain plasticity objective functional (4.17) with kinematic hardening
only. In both cases, the nonsmooth norm terms have the same block-separable structure.
Moreover, the second-order problem (10.3) takes the form

λ(δw̄) = quad(δw̄) + g(w̄ + δw̄). (10.12)

with a quadratic and a nonsmooth part. The quadratic part arises from the second-order
approximation of f at w̄ and the norm regularization term ω

2 ∥wh(δw̄)∥2X . Note that this
minimization functional is almost the same as in the small-strain case (4.17). However,
there are two notably differences.

The first difference is an additional shift by w̄ in the nonsmooth part, which can be
circumvented by shifting the solution space.

The second difference is the non-explicit form of the quadratic part. In the small-
strain case an explicit matrix A (4.12) is constructed directly form the finite element
space. However, in (10.3) the quadratic part is given by the bilinear form H + ω

2 R,
where H and R are the representations of f ′′(w̄) and the regularization term ∥wh(δw̄)∥2X ,
respectively, in the finite element coefficient basis.

We can assume that the second-order problems are strongly convex and coercive for a
sufficiently large regularization weight ω. Therefore, as given in Section 5.2 in the first
part of this thesis, all the requirements are met for the TNNMG algorithm.

The application of TNNMG is almost the same as given in the first part of this thesis.
There is only one new task we need to take care of. It is the exact solution of the
nonlinear local smoothing steps of TNNMG, as given below.

10.6.2. Local Problems

In the nonlinear local smoothing step of TNNMG we minimize the functional λ (10.12)
consecutively in the block components of the solution vector δw̄ = (δȳ, δb̄). For a block
component δȳi of the deformation part δȳ, we consider a minimization problem in d
dimensions. For a tangential plastic strain component δb̄i, we consider the corresponding
trace-free symmetric matrix Bi which is given in dp = d(d + 1)/2 − 1 dimensions,
cf. Remark 4.3.1.

Local deformation minimization The local minimization problem for a deformation
block is quadratic, because the nonsmooth part g of the functional λ (10.12) is independent
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of the deformation. The problem can be expressed by a matrix Hii ∈ Rd×d and a
vector bi ∈ Rd, s.t.,

δȳi = arg minz∈Rd

{︃1
2zT Hiiz − bT

i z

}︃
.

The solution is given by δȳi = H−1
ii bi if Hii is an s.p.d. matrix. The symmetry of Hii

is always given, since H is a restricted Hessian matrix plus the regularization matrix.
There may be a lack of positive definiteness if the regularization weight was too small. In
this case, the functional λ (10.12) is not strongly convex and violates the requirements of
TNNMG. Therefore, the Proximal Newton step is rejected and a larger regularization
weight is required. See Section 10.3.

Local plastic strain minimization The case of local minimization problems in a tan-
gential plastic block component is more involved. The block components do not couple
because the nonsmooth part of the minimization functional λ is block-separable. There-
fore, we can express the local minimization problem by a matrix Hii ∈ Rdp×dp , a
vector bi ∈ Rdp and the internal shift by the previous Proximal Newton iterate w̄i ∈ Rdp ,
s.t.,

δb̄i = arg minz∈Rdp

{︃1
2zT Hiiz − bT

i z + σ0γi ∥w̄i + z∥2
}︃

.

The prefactor σ0 is the yield stress and γi is the volume of the Lagrange shape functions,
as given in Section 9.3.1. We can transform the problem by shifting by w̄ and setting
ci := bi + Hiiw̄i to obtain

δb̄i = arg minz

{︃1
2zT Hiiz − cT

i z + σ0γi ∥z∥2
}︃

. (10.13)

We solve the nonlinear problem (10.13) by assuming that Hii is an s.p.d. matrix. If it
is not, the requirements of TNNMG are not met. Therefore, we reject this Proximal
Newton step and start over with a larger regularization weight ω.

Lemma 10.6.1. Let Hii ∈ Rdp×dp an s.p.d. matrix, ci ∈ Rdp, and σ0γi ≥ 0. Then the
following statements are equivalent:

(i) ∥ci∥2 ≤ σ0γi,

(ii) 0 = arg minz

{︂
1
2zT Hiiz − cT

i z + σ0γi ∥z∥2
}︂

.

Proof. From the assumptions on Hii and σ0γi we conclude the existence of a unique
minimizer.

“(i)⇒ (ii)” Since the problem is convex, we show that the directional derivative from
zero in an arbitrary direction d is non-negative which is a sufficient condition for the
minimizer. Let d ∈ Rdp \ {0}. Then we have for

Li(z) := 1
2zT Hiiz − cT

i z + σ0γi ∥z∥2 (10.14)
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that
∇Li(0)[d] = −cT

i d + σ0γi ∥d∥2 .

From cT
i d ≤ ∥ci∥2 ∥d∥2 and from σ0γi ≥ ∥ci∥2, we conclude that

∇Li(0)[d] ≥ −∥ci∥2 ∥d∥2 + σ0γi ∥d∥2 = (σ0γi − ∥ci∥2) ∥d∥2 ≥ 0.

Hence, zero is the minimizer.
“(ii)⇒ (i)” If ci = 0 the statement (i) is true. Therefore, assume ci ̸= 0. From (ii), we

have
0 ≤ ∇Li(0)[d] = −cT

i d + σ0γi ∥d∥2
for all d ∈ Rdp . Choosing d = ci/ ∥ci∥2 yields

0 ≤ −∥ci∥2 + σ0γi ⇔ ∥ci∥2 ≤ σ0γi.

The corner case of ci = 0 is handled by choosing an arbitrary d ̸= 0.

Now we dive deeper into the case ∥ci∥2 > σ0γi. From the lemma above, we know that
in this case the unique minimizer z∗ is not zero. Therefore, Li (10.14) is differentiable
around z∗, and

0 = ∇Li(z∗) = Hiiz
∗ − ci + σ0γi

z∗

∥z∗∥2
is a sufficient condition for the minimizer. Solving this low-dimensional nonlinear system
is surprisingly difficult. To find z∗, we perform a damped Newton iteration. For a given
initial value z0 the iteration step is

zk+1 = zk + αkdk, (10.15)

with
dk := −

(︂
∇2Li(zk)

)︂−1
∇Li(zk),

where

∇2Li(zk) = Hii + σ0γi

∥zk∥2
−

σ0γi zk
(︁
zk
)︁T

∥zk∥32
.

The Armijo damping parameter is chosen as αk = max{2−l, l ∈ N0}, s.t.,

Li(zk + αkdk) ≤ Li(zk) + ραk∇Li(zk)T dk

for a safety parameter ρ = 10−4.

Lemma 10.6.2. The direction of steepest descent of Li at zero is ci, i.e.,

ci = arg mind ̸=0
∇Li(0)[d]
∥d∥2

.

Furthermore, the minimum of Li restricted to the line {αci : α ∈ R} is obtained at

α := ∥ci∥22 − σ0γi ∥ci∥2
cT

i Hiici
.
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Proof. Since the Euclidean norm is positive 1-homogeneous the directional derivative of
Li at zero in direction d is given by

∇Li(0)[d]
∥d∥2

= −cT
i d

∥d∥
+ σ0γi,

which is minimized by any multiple of ci. Since ci is a descent direction, we know that
α > 0. The minimization on the line {αci : α ∈ R} reads

min
α∈R

Li(αci) = min
α∈R

1
2α2cT

i Hiici − α ∥ci∥22 + ασ0γi ∥ci∥2 ,

which is smooth in the variable α. So, for the minimizer α∗ we have

α∗ cT
i Hiici = ∥ci∥22 − σ0γi ∥ci∥2 .

Remark 10.6.3. In practice the block component z0 := ∥ci∥2
2−σ0γi∥ci∥2
cT

i Hiici
ci is a good initial

value for the damped Newton iterations.

Lemma 10.6.4. Let z0 := ∥ci∥2
2−σ0γi∥ci∥2
cT

i Hiici
ci and Hii be s.p.d.. Then the damped Newton-

step (10.15) is always well-defined.

Proof. First, we show that ∇2Li(zk) is s.p.d. Let v ∈ Rd \ {0}. Then we have

vT∇2Li(zk)v = vT Hiiv + σ0γi ∥v∥22
∥zk∥2

− σ0γi(vT zk)2

∥zk∥32
.

Since (vT zk)2 ≤ ∥v∥22
⃦⃦
zk
⃦⃦2

2 and σ0γi > 0, we have

vT∇2Li(zk)v = vT Hiiv ≥ 0.

Hence, we even have a uniform ellipticity bound by the smallest eigenvalue of Hii. Second,
we show that zk ̸= 0 for all k, i.e., ∇Li(zk) can be constructed. This follows directly from

Li(z0) = −

(︂
∥ci∥22 − σ0γi ∥ci∥2

)︂2

2cT
i Hiici

(∥ci∥2>σ0γi)
< 0 = Li(0),

and that the sequence of damped Newton Steps with Armijo damping always produces a
descending energy sequence. Therefore, zk = 0 will never be reached.

Convergence of the Newton method with Armijo damping is shown in Lemma A.6.3.
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10.6.3. Automatic Differentiation

In the application of the Proximal Newton method, the practical problem arises to
compute the explicit form of the second-order subproblem (10.3). For the smooth
part f in the finite-strain plasticity model, we need the Hessian matrix Hx = f ′′(x) and
the gradient f ′(x) in the algebraic matrix or vector form for a given x. Early in the
implementation phase, we decided to use an automatic differentiation tool for this task.
Computing derivatives manually is error-prone and inflexible to implementation changes.

We use the free and open source tool ADOL-C1 in our implementation. ADOL-C can
be used directly with the existing code base and does not require any further adjustments
to the implementation of the smooth energy part f . The only restriction is the use of
generic programming, s.t., each method involved in the evaluation of f supports the data
types of ADOL-C. Then we can directly compute f ′(x) and f ′′(x) at a given point x.

Nevertheless, as will be seen later in the results, a large part of the total wall time of
the Proximal Newton method is caused by the construction of the second-order problems
(10.3). This is not a problem of ADOL-C per se, since even an evaluation of f at a
point x is expensive, since we need projection techniques, cf. Section 9.3.1. Hence, it
takes a multiple of that to compute the gradient, and even more to compute a Hessian
matrix.

10.6.4. Evaluating Inexactness Criteria

The local and global inexactness criteria from Chapter 10 are sufficient conditions for
preserving the convergence results of the Proximal Newton method while solving the
second-order model problems (10.3) inexactly.

However, in practice these criteria are not trivial to check. Especially, the local
convergence criterion (10.6)

∥∆x(ω)−∆s(ω)∥X
∥∆x(ω)∥X

≤ η

is difficult to verify in practice, since the exact solution ∆x(ω) is not known. A study
of the behavior of TNNMG applied to the second-order model problems (10.3) brought
up some interesting insights. To be precise, TNNMG produces a series of corrections δj ,
such that the iterates are given by ∆s(ω) = ∆si(ω) =

∑︁i
j=1 δj . From the convergence

properties of TNNMG (see Theorem 5.2.1), we conclude that ∆si(ω)→ ∆x(ω) as i→∞.
We conjecture from the multigrid nature of TNNMG that there is a constant convergence
rate θ < 1 such that

⃦⃦
δj+1⃦⃦

X ≈ θ
⃦⃦
δj
⃦⃦

X holds after the first few iteration steps. Using the
triangle inequality in a clever manner allows us to formulate a stronger local convergence
criterion in the form⃦⃦

∆x(ω)−∆si(ω)
⃦⃦

X

∥∆x(ω)∥X
≤

θ
1−θ

⃦⃦
δi
⃦⃦

X

∥∆si(ω)∥X −
θ

1−θ ∥δi∥X

!
≤ η .

1https://github.com/coin-or/ADOL-C
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Note that this can be evaluated, since the rate θ can be computed after each TNNMG
iteration. Although the estimate above is pretty generic, it is surprisingly sharp in
practice by a relative factor of 0.8 to 0.9 [25].

In summary, the special structure of TNNMG allows to implement an efficient and
explicit method to verify the local inexactness criterion (10.6). The global inexactness
criteria from Section 10.4.2 are already in an explicit form, hence no modifications are
necessary for the practical application.
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Various numerical tests are considered to test the application of the Proximal Newton
solver to finite-strain plasticity problems. Some choices have to be made since the theory
of this part of the thesis allows for a variety of different models. In detail, besides the
obvious data such as the domain Ω, the boundary values and the external load l(t)
(8.13), we have to choose a hyperelastic and polyconvex material from Sections 7.4.1
and 7.4.2, together with the corresponding material parameters. The plastic behavior is
controlled by the hardening function from Section 8.2 and by the dissipation function,
where we only consider the von Mises dissipation, as given in Section 8.5. Furthermore,
the inclusion of plastic spin needs to be discussed. The case of spinless plasticity, as
presented in Section 9.2.1, can be used numerically without further assumptions. In
contrast, a model with plastic spin (Section 9.2.2) requires a symmetry assumption on
the plastic increment.

On the algorithmic side, the Proximal Newton solver has multiple possible configura-
tions. First, we have to decide whether to solve the second-order model problems (10.3)
numerically exactly, or inexactly. In the latter case, we have to set the parameters η → 0
and ω̂max (Section 10.4). Regardless of the exactness decision, a regularization weight
strategy (Section 10.3) and parameters for the sufficient decrease criterion (10.5) need to
be specified.

Additional flexibility is given for the application of TNNMG as the preferred solver for
the second-order minimization problems (10.3). We can generally solve the appearing
linear correction steps with a direct solver or do that inexactly with single multigrid steps
(cf. Section 5.2 in the first part of this thesis for details). We have seen in the application
of TNNMG to small-strain plasticity problems in Chapter 6 that inexact multigrid steps
are to prefer in terms of effectiveness of the solver. However, problems of the kind (10.3)
may become numerically unstable if the regularization weight is just large enough, or
even too small to make the problem strongly convex. Since we do not know a sufficient
value of the regularization weight beforehand, it can be advantageous to use direct linear
solvers in TNNMG.

In summary, we have a lot of degrees of freedom for testing the Proximal Newton solver
on finite-strain plasticity problems. The goal is to consider as many settings as possible
without losing track of the numerical tests. While preparing this thesis it was observed
that the plastic spin has no effect on the minimization methods in terms of wall time,
iteration numbers and convergence behavior. Therefore, we consider only spinless plastic
strains with values in the symmetric set SL(d)+

sym. As already discussed, the advantage
of this choice is that we do not have to make compromises and further assumptions for
the analytical existence of solutions.
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11.1. Test Parameters
11.1.1. Elastic Energies
We start by defining the precise form of the elastic material laws which are used in the
numerical tests. The first one is the isotropic linear St. Venant–Kirchhoff material (7.12)

WSVK(F ) := λ

2 tr(E)2 + µ ∥E∥2F

with the Green–St. Venant strain tensor E = 1
2(F T F − I). The Lamé parameters

are chosen from [32, page 388] to model an existing steel material. In particular, we
set µ = 1.107438 · 105 N/mm2 and λ = 8.01937 · 104 N/mm2.

The second choice is the nonlinear Mooney–Rivlin model (7.13)

WMR(F ) := a ∥F∥2F + b ∥cof(F )∥2F + c det(F )2 − d ln(det(F )) + e.

All appearing parameters are again measured in N/mm2. To favor volume-preserving
behavior, we set d = 2a + b + c, such that for uniform deformations F = αI, the
energy WMR(αI) is minimal for α = 1. For reasons of comparability we want to have

WMR(F ) = WSVK(F ) +O(∥E∥3F ) (11.1)

for the Mooney–Rivlin material. Recall the computation from Section 7.4.2, especially
(7.14), which can be resolved for the Mooney–Rivlin parameters a, b and c. However,
there is one degree of freedom left open. Therefore, we choose to penalize the determinant
term with a large parameter c = 104 to further support volume-preserving material
behavior. Note that the other parameters a, b and d are directly influenced by this choice.
Increasing c far beyond 104 would cause a or b to become negative, and hence WMR loses
the polyconvexity. For c = 104 we get a = 4.5323475 · 104 and b = 1.0048425 · 104. The
parameter e is set to −3a− 3b− c by (7.14) only to enforce (11.1) in theory. Since it is
constant it does not have an influence on the minimizing algorithms.

Other elastic materials are not considered in the numerical tests. Recall from Re-
marks 8.6.2 that we do not have a guaranteed existence of an energetic solution of the
finite-strain plasticity problem for the energies above. A material compatible with the
existence theory (Theorem 8.6.1) is the Ogden material (7.15). However, this requires
impractical large exponent parameters of the material. Nevertheless, both the St. Venant–
Kirchhoff and the Mooney–Rivlin material, as described above, yield satisfying results in
the numerical tests, despite the lack of a proper existence result.

11.1.2. Kinematic Hardening
The kinematic strain hardening from Section 8.2

Whd(P, Z) := k1 ∥P∥p1
F + k2 ∥Z∥p2

F

is chosen to be a classical linear hardening. Hence, we have for both exponents phd = pgr = 2.
This is similar to the small-strain results, where we have a corresponding exponent of
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two in (4.17). We will not consider other exponents in the tests of this part of the thesis.
However, note that the energetic existence theory (Theorem 8.6.1) requires phd ≫ 2 to
be impractical large.

Of special interest is the case k2 = 0, i.e., no gradient regularization. Although a
positive k2 is also a requirement for the existence theory, no negative consequences in
the practical test are found for small values of k2, or even for k2 = 0. The case of no
gradient regularization has a positive effect on the wall time since the construction of the
discrete plastic strain gradient is expensive (Section 9.3.2).

11.1.3. Other Parameters
All other parameters regarding the domain, the boundary conditions and the loads are
specified in the following sections. Also the yield stress σ0 of the von Mises dissipation,
as given in Section 8.5 is different along the numerical tests. Since we restrict the tests to
the symmetric subset SL(d)+

sym for the plastic strain range, no antisymmetric parts of the
dissipation need to be considered. Hence, we can neglect the antisymmetric parameter σ1.

11.1.4. Solver Settings
Most of the different parameters of the Proximal Newton solver are part of the considera-
tion of the tests in the sections below. Nevertheless, the convergence criteria for each
homotopy step (where a plastic increment is computed) are the same for all tests. We
use the criterion

1 + ω

1− η
∥∆x(ω)∥X ≤ 10−10

to terminate the Proximal Newton iteration, cf. (10.10).
The inner TNNMG solver (recall Section 5.2) for the second-order model problems

(10.3) is fixed to a single exact nonlinear block Gauss–Seidel step for the nonlinear
presmoothing phase. The other parameters are reused from the small-strain von Mises
tests in Chapter 6, since we have to deal with equivalent problems here. For the linear
correction phase we will use either CHOLMOD [3] or a single inexact multigrid step. This
depends on the specific test case. TNNMG can report errors to the Proximal Newton
solver in case that an abnormal behavior is detected and reject the current search for the
minimizer ∆x(ω) of the second-order model problems. In particular, an error is reported,
if

• a nonlinear block Gauss–Seidel step does not find a minimum,

• the linear correction matrix is not positive definite (CHOLMOD has the ability to
report this),

• line search does not find a minimum or

• TNNMG does not converge after 100 iterations.

All of these cases indicate that the second-order model problem is not strictly convex,
and thus a larger regularization weight ω is required.
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11.1.5. Test Machine

All test are executed single-threaded on a Intel(R) Core(TM) i7-9750H CPU with
clock frequency fixed to 2600 Mhz to avoid overheating and to ensure comparability
of all test runs. The test machine runs the current snapshot of Debian 12, including
updates as of January 30, 2023. The C++ Code (cf. Appendix B) is compiled with the
flags-O3 -DNDEBUG using the gcc1 compiler in version 12.2.0.

11.2. Tests on a Simple Geometry

11.2.1. Regularization Strategies

In this test we want to compare different regularization strategies of the Proximal Newton
solver. In Section 10.3 three different strategies are considered. Namely, the simple scaling
strategy [ω]1, and the two more sophisticated adaptive strategies [ω]2 and [ω]3. To test
the numerical influence of these three strategies we use a test body which has already been
studied in the small-strain theory in the first part of this thesis. The three dimensional test
body described in Section 6.1.2. Boundary conditions are placed as follows: the bottom
face (0, 7)× {0} × (0, 1) is a Dirichlet boundary for the deformation field, i.e., y(x) = x
for x2 = 0. External surface loads are applied at the top face Γ = (0, 4)× {7} × (0, 1).
For the tensile tests, we will compute numerical solutions scaled by some α > 0 in the
load functional

⟨lpull(t), y⟩ := 103α ·
∫︂

Γ
y2(x) dS. (11.2)

Note that the load only acts on the second (upward pointing) component y2 of the
deformation field.

The geometry is coarsely discretized as seen in Section 6.1.2 by a grid of 25 cubical
grid elements. Numerical tests on this are computed on a grid hierarchy consisting of
two further uniform grid refinements resulting in 1600 cubical grid elements on the finest
level. We use a St. Venant–Kirchhoff material with the parameters of the section above.
Gradient regularization is not considered for the hardening term as we set k2 = 0. the
other linear kinematic hardening parameter k1 is set to 2 · 103 N/mm2. The yield stress
is chosen to be σ0 = 5 · 103 N/mm2.

In order not to interfere with inexactness effects on the Proximal Newton solver, we
decided to use compute numerically exact solution of the second-order model problems
(10.3) with TNNMG up to a relative accuracy of 10−8. Since wall time considerations
are not of interest in this test we use a direct solver CHOLMOD for the linear Newton
problems of TNNMG. We do this to avoid an influence of possible numerically unstable
multigrid steps on the number of Proximal Newton iterations.

The tensile tests are computed independent of each other with two homotopy steps
for each test. In the first step the solution corresponding to the load function (11.2)
is computed. In the second step no load function is considered such that the material
unloads.

1https://gcc.gnu.org/
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The results of the tests in terms of the deformation field and the plastic strain for
different load parameters α ∈ {1, 3, 5} are displayed in Figure 11.1. The deformation
field is shown directly by the representation of the test body. Plastic deformation is
indicated by the color map. In detail, at each point x ∈ Ω we measure ∥Pk

h(x) − I∥F ,
s.t., no plastic strain Pk

h(x) = I results in a zero in the color map.

Figure 11.1.: Results of the pull test for α ∈ {1, 3, 5} in ascending order. Top row shows
the result of the loading test. Bottom row shows the remaining strain after
unloading.

For small loads (α < 1), this results in a purely elastic deformation without any
occurrence of a notable plastic strain. Therefore, those tests are not displayed as the
result of the second homotopy step is equal to the initial state. From α = 1 on, a
plastic strain starts to evolve at the inner edges of the notches. In the last loading test
for α = 5) about half of the domain has a plastic strain different from the identity. While
unloading a part of the remaining plastic strain vanishes. This is due to the kinematic
hardening model. Although the yield surface is large it requires plastic unloading to
reach a stress-free state in the second homotopy step.

As shown in Table 11.1, the number of accepted Proximal Newton steps is generally
comparable among the three methods with a small advantage of the second strategy [ω]2
in terms ot both total and accepted Proximal Newton steps. Especially for the large
load parameter α = 5 one can see that overall the adaptive strategies [ω]2 and [ω]3
produce the same number of accepted steps as the simple strategy [ω]1, but the number
of total Proximal Newton steps is larger for [ω]1. This indicates that this strategy aims
for too low regularization weights ω causing a large number of solutions ∆x(ω) of the
second-order model problems (10.3) to be rejected. The adaptive strategies compare the
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Strategy α = 1 unloading α = 3 unloading α = 5 unloading
[ω]1 6 (6) 6 (6) 10 (7) 13 (11) 27 (15) 45 (20)
[ω]2 5 (4) 6 (5) 9 (8) 6 (6) 18 (13) 25 (19)
[ω]3 8 (8) 8 (8) 13 (11) 10 (10) 25 (15) 26 (22)

Table 11.1.: Number of Proximal Newton iterations for the regularization update methods.
The number in parentheses is the number of accepted steps, indicating that
the subproblem was well-posed.

result of the second-order model problem with the actual decrease of the values of the
objective function. There, a low regularization weight is only selected if the second-order
model problem is a good approximation of the actual objective function. Details are
widely discussed in the thesis of Bastian Pötzl [24].
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Figure 11.2.: Regularization weights of the Proximal Newton steps for α ∈ {1, 3, 5}. Left:
loading step. Right: Unloading step. Solid lines represent the values for
α = 5, medium dashed lines α = 3, and the short dashed lines α = 1.

For a deeper analysis of the results we take a look at the selected regularization
weight ω of the tensile tests for the different strategies. In Figure 11.2 for both homotopy
steps (loading and unloading) all relevant data are shown. We notice that the number of
iterations is generally larger for a larger value of α. Therefore, we will analyze only the
tensile tests with α = 5, given by solid lines in the plots. The chosen accepted weights
are about the same magnitude for the first 12 steps of loading, and the first 10 steps
of unloading. The value of ω is not constant but it does not leave the interval [1, 105].
These are the phases of globalization, where the objective functional is nonconvex and the
iterates are far from a local minimizer. Hence, large weights ω are needed to compute
well-defined solutions of the second-order model problems. After the globalization phase
the Proximal Newton solver eventually switches to the local convergence phase near a
local minimum. By assuming that the objective functional is locally convex at the (local)
minimizers, no regularization is needed in this phase of the Proximal Newton solver.
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Both the simple strategy [ω]1 and the controller strategy [ω]2 seem to work well in the
local convergence phase, and the regularization weight quickly drops to zero. Thus, both
strategies seem to work well for the tensile tests with a slight preference for [ω]2 since it
detects the local convergence phase faster.

The third remainder term based strategy [ω]3 shows a different behavior compared
to the other two strategies. It does not detect the local convergence phase well, and,
even worse, seems to encounter numerical instabilities at the end of the Proximal Newton
iteration. Nevertheless, it finds the same local minimizers. This indicates that the
instabilities are not a general problem of this method. However, a discussion and deep
analysis of this strategy is not given in this thesis since it is beyond the scope. A detailed
overview is given in [24].

In summary, for the other numerical tests we can choose either the simple non-adaptive
strategy [ω]1 or the more sophisticated controller strategy [ω]2. Although no detailed
explanation of [ω]2 is given in Section 10.3, we will stick to this strategy, since it gives
slightly better results than [ω]1 in the other tests. However, all other numerical tests in
this part of the thesis can be computed using [ω]1 if optimal performance is not required,
or if parts of this method are to be placed in a custom implementation.

11.2.2. Gradient Regularization

In this section we will study the influence of the scalar k2 in the hardening term (8.25).
Although it is a necessary term for the existence result of Theorem 8.6.1, it is not
included in the classical continuum mechanical model of hardening, which is the total
free energy of the internal variables [15]. To investigate the influence of the parameter k2
on the numerical tests, a small series of tests is computed to show both the effect on the
result and on the performance of our Proximal Newton Method. The test object from
Section 11.2.1 is therefore reused. To keep the number of tests small, only the case α = 5
is considered. Both the grid and the boundary conditions remain unchanged. All material
parameters are copied. We still consider an exact Proximal Newton step computation
with TNNMG using the direct solver CHOLMOD for the linear corrections. In this case
we consider the strain gradient coefficients k2 = 0 and k2 = 10i for i = 1, 2, 3, 4. The
case of no gradient regularization, i.e. k2 = 0, is of particular interest since there is
no need to consider first-order finite elements for the tangential plastic increments δBh

and the previous plastic strain state Pk−1
h , as discussed in Section 9.3.1. Also, a smaller

finite element order significantly reduces the number of degrees of freedom of the discrete
problem. Therefore, an additional test is performed with zero order finite elements
for δBh and Pk−1

h .
The results for the different settings are displayed in Figure 11.3. It turns out that a

small gradient regularization up to k2 = 102 does not create relative differences in both the
plastic strain and the deformation field beyond 1%. For moderate values 102 < k2 < 104

a significant difference is evolving in the plastic strain variable, resulting in nearly no
plastic strain in the case of k2 = 104. These properties of the results are as expected.
Higher gradient regularization favors a flattening of the plastic strain. For low or no
gradient regularization the distribution of the plastic strain varies between no plastic
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Figure 11.3.: Results of the tensile test for different values of k2. Left to right: k2 =
104, 103, 102, 0, and the case or zero order finite elements for the plastic
strain spaces.

strain at the top and bottom face and the maximum at the inner faces of the notches. For
a zero order finite element space for the plastic components no gradient regularization
can be considered since the finite element functions are constant on each grid element.
Therefore, we can only compare this result to the case of k2 = 0 with order one finite
elements. Nevertheless, the results are similar, but not equal. Although deformation is
the same the value of the plastic strain at the inner faces of the notches is about 30%
smaller for zero order elements. This is expected since the piecewise constant finite
elements average over the cubical grid elements and cannot obtain local maxima at faces.

Besides the differences in the result the behavior of the Proximal Newton method using
different gradient regularization parameters is analyzed. Therefore, we measure

• the total number of Proximal Newton steps (including the rejected steps)

• the number of accepted steps,

• overall wall time of the inner TNNMG iterations (and the average time per Proximal
Newton step),

• overall wall time of the assembly of f ′ and f ′′ using ADOL-C (and the average
time per accepted Proximal Newton step) and

• the energy at the minimum.

The numbers of the Proximal Newton steps indicate the condition of the global min-
imization problem, as well as the quality of the second-order model problems. The
wall time of TNNMG is an indicator of the total number of TNNMG iterations along
the Proximal Newton process and allows insight into the condition of the second-order
model problems. On the other hand, the wall time of ADOL-C is generally independent
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of the problem itself and should scale with the number of accepted Proximal Newton
steps, since only after an accepted step a new Hessian matrix and gradient need to be
computed. The energy at the minimum can be used to validate the influence of the
gradient regularization, since it adds an additional nonnegative term to the objective
functional. Hence, we check whether a larger value of k2 leads to a larger value at the
minimizer.

k2 PN steps accepted TNNMG [s] ADOL-C [s] energy at minimum
104 122 87 2041 (16.78) 4326 (49.72) -7156.67
103 13 10 95 (7.00) 459 (45.90) -14929.17
102 17 13 93 (5.47) 590 (45.38) -21531.63
10 20 15 136 (6.80) 734 (48.93) -23167.35
1 17 13 93 (5.47) 610 (46.92) -23363.95
0 18 14 91 (5.06) 461 (32.92) -23386.29

order 0 17 13 9 (0.59) 119 (9.16) -21317.59

Table 11.2.: Proximal Newton measurements for different gradient regularization param-
eters. The test with order 0 is run on a finite element space with zero order
of the plastic strain. The numbers in parenthesis is the average time per PN
step (TNNMG), or per accepted PN step (ADOL-C).

The results of this measurements are displayed in Table 11.2. We start with the analysis
of the results with first-order finite elements. For the gradient regularization parameters
in the range 0 ≤ k2 ≤ 103 the number of Proximal Newton steps is comparable with 13
to 18 steps in total and 10 to 15 accepted steps. There is a slight tendency that a higher
regularization requires fewer Proximal Newton steps until convergence. Therefore, we
conclude that the gradient regularization is not a necessary part of the convergence of our
method. Looking more closely at the wall times of TNNMG, we notice that the wall time
per Proximal Newton step varies between 5 and 7 seconds. There is no pattern visible
and we conjecture that the number of inner TNNMG iterations is independent of the
parameter k2. Also, for all parameters k2 > 0, the average wall time per accepted step
of the assembler ADOL-C is nearly constant around 46 to 47 seconds. This is expected
since the construction of the Hessian matrix and the gradient is generally independent
of the parameters of the objective functional. For no gradient regularization (k2 = 0),
the expensive evaluation of the plastic strain gradient can be skipped, resulting in only
about 33 seconds per accepted Proximal Newton step for the ADOL-C routines.

A notable behavior of the Proximal Newton solver occurred for the high gradient
regularization value k2 = 104. The Proximal Newton solver encountered heavy con-
vergence problems of the inner TNNMG solver leading to overall high regularization
weights ω > 103 throughout the whole solution process. This causes the computed
increments ∆x(ω) to be small and thus we need more Proximal Newton steps than
for the other tests with lower values of k2. The reason of this behavior is that the
objective function L (9.18) is dominated by the gradient hardening term k2 ∥∇Ph∥2 in
the hardening functional (8.25). The elastic energy and the dissipation functional play
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only a minor role. Hence, we have an ill-conditioned composite minimization problem
with differently scaled components. This causes the poor convergence properties of our
method. As a conclusion we can say that we should avoid over-regularization in the
plastic strain gradient terms, as they lead to worse solver behavior.

The case of zero-order finite elements of the plastic strain components results in
almost the same number of Proximal Newton steps as in the first-order case with k2 = 0.
However, the wall times of TNNMG and ADOL-C are significantly lower by a factor
of 4 for ADOL-C and by a factor of 9 for TNNMG. This is expected since the number
of degrees of freedom in the plastic components is about 8 times lower for zero-order
elements than for first-order elements.

The energy at the minimum increases with increasing gradient regularization, as
postulated before. The zero-order result has a higher energy than the first-order result
with k2 = 0. This is not surprising since there are fewer degrees of freedom in the
zero-order case.

11.2.3. Inexact Proximal Newton

In this test we investigate the inexactness features of the Proximal Newton method
(Section 10.4) and their impact on the quality of the solution process, as well as on the
wall time. In the previous tests it is obvious that our inner TNNMG solver is much
faster than the time needed to assemble the second-order model problems (10.3) with
ADOL-C. Therefore, if there is no better alternative for setting up the second-order
model problem, then it seems that no improvement in the speed of the TNNMG solver is
necessary. However, from the tests of small-strain plasticity with TNNMG combined with
a direct solver (Section 6.1.2) it appears that the wall time does not scale linearly with the
number of unknowns. On the other hand, the number of entries of the Hessian matrix f ′′

is linear in the number of unknowns. These entries originate from the finite element
approximation and each row of the hessian stores only entries of neighboring degrees of
freedom. This number is invariant under grid refinements. Therefore, we expect the wall
time of ADOL-C to be linear in the number of unknowns. As a consequence, for very
fine grids, the wall time of ADOL-C will be below the wall time of TNNMG.

Unfortunately, since the resources of the test machine are limited, we never reach the
case where TNNMG with a direct linear solver becomes the bottleneck of the total wall
time. However, from the above considerations, we still see the need to reduce the wall
time of TNNMG.

For our test, we choose the already known tensile test from Section 11.2.1. Geometry
and boundary conditions are copied. For a better overview we only consider one loading
step with a tensile force corresponding to α = 5 and we do not consider the second
unloading step. However, we invest in a further grid refinement with 4 levels in total to
reduce the gap in the wall time of TNNMG and ADOL-C. This leads to 12 800 cubical
grid elements at the finest level.

There are four scenarios. For the linear correction steps of TNNMG, we consider either
the direct solver CHOLMOD, as in the previous tests, or a single imprecise multigrid step.
This is combined with either solving the second-order model problems (10.3) numerically
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exact, or, as presented in Section 10.4, with inexactness criteria. In the case of an inexact
Proximal Newton step computation we use the parameter ω̂max = 1010 for the global
criterion (10.9) and for the local criterion (10.6) we use

η = 0.8i,

where i is the number of the so far accepted Proximal Newton steps. This guaran-
tees η → 0.
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Figure 11.4.: Wall times per accepted Proximal Newton step. Left: TNNMG. Right:
ADOL-C.

In Figure 11.4 the measurements for the four scenarios are displayed. In detail, we
measure the wall time of both TNNMG and ADOL-C for each accepted Proximal Newton
step. This may include possible wall times of rejected steps before a step is accepted.

First of all, the inexact Proximal Newton method combined with multigrid TNNMG
requires 24 accepted Proximal Newton steps for convergence, while the other three
scenarios converge after 17 accepted Proximal Newton steps. We expect that the number
of iterations in the inexact case may be higher than in the exact case, since some quality
of the second-order updates ∆x(ω) is lost.

There are significant differences in the wall times of the TNNMG parts. The first steps
take always longer because several Proximal Newton steps are rejected until the optimal
initial weight ω is found. The other aspects are discussed separately for each of the four
scenarios.

Exact Multigrid: Exact Proximal Newton with multigrid TNNMG requires both the
largest total wall time and the most Proximal Newton steps. For each Proximal Newton
step, at least 50 TNNMG iterations are necessary for numerically exact solutions. Since we
set an iteration limit of 100, six Proximal Newton steps are rejected because TNNMG did
not converge. These cases are visible as peaks in the wall time plot. The convergence rate
of TNNMG was generally poor, indicating that problems with low regularization weights ω
are ill-conditioned and not suitable for an iterative multigrid solver. Unfortunately, the
regularization strategies of the Proximal Newton solver aim at keeping ω as low as
possible in order to generate large increment steps.
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Exact Direct: Using the direct solver for exact Proximal Newton steps avoids the
problem of the ill-conditioned second-order model problems. Hence, on average, there
are 15 TNNMG iterations per Proximal Newton step necessary. However, the size of
the problem is large on the fine grid. Therefore, CHOLMOD becomes expensive. Up
to the last three Proximal Newton iterations the wall time increases. This is due to the
increasing number of activated nonzero plastic components that contribute to the linear
correction problems of TNNMG. In the last three steps, TNNMG stops after a small
number of iterations as the absolute corrections become numerically zero.

Inexact Direct: Inexact Proximal Newton with direct TNNMG is more efficient than
the exact variants. The efficient local criterion (10.6) is satisfied after at most 3 TNNMG
iterations. Therefore, each Proximal Newton steps is computed in a fraction of the time
of its exact counterpart. This behavior continues until step 15. Then the parameter η
becomes so small that more TNNMG iterations are necessary. Therefore, the wall time
increases for the end, where 7 to 8 TNNMG iterations are performed.

Inexact Multigrid: The last scenario, inexact Proximal Newton with multigrid TNNMG,
seems to be the most efficient. Slightly more TNNMG iterations are necessary for the
Proximal Newton steps than in the direct case. Nevertheless, the local convergence
criterion is satisfied by about 4 to 5 iterations for the first 13 steps. In the end, the
local convergence phase with very low values of η require much more TNNMG iterations
with a maximum of 33 in the last step. Therefore, the wall time increases towards the end.

As a summary for the four scenarios, TNNMG steps are much faster with a single
multigrid step for the linear correction problems than using a direct solver. However, for
the generally ill-conditioned second-order model problems (10.3), multigrid steps are not
suitable if numerical exactness is required. The inexactness criteria seems to work well.
Since there are no other disadvantages of the inexact Proximal Newton method, it seems
favorable in general, as long as the local convergence criterion (10.6) can be evaluated in
practice.

The wall times of ADOL-C of the accepted Proximal Newton steps are constantly
increasing. The reason is to be found in the details of how ADOL-C works internally as
described in [13]. In the initial state the tangential plastic increment δB0

h is zero and
during the Proximal Newton iterations the number of nonzeros decreases. To compute
the entries of the Hessian matrix f ′′, ADOL-C stores the chain rule expression of the
second-order derivatives. The evaluation of these chain rule expressions can be shortened
if a multiplication with zero takes place. ADOL-C is able to recognize multiplications with
zero. Therefore, computing the Hessian matrix with ADOL-C becomes more expensive
as the number of nonzeros in the tangential plastic increment decreases.
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11.3. Different Material Models on a Complex Geometry

In this test we consider another, more advanced geometry. We model a realistic paper
clip with a total height of 30 mm and a total width of 10 mm. The wire diameter is 1 mm.
The geometry is given in Figure 11.5 and is discretized by 980 prism-like elements. One

Figure 11.5.: Geometry and initial grid of the 3D paperclip.

uniform grid refinement is computed resulting in a total of 7840 grid elements at the
finest level. Along the cross sections of the wire there are always 7 triangular elements to
model the cylindrical geometry of the wire. The two circular ends of the wire are denoted
by Γin for the inner end and by Γout for the outer end. Dirichlet boundary values for the
deformation field are placed at the outer end Γout, s.t.,

yh|Γout ≡ 0.

The external load is given by a Neumann function at the inner end Γin with the load
functional

⟨lpull(t), y⟩ := 200
∫︂

Γin
y2(x) dS (11.3)

for the first homotopy step. As before, we also consider a second homotopy step without
load to observe the unloading of the material.

In this test we compare the two material models presented in Section 10.1. For both
the St. Venant–Kirchhoff model and the Mooney–Rivlin model we use a high value for
the yield stress by setting σ0 = 2 · 103 N/mm2. This increases the elastic region and
reduces the effect of plastic unloading in the second homotopy step. Moreover, we choose
a rather low kinematic hardening parameter k1 = 2 · 103 N/mm2. This choice increases
the deformation caused by the plastic strain. It is only an academic choice to improve the
visibility of plastic effects in the results. One can safely use other values of k1 in custom
tests. Since gradient regularization does not have a significant impact on the solution
quality (Section 11.2.2), we do not consider gradient regularization and set k2 = 0. This
reduces the computation time. For a further reduction of the computation time, the
order of the plastic finite elements is set to zero.
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The solver parameters are given as follows. We use an inexact Proximal Newton
method because it is superior to the exact counterpart (cf. Section 11.2.3). For the
second-order model problems, we use TNNMG with a direct linear solver. Although
the multigrid variant was slightly faster in the test above, the multigrid scheme is not
suitable here since we only consider two grid levels. All other solver parameters are
unchanged from the previous tests.

We start by discussing the results for the St. Venant–Kirchhoff material. The result
of the loading step is given in Figure 11.6. The deformation is again given directly by
the representation of the test object. The plastic strain is given by the color map. For a
better orientation, the initial undeformed state is also included. A large deformation of

Figure 11.6.: Deformation of the paperclip including reference state for orientation after
loading. Left: Front view. Right: Side view.

the paper clip is visible. The external load almost completely unwound the wire, creating
an almost straight rod. High values of plastic strain are found in the curvatures of the
paper clip, while no plastic strain appears in the formally straight parts of the paper clip.
This is what we expect since the straightening on the wire causes higher strains at the
curvatures.

The result of the following unloading test is shown in Figure 11.7. We can see the
elastic unloading of the completely plastic strain free straight parts of the paperclip. The
only remaining plastic strain is found in the curvatures, resulting in larger remaining
angles after the second homotopy step.

To our surprise, the results of the same test with the nonlinear Mooney–Rivlin material
are almost the same. We expected the resulting deformation and plastic strain to be
comparable because we chose the parameters of the Mooney–Rivlin material in Section 10.1
so that they overlap for moderate strains. However, in practice we have visually the same
images as given in Figures 11.6 and 11.7. Therefore, we computed the differences of the
results of the loading step.

In Figure 11.8 we see the absolute difference of the values of the plastic strain. As
indicated in the color map, the maximal difference is about 4.4 · 10−4, which is negligible
for the total plastic strain with values up to 1.1 · 10−1. The other image in the figure
is the relative difference in the deformation field. The only notable difference is found
at the outer end of the paper clip where the Dirichlet values are set. There we find a
difference of 2.1%. Therefore, we can conclude that both material models give the almost
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Figure 11.7.: Deformation of the paperclip including reference state for orientation after
unloading. Left: Front view. Right: Side view.

the same results.

However, the influence of the two materials on the Proximal Newton solver is different.
The evaluation of the Mooney–Rivlin material is slightly more expensive than the simple
St. Venant–Kirchhoff material. Of course, computation of the gradient and the Hessian
matrix with ADOL-C is then also more expensive. In total, the Proximal Newton method
took 40493 seconds for the Mooney–Rivlin material and only 36395 seconds for the
St. Venant–Kirchhoff material.

In the following we take a closer look at the iteration process of the Proximal Newton
method. In Figure 11.9 the chosen regularization weights are given. First, we notice that
a large number of accepted steps are necessary for convergence. We have 616 and 677
steps for the loading step. For the unloading step, we have 210 and 212 Proximal Newton
steps. The values of the regularization weights are comparable for both materials. For the
loading test we have a long phase of a the regularization weight between 10−2 and 102 for
about 600 Proximal Newton steps. Hence, we have a long globalization phase. From the
convergence results of the Proximal Newton method we suppose that eventually the local
convergence phase starts. This happens after about 650 steps where the regularization
weight quickly drops to zero. For the unloading test similar results are observed. There,
the local convergence phase appears to start already after 200 Proximal Newton steps.

A possible explanation for the high number of Proximal Newton steps in the glob-
alization phase is found in the complexity of the geometry. For an energetic decent
direction ∆x(ω) of the second-order model problems (10.3), no large step size is possible.
Large step sizes lead to unfavorable configurations, especially in the deformation field.
To find a minimizing solution path in the given complicated geometry of the paperclip,
only small linear steps ∆x(ω) are allowed. These small steps can be seen in Figure 11.10.
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11. Numerical Results

Figure 11.8.: Absolute difference in the plastic strain field (left) and relative difference in
the deformation field (right) between the St. Venant–Kirchhoff and Mooney–
Rivlin materials.
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Figure 11.10.: Computed corrections of the Proximal Newton steps for loading (left) and
unloading (right).

For the loading test, larger increments with a norm of up to 50 are admissible in the
first accepted Proximal Newton steps. In this phase, a rough approximation of the result
is already formed. Then, starting from step 25, the long globalization phase begins, in
which the norm of the corrections is consistently varying around the value 0.3. In this
phase the local optimizations in the deformation field are performed. Finally, in the local
convergence phase, the corrections drop to zero.

Similar results are observed for the unloading test. In this case, only the initial
phase with large corrections is missing. This is due to the fact that we have the large
deformations left in the result as a consequence of the plastic strain.
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Figure 11.9.: Regularization weights ω for the loading step (left) and the unloading step
(right).

To highlight the first phase of large corrections, the resulting energies (value of
the objective functional) after each accepted Proximal Newton step are displayed in
Figure 11.11. We can see that for the loading test most of the energy reduction is already
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Figure 11.11.: Energies at the Proximal Newton steps for loading (left) and unloading
(right).

done after the first few steps. The rest is just local optimization. For the unloading test,
this first phase is not visible. Here we have a decaying decrease of the energy throughout
all iterations.

11.4. Comparison to other Methods
The search for suitable comparison methods turns out to be more complicated than
expected. Few algorithms exists that can handle minimization problems which are
nonsmooth and nonconvex at the same time. In general two families of methods can be
found: Proximal Gradient methods and subgradient methods. Both methods are briefly
introduced in the following sections. However, we are not able to give suitable numerical
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results since the efficiency of these methods is pretty bad compared to the Proximal
Newton method. Convergence of these methods in a suitable time is only given for very
coarse grids and moderate loads. In contrast, the Proximal Newton method is able to
solve those easy problem by a few iteration steps in under one second.

Nevertheless, the bottleneck of our Proximal Newton method in terms of wall time
is the computation of the Hessian matrix f ′′ of the smooth part of the functional. If
we have to rely on automatic differentiation tools, such as ADOL-C, we either have to
deal with it or consider one of the alternative methods below. The advantage of both
the Proximal Gradient method and the subgradient method is that we do not need a
second-order derivative information, hence no Hessian matrix. Even if the convergence
is slow and very limited, these methods could for instance be used as a preconditioner
of the minimization problem to find a suitable initial value for the Proximal Newton
method.

11.4.1. Proximal Gradient Method
The family of methods is closely related to the Proximal Newton method. It is applicable
to composite minimization problems

Minimizex∈X F (x) := f(x) + g(x) (11.4)

on a space X with a differentiable part f and a convex part g, such that the objective
functional F may be nonsmooth and nonconvex. The precise meaning of differentiable
and convex may vary in literature. For the sake of comparability, we consider the classical
definitions of these properties. This forms a similar setting to the Proximal Newton
method, as given in Section 10.1.

The Proximal Gradient method is an iterative method that reduces the global mini-
mization problem (11.4) into a series of first-order model problems

λx,ω(δx) := f ′(x)δx + ω

2 ∥δx∥2X + g(x + δx)− g(x), (11.5)

closely related to the second-order model problems (10.3) of the Proximal Newton method
without the Hessian matrix term. For a sufficiently large value of the regularization
weight ω there is a solution

∆x(ω) := arg minδx∈X λx,ω(δx).

A large disadvantage of the first-order model problems above is that the minimization of
these problems is as complex as minimizing a second-order model problem of the Proximal
Newton method. This makes each Proximal Gradient steps as slow as a Proximal Newton
step. For this method, alternative sufficient decrease criteria and convergence criteria
have to be defined.

However, as already discussed above, we are not able to find a suitable combination
of these criteria to create an efficient Proximal Gradient method which compares to
the Proximal Newton method. A more in-depth introduction and discussion on this
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topic is found in the thesis of Bastian Pötzl [24]. Basically, the motivation for this
method is to spare the time needed for the computation of the Hessian matrix f ′′ in
the Proximal Newton method. However, the number of iteration steps of the Proximal
Gradient method appears to be unbounded for large problems and high loads. Thus,
convergence below 105 iteration steps is only possible for unrefined grids. But then the
computation of the Hessian matrix is again fast and there is no need to avoid using the
Proximal Newton method, which solves those small problems in only 5 iteration steps. In
conclusion, the Proximal Gradient method seems not suitable for finite-strain plasticity
problems.

11.4.2. Subgradient Method
Another, even simpler method to solve composite minimization problems of the form
(11.4) is given by the subgradient method. As the name already indicates, we compute a
series of subgradients of F in this method. A subgradient of F is always possible to find
since f is differentiable, and g (as a convex function) has a subdifferential ∂g.

In each subgradient step, at the current iterate x, we compute a subgradient

µ ∈ f ′(x) + ∂g(x).

As long as the x is not a local minimizer of F , we are able to find a subgradient µ, which
is a descend direction. Even the steepest descend direction can be found efficiently if the
nonsmooth part g contains some structure. In the case of small-strain plasticity, we have

g(x) =
n∑︂

i=1
γi ∥xi∥2 ,

cf (9.18). The subdifferential is directly given by

∂g(x) =
n∑︂

i=1
γi∂ ∥·∥2 (xi),

with

∂ ∥·∥2 (xi) =

⎧⎨⎩
{︂

xi
∥xi∥2

}︂
xi ̸= 0,

{µ : ∥µ∥2 ≤ 1} xi = 0.

This allows to find the steepest descend direction µ. When µ is found, we set

x← x + αkµ

with a step size αk ∈ (0, 1]. There are different step size strategies in literature. Ba-
sically, one approach is to have a constant αk := α for all steps, or to consider null
sequences αk → 0. A great overview is given in [12].

A beauty of this method is the simplicity. The only complicated part is to find the
optimal descend direction in the subdifferential. There is no need of solving the model
problems (11.5)&(10.3).

149



11. Numerical Results

A convergence criterion for subgradient methods is given by a sufficiently small distance
of the subdifferential to zero

dist(∂F (x), 0) ≤ ε

for some ε > 0. However, in [12] it is shown that at least O(ε−2) subgradient steps
are necessary for convergence. In practice, we were not able to find a simple enough
finite-strain plasticity problem to get a convergence result.

In summary, the subgradient method is also not suitable to solve finite-strain plasticity
problems. However, since this method is very easy to implement and each step is
computed fast, it may be used to find initial values for the Proximal Newton method.

11.5. Conclusion
We are able to present a minimization problem for finite-strain plasticity problem with
a convergence guarantee for all stated problems, as shown in Theorem 10.5.1. The
general iteration scheme is simple since we can we reduce the finite-strain minimization
problem into a series of quadratic minimization problems (10.3) which take the form
of small-strain minimization problems (4.17). These problems are already discussed in
detail in the first part of this thesis and solved with the efficient TNNMG method in
Section 5.2. Therefore, no further solver structure is necessary to implement the Proximal
Newton method.

Even though computing the second-order model problems is expensive, the competitor
algorithms which can be found in literature (Section 11.4) are not suitable for our
problems and result in very inefficient convergence behavior, or no convergence at all.

In order to speed up the solution of the second-order model problems, an inexact
variant of the Proximal Newton method is presented in Chapter 10. The numerical
test indicates that this improves the efficiency of the Proximal Newton method a lot,
as seen in Section 11.2.3. Moreover, our method is able to solve simple problems as
given in Section 11.2.1, and eventually converges even for complex geometries, as seen in
Section 11.3.

Therefore, in conclusion, the Proximal Newton method is suitable for all kinds of
finite-strain increment problems. The only wall time bottleneck is the computation of
the Hessian matrices of the smooth parts of the objective functional. However, this is a
general problem of all second-order solvers, and therefore not a particular problem of the
Proximal Newton method.
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A. Appendix

A.1. The Dissipation Function for the Tresca Yield Criterion
We want to show the Tresca case of Theorem 3.2.4 from Section 3.2. First, we consider
only kinematic hardening and define the set

K := {σ ∈ Sd : max
i,j=1,...,d

|σi − σj | ≤ σ0}

for the admissible stresses. Before we show Theorem 3.2.4, we show an intermediate
result.

Lemma A.1.1. For p ∈ Sd we have

sup
σ∈K
{p : σ} = sup

σ1,...,σd∈R

{︂ d∑︂
i=1

piσi | max
i,j=1,...,d

|σi − σj | ≤ σ0
}︂

,

where p1, . . . , pd and σ1, . . . , σd denote the principal values of p and σ, respectively.

Proof. Let Q1 and Q2 be any two orthogonal matrices. Then

sup
σ∈K

{︁
QT

1 σQ1 : QT
2 pQ2

}︁
= sup

σ∈K

{︁
Q2QT

1 σQ1QT
2 : p

}︁
= sup

σ∈K
{ ˜︁QT σ ˜︁Q : p

}︁
, (A.1)

where we have written ˜︁Q = Q1QT
2 . The definition of K depends only on the singular

values of σ. Hence σ is in K if and only if ˜︁QT σ ˜︁Q is. Therefore, the last expression is
equal to

sup
σ∈K
{ ˜︁QT σ ˜︁Q : p} = sup

σ∈K
{σ : p}. (A.2)

Since this holds for all orthogonal matrices Q1 and Q2, we can pick Q1 such as to
diagonalize σ, and Q2 such as to diagonalize p. Then (A.1) together with (A.2) is the
assertion.

Proof of Theorem 3.2.4. We start by assuming kinematic hardening only. Hence, we
have no internal variable η. Moreover, the only relevant case is d = 3, since for d = 2 the
Tresca yield criterion is equivalent to the von Mises yield criterion (Lemma 2.4.3). By
Lemma A.1.1 we have

D(p) = sup
σ1,σ2,σ3∈R

{︂
p1σ1 + p2σ2 + p3σ3 : max

i,j=1,...,3
|σi − σj | ≤ σ0

}︂
.
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We express σ in new variables

(σ1, σ2, σ3) ↦→
(︁
σ̃1 = σ1 − σ3, σ̃2 = σ2 − σ3, σ̃3 = σ3 − σ3 = 0

)︁
.

This does not change the scalar product, since

σ1p1 + σ2p2 + σ3p3 = (σ̃1 + σ3)p1 + (σ̃2 + σ3)p2 + σ3p3

= σ̃1p1 + σ̃2p2 + σ3(p1 + p2 + p3)
= σ̃1p1 + σ̃2p2 because p is trace-free,

= σ̃1p1 + σ̃2p2 + σ̃3p3 because σ̃3 = 0.

Therefore, we can write

D(p) = sup
σ̃1,σ2̃,σ̃3∈R

{︂
σ̃1p1 + σ̃2p2 + σ̃3p3 : max{|σ̃1|, |σ̃2|, |σ̃1 − σ̃2|} ≤ σ0, σ̃3 = 0

}︂
.

The maximization problem is now two-dimensional, and the admissible set is the convex
hull of the six points

a1 = (σ0, 0), a2 = (σ0, σ0), a3 = (0, σ0),
a4 = (−σ0, 0), a5 = (−σ0,−σ0), a6 = (0,−σ0).

The supremum of a linear objective functional is obtained at one of the corners of this
hexagon. Hence, we have

D(p) = max
{︁
⟨a1, (p1, p2)⟩, . . . ⟨a6, (p1, p2)⟩

}︁
.

Computing the six scalar products leads to

D(p) = σ0 max
{︁
p1, p1 + p2, p2,−p1,−p1 − p2,−p2

}︁
.

Now we revert the shift from before by using p1 + p2 + p3 = 0, s.t.,

D(p) = σ0 max
{︁
p1, p2, p3,−p1,−p2,−p3

}︁
= σ0 ∥p∥2 .

This is the claim for kinematic hardening only.
The case of additional isotropic hardening is covered similar to the proof of the von

Mises yield criterion in Theorem 3.2.4.

A.2. Geometric Multigrid Method
For completeness, we give a quick overview of the geometric multigrid method we use for
the linear correction steps of the TNNMG method from Section 5.2. Our intention of the
multigrid method is to have a cheap way to get an inexact, but still qualitatively good,
solution x̃ of the linear equation

Ax = b, such that, x̃ ≈ x = A−1b. (A.3)

In this context, the matrix A ∈ Rn×n is the truncated Newton matrix of the linearization
step of TNNMG. We assume that A is symmetric and positive definite, and therefore a
unique solution x exists.
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A.2.1. Gauss–Seidel Steps
Gauss–Seidel steps are another simple and cheap way to create approximations of solution
of (A.3). However, we will use them in the multigrid method. Therefore, we give a short
sketch of how they are performed.

Definition A.2.1 (Gauss–Seidel Step). Let xi ∈ Rn be an approximation of the solu-
tion x ∈ Rn. A Gauss-Seidel step for xi is given by the algorithm:

• Set xi+1 ← xi

• For k = 1, . . . , n update all components of xi+1:

xi+1
k ← 1

Akk

⎛⎝bk −
n∑︂

j=1,j ̸=k

Akjxi+1
j

⎞⎠
Although the method is simple, there are strong properties that can be shown.

Theorem A.2.2 ([14, Theorem 4.4.18.]). Let A ∈ Rn×n symmetric and positive definite.
Then a Gauss-Seidel step is well-defined, since Akk > 0. Furthermore, a repeated
application of Gauss–Seidel steps converges to the unique solution

lim
i→∞

xi = x = A−1b

for every initial iterate x0 ∈ Rn.

However, the downside is a slow convergence rate. Therefore, we will only consider
single Gauss–Seidel steps in the multigrid method. A deeper analysis of multigrid
methods, e.g. [14], indicates that Gauss-Seidel methods only eliminate local errors, or, in
a different wording, high-frequent error terms. In order to improve the convergence, and
therefore the quality of each step, low frequent error quantities need proper handling,
too. There the idea of multigrid methods originates. Error frequencies correspond to
the grid fineness. Therefore, we will apply Gauss–Seidel steps to a family of grids with
different mesh sizes.

A.2.2. Prolongation and Restriction Operators
Let the domain Ω be covered by a hierarchy of grids T0, T1, . . . , TN , such that Ti is a
subgrid of Ti+1 for all i = 0, 1, . . . , N − 1. This grid hierarchy is usually given by grid
refinements. Therefore, we call grids with a higher index fine and grid with a lower index
coarse. On each grid grid Ti we have a finite element space Vi for the global functions of
unknowns. Of course, we have

ni := dim Vi ≤ dim Vi+1 =: ni+1.

By interpolating the basis of Vi in the basis of Vi+1 we can define a linear prolongation
operator Pi : Vi → Vi+1. Functions in Vi are represented by a coefficient vector in Rni .
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Hence, we can describe Pi by a matrix Pi ∈ Rni+1×ni that maps the coefficients in Vi into
the corresponding interpolated coefficients in Vi+1. On the other hand, the transpose of Pi

is automatically a restriction operator from a fine grid to a coarse grid. For convenience,
we denote the restriction matrices by Ri := P T

i .
Note that the linear system (A.3) is given on the finest grid TN , hence x is a coefficient

vector in the finite element space VN . For a consistent notation, we denote AN := A
and bN := b. With these definitions at hand, we can transfer the linear problem (A.3) to
the next, coarser, grid TN−1 by setting

AN−1 := RT
N AN RN , bN−1 := RT

N bN .

Note that information is lost on the coarse grid.

A.2.3. Multigrid Steps
To overcome the issue of information loss we actually never restrict the solution iterate xi,
but rather the residual ri := b−Axi. The residual is an error-like quantity and we lose
only the high frequent error terms. The key idea is to apply the Gauss–Seidel steps to all
grids levels of the grid hierarchy and to restrict the remaining residuals until the coarsest
grid T0 is finally reached. We can assume that A0 ∈ Rn0×n0 is a small matrix, and hence
a linear system with A0 can be efficiently solved directly. A complete multigrid step used
for the computations of this thesis is given as follows.

Definition A.2.3 (Multigrid Step). Consider the linear system Ax = b in the coefficient
space of a finite element space on a grid hierarchy. Moreover, let x̃ ≈ x be a known
approximation of the solution of the linear system. If there is a coarser grid, let R, P be
the restriction/prolongation matrices as described above. A multigrid step ỹ = MG(A, bx̃)
is given by the recursive algorithm

• If A is the linear system on the coarsest grid level:
– Return the direct solution ỹ = A−1b

• Else:
– Perform a Gauss-Seidel step on x̃

– Restrict the residual r := R(b−Ax̃)
– Set the vector e = 0 as approximation of the residual e ≈ r.
– Call recursively a multigrid step y := MG(RT AR, e, r)
– Return the prolonged correction ỹ := x̃ + Py

Remarks A.2.4.

(i) The variant of the multigrid step is called V-cycle, since it goes recursively “down”
to the coarsest grid and comes back “up” to the finest grid.

(ii) Convergence theory is complicated. A comprehensive investigation can be found in,
e.g., [14].
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A.3. The Matrix Group SL(d)
In this section a quick overview about the most important results of the matrix group
SL(d) is given. The definition is simple with the canonical determinant det : Rd×d → R
at hand.

Definition A.3.1. Let d ∈ N. Then the set

SL(d) := {A ∈ Rd×d : det(A) = 1}

is called the special linear group.

At first, we verify that this set forms a group.

Lemma A.3.2. SL(d) is a group with the canonical matrix product as the group operation.

Proof. This follows directly from the property that each matrix with determinant one is
regular. A neutral element is given by the unit matrix.

Remark A.3.3. Matrix groups are Lie groups.

A.3.1. Geometry
Investigation of Lie groups is done in the research field of differential geometry and
is completely unrelated to the works of this thesis. Nevertheless, in contrast to other
Lie groups such as GL(d) (matrices with non-zero determinant) and SO(d) (orthogonal
matrices), we can view SL(d) as the level set of the determinant function. This is
a polynomial restriction on the matrix space. This is done by recognizing that the
determinant of a matrix A ∈ Rd×d is a polynomial of degree d in the components of
A. Hence, the level det(A) = 1 is of a smooth kind and creates a smooth manifold
M = SL(d) with d2 − 1 dimensions.

Lemma A.3.4. For each A ∈ SL(d) the normal of M at A is given by ∇ det(A).
Moreover, we have ∇ det(A) = cof(A) = det(A)A−T = A−T .

Proof. This is a classical result from smooth level set based sets. The second statement
is true since det(A) = 1.

This direct geometric approach allows us to define tangent space at A ∈ SL(d) by using
the orthogonality to the normal. Therefore, we define

TP SL(d) := {A ∈ Rd×d, A : P −T = 0}. (A.4)

This tangential space can be given even more directly by using the equality

A : (BC) = (BT A) : C = (ACT ) : B

for arbitrary d× d matrices A, B, C. This inserted into (A.4) yields

TP SL(d) = {A ∈ Rd×d, (P −1A) : I = 0 ⇔ tr(P −1A) = 0},
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or, equally,

TP SL(d) = {A ∈ Rd×d, (AP −1) : I = 0 ⇔ tr(AP −1) = 0}.

This leads to
TP SL(d) = {PA : tr(A) = 0} = {AP : tr(A) = 0}

There are three direct consequences.

Lemma A.3.5.

(i) The tangential space of SL(d) at the unit matrix I is given by the vector space of
trace-free matrices. This is denoted by sl(d) := TI SL(d).

(ii) For each P ∈ SL(d) the tangential space TP SL(d) is given by P sl(d), i.e., each
tangential space can be expressed by sl(d) multiplied from the left by P .

(iii) For each P ∈ SL(d) the tangential space TP SL(d) is given by sl(d)P , i.e., each
tangential space can be expressed by sl(d) multiplied from the right by P .

A.3.2. Positive Definite, Symmetric Subset SL(d)+
sym

In this section some properties of the symmetric subset

SL(d)+
sym :=

{︂
A ∈ SL(d) : A is symmetric and positive definite

}︂
are presented. This does not form a matrix group, since multiplication does generally not
preserve symmetry. Nevertheless, this set has some properties that we need in this thesis.

Lemma A.3.6. Consider a differentiable path P ∈ C∞([0, 1], SL(d)+
sym). For each s ∈ [0, 1],

there is a symmetric, trace-free B(s) ∈ Sd
0, such that

Ṗ (s) = P (s)
1
2 B(s)P (s)

1
2 .

Proof. We show the equivalent result that P (s)− 1
2 Ṗ (s)P (s)− 1

2 is symmetric and trace-free.
Symmetry follows directly from the symmetry of P (s), which induces symmetry on Ṗ (s).
For the trace, we consider an eigenvalue decomposition

P (s) = U(s)Σ(s)U(s)T

with an orthogonal curve U(s) and a diagonal curve Σ(s). It follows from [27] that around
each s the curves U and Σ can be chosen such that they are differentiable in s. Since U
takes values in the Lie-group SO(3), we have U̇(s) = U(s)A(s) for an anti-symmetric
matrix A(s). Furthermore, Σ(s) takes values in SL(3), and hence Σ̇(s) = Σ(s)D(s) for a
trace-free diagonal D(s). This yields

Ṗ (s) = U̇(s)Σ(s)U(s)T + U(s)Σ̇(s)U(s)T + U(s)Σ(s)U̇(s)T

= U(s)
(︂
A(s)Σ(s) + Σ(s)D(s) + Σ(s)A(s)T

)︂
U(s)T .
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Combined with P (s)− 1
2 = U(s)Σ(s)− 1

2 U(s)T , we have

P (s)− 1
2 ṖP (s)− 1

2 = U(s)
(︂
Σ(s)− 1

2 A(s)Σ(s)
1
2 + D(s) + Σ(s)

1
2 A(s)T Σ(s)− 1

2
)︂

U(s)T .

Since D(s) is trace-free, A(s) has a zero diagonal, the trace of the term in brackets is
zero. Moreover, the trace is invariant under orthogonal transformations, thus the claim
is shown.

A.3.3. Projection onto SL(d)
We quickly demonstrate how we can project a matrix A ∈ Rd×d orthogonally (in the
Frobenius inner product) onto the group SL(d). This is surprisingly difficult. We use an
iterative method that yields suitable results in practice.

The algorithm is inspired by [9] and starts with a quasiprojection step in the direction
cof(A). Note that the extrinsic derivative ∇ det(·) = cof(·) is Frobenius-orthogonal to
the polynomial restriction det(·) = 1 of the manifold SL(d). Therefore, the initial iterate
is given by

P̃
0 := A + γ0 cof(A) = A + γ0 det(A)A−T ,

with γ0 ∈ R such that det(P̃ 0) = 1, and hence P̃
0 ∈ SL(d). From there, we compute a

sequence (P̃ i)i∈N in SL(d) with the following procedure:
For each P̃

i ∈ SL(d) let Q̃
i the closest point to A in the tangential space T

P̃
i SL(d).

Then, the next quasiprojection is done in direction Q̃
i − A. For the next iterate P̃

i+1

find a γi+1 ∈ R, such that
P̃

i+1 := A + γi+1(Q̃i −A)

is again in SL(d). Although we have no convergence proof at hand, we observe similar
convergence properties as those in [9]. In practice, the algorithm stopped after at most
four iterations in our simulations with the criterion

⃦⃦⃦
P̃

i+1 − P̃
i
⃦⃦⃦

F
≤ 10−8. For an efficient

implementation, note that it is not necessary to compute the points Q̃
i explicitly. Since

the direction Q̃
i −A is orthogonal to T

P̃
i SL(d), we can directly use the direction cof(P̃ i)

and compute the next iterate by

P̃
i+1 := A + γi+1 cof(P̃ i) .

The γi can be computed directly by solving a cubic polynomial equation, and choosing
the solution γi with the smallest absolute value.

A.4. A Property of Symmetric Matrices
Lemma A.4.1. Let A, B ∈ Rd×d symmetric matrices with a regular B. Then the
following holds for similarity transformations with B:

∥A∥F = ∥sym(A)∥F =
⃦⃦
sym(BAB−1)

⃦⃦
F

.
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Proof. For the term on the right, we have by definition⃦⃦
sym(BAB−1)

⃦⃦2
F

= 1
4
⃦⃦
BAB−1 + B−1AB

⃦⃦2
F

= 1
2
⃦⃦
BAB−1⃦⃦2

F
+ 1

2(BAB−1) : (B−1AB).

Since the Frobenius inner product is invariant under adjoint transformations, we have

(BAB−1) : (B−1AB) = (BAB−1B) : (B−1A) = (AB−1B) : (BB−1A) = A : A = ∥A∥2F

for a symmetric B. Moreover, the Frobenius norm is invariant under similarity transfor-
mations with a symmetric matrix, since the absolute value of the eigenvalues is equal to
the singular values in this case. Hence, we have shown the claim.

A.5. Robust and Efficient Computation of Matrix Exponential
The practical computation of the matrix exponential is not trivial [23]. Therefore, we will
demonstrate how we perform this in the implementation of the numerics of this thesis.

The canonical method to compute the matrix exponential is given by computing

exp(M) =
∞∑︂

k=0

Mk

k!

up to numerical “convergence”. In general, this method is unstable for matrices with
large norm ∥M∥ ≫ 1, since a large number of summands are needed until ∥M

k∥
k! falls

below a certain tolerance. This causes cancellation errors. We overcome this issue by the
so-called “scaling and squaring” method: We use that

exp
(︃

M

t

)︃t

= exp(M)

holds for all t ∈ N. We choose the smallest s ∈ N s.t.,

∥M∥
2s
≤ 1.

Next, we set t = 2s and compute exp
(︂

M
t

)︂
with the series method. In the end, we square

the result s times and then we get exp(M).
This method works well in practice. It is also in compliance with [23] that this is

generally the most robust and most efficient method for arbitrary matrices.

A.6. Convergence of the Newton Method with Armijo Damping
Consider the following minimization problem with smooth, strictly convex and coercive
functional

L : Rn → R
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with a unique minimizer x∗ ∈ Rn. Let the Hesse matrix ∇2L elliptic, i.e.,

vT∇2L(x)v ≥ ε ∥x∥22
with a constant ε > 0 for all x ∈ R. Starting from an initial value x∗ ∈ Rn we define a
sequence of iterates by the Newton method with Armijo damping. For a current iterate xk

we define the Newton direction dk by

dk := −∇2L(xk)−1∇L(xk).

Then, for a fixed parameter 0 < ρ < 1 we determine the smallest αk ∈ {2−l, l ∈ N0},
such that,

L(xk + αkdk) < L(xk) + ραk∇L(xk)T dk. (A.5)
The next iterate is then given by

xk+1 := xk + αkdk.

Lemma A.6.1. If dk ̸= 0, then there is a suitable αk > 0.
Proof. Since ∇2L(xk) is elliptic and dk ̸= 0, we always have

∇L(xk)T dk = −∇L(xk)T∇2L(xk)∇L(xk) < 0.

If we rearrange (A.5) we get

L(xk + αkdk)− L(xk)
α

≤ ρ∇L(xk)T dk.

If αk approaches zero the left hand side approaches ∇L(xk)[dk] = ∇L(xk)T dk, which is
not zero. Hence, we have to pass below the smaller portion ρ∇L(xk)T dk on the right
hand side for some αk > 0.

Remark A.6.2. A consequence of the result above is that ∇L(xk)T dk converges to zero
if αk converges to zero.

According to the lemma above, we produce a descending sequence L(xk) that is
bounded from below by L(x∗). Thus, the sequence L(xk) converges. Now we have to
show that we also have convergence xk → x∗.
Lemma A.6.3. The Newton sequence (xk), as described above, converges to x∗ in Rn.
Proof. Let us assume that we are not converging to xk, which implies from ellipticity
of ∇2L(xk) that both dk and ∇L(xk) do not converge to zero, as this is would be
a sufficient criterion for the minimization. From convergence of L(xk) we conclude
that L(xk+1)− L(xk)→ 0. Using the definition of xk+1 we get

L(xk + αkdk)− L(xk)→ 0,

which implies
ραk∇L(xk)dk → 0.

Since ρ is a positive constant, and ∇L(xk)T dk does not converge to zero, the only
possibility is that αk → 0 as k →∞. On the other hand, by Remark A.6.2, we conclude
that ∇L(xk)T dk → 0, which is a contraction to the assumption.
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How to get the code and how to use it is described in detail in the following sections.
Everything is implemented using the free and open source C++ library DUNE.1 The
research module with the specific implementations for the plasticity problems of this
thesis can be found in the DUNE module dune-plasticity.2 This module is based on
previous works of Oliver Sander3 on small-strain plasticity problems. Note that both
modules are only visible internally for TU Dresden members. Nevertheless, a publicly
available snapshot is available.4

The new implementations, especially for the finite-strain problems, are developed by
the author of this thesis.

The Proximal Newton solver was developed in collaboration with Bastian Pötzl and is
part of the DUNE module dune-solvers.5 The Proximal Newton solver code is placed
into a general solvers module available to the open audience. The reason is that Proximal
Newton is a black box solver not specifically dedicated to plasticity problems.

B.1. Docker File
The easiest way to use the code from dune-plasticity is to create a container image
from a Containerfile with docker or podman. To get the Containerfile you can either

• download it from
https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity-snapshot/-/raw/main/Containerfile

• scan the QR code below,

• or copy the contents from Figure B.1.

1https://www.dune-project.org/
2https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity
3https://gitlab.mn.tu-dresden.de/osander/dune-plasticity
4https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity-snapshot
5https://git.imp.fu-berlin.de/agnumpde/dune-solvers/-/blob/master/dune/solvers/solvers/

proximalnewtonsolver.hh (this git repository will move to the TU Dresden in the future)
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FROM docker.io/debian:bullseye

RUN \
export DEBIAN_FRONTEND=noninteractive; \
rm -f /etc/apt/apt.conf.d/docker-gzip-indexes \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get update \
&& apt-get --no-install-recommends --yes dist-upgrade \
&& apt-get --no-install-recommends --yes install \
build-essential \
ca-certificates \
cmake \
gdb \
gfortran \
git \
libatlas-base-dev \
liblapack-dev \
libsuitesparse-dev \
libsuperlu-dev \
pkg-config \
python3-dev \
libadolc-dev \
nano \
vim \
&& apt-get clean && rm -rf /var/lib/apt/lists/*

WORKDIR /dune

# check out the snapshot of DUNE the time the thesis is published
RUN \

git clone https://gitlab.dune-project.org/core/dune-common.git && cd dune-common && git checkout 8eb66af05d0dc925b92f020fd7746b64e89d5a94 && cd .. \
&& git clone https://gitlab.dune-project.org/core/dune-geometry.git && cd dune-geometry && git checkout 3b86089008aa6644c3da39aadd2b86e0425e24a4 && cd .. \
&& git clone https://gitlab.dune-project.org/core/dune-grid.git && cd dune-grid && git checkout a0dd5fdb766e224c3212aeb70f6f84aeeb5813de && cd .. \
&& git clone https://gitlab.dune-project.org/core/dune-istl.git && cd dune-istl && git checkout d65d7acc230250019770db62e6cb656e62bf2e6a && cd .. \
&& git clone https://gitlab.dune-project.org/core/dune-localfunctions.git && cd dune-localfunctions && git checkout 5f0256865c6fdd8cdfd1d0527ffa553a2a0ac5f2 && cd .. \
&& git clone https://gitlab.dune-project.org/staging/dune-functions.git && cd dune-functions && git checkout 20d59c97bc0e19a5753ff38474752880d6eac0fd && cd .. \
&& git clone https://gitlab.dune-project.org/staging/dune-typetree.git && cd dune-typetree && git checkout d3345d13804d9b6a26973272d799ca345abfd49c && cd .. \
&& git clone https://gitlab.mn.tu-dresden.de/jaap/dune-elasticity.git && cd dune-elasticity && git checkout dbc113136412a119a0da30886b031196379c0397 && cd .. \
&& git clone https://gitlab.dune-project.org/fufem/dune-fufem.git && cd dune-fufem && git checkout fc762036bf8d6003811a3251518e5a820786d107 && cd .. \
&& git clone https://git.imp.fu-berlin.de/agnumpde/dune-solvers.git && cd dune-solvers && git checkout 4d821d6180d48e58d3f7215bbd64078b1b1874fa && cd .. \
&& git clone https://gitlab.dune-project.org/fufem/dune-matrix-vector.git && cd dune-matrix-vector && git checkout c073d2a0d8feb3de23a48668219895ffcfb7e53c && cd .. \
&& git clone https://gitlab.mn.tu-dresden.de/iwr/dune-gmsh4.git && cd dune-gmsh4 && git checkout 180f26425adff80252bde351484f274a284c2fbc && cd .. \
&& git clone https://gitlab.dune-project.org/staging/dune-uggrid.git && cd dune-uggrid && git checkout d0762d9b1c56048ab738eba80dbdd65604b26708 && cd .. \
&& git clone https://git.imp.fu-berlin.de/agnumpde/dune-tnnmg.git && cd dune-tnnmg && git checkout 3bba09523b10238dd6f59d614616f15efd912897 && cd ..

# get the snapshot of the diss code
RUN git clone https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity-snapshot.git dune-plasticity

RUN echo "CMAKE_FLAGS=\"-DCMAKE_CXX_FLAGS=’-O3 -DNDEBUG’\"" > dune.opts

RUN /dune/dune-common/bin/dunecontrol --opts=dune.opts all

ENTRYPOINT ["/bin/bash", "--login", "--rcfile", "-i"]

LABEL run podman run --interactive --tty

Figure B.1.: Contents of the Containerfile

This image is based on Debian Bullseye and contains all necessary DUNE modules
and external dependencies to run all the numerical tests of this thesis. It checks the
snapshots of all DUNE modules at the time of this writing. Once the Containerfile is
downloaded, run

podman image build -t dune-plasticity .

to create the image dune-plasticity. You can also use docker instead of podman. If
the image is build successfully, use

podman run -it dune-plasticity:latest

to start the image in the interactive mode. The executable code related to this thesis
can be found in the directory /dune/dune-plasticity/build-cmake/src

B.2. Small-Strain Tests
If you wish to run small-strain tests, start the executable primalplasticity-p1p0 with
a parameter file. A canonical parameter file can be found in
/dune/dune-plasticity/src/dune-plasticity-parset. Hence, for a quick test, run

./primalplasticity-p1p0 ../../src/dune-plasticity.parset
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Feel free to use other parameters in the parameter set. The available grids can be found
in /dune/dune-plasticity/doc/grids. You can edit the files with vim or nano directly
in the image. If you want to change the grid dimension, you need to set this in

/dune/dune-plasticity/src/primalplasticity-p1p0.cc

in the main function. Afterwards, you need to recompile the code with make in the
directory /dune/dune-plasticity/build-cmake/src. The tests of Chapter 6 can be
found in dune/dune-plasticity/benchmarks.

B.3. Finite-Strain Tests
The finite-strain code is completely different from the small-strain code. The executable is
finite-strain-plasticity in /dune/dune-plasticity/build-cmake/src. A canoni-
cal parameter file can be found in
/dune/dune-plasticity/problems/finite-strain-plasticity.parset. Hence, you
can directly call

./finite-strain-plasticity ../../problems/finite-strain-plasticity.parset

in the directory /dune/dune-plasticity/build-cmake/src. Feel free to discover the
different parameter choices. Remember to recompile the code if you change a compile-time
parameter in the file

/dune/dune-plasticity/src/finite-strain-plasticity.cc

by calling make in the directory /dune/dune-plasticity/build-cmake/src. The bench-
marks of Chapter 11 can be found in
/dune/dune-plasticity/src/benchmarks-finite-strain.
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