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Summary

Background: Acute myeloid leukaemia (AML) is a severe form of blood cancer, which in

many cases can not be cured. Although chemotherapeutic treatment is effective in most

cases, often the disease relapses. To monitor the course of disease, as well as to early

identify a relapse, the leukaemic cell burden in the bone marrow is measured. In the genome

of these cells certain mutations can be found, which lead to the occurrence of leukaemia.

One of those mutations is in the neucleophosmin 1 (NPM1) gene. This mutation is found

in about one third of all AML patients. The burden of leukaemic cells can be derived from

the proportion of NPM1 transcripts carrying this mutation in a bone marrow sample. These

values are measured routinely at specific time points during treatment and are then used to

categorise the patients into defined risk groups. In the studies, the data for this work originates

from, the NPM1 burden was measured beyond the treatment period. That leads to a more

comprehensive picture of the molecular course of disease of the patients.

Hypothesis: My hypothesis is that the risk group categorisation can be improved by taking

into account the dynamic time course information of the patients. Another hypothesis of this

work is that with the help of statistical methods and computer models the time course data

can be used to describe the course of disease of AML patients and assess whether they will

experience a relapse or not.

Materials and Methods: For these investigations I was provided with a dataset consisting of

quantitative NPM1 time course measurements of 340 AML patients (with a median of 6 mea-

surements per patient). To analyse this data I used statistical methods, such as correlation,

logistic regression and survival time analysis. For a better understanding of the course of

disease I developed a mechanistic model describing the dynamics of the cell numbers in the

bone marrow of an AML patient. This model can be fitted to the measurements of a patient
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by adjusting two parameters, which represent the individual severity of disease. To predict a

possible relapse within 2 years after beginning of treatment, I used data that was generated

using the mechanistic model (synthetic data). For the prediction three different methods were

compared: the mechanistic model, a recurrent neural network (RNN) and a generalised linear

model (GLM). Both, the RNN and the GLM were trained and tuned on part of the synthetic

data. Afterwards all three methods were tested using the so far unseen part of the data set

(test data).

Results: Following the analysis of the data I found that the decreasing slope of NPM1 burden

during primary treatment as well as the absolute burden after the treatment harbour informa-

tion about the further course of disease. Specifically I found that a faster decrease of NPM1

burden and a lower final burden lead to a better prognosis. Further I could show that the de-

veloped simple mechanistic model is able to describe the course of disease of most patients.

When I divided the patients into two different risk groups using the fitted parameters from the

model I could show that the patients in those groups show distinct relapse-free survival times.

The categorisation using the parameters lead to a better distinction of groups than using cur-

rent categorisation by the WHO. Further, I tried to predict a 2-year relapse using synthetic

data and three different prediction methods. I could show that it had nearly no impact at all

which method I used. Much more important, however, was the quality of data. Especially the

sparseness of data, which we find in the time courses of AML patients, has a considerable

negative effect on the predictability of relapse. Using a synthetic data set with measurement

times oriented on the times of chemotherapy I could show that a sophisticated measurement

scheme could improve the relapse predictability.

Conclusions: In conclusion, I suggest to include the dynamic molecular course of the NPM1

burden of AML patients in clinical routine, as this harbours additional information about the

course of disease. The involvement of a mechanistic model to asses the risk of AML pa-

tients can help to make more accurate predictions about their general prognosis. An accurate

prediction of the time of relapse is not possible. All three used methods (mechanistic model,

statistical model and neural network) are in general suitable to predict relapse of AML patients.

For reliable predictions, however, the quality of the data needs to be drastically improved.



Zusammenfassung

Hintergrund: Akute myeloische Leukämie (AML) ist eine schwere Form von Blutkrebs, die

auch heute noch nicht gut behandelbar ist. Obwohl die chemotherapeutische Behandlung in

vielen Fällen anschlägt, kommt es oft zu einem Rückfall. Um den Verlauf der Krankheit zu

beobachten und auch einen Rückfall frühzeitig zu erkennen, wird die Belastung an leukämi-

schen Zellen im Knochenmark bestimmt. In dem Genom dieser Zellen findet man bestimmte

Mutationen, die dazu geführt haben, dass eine Leukämie entsteht. Eine solche Mutation, die

bei etwa einem Fünftel der Patienten auftritt, ist in dem Nucleophosmin-Gen (NPM1). Der An-

teil an NPM1-Transkripten mit dieser Mutation in einer Knochenmarksprobe gibt Aufschluss

darüber, wie hoch die Belastung mit leukämischen Zellen ist. Diese Werte werden standard-

mäßig zu bestimmten Zeitpunkten im Behandlungsverlauf gemessen und fließen dann in eine

Einschätzung der Risikogruppe der Patienten ein. Im Rahmen von den Studien aus denen die

in der Arbeit verwendeten Daten stammen, wurde die NPM1-Belastung über die Zeit der Be-

handlung hinaus bestimmt. Damit ergibt sich ein Bild des molekularen Krankheitsverlaufs der

Patienten.

Hypothese: Meine Hypothese ist nun, dass die Einschätzung der Risikogruppe durch ei-

ne Betrachtung des dynamischen Zeitverlaufs solcher Messungen verbessert werden kann.

Eine weitere Hypothese dieser Arbeit ist, dass mit Hilfe von statistischen Methoden und Com-

putermodellen, diese Zeitverlaufsdaten genutzt werden können, um den molekularen Krank-

heitsverlauf von AML-Patienten zu beschreiben und daraus abzuleiten, ob ein Patient einen

Rückfall erleiden wird oder nicht.

Material und Methoden: Für diese Untersuchungen stand mir ein Datensatz von 340 AML-

Patienten mit quantitativen Messungen einer Belastung mit NPM1-mutierten leukämischen

Zellen im Zeitverlauf zur Verfügung (mit im Median 6 Messungen pro Patient). Diese ha-
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be ich mit Hilfe von statistischen Methoden, wie Korrelation, logistischer Regression oder

Überlebenszeit-Analyse untersucht. Für das tiefere Verständnis des Krankheitsverlaufs wur-

de ein mechanistisches mathematisches Modell entwickelt, welches die Dynamiken der Zell-

zahlen im Knochenmark eines AML-Patienten beschreibt. Dieses Modell lässt sich durch die

Veränderung von zwei Parametern, die die individuelle Schwere des Verlaufs eines Patienten

widerspiegeln, an die experimentellen Daten für jeden Patienten anpassen. Um einen mögli-

chen Rückfall innerhalb der ersten 2 Jahre nach Behandlungsbeginn vorherzusagen, wurden

Daten verwendet, die mit dem mechanistischen Modell generiert wurden. Dafür wurden 3 ver-

schiedene Methoden für Vorhersagen verglichen: das mechanistische Modell, ein rekurrentes

neuronales Netz (RNN) und ein generalisiertes lineares Modell (GLM). Sowohl das RNN, als

auch das GLM wurden mittels eines Teils der Daten trainiert und angepasst. Anschließend

wurden alle drei Methoden auf dem verbliebenen Teil der Daten (Testdaten) auf ihre Vorher-

sagegenauigkeit getestet.

Ergebnisse: Die Datenanalyse führte zu dem Ergebnis, dass sowohl der Abfall der NPM1-

Belastung während der initialen Behandlung, als auch die absolute NPM1-Belastung nach

Abschluss der Behandlung Informationen über den weiteren Verlauf der Krankheit enthal-

ten. Genauer bedeutet das, dass ein schnellerer Abfall, sowie eine niedrigere finale NPM1-

Belastung zu einer besseren Prognose führten.

Weiter konnte ich zeigen, dass ein einfaches mechanistisches Modell, wie ich es entwickelt

habe, in der Lage ist den Krankheitsverlauf von den meisten Patienten zu beschreiben. An-

hand der angepassten Modellparameter lassen sich die Patienten in Risikogruppen einteilen.

Ich konnte zeigen, dass diese Gruppen unterschiedliche rückfallfreie Überlebenszeiten auf-

weisen. Diese Einteilung der Gruppen führte zu einer besseren Unterscheidung der weiteren

Krankheitsprognose als die aktuelle Risikogruppeneinteilung der WHO. Im weiteren versuchte

ich mit Hilfe von drei verschiedenen Vorhersagemethoden und synthetischen Daten vorherzu-

sagen, ob ein AML-Patient innerhalb von 2 Jahren einen Rückfall erleiden wird. Dabei zeigte

sich, dass die verwendete Methode kaum einen Einfluss darauf hat, wie gut eine Vorhersage

funktioniert. Viel entscheidender hingegen war die Qualität der Daten. Besonders die geringe

Dichte an Datenpunkten, die wir bei den Zeitverläufen der AML Patienten finden, hat einen

erheblichen negativen Effekt auf die Vorhersagbarkeit eines Rückfalls. Anhand eines simu-

lierten Datensatzes mit Messpunkten zu Zeiten, die an den Chemotherapiezeiten orientiert

sind, konnte ich zeigen, dass so ein durchdachtes Messschema die Vorhersagbarkeit eines

Rückfalls verbessern kann.
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Schlussfolgerungen: Die Ergebnisse führen zu den Schlussfolgerungen, dass es durchaus

ratsam ist, den dynamischen molekularen Verlauf der NPM1-Belastung bei AML-Patienten

zu berücksichtigen, da dieser wichtige Hinweise auf den weiteren Krankheitsverlauf liefern

kann. Das Einbeziehen eines mechanistischen Modells in die Risikoabschätzung der AML-

Patienten kann einen Beitrag dazu leisten, genauere Vorhersagen über die allgemeine Pro-

gnose zu treffen. Eine genaue Abschätzung des Rückfallzeitpunktes ist damit jedoch nicht

möglich. Alle drei verwendeten Methoden (mechanistisches Modell, statistisches Modell und

neuronales Netz) sind geeignet um Vorhersagen zum Rückfall von AML-Patienten zu machen.

Für eine zuverlässige Vorhersage muss die Qualität der Daten allerdings deutlich verbessert

werden.
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Foreword

Dear reader,

I appreciate that you decided to read this dissertation. Before you start reading, I want to give

you a small introduction to the purpose of this work and the style used to achieve this. This

dissertation is a cumulative work. That means that the three scientific publications contained

here, have already been published and are available to the entire scientific community. Fur-

thermore, to understand this work entirely expert knowledge from multiple disciplines, such

as medicine, mathematics and computational science, are required. Therefore, the purpose

of this work, is not to summarize my achieving again for multidisciplinary experts, but instead,

I would like to make my results available to a broader audience. This is done here, by using

easy language, explaining technical terms and further trying to make the read as enjoyable

and easy as possible. I choose this to be the additional challenge of my PhD, as it is one thing

to be able to communicate your findings within an informed community, but a totally different

thing to make it understandable for everyone. From my perspective this ability is important

for every scientist, as not only a small group of chosen people should have access to the

whole knowledge, but everyone should get the chance of understanding what is going on in

the scientific world. Therefore, I will give a detailed and easily readable introduction into the

main topic of this work, as well as understandable introductions to the background of each of

the three manuscripts followed by a summary of the main findings. In the discussion at the

end I will explain what the limits of the findings are and what can be implied from them and

what not. I hope this will help to give everyone the chance of understanding the work I have

done in the last years and what it means for leukaemia patients and other scientists.

I want to take you on a journey, a journey through my years as a PhD candidate, through ob-

stacles and achievements, frustration and motivation. Let me inspire you with my fascination

for clinical time course data and how they can be predictive about the further course of the

disease. Let me take you away with my excitement to see how a mechanistic mathematical

9



FOREWORD 10

model can be used to gain insights into the disease dynamics of individual patients and let me

infect you with my passion for modern machine learning methods and how they can be used

to predict the relapse for leukaemia patients.



Chapter 1

Introduction

In this work, I will show you what interesting insights can be gained, when studying the

dynamic behaviour over time of the proportion of malignant cells (tumour burden) in acute

myeloid leukemia (AML) patients throughout the course of the disease, based on a unique

data set. Together we will explore how this dynamic information can enlighten us about the

further prospects of a patient. We will further see how a simply structured mechanistic model

of the bone marrow, where leukaemic cells reside, can not only reproduce the dynamics of

the tumour burden throughout the disease, but also provide unexpected deep insights into

AML disease dynamics in general and in the disease characteristics of each individual pa-

tient. And the last part of this work will confront us with the astonishing peculiarities of three

different machine learning methods: mechanistic models, statistical models and deep neural

networks and how they prove themselves in predicting the relapse of AML patients. The over-

all aim of this study was to gain insights of how dynamic time course information of leukaemia

patients can be used for prognostic purposes. This study takes place at the medical faculty

of TU Dresden, where I am provided with a set of AML time course data and the task to "see

what’s in there".

1.1 Clinical background of AML

1.1.1 Symptoms

But what exactly is this AML I already repeatedly talked about? AML is a disease, which is

also known as a form of "blood cancer", even a really harsh form. The first thing persons with

11
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AML notice about this disease is probably that their skin becomes paler, they are often tired, it

becomes difficult to breathe, they might get a fever and start to bleed frequently in the mouth.

All in all they will feel miserable and therefore, will visit the doctor.

1.1.2 Diagnosis

The first thing a doctor does then, is taking a blood sample and sending it to a lab to analyse

the different blood cell counts. Probably the lab will find reduced numbers of red blood cells.

This reduction is called anaemia. It explains the paleness, as the healthy rosy colour of the

skin comes from the circulating blood. Also the tiredness and the breathlessness is caused

by the anaemia, as the red blood cells are responsible for the oxygen distribution in the body.

But that is not everything, as also the number of platelets will probably be reduced. This

reductions is called thrombocytopenia. Platelets are the cells in the blood that are important

for wound healing and a lack leads to frequent bleeding in places where the skin is easily torn,

like in the mouth or the nose, but also inner organs can be affected. Further, the white blood

cell count might additionally be increased, which is also a hint for AML. About the reasons for

this I will talk in a later section (Section 1.2.2).

Following these quantitative blood results, the lab will additionally look at the blood cells under

the microscope. There, they will see that some of the white blood cells do not look like ordinary

white blood cells, but they are larger and have a notably enlarged nucleus. These abnormal

white blood cells are called "blasts". The normal white blood cells as well as the blasts are

counted and if the proportion of blasts is at least 20% of all cells, AML is diagnosed (normal

blood should contain no blasts at all) (Arber, 2019). When the doctor receives these results

from the lab, he will send the patient directly to the hospital, where more tests take place. A

bone marrow biopsy is done. This sample of the patient’s bone marrow is important, as this

is the place of origin of the leukaemic cells. The bone marrow sample is also tested for these

blast cells, which were already found in the blood. In healthy bone marrow no more than 5%

of blasts should be found, but in AML there are more than 20%. The bone marrow is further

tested to find out which alterations in the genetic material (gene mutation) are present, as

AML is a disease with many genetically different subtypes. That means that the genes that

are often mutated in AML are analysed to find which ones harbour a mutation (Döhner et al.,

2010). This examination also confirms the diagnosis. Also the genetic material is looked at

under the microscope, as there are changes in the chromosomes found in AML blasts for

about half of the patients, which can further help to tell if the form of AML is severe or has a



CHAPTER 1. INTRODUCTION 13

better prognosis.

1.1.3 Treatment

As AML is a disease that leads to a fast worsening of the condition of the patient the treatment

is directly started at the day of diagnosis. The treatment itself is unpleasant as the only way

to treat AML for nearly 50 years now is a cyclic form of chemotherapy (Lichtman, 2013). The

patient is put on a continuous drip feed with D-arabinosyl cytosine (AraC) for 7 days combined

with daunorubicin in the first 3 days. This leads to the nickname "7+3" (Longo et al., 2015).

You may have heard about the unpleasant side effects of chemotherapy: nausea and vomiting,

hair-loss, tiredness, infections and loss of appetite, to name only a few. They occur because

of the unspecific effect of these chemotherapeutics. That means, that not only the leukaemic

cells are targeted, but also all other cells. AraC inhibits the synthesis of the genetic material,

which happens when a cell divides (Furth and Cohen, 1968; Graham and Whitmore, 1970).

This inhibition leads also to an unbalance during cell growth and eventually the cell dies (Kim

and Eidinoff, 1965). Therefore, the faster dividing cancer cells are killed more rapidly than

healthy cells. Also daunorubicin kills faster dividing cells more rapidly by breaking the DNA

(Fornari et al., 1994). But the incidental killing of healthy cells leads to immense side effects.

Still, if all goes well patients will have less than 5% blasts left and the blood cell counts are

back to normal after three of these chemotherapy cycles (induction therapy). This situation

is called "complete remission" (CR). They will feel no signs of the disease any more and

probably even think they might be cured. Unfortunately, they are most likely not cured, but a

small number of remaining AML cells will grow again and that is why they will receive several

more chemotherapy cycles to destroy all remaining leukaemia cells (consolidation therapy).

The details of this treatment, like the dosage of the chemotherapeutic AraC can vary between

patients depending on their age or general state of health. Unfortunately, reaching a CR is

not equal to "winning the fight against the disease", because about half of the patients in CR

experience a relapse sooner or later.

So, if the patients have a more severe form of AML by means of the symptoms and (follow-

ing the analyses of the genetic material) also a higher risk of relapsing, then the exclusive

treatment with chemotherapy has a low chance of curing the leukaemia. There is another

possibility to help these patients: if they are not older than 65 years (a threshold defined on

basis of years of experience) and in a good state of health they might get the chance for a

stem cell transplantation. The goal of this treatment is to eliminate all leukaemic (stem) cells in
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the body of the patients and replace them with healthy stem cells from a person who donates

some of his or her stem cells. These new healthy cells (called "graft") will then generate new

healthy blood cells for the patient throughout his or her life. And what is even more astonishing

is that these cells also help to eliminate remaining leukaemia cells, as the graft cells perceive

them as not belonging to the body of the patient. This is called the "graft-versus-leukaemia"

effect (Sweeney and Vyas, 2019). Unfortunately, it may also happen, that the donated healthy

cells do not recognise the patient’s own cells as normal cells, but perceive them as intruders

and also destroy them. This so called "graft-versus-host" disease is a high risk for patients

receiving a transplantation.

1.2 Molecular Background of AML

1.2.1 Haematopoiesis

The last section was about how the disease looks like from a patient’s or clinical point of view.

But what is going on in the patient’s blood system on a cellular level? How does the disease

arise and what does the data mean that I was provided with for my analyses? To find the

answer to these questions it is important to understand that the correct function of the cells in

the blood is essential for the health of our body. These blood cells arise from a limited number

of blood building (haematopoietic) stem cells, which reside in the bone marrow of each person.

The bone marrow can be divided into sections, so called niches or micro-environments, each

promoting a different kind of cell. One of these niches promote dormant stem cells (Arai and

Suda, 2007). That means that these cells nearly never divide. They preserve the genetic

material (DNA) as it is, as every division of a cell harbours the risk of making mistakes during

the reproduction of the DNA (mutations). These cells are only activated to divide in critical

situations, such as infections or chemotherapy, when many new blood cells are needed.

The stem cells that are not in a dormant state divide infrequently to produce less potent

precursor cells. These again produce other cells that are even more specific, just like in a

family tree, shown in Figure 1.1. This hierarchical production of all kind of blood cells is called

"haematopoiesis". The last cells in line are the functional blood cells, that are important to

defend the body against viral or bacterial infections and to close wounds. These have no

ability to reproduce themselves, whereas stem cells are thought to have an infinite ability to

reproduce themselves and that way preserving the whole blood building system. It could be

shown, that also leukaemic cells are organized in a hierarchical family tree like the normal
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Figure 1.1: Diagram showing the development of different blood cells from haematopoietic stem cell to
mature cells. By A. Rad and M. Häggström. CC-BY-SA 3.0 license.

cells (Hope et al., 2004). Non-dividing quiescent and slowly reproducing stem cell-like cells,

that are able to generate an AML on their own (leukaemia-initiating cell) were found (Ishikawa

et al., 2007; Lapidot et al., 1994). The leukaemic blast cells, however, can only produce a

finite number of new cells and, therefore, can not maintain the disease. But now we finally

want to face the question where these leukaemic cells come from and what makes them so

disruptive.

1.2.2 Clonal Evolution

During a persons life, cells of the blood system divide very often and each division can lead

to an error while copying the DNA for the second cell, a genetic mutation (Bertram, 2000).

The entirety of all cells originating from one changed cell and therefore, harbouring the same

mutation is called a "clone" (Cooper and Young, 2017). Mostly, these mutations have no con-

sequence for the normal function of the cell and hence there coexist several different clones.
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But every once in a while, a mutation happens, that changes the function of the cell minimally,

giving it an advantage over the other cells of the same type. This competitive advantage can

lead to more and more cells with this specific mutation, replacing the other cells. This domi-

nance of one single clone in the blood building system (called "clonal haematopoiesis") can be

found in up to 20% of the elderly people (Jaiswal et al., 2014), most of them with no damage

to their health. The most common of these mutations are in some selected genes (DNMT3A,

TET2) that were found to be preleukaemic. That means that these cell populations expand,

as they have a growth advantage compared to cells without the mutation, but they are not ma-

lignant as they still have the ability to produce fully functional blood cells. Only combined with

other mutations a preleukaemic clone can develop into a leukaemic clone. Hence, to develop

AML, a person needs to have at least two different changes in the genetic material of an early

blood cell ("2-hit" model (Gary Gilliland and Griffin, 2002; Welch et al., 2012)). Whether this is

a stem cell or an early precursor cell is still not clear (Passegué et al., 2003) and might vary

between patients (Yanagisawa et al., 2016). In fact, the genes where AML patients acquire

mutations to develop the disease differ widely and many patients have no overlap with others

as there are more than 20 genes known to be associated with AML (Cancer Genome Atlas

Research Network, 2013). Earlier mutations usually lead to changes that promote the occur-

rence of more mutations (Suela et al., 2007; Yoshimi et al., 2014), for example by changing

the structure of the DNA to destabilise it (epigenetic changes). Later mutations, however,

enhance the ability of the cell to multiply faster than others (Corces-Zimmerman et al., 2014)

or not to specify further but stay at a multi-potent and highly reproductive state (differentiation

block). The mutations in AML usually lead to increased speed of reproduction of the leukaemic

blasts (Guan and Hogge, 2000; Minden et al., 1978), as well as an insensitivity to the body’s

own control mechanisms leading to uncontrolled reproduction (Young et al., 1987). And this

is now the explanation for the increased white blood cell count during a diagnosis of AML

that I talked about earlier (Section 1.1.2). Because these blasts are still similar to white blood

cells they are counted as such and because they reproduce faster than normal white blood

cells the white blood cell count is increased. But there are other mutations in AML that can

interfere with the ability of blasts to produce functional red blood cells (for oxygen transport),

platelets (for wound healing) and white blood cells (for fighting infections), retaining them in

an immature state (Bereshchenko et al., 2009; Pabst and Mueller, 2009; Rodriguez-Perales

et al., 2015). Leukaemic blasts may also directly interfere and inhibit the healthy stem cells,

by removing small signal molecules (growth factors) that are absolutely necessary for cells to

survive (Rauch et al., 2016) or by producing inhibiting substances (cytokines) (Cheng et al.,
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2015).

1.2.3 Relapse

But what happens to the mixture of healthy and leukaemic cells during chemotherapy? When

the patient is treated with chemotherapy this treatment changes the conditions for the com-

peting clones. Now, another characteristic of the cells becomes important: their sensitivity to

chemotherapy. But as mentioned earlier, some of the leukaemia-initiating cells can be in a

dormant state, without dividing at all. And as the chemotherapy depends on the active division

of a cell to effect and kill it (compare explanation of mechanism of action of chemotherapeu-

tics in Section 1.1.3), these non-dividing cells are immune to the treatment and can survive.

These cells can later be activated to reproduce again, either by chance or by an external

stimulus such as an infection. This will lead to a fast expansion of these malignant cells and a

relapse with the same clone as the original clone at diagnosis. A relapse, however, can also

appear in another way. As fast division of a cell is usually linked to high chemosensitivity the

originally fittest clone becomes eradicated fastest. That can lead to another clone that is more

resistant to treatment, outcompeting the original leukaemic clone (Bachas et al., 2012). If this

clone still has an advantage in growth compared to the healthy cells it will expand, leading to

a relapse of the disease with cells that harbour different mutations (Ding et al., 2012; Krönke

et al., 2013).

1.2.4 NPM1-Mutation

Some mutations are more likely to reoccur in the relapse clone than others. In this work, I

will focus on a subgroup of AML patients that all have a relatively stable mutation in the gene

nucleophosmin 1 (NPM1) (Jain et al., 2014). Actually it is not one mutation, there were several

different mutations found in the NPM1 gene in AML patients. But three of these mutations,

generally called type A, type B and type D, are the most common ones, one of them found

in 88% of the NPM1-mutated (NPM1-mut) AML patients (Alpermann et al., 2016). This gene

encodes a protein that usually shuttles in and out of the nucleus (where the DNA is located)

(Borer et al., 1989) but resides more prominently in the nucleus (Cordell et al., 1999). It is

a so called tumour suppressor, which means that its normal function is essential to prevent

tumour development. Its tumour suppressive function is characterised by involvement in the

stabilisation and activation of the protein p53, which is an important regulator of cell division,
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preventing the replication of damaged DNA (Colombo et al., 2002). A mutation of NPM1 leads

to a change of a part of the NPM protein, resulting in a nuclear export signal (NES). This not

only results in its more prominent residence outside the nucleus (in the cytoplasm of the cell),

but also in the inhibition of unmutated NPM by binding to it and preventing its import to the

nucleus. That way it interferes twice with the normal function of NPM (Falini et al., 2006).

As the mutation results in an interference of p53, the cell is able to reproduce uncontrollably,

allowing the tumour cells to expand. In a mouse study it could be shown, that the removal of

the NPM in the cytoplasm promotes the differentiation of the cells and prolongs the lives of

the mice with a NPM1 mutation (Brunetti et al., 2018).

There are basically two reasons why I will focus on the patients with this mutation in my work.

The first one is that NPM1-mut patients are one of the largest subgroups in AML, with about

one third of the patients harbouring this mutation (Falini et al., 2005). The second reason is

the already mentioned stability of the mutation throughout the disease, making it an excellent

target for monitoring the leukaemic burden over time.

1.2.5 NPM1-Measurements

The relative amount of NPM1-mutated cells (NPM1 burden) can easily be measured using a

standard laboratory method: quantitative polymerase chain reaction (qPCR) (Gorello et al.,

2006). In short, during qPCR a copy of the target sequence (here the mutated NPM1-gene,

including the three most common types of mutation (A,B and D)) is replicated again and

again. So even very low occurrences of the gene in the sample are enriched dramatically to

exceed the detection limit of the machine and conclusions about the total number of NPM1

-mut transcript can be drawn. To now derive the leukaemic burden in the sample a reference

needs to be measured, to estimate how many cells harbour the mutation compared to the total

amount of cells in the sample. Therefore, another gene transcript is quantified in the same

sample that is present in all cells in a stable amount. When measuring the NPM1 burden,

the transcript of the so called ’housekeeping gene’ ABL is used for this purpose. These

qPCR measurements of NPM1/ABL in the bone marrow of a NPM1-mut patient at multiple

time points during the course of their disease are used by the doctors to asses the patient’s

response to the treatment as well as for early identification of a recurrence of leukaemic cells.

They make up the data set for this work. We decided on using only measurements from

the bone marrow and not from the blood as these are more sensitive (Ivey et al., 2016). The

smallest detectable NPM1 burden is one copy in 105 copies of ABL. The time points are based
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on the recommendation of the European LeukaemiaNet: a measurement at diagnosis, one

after two cycles of chemotherapy, one at the end of treatment and every 3 months in the

following 2 years (Schuurhuis et al., 2018). But why these time points and not others?

1.2.6 Risk Estimation

The reason why these time points were chosen is that several studies showed that the mea-

surements at these times have prognostic power over the further course of disease, such as

the survival for 3 or 4 years or the occurrence of relapse (Balsat et al., 2017; Ivey et al., 2016;

Krönke et al., 2011; Shayegi et al., 2013). Therefore, these measurements are part of the as-

sessment of the individual risk of a patient, which basically gives information about how bad

the disease is (Döhner et al., 2017). There are three risk categories for AML: favourable, in-

termediate and adverse risk, which are defined by the genetic abnormalities of the leukaemic

cells. Whether a patient with NPM1 mutation has favourable or intermediate risk depends on

another mutation: the FLT3-ITD. If this mutation is not present or only in a low frequency (oc-

curring in only a small portion of the blood cells), the patient is categorised as favourable risk

and therefore, has an increased chance of survival without relapse. The presence of FLT3-

ITD in high frequency, however, indicates intermediate risk and therefore, lower chances of

recovery. Furthermore, there are general criteria used, that assess the success of treatment

after the first cycles of chemotherapy to estimate the severity of disease. Such criteria are

the absence of blasts in the blood, less than 5% blasts in the bone marrow and negativity for

the genetic marker (e.g. NPM1). This risk estimation helps the doctors to estimate the overall

survival of a patient as well as supports treatment decisions, such as whether a stem cell

transplantation is necessary.

At this point we reached the end of the introductory chapter. So far I talked about AML from

a clinical point of view as well as from a molecular point of view. It should be clear now,

why the NPM1 measurements within the data set are conducted, how this is done and what

information they harbour. But what additional information about the course of disease is hiding

in the data? And how can this be extracted? This will be the topic of our next chapter.



Chapter 2

Data analysis

2.1 Introduction

In this chapter I will lead you through a variety of useful methods for time course data analysis,

with the goal to help you understand how this data harbours valuable information about a

patient’s individual disease progress. We will have a closer look at the data set of time courses

of NPM1-mut patients and how I analysed it with respect to prognostic potential. In particular,

I analysed in what respect the time courses are linked to the later course of disease, such

as relapse, death or survival. Such an analysis is, in principle, not new. Shayegi et. al

for example, compared different thresholds of NPM1 burden after treatment in their ability

to predict relapse. That means that they divided the patients into two groups concerning

their post-treatment NPM1 level (using different thresholds) and compared the group’s risks

of suffering a relapse to find the threshold that leads to the biggest difference in relapse

risk (Shayegi et al., 2013). Other groups used solely the mutational profile of the patients

to estimate their prognostics (Grossmann et al., 2012; Zhang et al., 2019). Another group

developed a risk score including information about the patients chromosomal structure and

the blast burden (Haferlach et al., 2004). The European LeukaemiaNet used a comprehensive

mixture of the mentioned factors in their risk estimation recommendations (Döhner et al.,

2017). So, there is already a lot known about the prognostic potential of different measures

in AML. But what is so different about my analysis that it is worth to talk about? I focused

on an alternative to a comparison of the genetic profile or leukaemic burden at certain time

points with the outcome. I derived other factors, such as the speed of tumour burden decrease

during therapy. Therefore, I included parameters in the analysis that describe the dynamics of
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the process. That way, the change of the tumour burden over the entire disease progression is

seen as an interdependent process, that can harbour additional information about the course

of disease.

2.1.1 Patient Data

At first we should have a detailed look an the data set to understand what I was working with.

For this analysis I was provided with the data of 797 NPM1-mut patients. While this seems to

be a really high number at first glance, the yield when applying some quality criteria is strongly

reduced. My requirement for a patient to be included in the analysis was, that I was provided

with detailed information about the chemotherapy administration, e.g. the time and duration

of each cycle. Furthermore, I set a threshold of at minimum 3 NPM1-measurements. These

criteria resulted in 340 remaining patients. Details about the patient cohort can be found in

the Supplementary Materials and Methods of the Manuscript (Section 2.2.1).

2.1.2 Time-course characteristics

But which parameters can be used to describe the time courses in a more dynamic way

than it was done before? Some characteristics need to be defined that capture the individual

features of the time courses. This is especially important, as it is not trivial to compare two time

courses with each other with samples at different time points. Therefore, I defined five main

characteristics of the time courses. To describe the initial decline of the leukaemic burden

during therapy I defined the first characteristic as the elimination slope (α in Figure 1A in the

manuscript, Section 2.2). It reports a measure for the speed of reduction of leukaemic burden

in the bone marrow during the treatment period, consisting of several cycles of chemotherapy.

It is given in log10(NPM1/ABL)% per day. So, an elimination slope of -0.5 means an average

reduction of the leukaemic burden by 100.5% (ca. 3%) every day during the treatment phase.

To describe how much the therapy was able to reduce the burden in total, I defined the second

characteristic as the NPM1 level after primary treatment (n in Figure 1A in the manuscript,

Section 2.2). It describes the lowest measured leukaemic burden (in %) within the first 9

months after treatment start, which is usually at the end of the last therapy cycle. As the

measurement frequency is relatively low this value is usually above the actual lowest value

of the leukaemic burden and it was taken at some time point before the end of month 9.

To describe the increase of the number of leukaemic cells during relapse I defined the third
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characteristic as the relapse slope (β in Figure 1A in the manuscript, Section 2.2). It gives

the speed of regrowth of the leukaemic burden in case of a relapse, similar to the elimination

slope, only that the burden increases, not decreases. A relapse occurs when the leukaemic

burden passes the relapse threshold of 1% (defined in (Shayegi et al., 2013)). To describe

the duration until a reoccurrence happens I defined the forth characteristic as the time until

relapse (d in Figure 1A in the manuscript, Section 2.2), providing the time point of the first

measurement beyond the relapse threshold in days after treatment start. To describe the

duration of time a patient lives with the disease I defined the last characteristic as the time

of survival in days after treatment start. Not every characteristic can be derived for every

patient, as not all patients have enough measurements in the phase of treatment to estimate

the elimination slope. Also not every patient experiences a relapse or dies within the observed

period. Still, these characteristics are important measures to be able to analyse whether

information about the outcome after some time with the disease is already detectable shortly

after diagnosis. This information can help to assess the severity of the course of disease. It

can be obtained by analysing the relationship of the characteristics to each other. But how is

this done?

2.1.3 Rank Correlation

One method to do so is the Spearman rank correlation. In short, this method measures if one

characteristic increases while the other characteristic also increases (positive correlation) or

decreases (negative correlation). This is done by assigning ranks to each value, where the

smallest value has the lowest rank and the biggest value has the highest rank. After doing

this with all five characteristics, we have a list of 5 ranks for each patient. Now we can sort

the ranks of one characteristic in ascending order. To compare this parameter, we look at

the order of the ranks after the sorting of another characteristic. If these ranks are in perfect

ascending order, then the Spearman correlation coefficient (r ) would be 1. If the ranks of the

other parameter were in perfect descending order, r would be -1. If there were an up and

down of the ranks of the other characteristic without any tendency r would be 0. Usually r lies

somewhere between these values. In biology, values beyond ±0.8 are usually associated to

a strong relationship and values beyond ±0.6 to a moderate relationship. Let us now have

a quick look at the Supplementary Table S1 in the manuscript (Section 2.2.3), where we

find the calculated coefficient for the characteristics. We find that the relation between the

NPM1 value after primary treatment n and the time until relapse d was granted a correlation
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coefficient r = −0.48. This means that there is a weak relation between a deep reduction of

leukaemic burden and late relapse (or poor reduction and early relapse).

But there is another value, that is calculated alongside the correlation coefficient. It is the p-

value, which can be seen as measure for how certain we can be that the calculated coefficient

is different from 0. Just imagine you have only very few patients available to compare two

characteristics. Than a perfect correlation of r = 1 could as well be pure chance. Therefore,

the p-value gives the probability that r is only by chance different from 0 and there is in

reality no relationship between the tested characteristics. A widely used threshold for this

p-value is 0.05, which means that the probability of reaching a false conclusion (that there is a

relationship between the tested parameters, although there is actually none), is only 5% (false

positive rate). Hence, a small p-value leads to the conclusion that it is very unlikely that there

is actually no relationship between the tested characteristics. All r with a p-value smaller or

equal to 0.05 are counted as being "statistically significant". Going back to our example of

the time to relapse d and the NPM1 value after primary treatment n (which had r = −0.48)

we find a p-value of 0.0001, which leads to the conclusion that the found weak relationship

is most likely present and did not occur in the data by pure chance. The 95%-confidence

interval is another measure for how certain we can be that the estimated r is different from 0.

The interval provides the range where the true r value lies with a probability of 95%. If this

includes 0 then the tendency shown by r is not very meaningful.

2.1.4 Cumulative Incidence

So, the rank correlation is a method to analyse the relationship between two parameters. But

to better understand if a difference in one of the characteristics has an actual effect on the

prognosis of a patient, the patients can be divided into groups, for example in deep and poor

responders, for low and high values of n (NPM1 value after primary treatment). But how to

decide whether one of the groups has a better prognosis than the other? There are more

sophisticated ways for such an analysis beyond comparing the times of relapse free survival.

Methods that also take into account that for still living patients you can not know the survival

time. One of these methods is the cumulative incidence function (CIF). In general this function

gives the probability of an event to occur until a certain time. There is always a target event,

for example death due to AML and there might be competing events and censoring events. A

competing event is an event, that, when happening, changes the probability of the target event

to occur. A standard example is the stem cell transplantation, as this is performed to prolong
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the survival of an AML patient and therefore changes the probability of death due to AML.

A censoring event, however, is for example the end of the study before death occurred. We

can not tell when this patient might die. But it is assumed that the probability of dying has not

changed and the patient is still at risk of dying due to AML. So, when estimating the probability

of the target event using a set of patient data, the CIF takes into account the occurrence of

competing and censoring events. This method can be used to analyse the impact of the value

of one characteristic, such as n, on the survival. Therefore, we split the patients in two groups,

deep and poor responders, and calculate the CIF for each of the groups. When plotting them

we see whether there is a difference between the curves of the two groups. Looking at Figure

1C in the manuscript (Section 2.2) we can see a clear difference between the two groups. And

yet again we can estimate the probability that this difference occurred just by chance, although

the groups are actually similar with respect to the characteristic, as the p-value of the Gray

test (Gray, 1988)). This p-value was calculated to be 0.1, so, there is a 10 % probability that

the difference occurred just by chance and the groups are not actually different from each

other. To determine the best threshold between poor and deep responders with respect to n,

leading to the biggest difference between the groups, the p-value can help, by selecting the

threshold that leads to the smallest p-value.

2.1.5 Group-wise Comparison

To be sure that one result is really correct it is not uncommon to use another method to

confirm earlier findings. To confirm the afore mentioned relation between a low n and a later

time of relapse d I used the splitting of the patients into the two groups of poor and deep

responders and analysed how these groups differ in their time of relapse. This leads us to

a method for group-wise comparisons. Therein, boxplots are a simple graphical method to

get an impression whether a characteristic is different in two groups. In a boxplot the median

of the data is marked. A box around the median shows the lower and upper quartile of the

data, that means that it includes all values except one quarter of the higher values and one

quarter of the lower values. The minimum and maximum (excluding very extreme values)

are then marked with the whiskers. The boxplots for the poor and deep responders for their

time until relapse can be found in Figure 2B in the manuscript (Section 2.2, with a clearly

visible difference between the groups. There is again a test principle (U-test) to estimate

the probability (p-value), that a possible difference between two groups with respect to the

observed parameter occurred just by chance. In our example the p-value was calculated to
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be 0.001, leading to the conclusion that this difference is truly there.

2.1.6 Logistic regression

Now, we talked about how to find relationships and differences in two groups. But if you know

some specific characteristic of a patient, e.g. the NPM1 level after primary treatment, would

it not be exciting to be able to estimate the chance of surviving the next 5 years, just from

this single characteristic? There is a method that can be used to do exactly that: the logistic

regression. For this, a binary dependent variable is needed, a variable that has exactly two

outcomes, such as dying in or surviving the next 5 years (coded as 0 and 1). Every patient

is categorised in one of these outcomes. To analyse the impact of one specific characteristic

(here NPM1 level after primary treatment), a logistic function can be fitted to this dependency

between the characteristic and the outcome. A logistic function is a monotone function that

can attain values between 0 and 1. The extreme case would be a step function where the

function is 0 until some threshold is reached and than becomes 1. In practice, this is a more

subtle transition. The steepness of this transition, however, gives a hint about how good the

used variable can differentiate between the two outcomes, here how suitable the NPM1 level

after primary treatment is to estimate the 5-year survival probability. The logistic function itself

then estimates the probability of the 5-year survival depending on a patient’s NPM1 level after

primary treatment. Further, the fitted function can give information about the odds of dying

within 5 years when the NPM1 level after primary treatment increases by 1. An example of

such a logistic regression can be found in Figure 1E in the manuscript (Section 2.2), where

the steepness of the curve indicates that a perfect prediction of the 5-year survival using only

the NPM1 level after primary treatment is not possible.

2.1.7 Summary of results

As already mentioned, I used the characteristics derived from the time course data to find con-

nections between them. Using the Spearman rank correlation, I found that an earlier relapse

and a faster growing relapse have a negative impact on the survival time (compare Sup-

plementary Materials 2.2.3). A higher residual NPM1 level after treatment was furthermore

connected with an earlier relapse. To further investigate prognostic potentials of the charac-

teristics, I calculated the CIF to first compare patients with a slow and a fast therapy response

(measured by the elimination slope α) and second to compare poor and deep responders



CHAPTER 2. DATA ANALYSIS 26

(measured by the minimal NPM1 level). This lead to the conclusion, that both characteristics

have prognostic potential, as the groups clearly differ in their cumulative incidence of death

(see Figure 1B and 1C in the manuscript), where deep responders and those with a fast

therapy response show the better prognosis. An analysis of different time points for the eval-

uation of the minimum NPM1 level showed, that the optimal time is 9 months after therapy

start as the 5-year cumulative incidence of death shows a visible difference when comparing

deep and poor responders (see Figure 1D in the manuscript). A logistic regression (Figure

1E in the manuscript) to analyse how the 5-year survival depends on the minimal NPM1 after

treatment n showed, that if a patient has an n that is about one log10-scale lower than that of

another patient, the chance of surviving 5 years is nearly twice as high as that of the other

patient. When further comparing the poor and the deep responders using boxplots, I could

show that deep responders tend to have a faster elimination of the leukaemic burden during

therapy (smaller elimination slope α), as well as a later time of relapse (see Figure 2A and 2B

in the manuscript). Further, I could show that higher FLT3-ITD burden is connected to higher

n and earlier death (see Figure 2C and 2D in the manuscript). Finally, I showed, that deep

responder have a visibly more efficient reduction of leukaemic burden during the treatment

period compared to poor responders (see Figure 2E in the manuscript). Concluding from all

these results I found that looking at the dynamics of the leukaemic burden during the course

of disease can substantially add to risk assessment for NPM1-mut AML patients.
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Chapter 3

Mechanistic modelling

3.1 Introduction

In the previous chapter I introduced you to the descriptive data analysis, where the pure data

was used to gain insights into the disease dynamics. But this approach is neglecting all

the further knowledge that was derived by biologists in many years of hard work. Would it

not be great to be able to combine background knowledge about disease mechanisms with

the time-course patient data? The characteristics derived in the previous chapter are solely

descriptive, but what if we could derive patient-specific parameters that give insights about

the underlying biological process, such a the speed of reproduction of the leukaemic cells?

So, in this chapter I will focus on the development, adjustment and analysis of a mechanistic

computer model that is able to simulate the time courses of the leukaemic burden in AML

patients in the bone marrow. The aim of this part is to show how such a model: (i) is able

to reproduce the patients’ individual dynamic course of molecular leukaemic burden (fraction

of leukaemic cells in the bone marrow), (ii) to gain a better understanding of the source of

the differences between individual courses of disease, e.g. why some patients relapse earlier

than others and (iii) to use this information to improve risk classifications.

3.1.1 Model Development

But how can it be done to describe biological mechanisms mathematically, such as the effect

of chemotherapy or of the normal reproduction of cells on the cell numbers? Therefore, it is

especially important to be able to describe how the cell numbers change over time, taking into
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account the current cell numbers. This surmounts the abilities of statistical models, such as

I introduced in the last chapter. But there is a class of equations that are perfectly suitable

for this purpose: the ordinary differential equations (ODEs). ODEs are a powerful tool for

the description of dynamic processes. They can describe how a variable x (here number

of cells) changes with time t within the considered system (here a patient’s bone marrow).

This can be mathematically written as: dx

dt
, which means change of x (dx) over change of t

(dt). To describe the dynamics of AML I chose a model structure that is similar to a model

for a different type of leukaemia, chronic myeloid leukemia (CML)(Roeder et al., 2006). The

department I am working in has many years of experience with this model. It is characterized

by two different compartments, which model an active stem cell niche where the cells can

reproduce themselves and an quiescent stem cell niche, where no reproduction takes place.

The change of the cell numbers of a specific type (leukaemic or healthy) in a specific niche

(actively reproducing ar dormant) is influenced by a mixture of influx and efflux. Influxes are

the reproduction of the cells and the entering of cells from another niche, whereas the effluxes

are chemotherapeutic kill, differentiation or exit to another niche. The fluxes are characterized

by specific rates that describe how many cells of the type leave or enter the niche in one

way or another, within one time step. The rates of influx and efflux in this system are the

transition rates between the two niches, the differentiation rate, the reproduction rate and the

chemotherapeutic kill rate. The kill rate of chemotherapy can be switched on and off, to mimic

the cyclic treatment in AML patients. A schematic overview of the system can be found in

Figure 1a in the manuscript (Section 3.2). An important factor for the dynamics of the system

is, that every niche has a finite capacity and if a it is already completely filled with cells there

is no space, or there are no resources for more cells to enter. Therefore, the movement in

the system is influenced by a total capacity of each niche, as well as the current number of

cells of the niche. Concretely, this means that if the niche is completely full (the total number

of cells in the niche equals the maximum capacity) then the influx term in the ODE becomes

zero. This is only a theoretical consideration as there is always influx and efflux happening

at the same time. If all influx equals the efflux we have no change in the number of cells any

more (dx
dt

= 0). This state is called the steady state.

All this influx and efflux knowledge leads to the equations describing the changes in the bone

marrow of a patient, which can be found on page 4 in the manuscript (Section 3.2). But what

we actually want is to find a way to simulate the leukaemic burden of a patient. Therefore,

we need to know how many cells of each type are in the system at each time point. To get

this information we need two things: values for the parameters of the equations (the rates
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and capacities) and a solution of the ODEs. The solution of the ODE is another equation that

describes the absolute number of cells x in dependence of the time t, also written as x(t).

Unfortunately, finding an exact solution by solving the equations is only possible in rare cases

and, therefore, we use a numerical method (Runge-Kutta method) to find an approximation of

the solution. The model’s parameters are mostly taken from other studies or from the earlier

mentioned model, I derived this model from (see also the Materials and Methods Section in

the manuscript). Using the approximated solution of the ODEs and the parameter values we

can now compute the number of each cell type at each point in time, given the number of the

cells at the beginning. From the so gained absolute cell numbers we can calculate the relative

leukaemic burden in the bone marrow, which is then comparable to the NPM1/ABL values of

real patients.

3.1.2 Model fit to patient data

With this model I want to reproduce every patient’s individual course of disease. How can that

be done? To do so, I decided to keep all model parameters for all patients fixed to the same

value, except for two of them, which describe the features with the largest impact on the AML

dynamics. One of them is the proliferation rate of the leukaemic cells, which gives the speed

of reproduction of the leukaemic cells in the bone marrow. The other is the transition rate from

dormancy to active reproduction of the leukaemic cells, which basically gives the speed for

leukaemic cells to enter the state, where they can not only reproduce themselves but can also

be killed by chemotherapy. Before trying to find the best parameter combination for a patient

the treatment information of this patient is also given to the model. That means that we tell the

model when to switch on the effect of the chemotherapeutic kill and when to switch it off, to

mimic the cyclic treatment of the AML patient. To then find the values for the two parameters

that lead to the best possible match for this patient, the parameters are varied and the resulting

solution by the model is compared to the NPM1/ABL measurements of this patient. This is

repeated systematically with different parameter values until the optimal values are found that

lead to the smallest possible difference between the approximated model solution and the

patient data. This way I get a pair of values of the fitted parameters for each individual patient,

that I than analyse for their relation to the patient’s time of relapse.



CHAPTER 3. MECHANISTIC MODELLING 41

3.1.3 Existing AML models

At this point the question arises, why such a personalized model for AML patients was not

developed earlier. I guess it is because of the lack of such a relative unique and large data

set as I have it available, which took years to gather. But I am not the first person to think

of a mathematical model describing AML. So, what kind of models did others develop before

me and with which goal? Such models date already back until the 70’s where S. Rubinov and

J. Lebowitz developed the first model, describing the disease dynamics in a similar way as I

did (Rubinow and Lebowitz, 1976a,b). They describe a dormant state and an active state, a

competition between healthy and leukaemic cells, as well as cyclic chemotherapy administra-

tion, although they used different regulatory mechanisms and had no patient data available.

They used this model to make general statements about ideal time points for treatment. This

model was followed by other models also analysing different treatment regimens (Afenya,

1996; Andersen and Mackey, 2001). These models were then followed by more models with

different aims. One part of the models was aimed to elucidate possible mechanisms in AML

development (Cucuianu and Precup, 2010; Getto et al., 2013; Jäkel et al., 2018; Liso et al.,

2008; Rodriguez-Brenes et al., 2013), whereas others focused on regulatory mechanisms,

features of leukaemic cells or clonal evolution (Crowell et al., 2016; Dingli et al., 2007; Jiao

et al., 2018; Stiehl et al., 2014; Wang et al., 2017). There are basically two other models with

a similar aim, as the model I developed: the description of the individual course of disease

and a correlation of the individual parameters with the outcome. The first was developed by

Stiehl et al. and it includes regulatory mechanisms by signalling molecules and a possible

independence of leukaemic cells from these signals (Stiehl et al., 2018). This model was

fitted to the time courses of 41 exemplary patients to analyse the heterogeneity in the model

parameters and their link to the survival of the patients. Chemotherapy, however, is not taken

into account, so that the therapy response is assumed to be the same for all patients. The

other model is a very detailed model by Sarker et al. (Sarker et al., 2017) which considers the

whole blood linage by modelling the cell mobility between the bone marrow and different blood

compartments in the body as well as the interactions amongst mature blood cells and their

progenitors. Regulatory mechanisms with signalling molecules and chemotherapy treatment

are also included. Patient data, however, was not used for individual parameter estimation,

but to validate the model by testing different criteria found in the data. To correlate the pa-

rameters with the outcome theoretical patients (in form of a parameter set) were used to draw

conclusions. So, the crucial and unique feature of my AML model is that it is able to reproduce
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the entire time course of leukaemic burden of individual patients from diagnosis until relapse,

including the heterogeneity in treatment and therapy response.

3.1.4 Survival analysis

This model, fitted to the patient’s time courses provided me with a pair of patient-specific

parameters. But what can these parameters tell us about the patient’s course of disease?

How can I compare the time until relapse of different subgroups of the patients? To analyse

the results I gained using the mechanistic model and thereby answer these questions I used a

statistical method, the Kaplan-Meier (KM) estimator and the logrank-test, which is a common

method to compare the outcome of different groups of patients. This is also called survival

or "time to event" analysis. The KM estimator is used to compute the survival function, which

gives the fraction of patients that survive until a certain time point. Survival functions always

decrease in time. Here, however, I did not analyse the survival time, but the relapse-free

survival. These KM-plots can be found in Figure 3c and d in the manuscript (Section 3.2).

That means that the curve shows the fraction of patients, that did not die or experience a

relapse depending on the time. The KM estimator also takes into account that you do not

always know when a patient relapses or dies, respectively. There are events that make it

impossible to know what happened to the patients, such as the end of a study or a patient

moves to a different place and is not included in the monitoring any more. These events

are handled as censoring events, as I do not know what happens afterwards. I assume that

the probability of experiencing the target event (here death or relapse) stays the same after

a censoring event. Often looking at two of these survival curves, here to compare different

combinations of the fitted parameters, gives already a good notion whether one group has

a better survival than the other. Additionally, to confirm this notion, there is the logrank-test,

which tests how likely it is that there is actually no difference between the two curves (again

giving a p-value as probability). Often in relation to the survival analysis the hazard ratio is

computed to estimate the advantage of one group over the other. Therefore, a hazard function

for each group is estimated, which gives the rate of how many events of interest can happen

per time unit (also called hazard rate). The ratio of the rates of the two groups is the hazard

ratio and it tells you how much higher the risk for someone in one group is to experience the

event than it is for someone of the other group. Hence, a hazard ratio of 2 means that one

group’s risk is twice as high as the other group’s risk. Other methods for the analysis of the

relation of the fitted parameters and the time of relapse are the group-wise comparison using
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box plots and the logistic regression, both already explained in detail earlier (Section 2.1.6 and

Section 2.1.5). Now, that we talked about how risks of relapse can be estimated and what

the fitted parameters of the model can tell us about the patient, for me the question arises,

whether I can actually estimate the exact time of relapse for each single patient. To find out

if this works, I used the individually fitted model and estimated from the resulting dynamic of

the leukaemic burden a time of relapse for each patient.

3.1.5 Concordance correlation coefficient

But can I know how accurate my estimate is for the whole cohort? There is the so called Lin’s

concordance correlation coefficient, which measures the accordance of the estimated relapse

time from the fitted model and the relapse time inferred from the data over all patients. If this

coefficient is 1, then for all patients the relapse times from the model is equal to the relapse

times from the data. The lower the coefficient is, the further the two relapse times are apart

from each other.

3.1.6 Summary of results

Now, as all methodological background is clear I can start to explain the main findings of the

second manuscript in this work. Therein, I developed a mathematical model that describes

the dynamics of healthy and leukaemic cells in the bone marrow of an AML patient. The model

consists only of four ordinary differential equations, and assumes that the chemotherapy has

the same effect on healthy cells as it has on leukaemic cells and, thereby, not including a

faster elimination of leukaemic cells just by treatment administration. Nonetheless, I could

show, that despite these simplifying assumption the model is able to generally reproduce the

reduction of the leukaemic burden during treatment (Figure 1 in the manuscript 3.2). To fit

this model to the individual time courses of the patients, I varied two of the model parameters

for each individual patient. The first parameter is the reproduction rate of the leukaemic cells.

It describes how fast the leukaemic cells can reproduce themselves. The other parameter

is the leukaemic activation rate, which describes how fast the leukaemic cells switch from

a dormant, chemo-resistant state into an active chemo-sensitive state. I could show, that

these model fits are able to mimic the individual time courses of most of the 275 patients

included in this study. The model only failed for about 5% of the patients. I could show,

that the two patient-specific parameters are related to the patient’s time of relapse. Using
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an appropriate threshold of the ratio of these two individual parameters the patients could be

separated into two different groups. These two groups showed distinct relapse-free survival

characteristics with a better separation than the currently used risk classification (Figure 3 in

the Manuscript 3.2). The hazard ratio for the groups is more than 5, meaning that the chance

of dying or experiencing a relapse is more than 5 times higher in one group than in the other.

Therefore, it would be extremely helpful to reliably identify the two parameters early during the

disease to derive improved risk stratification schemes for treatment improvement. The main

shortcoming, however, is that when trying to predict the relapse time, based only on the data

points of the first 9 months and neglecting all the points afterwards the concordance coefficient

as measure of accuracy is with 0.37 much lower than 1 (perfect prediction). For more than

40% of the patients the predicted relapse time diverges more than half a year from the actual

time. Still the findings in this manuscript suggest that the usage of a mathematical model can

not only give insights into the patients-specific differences between treatment responses, but

further harbour the potential to improve the assessment of the severity of a patient’s individual

course of disease.
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Chapter 4

Relapse Prediction

4.1 Introduction

And now we come to the third and last part of this work1. In the previous chapter we saw,

that a prediction of the relapse time based on the available data using the mechanistic model

is not possible. What came to my mind then was a method, that was used in a wide range

of different prediction tasks, in some cases clearly outperforming traditional methods: neural

networks. The question that instantly came to my mind and defined further strategies for this

work was: could the predictability of relapse for AML patients also profit from this approach

and hence, improve the treatment of these patients?

4.1.1 Neural networks

But what are neural networks and how can they be used in this case of predicting the regrowth

of leukaemic cells in a patient’s bone marrow? The idea for neural networks came, as the

name already suggests, from our own brain and its network of neurons. The idea is to build

an artificial construct that has similar abilities as the human brain. In some points computers

may already outperform humans without neural networks, for example when solving difficult

mathematical operations in a fraction of a second or solving differential equations. But in

other points, such as image processing the human brain is much better. You only need a

fraction of a second to recognise a dear friend of yours from across the street, who is not

1This is my favourite part, as I developed the ideas on how to proceed here and I did what really inspired me.
Additionally, this is the part where I learned most new things, which is for me the greatest motivation ever.
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even looking in your direction. This is only possible because you had years and even decades

to gather experiences in real life situations. Those experiences are stored in your brain and

that way you can connect different experiences, which is really difficult for computers. But

these neural networks enable computers to learn from examples they were exposed to and

draw conclusions, similar to the way human brains work.

To understand how a neural network is working, I will first explain a bit about how the human

brain is working. The brain is full of neurons, which are interconnected forming one huge

network. When a stimulus comes in, such as the visual impression perceived by the eyes

when reading a book, the neurons of the visual nerve are activated to forward this stimulus

to the brain. The signal transmission between neurons happens mostly unidirectional, that

means that they receive a signal from one or multiple cells and transmit this to one or more

other cells. You can picture this as electrical pulses that go through these cells, coming in

at the input (the dendrites) and being forwarded to the cells connected to the output (the

axon) of the cell, as visualized in Figure 4.1. This is done in a way that only signals that

surpass a certain threshold are transmitted. Therefore, the information is processed by the

connectivity of the neurons as well as by the transformation of the signal. Signals that come

in at the same time from different neurons are added up and only important signals are being

transmitted. In our example with the image from the eyes while reading, that would mean

that this signal is processed, so letters are interpreted as words. Additionally, all other objects

that are in the current field of vision, such as your hand holding the book or the surroundings,

are not perceived by the brain. They have no meaning while you are fully concentrated on

understanding the written words.

And this is basically how neural networks work. Simple neural networks have an input, where

the data (the time series data of leukaemic burden in my case) comes in, which is connected to

a bunch of artificial neurons that are all connected to the input, but not to each other, as shown

in Figure 4.2. This connection can be strong or weak, which is represented by multiplying the

input value with a weight. Every input node is connected with every node in the following layer.

In each artificial neuron the weighted signals from all inputs are summed up and modified by

a so called activation function. The most frequently used activation function is the rectified

linear unit (ReLU), which does what the neurons do and only transmits a signal if it surpasses

a certain threshold. For the artificial neuron this threshold is "0". All nodes in this layer are

then connected to the output, which is the desired result (here the decision whether a relapse

will happen or not), again with weights applied to set the importance of the connection.

The purpose of the neural network is to learn how the time courses of patients look like that
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Figure 4.1: Neuron and myelinated axon, with signal flow from inputs at dendrites (x1 to xn) to outputs
(y1 to ym) at axon terminals. By Egm4313.s12 at English Wikipedia, CC BY-SA 3.0 , via Wikimedia
Commons

suffer a relapse compared to the time courses of patients that do not. So, we need to provide

a data set of time courses for which we know whether a relapse occurred or not. This can be

used for training the network. During training the neural network learns how to set the weights

at all connections to be able to correctly predict the outcome. This process to find the best

weights is called back-propagation. The idea behind it is that the weights are arbitrarily set at

the beginning and for all training samples the output, ’relapse’ or ’no relapse’, is calculated.

This output is then compared to the ground truth of this data. Therefore, it is essential for

this type of training that we know the ground truth of training data (supervised learning). The

distance between the truth and the predicted outcome (also called the loss) is calculated

using the so-called loss-function. There are different kinds of loss-functions and it depends

on the problem you want to solve, which loss-function you will use. For a problem, such as

mine, where I want to classify the data into two different categories (relapse and no relapse)

this loss function is called "binary cross-entropy ". Trying to reduce this loss the weights in

the network are adjusted by going back through the network from the output to the input (the

back-propagation). Calculating the loss and then adjusting the weights is repeated multiple

times until the network is good enough or reached an optimum. Now, the networked is trained.

When you input an unknown sequence it will predict the outcome based on what it has learned

https://creativecommons.org/licenses/by-sa/3.0
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Figure 4.2: An artificial neural network is an interconnected group of nodes, inspired by a simplification
of neurons in a brain. Here, each circular node represents an artificial neuron and an arrow represents
a connection from the output of one artificial neuron to the input of another. This is a 3-layer neural
network. Glosser.ca, CC BY-SA 3.0, via Wikimedia Commons

during the training.

But how can this network grab the meaning of time series, where all input values depend on

the ones before that and maybe even on future values? This connection between the values

is not easily learned by a simple neural network. Fortunately, a neural network architecture

was developed that is able to remember things about the earlier values of the time series

(Hochreiter and Schmidhuber, 1997). This architecture is called long-short-term memory

(LSTM), as it has a memory to be able to find connection on short, but also on long distances

within a sequence. I said earlier, that the neurons within one layer are not connected to

each other, but only to the previous and the next layer (as in Figure 4.2). But for this kind of

architecture, the neurons within a layer are interconnected and the information going out from

one neuron goes also into the next neuron in the same layer. These kind of networks are

called recurrent neural networks (Yu et al., 2019).

https://creativecommons.org/licenses/by-sa/3.0
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4.1.2 Data generation

But would that not need a huge amount of data for the network to learn all different facets of

AML time courses? We already saw earlier that it is not trivial to detect differences in the first

months of the time courses between the patients as the mechanistic model could not clearly

find them. So, I needed a huge amount of data, which I simply did not have. But where

to get this data from? It definitely is impossible to generate real clinical AML data on short

notice. But I had another idea: I could use the mechanistic AML model, which I introduced in

the previous chapter, to generate data. As the model is meant to mimic real patient data as

closely as possible, it was basically made for this task. To set the model parameters as close

as possible to the ones of real patients I sampled them from the parameters fitted to the patient

data. Those I then varied slightly to generate a higher number of different parameter sets. Also

the information of chemotherapies I could take from the patient cohort. So the only further

information needed was the time points of the measurements. I could take those also from

the real patients and that way generating data that was very close to real data. But I already

showed, that this data has not much potential for good predictions. Therefore, I decided to

generate several different data sets with more or less measurements, more or less noise, with

and without detection limit or strategically set measurement time points. With these different

data sets, I could analyse the influence of factors, such as the number and time points of

measurements, measurement error and detection limit on the predictability of relapse, to find

out what requirements exist to get good results in this prediction task. Maybe these findings

could motivate later studies generating more suitable data for relapse predictions.

All of these generated data sets had data points in the first 9 months after start of therapy,

including the information whether this virtual patient would experience a relapse within the

following 15 months (2-year relapse) or not. This "ground truth" information is essential to

verify how good the method works in predicting the 2-year relapse. So, I had an extensive

simulated data set available. But I did not just train a neural network, get the results and say,

well that is how it works. To be able to understand if using this neural network has an actual

advantage (or disadvantage) compared to other conventional methods I wanted to compare

different methods. So in the end I wanted to tell which method is the most suitable for the

prediction task. But what additional methods come to mind?



CHAPTER 4. RELAPSE PREDICTION 62

4.1.3 Mechanistic models

First of all I wanted to test how good the mechanistic model works on the artificial data, to have

a complex method with much background knowledge incorporated in my list of tested methods

and simply because this was my actual starting point. But is it not trivial to use a model to

predict the relapse that was used to generate the data in the first place? I know that the model

perfectly describes the dynamics underlying the data. But this does not necessarily result in

perfect predictions, but gives me a clear advantage of interpreting my results. Because, in

that way I can analyse how explicitly the data quality impacts the predictability with the model,

as the model is known to be correct (to describe the simulated data). So, the model should

be able to perfectly predict the relapse if the data is flawless. But how does the reduction of

measurements and the introduction of a measurement error influence the predictability with

this method? This could be answered using the model that perfectly describes the underlying

processes.

But how exactly does a prediction with the model work? To predict the 2-year relapse of a

patient, the model is fitted to the data (with measurements of 9 months) to find the individual

parameters for this patient. Then simulating a timespan of two years with the model, using

these parameters and evaluating the proportion of leukaemic cells at the end of the simulation

will give us the prediction. Is the proportion of leukaemic cells below the relapse threshold

(of 1 %) no relapse is predicted, but if it is above this threshold this patient is predicted to

experience a relapse within 2 years after therapy start.

4.1.4 Generalized linear models

So, now I have two methods, one is a model that knows exactly how the leukaemic burden of

AML patients develop over time and another that knew nothing to begin with, but which learns

from simply looking at the time courses. I wanted to include another method, that would lie

in-between these methods concerning their need of prior knowledge about the data. But what

does "in-between these methods" mean in this case? I thought that this means that I already

interpret the data somehow and than give these handcrafted interpretations (or features) to a

model that can learn from them the differences between relapser and non-relapser. An ideal

and widely used method for this is a generalized linear model (GLM). When fitting this model

to the data, it estimates, how much each of the features influences the outcome, similar to the

weight estimation for the neural network. As our outcome is either "1" for relapse or "0" for no
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relapse this model needs to end up with a number between 0 and 1 (for the tendency for one

of the outcomes) and hence, we are using a logistic regression method, which was already

introduced in Section 2.1.6. And what are these handcrafted features? These features are

values that I constructed to describe the shape of the time series, such as the steepness of

the slope of decrease of the leukaemic burden during a chemotherapy cycle or the lowest

measured leukaemic burden. I could also use the earlier derived time course characteristics

I introduced in section 2.1.2. So, after the training of the model, the estimated parameters tell

me how likelier the patient has a relapse if it has a steeper decrease of the leukaemic burden

during chemotherapy. Then, taking the features of new time series that are so far unknown to

the model it can estimate the probability of each outcome, predicting the patient to have the

outcome that is more likely. So, the accuracy of the model (and also of the other models) is

the proportion of correctly predicted outcomes using a test data set, that was not used during

model training.

4.1.5 Summary of results

Using the artificial data sets (generated with the mechanistic model for AML), I could confirm

that the quality of the data has a major impact on the prediction accuracy. Especially, the

sparseness of the data reduces the predictability of relapse. Comparing the three proposed

methods I found, that the difference in performance between the methods was only minor.

But how general are these results? Are they also true for other use-cases? To answer these

questions, I teamed up with a colleague, to test all these methods also for another kind of

leukaemia, the chronic myeloid leukaemia (CML). I will not go into details about the differ-

ences of the two diseases here, as this is not my focus. When comparing the predictability

of relapse using four artificial data sets for CML patients we saw, that not the sparsity of the

measurements, as in AML, but the measurement error has the largest interfering impact. Also

deviating from the results for AML, in the case of CML we saw clear differences between the

performance of the different methods. The GLM and the neural network were found to be

more promising for predictions than the mechanistic model.

But in the end what I observed was, that the accuracies for data sets that were close to real

AML patient data was not very high (ranging between 60 and 75%). Is it possible to improve

this limited predictability by selecting the time points of measurement more carefully? To find

an answer to this, I generated a data set with a more sophisticated measurement scheme that

is oriented at the time points of the chemotherapy cycles. Using this to train the models for
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relapse prediction I could see that the predictability is visibly increased for all three methods,

suggesting to rethink the time points of measurements for AML patients.

In conclusion, we showed in this study that all three methods are suitable for relapse predic-

tions, but depending on the data quality and the underlying dynamics of the disease sone

methods might lead to better results than others. Further research should be conducted con-

cerning the time points of measurement.
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Abstract

Risk stratification and treatment decisions for leukemia patients are regularly based on clini-

cal markers determined at diagnosis, while measurements on system dynamics are often

neglected. However, there is increasing evidence that linking quantitative time-course infor-

mation to disease outcomes can improve the predictions for patient-specific treatment

responses. We designed a synthetic experiment simulating response kinetics of 5,000

patients to compare different computational methods with respect to their ability to accu-

rately predict relapse for chronic and acute myeloid leukemia treatment. Technically, we

used clinical reference data to first fit a model and then generate de novo model simulations

of individual patients’ time courses for which we can systematically tune data quality (i.e.

measurement error) and quantity (i.e. number of measurements). Based hereon, we com-

pared the prediction accuracy of three different computational methods, namely mechanistic

models, generalized linear models, and deep neural networks that have been fitted to the

reference data. Reaching prediction accuracies between 60 and close to 100%, our results

indicate that data quality has a higher impact on prediction accuracy than the specific

choice of the particular method. We further show that adapted treatment and measurement

schemes can considerably improve the prediction accuracy by 10 to 20%. Our proof-of-prin-

ciple study highlights how computational methods and optimized data acquisition strategies

can improve risk assessment and treatment of leukemia patients.

Introduction

Myeloid leukemias are characterized by aberrations affecting the proliferation and maturation

of myeloid progenitor cells, leading to the progressive displacement of functional blood cells

by immature and dysfunctional leukemic cells. Depending on the time scale of the displace-

ment process, myeloid leukemias are further divided in chronic and acute leukemias.

PLOS ONE

PLOSONE | https://doi.org/10.1371/journal.pone.0256585 November 15, 2021 1 / 15

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Hoffmann H, Baldow C, Zerjatke T,

Gottschalk A, Wagner S, Karg E, et al. (2021) How

to predict relapse in leukemia using time series

data: A comparative in silico study. PLoS ONE

16(11): e0256585. https://doi.org/10.1371/journal.

pone.0256585

Editor:Mohamed A Yassin, Qatar University,

QATAR

Received:May 21, 2021

Accepted: August 10, 2021

Published: November 15, 2021

Copyright: © 2021 Hoffmann et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Patient data for AML

patients was published in [23] and can be found at

https://doi.org/10.6084/m9.figshare.12871777.v1

The CML patient data was published in [31].

Source code is available at https://zenodo.org/

record/4293490#.X8DznMtKg-Q. The

computational study presented in this manuscript

is based on simulated data. Our simulation data

and also the source code to generate such

simulated datasets can be freely accessed at:

https://zenodo.org/record/4293490#.X8DznMtKg-



Patients with chronic myeloid leukemia (CML) typically carry a disease-specific chromo-

somal translocation forming the BCR-ABL1 fusion gene [1–4]. Tyrosine kinase inhibitors

(TKI) have been established as a targeted therapy leading to molecular remission in most

patients under continuous drug administration [5]. Molecular monitoring of disease-specific

BCR-ABL1mRNA in peripheral blood is the established strategy to quantify the leukemic bur-

den under ongoing therapy. Current therapeutic challenges include the cessation of TKI treat-

ment, upon which about 50% of CML patients develop a molecular recurrence and do not

maintain treatment-free remission [6–8].

Acute myeloid leukemia (AML) is a highly heterogeneous disease with a variety of muta-

tional profiles involved [9]. Commonly, a cyclic induction therapy with cytotoxic drugs such

as cytarabine and anthracyclines aims to achieve sustainable remission, while a subsequent

consolidation therapy supports the maintenance of the remission status. Molecular detection

of mutated oncogenes or their transcripts is increasingly used to monitor leukemic burden in

treated AML patients and can help to prospectively identify patients at the onset of disease

recurrence [10, 11].

Disease recurrence after treatment-induced remission is a significant risk for all leukemia

patients. Although the reappearance of CML after TKI cessation can be targeted well by

restarting the treatment, physical and psychological side effects of retreatment can be mini-

mized if a prospective identification of ineligible patients can be achieved. AML relapse usually

occurs after completion of intensive chemotherapy treatment [12] and is associated with a

poor prognosis [13]. In those case, the ability to prospectively predict the risk and timing of

relapse or molecular recurrence is of highest importance to optimize and adjust the individual

treatment strategy.

Currently, treatment decisions are based on the recommended risk stratification schemes.

Those risk assessments are commonly based on staticmeasurements from single time points,

often at diagnosis [14, 15]. In contrast, treatment response dynamics, such as the speed of ini-

tial remission, are only rarely evaluated for risk stratification [16]. However, it was shown that

molecular disease dynamics indeed correlate with therapy response and future relapse occur-

rence [17–22]. We reason that the direct integration of molecular response dynamics in the

form of time-series data, which are increasingly available from standard disease monitoring, is

a crucial element to improve the patient-specific risk stratification.

Assessing this question from a technical point of view, there are several, conceptually differ-

ent approaches to integrate time-series data from molecular disease monitoring into an

improved risk assessment. It is so far not clear how well these approaches are suited for time

course data of hematological malignancies, and what their particular strengths and weaknesses

are in this context. In order to address this question, we study three methods representing typi-

cal examples of the methodological spectrum:

• Mechanistic models (MM) describe the molecular disease dynamics as a functional conse-

quence resulting from the interaction between relevant system components (such as cell

types, drugs, cytokines etc.). They are commonly implemented as systems of ordinary differ-

ential equations (ODE) or as stochastic models. While some model parameters might be

directly measurable, other model-specific parameters are obtained by optimally fitting the

simulated time course to the available patient data. Evolving the model further in time allows

to simulate the expected future behavior. Although MMs require considerable expert knowl-

edge about the underlying mechanisms, the results of these models are readily interpretable

as the model parameters typically carry explicit biological meaning.

• On the other end of the spectrum, deep learning approaches [23–25] use generic neural net-

work models (NN) to adapt them on a training data set for which time-series data and the
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corresponding future behavior is known. Roughly speaking, the NN implicitly identifies

characteristic features within the time course data that correlate with future outcomes.

Those methods require no a priori knowledge about the underlying mechanisms, but they

are not suitable to directly interpret underlying biological mechanisms. Moreover, the train-

ing of NN requires a sufficient amount of annotated data.

• Classical statistical models like logistic regression classifiers can be used to correlate charac-

teristic, predefined features of the time course data (such as speed of remission or remission

level) with the known outcome. Such statistical models are summarized as generalized linear

models (GLM) [26]. Herein, prior knowledge about general treatment dynamics is directly

incorporated as an explicit feature of the GLM, while no understanding of the underlying

biological mechanisms is required. Although GLMs are typically easier to interpret than neu-

ral networks (as the influence of parameters on the prediction can be assessed [27]) this

probabilistic approach does not allow for explicit mechanistic interpretations as it is the case

for MMs.

In this work, we systematically compare these three methods. In particular, we study the

influence of data size, sampling density and measurement error on their prediction accuracy.

As available data sets of relevant molecular time courses for AML and CML are currently lim-

ited, we first generate an artificial patient cohort (synthetic data) using different established

mathematical models of those diseases [20, 28] (Fig 1). This artificial data set closely mimics

the features of a smaller sample of real patient time courses, while the number of measure-

ments and the particular noise level can be varied systematically and consistently. Based on

this reference simulations, we are further able to suggest alternative disease surveillance

schemes that may enhance the predictive power.

Materials andmethods

Mechanistic models

To generate the synthetic data, we used two of our recently published mechanistic models for

AML [20] and CML [28], both implemented as systems of ordinary differential equations

(ODE). For the AML scenario, four ODEs are used to describe both leukemic and healthy

stem cells. Two out of 11 model parameters are optimized to account for patient-specific dif-

ferences in the disease characteristics, while the others were chosen to account for the general

treatment dynamics. For the CML models, three ODEs represent active and inactive leukemic

cells plus a population of interacting immune cells. In this case, we estimate 7 of 13 model

parameters to optimally describe a patient’s response. Details of the model setup are provided

in the S6 and S7 Figs.

Patient data

For the generation of a set of realistic parameters, we fitted the respective mechanistic model

to previously published time course data reflecting the patient’s leukemia remission during

and after therapy. In particular, we used the time courses of 275 NPM1-mut AML patients, in

which the level of NPM1-mut/ABL abundance is used as a measure of leukemia load (median

follow-up time of 10 months, the median number of 5 measurements [20]). Furthermore, we

integrated data sets from 21 CML patients reflecting both their BCR-ABL1/ABL1 remission

levels under TKI therapy and after therapy cessation (median follow-up time of 84 months, the

median number of 28 measurements [28]). Examples of model fits to patient data, and the

mean absolute error for each fitted patient can be found in S1 Fig.
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Parameter fitting

Both, the AML and the CMLmodel are initially fitted to the available patient data. Technically,

we vary possible configurations of free parameters of the model such that the difference to the

data is minimized (measured in terms of the sum of squares of the residuals on the logarithmic

axis). While a simple optimization routine (sequential quadratic programming) is sufficient for the

AMLmodels, we apply a genetic algorithm combined with a gradient-based method for the CML

scenarios which is better suited to avoid local minima. For further details we refer to the S1 File.

The same optimization routines are applied when the MMs are fitted to the artificial refer-

ence data for which we can tune data density and measurement noise (see below).

Generation of artificial data

To generate artificial patient data, we take random samples from the sets of parameters that

were initially derived from fitting the mechanistic models to the available patient data.

Fig 1. Conceptual overview of our methodological approach. (a) We developed mathematical models for both AML and CML frommechanistic and
empirical knowledge [20, 28]. The models are first fitted to actual patient data to obtain realistic parameter distributions. (b) We sampled from these
empirical parameter distributions to simulate dense, synthetic data (D). We gradually reduced the data quality to mimic actual clinical measurements by
introducing noise (dense-noisy, DN), introduce sparsity (sparse-noisy, SN) and a minimum detection limit (artificial patient data, AP). Additionally, we
introduced a more informative scheme (artificial scheme, AS), in which the temporal measurements are optimally spaced (AML) or a period of reduced
treatment dose precedes therapy cessation (CML). (c) We systematically compared the performance of our mechanistic model (MM), a generalized
linear model (GLM) and a neural network (NN) to predict the outcome (relapse/no relapse) of our virtual patient data with varying quality.

https://doi.org/10.1371/journal.pone.0256585.g001
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In the case of AML, it was sufficient to randomly sample new parameter combinations from

the set of empirically observed parameters plus adding a small, normally distributed variation

to prevent the generation of identical duplets (see S1 File). For the treatment regime (namely

the number and timing of induction cycles) we sampled one particular clinical chemotherapy

schedule which we observed in the given patient data. Only artificial patients that reached

remission (i.e. leukemic burden fell below the threshold of 1%) were included in the data sets.

Using this parameterization and the corresponding schedules, we simulated artificial time

courses of 24 months length. In analogy to the clinical situation, AML relapse is assigned if the

fraction of leukemic increases above the threshold of 1% within 2 years after treatment start.

For the corresponding artificial CML time-courses, we sampled the seven model parame-

ters from the distribution of empirical estimates in the available data basis under the condition

that their mutual correlations are maintained (for details see S1 File). The time of therapy ces-

sation was sampled based on kernel density estimates from the cessation time of the given

patients (avg of 92 months with a standard deviation of 28.2 months). This information was

then used in de novo forward simulations to generate artificial time-courses of varying dura-

tion until treatment stop plus 10 years thereafter. CML recurrence was defined as leukemia

abundance> 0.1% (corresponding to BCR-ABL1/ABL1 = 0.1%, MR3).

In order to study how the data quality influences the prediction quality, we generated the

following five reference data sets for both disease scenarios (examples in S2 and S3 Figs):

• Dense data (D): with weekly (AML) or monthly (CML) exact measurements, respectively.

• Dense-noisy data (DN): where white noise was added to each measurement, according to

the noise level found in the given clinical patient data.

• Sparse-noisy data (SN): generated from the DN data set by reducing the number of data

points to reflect the measurement frequency in clinical patient data.

• Artificial-Patient data (AP): by adding a detection limit to the SN data as found in the clinical

patient data.

• Artificial scheme data (AS): Similar to AP data but using an improved sampling scheme

compared to the clinical patient data. For AMLmeasurements are made at the end of each

chemotherapy cycle and every six weeks afterwards. For CML, the treatment dose is reduced

to half of the usual dose 12 months before therapy cessation with frequent measurements

during this period.

Using this synthetic reference data, we use the following setup to evaluate the correctness of

predictions. For AML, all measurements from the initial treatment phase to 9 months after diag-

nosis are provided to the three methods and a corresponding relapse prediction within the sub-

sequent 15 months is derived. For CML, we use all measurements up to the treatment stop to

predict whether a patient will present with disease recurrence within ten years thereafter. The

long timespan has been chosen to reflect the slow evolution of CML. To obtain the correspond-

ing model predictions from the MM, we fitted the model parameters to the initial time course

data (see above) and then simulated the future behavior using the fitted model parameters for

each dataset individually. In contrast, both GLM and NN are optimized using a 10-fold cross val-

idation on labelled data sets for which the respective outcome of relapse occurrence is provided.

Explicit features of time series for GLM analysis

As the Generalized Linear Model, we use a logistic regression classifier. The model uses explicit

features that describe characteristics of the time-course data. We took the two characteristics
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of AML time-courses defined in our previous work [19]: the elimination slope ³, describing
the speed of decrease of leukemic burden over the time of treatment and the lowest measured

leukemic burden after treatment n. In this work, we further added three additional features

obtained from a segmented regression approach: the leukemic burden at diagnosis (y0, the fol-

lowing decreasing slope during the times of treatment (a) and the increasing slope of the leu-

kemic burden in between treatment cycles (b) (S4A Fig).

For CML, we defined seven features from fits of a bi-exponential function that described

the decrease of the leukemic burden after treatment start. These features include the bi-expo-

nential parameters (A, ³, B, ´), the corresponding deviation of the fit and the data (σ), the ces-

sation time and the BCR-ABL1 value before cessation or half dose. For the AS data, we expand

these features with the behavior of the leukemic burden during the time of dose reduction

including linear function parameter (µ), the deviation during half dose (C) and the last mea-

sured value before cessation (S4B Fig).

Neural network

NN were only trained on the raw time course data with no explicit features provided. To pre-

dict the occurrence of relapse, we used a bidirectional Long-short-term-memory (LSTM) net-

work as a default architecture to handle sequence data with varying length. The model consists

of a bidirectional LSTM layer followed by a fully connected feature extractor and a binary clas-

sification output. We use the respective cross-entropy loss to train the network. We imple-

mented the network in Python using the Keras library [29]. To get a robust estimate of the

model performance, we conducted 10 training runs on the same dataset and chose the network

with the highest validation accuracy. We then did 10-fold cross-validation for the entire exper-

iment to assess the average and the variability of the results. Further details about the network

architecture and training can be found in the S1 File.

Accuracy

We use the traditional definition of accuracy as the ratio of the number of correct predictions

over the total number of predictions: acc ¼ #correct
#total

¼
TPþTN

TPþFPþTNþFN
where TP, TN, FP, and FN are

true positives, true negatives, false positives and false negatives respectively.

Results and discussion

Artificial patient data provide a suitable basis to systematically analyze the
performance of predictive, computational models

We apply two mechanistic, mathematical models to simulate the dynamics of AML and CML

[20, 28] thereby creating sets of artificial response data. To make sure that the artificial data

resemble real patient time-courses as closely as possible, we fitted the models to respective data

sets obtained from 275 AML patients carrying a traceable NPM1-mutation (consisting of a

total of 1567 measurements quantifying the relative amount of NMP1-mut transcript [20] over

time on a log10-scale) and 21 CML patients (with in total 478 measurements [28] quantifying

the relative amount of BCR-ABL transcripts over time on a log10-scale). We report on the

overall fitting quality in S1 Fig The fitted model parameters are used to simulate synthetic time

courses (Fig 1a and 1b). To assess the influence of data quality, we gradually degraded the fully

sampled, noise-free time series. We used estimates of the measurement frequencies and mea-

surement errors obtained from the patient data to adjust the corresponding sampling density

and noise level for the synthetic data (see S1 File). In total, we created four different datasets

with 5000 time-courses from each model to systematically study the influence of data quantity
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and quality: (i) a dense (D) data set consisting of weekly (AML) or monthly (CML) measure-

ments of the leukemic burden free of any measurement error. (ii) For the dense-noisy (DN)

data we added a normally distributed “technical” noise (see S1 File) to all data points of D to

match the measuring error (AML) or the residuals observed between real data and their corre-

sponding model fits (CML). (iii) In a third step, we reduced the total number of measurements

per patient, creating a sparse-noisy (SN) data set that matches the measurement frequency in

the real data. (iv) Finally, to make the data as realistic as possible, we also added a detection

limit for very low measurements, called artificial patient (AP) data. Example time courses for

all data sets can be found in S2 and S3 Figs.

To verify that the created artificial patient data (AP) sets are indeed similar to the real

patient data, we derived characteristic features to quantitatively compare them. Those charac-

teristic features refer to typical time scales and remission levels of the patient’s response (see S4

Fig, Materials and methods). The features are computed separately for the AP data and the

given patient data. The visual comparison in S5 Fig indicates that the median values of the

characteristic features are very similar between AP and real data. It appears, that especially for

the case of CML, the synthetic data sets yield a larger variance compared to the real data. A

closer look at the data reveals that this is effect, at least partially, results from a sampling effect,

as the variance measurement is only based on a small data set (n = 21) of real patients.

Data quality has a strong influence on prediction accuracies, but the drop
in performance considerably differs between models and use-cases

Similar to the clinical presentation, we classified the synthetic time-courses as whether they

show a relapse or not. For both CML and AML, we define disease recurrence by an increase of

the leukemic burden (measured in terms of relative transcript abundance) within a predefined

period above a given threshold (AML: leukemic burden increasing> 1% after treatment ter-

mination; CML: leukemic burden> 0.1% for at least one month).

We then systematically compared the accuracy of relapse predictions between the three

general methods (namely MM, GLM, NN). To do so we provide each method with data from

the initial treatment phase and compare the resulting predictions with the ground truth from

the artificial data sets. For AML, we provide all measurements from the initial treatment phase

until 9 months after diagnosis and derive a corresponding prediction on whether a relapse is

expected within the subsequent 15 months. For CML, we use all measurements up to treat-

ment stop to predict whether a patient will present with disease recurrence within ten years

thereafter. We use the following strategy to derive predictions for the three methods: MM: fit-

ting the mechanistic model to the initial treatment data only and further simulating the future

time course, GLM: feeding the explicit features of the initial time-course (see Materials and

methods) into a GLM classifier and NN: using an end-to-end learning approach with a neural

network model applied to the initial time-course, which has been trained previously on an

annotated reference data set (Fig 1c).

Next, we analyzed how well the different approaches (MM, GLM, NN) can predict the out-

come for the artificial patient data and how model performance changes with varying data

quality (Fig 1b and 1c, and Experimental Procedures). The results of the 10-fold cross-valida-

tion of the model performance are depicted in Fig 2. As expected, the prediction accuracy (see

Materials and methods) declines for all approaches when the data quality decreases. We point

out that the decrease in data quality differs between use-cases and models. In the case of AML,

the introduction of sparsity leads to a relatively sharp drop in model performance. This drop

illustrates the strong dependency on the number of measurements per time series: as in the

given patient we only have a median of 4 measurements in the SN and AP data, compared to
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39 weekly measurements in the dense data set (D) set. In line with this argument, we observe a

more gradual decline in performance when comparing the effect of introducing noise and

sparsity in the CML case. Here, we face a median of 25 measurements in the SN and AP data,

compared to 93 monthly measurements in the dense data (D).

Interestingly, the difference in model performance is not consistent across the two use-

cases. For the sparser AML data, all models perform similarly on the dense (D) and noisy data

(DN). However, when introducing more sparsity into the data, a mechanistic model performs

more robustly than the generic NN model (a difference in the accuracy of 6.3 and 7.4 percent-

age points for the SN and AP) and the GLMmodel performance is in between MM and NN.

This result reflects the importance of introducing prior knowledge (or inductive bias) when

dealing with very few data (Fig 2a).

We observe a different situation in the CML case. Here, the prediction accuracy for the

mechanistic model drops down substantially more compared to the statistical GLMmodel and

the generic NN when data quality decreases (a difference in accuracy between MM and NN of

19.7% for SN and 19.8% for AP, respectively). We recall that the noise-free data (D) was gener-

ated by the very same mechanistic model (compare Fig 2b). The high prediction accuracy for

this data indicates that the correct (generative) MM can truly be identified. However, given the

higher number of free parameters (n = 7) in the CML case, a reduction of data quality (either

resulting from noisy or sparse measurements) more strongly affects the identifiability of the

correct MM, while the GLM and the NN appear more robust.

Focusing on the artificial patient samples (AP), which best mimic the available patient data

sets, the suggested models reach an accuracy of up to 70% (compare Fig 2a and 2b). These

findings shows that predictive computational methods can indeed support risk assessment in

myeloid leukemias based on nontrivial patterns in time series data obtained during treatment.

However, the resulting prediction accuracy might not adhere to the expected standards for

clinical decision support. Our systematic analysis shows how data characteristics, in particular

the measurement schedule, effects the performance. Data scarcity and limited accuracy of

available measurements per patient appears as a limiting factor for the overall prediction accu-

racy for relapse occurrence. Given those constrains on the data side, we are skeptical that struc-

tural changes to the computational methods (e.g. by refining the neural network architecture)

Fig 2. Prediction accuracy across data quality and computational models. (a, b) Comparison of performance between mechanistic model (MM),
generalized linear model (GLM) and neural network (NN) to predict relapse in synthetic data for AML (a) and CML (b) using 10-fold cross-validation.
Data quality gradually decreases from fully sampled, noise-free data (D), to noisy (DN), sparse and noisy (SN), and artificial patient data (AP) (see main
text for details).

https://doi.org/10.1371/journal.pone.0256585.g002
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can substantially improve the overall performance. However, below we outline the potential in

optimizing the measurement process to yield more informative sampling schemes.

Refined measurement and treatment schemes lead to improved prediction
accuracies

We demonstrated that a significant limitation for the prediction accuracy results from the

sparsity of the available data, in particular for the case of AML. Here, molecular diagnostics

and especially bone marrow aspirates are limited resources in the clinical setting. As only

increasing the sampling frequency is not an option in many cases, we wondered whether an

optimized timing of the measurements could lead to better predictions while the overall num-

ber of measurements remains the same. To investigate this question, we created an additional

set of artificial patients (AS) with consistent measurement intervals during the nine-month

treatment period (i.e. the first day of each therapy cycle and every six weeks during the treat-

ment-free phase). This typically results in 4 to 8 (median = 7) measurements per patient,

which is only a moderate increase to the reported median of 5 measurements in the clinical

sample. Fig 3a indicates that for this amended sampling regimen, we can already increase the

accuracy of all prediction approaches (MM and NN by up to 12%, less pronounced for GLM).

This finding strongly suggests that an adapted sampling scheme can considerably contribute

to better relapse predictions, e.g. using methods from an optimal experimental design [30–33].

Owing to the establishment of regular BCR-ABL measurements in TKI-treated CML

patients, available time courses are usually sufficient to monitor treatment response and remis-

sion status. It is still controversial, to which extend treatment free remission correlates with the

observed time course of initial response [22, 28]. However, results from the DESTINY trial

[34] suggest that dynamics of BCR-ABL increase during TKI dose reduction correlates with

the remission status after treatment cessation [18]. The DESTINY trial differs from other TKI

stop trials as patients in molecular remission reduced their TKI dose to 50% of the original

dose for 12 months before TKI was finally stopped [34]. Motivated by this study, we simulated

a corresponding data set in which a 12-month dose reduction is explicitly added to the model

simulation (AS dataset). Training the prediction approaches to explicitly integrate this addi-

tional 12 month perturbation period, we found a substantial increase in the prediction accu-

racy of up to 19.1% (Fig 3b). We argue that probing the system’s response to perturbation

Fig 3. Dedicated measurement schemes. (a, b) A dedicated measurement scheme (AS) improves prediction performance with the same number of data
points for all models compared to the AP data both for AML (a) and CML (b) data.

https://doi.org/10.1371/journal.pone.0256585.g003
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(such as dose reduction) provides additional information about control mechanisms that can-

not be obtained from ongoing monotherapy [16, 18, 28].

Our analysis demonstrates that optimized measurement schedules or systematic treatment

alterations can substantially improve the accuracy of relapse predictions.

Conclusions

We showed that qualitatively different computational approaches, ranging from machine

learning approaches to mechanistic models, are in principle suited to support relapse predic-

tion based on time-series data of leukemia remission levels. To this end, we employed simu-

lated time course data generated by mechanistic mathematical models, which we previously

developed to describe disease and treatment dynamics in CML and AML. It is the advantage

of this approach that we obtain highly controlled, although idealized, remission curves as a ref-

erence set from which we can abstract different levels of sampling density and measurement

error. The simulated data allows us to refer to the ground truth of the underlying generative

model. Using this artificial reference data, we could demonstrate that data quality in terms of

measurement frequency and measurement error has a more substantial influence on the accu-

racy of the prediction than the employed prediction method, which is particularly evident in

the AML data. Our results for the CML case indicate that fitting a more complex mechanistic

model (in terms of the number of model parameters) to noisy data yields a greater uncertainty

compared to a statistical predictor like a GLM or a NN.

Our analysis illustrates that generic methods, such as NN work well for the prediction of

disease recurrence if frequent measurements are available (as in the CML data). For diseases

with sparse measurements and limited data on the other hand (exemplified in the AML data),

neural networks (and representation learning in general) is less suited for identifying the criti-

cal factors underlying the disease dynamics. In such cases, it is beneficial to incorporate prior

knowledge to yield better predictions using either mechanistic models of the disease, if avail-

able, or statistical approaches based on explicit (phenomenological) features. In our current

study, we used a long-short-term-memory (LSTM) NN as the standard approach for analyzing

sequential data. An interesting next step is to assess if more complex neural network models

[35, 36] can even improve the LSTM results, although we suspect that data quality is the major

limiting factor.

Overfitting is a known problem of all machine learning approaches and applies to both the

GLM and the NNmethod we presented. In order to minimize this risk, we applied a 10-fold

cross validation which was also used to estimate the variation of the estimated accuracies. Our

general approach is limited by the generation of time course data from generative models

which intrinsically do not reflect “unexpected” behaviors. As long as the true data basis of clin-

ical time courses is limited, only the additional consideration of alternative generative models

could help to address this issue.

Regardless of the exact choice for a predictive computational method, our study indicates

that the optimization of measurement schemes and clinical protocols is a promising strategy

to improve the overall prediction accuracy without necessarily requiring more measurements

per patients. In our predictions for AML recurrence, we could reach a level of accuracy of

about 80% for the prognosis of relapse occurrence within two years after diagnosis. This result

would already exceed the prediction accuracy for relapse-free survival after 12 months in the

study by [15]. As our results are based on synthetic data which most likely does not reflect the

full heterogeneity that could be seen in larger patient data sets, our comparison should be

treated with caution and needs to be validated using independent clinical data obtained in a

comparable context. Still, our findings indicate that standardized measurement schedules add
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critical leverage to improve the ability for predicting relapse no matter what computational

methods are used. Our artificial measurement schemes indicated a clear improvement, while

we did not even apply formal optimization criteria to obtain most suitable regimes that maxi-

mizes accuracy while minimizing the number of measurements. This finding opens a clear

perspective for future research on optimized measurement strategies that balance a maximized

gain of information from clinical data with an economical use of resources. We argue that

such refined schedules can contribute to reaching a level of prediction accuracy, which indeed

supports clinical decision making.

In this work, we focused on the accuracy of relapse prediction employing three different,

prototypic computational approaches working on time-series data. However, their implemen-

tation in a decision-making context also requires an intuitive understanding of how the

method works. Although NN do not require any prior knowledge and can achieve excellent

prediction accuracies, it is not trivial to identify which aspects of the data are causative for a

particular prediction [37, 38]. In other words, the "black box" nature of NN does intrinsically

not reveal the key features of the data on which a decision is based. There is a general, ongoing

scientific discussion whether this intrinsic limitation of NN should prevent its application for

particular questions, especially in health care [39, 40]. Currently, decision-makers and regula-

tory authorities hardly consider such methods for integration into clinical routines, although

this might change in the future. Orthogonal developments in the field of “explainable AI” are

currently pushing towards interpretability and the identification of causal relations between

different system components [41–43]. As for now, MM represent the other side of the

"interpretability spectrum" as they superimpose a principal understanding of the causal

interactions onto the final observations. It appears tempting to favor this type of approach.

However, it comes with other limitations: such models are highly specific and not easily trans-

ferable to other disease entities, and it cannot be guaranteed that all essential interactions are

indeed mapped (compare [20]). The extent to which the non-representation of potential inter-

actions effects the model predictions is hard to quantify and most likely highly disease specific.

GLMs represent a middle ground and balance several aspects of NN and MM approaches.

They can be helpful if detailed mechanistic knowledge is missing while important features of

the response characteristics can readily be named, estimated and also interpreted. However,

their overall performance depends strongly on the choice of those hand-crafted features and is

also vulnerable to missing critical aspects.

The increasing availability of diagnostic methods to track molecular remission in different

cancer types over extended time periods will establish a rich data source to explore further

how this dynamic information can be correlated with the future course of treatment and dis-

ease [16]. Obtaining a systematic understanding of how different computational methods can

be used to exploit this data is of crucial importance to provide usable predictions. Sufficient

model validation within the particular domain is the prerequisite to integrate such computa-

tional models into decision making in a clinical context.

Supporting information

S1 Fig. Mechanistic model fit to patient data. (a) Example time-course of an AML patient

(measured in terms of NPM1-mut abundance relative to reference gene ABL; blue dots) from

start of chemotherapy at time point 0 until molecular relapse and the respective model fit

(solid line; leukemic burden, rescaled by a factor 100 to match the clinical NPM1-mut/ABL

ratios [20]). Red lines indicate time of chemotherapy administration. (b) Mean absolute error

(MAE) for the fit of the mechanistic model to all 275 AML patients time-courses. (c) Example

time-course of a CML patient (measured in terms of BCR-ABL/ABL abundance; black dots;
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triangles indicate undetectable BCR-ABL levels with the corresponding detection threshold)

from start of TKI treatment at time point 0 until disease recurrence after treatment stop (grey

region) and respective model fit (solid line). (d) MAE of all 21 fitted CML patients.

(TIFF)

S2 Fig. Generation of the artificial AML data sets.We use a sample patient for which we

obtain weekly and precise measurements, referred to as dense data (D). Adding a technical,

normally distributed noise to each measurement on the log-scale, we obtain dense-noisy data

(DN). Sparse-noisy data (SN) was generated from the DN data set, by reducing the number of

data points to meet the measurement frequency in real patients. Artificial patient data (AP) is

the data set most similar to the real patient data, which differs from the SN data set only by the

inclusion of a detection limit (dashed red line), as it is found in the real data. Artificial scheme

data (AS) is a data set, close to real data, with a measurement scheme, where measurements

are made at the end of each chemotherapy cycle and every 6 weeks afterwards.

(TIFF)

S3 Fig. Overview of artificial CML data sets. Dense data (D) was simulated with monthly

exact measurements. Dense-noisy data (DN) was obtained by adding normally distributed

noise to each measurement. Sparse-noisy data (SN) was generated from the DN data set, by

reducing the number of data points to meet the measurement frequency in real patients. Artifi-

cial-Patient data (AP) is the data set most similar to the real patient data, which differs from

the SN data set only by the inclusion of a detection limit, as it is found in the real data. Artificial

scheme data (AS) is a data set, close to real data, with an additional 12-month period of half-

dose TKI treatment (shown in grey).

(TIFF)

S4 Fig. Derived features of the time-courses. (a) Features describing AML time courses: y0
the leukemic burden at diagnosis, a the decreasing slope during treatment cycles, b the increas-

ing slope in treatment free intervals (where y0, a and b are obtained from a segmented regres-

sion approach), ³ the overall decreasing slope during treatment (shown as dashed line,

separately fitted to the measurements) and n the minimal leukemic burden after treatment.

(b) Features describing CML time courses: A, B and C being the intercepts of the straight lines

fitted to the first and the second part of the bi-exponential approximation and to the increase

of the leukemic burden during half-dose periods, respectively. ³, ´ and µ are the respective
slopes.

(TIFF)

S5 Fig. Similarity of artificial patients and real patients. A distribution comparison of statis-

tical parameters: Comparison of distribution of parameters describing the course characteris-

tics between artificial patient data (AP, blue) and real data (RD, black). (a) Parameters

characterizing AML response: a—decreasing slope during chemotherapy cycle, b—increasing

slope during treatment-free periods, y0—initial burden on log scale, ³—elimination slope, n—

minimal measured leukemia burden after primary treatment. (b) Parameters characterizing

CML response: the intercepts A and B (on a log scale) as well as the slope parameters ³ (on log

scale) and ´.
(TIFF)

S6 Fig. Schematic overview of the mathematical model for AML. Both, leukemic L and

healthyH stem cells can reversibly change between two states (according to the rates t): the

quiescent state Q with carrying capacity KQ and the active state A with carrying capacity KA.

Cells in A undergo proliferation with rate p, differentiation with rate d and are subject to
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chemotherapy with kill rate c.

(TIFF)

S7 Fig. Schematic overview of the mathematical model for CML. Leukemic stem cells (LSC)

can reversibly change between two states X and Y (according to the rates pXY and pYX, respec-

tively): X defines the quiescent, non-replicating cells, Y defines the active, proliferating cells.

LSC in Y proliferate according to a logistic growth model with maximal proliferation rate pY
and carrying capacity KY. The TKI-effect is described by a constant rate eTKI affecting the leu-

kemic cells in Y. Immune cells in Z are activated by cells in Y (immune recruitment), following

an immune window approach (see Supporting information). At the same time the immune

cells kill proportional target cell in Y. Immune cells in Z are generated with rate rz and decay

with rate a.

(TIFF)

S1 File. Supporting information.

(PDF)

Acknowledgments

We thank clinical partners for providing the patient data within the originals works [19, 20,

28] on which this simulation study is based.

Author Contributions

Conceptualization:Helene Hoffmann, Christoph Baldow, Ingmar Glauche, Nico Scherf.

Data curation:Helene Hoffmann, Christoph Baldow.

Formal analysis:Helene Hoffmann, Christoph Baldow, Thomas Zerjatke, Ingmar Glauche.

Funding acquisition: Ingo Roeder, Ingmar Glauche, Nico Scherf.

Investigation: Christoph Baldow, Thomas Zerjatke, Andrea Gottschalk, Elena Karg.

Methodology:Helene Hoffmann, Christoph Baldow, Sebastian Wagner, Sebastian Niehaus,

Ingo Roeder, Ingmar Glauche, Nico Scherf.

Resources: Elena Karg, Ingo Roeder.

Software:Helene Hoffmann, Christoph Baldow, Sebastian Wagner.

Supervision: Ingo Roeder, Ingmar Glauche, Nico Scherf.

Visualization:Helene Hoffmann, Christoph Baldow, Nico Scherf.

Writing – original draft:Helene Hoffmann, Christoph Baldow, Sebastian Wagner, Sebastian

Niehaus, Ingo Roeder, Ingmar Glauche, Nico Scherf.

Writing – review & editing:Helene Hoffmann, Christoph Baldow, Thomas Zerjatke, Andrea

Gottschalk, Sebastian Wagner, Elena Karg, Sebastian Niehaus, Ingo Roeder, Ingmar

Glauche, Nico Scherf.

References
1. Thijsen S, Schuurhuis G, van Oostveen J, Ossenkoppele G. Chronic myeloid leukemia from basics to

bedside. Leukemia. Springer Nature; 1999; 13:1646–74.

2. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat
Rev Cancer. Springer Science and Business Media LLC; 2007; 7:441–53. https://doi.org/10.1038/
nrc2147 PMID: 17522713

PLOS ONE Computational relapse prediction

PLOSONE | https://doi.org/10.1371/journal.pone.0256585 November 15, 2021 13 / 15



3. Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. Springer Science and Business
Media LLC; 2015; 94 Suppl 2:S107–21. https://doi.org/10.1007/s00277-015-2325-z PMID: 25814077

4. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015; 6:403–12.
https://doi.org/10.1007/s13238-015-0143-7 PMID: 25749979

5. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-TermOutcomes of
Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017; 376:917–27. https://doi.org/10.
1056/NEJMoa1609324 PMID: 28273028

6. Cerveira N, Loureiro B, Bizarro S, Correia C, Torres L, Lisboa S, et al. Discontinuation of tyrosine kinase
inhibitors in CML patients in real-world clinical practice at a single institution. BMCCancer. 2018;
18:1245. https://doi.org/10.1186/s12885-018-5167-y PMID: 30541488

7. Mahon F-X, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in
patients with chronic myeloid leukaemia who havemaintained complete molecular remission for at least
2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010; 11:1029–35.
https://doi.org/10.1016/S1470-2045(10)70233-3 PMID: 20965785

8. Nagafuji K, Matsumura I, Shimose T, Kawaguchi T, Kuroda J, Nakamae H, et al. Cessation of nilotinib
in patients with chronic myelogenous leukemia who have maintained deep molecular responses for 2
years: a multicenter phase 2 trial, stop nilotinib (NILSt). Int J Hematol. 2019; 110:675–82. https://doi.
org/10.1007/s12185-019-02736-5 PMID: 31538327

9. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;
368:2059–74. https://doi.org/10.1056/NEJMoa1301689 PMID: 23634996
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Chapter 5

Discussion

After reading all these finding a big question arises: what is the impact of these finding on

the world, the patients, the doctors or the scientists? By looking at the time course data from

AML patients I could show you that the dynamics of a disease harbour additional interesting

insights beside just the measurements at fixed time points. So, I could show the relation be-

tween the decrease of the leukaemic burden during chemotherapy and the level of leukaemic

cell numbers after therapy. This finding can be used from other scientists to conduct similar

studies for other diseases or in other areas of research to generally change the strategy of

looking at data. Data collection should be reconsidered to be more focused on capturing the

dynamics of a process instead of concentrating on fixed measures. Ideally, my findings might

have an influential role for this change in perspective, enabling further advances in all medical

research fields and beyond.

More I could show, that a flexible view on the time point when a characteristic is measured

can yield more meaningful results. This was shown with the level of leukaemic cell numbers

after primary treatment, which is most meaningful, when evaluated 9 months after therapy

start and not measured at a fixed time point for every patient. This can help to establish

new schemes for patient monitoring in AML and, in the long run, improve the treatment of

these patients. Although my work does not give concrete recommendation for the perfect

measurement scheme it invites to investigate further.

And then I showed you that a mathematical model is able to describe the dynamics of AML at

its place of origin, the bone marrow, in a patient-specific manner. But what is the advantage of

using such a mechanistic model for the description of these time courses and why not using

just a model that simply describes the ups and downs of the leukaemic burden, just like the
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characteristics that I defined in Chapter 2? Well, a descriptive model is nice and useful, when

you are interested in which of the components of the time course has the biggest impact on

the outcome. Statistical methods such as correlation, as well as linear models such as a GLM

can yield information about that. But a mechanistic model, that describes each single process

in detail can yield additional information. It not only results in patient-specific descriptive pa-

rameters, but these values are usually associated with a biological meaning. So, the values

of a parameters from the mechanistic model do not only tell you that the leukaemic burden

goes down nicely during therapy, but also whether this is because of the slow growth of the

leukaemic cells or because they are easily killed by the therapeutics. Therefore, we can get

notions on what exactly is different on the cellular level between two patients, who seem to

react in a similar way to therapy, but only one of them experiences a relapse. Using this model

we can, however, not proof that there is really happening what we think. But such a model

is a good start to get an idea on how each part of the system is interacting with the other

parts. Hence, using mechanistic models your hypothesis can be tested theoretically, you can

establish new ones and design experiments or clinical studies to verify these. Nonetheless,

it is important to be clear that these models are not telling you exactly what is really happen-

ing within the system they are describing, but only giving interesting hints and indications.

They are meant to be a simplified pictures of reality, as it would be impossible to describe all

influencing factors in a model. It is not only not possible, but also not desired, as the goal

of such a mechanistic model is to describe a clearly defined process (here the dynamics of

leukaemic burden in AML patients) with a model that is as simple as possible. This simplifi-

cation reduces the problem to the most important factors, making it easier to interpret. The

fact, that the proposed model was able to reproduce most of the patients time courses leads

to the conclusion that the factors that were included in the model (i.e. a quiescent state of the

stem cells, equal chemotherapy effect on all cells, etc.) indeed are the most important ones in

AML dynamics for the majority of patients. Still, there are patients whose time-courses could

not be reproduced. For them further factors play an important role that are not included in

the model. Therefore, it is always a trade-off between the simplicity and interpretability of a

model and its transferability to a wide range of different patients. The decision that the model

as proposed here is the best compromise for this case, was mostly based on the fact, that

reducing the complexity resulted in bad fitting to the data (not shown here) and the majority of

patients could be reproduced rather good, so I had no incentive to further inflate the model.

The resulting insights in a patient’s individual disease characteristics from this model can

contribute to better understanding why patients react to their chemotherapy as they do. This
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ability of describing the course of disease of each patient in a very personalized manner

exceeds the current practices of dividing the patients into groups that are thought to react

similar to the same treatment. Not only for AML, but also for other diseases these models

can convey an important step away from levelling down all patients to an average patient

but seeing them as diverse and unique as they actually are. Personalized treatment will rely

on mathematical descriptions of all aspects of a disease and their dynamic behaviour and

entanglements.

The here shown insights into the mechanisms of AML help to estimate the severity of a pa-

tient’s course of disease and obtain clues about the unique characteristics of a patient’s dis-

ease. The estimated parameters obtained by fitting the model to a patient’s individual course

of disease, give hints about two important factors for disease progression: the aggressiveness

of the disease and the sensitivity to chemotherapy. Using this information the treatment can

be improved to better meet a patients individual needs. And not only the treatment can be

more personalized using these methods, but also the prognosis of the further development

of the disease. Both aspects are surely connected to each other and can not only help the

patient to get better with personalised treatment but he or she also gets the chance to live on

with more reliable statements about the further progress of the disease. Therefore, my hope

is that it will be more and more established to integrate computational methods in medical re-

search and clinical routines, to support doctors in their decision making. That does not mean

that such models or other computer programs are able to replace doctors in the future, as the

emotional contact with a well trained doctor plays a major role for the patient to build trust and

has a positive impact on his/her outcome (Riedl and Schüßler, 2017; Shuaib et al., 2020).

Further, I personally do not think that it is wise to hand over all decisions about the life of a

patient to a machine, without complete understanding the decision-making process. I see the

role of models in medicine as a supporting structure, to be able to handle all available data at

once and to enable the doctor to focus more on the patient itself than on all the numbers in

the patient record.

And what about the relapse prediction? The main finding here was, that there are different

methods that are suitable for this task, but none of these is able to make reliable predictions

on real patient data. For me the most important message from this part of my work is, that

if we want to use the whole power computers can offer to improve the treatment of patients

it is absolutely essential to generate high quality data. Using a simple example I could show,

that the choice of measurement time points can hugely increase the accuracy of predicting a

patient’s relapse. In my example the measurement scheme was oriented on the time points
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of therapy, resulting in different time points of measurement for every patient, as they are

not treated at the exact same time points. This scheme makes the measured values more

comparable between patients than they are using the same time point for everyone. That

would be feasible to implement into clinical routine without increasing the cost by much. It

would be an improvement to invest some time into finding an optimal schedule, where as

few as possible measurements are taken with still generating a reliable prediction. Such an

optimisation problem can also be solved using computational methods, such as reinforcement

learning, where a neural network is trained to find the optimal schedule.

Still, there is much to be done in this field as my results also showed, that the noise has a large

impact on the predictability of relapse, which can not be reduced by adapted measurement

schemes, but by better measurement techniques. Furthermore, so far, the predictions only

concentrated on the question whether a patient will relapse within the first two years after

diagnosis. A more detailed prediction of the time-point of relapse was not possible with the

given methods and data. To improve this I am sure it would be necessary to integrate multiple

sources of data into one model, beyond the measurements of leukaemic burden and the

chemotherapy times points. Other important indicators in AML are the blood values, as they

show the downstream effects of the disease on the patients immune system. Also gene-

expression data was shown to have predictive value in AML (Warnat-Herresthal et al., 2020).

Also the emerging technique of liquid biopsy (Hocking et al., 2016), where the leukaemic

burden is derived from DNA snippets of the leukaemic cells in the blood, could improve the

data shortage, by easier sampling compared to bone marrow biopsy.

So, following this work, doctors will hopefully see that taking regular and optimally timed sam-

ples to assess the leukaemic burden of a patient can have a thrust in better judging the state of

a patient. Hence, this might lead to following projects, where computational scientists collab-

orate closely with clinical doctors to underpin my findings with studies, developing and testing

improved schedules.

Maybe the work I have done will play a part in reforming the handling of patients into a direction

of treating a patient more following his or her individual health-characteristics than over his

general diagnosis, leaving the path of treating a disease and starting to treat a patient.
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