
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Optimal Repairs in the Description Logic EL
Revisited (Extended Version)

Franz Baader Patrick Koopmann Francesco Kriegel

LTCS-Report 23-03

This is an extended version of an article accepted at the
18th European Conference on Logics in Artificial Intelligence

(JELIA 2023).

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Optimal Repairs in the Description Logic EL
Revisited (Extended Version)

Franz Baader1,2 , Patrick Koopmann1 , and Francesco Kriegel1

1 Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
firstname.lastname@tu-dresden.de

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, Germany

Abstract. Ontologies based on Description Logics may contain errors,
which are usually detected when reasoning produces consequences that
follow from the ontology, but do not hold in the modelled application
domain. In previous work, we have introduced repair approaches for EL
ontologies that are optimal in the sense that they preserve a maximal
amount of consequences. In this paper, we will, on the one hand, review
these approaches, but with an emphasis on motivation rather than on
technical details. On the other hand, we will describe new results that
address the problems that optimal repairs may become very large or need
not even exist unless strong restrictions on the terminological part of the
ontology apply. We will show how one can deal with these problems by
introducing concise representations of optimal repairs.

1 Introduction

Description Logics (DLs) [6, 7] are a prominent family of logic-based knowledge
representation formalisms, which offer a good compromise between expressive-
ness and the complexity of reasoning and are the formal basis for the Web ontol-
ogy language OWL.3 In a DL ontology, the important notions of the application
domain are introduced as background knowledge in the terminology (TBox),
and then these notions are used to represent a specific application situation in
the ABox. The DLs of the EL family have drawn considerable attention since
their reasoning problems are tractable [4], but they are nevertheless expressive
enough to represent ontologies in many application domains, such as biology
and medicine.4 For instance, the medical ontology SNOMED CT employs EL
and contains the following concept inclusion (CI) in its TBox:

Common cold ⊑ Disease ⊓ ∃causative agent.Virus
⊓ ∃finding site.Upper respiratory tract structure
⊓ ∃pathological process.Infectious process,

3 https://www.w3.org/TR/owl2-overview/
4 see. e.g., https://bioportal.bioontology.org and https://www.snomed.org/

https://orcid.org/0000-0002-4049-221X
https://orcid.org/0000-0001-5999-2583
https://orcid.org/0000-0003-0219-0330
https://www.w3.org/TR/owl2-overview/
https://bioportal.bioontology.org
https://www.snomed.org/

2 Franz Baader, Patrick Koopmann, and Francesco Kriegel

which says that a common cold is a disease that is caused by a virus, can be
found in the upper respiratory tract, and has as pathological process an in-
fectious process. A GP can then employ this concept to store in the ABox
that patient Alice is diagnosed with common cold using the concept asser-
tion (∃has diagnosis.Common cold)(alice). The GP’s ABox may also contain
the information that Charles is Alice’s father, expressed as role assertion
has father(alice, charles), which might be of interest in the context of heredi-
tary diseases.

Like all large human-made digital artefacts, the ontologies employed in such
applications may contain errors, and this problem gets even worse if parts of
the ontology (usually the ABox) are automatically generated by inexact meth-
ods based on information retrieval or machine learning. Errors in ontologies are
often detected when the reasoner generates a consequence that formally follows
from the knowledge base, but is incorrect in the sense that it does not hold in the
application domain that is supposed to be modelled. For example, in a previous
version of SNOMED CT, the concept “Amputation of finger” was classified as
a subconcept of “Amputation of hand,” which is fortunately wrong in the real
world. To correct such errors in large ontologies, the knowledge engineer (KE)
should be supported by an appropriate repair tool. Such a tool receives as input
one or more consequences of the given ontology that are unwanted, and it should
return one or more repaired ontologies that no longer have these consequences
(called repairs). The KE can then choose one of the computed repairs and ei-
ther use it as the new ontology, or continue the repair process from it if other
unwanted consequences are detected. Of course, it makes no sense to use as a
repair an arbitrary ontology that does not have the unwanted consequences. The
repaired ontology should (a) not introduce new information and (b) be as close
as possible to the original ontology. There are different possibilities for how to
formalize these conditions.

The classical approaches for ontology repair return maximal subsets of the
ontology that do not have the unwanted consequence, and employ methods in-
spired by model-based diagnosis [45] to compute these sets [20, 44, 46]. Thus,
these approaches interpret the above conditions in a syntactic way: (a) is read
as “no new axioms” and (b) is realized by the maximality condition. In [18] we
called classical repairs that satisfy this maximality condition optimal classical
repairs. While these approaches preserve as many of the axioms in the ontology
as possible, they need not preserve a maximal amount of consequences, and they
are syntax-dependent. For example, consider the ABoxes A := {(A⊓B)(a)} and
B := {A(a), B(a)}, which both say that individual a belongs to the concepts A
and B, and are thus equivalent. However, with respect to the unwanted conse-
quence A(a), the ABox A has the empty ABox as only optimal classical repair,
whereas B has the optimal classical repair {B(a)}. Thus, the latter repair retains
the consequence B(a), whereas the former does not. To overcome this problem,
more gentle repair approaches have been introduced, e.g., in [18, 28, 31, 36, 47].
The basic idea underlying these approaches is to replace some axioms of the
ontology by weaker ones, rather than just removing them, as in the classical

Optimal Repairs in the Description Logic EL Revisited 3

approach. In our example, one can replace the axiom (A⊓B)(a) in the ABox A
with the weaker axiom B(a), and thus retain the consequence B(a) even if one
starts with A rather than B. However, these gentle repairs are still dependent on
the syntactic structure of the axioms in the ontology, and how well they realize
condition (b) depends on the employed weakening relation between axioms and
the strategy used to apply it.

Providing the KE with syntax-dependent repair tools is not in line with the
functional approach to knowledge representation [24,37] adopted by DLs. In this
approach, the syntactic structure of the axioms in the ontology is supposed to
be irrelevant. What counts is what queries are entailed by the ontology, which
in DLs are usually instance queries (IQ) or conjunctive queries (CQ). In this
functional setting, (a) should be read as “no new consequences” (expressed in
the adopted query formalism) and (b) as preserving a maximal set of such con-
sequences. This leads us to the definition of an optimal repair [9, 18], which is
an ontology that does not have the unwanted consequences, is entailed by the
original ontology (thus realizing property (a)), and preserves a maximal amount
of consequences in the sense that there is no repair (i.e., no ontology satisfying
the first two properties) that strictly entails it (property (b)). Entailment can be
IQ-entailment or CQ-entailment, depending on whether we are interested only
in instance queries, or also in conjunctive queries [39]. Maximizing the retained
consequences is also motivated by the following observation. All the repair tool
knows is the original ontology and the consequences that should be removed,
which are specified in what we call a repair request. If it were to remove more
consequences than are strictly needed to satisfy the repair request, then the de-
cision which additional consequences to remove would be a random choice by
the tool, not based on any application knowledge, which is held by the KE. In
case the optimal repair retains consequences that should be removed, the KE
needs to specify this in a subsequent repair request.

If a repair problem consisting of an ontology and a repair request does not
have a repair, then it cannot have an optimal one. In general, however, optimal
repairs of repair problems that have a repair need not exist either, even in the
simple setting of EL ABoxes without a TBox. This is illustrated in the following
example, where the ABox A = {V (n), ℓ(n, n)} says that Narcissus is a vain
individual that loves itself, and the repair request R = {V (n)} wants us to
remove the consequence that Narcissus is vain. Intuitively, to obtain a repair, we
must remove V (n). However, since all assertions of the form ∃ℓ.(V ⊓(∃ℓ.)k⊤)(n),
saying that Narcissus loves a vain individual that is the starting point of a
loves-chain of length k, are consequences of A and can be added to {ℓ(n, n)}
without entailing V (n), it is easy to see that there is no finite EL ABox that
is an optimal repair. In fact, since Narcissus is no longer vain, the retained
cycle ℓ(n, n) cannot be used to generate the loves-chains of arbitrary length
starting from a vain individual. Even if a given repair problem has optimal
repairs, they may not cover all repairs in the sense that every repair is entailed
by an optimal one. To see this, we can look at a modified version of the above
example. Consider the ABox B = {k(t, n), V (n), ℓ(n, n)}, which contains the

4 Franz Baader, Patrick Koopmann, and Francesco Kriegel

additional information that Tiresias knows Narcissus, and the repair request
Q = {(∃k.V)(t)}. Removing k(t, n) from B yields an optimal repair. However,
there are also repairs that retain this assertion, but there is no optimal one
among them for the same reason as in the previous example. Thus, if the KE
is only offered the optimal repair {V (n), ℓ(n, n)} by the repair tool, the repair
options that retain the assertion k(t, n) are missed. This illustrates that the use
of optimal repairs in a repair tool requires a setting where the optimal repairs
always cover all repairs.

This can be achieved by using a more general notion of ABoxes, called quanti-
fied ABoxes (qABoxes) [19], where in addition to the usual named individuals we
also have anonymous objects, which are represented as (existentially quantified)
variables. In our Narcissus example, an optimal repair of A for R is obtained
by removing V (n) and introducing an anonymous vain and self-loving lover of
Narcissus, which yields the qABox ∃{x}.{ℓ(n, n), ℓ(n, x), ℓ(x, n), ℓ(x, x), V (x)}.
Note that we could not have used a named individual b instead of the variable
x since then the resulting ABox would have entailed instance relationships for
b, such as V (b), that are not entailed by A. One might think that retaining a
consequence like (∃ℓ.V)(n) is not justified since one of the reasons for this being
a consequence of A, namely V (n), has been removed. However, with this argu-
ment, we would be back at the classical repair approach. As argued above, since
the repair request only specifies that V (n) should no longer be a consequence,
other consequences like (∃ℓ.V)(n) should not be lost unless this is needed to
remove V (n).

In [19] we consider a setting where ontologies are qABoxes and the repair
requests consist of entailed EL instance relationships.5 Given such a repair prob-
lem, we show how to construct a finite set of repairs, called the canonical repairs,
which cover all repairs. The canonical repairs are of exponential size, and there
may be exponentially many of them. Not every canonical repair is optimal, but
due to the covering property, the set of them contains all optimal repairs up
to equivalence. The set of optimal repairs can thus be obtained by removing
non-optimal canonical repairs, i.e., ones that are strictly entailed by another
canonical repair, and this set covers all repairs. The construction of the canoni-
cal repairs is actually the same for the CQ and the IQ case. The only difference
is that, when removing non-optimal canonical repairs, the respective entailment
relation must be used. Since CQ-entailment implies IQ-entailment, but not vice
versa, more canonical repairs may be removed as non-optimal in the IQ setting.
In addition, since CQ-entailment is NP-complete and IQ-entailment is tractable,
the complexity of removing non-optimal repairs is higher in the CQ case.

The differences between the CQ and the IQ case get more pronounced if we
add an EL TBox. In [9], we assume that this TBox is correct, and thus should
not be changed in the repair process. In order to adapt the approach and the
results of [19] to this setting, the first step is to saturate the given qABox w.r.t.

5 The paper [19] actually calls repairs “compliant anonymisations” and repair requests
“privacy policies” since it considers a situation where consequences are to be removed
not because they are incorrect, but since this information should be hidden.

Optimal Repairs in the Description Logic EL Revisited 5

the TBox, to reduce entailment with TBox to entailment without TBox. For the
IQ case, such a saturation always exists and can be computed in polynomial
time. For the CQ case, a finite saturation need not exist in general. However,
for cycle-restricted TBoxes [3], it always exists, but may be of exponential size.
Continuing the repair process with the saturated qABox, we still need to take the
TBox into account when defining canonical repairs, to ensure that consequences
that have been removed from the qABox cannot be reintroduced by the TBox.
With this adapted notion of canonical repairs, we obtain the same results as
for the case without TBox. The canonical repairs cover all repairs and can be
computed in exponential time. From them the set of all optimal repairs can
be obtained by removing non-optimal ones using entailment test [9]. This works
both for the IQ and the CQ case, but in the latter only if we can compute a finite
saturation, which is always the case if the TBox is cycle-restricted. For TBoxes
that are not cycle-restricted, optimal repairs need not exist in the CQ case. For
example, with respect to the TBox {V ⊑ ∃ℓ.V, ∃ℓ.V ⊑ V }, which says that vain
individuals are exactly the ones that love a vain individual, the qABox {V (n)}
does not have an optimal repair for the repair request R = {V (n)}. Intuitively,
the reason is that the qABox together with the TBox implies the existence of
arbitrarily long loves-chains starting from n, which are no longer entailed by the
TBox if V (n) is removed (see Example 9 in [13] for a more detailed argument).
One might think that the first GCI V ⊑ ∃ℓ.V is enough to destroy existence of
an optimal repair. This is, however, not the case. Without the second GCI one
can introduce an anonymous vain individual x that is loved by n and loves itself
to obtain an optimal repair.

In the first part of the paper (Section 2 and Section 3), we will describe the
repair approaches developed in our previous work [9, 19], but with an emphasis
on motivation rather than on technical details. The second part of the paper
(Section 4 and Section 5) describes new result. We will consider more concise
representations of optimal repairs, to deal both with the exponential size of
canonical repairs in the IQ case and the non-existence problem w.r.t. cyclic
TBoxes in the CQ case.

The former problem is due to the fact that the canonical repairs employed in
our approach are by construction of exponential size. To alleviate this problem,
we have, on the one hand, developed in [9] an optimized algorithm for computing
repairs, which yields optimized repairs that are equivalent to the canonical ones,
but in most cases considerably smaller, though in the worst case they may still
be exponential. On the other hand, each canonical repair is induced by a so-
called repair seed, whose size is polynomial in the size of the TBox and the repair
request. We have seen in [15] that, for the IQ case, one can compute consequences
of canonical repairs and check IQ-entailment between them by working only with
the seed functions inducing them. This way, the exponential blow-up due to the
construction of the canonical repair can be avoided. In Section 4, we report
on experimental results that compare the performance on answering instance
queries between the optimized repairs and the canonical ones represented by
seed functions.

6 Franz Baader, Patrick Koopmann, and Francesco Kriegel

In Section 5, we show that, also in the CQ case, optimal repairs always exist
and cover all repairs if we allow for certain infinite, but finitely represented
qABoxes. To be more precise, we introduce the notion of a shell unfolding of a
given qABox, which basically unravels parts of the qABox into (possibly infinite)
trees. The shell unfoldings of IQ-saturations turn out to be CQ-saturations, and
this also works for cyclic TBoxes. If we then consider the canonical IQ-repairs
for a given repair problem, then we can prove that their shell unfoldings yields
a set of (possibly infinite) CQ-repairs that cover all CQ-repairs. In addition,
consequences from such shell unfolded repairs and entailment between them can
be decided based on their finite representation without an increase in complexity.
Thus, one can work with them as if they were finite.

This extended version contains all technical details and proofs not included
in the conference article [8] for space restrictions. Note that numbering of defi-
nitions, lemmas, etc. differs and that the writing style is more technical.

2 Preliminaries

First, we briefly explain the knowledge representation and reasoning capabilities
of the description logic EL. Like other DLs, it allows to assign individuals to
concepts, to interrelate individuals by roles, to define compound concepts, and
to express inclusion between concepts. The smallest pieces used to represent the
knowledge about the domain of interest are collected in the signature Σ, which
is a set of individual names, concept names, and role names. Every concept name
A and the top concept ⊤ are EL concept descriptions ; if C,D are EL concept
descriptions, then the conjunction C ⊓D is an EL concept description; for every
role name r and every EL concept description C, the existential restriction ∃r.C
is an EL concept description. Repetitions and order in conjunctions are irrelevant,
as are nestings of them. Thus, we often use the syntactic sugar

d
{C1, . . . , Cn} :=

C1 ⊓ · · · ⊓ Cn and
d
∅ := ⊤. An atom is either a concept name or an existential

restriction. Each EL concept C is a conjunction of atoms, i.e., C =
d

Conj(C) for
a set Conj(C) of atoms, which we call the top-level conjuncts of C. Assertional
knowledge is expressed by concept assertions C(a) and role assertions r(a, b)
composed of a concept description C, a role name r, and individual names a, b.
An ABox is a finite set of such assertions. Terminological knowledge is expressed
with concept inclusions (CIs) C⊑D composed of concept descriptions C,D, and
a TBox is a finite set of CIs. An ontology is a pair of an ABox and a TBox.

EL can be translated into first-order logic and thus has a model-theoretic se-
mantics, which we define next. An interpretation I consists of a domain Dom(I),
which is a non-empty set of objects, and of a function ·I that gives meaning to
the individual names a, concept names A, and role names r in the signature Σ by
assigning them to elements aI , subsets AI , and binary relations rI , respectively,
of Dom(I). The interpretation function is extended to compound concepts by
⊤I := Dom(I), (C ⊓ D)I := CI ∩ DI , and (∃r.C)I := { x | (x, y) ∈ rI and
y ∈ CI for some y }. Simply put, ⊤ describes the concept of all objects, C ⊓D
describes the concept of all objects that are described by C as well as by D,

Optimal Repairs in the Description Logic EL Revisited 7

and ∃r.C describes the concept of all objects that are related by r to an object
described by C. Moreover, I satisfies a concept assertion C(a) if aI ∈ CI (the
individual name a belongs to the concept described by C), a role assertion r(a, b)
if (aI , bI) ∈ rI (the role name r connects individual name a with the individual
name b), and a concept inclusion C ⊑D if CI ⊆ DI (each object described by
C is also described by D). We say that I is a model of an ABox A (a TBox T),
written I |= A (I |= T), if I satisfies all assertions in A (all CIs in T).

Reasoning is the process of deciding or enumerating consequences of an on-
tology. For instance, we say that a concept assertion C(a) is entailed by an ABox
A w.r.t. a TBox T if C(a) is satisfied in all models of A and T ; this is abbre-
viated as A |=T C(a) and we also say that a is an instance of C w.r.t. A and
T . Similarly, a CI C ⊑ D is entailed by T if C ⊑ D is satisfied in every model
of T ; we then write C ⊑T D and also say that C is subsumed by D w.r.t. T . In
EL both reasoning problems can be decided in polynomial time by means of the
Completion algorithm [5], which is implemented in the reasoner ELK [32].

2.1 Quantified ABoxes

ABoxes containing existential restrictions imply existence of anonymous individ-
uals, e.g., in each model I of {(∃r.A)(a)} there is an object y with (aI , y) ∈ rI

and y ∈ AI . In order to make such anonymous individuals explicit but also to
allow more compact representations by employing structural sharing, we intro-
duced quantified ABoxes. These are ABoxes that may use variables in addition
to individual names and in which the concepts in assertions must not be com-
pound. More precisely, a quantified ABox (qABox) ∃X.A consists of a finite set
X of variables, which is disjoint with the signature Σ, and of a matrix A, which
is a finite set of assertions A(u) and r(u, v) where A is a concept name, r a role
name, and u, v individual names or variables. An object of ∃X.A is either an
individual name in Σ or a variable in X, and the set of all objects is denoted by
Obj(∃X.A). An interpretation I is a model of ∃X.A, written I |= ∃X.A, if there
is an assignment Z that maps each variable x to an object xZ in Dom(I) such
that the augmented interpretation I[Z] is a model of the matrix A. Entailment
of assertions by qABoxes is defined as for ABoxes and is decidable in polynomial
time too. Moreover, a qABox ∃X.A entails a qABox ∃Y.B w.r.t. a TBox T if
every model of ∃X.A and T is also a model of ∃Y.B, written ∃X.A |=T ∃Y.B.
Entailment between qABoxes is NP-complete, even if T = ∅ [19]. Although the
Web Ontology Language OWL 2 [43] allows for anonymous individuals in ontolo-
gies and can thus represent qABoxes, they are not supported by the OWL 2EL
profile [40] since reasoning with variables is intractable.

Besides the model-based entailment |=T , we can also compare two qABoxes
according to their consequences. One such consequence-based entailment con-
siders all instance queries (which is a synonym for concept assertions): a qABox
∃X.A IQ-entails a qABox ∃Y.B w.r.t. T , written ∃X.A |=T

IQ ∃Y.B, if ∃Y.B |=T

C(a) implies ∃X.A |=T C(a) for every C(a). In addition to concept assertions
we can also take all role assertions into account, yielding IRQ-entailment |=T

IRQ.
Another consequence-based entailment considers all Boolean conjunctive queries

8 Franz Baader, Patrick Koopmann, and Francesco Kriegel

(BCQs). Since BCQs and qABoxes are equivalent formalisms, we can define that
∃X.A CQ-entails ∃Y.B w.r.t. T , written ∃X.A |=T

CQ ∃Y.B, if ∃Y.B |=T ∃Z.C
implies ∃X.A |=T ∃Z.C for every ∃Z.C. Since the TBox is fixed, CQ-entailment
|=T

CQ and model-based entailment |=T coincide. However, IRQ-entailment |=T
IRQ

is strictly weaker, and IQ-entailment |=T
IQ is the weakest of them.

Every ABox can be transformed into an equivalent qABox, but the con-
verse is not true. For instance, the ABox {(A ⊓ ∃r.B)(a)} can be rewritten
to ∃{x}.{A(a), r(a, x), B(x)}. It is obtained by introducing the variable x as an
r-successor of a for the anonymous individual in (∃r.B)(a). In the converse direc-
tion, the qABox ∃{y}.{s(a, y), C(y), r(y, y)} has no equivalent ABox as it entails
the infinitely many concept assertions (∃s. · · · ∃s.C)(a), but also since the cycle
r(y, y) between variables cannot be represented in an ABox. The situation may
be different with another entailment. Specifically, w.r.t. the TBox {C ⊑ ∃r.C}
the latter qABox is IRQ-equivalent to {(∃s.C)(a)}. In general, whether a qABox
is IRQ-equivalent to an ABox w.r.t. some TBox can be decided in polynomial
time and, if so, such an ABox can be computed in exponential time [11].

2.2 Simulations and Homomorphisms

The consequence-based entailments have structural characterizations by means
of simulations and homomorphisms, respectively. ∃X.A IQ-entails ∃Y.B w.r.t.
the empty TBox if there is a simulation from ∃Y.B to ∃X.A, which is a relation
S ⊆ Obj(∃Y.B)× Obj(∃X.A) that fulfills the following conditions:

(S1) If a is an individual name, then (a, a) ∈ S.
(S2) If (u, u′) ∈ S and A(u) ∈ B, then A(u′) ∈ A.
(S3) If (u, u′)∈S and r(u, v)∈B, then (v, v′)∈S and r(u′, v′)∈A for some v′.

For a non-empty TBox T we need to consider the IQ-saturation satTIQ(∃X.A) of
the first qABox, obtained by materializing consequences implied by the TBox.
To this end, we exhaustively apply the following rule, which terminates in poly-
nomial time.

IQ-Saturation Rule. Choose an object u of ∃X.A as well as a CI C ⊑D in T
with A |= C(u) but A ̸|= D(u), and return the qABox obtained from ∃X.A
by IQ-unfolding D at u, where “ IQ-unfolding E at v” is a recursive operation
that does the following:
1. For each concept name A ∈ Conj(E), add the assertion A(v) to A.
2. For each existential restriction ∃r.F ∈ Conj(E), add the variable xF

to X, add the assertion r(v, xF) to A, and IQ-unfold F at xF .

Then, ∃X.A |=T
IQ ∃Y.B iff there is a simulation from ∃Y.B to satTIQ(∃X.A).

To decide IRQ-entailment |=T
IRQ one additionally needs to check whether all role

assertions in ∃Y.B involving individual names only are also contained in ∃X.A.
Note that IQ-saturations are very similar to the canonical models constructed

by the rule-based Completion algorithm [4], which is implemented in the reasoner
ELK [32]. It can thus be used to efficiently compute IQ-saturations.

Optimal Repairs in the Description Logic EL Revisited 9

Furthermore, a homomorphism is a function h : Obj(∃Y.B) → Obj(∃X.A)
for which the relation { (u, h(u)) | u ∈ Obj(∃Y.B) } is a simulation. It holds
that ∃X.A |=T

CQ ∃Y.B iff there is a homomorphism from ∃Y.B to satTCQ(∃X.A),
but to ensure finiteness of the CQ-saturation satTCQ(∃X.A) the TBox T must
be cycle-restricted, see [9] for details. The latter means that there is no concept
description C and no role names r1, . . . , rn with C ⊑T ∃r1. · · · ∃rn.C [2].

To construct the CQ-saturation, we replace the IQ-Saturation Rule with the
variant for CQ. The difference to the IQ-Saturation Rule is that we now need to
record the path on which we reached a particular object, and that we cannot
reuse variables created from the same subconcepts.

CQ-Saturation Rule. Choose an object u of ∃X.A as well as a CI C⊑D in T
with A |= C(u) but A ̸|= D(u), and return the qABox obtained from ∃X.A
by unfolding D at u, where “unfolding E at p” is a recursive operation that
does the following:
1. For each concept name A ∈ Conj(E), add the assertion A(p) to A.
2. For each existential restriction ∃r.F ∈ Conj(E), add the variable p r−→xF

to X, add the assertion r(p, p r−→xF) to A, and unfold F at p r−→xF .

Exhaustively applying the CQ-Saturation Rule terminates in exponential time
for cycle-restricted TBoxes. For other TBoxes it need not terminate.

CQ-saturations correspond to structures often employed for conjunctive
query answering over databases w.r.t. sets of existential rules, namely the univer-
sal model and the chase [27]. Termination of the chase is not decidable but there
exist numerous sufficient conditions for termination [35]. For this close relation-
ship, CQ-saturations can efficiently be computed with the reasoner VLog [25].

We will illustrate central notions with a running example, starting below.

Example 1. The input ontology consists of the qABox ∃X.A := ∃∅.{V (n)} and
the EL TBox T := {V ⊑∃ℓ.V, ∃ℓ.V ⊑ V } (see introduction). Since the TBox is
not cycle-restricted, no finite CQ-saturation exists, but we will see in Section 5.4
how an infinite CQ-saturation can be constructed in a well-defined way. We can,
however, already here construct the IQ-saturation. Since the individual n is an
instance of the premise of the CI V ⊑∃ℓ.V but not of its conclusion, we extend
the qABox such that n also instantiates the conclusion. We therefore introduce
one fresh variable xV , which corresponds to the anonymous individual in ∃ℓ.V ,
together with the assertions ℓ(n, xV) and V (xV). Since now also xV is an instance
of the same premise but not the conclusion, we need to extend the qABox again
but now reuse the variable xV , so that we add the assertion ℓ(xV , xV) only.
Afterwards, the IQ-Saturation Rule is not applicable anymore and we are done.
We have obtained satTIQ(∃X.A) = ∃{xV }.{V (n), ℓ(n, xV), V (xV), ℓ(xV , xV)},
which is graphically represented below.

satTIQ(∃X.A) : n

V

xV

V
ℓ

r

10 Franz Baader, Patrick Koopmann, and Francesco Kriegel

2.3 A Rewrite System for qABox Entailment

In order to further ease understanding the three different entailment relations
between qABoxes, we provide yet another characterization by means of rewrite
systems. We start with the easiest, which characterizes model-based entailment
and CQ-entailment. There are three rules: the Copy Rule copies an object into a
fresh variable, the Deletion Rule deletes an object or an assertion, and the CQ-
Saturation Rule adds assertions implied by the TBox (see the previous section).

Copy Rule. Choose an object u of ∃X.A as well as a fresh variable y, i.e.,
y ̸∈ Obj(∃X.A), and return the qABox ∃(X∪{y}).

(
A∪{A(y) | A(u) ∈ A}∪

{ r(t, y) | r(t, u) ∈ A} ∪ { r(y, y) | r(u, u) ∈ A} ∪ { r(y, v) | r(u, v) ∈ A}
)
.

Delete Rule. Choose an assertion α in A and return the qABox ∃X.(A\{α}),
or choose an object u of ∃X.A and return the qABox ∃(X \{u}).{α | α ∈ A
and u does not occur in α }.

Proposition 2. ∃X.A |=T
CQ ∃Y.B iff ∃X.A can be rewritten to ∃Y.B by means

of the three rules (Copy Rule, Delete Rule, CQ-Saturation Rule).

The above proposition holds for arbitrary TBoxes, but here we can only give
a proof for cycle-restricted TBoxes. In order to formulate a proof for the general
case, we first need to develop a notion of a CQ-saturation. The general proof is
then given in Section 5.5.

Proof. Regarding the if direction, one first shows that a single rule application
produces a qABox that is entailed, and then the claim follows by induction along
the sequence of rule applications.

We proceed with the only-if direction, but restrict attention to a cycle-
restricted TBox T . Assume that ∃X.A |=T ∃Y.B, i.e., there is a homomorphism
h from ∃Y.B to the CQ-saturation satTCQ(∃X.A). Recall that the latter can be
constructed in exponential time by means of the CQ-Saturation Rule.

We will construct a sequence of qABoxes ∃Zi.Ci such that each qABox
∃Zi+1.Ci+1 is obtained from the previous qABox ∃Zi.Ci by means of the Copy
Rule and the Delete Rule, accompanied with homomorphisms hi from ∃Y.B to
∃Zi.Ci. The sequence starts with ∃Z0.C0 := satTCQ(∃X.A) and h0 := h from
above, and will end with a qABox and accompanying homomorphism that is
bijective.

First of all, we use the Delete Rule to remove all objects (including all their
assertions) to which the initial homomorphism h0 does not map. Afterwards,
the homomorphism is surjective. Injectivity is gained by repeatedly searching
for pre-images h−1

i (v) := { u | hi(u) = v } that contain more than one object: if
h−1
i (v) = {u1, . . . , un} where n > 1 and w.l.o.g. u2, . . . , un are variables,6 then

we use the Copy Rule to create n−1 duplicates v2, . . . , vn of v (which yields the
next qABox ∃Zi+1.Ci+1), and we obtain the next homomorphism hi+1 from hi

by keeping hi+1(v) = u1 but redefining hi+1(vj) := uj for each j ∈ {2, . . . , n}.
6 Since homomorphisms send each individual to itself, a pre-image h−1

i (v) cannot
contain more than one individual.

Optimal Repairs in the Description Logic EL Revisited 11

The final homomorphism hℓ is bijective since each pre-image contains exactly
one object. In order to obtain an isomorphism, we use the Delete Rule to remove
all assertions that are not in the image of the homomorphism. Last, we use the
Copy Rule and the Delete Rule to rename each variable hℓ(x) to x. The so
obtained qABox equals ∃Y.B. ⊓⊔

Also, IQ-entailment can be characterized by a rewrite system. It uses the
Copy Rule, the Delete Rule, and the Saturation Rule as well, but of course
needs the IQ-Saturation Rule in place of the variant for CQ. However, these three
rules are not enough. For instance, the qABox ∃{x}.{A(a), r(a, x)} IQ-entails
the qABox ∃{y}.{r(a, b), B(y)}. To see this, note that A(a) and (∃r.⊤)(a) are
all non-trivial, atomic instance queries entailed by the first qABox, whereas the
second qABox only entails (∃r.⊤)(a). Since the former cannot yet be rewritten
to the latter, we need to extend the rewrite system with further rules.

In the example, we see that the role assertion r(a, x) is replaced by r(a, b).
This is possible since x and b are instances of the same EL concept descriptions
(namely of ⊤ only), and thus no further fillers C in implied instance queries
(∃r.C)(a) are introduced. In general, IQ-entailment is ignorant of the second
object in role assertions— it can only detect whether there is a role assertion of
the form r(a, ?), namely by means of the instance query (∃r.⊤)(a), but it cannot
refer to the second individual in it.

In other words, the role assertions themselves need not bear meaning, but
they are only used to describe the concepts of which the individuals are instances
of. By rule of thumb: when IQ-entailment is employed, then one should not
directly look into the qABoxes, but one must only use instance queries to access
the knowledge they contain. We conclude that IQ-entailment must not be used in
applications where connections between individuals, expressed by role assertions,
are important. One should then rather use IRQ- or CQ-entailment.

Let us return to our endeavor of formulating additional rewrite rules. As we
have learned above, whenever we find two objects u and u′ that are instances of
the same concept descriptions, then we can make u an r-successor of every object
that has u′ as r-successor, and vice versa. By doing so, no additional implied
instance queries are introduced. A single-sided variant of this rule is as follows.

Simulated Successors Rule. Choose two objects u and u′ of ∃X.A with
u ⪯ u′, and return the qABox ∃X.(A ∪ { r(t, u) | r(t, u′) ∈ A}).

In general, for two objects u ∈ Obj(∃X.A) and u′ ∈ Obj(∃Y.B), the condition
u ⪯ u′ means that, for all EL concept descriptions C, if A |= C(u), then B |=
C(u′). It is a finger exercise to show the following.

Lemma 3. u ⪯ u′ iff (u, u′) is contained in a simulation from ∃X.A to ∃Y.B.

The following technical lemma is later used to guarantee subsequent appli-
cability of the Simulated Successors Rule.

Lemma 4. If ∃X.A is a qABox on which S is a transitive simulation contain-
ing (u, u′), and the qABox ∃Y.B is obtained by applying the Simulated Successors
Rule for (u, u′), then S is also a simulation on ∃Y.B.

12 Franz Baader, Patrick Koopmann, and Francesco Kriegel

Proof. It is trivial that S still satisfies (S1) and (S2). We proceed with verifying
(S3), where the only interesting case considers a pair (t, t′) ∈ S and an added
role assertion r(t, u) ∈ B \A. Recall that then (u, u′) ∈ S and r(t, u′) ∈ A. (S3)
yields an object u′′ with (u′, u′′) ∈ S and r(t′, u′′) ∈ A. For S being transitive,
we conclude that (u, u′′) ∈ S. ⊓⊔

In our example, the IQ-entailed qABox further contains the concept assertion
B(y) but the first qABox does not contain any corresponding assertion. In fact,
it does not even contain the concept name B. The reason is that IQ-entailment
is ignorant of assertions that are not reachable from individuals, simply because
it cannot access such assertions by means of instance queries. Therefore, we also
need a rule to add arbitrary such assertions.

Unreachable Assertions Rule. Choose a fresh variable y and return the
qABox ∃(X ∪ {y}).A, or choose a variable y in X that is not reachable
from any individual and choose a fresh assertion α involving y such that,
if α is a role assertion, then the first object is neither an individual nor
reachable from any individual, and return the qABox ∃X.(A ∪ {α}).

We now verify that the five aforementioned rules yield a sound and complete
characterization of IQ-entailment.

Proposition 5. ∃X.A |=T
IQ ∃Y.B iff ∃X.A can be rewritten to ∃Y.B by means

of the five rules (Copy Rule, Delete Rule, IQ-Saturation Rule, Simulated Succes-
sors Rule, Unreachable Assertions Rule).

Proof. Regarding the if direction, one first shows that a single rule application
produces a qABox that is IQ-entailed, and then the claim follows by induction
along the sequence of rule applications.

We proceed with the only-if direction and therefore assume that ∃X.A |=T
IQ

∃Y.B. We will construct a finite sequence of qABoxes ∃Xi.Ai that starts with
∃X0.A0 := ∃X.A and such that ∃Xi+1.Ai+1 is obtained from ∃Xi.Ai by means
of the five rules (Copy Rule, Delete Rule, IQ-Saturation Rule, Simulated Succes-
sors Rule, Unreachable Assertions Rule). Every subsequent qABox ∃Xi.Ai with
i ≥ 1 will be accompanied with a simulation Si from ∃Y.B to ∃Xi.Ai such that
the last simulation is an isomorphism.

Before we start with constructing the sequence, we need to explain when a
simulation is an isomorphism. In general, we say that a relation R ⊆ B×A from
a set B to a set A is

– left-total if, for each b ∈ B, there is at least one a ∈ A with (b, a) ∈ R,
– right-definite or functional if, for each b ∈ B, there is at most one a ∈ A

with (b, a) ∈ R,
– right-total or surjective if, for each a ∈ A, there is at least one b ∈ B with

(b, a) ∈ R,
– left-definite or injective if, for each a ∈ A, there is at most one b ∈ B with

(b, a) ∈ R,

Optimal Repairs in the Description Logic EL Revisited 13

Each left-total, functional relation R induces the unique function f : B → A with
f(b) := a if (b, a) ∈ R. Slightly abusing notation, we identify R and f in this
case and say that R is a function. Further recall that each injective, surjective
function f has an inverse f−1 : A → B with f−1(a) := b if f(b) = a.

If a simulation S from ∃Y.B to ∃X.A is a function, then it is even a homo-
morphism from ∃Y.B to ∃X.A. An isomorphism is a homomorphism that is
injective and surjective, and the inverse of which is a homomorphism in the con-
verse direction. Quantified ABoxes between which there is an isomorphism are
equal up to renaming of variables.

In the following, we will use the five rewrite rules to first construct the satura-
tion of ∃X.A (Step 1) and then construct qABoxes such that the accompanying
simulation is surjective (Step 2), injective (Step 3), functional (Steps 4 and 5),
and left-total (Step 6). In the final Step 7, we will delete superfluous assertions
to ensure that the obtained injective, surjective homomorphism is also an iso-
morphism, and we then rename the variables to establish equality between the
rewritten qABox and the input qABox ∃Y.B.

1. The qABox ∃X1.A1 is defined as the saturation satTIQ(∃X.A), which can
be constructed from ∃X0.A0 = ∃X.A with the IQ-Saturation Rule. Since
∃X.A |=T

IQ ∃Y.B, there is a simulation S from ∃Y.B to satTIQ(∃X.A). As
first simulation S1 we take this S.

2. To obtain ∃X2.A2, we use the Delete Rule to remove all objects from
∃X1.A1 that do not occur in S1. We do not need to modify the simula-
tion and therefore set S2 := S1. This simulation S2 from ∃Y.B to ∃X2.A2

is surjective.

3. Next, we construct the qABox ∃X3.A3 so that the simulation S3 is injective.
For each pair (u, u′) ∈ S2 except where u and u′ are the same individual,
we use the Copy Rule to create a duplicate of u′, which we denote by x(u,u′).
In the following, we treat a and x(a,a) as synonyms for each individual a.
Also, we use the Delete Rule to remove every variable u′ with (u, u′) ∈ S2.
The resulting qABox is denoted as ∃X3.A3. The accompanying simulation
S3 is obtained from S2 by replacing each pair (u, u′) with (u, x(u,u′)), i.e.,
formally we define S3 := { (u, x(u,u′)) | (u, u′) ∈ S2 }.
We verify that S3 is a simulation from ∃Y.B to ∃X3.A3.
(S1) Consider an individual a. (S1) yields (a, a) ∈ S2. So (a, x(a,a)) ∈ S3.

Recall that a and x(a,a) are synonyms, and thus (a, a) ∈ S3.
(S2) Let (u, x(u,u′)) ∈ S3, i.e., (u, u′) ∈ S2. Further consider a concept

assertion A(u) ∈ B. (S2) yields A(u′) ∈ A2. Recall that x(u,u′) is either a
duplicate of u′ created by the Copy Rule or a synonym of the individual
u = u′, and thus A(x(u,u′)) ∈ A3.

(S3) Again let (u, x(u,u′)) ∈ S3, i.e., (u, u′) ∈ S2, but now consider a role
assertion r(u, v) ∈ B. (S3) yields an object v′ with (v, v′) ∈ S2 and
r(u′, v′) ∈ A2. Recall that x(u,u′) is either a duplicate of u′ created by
the Copy Rule or a synonym of the individual u = u′, and similarly for
x(v,v′), and thus r(x(u,u′), x(v,v′)) ∈ A3.

14 Franz Baader, Patrick Koopmann, and Francesco Kriegel

4. In preparation of Step 5, we construct a qABox ∃X4.A4 so that, for each
two pairs (u, u′) and (u, u′′) in the corresponding simulation S4, the objects
u′ and u′′ are instances of the same EL concept descriptions, i.e., u′ ⪯ u′′

and u′′ ⪯ u′.
For each pair (u, u′) ∈ S3, we use the Delete Rule to delete superfluous
assertions involving u′, i.e., which are not needed to simulate u. Since S3 is
injective, this removal can be done without considering objects other than u.
Formally, we obtain from ∃X3.A3 the qABox with same variables, i.e., X4 :=
X3, and with the matrix

A4 := A3 \ {A(u′) | (u, u′) ∈ S3 and A(u) ̸∈ B }
\ { r(u′, v′) | (u, u′) ∈ S3 and r(u, v) ̸∈ B for each (v, v′) ∈ S3 }.

We first show that S3 is also a simulation from ∃Y.B to ∃X4.A4.
(S1) We already know that (a, a) ∈ S3 for each individual name a.
(S2) Let (u, u′) ∈ S3 and A(u) ∈ B. Since S3 fulfills (S2) it follows that

A(u′) ∈ A3. According to the definition of A4 and since S3 is injective,
this assertion A(u′) is not removed and thus A(u′) ∈ A4.

(S3) Consider (u, u′) ∈ S3 and r(u, v) ∈ B. By (S3) there is v′ with (v, v′) ∈
S3 and r(u′, v′) ∈ A3. By definition of A4 and for S3 is injective, the
assertion r(u′, v′) is not removed, i.e., r(u′, v′) ∈ A4.

Next, we verify that the inverse relation S−1
3 := { (u′, u) | (u, u′) ∈ S3 } is a

simulation from ∃X4.A4 to ∃Y.B.
(S1) If a is an individual, then (a, a) ∈ S3 by (S1) and thus (a, a) ∈ S−1

3 .
(S2) Let (u′, u) ∈ S−1

3 and A(u′) ∈ A4. Then (u, u′) ∈ S3. If A(u) was not
in B, then A4 would not contain A(u′), a contradiction.

(S3) Last, assume (u′, u) ∈ S−1
3 and r(u′, v′) ∈ A4. Then (u, v) ∈ S3. If

r(u, v) was not in B for each (v′, v) ∈ S−1
3 , then A4 would not contain

r(u′, v′), a contradiction.
Since simulations are closed under composition, the relation S−1

3 ◦ S3 is a
simulation on ∃X4.A4, as is the transitive closure of S−1

3 ◦ S3 which we
denote by T4. Since, for each two pairs (u, u′) and (u, u′′) in S3, the pairs
(u′, u′′) and (u′′, u′) are in S−1

3 ◦S3 and thus also in T4, we conclude that
u′ ⪯ u′′ and u′′ ⪯ u′. As next simulation we define S4 := S3.

5. As next step, we construct a qABox ∃X5.A5 for which the accompanying
simulation S5 is functional.
One after another, we consider every object u of ∃Y.B. First of all, we fix
an enumeration {u′

1, . . . , u
′
n} of the set { u′ | (u, u′) ∈ S4 }. If u is an

individual name, then (u, u) ∈ S4 and so we let u′
1 = u. For S4 satisfies (S1)

and is injective, the other objects u′
i with i ≥ 2 are variables. Recall from

the last step that (u′
i, u

′
j) ∈ T4 for all indexes i, j, and thus we can apply

the Simulated Successors Rule for each pair (u′
1, u

′
i) with i ≥ 2. Note that

Lemma 4 ensures that the rule remains applicable. After all objects of ∃Y.B
have been considered, we use the Delete Rule to remove the variables u′

2, . . . ,
u′
n for every u ∈ Obj(∃Y.B). The resulting qABox is denoted by ∃X5.A5.

We verify that the relation S5, obtained from S4 by removing each pair
(u, u′

i) with i ≥ 2, is a simulation from ∃Y.B to ∃X5.A5.

Optimal Repairs in the Description Logic EL Revisited 15

(S1) If u is an individual name, then we chose u = u′
1 above. Since the pair

(u, u′
1) is not removed, it is contained in S5.

(S2) Since S4 ⊇ S5, (S2) is still fulfilled by each pair in S5.
(S3) Consider a role assertion r(t, u) ∈ B and let (t, t′) ∈ S5. Since S5 ⊆ S4,

it follows that (t, t′) ∈ S4 and so (S3) yields r(t′, u′
i) ∈ A4 for some

(u, u′
i) ∈ S4. Further note that t′ was not deleted and is still an object

of ∃X5.A5, since (t, t′) ∈ S5 implies that t′ is the first object t′1 in the
enumeration of { t′ | (t, t′) ∈ S4 }. Since the Simulated Successors Rule
was applied to (u′

1, u
′
i), it follows that r(t′, u′

1) ∈ A5. Obviously, we have
(u, u′

1) ∈ S5 by definition.

t u

t′ u′
i

u′
1

≈

r

r

r

S5 ⊆ S4 S4
S5

6. The simulation S5 might not yet be left-total and thus no function. The
reason is that there might be objects of ∃Y.B that do not occur in any pair
in S5, since they are not reachable from an individual. We therefore use the
Unreachable Assertions Rule to copy over those parts from ∃Y.B, and denote
the resulting qABox by ∃X6.A6. Furthermore, we obtain the simulation S6

from S5 by extending it with the pairs (x, x) for all added variables x.

7. Finally, the last simulation S6 is a function that is injective and surjective,
and thus a bijective homomorphism, which we denote by h. To ensure that its
inverse is also a homomorphism, we use the Delete Rule to remove all asser-
tions from ∃X6.A6 that are not in the image of the homomorphism h. Thus,
the resulting qABox and the input qABox ∃Y.B are equal up to renaming
of variables. Finally, we use the Copy Rule and the Delete Rule to rename
each variable h(x) to x. The so obtained qABox ∃X7.A7 equals ∃Y.B. ⊓⊔

In order to further adapt the rewrite system to IRQ-entailment, we only need
to change the Simulated Successors Rule such that it does not add new role
assertions involving only individuals.

We now need to reconsider Step 5 in the above proof. Assume that t and u′
1

are individuals, i.e., u′
1 = u. Specifically, when the modified Simulated Successors

Rule is applied for a pair (u′
1, u

′
i), the role assertion r(t, u′

1) will not be added
anymore for any role assertion r(t, u′

i) in A4. It seems that we cannot delete the
variable u′, and can thus not achieve that the simulation is functional. However,
this is wrong. To see this, we make a case distinction.

– First, let r(t, u) be contained in the target qABox ∃Y.B. Since ∃Y.B is IRQ-
entailed by ∃X.A, this assertion r(t, u) must also be contained in ∃X.A. It

16 Franz Baader, Patrick Koopmann, and Francesco Kriegel

will not be deleted in any step and is thus contained in every intermediate
qABox ∃Xk.Ak. Thus, the needed assertion r(t, u′

1) is already there and
thus need not be added in Step 5.

– Otherwise, if ∃Y.B does not contain r(t, u), then it is unproblematic when
the intermediate qABox ∃X5.A5 (at the end of Step 5) does not contain this
assertion either — the relation S5 is then still a simulation.

3 A Brief Recap of Optimal Repairs

The framework of optimal repairs has been developed in a series of conference
articles [9, 11, 13, 14, 19, 34]. We will recall and explain the main results for the
case where the data is represented by a qABox ∃X.A and there is a static EL
TBox T that describes terminological knowledge about the domain of interest.
In applications a reasoner such as ELK [32] is employed to derive consequences
from ∃X.A and T . When it is detected that an individual a is an instance of a
concept C, i.e., ∃X.A |=T C(a), and this consequence is deemed to be incorrect,
then the qABox needs to be repaired. In this situation, we prefer to compute
an optimal repair, which is a qABox that is entailed by ∃X.A and T , does not
entail the unwanted consequence C(a), and entails as many other consequences
as possible.

More formally, we assume that the repair request P is a finite set of EL con-
cept assertions (the unwanted consequences).7 A repair of ∃X.A for P w.r.t. T
is a qABox ∃Y.B with ∃X.A |=T ∃Y.B and ∃Y.B ̸|=T C(a) for each C(a) ∈ P .
It is optimal if it is not strictly entailed by another repair, i.e., ∃Y.B |=T ∃Y ′.B′

for each other repair ∃Y ′.B′ with ∃Y ′.B′ |=T ∃Y.B. For a query language
QL ∈ {CQ, IRQ, IQ}, the definition of (optimal) QL-repairs is obtained by replac-
ing the model-based entailment |=T with the consequence-based entailment |=T

QL.
Recall that |=T and |=T

CQ coincide, and thus repairs and CQ-repairs are the same.
Since every (optimal) repair is entailed by the input qABox, we can con-

struct one by means of the rewrite system from Section 2.3. However, this will
often be very inefficient for the huge size of the search space. From the investi-
gations of neighbors of EL concept descriptions [33] it follows that one sequence
of subsequent rewritten of the qABox ∃{x1, . . . , xn}.{r1(a, x1), r2(x1, x2), . . . ,
rn(xn−1, xn), A1(xn), . . . , Ak(xn)} can contain n-fold exponentially many
qABoxes, up to equivalence.

Another problem is that the rewrite system is not terminating: there is no
upper bound on the number of applications of the Copy Rule and, depending on
the TBox, also of the CQ-Saturation Rule. If the TBox is cycle-restricted [2], then
a bounded repair property can be shown with the filtration technique [13]. Every
repair is then entailed by an exponentially-large repair. With that, the rewrite
system is turned into a terminating one: the rules that create new objects (Copy
Rule and Saturation Rule) can only be applied if the number of objects does
not yet exceed the bound. As an alternative, we could also switch to IQ- or IRQ-
entailment for which the bounded repair property is satisfied for all TBoxes.
7 The symbol R is usually reserved for RBoxes, so we use P to avoid clashes.

Optimal Repairs in the Description Logic EL Revisited 17

Goal-directed applications of the rewrite rules can be planned by means of the
repair recipe, obtained as negation of the recursive characterization of ∃X.A |=
C(a) (first with empty TBox). Specifically: to make A not entail C(u), one can
either choose a concept name B ∈ Conj(C) and remove B(u) from A or choose
an existential restriction ∃r.D ∈ Conj(C) and, for each r(u, v) in A, either
recursively make A not entail D(v) or remove r(u, v) from A. The maximal
amount of consequences is preserved if first enough copies are created with the
Copy Rule such that afterwards the Delete Rule is applied according to the
repair recipe in every possible way. If the TBox is empty, then every optimal
repair can be constructed in this way.

Example 6. As an example, consider the qABox ∃{x}.{has topping(my pizza, x),
Salami(x), Parmesan(x)}. Since nothing can be both salami and parmesan, it
has the unwanted consequence (∃has topping.(Salami ⊓ Parmesan))(my pizza).

We first apply the repair recipe without prior copying. We need to make
the matrix not entail (∃has topping.(Salami ⊓ Parmesan))(my pizza). Since
∃has topping.(Salami ⊓ Parmesan) is an atom, it is the only top-level conjunct
of itself, i.e., we can only choose this atom and then recursively apply the re-
pair recipe. To this end, we consider all has topping-successors of my pizza, of
which there is only one, namely x. Then, we need to make the matrix not entail
(Salami ⊓ Parmesan)(x), and we can therefore choose one of the top-level con-
juncts Salami or Parmesan, i.e., we remove either Salami(x) or Parmesan(x).
We end up with a pizza that has either salami or parmesan as topping.

If we initially copy the variable x into a fresh variable y, then we can
apply the repair recipe to x and y differently, and end up with the optimal
repair ∃{x, y}.{has topping(my pizza, x), Salami(x), has topping(my pizza, y),
Parmesan(y)}, in which the pizza still has both salami and parmesan as toppings
(but no single topping anymore that is both salami and parmesan).

The TBox is taken into account by forward and backward chaining. On the
one hand, we initially use the Saturation Rule to materialize consequences im-
plied by the TBox. We can then keep those that do not violate the repair request,
and thereby retain all consequences that could only be inferred using assertions
that will be removed. On the other hand, we must prevent that the TBox can be
used to restore removed consequences. More specifically, when we apply the re-
pair recipe to make A not entail C(u) and thereby choose the atom G ∈ Conj(C),
and if E ⊑ F is a CI in T where F is subsumed by G, then it is also mandatory
to make A not entail E(u). Otherwise, inferencing with the TBox (specifically
with E ⊑ F) would restore that u is an instance of G and thus also of C.

All above ideas culminated in the definition of the canonical repairs. Each
of them is induced by a so-called repair seed, which specifies which atomic con-
sequences are to be removed. First of all, a repair seed S maps each individual
name a to a set Sa of concept descriptions. The intended meaning is that, in the
repair, a is no instance of any concept in Sa anymore. Such a seed can be chosen
as follows, resembling the above repair recipe.

18 Franz Baader, Patrick Koopmann, and Francesco Kriegel

We initialize S by adding the concept C to Sa for each unwanted consequence
C(a) in P, but only for those entailed by ∃X.A and T (otherwise there is no
need to repair). Then we exhaustively apply the following three rules to S.

1. If Sa contains a conjunction C, then we choose an atom G from Conj(C) and
add G to Sa.

2. If Sa contains an existential restriction ∃r.D and ∃X.A contains the role
assertion r(a, b) where b is an instance of D, then we either add D to Sb (in
which case the repair will entail r(a, b) but not D(b) anymore) or do nothing
(then the repair will entail D(b) but not r(a, b) anymore).

3. If Sa contains an atom G and the TBox T contains a concept inclusion E⊑F
with F ⊑∅ G and where a is an instance of E, then we add E to Sa.

Finally, we only keep subsumption-maximal concepts in each set Sa. This does
not change the instructions how the repair should be built, because if C ⊑∅ D
and ∃Y.B does not entail D(a), then ∃Y.B must not entail C(a) as well.

In the following we give the definition of the canonical IQ-repairs only; the
results for the CQ-repairs are similar but will not be used in the sequel of this
article because we are interested in the more general case where the TBox T
need not be cycle-restricted. Each canonical IQ-repair consists of all objects of
the form ⟨⟨u,K⟩⟩ where u is an object of the IQ-saturation and K is a repair
type.8 Essentially, ⟨⟨u,K⟩⟩ is a copy of u that is weakened according to K. More
specifically, each repair type K is a subset of the set of atoms occurring in P or
in T , and ⟨⟨u,K⟩⟩ is no instance of any atom in K. For reasons of efficiency as well
as to guarantee that a repair is obtained, each repair type K must additionally
satisfy the following three conditions, where ∃Y.B is the IQ-saturation of ∃X.A:

(RT1) B |= C(u) for each atom C ∈ K
(RT2) C ̸⊑∅ D for each two atoms C, D in K
(RT3) If C is an atom in K and E⊑F is a CI in T with B |= E(u) and F ⊑∅ C,

then there is an atom D in K such that E ⊑∅ D.9

The matrix of each canonical IQ-repair consists of the following assertions:

(CR1) A(⟨⟨u,K⟩⟩) if A(u) ∈ B and A ̸∈ K.
(CR2) r(⟨⟨u,K⟩⟩, ⟨⟨v,L⟩⟩) if r(u, v) ∈ B and, for each ∃r.C ∈ K with B |= C(v),

there is an atom D ∈ L such that C ⊑∅ D.

For the same input, the canonical IQ-repairs only differ in the selection which
of the copies ⟨⟨u,K⟩⟩ are identified with individual names. This selection is made
by means of the repair seed S, which we have already constructed above.10 By
considering each individual name a and the copy ⟨⟨a,Sa⟩⟩ as synonyms, we obtain
8 Instead of the notation yu,K used in [9,11,19], we now write ⟨⟨u,K⟩⟩ similar as in [13].
9 This condition is defined in a different way in [9]. However, it is only employed in

Lemma XIII in [10] to show that the canonical repairs are already saturated, where
this alternative condition already suffices.

10 In [9, 11, 19] we denoted a repair seed by s, but this often clashes with role names.
Thus, we will instead use S as in [13].

Optimal Repairs in the Description Logic EL Revisited 19

the canonical IQ-repair induced by S, denoted by repTIQ(∃X.A,S). Formally, a
repair seed S maps each individual name a to a repair type Sa for a such that:

(RS) If C(a) is an unwanted consequence in P with B |= C(a), then there is an
atom D in Sa such that C ⊑∅ D.

Up to IQ-equivalence, the set of all optimal IQ-repairs can be computed in
exponential time. This complexity result cannot be improved since, in the worst
cases, exponentially many optimal IQ-repairs can exist and optimal IQ-repairs
can be of exponential size (and not be equivalent to sub-exponential qABoxes).

As pointed out in Section 2.3, one peculiarity of IQ-entailment is its ignorance
of many role assertions. A strange example: the ABox {r(a, b), B(b)} has, for the
repair request {(∃r.B)(a)}, the optimal IQ-repair {r(a, c), B(b)}, where a, b, c are
individuals. The added role assertion r(a, c) is itself not entailed by the given
ABox, but is only used to retain the consequence (∃r.⊤)(a). That is why IQ-
repairs must not be used when the contained role assertions will be accessed
directly. One should then rather switch to IRQ- or CQ-repairs.

Notably, our canonical IQ-repairs are not problematic in the above mentioned
respect since new role assertions between individuals are not introduced and as
many of the existing ones as possible are preserved, although this is not necessary
for IQ-entailment. (The same need not hold for other IQ-repairs.) In particular,
the canonical IQ-repairs are also IRQ-repairs, but they need to be compared
differently, i.e., optimal IQ-repairs and optimal IRQ-repairs do not coincide [11].

Example 7. We continue our running example from Example 1. As repair request
we take P := {V (n)}. Since there are no conjunctions in the TBox T or in
the repair request P, there is only one repair seed S where Sn = {V, ∃ℓ.V }.
Specifically, V must be contained in Sn for the unwanted consequence V (n) in
P, and also the atom ∃ℓ.V must be in Sn for the CI ∃ℓ.V ⊑ V in T of which
the conclusion is subsumed by an atom already in Sn (namely V itself). Since
every optimal repair is equivalent to a canonical repair, and every canonical
repair is induced by a repair seed, only one optimal repair exists here, up to
equivalence. The repair seed S induces the canonical IQ-repair repTIQ(∃X.A,S),
which is graphically represented below; n and ⟨⟨n, {V, ∃ℓ.V }⟩⟩ are synonyms, and
y1 := ⟨⟨n, ∅⟩⟩, y2 := ⟨⟨xV , {V, ∃ℓ.V }⟩⟩, y3 := ⟨⟨xV , ∅⟩⟩.

repTIQ(∃X.A,S) : n y2

y1

V

y3

V

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

4 Concise Representations of Canonical IQ-Repairs

Canonical IQ-repairs are of exponential size, not only in the worst case, but also
in the best case. In this section, we consider two approaches for alleviating this

20 Franz Baader, Patrick Koopmann, and Francesco Kriegel

problem. One approach produces considerably smaller repairs in practice, which
may, however, still be exponential in the worst case. The second approach uses
the polynomial-sized repair seeds as representations for the exponentially large
canonical repairs.

4.1 Optimized IQ-repairs

To avoid generating exponential-sized repairs also in the best case, we have
developed in [9] an optimized algorithm for computing repairs induced by repair
seeds. Intuitively, these optimized repairs do not contain all the objects occurring
in the canonical repair, but only those that are really needed. We have shown
that the optimized IQ-repair induced by a repair seed S is IQ-equivalent to the
canonical one induced by S, and thus the set of optimized IQ-repairs can be used
in place of the set of canonical ones when computing the optimal repairs. The
experiments described in [9] show that the optimized repairs are in most cases
considerably smaller than the canonical ones. For instance, in the canonical
IQ-repair we have just computed for our Narcissus example (see Example 7),
the objects y1 and y3 are not needed since they are not reachable from n. IQ-
equivalence of the optimized repair ∃{y2}.{ℓ(n, y2), ℓ(y2, y2)} with the canonical
one can be seen by using the identity on the objects n and y2 as simulation in
both directions.

Note, however, that in general an exponential blow-up cannot be avoided,
as already shown in [14] for a restricted class of qABoxes without a TBox. This
blow-up is not only a problem when computing the repair, but also when using
it later on to answer queries. While answering IQs is polynomial for the original
(unrepaired) qABox, it may become exponential after the repair if we measure
the complexity in the size the repair problem, consisting of the original qABox,
the TBox, and the repair request.

4.2 Representing canonical IQ-repairs by repair seeds

The size of a repair seed S is polynomial in the size of the repair problem, and
it uniquely determines the induced canonical repair repTIQ(∃X.A,S). To take
advantage of this more concise representation of canonical repairs, we must be
able to work directly with this representation when comparing the repairs w.r.t.
IQ-entailment and when answering IQs w.r.t. them. The following proposition
shows how this can be realized.

Proposition 8 ([12,15]). Let T be an EL TBox, ∃X.A a qABox, R a repair
request, S,S ′ repair seeds, and E(b) an EL concept assertion. Then,

1. repTIQ(∃X.A,S) |=T
IQ repTIQ(∃X.A,S ′) iff for each individual name a and for

each atom C ∈ Sa, there is an atom D ∈ S ′
a with C ⊑∅ D.

2. repTIQ(∃X.A,S) |=T E(b) iff ∃X.A |=T E(b) and Sb does not contain any
atom D with E ⊑T D.

Optimal Repairs in the Description Logic EL Revisited 21

Size Ontology Size ABox Size TBox
min. max. med. avg. min. max. med. avg. min. max. med. avg.
154 891,452 6,751 77,761.5 103 747,998 2,089 46,625.7 61 473,254 2,706 31,135.8

Table 1. Statistics of the used corpus of EL ontologies after filtering out non-EL axioms.

The conditions formulated in this proposition are clearly decidable in time poly-
nomial in the size of the repair problem. Thus, from a theoretical point of view,
representing canonical repairs using repair seeds is preferable to using optimized
repairs since the worst-case complexity of the relevant inference problems is poly-
nomial for the former, whereas it is exponential for the latter. Comparing the
worst-case complexity of two algorithms does not always tell us which algorithm
will perform better in practice. To investigate the advantages and disadvantages
of our two concise representations of canonical IQ-repairs in practice, we per-
formed experiments on real-world ontologies.

4.3 Experimental evaluation

The goal of the experiments was to evaluate the performance of the two repre-
sentations with respect to the time needed for answering instance queries. To
this end, we created a benchmark consisting of EL ontologies, instance queries,
and repair requests.

Ontologies As in the experiments in [9], which mainly compared the sizes of the
optimized repairs with that of the canonical ones, we took the ontologies from
the OWL EL Materialization track of the OWL Ontology Reasoner Evaluation
2015 [42], filtering out axioms that cannot be expressed in EL. To test the limits
of both approaches, we this time included all 109 ontologies from this corpus,
instead of considering only ontologies of up to 100,000 axioms as in [9]. Table 1
provides information on how large the employed ontologies were.

Queries For each ontology, we randomly generated 100 instance queries which
would return at least one individual name before repairing. For this, we employed
the following probabilistic recursive procedure on the IQ-saturation satTIQ(A) of
the ABox A. We initialize the current object u with a randomly selected indi-
vidual name from A, the current concept C with ⊤, and then use the following
procedure to generate a random concept description C s.t. A |=T C(u).

1. If there exists a role r and an object v for the current object u s.t. r(u, v) ∈
satTIQ(A), then, with a 50% probability, select a random such pair (r, v),
recursively call this procedure to generate a random concept description D
for v, and add ∃r.D as conjunct to the current concept description C.

2. If no conjunct was added in the previous step, and there exists a concept
name A s.t. A(u) ∈ satAIQ(A), select a random such concept name A and add
it as a conjunct to C.

22 Franz Baader, Patrick Koopmann, and Francesco Kriegel

3. With a 50% probability, return the current concept description C, and oth-
erwise continue with Step 1.

Repair Requests and Seed Functions We furthermore generated two sets
of repair requests for each ontology, RR1 and RR2. The repair requests for RR1
were generated using the approach employed in [9], which generates requests
where the concept assertions involve only concept names. In addition, we this
time also generated repair requests containing assertions with compound concept
descriptions, which we denote by RR2.

For RR1, we randomly selected 50% of the individual names, to which we
randomly assigned 10% of the concept names that the individual was an instance
of. This was not possible for 14 ontologies, in which no individual was an instance
of any concept name, and which were thus excluded from the experiment. The
decision that repair requests are built from concept names only is justified by the
fact that those concept names often stand for compound concept descriptions
defined in the TBox, and represent central concepts of the ontology.

Using only concept names in the repair request also makes it easier to answer
queries based on the seed function. We thus also generated a second set of repair
requests RR2 for each ontology that assigned randomly generated compound
concept descriptions. For this, we used the same procedure as for generating
instance queries, however this time using a bound of 5 on the concept size,
measured as the number of symbols (logical connectives, as well as concept and
role names) required to write the concept down. In particular, we only add
conjuncts to the current concept description if the resulting concept does not
extend the maximum size. This way, we assigned to each of 50% of randomly
selected individual names 10 repair requests consisting of concepts of size at most
5. The repair requests generated in this way are denoted by RR2. Using both
methods, we attempted to compute 10 seed functions per ontology based on the
generated repair requests. We used a timeout of 10 minutes for this. We were
successful in computing seed functions in 89.5% of cases for RR1 (not counting
the excluded ontologies), and in 72.5% of cases for RR2 (which we attempted to
generate for all 109 ontologies). Note that while the repair requests used for RR1
did not contain compound concept descriptions, the seed functions did. Further
note that we did not yet use the simplified approach to computing repair seeds
from Page 18, but we believe that it is more efficient than the approach currently
used in the prototype —we will investigate this in future experiments.

Results We computed optimized IQ repairs with a timeout of 1 hour, which
was successful for 85.8% (RR1) / 100% (RR2) of seed functions on average (recall
that for less RR2 ontologies, the seed function computation was successful). Then
we compared the performance of answering instance queries from the optimized
repairs and from the repair seeds. Any required EL reasoning was performed
using Elk [32]. Figure 1 shows the results of this comparison, where each point
corresponds to a tuple of ontology, repair request, and seed function, the x-axis
to the run-time of evaluating all 100 instance queries using the repair seed, and

Optimal Repairs in the Description Logic EL Revisited 23

1 s 1 min 1 h

1 s

1 min

using optimized repair

us
in

g
re

pa
ir

se
ed

1 s 1 min 1 h

using optimized repair

Fig. 1. Run times of evaluating 100 instance queries on repairs using the seed function
(x-axis) vs. using the optimized repairs (y-axis). Color intensity corresponds to size of
the input ontology. Orange-red crosses include times for computing the repair, whereas
cyan-blue circles do not. Results of RR1 on the left, and for RR2 on the right.

the y-axis of evaluating all instance queries using the optimized repair, where
the red color denotes that we also count the computation time of the optimized
repair, and the blue color denotes that we do not. For RR1 with the simple
repair requests, using the repair seed instead of the precomputed repair was
faster in 98.7% of cases if we also count the time for computing the repair,
and otherwise in 17.9% of cases. As we can see however in Figure 1, using the
optimized repair was almost never significantly faster, and there were many cases
in which using the repair seed instead of the repair was significantly faster even
if we do not count the time for computing the repair. For RR2 with the complex
repair requests, using the repair seed was faster in 64.6% of cases if we count the
time for computing the repair, and otherwise almost never (0.13% of cases). The
reason for this was that after obtaining the query answers from Elk, we still
have to do a subsumption check for each individual in the answer when using
the repair seed only (see the condition in Proposition 8). In RR2, each of these
tests was more expensive, since we were comparing complex EL concepts. When
using the precomputed optimized repair, no additional subsumption tests are
necessary.

The results show that computing the optimized repair explicitly rather than
using the repair seed is only advisable if this repair is considered to be the
final one, which is then used for many instance tests. This is not the case for
intermediate repairs in a setting where the KE iteratively repairs the ontology
by (a) choosing a repair seed, then (b) checking out the induced canonical repair
by looking at some of its consequences, and based on this inspection deciding
whether (c) to choose a different repair seed or (d) to use this repair seed, but
maybe repair the obtained ontology further by formulating a new repair request.
It then makes sense to compute the optimized repair only after the iterative
repair process is finished.

24 Franz Baader, Patrick Koopmann, and Francesco Kriegel

If the repair is assumed to be the final one, a good indicator for when com-
puting the optimized repair does not pay off is the size of the original ontology.
If we consider RR1 and do not count the time for computing the repair, for on-
tologies with at most 404,509 axioms (85% of the corpus), using the repair seed
was faster in only 6.8% of the cases, while for the larger ontologies, it was faster
in 80.5% of the cases. The numbers are similar if we look at the size increase of
the repair: if the repair contained at most 132,622 axioms more than the original
ontology (85% of the corpus), then using the repair seed was faster in 5.5% of
the cases, and otherwise in 87.5% of the cases.

5 Finite Representations of Optimal CQ-Repairs

Recall that the (finite) CQ-repairs in [9] can only be constructed w.r.t. cycle-
restricted TBoxes. The goal of this section is to lift this severe restriction. We
still assume that the input qABox is finite, which ensures that the rule-based
IQ-saturation and also the canonical IQ-repairs exist and are finite. As repairs,
however, we allow for finite or infinite qABoxes of arbitrary cardinality. By means
of an operation called shell unfolding, we will transform the IQ-saturation into a
CQ-saturation and, likewise, each canonical IQ-repair into a CQ-repair (which we
call canonical). In effect, both the CQ-saturation and every canonical CQ-repair
could become countably infinite.

We will further prove a compactness theorem for shell unfoldings, namely
that model-based entailment and CQ-entailment are equal and coincide with ex-
istence of a homomorphism. As a generic result, we will show how existence of
a homomorphism between shell unfoldings can be decided in non-deterministic
polynomial time by only looking at the (finite) qABoxes from which the unfold-
ings are constructed. We conclude that CQ-entailment between two canonical
CQ-repairs is decidable, even if the repairs are infinite. We further show that
CQ-query answering w.r.t. a canonical CQ-repair is in NP (w.r.t. the size of the
input only), which is the same computational complexity as without repairing.
Thus each (possibly infinite) canonical CQ-repair has as finite representation the
underlying canonical IQ-repair. Moreover, we verify that the set of all canonical
CQ-repairs is complete, i.e., that every CQ-repair is CQ-entailed by a canonical
one. As main result we show that (a representation of) the set of all optimal
CQ-repairs can be computed in exponential time with access to an NP-oracle.

5.1 Infinite qABoxes

First of all, we extend the definition of a qABox ∃X.A such that both the
variable set X and the matrix A can be infinite (and of arbitrary cardinality).
Infinite qABoxes cannot be translated into first-order logic. This raises the ques-
tion which of the basic results on finite qABoxes still hold for the infinite ones.
A key lemma was that model-based entailment corresponds to existence of a
homomorphism. We will generalize this to the infinite qABoxes.

Optimal Repairs in the Description Logic EL Revisited 25

Given a qABox ∃X.A, we define its canonical model as the interpreta-
tion CMod(∃X.A) := I with domain Dom(I) := Obj(∃X.A) and function ·I
where aI := a for each individual name a, and AI := { u | A(u) ∈ A } for each
concept name A, and rI := { (u, v) | r(u, v) ∈ A} for each role name r.

Lemma 9. Consider qABoxes ∃X.A and ∃Y.B with arbitrary cardinality. The
following statements are equivalent.

1. ∃X.A |= ∃Y.B
2. CMod(∃X.A) |= ∃Y.B
3. There is a homomorphism from ∃Y.B to ∃X.A.
4. There is a variable assignment σ : Y → Obj(∃X.A) with σ(B) ⊆ A,

where σ(B) is obtained from B by replacing every variable y with σ(y).

Proof. Actually, the proof is the same as with finite qABoxes or for containment
of conjunctive queries [26], but we will include it below so that all readers can
convince themselves.

We denote by I the canonical model CMod(∃X.A).

1 ⇒ 2. Let ∃X.A |= ∃Y.B. With the variable assignment Z : X → Obj(∃X.A)
where xZ := x for each x ∈ X, the augmented interpretation I[Z] is a model
of the matrix A. It follows that the canonical model I is a model of ∃X.A,
and thus I |= ∃Y.B.

2 ⇒ 3. Let I be a model of ∃Y.B, i.e., there is a variable assignment W : Y →
Obj(∃X.A) such that the augmented interpretation I[W] is a model of the
matrix B. We define the mapping h : Obj(∃Y.B) → Obj(∃X.A) with h(u) :=
uI[W] for each u ∈ Obj(∃Y.B), and show that h is a homomorphism from
∃Y.B to ∃X.A.
– For each individual name a, we have h(a) = aI[W] = aI = a.
– If A(u) is a concept assertion in B, then uI[W] ∈ AI , and thus A(h(u)) ∈

A by definition of I.
– And if r(u, v) is a role assertion in B, then (uI[W], vI[W]) ∈ rI , and thus

r(h(u), h(v)) ∈ A by definition of I.

3 ⇒ 1. Assume that there is a homomorphism h from ∃Y.B to ∃X.A, and
further let J be a model of ∃X.A, i.e., there is a variable assignment
Z : X → Dom(J) such that J [Z] is a model of A. We define the variable
assignment W : Y → Dom(J) with yW := h(y)J [Z] for each variable y ∈ Y .
Then uJ [W] = h(u)J [Z] for each object u of ∃Y.B. We will show that J [W]
is a model of B, from which we conclude that J is a model of ∃Y.B.
– Consider a concept assertion A(u) in B. Since h is a homomorphism, A

contains A(h(u)). It follows that h(u)J [Z] ∈ AJ , and thus uJ [W] ∈ AJ .
– In a similar way, if r(u, v) is a role assertion in B, then r(h(u), h(v)) is

in A, and thus (h(u)J [Z], h(v)J [Z]) ∈ rJ , i.e., (uJ [W], vJ [W]) ∈ rJ .

3 ⇔ 4. The difference between a homomorphism in Statement 3 and a variable
assignment in Statement 4 is that the homomorphism must additionally send
each individual to itself, otherwise they are the same.

26 Franz Baader, Patrick Koopmann, and Francesco Kriegel

– If h is a homomorphism from ∃Y.B to ∃X.A, then we obtain the desired
variable assignment σ by defining σ(y) := h(y) for each y ∈ Y .

– If σ is a variable assignment with σ(B) ⊆ A, then we get the needed
homomorphism h by defining h(a) := a for each a ∈ ΣI and h(y) := σ(y)
for each y ∈ Y . ⊓⊔

The above characterization does not take a TBox into account. In Section 5.4
we will generalize the case for finite qABoxes and cycle-restricted TBoxes: we
will show how a saturation of a finite qABox ∃X.A w.r.t. an arbitrary EL TBox
T can be constructed in a well-defined way such that, for each qABox ∃Y.B of
arbitrary cardinality, ∃X.A |=T ∃Y.B iff the saturation entails ∃Y.B, i.e., iff
there is a homomorphism from ∃Y.B to the saturation.

In a special case, we can already here provide the following characterization.

Definition 10. We say that a qABox ∃X.A is saturated w.r.t. an EL TBox T
if, for each CI C ⊑D in T and for each object u of ∃X.A, if A |= C(u), then
A |= D(u).

Lemma 11. Let ∃X.A and ∃Y.B be qABoxes of arbitrary cardinality, and let
T be an EL TBox. Further assume that ∃X.A is saturated w.r.t. T . Then
∃X.A |=T ∃Y.B iff ∃X.A |= ∃Y.B.

Proof. The if direction is trivial. Regarding the only-if direction, assume
∃X.A |=T ∃Y.B. As shown in the proof of Lemma 9, CMod(∃X.A) is a model
of ∃X.A. Since ∃X.A is saturated w.r.t. T , CMod(∃X.A) is also a model of T .
We conclude that CMod(∃X.A) is a model of ∃Y.B. Another application of
Lemma 9 yields that ∃X.A |= ∃Y.B. ⊓⊔

Existence of a simulation is still sufficient for IQ-entailment between infinite
qABoxes, but the following example shows that it is not necessary. However,
there are certain classes of infinite qABoxes where it is still necessary, e.g., if
∃X.A has finite out-degree11 [38].12 Analogously, the if direction in Lemma 3
also holds for all infinite qABoxes of arbitrary cardinality, but in general the
only-if direction does not hold anymore (again, it holds if ∃X.A has finite out-
degree).

Example 12. Consider the following two countably infinite qABoxes. The first
qABox ∃X.A has variables X := { xM | M ⊆ N and M is finite } and its
matrix A is the union of all {r(a, xM)} ∪ {Bi(xM) | i ∈ M } where xM ∈ X.
For every finite subset M of N, the individual name a has an r-successor xM

that is an instance of all concept names Bi with i ∈ M . The second qABox is

11 That is, for each object u of ∃X.A, there are only finitely many assertions r(u, v) in
A. This condition is satisfied by all shell unfoldings of finite qABoxes, see Section 5.2.

12 See also the proof of Proposition 23 in [17].

Optimal Repairs in the Description Logic EL Revisited 27

∃Y.B := ∃{y}.({r(a, y)} ∪ {Bi(y) | i ∈ N }). The individual name a has a single
r-successor y, which is an instance of all concept names B1, B2,13

The atomic instance queries implied by ∃Y.B are ⊤(a) and (∃r.
d
{ Bi |

i ∈ M })(a) for every finite subset M of N. These are all implied by ∃X.A as
well. Although ∃X.A |=IQ ∃Y.B (and thus also a ⪯ a), there is no simulation
from ∃Y.B to ∃X.A (which contains (a, a)).

The above example further shows that existence of a homomorphism is not
necessary for CQ-entailment (although it is still sufficient): ∃X.A |=CQ ∃Y.B but
no homomorphism from ∃Y.B to ∃X.A exists. Another example is as follows.

Example 13. As left-hand side, we consider the qABox representing the natural
numbers with their usual order relation: ∃X.A with variables X := N and matrix
A := { r(m,n) | m < n }. As right-hand side, we take the real numbers: ∃Y.B
with variables Y := R and matrix B := { r(x, y) | x < y }. The former is
countable and the latter is uncountable.

Each finite qABox entailed by ∃Y.B is also entailed by ∃X.A, i.e., ∃X.A |=CQ
∃Y.B. However, there is no homomorphism from ∃Y.B to ∃X.A, for the larger
cardinality of R. No mapping from R (the objects of ∃Y.B) to N (the objects of
∃X.A) is injective. Thus, there are always two real numbers x, y (where w.l.o.g.
x < y) that are mapped to the same natural number n, but then the role assertion
r(x, y) in B has no homomorphic image since r(n, n) is not in A.

Thus contrary to finite qABoxes, for infinite qABoxes model-based entailment
|=T and CQ-entailment |=T

CQ are not the same.

5.2 Shell Unfoldings and Homomorphisms

Consider a (finite) quantified ABox ∃X.A, the objects of which are divided into
kernel objects and shell objects, such that each individual name is a kernel object,
each shell object is reachable from some kernel object, but no kernel object is
reachable from any shell object. A shell path is a sequence u0

r1−→u1
r2−→ · · · rn−→un

that starts with a kernel object u0 but otherwise only contains shell objects u1,
. . . , un such that A contains ri(ui−1, ui) for all i ∈ {1, . . . , n}. We call n ≥ 0 its
length, u0 its source, and un its target. Note that kernel objects, and thus also
individuals, can be seen as shell paths of length 0. The target of such a shell
path representing a kernel object is this object itself.

Definition 14. The shell unfolding of ∃X.A is defined as the quantified ABox
∃X ′.A′ with the following components:

X ′ := { p | p is a shell path where p ̸∈ ΣI },

13 To use a finite signature only, we can encode each concept name Bi (which represents
the number i) as the existential restriction (∃s1.)i∃s2.⊤ where s1 and s2 are two
role names different from r. These are all incomparable w.r.t. subsumption, just like
the concept names Bi.

28 Franz Baader, Patrick Koopmann, and Francesco Kriegel

A′ := {A(p) | p is a shell path with target u and A(u) ∈ A} ∪
{ r(u, v) | u, v are kernel objects and r(u, v) ∈ A} ∪
{ r(p, q) | p, q are shell paths such that q = p r−→u for a shell object u }.

Each shell unfolding is either finite or countably infinite. Such infinite
qABoxes cannot be directly used in computing devices, but as shell unfoldings
they are finitely represented by the underlying qABox ∃X.A and the partitioning
into kernel objects and shell objects. In the sequel of this section we will investi-
gate how entailment involving shell unfoldings can be decided by means of these
finite representations. To this end, we exploit that a shell unfolding is “almost
everywhere tree-shaped,” i.e., the role assertions involving all but finitely many
objects induce a directed graph that is a tree. Furthermore, this tree-shaped part
is regular in the sense that it can be recognized by a finite-state automaton.

It is easy to see that a given qABox CQ-entails its shell unfolding, but the
entailment in the other direction holds only w.r.t. IQ-entailment.

Proposition 15. Let ∃X.A be a finite qABox and ∃X ′.A′ its shell unfolding.

1. The mapping h : p 7→ u where u is the target of the shell path p is a homo-
morphism from ∃X ′.A′ to ∃X.A, and thus ∃X.A CQ-entails ∃X ′.A′.

2. The relation S := { (u, p) | u is the target of the shell path p } is a simula-
tion from ∃X.A to ∃X ′.A′, and thus ∃X ′.A′ IQ-entails ∃X.A.

In general, the shell unfolding need not CQ-entail the original qABox.

Example 16. Consider the qABox ∃X.A := ∃{x}.{r(a, x), r(x, x)}, of which the
individual a is the only kernel object. Assume that g is a homomorphism from
∃X.A to its shell unfolding ∃X ′.A′, and let g(x) = p for a shell path p. Since
r(x, x) ∈ A, we must have r(g(x), g(x)) ∈ A′. However, the only r-successor of
g(x) = p in A′ is p r−→x, which is different from p. Another way of seeing why
∃X.A is not CQ-entailed by ∃X ′.A′ is to observe that the conjunctive query
∃y.r(y, y) is entailed by ∃X.A, but not by ∃X ′.A′.

Given two finite qABoxes ∃X.A and ∃Y.B whose object sets are partitioned
into kernel objects and shell objects as introduced above, we are interested
in finding out whether there exists a homomorphism from the shell unfolding
∃X ′.A′ of ∃X.A into the shell unfolding ∃Y ′.B′ of ∃X.B, which is the same
as checking whether ∃Y ′.B′ CQ-entails ∃X ′.A′. This is a non-trivial problem
since the shell unfoldings may be infinite, and thus we cannot just compute the
unfoldings and then try to guess a homomorphism between them. The following
lemma gives a necessary and sufficient condition for this.

Lemma 17. There is a homomorphism from ∃X ′.A′ to ∃Y ′.B′ iff there is a
simulation from ∃X.A to ∃Y ′.B′ whose restriction to the kernel objects of ∃X.A
is a function.

Proof. Assume that g is a homomorphism from ∃X ′.A′ to ∃Y ′.B′, which is of
course also a simulation. By Proposition 15, there is a simulation S from ∃X.A

Optimal Repairs in the Description Logic EL Revisited 29

to ∃X ′.A′ that is the identity on the kernel objects of ∃X.A. In fact, if u is
a kernel object, then the only shell path that has u as its target is u itself.
The composition of S with g is thus a simulation from ∃X.A to ∃Y ′.B′ that
coincides with the function g on the kernel objects of ∃X.A. This shows the
only-if direction of the proposition.

For the if direction, assume that T is a simulation from ∃X.A to ∃Y ′.B′

whose restriction to the kernel objects of ∃X.A is a function h. We extend h to
shell paths of length n > 0 by induction on n. First, consider a shell path q = u r−→
v of length 1. Then u is a kernel object, v is a shell object, and r(u, v) ∈ A. Let
u′ := h(u). Since (u, u′) ∈ T and r(u, v) ∈ A, there is an object v′ in B′ such
that r(u′, v′) ∈ B′ and (v, v′) ∈ T. We set h(q) := v′ for an arbitrary such object
v′. For the induction step, let q = p r−→v be a shell path of length n > 1, i.e., p
is a shell path of length n− 1 with target u, v is a shell object, and r(u, v) ∈ A.
By induction, we can assume that u′ := h(p) is already defined, and satisfies
(u, u′) ∈ T. Thus, r(u, v) ∈ A implies that there is an object v′ in B′ such that
r(u′, v′) ∈ B′ and (v, v′) ∈ T. Again, we set h(q) := v′ for an arbitrary such
object v′.

It remains to show that the function h from the objects of ∃X ′.A′ to the
objects of ∃Y ′.B′ defined this way is indeed a homomorphism. First, note that
every a ∈ ΣI is a kernel object, and thus we have h(a) = a since (a, a) ∈ T and
h is the restriction of T to the kernel objects of ∃X.A by assumption. Second,
assume that the shell path q in the objects of ∃X ′.A′ satisfies A(q) ∈ A′, which
means that A(u) ∈ A for the target u of q. By our construction of h, we know
that (u, h(q)) ∈ T, and thus A(u) ∈ A implies A(h(q)) ∈ B′, as required. Third,
assume that r(u, v) ∈ A′ for kernel objects u, v. Then r(u, v) ∈ A and the fact
that h coincides with the simulation T on the kernel objects of ∃X.A implies
r(h(u), h(v)) ∈ B′. Finally, assume that r(p, q) ∈ A′ for shell paths p, q. Then
q = p r−→v for a shell object v and r(u, v) ∈ A, where u is the target of p. By our
construction of h, we know that (h(p), h(q)) ∈ B′, which finishes our proof that
h is a homomorphism. ⊓⊔

From a more abstract point of view, the if direction of this lemma holds since
the non-kernel part of A′ consists of trees, and it is well-known that there exists
a homomorphism from a tree into a graph iff there exists a simulation from the
tree to the graph. One advantage of this characterization is that the source of
the simulation is the finite qABox ∃X.A rather than its infinite shell unfolding
∃X ′.A′. However, the target ∃Y ′.B′ is still infinite. The next lemma shows that
one does not have to look very deeply into the unfolded part of B′ when trying
to construct the functional part of the simulation.

Lemma 18. If there is a simulation from ∃X.A to ∃Y ′.B′ whose restriction to
the kernel objects of ∃X.A is a function, then there is such a simulation that
additionally satisfies that the images of the kernel objects are shell paths whose
length is bounded by k + ℓ, where k is number of kernel objects of ∃X.A and ℓ
is the number of shell objects of ∃Y.B.

30 Franz Baader, Patrick Koopmann, and Francesco Kriegel

Proof. Let T be a simulation from ∃X.A to ∃Y ′.B′ whose restriction to the
kernel objects of ∃X.A is the function h. We now consider the graph obtained
as the image under h of the kernel objects of ∃X.A, and partition this graph
into its connected components, where edges are used in a bi-directional way when
defining connectedness.

First, consider a connected component that contains a kernel object u of
∃Y.B, and let p be a shell path of length > 0 in this component. Since p is
(undirectedly) reachable from u and shell objects cannot reach kernel objects
in a directed way, there must be a kernel object v of ∃Y.B such that p has
v as its source. Assume that p is of the form p = v r1−→ u1 . . .

rn−→ un, and let
pi = v r1−→u1 . . .

rn−→ui be the initial segment of p of length i, for i = 0, . . . , n.
Then the unique path in the connected component with which p = pn is
reached from v = p0 uses the role assertions r1(v, p1), r2(p1, p2), . . . , rn(pn−1, p)
in B′. Thus, v, p1, . . . , pn−1 must also be elements of the connected compo-
nent, and these elements and the path must have pre-images in the kernel
objects of ∃X.A, i.e., there are kernel objects w0, w1, . . . , wn in A such that
h(w0) = v = p0, h(w1) = p1, . . . h(wn−1) = pn−1, h(wn) = p = pn and the role
assertions r1(w0, w1), r2(w1, w2), . . . , rn(wn−1, wn) belong to A. We claim that
this implies that n is smaller than the number of kernel objects of ∃X.A. In
fact, otherwise there are indices i, j such that 0 ≤ i < j ≤ n and wi = wj . This
would imply pi = h(wi) = h(wj) = pj , which yields a contradiction since the
paths pi and pj have a different length, and thus cannot be identical.

Second, consider a connected component that does not contain a kernel object
of ∃Y.B, which means that this component lies in the unfolded part of ∃Y ′.B′.
Thus, viewed in a directed way, it is a tree. Let p be the shell path that is the
root of this tree, and assume that m is its length and u is its target. Using the
same argument as in the previous case, we can show that the length of any shell
path occurring in the tree is bounded by m plus the number of kernel objects
of ∃X.A. Unfortunately, we do not have a bound for m. However, it is easy to
see that the trees in the unfolded part of B′ starting with a path with target u
are all isomorphic to the tree starting with p. In addition, if m is larger than the
number of shell objects of ∃Y.B, then there is also a shorter path with target u
since then there must be a repetition of a shell object in p. Consequently, there
is a path q with target u whose length is bounded by the number of shell objects
of ∃Y.B. Instead of the connected component whose root is p we can then use
the corresponding subtree with root q in the image of the function. ⊓⊔

We are now ready to show that testing for the existence of a homomorphism
from ∃X ′.A′ to ∃Y ′.B′ can be done by an NP procedure. As a consequence
of Lemma 18, we can guess the functional part of the simulation required by
the characterisation in Lemma 17 in non-deterministic polynomial time. What
remains then is to check whether the guessed function h can be extended to a
simulation from ∃X.A to ∃Y ′.B′ that coincides with h on the kernel objects of
∃X.A. The next lemma shows that this can be done in polynomial time. We
denote that subset of A that contains only kernel objects with A−.

Optimal Repairs in the Description Logic EL Revisited 31

Lemma 19. Let f be a function from the kernel objects of ∃X.A to the objects
of ∃Y ′.B′. Then there is a simulation T from ∃X.A to ∃Y ′.B′ whose restriction
to the kernel objects of ∃X.A is equal to f iff the following two conditions are
satisfied:

1. f is a homomorphism from ∃X.A− to ∃Y ′.B′;
2. there is a simulation R from ∃X.A to ∃Y.B such that the following holds

for all kernel objects u of ∃X.A: if f(u) has target v, then (u, v) ∈ R.

Proof. For the only-if direction, the fact that f is the restriction of a simulation
to the kernel objects of ∃X.A obviously implies that f is a homomorphism from
∃X.A− to ∃Y ′.B′. To show Condition 2, we define R to be the composition of
T with the simulation S′ = { (p, v) | v is the target of the shell path p in B′ }
from ∃Y ′.B′ to ∃Y.B (see Proposition 15, where we have written this simulation
as a function). Assume that f(u) = p for a kernel object u of A, and that the
target of p is v. Then (u, p) ∈ T and (p, v) ∈ S′, which yields (u, v) ∈ R as
required.

To show the if direction, we define T′ to be the composition of R with the
simulation S = { (v, p) | v is the target of the shell path p in B′ } (see Proposi-
tion 15). Let u be a kernel object of ∃X.A and p = f(u), and let v be the target
of p. Then (u, v) ∈ R (by Condition 2) and (v, p) ∈ S, which yields (u, p) ∈ T′.
This shows that f , if viewed as a relation, is contained in T′. We obtain T from
T′ by removing all tuples (u, p) such that u is a kernel object of ∃X.A and
p ̸= f(u).

It remains to show that T is a simulation. First, note that every a ∈ ΣI

is a kernel object, and thus we have f(a) = a by Condition 1. This yields
(a, a) ∈ T since f is contained in T. Second, assume that the object v in A
satisfies A(v) ∈ A, and that (v, p) ∈ T. Then (v, p) ∈ T′ also holds, and since T′

is a simulation, we obtain A(p) ∈ B′. Third, assume that r(u, v) ∈ A and that
(u, p) ∈ T. Since T ⊆ T′ and T′ is a simulation, there is a shell path q in B′ such
that r(p, q) ∈ B′ and (v, q) ∈ T′. If (v, q) ∈ T, then we are done. Otherwise, v
must be a kernel object such that f(v) ̸= q. But then u also must be a kernel
object (since kernel objects are not reachable from shell objects). Consequently,
r(u, v) ∈ A− and p = f(u). Since f is a homomorphism from ∃X.A− to ∃Y ′.B′,
we obtain r(p, f(v)) = r(f(u), f(v)) ∈ B′, which completes our proof that T is a
simulation since (v, f(v)) ∈ T. ⊓⊔

The three lemmas shown in this section provide us with an NP procedure for
deciding the existence of a homomorphism between shell unfoldings.

Theorem 20. Let ∃X.A and ∃Y.B be two finite qABoxes whose object sets are
partitioned into kernel objects and shell objects as introduced at the beginning
of this section, and let ∃X ′.A′ and ∃Y ′.B′ be their shell unfoldings. Then the
problem of deciding whether there is a homomorphism from ∃X ′.A′ to ∃Y ′.B′

is NP-complete in the size of the input ∃X.A and ∃Y.B.

Proof. NP-hardness is trivial since the homomorphism existence problem for
qABoxes is NP-complete, which corresponds to the special case of our problem
where the input qABoxes ∃X.A and ∃Y.B contain no shell objects.

32 Franz Baader, Patrick Koopmann, and Francesco Kriegel

To decide whether there is a homomorphism from ∃X ′.A′ to ∃Y ′.B′, we first
guess a function f from the kernel objects of ∃X.A to the objects of ∃Y ′.B′ such
that the length of the shell paths f(u) is bounded by k + ℓ, where k is number
of kernel objects of ∃X.A and ℓ is the number of shell objects of ∃Y.B. The
restriction to paths of this length is justified by Lemma 18. The function f
has polynomial size and can thus be guessed in non-deterministic polynomial
time. Given f , we can obviously check in polynomial time whether it satisfies
Condition 1 of Lemma 19. To decide whether Condition 2 of this lemma is
satisfied as well, it is sufficient to compute the largest simulation from ∃X.A to
∃Y.B (which can be done in polynomial time [30]), and check whether it contains
all pairs (u, v) where v is the target of f(u) for the kernel objects u of A. ⊓⊔

5.3 A Compactness Theorem for Shell Unfoldings

Recall from Section 5.1 that CQ-entailment between countable qABoxes need not
enforce a homomorphism between them, although the converse direction holds.
Even if the left-hand side is a shell unfolding no homomorphism must exist, as
the following example shows.

Example 21. Let N be the set of all natural numbers and Z the set of all integers.
From the qABox ∃{x}.{r(a, x), r(x, x)} with kernel object a and shell object x
we obtain as shell unfolding the Ray ∃{ xi | i ∈ N }.{r(a, x1), r(x1, x2), . . . }.
Further consider the Line ∃{ yj | j ∈ Z }.{. . . , r(y−2, y−1), r(y−1, y0), r(y0, y1),
r(y1, y2), . . . }. While from every finite sub-qABox of the Line there is a homo-
morphism to the Ray, there is no homomorphism from the Line to the Ray.14

By viewing role assertions as edges, we can use the following notions from graph
theory. A path in a qABox ∃X.A is a sequence R1(x0, x1), . . . , Rn(xn−1, xn)
where each Ri is either a role name ri or an inverse role r−i , and A contains
ri(xi−1, xi) if Ri = ri, and A contains ri(xi, xi−1) if otherwise Ri = r−i . If
the intermediate objects are irrelevant, we may write x0

R1···Rn−−−−→xn. If no object
occurs twice, then the path is simple. The path is directed if all Ri are role names.
Furthermore, this path is upward if the majority of the Ri are non-inverse role
names, is downward if the majority of the Ri are inverse role names, and sideward
otherwise. The height of this path is the number of non-inverse role names Ri

minus the number of inverse role names Ri. An object u is called lowest if there
is no downward path starting from u.

A connected component of ∃X.A is a subset U of Obj(∃X.A) such that each
two objects in U are joined by a path and U contains all objects to which a
path from some object in U exists. A cycle is a path in which the first and last
object are equal. A fork consists of two paths u R1···Rm−−−−−→w and v S1···Sn−−−−→w. There
are particular cycles and forks that any homomorphism to a shell unfolding
must map to zero-length shell paths. A cycle is forbidden if it does not have the
form r1(x0, x1), . . . , rn(xn−1, xn), r

−
n (xn, x

′
n−1), . . . , r

−
1 (x

′
1, x0), modulo shifting.

14 This example is a variant of [21, Example 5].

Optimal Repairs in the Description Logic EL Revisited 33

A fork is forbidden if it has the form u r1···rn−−−−→w and v s1···sn−−−−→w with ri ̸= si for
some i.

To prove the Compactness Theorem for shell unfoldings, we employ and
adapt a Compactness Theorem for directed graphs [21–23], which builds upon
Tychonoff’s Theorem [48], a very important result in general topology. The proof
of the latter assumes the Axiom of Choice [49]: the product of non-empty sets is
non-empty or, equivalently, for each set M of non-empty sets, there is a choice
function f : M →

⋃
M such that f(M) ∈ M for each set M ∈ M.

Proposition 22. Assume the Axiom of Choice. Further let ∃X ′.A′ be the shell
unfolding of a finite qABox ∃X.A and consider a countable qABox ∃Y.B in
which every connected component contains an individual name, a forbidden cycle,
a forbidden fork, or a lowest variable. The following statements are equivalent:

1. ∃X ′.A′ |=CQ ∃Y.B
2. For every finite sub-qABox of ∃Y.B, there is a homomorphism to ∃X ′.A′.
3. There is a homomorphism from ∃Y.B to ∃X ′.A′.
4. ∃X ′.A′ |= ∃Y.B

Proof. 1 ⇔ 2. The only-if direction is trivial. Regarding the if direction, assume
that ∃Z.C is a finite qABox entailed by ∃Y.B. By Lemma 9 there is a
homomorphism h from ∃Z.C to ∃Y.B. The image of h is a finite sub-qABox
of ∃Y.B, from which there is a homomorphism k to ∃X ′.A′. The composition
k ◦ h is a homomorphism from ∃Z.C to ∃X ′.A′. So, according to Lemma 9,
∃Z.C is entailed by ∃X ′.A′.

2 ⇔ 3. The if direction is trivial. We derive the only-if direction from [21,
Lemma 16]. Although this lemma is formulated for directed graphs and the
corresponding notion of a homomorphism, it similarly holds for qABoxes and
their homomorphisms. The reason is that qABoxes are also directed graphs
but additionally equipped with node and edge labels, and therefore the same
proof argumentation applies to them.
So, we will build a mapping ℓ : Obj(∃Y.B) → ℘(Obj(∃X ′.A′)) such that
– for each finite sub-qABox ∃Z.C of ∃Y.B, there is a homomorphism from

∃Z.C to ∃X ′.A′ that sends each object u of ∃Z.C to an object in ℓ(u),
– ℓ(u) is finite for each u ∈ Obj(∃Y.B).

The first statement is exactly the first requirement on ℓ in [21, Lemma 16].
For the second statement, we can endow each ℓ(u) with the discrete topology
to get a compact topology. Furthermore, then all subsets are closed in this
topology, as are all subsets in the product topology, i.e., the second condition
on ℓ in [21, Lemma 16] is trivially fulfilled. We can then conclude that there
is a homomorphism from ∃Y.B to ∃X ′.A′.

First note that, although ∃Y.B is countably infinite if not finite, only finitely
many names from the signature can occur in it. The reason is that ∃Y.B is
CQ-entailed by the shell unfolding ∃X ′.A′, which is built from the finite
qABox ∃X.A.

34 Franz Baader, Patrick Koopmann, and Francesco Kriegel

– For each concept name A not occurring in ∃X.A, the qABox
∃{x}.{A(x)} is not entailed by ∃X ′.A′ and thus neither by ∃Y.B,
i.e., also in ∃Y.B the concept name A does not occur.

– This similarly holds for role names r, using the qABox ∃{x, y}.{r(x, y)}.
– The same follows for individual names a, but we need more qABoxes to

verify this, namely ∃∅.{A(a)} for each A ∈ ΣI, and ∃{x}.{r(x, a)} as
well as ∃{y}.{r(a, y)} for each r ∈ ΣR.

In the following, we will denote by Pi the set consisting of all shell paths
with a length not exceeding i. Each Pi is finite since there are only finitely
many kernel and shell objects from which the shell paths are built.
Since homomorphisms send each individual name a to itself, it only makes
sense to define ℓ(a) := {a}. Now consider a connected component U of ∃Y.B.
We distinguish three cases.
(a) Assume that U contains an individual name, say aU . Further let y be

a variable in U . There is a shortest path from aU to y. Every homo-
morphism h maps this path to a path from aU to h(y) in ∃X ′.A′, which
need not be shortest though. It follows that d(aU , h(y)) ≤ d(aU , y), where
d(u, v) denotes the length of a shortest path from u to v in the respective
qABox and d(u, v) = ∞ if there is no path from u to v.
Thus we define ℓ(y) as the set of all shell paths p for which the distance
to aU (in ∃X ′.A′) does not exceed the distance from aU to y (in ∃Y.B),
i.e., ℓ(y) := { p | p ∈ Obj(∃X ′.A′) and d(aU , p) ≤ d(aU , y) }.15 Since aU
is a zero-length shell path, we have ℓ(y) ⊆ Pd(aU ,y) and so ℓ(y) is finite.

We conclude that, if ∃Z.C is a finite sub-qABox of ∃Y.B that contains,
for each variable y ∈ U ∩ Z, one path from aU to y that is shortest in
∃Y.B, and if h is a homomorphism from ∃Z.C to the shell unfolding,
then h is bounded by ℓ on U , i.e., h(y) ∈ ℓ(y) for each y ∈ U ∩ Z.

(b) Now assume that U contains a forbidden cycle or fork but no individual
name. Choose one forbidden cycle or fork and denote it by CFU . Every
homomorphism maps all variables in CFU to zero-length shell paths (i.e.,
kernel objects) since other shell paths are not on forbidden cycles or
forks. Therefore, we choose ℓ(y) := P0 for each variable y in CFU . We
can further argue similar to the previous case. For every other variable y
in U , there must be a shortest path from CFU to y. A homomorphism h
maps it to a path from some zero-length shell path to h(y) in ∃X ′.A′,
which need not be shortest though. Thus, h(y) must be a shell path with
a length not exceeding d(CFU , y) and we therefore set ℓ(y) := Pd(CFU ,y).

It follows that, if ∃Z.C is a finite sub-qABox of ∃Y.B that contains, for
each variable y ∈ U ∩ Z, one path from CFU to y that is shortest in
∃Y.B, and if h is a homomorphism from ∃Z.C to the shell unfolding,
then h is bounded by ℓ on U , i.e., h(y) ∈ ℓ(y) for each y ∈ U ∩ Z.

15 This is similar to the proof of [21, Theorem 18].

Optimal Repairs in the Description Logic EL Revisited 35

(c) It remains the case where U contains no individuals and no forbidden
cycles or forks. By assumption, U contains a lowest variable, say yU .
Recall that each shell path starts with a kernel object and otherwise
consists only of shell objects, and denote by n the number of shell objects
in ∃X.A. Now, consider a homomorphism h from a finite sub-qABox of
∃Y.B to the shell unfolding ∃X ′.A′. If h(yU) has a length exceeding n,
then by the pigeonhole principle h(yU) contains some shell object twice.
In this case, by exhaustively cutting out non-empty sub-paths that start
and end with the same shell object, we obtain a shorter shell path with
the same target and with a length not exceeding n. Thus, it suffices to
take ℓ(yU) := Pn.
Now consider another variable y in U . Since U is connected, there is
a path from yU to y. Since yU is lowest, this path has a non-negative
height, say j, and specifically cannot start with an inverse role name.
Each homomorphism h maps it to a path between h(yU) and h(y) in
∃X ′.A′ with same height j and upward first edge. Due to the structure
of the shell unfolding and since j ≥ 0, the shell path h(yU) is a prefix of
h(y). If we did not shorten h(yU), then h(y) is a shell path of length not
exceeding n+j and so there is no need to shorten h(y) either. Otherwise,
we shorten h(y) by replacing the prefix h(yU) with the shortening from
above and thereby obtain a shell path with length bounded by n+ j. We
thus define ℓ(y) := Pn+j .
Since for any homomorphism h from a finite sub-qABox of ∃Y.B to the
shell unfolding, we cut out the same infix from all values h(y) where y
occurs in this sub-qABox, the mapping with the shortened values is still
a homomorphism but now bounded by ℓ.

Consequently, if ∃Z.C is a finite sub-qABox of ∃Y.B that contains, for
every variable y ∈ U ∩ Z, one path from yU to y in ∃Y.B, and if h is a
homomorphism from ∃Z.C to the shell unfolding, then we can construct
from h a homomorphism k that is bounded by ℓ on U , i.e., k(y) ∈ ℓ(y)
for each y ∈ U ∩ Z.

Finally, consider a finite sub-qABox ∃Z.C of ∃Y.B, and assume that the
following closure properties are satisfied for each connected component U of
∃Y.B:
(C1) If U contains an individual name, and if y is a variable in U ∩ Z, then

∃Z.C contains one path from aU to y that is shortest in ∃Y.B.
(C2) If U contains a forbidden cycle or fork but no individual name, and if

y is a variable in U ∩ Z, then ∃Z.C contains one path from CFU to y
that is shortest in ∃Y.B.

(C3) If U contains no individual names and no forbidden cycles or forks, and
if y is a variable in U ∩Z, then ∃Z.C contains one path from yU to y in
∃Y.B.

By assumption, there is a homomorphism h from ∃Z.C to ∃X ′.A′. As we
have seen above, there is a such homomorphism k that sends each object u
to an object in ℓ(u).

36 Franz Baader, Patrick Koopmann, and Francesco Kriegel

For other finite sub-qABoxes ∃Z.C that do not satisfy the Conditions (C1),
(C2), and (C3), we construct a larger finite sub-qABox that does. We simply
add, for each y ∈ Z, one path from aU resp. CFU resp. yU to y. This adds only
finitely many objects and assertions. It is easy to see that afterwards the three
closure conditions are fulfilled. As shown above, there is a homomorphism
from this larger sub-qABox to ∃X ′.A′ that is bounded by ℓ. The restriction
of this homomorphism to ∃Z.C is, of course, a homomorphism from ∃Z.C
to ∃X ′.A′ and is bounded by ℓ.

3 ⇔ 4. Both directions follow from Lemma 9. ⊓⊔

Since every shell unfolding is countable and every connected component con-
tains an individual name, a forbidden cycle, a forbidden fork, or a lowest variable,
Proposition 22 holds specifically when the qABox ∃Y.B on the right-hand side
is a shell unfolding. Furthermore, since every finite qABox is a shell unfolding,
the left-hand side ∃X ′.A′, the right-hand side ∃Y.B, or both can also be finite
qABoxes.

Lemma 23. Every qABox of any cardinality is CQ-equivalent to a countable
qABox in which every connected component contains an individual name, a for-
bidden cycle, a forbidden fork, or a lowest variable.

Proof. Consider a qABox ∃X.A. We obtain a CQ-equivalent qABox as the union
of all finite qABoxes entailed by it:

∃X.A ≡CQ
⋃
{ ∃Y.B | ∃Y.B is a finite qABox and ∃X.A |= ∃Y.B }.

Since the set of finite qABoxes is countable, the right-hand side is a countable
union of finite qABoxes, hence a countable qABox. Further consider a connected
component U without individual names, forbidden cycles, and forbidden forks. If
there were no lowest variable in U , then U would be infinite, a contradiction. ⊓⊔

Lemma 24. Let ∃X.A and ∃Y.B be qABoxes of any cardinality, and further
let T be an EL TBox. If ∃X.A |=CQ ∃Y.B, then ∃X.A |=T

CQ ∃Y.B.

Proof. Assume ∃X.A |=CQ ∃Y.B. Further consider a finite qABox ∃Z.C with
∃Y.B |=T ∃Z.C. We can drop the quantifier on the left, and it holds that B |=T

∃Z.C. By the Compactness Theorem for first-order logic, there is a finite subset
B0 of the matrix B such that B0 |=T ∃Z.C. Let Y0 be the finite set of all variables
occurring in B0. We then have ∃Y.B |= ∃Y0.B0 and ∃Y0.B0 |=T ∃Z.C. The
former implies ∃X.A |= ∃Y0.B0, and then the latter yields ∃X.A |=T ∃Z.C. ⊓⊔

5.4 CQ-Saturations

Given a qABox ∃X.A and an EL TBox T , we consider the shell unfolding of the
IQ-saturation satTIQ(∃X.A), where all objects of the sub-qABox ∃X.A are kernel
objects and all other objects (added by applications of the IQ-Saturation Rule)

Optimal Repairs in the Description Logic EL Revisited 37

are shell objects. We will show that it entails exactly those qABoxes that are CQ-
entailed by ∃X.A and T . It can thus replace the finite CQ-saturation from [9]
but is not limited to cycle-restricted TBoxes. For this reason, we denote this
shell unfolding by satTCQ(∃X.A) and call it the CQ-saturation of ∃X.A w.r.t. T .

Proposition 25. Let ∃X.A be a finite qABox and T an EL TBox. For each
qABox ∃Z.C of any cardinality, ∃X.A |=T

CQ ∃Z.C iff satTCQ(∃X.A) |=CQ ∃Z.C.

Proof. According to Lemma 23, there is a countable qABox ∃ Z̄. C̄ that satisfies
the conditions in Proposition 22 and is CQ-equivalent to ∃Z.C, i.e., we have
∃Z.C ≡CQ ∃ Z̄. C̄. Lemma 24 yields ∃Z.C ≡T

CQ ∃ Z̄. C̄. To prove the claim it thus
suffices to verify that ∃X.A |=T

CQ ∃ Z̄. C̄ iff satTCQ(∃X.A) |=CQ ∃ Z̄. C̄. In the
following, let ∃Y.B be the IQ-saturation satTIQ(∃X.A) and let ∃Y ′.B′ be its shell
unfolding, which is satTCQ(∃X.A).

We start with the only-if direction and therefore assume that ∃X.A |=T
CQ

∃ Z̄. C̄. We will verify that the canonical model CMod(∃Y ′.B′), which we denote
by I, is a model of the qABox ∃X.A and of the TBox T . We then conclude
that every finite qABox entailed by ∃ Z̄. C̄ w.r.t. T is satisfied in I. By Lemma 9,
∃Y ′.B′ |=CQ ∃ Z̄. C̄.

– Recall that ∃X.A is a sub-qABox of the IQ-saturation ∃Y.B and that the
objects of ∃X.A are the kernel objects of ∃Y.B. According to the defini-
tion of the shell unfolding ∃Y ′.B′, all assertions involving kernel objects are
copied over from ∃Y.B to ∃Y ′.B′, and thus ∃X.A is also a sub-ABox of
∃Y ′.B′. According to Lemma 9, the canonical model I is a model of the
shell unfolding ∃Y ′.B′, from which we conclude that I is a model of ∃X.A.

– Next, we prove that I is a model of T . The relation S in Proposition 15 is a
simulation from the IQ-saturation ∃Y.B to the shell unfolding ∃Y ′.B′, and
its inverse S− is a simulation in the converse direction. Now, let p ∈ Dom(I)
and C ⊑D ∈ T such that p ∈ CI . It follows from Lemma 9 that the matrix
B′ entails C(p), namely when we drop the quantifier of the qABox on the left
and use C(p) as qABox on the right. Due to the simulation S− we obtain
with Lemma 3 that B entails C(u) where u is the target of p. Since ∃Y.B
is the IQ-saturation, the IQ-Saturation Rule is not applicable to it and thus
B also entails D(u). Applying Lemma 3 for the simulation S yields that B′

entails D(p). Again with Lemma 9 we finally obtain that p ∈ DI .

Regarding the if direction, assume ∃Y ′.B′ |=CQ ∃ Z̄. C̄. Proposition 22 yields
∃Y ′.B′ |= ∃ Z̄. C̄. We will show that the latter implies ∃X.A |=T ∃ Z̄. C̄, from
which we conclude that ∃X.A |=T

CQ ∃ Z̄. C̄.
Thus, assume that I is a model of ∃X.A and T . In the proof of Proposition IV

of [10] it is shown how one can construct a simulation Sn from ∃Y.B to I whose
restriction S0 to the objects of ∃X.A, which are the kernel objects of ∃Y.B, is
functional. Using an adaptation of Lemma 17 to a setting where one considers
the corresponding characterization of the existence of a homomorphism from a
shell unfolding into an interpretation, we obtain that there is a homomorphism
from ∃Y ′.B′ into I, i.e., I is a model of ∃Y ′.B′ and thus also of ∃ Z̄. C̄. ⊓⊔

38 Franz Baader, Patrick Koopmann, and Francesco Kriegel

Example 26. Coming back to Example 1, where we constructed the IQ-saturation
with kernel object n and shell object xV , we now obtain as shell unfolding the
CQ-saturation satTCQ(∃X.A) = ∃{x1, x2, . . . }.{V (n), ℓ(n, x1), V (x1), ℓ(x1, x2),
V (x2), . . . }, where xk := n ℓ−→ xV

ℓ−→ · · · ℓ−→xV︸ ︷︷ ︸
k times

.

satTCQ(∃X.A) : n

V

x1

V

x2

V

x3

V

. . .ℓ ℓ ℓ ℓ

5.5 Proof of Proposition 2 for arbitrary TBoxes

The if direction of Proposition 2 has been proven for arbitrary TBoxes, but
the only-if direction only for cycle-restricted TBoxes. Now that we know how
saturations of qABoxes can be constructed also w.r.t. TBoxes that need not be
cycle-restricted, we can prove the only-if direction for all TBoxes. We do not
need to change much, and only need to modify how the first qABox ∃Z0.C0 in
the sequence is constructed.

Proof. Assume that ∃X.A |=T ∃Y.B, i.e., there is a homomorphism h from
∃Y.B to satTCQ(∃X.A), cf. Lemma 9 and Proposition 25. Since ∃Y.B is finite,
the image h(B) := { A(h(u)) | A(u) ∈ B } ∪ { r(h(u), h(v)) | r(u, v) ∈ B }
is a finite subset of the matrix of satTCQ(∃X.A). Assume that Ph is the set of
all shell paths occurring in h(B). Then, we obtain a finite sub-qABox ∃Z.C
of satTCQ(∃X.A) as follows: its object set consists of all kernel objects (i.e., all
objects of ∃X.A) and of all shell paths that are itself in Ph or are a prefix of a
path in Ph, and its matrix C consists of all assertions in satTCQ(∃X.A) involving
only these objects.

The finite qABox ∃Z.C can be constructed from ∃X.A by means of the
CQ-Saturation Rule. Since h(B) is a subset of C, it follows that h is already a
homomorphism from ∃Y.B to ∃Z.C. Thus, we take ∃Z0.C0 := ∃Z.C and h0 := h.
The remainder of the proof of the only-if direction is as in Section 2.3. ⊓⊔

5.6 CQ-Repairs

Recall that the finite CQ-repairs in [9] can only be constructed w.r.t. cycle-
restricted TBoxes. We will now drop this restriction, with the effect that CQ-
repairs could become infinite. However, we show that they can still be finitely
described, namely as shell unfoldings of canonical IQ-repairs. Concerning the
shell unfolding of such an IQ-repair, an object ⟨⟨u,K⟩⟩ is a kernel object if u is a
kernel object (in the underlying IQ-saturation), and otherwise it is a shell object.

Lemma 27. For each repair seed S, the shell unfolding of its induced IQ-repair
repTIQ(∃X.A,S) is a CQ-repair. We thus denote it by repTCQ(∃X.A,S) and call
it the canonical CQ-repair induced by S.

Optimal Repairs in the Description Logic EL Revisited 39

Proof. We first show that ∃X.A |=T
CQ repTCQ(∃X.A,S). According to Propo-

sitions 22 and 25 it suffices to show that there is a homomorphism from
repTCQ(∃X.A,S) to satTCQ(∃X.A). Recall that satTCQ(∃X.A) is the shell unfolding
∃Y ′.B′ of the IQ-saturation ∃Y.B of ∃X.A. In addition, repTCQ(∃X.A,S) is the
shell unfolding ∃Z ′.C′ of the canonical IQ-repair ∃Z.C := repTIQ(∃X.A,S). Thus,
we will show that there is a homomorphism from ∃Z ′.C′ to ∃Y ′.B′. The proof of
Proposition 8 in [10] shows that there is a homomorphism from ∃Z.C to ∃Y.B
that maps the kernel objects of ∃Z.C to kernel objects of ∃Y.B. In addition, by
Proposition 15, there is a simulation from ∃Y.B to ∃Y ′.B′ that is the identity on
the kernel objects of ∃Y.B. By composing the former homomorphism with the
latter simulation, we obtain a simulation from ∃Z.C to ∃Y ′.B′ that is functional
on the kernel objects of ∃Z.C. Lemma 17 implies that there is a homomorphism
from ∃Z ′.C′ to ∃Y ′.B′.

It remains to show that repTCQ(∃X.A,S) does not entail any assertion C(a) ∈
P. By Proposition 15, repTIQ(∃X.A,S) = ∃Z.C CQ-entails repTCQ(∃X.A,S) =

∃Z ′.C′. Thus, if repTCQ(∃X.A,S) entailed C(a) ∈ P , then this assertion would
also be entailed by repTIQ(∃X.A,S). Since we know that repTIQ(∃X.A,S) is an
IQ-repair, this cannot be the case. ⊓⊔

Lemma 28. Every canonical CQ-repair repTCQ(∃X.A,S) is saturated w.r.t. T .

Proof. We denote repTCQ(∃X.A,S) by ∃Y ′.B′. According to Definition 10, we
need to show that for each CI C⊑D in T and for each object u of ∃Y ′.B′, if B′ |=
C(u), then B′ |= D(u). This is the case iff the Saturation Rule is not applicable to
any object. We already know that the canonical IQ-repair for the same repair seed
S is saturated [9], and we denote it by ∃Y.B. We verify that its shell unfoldings,
which is the considered CQ-repair, is saturated as well. Therefore, let u be an
object of ∃Y ′.B′ with B′ |= C(u) for some CI C ⊑D in T . The homomorphism
h from Proposition 15 sends u to an object h(u) with B |= C(h(u)). Since ∃Y.B
is saturated, it follows that B |= D(h(u)). Thus, with the simulation S from
Proposition 15 we obtain that B′ |= D(u) as (h(u), u) ∈ S. ⊓⊔

Next, we show that the canonical CQ-repairs are complete in the sense that
every countable CQ-repair is entailed by a canonical one.

Lemma 29. If ∃W.D is a CQ-repair of ∃X.A for P w.r.t. T of any cardinality,
then there is a repair seed S such that repTCQ(∃X.A,S) |=T

CQ ∃W.D.

Proof. According to Lemma 23, there is a countable qABox ∃W̄ .D̄ that satisfies
the conditions in Proposition 22 and is CQ-equivalent to ∃W.D, i.e., we have
∃W.D ≡CQ ∃W̄ .D̄. Lemma 24 yields ∃W.D ≡T

CQ ∃W̄ .D̄. To prove the claim it
thus suffices to verify that there is a repair seed S such that repTCQ(∃X.A,S) |=T

CQ
∃W̄ .D̄.

This lemma generalizes Proposition 8 in [10]. Its proof is actually very similar,
with one exception that will be explained below. Let ∃Y.B be the IQ-saturation
of the input qABox ∃X.A, from which we obtain as shell unfolding the CQ-
saturation, denoted by ∃Y ′.B′. As a CQ-repair, ∃W̄ .D̄ is CQ-entailed by ∃X.A

40 Franz Baader, Patrick Koopmann, and Francesco Kriegel

w.r.t. T and thus Propositions 22 and 25 yields a homomorphism h from ∃W̄ .D̄
to ∃Y ′.B′.

As first step, we define the function F : Obj(∃W̄ .D̄) → ℘(Atoms(T ,P)) as
follows: for each object t of ∃W̄ .D̄, let u be the target of h(t) and define

F(t) := Max⊑∅{C | C ∈ Atoms(T ,P), B |= C(u), D̄ ̸|=T C(t) }.

Like in the proof of Proposition 8 in [10], each F(t) is a repair type for u.
From F we obtain the repair seed S with Sa := F(a) for each individual

name a. The IQ-repair induced by S is denoted by ∃Z.C, and as its shell unfolding
we obtain the CQ-repair which we denote by ∃Z ′.C′.

Next, we will define a mapping k from objects of ∃W̄ .D̄ to objects of ∃Z ′.C′.
In the proof of Proposition 8 in [10] we defined k(t) := ⟨⟨h(t),F(t)⟩⟩. Since the
CQ-saturation ∃Y ′.B′ and the CQ-repair ∃Z ′.C′ are both shell unfoldings, h now
maps to shell paths and k also must map to shell paths, which is why we cannot
define k as before. In fact, we define it so that the target of k(t) equals ⟨⟨u,F(t)⟩⟩
where u is the target of h(t).

To this end, consider an object t ∈ Obj(∃W̄ .D̄), assume h(t) = t0
r1−→ t1

r2−→
· · · rn−→ tn, and define the value k(t) according to the following case distinction:

– If n = 0 (i.e., if h(t) is a kernel object), then define

k(t) := ⟨⟨t0,F(t)⟩⟩.

– Otherwise, if t has no rn-predecessor, then define

k(t) := ⟨⟨t0, ∅⟩⟩ r1−→⟨⟨t1, ∅⟩⟩ r2−→ · · · rn−1−−−→⟨⟨tn−1, ∅⟩⟩ rn−→⟨⟨tn,F(t)⟩⟩.

Remark. Since h(t) = t0
r1−→t1

r2−→ · · · rn−→tn is a shell path in the IQ-saturation
∃Y.B, it must contain the role assertions r1(t0, t1), . . . , rn(tn−1, tn). Further-
more, ∅ is a repair type for all objects of ∃Y.B, and thus each object in the
path k(t) is really an object of the IQ-repair. That these objects are con-
nected by role assertions is vacuously true since the empty repair types do
not contain any existential restrictions and thus Condition (CR2) is satisfied.
Since t0 is a kernel object and t1, . . . , tn are shell objects, ⟨⟨t0, ∅⟩⟩ is a kernel
object and ⟨⟨t1, ∅⟩⟩, . . . , ⟨⟨tn−1, ∅⟩⟩ as well as ⟨⟨tn,F(t)⟩⟩ are shell objects. We
conclude that k(t) is a shell path in the IQ-repair ∃Z.C and thus an object
of the CQ-repair ∃Z ′.C′.

– Otherwise, let u be some rn-predecessor of t and define

k(t) := k(u) rn−→⟨⟨tn,F(t)⟩⟩.

Remark. The predecessor u need not be unique, but h(u) = t0
r1−→ t1

r2−→
· · · rn−1−−−→ tn−1 is enforced since rn(u, t) ∈ D̄ implies rn(h(u), h(t)) ∈ B′. We
will see below that rn(u, t) ∈ D̄ implies rn(⟨⟨u,F(u)⟩⟩, ⟨⟨t,F(t)⟩⟩) and thus
k(t) is always a shell path.

We proceed by verifying that k is a homomorphism.

Optimal Repairs in the Description Logic EL Revisited 41

1. Let A(t) ∈ D̄. Then A ̸∈ F(t) by definition of F . Since h is a homomorphism,
we infer A(h(t)) ∈ B′ and thus A(tn) ∈ B. According to the definition of
canonical IQ-repairs we obtain that A(⟨⟨tn,F(t)⟩⟩) ∈ C, and thus A(k(t)) ∈ C′.

2. Consider a role assertion r(t, v) ∈ D̄. By the homomorphism h we obtain
r(h(t), h(v)) ∈ B′, and so there must be a role assertion r(tn, tn+1) ∈ B
where tn+1 is the target of the shell path h(v).
– If h(v) is a kernel object, then h(t) is also a kernel object, and we

have k(t) = ⟨⟨tn,F(t)⟩⟩ = ⟨⟨h(t),F(t)⟩⟩ and k(v) = ⟨⟨tn+1,F(v)⟩⟩ =
⟨⟨h(v),F(v)⟩⟩.

– If h(v) is a shell path of length 1 or greater, then k(t) ends with target
⟨⟨tn,F(t)⟩⟩ and we have k(v) = k(t) r−→⟨⟨tn+1,F(v)⟩⟩.

It remains to show that C′ contains the role assertion r(k(t), k(v)), for
which we verify that C contains the role assertion r(⟨⟨tn,F(t)⟩⟩, ⟨⟨tn+1,F(v)⟩⟩).
We already know that r(tn, tn+1) ∈ B, and it remains to show that
Succ(F(t), r, tn+1) ≤∅ F(v). This can be done in a similar way as in the
proof of Proposition 8 in [10].

Finally, since k is a homomorphism from ∃W̄ .D̄ to ∃Z ′.C′, Proposition 22 yields
that ∃Z ′.C CQ-entails ∃W̄ .D̄, and thus also w.r.t. T by Lemma 24. ⊓⊔

The canonical CQ-repair must be constructed as shell unfolding of the full
canonical IQ-repair, not from the optimized IQ-repair or another qABox that
is IQ-equivalent. Otherwise, the completeness proof would not go through, as
mapping targets for the constructed homomorphism k (see the above proof)
might not be available. The next example illustrates this.

Example 30. In the canonical IQ-repair in Example 7 the individual n is the only
kernel object, and the variables y1, y2, y3 are the shell objects. As shell unfolding
we obtain the following qABox.

repTCQ(∃X.A,S) : n · · ·ℓ ℓ ℓ ℓ

V

V

V

V

· · ·

· · ·ℓ

ℓ

· · ·ℓ
ℓ

ℓ

· · ·ℓℓ

ℓ

ℓ

· · ·ℓℓℓ

ℓ

ℓ

For instance, the uppermost path consists of the shell paths n, n ℓ−→y2, n ℓ−→y2
ℓ−→y2,

. . . , and the lowermost path consists of the shell paths y1, y1 ℓ−→y3, y1 ℓ−→y3
ℓ−→y3,

. . . . After reaching y3 in a shell path we could also continue it with the role

42 Franz Baader, Patrick Koopmann, and Francesco Kriegel

assertion ℓ(y3, y2), after which the shell path could only be extended with the
role assertion ℓ(y2, y2); these are all the shell paths in the middle.

If, instead, we would have constructed the shell unfolding from the optimized
IQ-repair (see Page 20), then it would only contain the upper most path. Since
it then does not contain any object that is an instance of V , the Boolean CQ
∃x.V (x) would not be entailed, which indicates that knowledge is lost that
should have been preserved in an optimal CQ-repair.

As an immediate consequence of the previous two lemmas we obtain the main
result of this section.

Theorem 31. Let ∃X.A be a finite qABox, T an EL TBox, and P a re-
pair request. Then we can compute, in (deterministic) exponential time us-
ing an NP-oracle, a finite set of repair seeds {S1, . . . ,Sm} such that the set
{repTCQ(∃X.A,S1), . . . , repTCQ(∃X.A,Sm)} consists of all optimal CQ-repairs of
∃X.A for P w.r.t. T (up to CQ-equivalence). The latter set is complete in the
sense that every CQ-repair is CQ-entailed by an element of it.

Proof. As shown in [9], there are exponentially many repair seeds in the size
of P and T , which can be computed in exponential time. Not every canon-
ical repair repTCQ(∃X.A,S) induced by a seed function S is optimal, but we
can check optimality of repTCQ(∃X.A,S) by testing whether there is no other
seed function S ′ such that repTCQ(∃X.A,S ′) CQ-entails repTCQ(∃X.A,S), but not
vice versa. This requires exponentially many entailment tests. To check whether
repTCQ(∃X.A,S ′) |=T repTCQ(∃X.A,S), it is sufficient to decide whether there
is a homomorphism from repTCQ(∃X.A,S) to repTCQ(∃X.A,S ′), see Lemmas 11
and 28 and Proposition 22.

Since the canonical CQ-repairs are the shell-unfoldings of the correspond-
ing canonical IQ-repairs, we can test for the existence of a homomorphism
from repTCQ(∃X.A,S) to repTCQ(∃X.A,S ′) by first computing repTIQ(∃X.A,S)
and repTIQ(∃X.A,S ′), which is possible in exponential time, and then applying
as NP-oracle the NP-procedure testing for the existence of a homomorphism
between their shell unfoldings (see Theorem 20). The computed set of optimal
repairs is complete since the set of canonical CQ-repairs is complete according
to Lemma 29. ⊓⊔

Now assume that we are given a repair seed S that induces an optimal CQ-
repair repTCQ(∃X.A,S). If we want to work with this repair, we must be able
to answer conjunctive queries on it. The following result shows that this has
the same complexity as answering conjunctive queries on ∃X.A. Recall that a
(Boolean) conjunctive query is just a finite qABox.

Proposition 32. Let ∃X.A and ∃Z.C be (finite) qABoxes, T an EL TBox, P a
repair request, and S a repair seed. We can decide if repTCQ(∃X.A,S) |=T ∃Z.C
in non-deterministic polynomial time w.r.t. the size of ∃X.A, T , P, and ∃Z.C.

Proof. Basically, we want to adapt the approach used to prove Theorem 20 to
test for the existence of a homomorphism from ∃Z.C to repTCQ(∃X.A,S). This is

Optimal Repairs in the Description Logic EL Revisited 43

sufficient since repTCQ(∃X.A,S) is saturated. Similar to the proof of Lemma 18,
we look at the connected components of ∃Z.C.

If such a connected component contains an individual name, then we can
show that elements of this connected component can only be mapped by a
homomorphism to shell paths in repTCQ(∃X.A,S) whose length is bounded by
the number of objects of ∃Z.C. The objects of repTIQ(∃X.A,S) are of the form
⟨⟨u,K⟩⟩ where u is an object of the IQ-saturation of ∃X.A, whose size is polyno-
mial in the size of ∃X.A, and K is a set of atoms occurring in P or T . Thus,
guessing a polynomially long shell path consisting of such objects requires only
polynomially many choices. This shows that we can guess a mapping from such
a connected component into repTCQ(∃X.A,S) in nondeterministic polynomial
time. We can then test in polynomial time whether the guessed mapping is a
homomorphism.

For a connected component not containing an individual name, we claim that
it is sufficient to test whether ∃X.A entails this connected component w.r.t. T .
In fact, if the repair entails the connected component w.r.t. T , then so does ∃X.A
since every CQ-repair is CQ-entailed by ∃X.A. Conversely, if ∃X.A entails the
connected component q w.r.t. T , then there is a homomorphism from q into
the CQ-saturation of ∃X.A. We claim that a copy of this CQ-saturation can
be found in repTCQ(∃X.A,S). This copy is obtained as the unfolding of the part
of repTIQ(∃X.A,S) consisting of the objects of the form ⟨⟨u, ∅⟩⟩. Since q does not
contain individual names, the homomorphism from q to ∃X.A can be turned
into one from q into this copy. ⊓⊔

6 Conclusion

In the first part of this paper we have mainly recalled the approaches and results
from [9,19]. In other work, we have extended these results in several directions.
The paper [13] extends the expressivity of the underlying DL considerably, by
adding nominals, inverse roles, regular role inclusions and the bottom concept to
EL, which yields a fragment of the well-known DL Horn-SROIQ [41]. In [11], we
investigate whether and how one can obtain optimal repairs if one restricts the
output of the repair process to being ABoxes rather than qABoxes. In general,
such optimal ABox repairs need not exist. The main contribution of the paper is
an approach that can decide the existence of optimal ABox repairs in exponential
time, and can compute all such repairs in case they exist. The papers [15,16] con-
sider error-tolerant reasoning based on optimal repairs and [1] compares optimal
repairs with contractions from the area of belief change. Moreover, an approach
to computing optimal repairs of EL TBoxes is developed in [34].

In the second part of this paper we have presented new results on how to
represent exponentially large repairs in a polynomial way and infinite repairs in
a finite way. It would be interesting to see whether such approaches can also
be extended to other settings. We conjecture that non-cycle-restricted TBoxes
can still be tackled by using shell-unfoldings for the DLs considered in [13].
However, in [13] we also show that optimal repairs need not exist if the role

44 Franz Baader, Patrick Koopmann, and Francesco Kriegel

inclusions are not regular. It is unclear whether this problem can be overcome
by an appropriate finite representation of infinite repairs. Another interesting
topic for future research is to investigate whether finitely represented rational
repairs can be used in practice.

Authors’ Contributions. FB and FK contributed equally to the paper. PK
ran the experiments and wrote the description of them. He also wrote a first
version of the proof of Proposition 32.

Acknowledgements. This work has been supported by Deutsche Forschungs-
gemeinschaft (DFG) in projects 430150274 (Repairing Description Logic Ontolo-
gies) and 389792660 (TRR 248: Foundations of Perspicuous Software Systems).

References

1. Baader, F.: Optimal repairs in ontology engineering as pseudo-contractions in belief
change. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’23), March 27–31, 2023, Tallinn, Estonia. pp. 983–990. Association
for Computing Machinery (2023), https://doi.org/10.1145/3555776.3577719

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general tboxes. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Thirteenth Inter-
national Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press (2012),
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4491

3. Baader, F., Borgwardt, S., Morawska, B.: SAT Encoding of Unification in
ELHR+ w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7364, pp. 30–44. Springer (2012), https://doi.org/10.1007/
978-3-642-31365-3_5

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005. pp. 364–369. Professional Book Center (2005), http://ijcai.org/
Proceedings/05/Papers/0372.pdf

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005). pp. 364–369. Morgan Kaufmann, Los Altos, Edinburgh (UK) (2005)

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Descrip-
tion Logic. Cambridge University Press (2017), https://doi.org/10.1017/
9781139025355

8. Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic EL
revisited. In: Proceedings of the 18th European Conference on Logics in Artificial
Intelligence (JELIA 2023), September 20–22, 2023, Dresden, Germany. Lecture
Notes in Computer Science, Springer (2023)

https://doi.org/10.1145/3555776.3577719
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4491
https://doi.org/10.1007/978-3-642-31365-3_5
https://doi.org/10.1007/978-3-642-31365-3_5
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355

Optimal Repairs in the Description Logic EL Revisited 45

9. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes. In: Platzer, A., Sutcliffe,
G. (eds.) Automated Deduction - CADE 28 - 28th International Conference on
Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings. Lecture Notes
in Computer Science, vol. 12699, pp. 309–326. Springer (2021), https://doi.org/
10.1007/978-3-030-79876-5_18

10. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes (extended version). LTCS-
Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden, Germany (2021), https://doi.
org/10.25368/2022.64

11. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes. In: 19th Extended
Semantic Web Conference, ESWC 2022, Hersonissos, Greece, May 29 – June 2,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13261, pp. 130–146.
Springer (2022), https://doi.org/10.1007/978-3-031-06981-9_8

12. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes (extended ver-
sion). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2022),
https://doi.org/10.25368/2022.65

13. Baader, F., Kriegel, F.: Pushing optimal ABox repair from EL towards more expres-
sive Horn-DLs. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings
of the 19th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2022, Haifa, Israel, July 31 – August 5, 2022. pp. 22–32 (2022),
https://doi.org/10.24963/kr.2022/3

14. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) Logics in
Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May
7-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11468, pp. 323–
338. Springer (2019), https://doi.org/10.1007/978-3-030-19570-0_21

15. Baader, F., Kriegel, F., Nuradiansyah, A.: Error-tolerant reasoning in the de-
scription logic EL based on optimal repairs. In: Governatori, G., Turhan, A.
(eds.) Rules and Reasoning - 6th International Joint Conference, RuleML+RR
2022, Virtual, September 26-28, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13752, pp. 227–243. Springer (2022), https://doi.org/10.1007/
978-3-031-21541-4_15

16. Baader, F., Kriegel, F., Nuradiansyah, A.: Treating role assertions as first-
class citizens in repair and error-tolerant reasoning. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March 27–31,
2023, Tallinn, Estonia. pp. 974–982. Association for Computing Machinery (2023),
https://doi.org/10.1145/3555776.3577630

17. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compli-
ant anonymisations of quantified ABoxes w.r.t. EL policies (extended version).
LTCS-Report 20-08, Chair of Automata Theory, Institute of Theoretical Com-
puter Science, Technische Universität Dresden, Dresden, Germany (2020), https:
//doi.org/10.25368/2022.263

18. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth Interna-

https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.25368/2022.64
https://doi.org/10.25368/2022.64
https://doi.org/10.1007/978-3-031-06981-9_8
https://doi.org/10.25368/2022.65
https://doi.org/10.24963/kr.2022/3
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1145/3555776.3577630
https://doi.org/10.25368/2022.263
https://doi.org/10.25368/2022.263

46 Franz Baader, Patrick Koopmann, and Francesco Kriegel

tional Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018. pp.
319–328. AAAI Press (2018), https://aaai.org/ocs/index.php/KR/KR18/paper/
view/18056

19. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant
anonymisations of quantified ABoxes w.r.t. EL policies. In: Pan, J.Z., Tamma,
V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal,
L. (eds.) The Semantic Web - ISWC 2020 - 19th International Semantic Web
Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12506, pp. 3–20. Springer (2020), https://doi.
org/10.1007/978-3-030-62419-4_1

20. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Cornet, R., Spackman, K.A. (eds.) Proceedings
of the Third International Conference on Knowledge Representation in Medicine,
Phoenix, Arizona, USA, May 31st - June 2nd, 2008. CEUR Workshop Proceedings,
vol. 410. CEUR-WS.org (2008), http://ceur-ws.org/Vol-410/Paper01.pdf

21. Bauslaugh, B.L.: Cores and compactness of infinite directed graphs. J. Comb. The-
ory, Ser. B 68(2), 255–276 (1996), https://doi.org/10.1006/jctb.1996.0068

22. Bauslaugh, B.L.: Compactness and finite equivalence of infinite digraphs. Discret.
Math. 167-168, 115–126 (1997), https://doi.org/10.1016/S0012-365X(96)
00220-8

23. Bauslaugh, B.L.: List-compactness of infinite directed graphs. Graphs Comb.
17(1), 17–38 (2001), https://doi.org/10.1007/s003730170052

24. Brachman, R.J., Fikes, R., Levesque, H.J.: Krypton: A functional approach to
knowledge representation. Computer 16(10), 67–73 (1983), https://doi.org/10.
1109/MC.1983.1654200

25. Carral, D., Dragoste, I., González, L., Jacobs, C.J.H., Krötzsch, M., Urbani, J.:
Vlog: A rule engine for knowledge graphs. In: Ghidini, C., Hartig, O., Maleshkova,
M., Svátek, V., Cruz, I.F., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.)
The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 11779, pp. 19–35. Springer (2019), https://doi.org/
10.1007/978-3-030-30796-7_2

26. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.)
Proc. of the 9th Annual ACM Symposium on Theory of Computing (STOC’77).
pp. 77–90. ACM (1977), https://doi.org/10.1145/800105.803397

27. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo,
D. (eds.) Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008,
Vancouver, BC, Canada. pp. 149–158. ACM (2008), https://doi.org/10.1145/
1376916.1376938

28. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent
OWL 2 DL terminologies. In: Proc. of the 23rd ACM Int. Conf. on Information
and Knowledge Management, (CIKM’14). pp. 919–928 (2014), http://doi.acm.
org/10.1145/2661829.2662046

29. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Re-
iter’s theory of diagnosis. Artif. Intell. 41(1), 79–88 (1989), https://doi.org/10.
1016/0004-3702(89)90079-9

30. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: 36th Annual Symposium on Foundations of Computer Sci-

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.1007/978-3-030-62419-4_1
http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1006/jctb.1996.0068
https://doi.org/10.1016/S0012-365X(96)00220-8
https://doi.org/10.1016/S0012-365X(96)00220-8
https://doi.org/10.1007/s003730170052
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/1376916.1376938
http://doi.acm.org/10.1145/2661829.2662046
http://doi.acm.org/10.1145/2661829.2662046
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(89)90079-9

Optimal Repairs in the Description Logic EL Revisited 47

ence, Milwaukee, Wisconsin, USA, 23-25 October 1995. pp. 453–462. IEEE Com-
puter Society (1995), https://doi.org/10.1109/SFCS.1995.492576

31. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K. (eds.) The Semantic Web - ISWC 2008, 7th International Se-
mantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5318, pp. 323–338. Springer
(2008), https://doi.org/10.1007/978-3-540-88564-1_21

32. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automed Reasoning
53(1), 1–61 (2014), https://doi.org/10.1007/s10817-013-9296-3

33. Kriegel, F.: Navigating the EL Subsumption Hierarchy. In: Homola, M., Ryzhikov,
V., Schmidt, R.A. (eds.) Proceedings of the 34th International Workshop on
Description Logics (DL 2021), Hybrid Event, Bratislava, Slovakia, September
19–22, 2021. CEUR Workshop Proceedings, vol. 2954. CEUR-WS.org (2021),
http://ceur-ws.org/Vol-2954/paper-21.pdf

34. Kriegel, F.: Optimal fixed-premise repairs of EL TBoxes. In: Bergmann, R., Mal-
burg, L., Rodermund, S.C., Timm, I.J. (eds.) Proceedings of the 45th German Con-
ference on Artificial Intelligence (KI 2022), Virtual in Trier, Germany, September
19–23, 2022. Lecture Notes in Computer Science, vol. 13404, pp. 115–130. Springer
(2022), https://doi.org/10.1007/978-3-031-15791-2_11

35. Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase (in-
vited talk). In: Barceló, P., Calautti, M. (eds.) 22nd International Conference
on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal. LIPIcs,
vol. 127, pp. 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019),
https://doi.org/10.4230/LIPIcs.ICDT.2019.3

36. Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained approach
to resolving unsatisfiable ontologies. J. Data Semant. 10, 62–95 (2008), https:
//doi.org/10.1007/978-3-540-77688-8_3

37. Levesque, H.J.: Foundations of a functional approach to knowledge representation.
Artif. Intell. 23(2), 155–212 (1984), https://doi.org/10.1016/0004-3702(84)
90009-2

38. Lutz, C., Seylan, I., Wolter, F.: An automata-theoretic approach to uniform in-
terpolation and approximation in the description logic EL. In: Brewka, G., Eiter,
T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14, 2012. AAAI Press (2012), http://www.aaai.org/ocs/index.php/KR/
KR12/paper/view/4511

39. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010), https://doi.org/
10.1016/j.jsc.2008.10.007

40. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 web ontology language profiles (second edition). W3C recommendation (2012),
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

41. Ortiz, M., Rudolph, S., Šimkus, M.: Worst-case optimal reasoning for the Horn-
DL fragments of OWL 1 and 2. In: Lin, F., Sattler, U., Truszczynski, M. (eds.)
Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010 (2010), http://aaai.org/ocs/index.php/KR/
KR2010/paper/view/1296

https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/s10817-013-9296-3
http://ceur-ws.org/Vol-2954/paper-21.pdf
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.4230/LIPIcs.ICDT.2019.3
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1016/0004-3702(84)90009-2
https://doi.org/10.1016/0004-3702(84)90009-2
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4511
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4511
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296

48 Franz Baader, Patrick Koopmann, and Francesco Kriegel

42. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4), 455–
482 (2017), https://doi.org/10.1007/s10817-017-9406-8, test ontology corpus:
https://doi.org/10.5281/zenodo.18578

43. Parsia, B., Rudolph, S., Hitzler, P., Krötzsch, M., Patel-Schneider, P.: OWL 2 web
ontology language primer (second edition). W3C recommendation (2012), http:
//www.w3.org/TR/2012/REC-owl2-primer-20121211/

44. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005. pp. 633–640. ACM (2005),
https://doi.org/10.1145/1060745.1060837

45. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987), https://doi.org/10.1016/0004-3702(87)90062-2, see the erratum [29].

46. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reason. 39(3), 317–349 (2007), https://doi.org/10.
1007/s10817-007-9076-z

47. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.:
Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 1981–1988.
AAAI Press (2018), https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17189

48. Tychonoff, A.N.: Über einen Funktionenraum. Mathematische Annalen 111(1),
762–766 (1935), https://doi.org/10.1007/BF01472255

49. Zermelo, E.: Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische
Annalen 59(4), 514–516 (1904), https://doi.org/10.1007/BF01445300

https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.5281/zenodo.18578
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1007/s10817-007-9076-z
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
https://doi.org/10.1007/BF01472255
https://doi.org/10.1007/BF01445300

	Optimal Repairs in the Description Logic EL Revisited (Extended Version)

