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Abstract

Warm dense matter (WDM) is an extreme state of matter induced by extreme conditions
and characterized as an intermediary state between (high-pressure) condensed matter and
plasma. It has sparked a lot of attention in recent years as a result of current innovations in
experiments and theoretical methods for modeling such complex systems. Such conditions
naturally occur in astrophysical objects such as the interiors of the planets, and in white and
brown dwarfs. WDM can be created in the laboratory via various methods such as laser com-
pression, Z-pinches and heated diamond anvil cells.
This thesis describes the results obtained for many such systems across a range of condi-
tions modeled using ab-initio simulation methods. The first testbed concerns the electronic
structure and linear response of the carbon phases under high-pressure and warm dense
matter conditions. The focus is on modeling inelastic x-ray scattering spectra across a range
of conditions useful for the analysis and interpretation of x-ray Thomson scattering (XRTS) ex-
periments. Another major goal is to improve the existing models to compute static properties
such as the equation of state, density of states with the inclusion of highly accurate data from
quantum Monte Carlo (QMC) simulations relevant at finite-temperatures. This approach im-
proves the accuracy and is also computationally inexpensive compared to path integral Monte
Carlo (PIMC) methods. Lastly, improvements in linear response theory relevant for XRTS are
incorporated with the inclusion of local field corrections (LFC) and finite-temperature local field
corrections (T-LFC) using data from QMC simulations.
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The study of warm dense matter (WDM) is an exciting topic as it encompasses a wide variety
of distinct physical regimes. At the crossroads of condensed matter and non-ideal plasmas,
the theoretical description of WDM faces several obstacles as the interplay of several physi-
cal effects, none of which can be treated perturbatively, makes the theoretical description of
WDM challenging [Davidson, 2003]. There is no straightforward way to develop models based
on the restriction imposed by the density-temperature parameter space along with other ap-
proximations. The parameters are characterized as follows [Graziani et al., 2014, Bonitz, 2016,
Bonitz et al., 2020, Dornheim et al., 2023]:

• Electron degeneracy parameter
θ = T

TF
. (1.0.1)

• Degeneracy parameter
χ = neΛ

3. (1.0.2)
• Thermal de Broglie wavelength

Λ = √2π̄h√
mKBT

. (1.0.3)
• Electron Fermi energy

EF = h̄2(3π2ne)2/32m . (1.0.4)
• Brueckner parameter

rs = a

aB
. (1.0.5)

• Coupling parameter
Γ = Epot

Ekin
= 1
aKBT

, (1.0.6)
where KB is the Boltzmann constant, h̄ is the reduced Planck constant, m is the electron mass,
aB is the Bohr radius, a is the average separation between two electrons in the medium, ne
is the electron density, Epot and Ekin are the potential and kinetic energy terms respectively, Tis the the electronic temperature, and TF is the Fermi temperature where thermal effects arecomparable to quantum effects.
Here, rs is related to the density of the system by rs = (3/4πne)1/3. In the limit of high density
(rs → 0) at low temperatures, the electrons exhibit ideal Fermi gas behavior and in the low
density, low temperature limit, Wigner crystallization can occur due to the dominance of the
Coulomb repulsion [Wigner, 1934]. The degeneracy parameter θ ≤ 1 characterizes a degener-
ate quantum system and in the classic limit, it holds θ� 1. The coupling parameter indicates
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1 Introduction

Figure 1.0.1: The temperature and the density plane describing warm dense parameters. Thex-axis corresponds to the electronic density in logarithmic scale. The y-axis cor-responds to the temperature in logarithmic scale. The electronic parametersare fully defined by (rs, θ). The coupling parameter Γ as it is given in the fig-ure follows from (rs, θ). Republished with permission of Elsevier from The uni-form electron gas at warm dense matter conditions, Physics Reports 744:1-86(2018) [Dornheim et al., 2018a]. Permission conveyed through Copyright Clear-ance Center, Inc.

the interplay of the kinetic and the potential energy. In the WDM regime, Γ ≈ 1 hence both
the terms have to be treated effectively and many-body interactions are still determining the
physics. When Γ << 1, the system is weakly coupled with the kinetic energy dominating and
when Γ >> 1 the system is strongly coupled. Figure. 1.0.1 gives an overview of the parameters
describing WDM and the conditions encountered in experiments and astrophysical systems.
Significant progess has been made in studying warm dense matter with the aid of ab-initio
methods. The most common simulation technique includes the combination of density func-
tional theory (DFT) and molecular dynamics (MD) commonly denoted as DFT-MD. DFT is ef-
fectively an equilibrium theory applicable to systems of any temperature (Mermin formula-
tion) [Hohenberg and Kohn, 1964, Kohn and Sham, 1965, Mermin, 1965], but is heavily reliant
on the XC functional to incorporate (temperature dependent) many-body interactions within
the electronic subsystem [Car and Parrinello, 1985, Rahman, 1964, Allen and Tildesley, 2017,
Mermin, 1965]. In the Mermin formulation, the Hohenberg-Kohn theorem applicable to the
ground state is extended to T 6=0 for an inhomogeneous electron gas at local thermody-
namic equilibrium. This is based on minimizing the grand potential at a constant temper-
ature and chemical potential in the grand canonical ensemble [Hohenberg and Kohn, 1964,
Kohn and Sham, 1965, Mermin, 1965]. Hence exchange correlation (XC) functionals devel-
oped for studying solid state systems in their ground state only take the implicit temperature
dependence into account, but neglect the explicit temperature dependence of correlated elec-
trons. The ab-initio approach which, so far, has been moderately successful in modeling WDM,
uses this approach of treating the electrons at T=0 via DFT and the ions at T 6=0 using classical
4



MD. For the solution of the Schrödinger equation in DFT, to minimize the computational cost
and the complexity, the Born-Oppenheimer approximation is employed. Under this assump-
tion, the electronic and the nuclear motion in a molecule can be treated separately based on
the physical basis that the nuclear mass are heavier than the electrons. This difference leads
to the nuclear motion much more slower than the electrons. Hence a good approximation
to describe the electronic states of a molecule are by treating the nuclei as stationary. The
treatment follows the adiabatic connection and reduces the computational cost. By treating
the ions and electrons on a similar time scale more dynamic information of the electronic
component can be evaluated which is now possible with novel non-adiabatic methods such
as Ehrenfest dynamics [Li et al., 2005, Walter et al., 2008, Tully, 2012, Ojanperä et al., 2012,
Curchod et al., 2013, Ding et al., 2015, Magyar et al., 2016, Correa, 2018] and Bohmian me-
chanics [Larder et al., 2019]. Further developments include stochastic DFT [Baer et al., 2013,
Cytter et al., 2018, Fabian et al., 2019, Cytter et al., 2019] providing a bridge between Kohn-
Sham (KS) DFT [Kohn and Sham, 1965] and orbital-free methods which is generally fast, but
inaccurate, potentially helpful at high temperature. This is achieved by computing the elec-
tron density directly from the KS-Hamiltonian using a trace formula henceforth avoiding the
computation of densitymatrix or KS orbitals. White et al. [White and Collins, 2020] have further
extended this scheme towork at a wide range of temperatures using a stochastic-deterministic
scheme avoiding the computational cost and the stochastic errors encountered in intermedi-
ate temperatures with the stochastic DFT scheme.
The equation of state (EOS) describes the state of matter under equilibrium conditions
using thermodynamic variables. It is essential for describing the properties of elemental
solids, fluids, and gases, as well as real materials as mixtures of elements. In WDM, it
is particularly important for modeling the interiors of planets under high pressures and
temperatures [Nettelmann et al., 2008], in white dwarfs [Kritcher et al., 2020] and also for
modelling the conditions of inertial confinement fusion (ICF) [Ross, 1981, Kraus et al., 2017,
Kraus et al., 2018, Knudson et al., 2008, Biener et al., 2009, Atzeni and Meyer-ter Vehn, 2004,
Hurricane et al., 2014, Moses et al., 2009]. Standard EOS using ab-initiomethods are based on
the data obtained fromDFT-MD or path integral Monte Carlo (PIMC) simulations with consider-
able agreement between the two methods. Currently, the "zero-temperature approximation"
do not take into account the temperature of the system which is very relevant for building
accurate EOS models [Karasiev et al., 2016, Bonitz et al., 2020, Ramakrishna et al., 2020].
Improvements in the WDM regime are now possible thanks to the advancements in XC func-
tionals with the availability of data from accurate PIMC simulations for the uniform electron gas
(UEG) in the WDM regime [Brown et al., 2013a, Malone et al., 2016, Dornheim et al., 2016b,
Groth et al., 2017c, Dornheim et al., 2018a, Dornheim, 2018, Bonitz et al., 2020]. The derived
temperature dependent XC functionals can now be used in the simulations involving DFT to
treat the electrons at T 6=0, with the inclusion of the XC free energy as a function of density
and temperature. Further improvements in finite-temperature XC functionals are possible
with the effort led by Karasiev et al. and co-workers. They have further extended the LDA
finite-temperature XC to the generalized gradient approximation (GGA) and meta-GGA forms
which are effectively better in treating hydrogen bonds and molecular systems. They have re-
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1 Introduction

ported better Hugonoit results for deuterium through their parametrized finite-temperature
GGA XC functional. Their effort seems to be promising as they are on the way to developing
hybrid functionals, a research that might eventually lead to the development of the whole
suite of the "Jacob’s ladder" [Perdew and Schmidt, 2001] of finite-temperature XC function-
als [Karasiev et al., 2013, Karasiev et al., 2014c, Karasiev et al., 2014b, Karasiev et al., 2014a,
Karasiev et al., 2016, Luo et al., 2018, Karasiev et al., 2019a, Mihaylov et al., 2020,
Luo et al., 2020, Karasiev et al., 2022] and with a systematic construction of XC functionals
with explicit temperature dependence [Baldsiefen et al., 2015, Baldsiefen et al., 2017]. Shen
et al. [Zhang et al., 2016, Blanchet et al., 2020] have developed an extended first principles
molecular dynamics (FPMD) based on the KS scheme to treat systems at elevated temper-
atures by using the plane wave approximation of the electrons at high temperatures and
densities. The computational cost for large systems can be reduced with the use of orbital-free
DFT-MDwith the exclusion of KS orbitals. This is achieved by constructing an approximation for
the kinetic energy functional which is otherwise fully dependent on the orbitals based on the KS
functionals. Under the KS approach, the kinetic energy term is accurately obtained and hence
the success of orbital-free approach heavily relies on the formulation of the kinetic energy
density functionals [Pearson et al., 1993, Wang and Carter, 2002, Karasiev and Trickey, 2012,
Cangi and Pribram-Jones, 2015]. Traditional plane-wave codes become difficult at low density
and high temperatures because the number of partially occupied states increases dramati-
cally. The unique Spectral Quadrature DFT (SQDFT) approach for large-scale parallel KS DFT
calculations, addresses this issue [Suryanarayana et al., 2018, Bethkenhagen et al., 2020].
These developments in ab-initio methods can result in accurate EOS with less computational
cost.
Linear response theory is an important part of the theoretical description of the x-ray
scattering signal or electrical conductivity as obtained in experiments on WDM. Through
it, important physics parameters like temperature, density, charge state, and the struc-
ture of the system might be infered. Diagnostics such as electron temperature can be
extracted through the detailed balance relation of the dynamic structure factor using x-
ray Thomson scattering (XRTS). Traditionally, plasma theory or Kubo-Greenwood approach
with DFT-MD are used to model XRTS spectra [Fortmann et al., 2010, Plagemann et al., 2012].
With the advancements in time-dependent density functional theory (TDDFT) and bet-
ter local field corrections (LFC), the available tools provide a more realistic description of
XRTS. The linear-response TDDFT (LR-TDDFT) [Gross and Kohn, 1985] is based on the KS
orbitals obtained using DFT which are further required for the computation of the den-
sity response function using an appropriate form of the exchange-correlation (XC) ker-
nel. The XC kernel for LR-TDDFT includes the many-body effects and is an active topic of
interest [Onida et al., 2002, Böhme et al., 2022, LeBlanc et al., 2022]. Real-time TDDFT (RT-
TDDFT) [Yabana and Bertsch, 1996, Yabana et al., 2006] involves propagating the integrals
over time instead of the frequency space approach of LR-TDDFT. By moving to the domain
of real-time and real-space, information on a shorter time scale can be obtained provid-
ing insight into the dynamics of the system [Provorse and Isborn, 2016]. The challenges in-
cluded in this approach is in obtaining the spectra with the application of windowing tech-
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1.1 Thesis Outline

niques and efficient algorithms for the propagator with the advantages of a computational
linear scaling compared to cubic scaling of LR-TDDFT. Baczewksi et al. [Baczewski et al., 2016,
Baczewski et al., 2021] have produced groundbreaking simulations with the help of RT-TDDFT
for compressed beryllium which can treat large finite momentum transfers effectively, con-
trary to LR-TDDFT [Mo et al., 2020]. This also allows one to access other experimental
quantities like stopping power [Yost et al., 2017, Yao et al., 2019] and electrical conductiv-
ity [Andrade et al., 2018, Ramakrishna et al., 2023] via the dielectric response function. Further
improvements in linear response are possible with the availability of the finite-temperature lo-
cal field corrections obtained using PIMC simulations much relevant for experiments involving
XRTS [Dornheim et al., 2020a, Ramakrishna et al., 2021]. These can be included in linear re-
sponse calculations as a free parameter based on the density-temperature parameter space
of the system and is a cost-effective way of improving the models without resorting to com-
putationally expensive methods [Groth et al., 2019, Dornheim et al., 2019, Bonitz et al., 2020,
Dornheim et al., 2020a, Dornheim et al., 2022, Dornheim et al., 2023].

1.1 Thesis Outline

Chapter 1 outlines the motivation of studying WDM and the challenges. Chapter 2 contains a
theoretical review of the ab-initomethods used in this work. The main results of the study are
presented in the following Chapters 3-5. The systems considered and the results of several
publications describing them in detail are used to categorize them. In the end, Chapter 6
summarizes this work discussing the current results and further developments.

• Chapter 3: Ab Initio Dielectric Response function of Diamond and Other Relevant
High-Pressure Phases of Carbon

The electronic structure of the high-pressure carbon phases are computed using DFT
and the linear response using many-body perturbation theory. The linear response un-
der high-pressure and warm dense matter conditions are computed using the random
phase approximation (RPA), time-dependent density functional theory (TDDFT), and the
Bethe-Salpeter equation (BSE). These approximations are compared based on the accu-
racy and the computational complexity. Furthermore, various approximations are used
in the linear response theory to model x-ray Thomson scattering (XRTS) and x-ray Ra-
man scattering (XRS) as obtained in recent experimental campaigns. TDDFT is used to fit
the inelastic XRTS signal of diamond essential for understanding the miscibility in WDM
experiments involving carbon-hydrogen mixtures. X-ray absorption spectroscopy (XAS)
measurements under the warm dense matter regime pose a significant challenge, par-
ticularly for low-Zmaterials which have K-edge energies in the soft x-ray regime. A poten-
tial alternative that overcomes the difficulties of XAS measurements of transmission on
low-Z materials is the study of XRS, which can provide similar details. The XRS spectra is
computed for diamond under ambient, compressed and iscohorically heated conditions.
This presents an opportunity to examine phase transitions and the effect of pressure and
temperature on the electronic structure of carbon in the WDM regime.
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1 Introduction

• Chapter 4: Influence of Finite-Temperature Exchange-Correlation Effects in Hydrogen

Finite-temperature exchange correlation (XC) effects are included in density functional
theory using the KS approach by replacing the XC energy EXC(rs) with the XC free energy
fXC(rs, θ). This is obtained via parametrized path integral Monte Carlo (PIMC) data for theuniform electron gas (UEG) at WDM conditions within the local density approximation
(LDA). Using DFT-MD, static properties such as equation of state (EOS) and density of
states (DOS) can be computed. The standard EOS is computed using the ground state XC
(T=0), which is not accurate at the extreme conditions encountered in WDM and electron
liquid regimes. Significant changes in the EOS are observed in the WDM regime. In the
electron liquid regime, the EOS shows larger impact (up to 20% at rs=14). Improvements
to the EOS and other static properties are of relevance to many applications such as
quantum hydrodynamics and in astrophysical models.

• Chapter 5: Ab Initio Modeling of Plasmons in Aluminum under Ambient and
Extreme Conditions

The theoretical framework for numerical modeling of plasmon behavior are crucial for
accurate diagnostics and interpretation of the x-ray scattering experiments. The use of
linear-response time-dependent density functional theory (LR-TDDFT) is highlighted as
an appropriate first-principle framework for consistent modeling of plasmon properties
from ambient to warm dense conditions. For various scattering angles and sample con-
ditions, we exemplify our assessment of properties such as the dynamic structure factor,
static structure factor, the plasmon dispersion, and the plasmon lifetimes on experimen-
tal measurements of aluminum accessible through x-ray Thomson scattering (XRTS). The
accuracy of LR-TDDFT is evaluated by comparing with other dielectric models such as
the basic Lindhard function, the Mermin approximation based on parametrized collision
frequencies, and the recently developed static local field corrections from path integral
Monte Carlo (PIMC) data for the uniform electron gas (UEG) at finite-temperature. The
results of this study indicate that the theoretical methods so far involved in obtaining
the XRTS spectra are not sufficient and further improvents are essential via local field
corrections and better XC functionals.
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2.1 Plasma Theory

In this chapter, the description of the theoretical models is presented in order to under-
stand the methodology behind the ab-initio methods starting from the established basics
to the incorporation of new techniques. The properties are given in a quantum mechan-
ical description which is later required to understand the theoretical description of the x-
ray scattering spectrum. Moving on to the main focus of this work, density functional the-
ory (DFT) is presented with its various approximations. The essence of the DFT scheme is
that the many-body problem is formulated within a single-particle theory, where the many-
body complexity of the problem enters through an exchange-correlation (XC) functional.
DFT is generally labelled as a ground-state theory quite incorrectly and with few excep-
tions [Oliveira et al., 1990, Levy, 1995, Petersilka et al., 1996] is used primarily for the treat-
ment of electronic ground states and their properties [Görling, 1996]. Hence, the language
of Green’s function is utilized to understand the excited state properties through many-body
theory and in obtaining the linear response. Various cases are presented in dealing with the
many-body effects and computational complexity.

2.1 Plasma Theory

A plasma consists of a system of many species i.e., charged particles like electrons and ions
of varying masses and densities. In equilibrium, the distribution of momenta of particles of a
species is given by the Boltzmann distribution for the classical/non-degenerate case

f (p) = e
–β( p22m –μ), (2.1.1)

where μ is the chemical potential, m the mass of the particle species, and β = 1/KBT . Usingthe definition of the thermal wavelength Λ = (h/√2πmKBT ), plasmas can be categorized basedon the spin statistic theorem as
a) non-degenerate and Boltzmann-like for nΛ3 � 1,
b) as strongly degenerate for nΛ3 � 1,
where n is the density of the species [Kremp et al., 2006]. Considering the quantum nature of
the particles, the Fermi-Dirac distribution applies for particles of half-integer spin

f (p) = 1
eβ( p22m–μ) + 1, (2.1.2)

and for an integer spin, the Bose-Einstein distribution is valid
f (p) = 1

eβ( p22m–μ) – 1. (2.1.3)

2.1.1 Random Phase Approximation

The Lindhard dielectric function [Lindhard, 1954] also commonly known as RPA is an ap-
proximation widely applicable to condensed matter, plasma, and nuclear physics describing

11



2 Theoretical Description

the collective properties of interacting electrons (jellium model) surrounded by an uniform
positive background charge. It accounts for the weakly screened Coulomb interaction and
is used to explain the linear response of a free electron gas at a mean-field level. This is
based on the collective work of Bohm and Pines in a series of papers [Bohm and Pines, 1951,
Pines and Bohm, 1952, Bohm and Pines, 1953] which explains the collective behavior of the
electron gas, including plasmons. The formulation was later proved to be the equivalent of
summing ring diagrams based on diagrammatic perturbation theory originating from quan-
tum electrodynamics (QED) [Gell-Mann and Brueckner, 1957] shown in Fig. 2.1.1. The graphi-
cal notation and the bubble diagram are further explored in section 2.5.

Figure 2.1.1: The bubble diagram and the diagramatic sum of the Feynman diagrams to obtainthe RPA sum.
The correlation functions of the density response function Π

≷
ab

for species a and b can be
represented in RPA using the correlation functions of the single-particle Green’s function g

≷
a .The retarded polarization function in the frequency space (ω) at a certain momentum (q) can

be represented in the integral form as [Kremp et al., 2006]

Π
R

ab
(q,ω) = i

∫
dω′

2π
Π>
ab
(q,ω′) – Π<

ab
(q,ω′)

ω – ω′ + iE , (2.1.4)
where E is energy in the complex plane.
Substituting the form Π

≷
ab
(12) = –δabg≷a (12)g≶a (12) and the use of spectral representation for

the single particle correlation functions
± ig

<(p,ω) = 2πδ [̄hω – E(p)[ f (p), (2.1.5)

± ig
>(p,ω) = 2πδ [̄hω – E(p)] (1± f (p)) , (2.1.6)

where f (p) is the Fermi-Dirac distribution. The polarization function can be further simplied to
the form

iΠ
≷
aa(q,ω) = ∫ d3p

(2π̄h)32πδ [ω – E(p + q) + E(p)] f≷(p + q)f≶(p), (2.1.7)
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Π
R
aa(q,ω) = ∫ d3p

(2π̄h)3
fa(p) – fa(p + q)

h̄ω + E(p) – E(p + q) + iE . (2.1.8)
Using the expression for the dielectric function

ε(q,ω) = 1 –∑
a,b

Vab(q)Πab(q,ω), (2.1.9)
where Vab(q) is the Coulomb potential between species a and b. The dielectric function is
written in an integral form as

ε(q,ω) = 1 +∑
a,sza

4π̄h2e2a
q2

∫
d3p
(2π̄h)3

fa(p + q) – fa(p)
h̄ω + E(p) – E(p + q) + iE , (2.1.10)

where sza accounts for the spin of the system for species a.
Using the Sokhotski-Plemelj theorem [Sokhotskii, 1873],

lim
E→0+

b∫
a

f (x)dx
x – x0 ± iE

dx = b∫
a

f (x)
x – x0 ∓ iπ

b∫
a

δ(x – x0)f (x)dx, (2.1.11)
the imaginary part of the dielectric function reduces to

=[ε(q,ω)] =∑
a,sza

4π̄h2e2a
q2

∫
d3p
(2π̄h)3δ [̄hω + E(p) – E(p + q)] (fa(p) – fa(p + q)) . (2.1.12)

The limits of the momentum integral are given by evaluating h̄ω = p2
2m + q2

2m + 2pq cos θ2m . Since
cos θ → [–1, 1], the limits of the integral are obtained as p = q

2 ±
h̄mω

q
. The consideration of

the electron-hole pairs in the electron gas are explained by the limits. Considering an electron
of initial momentum p and energy Ep is excited by a perturbation (q,ω). The new state of the
electron is given by momentum p+q and energy Ep+q = Eq + ω. The electron can only scatter
to states which are unoccupied, hence Ep+q is above the occupied Fermi sea of electrons, and
the process excites an electron from below to above the Fermi level leaving a vacancy in the
Fermi sea, a hole [Mahan, 2013].
Replacing the limits, the expression for the imaginary part is given by

=[ε(q,ω)] = 2me2̄h3
q3

[
mT log

1 + e
–μ+ 1

2m (– h̄mω
q

+q2 )2
/kBT


–mT log

1 + e
–μ+ 1

2m ( h̄mω
q

+q2 )2
/kBT


– 12

(
– h̄mω

q
+ q

2
)2 + 1

2
(
h̄mω

q
+ q

2
)2 ],

(2.1.13)
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where μ is the chemical potential. The expression for the real part of the dielectric function is
given by

<[ε(q,ω)] = 1 +∑
a,sza

4π̄h2e2a
q2 P

∫
d3p
(2π̄h)3

fa(p + q) – fa(p)
h̄ω + E(p) – E(p + q) . (2.1.14)

With the evaluation of the angular integral in the expression for the real part, the expression
can be represented as

<[ε(q,ω)] = 1 – 16π2me2̄h2
q2 P

+∞∫
–∞

d3p
(2π̄h)3pf (p)

× 1
2q
[
log
(
pab

h̄
– qab2̄h – mωab

q

)
+ log

(
pab

h̄
– qab2̄h + mωab

q

)]
.

(2.1.15)

The real and imaginary part are also related by the Kramers-Kronig relations

<[ε(q,ω)] = 1 + P

+∞∫
–∞

dω′

2π
=[ε(q,ω′)]
ω′ – ω , (2.1.16)

=[ε(q,ω)] = –P
+∞∫
–∞

dω′

2π
<[ε(q,ω′)] – 1

ω′ – ω , (2.1.17)
and follow the frequency sum (f -sum) and conductivity sum rules respectively

+∞∫
–∞

dω

π
ω=[ε–1(q,ω)] = –ω2

pl
, (2.1.18)

+∞∫
–∞

dω

π
ω=[ε(q,ω)] = +ω2

pl
, (2.1.19)

where ωpl is the plasma frequency. The retarded polarization function has the analytical prop-erty Π(q, –ω) = Π(q,ω)∗ therefore the real part is an even function of frequency and the imagi-
nary part an odd function.
As the theory is based on the grand canonical ensemble, the chemical potential, rather than
the density is a state variable. The chemical potential is defined as the energy required to add
or remove an electron from the system. At zero temperature, it corresponds to the Fermi
energy. It is based on the definition of the energy difference between a system with N particles
and N + 1 particles given by

μ = Etot(N + 1) – Etot(N), (2.1.20)
with the assumption that the total energy Etot = NEg , volume and the positive charge of the
system are fixed and Eg is the ground state energy per particle [Mahan, 2013]. In order to
obtain the chemical potential for a specified density, the density equation needs to be inverted,
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2.1 Plasma Theory

which for the general case is only possible numerically through a self-consistency cycle

ne(μ, T ) = ∫ d3p
(2π)3dωa(p,ω)f (p) = 1

π2
∞∫
0
dp

p2
1 + eβ(p2–μ) , (2.1.21)

where a(p,ω) is the spectral function given by
a(p,ω) = i

(
g
>(p,ω) – g<(p,ω)) , (2.1.22)

and obeys the normalization condition
+∞∫
–∞

dω

2π a(p,ω) = 1. (2.1.23)
The plasmon dispersion relation using RPA is given by [Thiele et al., 2008]

ω
2(q) = ω

2
pl

[
1 + 〈p2〉

m2
q2

ω2(0) +
〈p4〉
m4

q4
ω4(0) + . . .

]
, (2.1.24)

where the moments 〈pi〉 are evaluated using the Fermi integral [Galassi et al., 2002].
Experimentally via electron energy loss spectroscopy (EELS) or inelastic x-ray scatering (IXS),
the plasmon dispersion is obtained by fitting a parameter α to [Pines, 2018a]

ω(q) = ωpl + α h̄q2
m

+ O(q4). (2.1.25)
Neglecting higher order terms beyond the order of q2 and restricting the considerations to the
classical limit with the assumptions θ� 1, 〈p2〉 = 3meKBTe leads to the Gross-Bohm dispersion
relation [Bohm and Gross, 1949]

ω
2
GB = ω

2
pl
+ 3KBTe

me

q
2. (2.1.26)

Considering a weakly degenerate plasma θ ≈ 1, Eq. (2.1.24) can be reduced to the form known
as improved dispersion relation (IDR) [Thiele et al., 2008, Höll et al., 2007]

ω
2
IDR = ω

2
pl
+ 3KBTe

me

q
2(1 + 0.088neΛ3e ) +

(
h̄q2
2me

)2. (2.1.27)
Equation (2.1.27) extends the application range of the plasmon dispersion in Eq. (2.1.26) to
larger q-vectors and higher densities.

2.1.2 Local Field Corrections

The RPA expression given in the preceding section for the polarization function leads to the
expression for the density response function χ, which describes the correlation of density
fluctuations on a mean field level and takes already into account the screening due to the long
range nature of the Coulomb potential. In order to take into account, e.g., local fields, strong
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correlations, electron-electron collisions or anything beyond mean field, the concept of a local
field correction (LFC) is essential. The density response function is given by

χ(q,ω) = χ0(q,ω)1 – V (q)[1 – G(q,ω)]χ0(q,ω) , (2.1.28)
with χ0(q,ω) being the density response function of the noninteracting system at the same
conditions. By replacing G(q,ω) = 0 in Eq. (2.1.28), the form for RPA is recovered. Hence
G(q,ω) contains the full wave-vector resolved information regarding the XC effects in χ(q,ω) or
the dynamic structure factor, see Eq. (2.2.1).
A simple correction to the RPA to account for the exchange and correlation hole around the
electron was introduced by Hubbard [Hubbard, 1957] of the static form [Mahan, 2013]

G(q) = 1
2

q2
q2 + q2

F

, (2.1.29)
where qF is the Fermi wavevector. The correction factor arises from the vertex corrections
to the polarization diagram of the electron gas and the simple formula was regarded as an
improvement to the RPA in the evaluation of many properties.
A simple fitted expression G(q) = A[1 – e–B(q/qTF )2 ] was suggested by Singwi and Vashishta
et al. [Singwi et al., 1970, Vashishta and Singwi, 1972, Mahan, 2013] with dimensionless con-
stants A and B for various values of rs. Here, qTF is the Thomas-Fermi wavevector. The fitted ex-pression works reasonably well at small and intermediate wavenumbers, but not at larger val-
ues. Singwi and collaborators proposed a scheme known as STLS where the LFC is expressed
as a function of the static structure factor with significant improvement in treatment of the
short-range exchange and correlation effects [Singwi et al., 1970, Tanaka and Ichimaru, 1986,
Ichimuru, 2004, Dornheim et al., 2018a]

G
STLS(q) = – 1

ne

∫
dq

(2π)3
k.q
q2 [S(|k – q|) – 1]. (2.1.30)

With the STLS scheme, the pair correlation function have vast improvements over the RPA. The
plasmon dispersion is also improved with good agreement between experiments. However,
the compressibility sum rules is violated leading to unrelaible behavior for the LFC at small
q [Giuliani and Vignale, 2005].
Over the last few decades various efforts have been made in obtaining expressions for
the LFC. Ichimaru et al. [Ichimaru and Utsumi, 1981] obtained an analytic LFC expression
for a strongly coupled electron liquid which reproduced the QMC results of Ceperley et

al. [Ceperley and Alder, 1980]. Farid et al. [Farid et al., 1993] used Green’s function Quan-
tum Monte Carlo (QMC) results on the interacting electron gas to obtain the correlation
energy density based on the parametrization of Vosko et al. [Vosko et al., 1980]. Based on
ground state QMC simulations in the static limit (ω → 0), Moroni et al. [Moroni et al., 1992,
Moroni et al., 1995] have obtained accurate LFC for the uniform electron gas (UEG). This
has been further parametrized by Corradini et al. [Corradini et al., 1998] hereafter referred
to as CDOP. The static CDOP LFC as a function of density and wavenumber is given
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by [Corradini et al., 1998]

G(q, rs) = Cq
2 + Bq2

g + q2 + αq4e–βq
2 , (2.1.31)

where g = B/(A – C). The expressions for the coeffcients are given by

A = 0.25 – q2
F4πe2
dμC

dne
, (2.1.32)

B(rs) = 1 + 2.15r1/2s + 0.435r3/2s3 + 1.57r1/2s + 0.409r3/2s

, (2.1.33)

C = – π

2qFe2
d(rseC)
drs

, (2.1.34)
with eC , the correlation energy per particle and μC , the correlation contribution to the chemicalpotential. α and β are the fitted parameters with the best results obtained by taking

α = A

Bg

1.5
r1/4s

, (2.1.35)

β = 1.2
Bg

. (2.1.36)
All these data for the LFC of the electron gas have been obtained from ground state cal-
culations and are strictly speaking only applicable to such. With the efforts of Dornheim et

al. [Dornheim et al., 2019, Dornheim et al., 2020a], the problemhas been overcomewith ama-
chine learning representation of finite-temperature QMC data of the static LFC with respect to
the density, reduced temperature and the momentum vector (rs, θ, and q). The parametriza-
tion covers the entire range of WDM and is hereafter referred to as T-LFC. This is illustrated
in Fig. 2.1.2, where the static LFC of the UEG is shown at the density of aluminum (rs = 2.07,
ρ = 2.7 g/cm3) for four different temperatures.
At T=0 eV, the curve reproduces the CDOP ground state parametrization. With a raise in tem-
perature, at T=3 eV, the reduced temperature is still small (θ ≈ 0.26) and therefore the effect
on the G(q,ω) is small and starts to manifest at large wave numbers. With further increase in
temperature at T=8 eV (θ ≈ 0.69), there are significant deviations to the ground-state result
and at large q, the tail becomes negative. This is due to the lowering of kinetic energy taking
place due to XC effects for the conditions [Dornheim et al., 2019]. Finally, the largest deviations
appear at T=12 eV (dashed blue, θ ≈ 1.03), where G is systematically lower than for T=0 start-
ing around the Fermi wave number. The temperature effects of the LFC are clearly observable
for temperatures T & 8 eV and wave numbers q > qF . It has been shown that the frequencydependence of G(q,ω) in general has a smaller impact for rs . 4, especially for the systems
considered in chapter 5 [Dornheim et al., 2018b, Groth et al., 2019].
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Figure 2.1.2: Static LFC of aluminum at four different temperatures. The static LFCdata have been obtained from the machine-learning representation fromRef. [Dornheim et al., 2019]. Reprinted figure with permission from K. Ramakr-
ishna et al., Phys. Rev. B 103, 125118 (2021). Copyright 2021 by the AmericanPhysical Society.

2.1.3 Mermin Function

To account for electron-ion interactions and bound states, one needs to go beyond the RPA
with LFC which can account for the electron-electron collisions. A possible way to do so is
by the method of Mermin [Mermin, 1970], who used density conservation and a relaxation
time approximation to introduce a damping or relaxation term (ν) which can account for the
electron-ion collisions using

ε
MA(q,ω) = 1 + (1 + i ν

ω
) (ε(q,ω + iν) – 1)

1 + (i ν
ω
) (ε(q,ω + iν) – 1)(ε(q,ω→ 0) – 1) , (2.1.37)

where the dielectric function accounts for electron correlations with the inclusion of a local
field correction term G(q,ω) using Born-Mermin approximation as

ε(q,ω) = 1 – 1 – εRPA(q,ω)
1 + G(q,ω) (1 – εRPA(q,ω)) , (2.1.38)

which then results in the extended Mermin Ansatz (MA) [Fortmann et al., 2010]
ε
MA(q,ω) = (1 – iω

ν(ω) )
ε (q,ω + iν(ω)) ε(q, 0)

ε (q,ω + iν(ω)) – (iω/ν(ω)) ε(q, 0) . (2.1.39)
The extended Mermin Ansatz allows the inclusion of electron-ion collisions through the dy-
namical collision frequency term ν(ω). Using the Born approximation, the collision frequency
is given by

ν(ω) = –i ε0niΩ206π2e2neme

∞∫
0
dqq

6
V
2
s (q)Sii(q) 1

ω

(
ε
RPA(q,ω) – εRPA(q, 0)) , (2.1.40)
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where Vs(q) is the statically screened potential, ni is the ion density, Sii(q) the ion-ion static
structure factor which can be taken, e.g., from MD simulations, and Ω0 is the normalizationvolume. Substituting ν(ω) into Eq. (2.1.39) and using it in the formula for the dynamic structure
factor, yields dielectric functions, stopping power, structure factors and thus XRTS spectra with
LFC’s and collision terms included. The application of the dielectric function in evaluating the
XRTS spectra is discussed in the next section.

2.2 Theoretical Description of the X-ray Scattering Signal

X-ray Thomson scattering (XRTS) is a powerful technique for the diagnostics of solid den-
sity and shock-compressed matter due to the penetrative nature of the x-rays on the sam-
ple which otherwise is opaque towards optical lasers/probes [Glenzer and Redmer, 2009].
This allows to study properties such as ion-ion correlations, electron temperature and ion-
ization. The wavelength required to probe the target ideally should be the screening length
(λ < 2πc√ε0me/nee2). The scattered x-rays are collected at specific scattering angles and
the frequency resolved spectra is used for the analysis. Due to the scattering of photons
from electrons, XRTS is an ideal probe to understand the behavior of electrons in the sys-
tem [Graziani et al., 2014, Saunders, 2018].
Figure. 2.2.1 shows the capability of the commonly used x-ray sources in probing the electron
density. Hard x-rays with λ of the order of 1 nm are required for probing matter at typical solid
densities 1023 cm–3. Latest XFEL sources like the LCLS [Bostedt et al., 2016] and European
XFEL [Tschentscher et al., 2017] feature tunable hard x-ray source of up to 25 KeV. The scatter-
ing of the x-rays consist of the elastic scattering from the tightly bound electrons, inelastic scat-
tering from partially bound and from free electrons, also refered to as bound-bound, free-free
and bound-free scattering. In the inelastic scattering involving partially bound electrons, the
momentum transfer of the photon to an electron is given by h̄~k where ~k is the scattering vec-
tor. Figure. 2.2.2 shows the schematics of photons scattering off of electrons and the resulting
scattering vector k = |~k| = (4π/λ) sin(θ/2) for small momentum transfers [Glenzer et al., 2007].
The length scale (λ∗ ≈ 2π/k) of the electron density fluctuations compared to the screening
length (λs = 1/αk) of the plasma determines the scattering regime. The collective scattering
regime is defined for α > 1 where the length scale for the density fluctuations are larger than
the screening length. In the non-collective scattering regime defined for α < 1, resolution of
the density fluctuations of individual electrons are possible.
The response of the system to external pertubations (charge density fluctuations) is given by
the density response function. The description of XRTS always assumes linear response the-
ory [Dornheim et al., 2020c]. The dynamic structure factor (DSF) is related to the density re-
sponse function using the fluctuation-dissipation theorem

S(k,ω) = 1
πne

=[χ(k,ω)]
1 – e–̄hω/kBTe . (2.2.1)

The DSF is also related to the density-density correlation function via Fourier transform
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Figure 2.2.1: Comparison of the x-ray sources and the capability of probing the electron den-sity. Republished with permission of Springer from Frontiers and Challengesin Warm Dense Matter (2014) [Fortmann, 2014]. Permission conveyed throughCopyright Clearance Center, Inc.

Figure 2.2.2: A schematic cartoon of x-ray Thomson scattering illustrating the length of thescattering vector. The screening length (λs) and the length scale of the densityfluctuations (λ∗) are also shown for comparison.
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2.2 Theoretical Description of the X-ray Scattering Signal

S(k,ω) = ∫ +∞
–∞ dte

iωt

〈
δρ(k, t)δρ(k, 0)

〉
. (2.2.2)

The system response can now be evaluated based on the knowledge of the experimen-
tal parameters like the solid angle of the detector dΩ, area of irradiation A, the incoming
power Pi, the scattered power Ps, ~E0 the electromagnetic field, and the information of the
x-ray source: wavevector ~k and frequency interval dω using the expression for the scattered
power [Graziani et al., 2014]

Ps(r,ω)dΩdω = Pir
2dΩ
2πA |~kf × (~kf × ~E0)|2NS(k,ω)dω. (2.2.3)

Using the appropriate Chihara decomposition, the total dynamic structure factor of the elec-
trons can be evaluated as [Chihara, 1987].

S(k,ω) = Zf S
0
ee(k,ω)︸ ︷︷ ︸inelastic scattering from free electrons

+ |f (k) + q(k)|2Sii(k,ω)︸ ︷︷ ︸elastic scattering
+ ZcSc(k,ω)︸ ︷︷ ︸inelastic scattering from bound electrons

.
(2.2.4)

In Eq. (2.2.4), the three terms correspond to the Compton term for the free electrons, the
Rayleigh term for the electrons following the ion and the Raman term corresponding to
the inelastic scattering of the bound electrons to the continuum respectively. Zf is the freeelectrons per nucleus and Zc is the core charge. S0ee is the DSF for the free electrons (see
chapters 3 and 5 for the results of this work). f (k) and q(k) corresponds to the form fac-
tor of bound and free electrons respectively. Sc(k,ω) is the term for the bound-free scatter-
ing [Graziani et al., 2014, Plagemann et al., 2012]. Sii(k,ω) is the dynamic ion-ion structure fac-tor. In principle, the entirety of the DSF can be extracted from real-time TDDFT based on all-
electron calculations for Beryllium demonstrated by Baczewski et al. [Baczewski et al., 2016].
It is possible to infer the electron density from the position of the plasmon peaks in collec-
tive scattering for small momentum transfers. The ionization state of the system can also be
infered using XRTS. This is due to the scaling of the ionization state with the ratio of the elas-
tic and inelastic scattering signal. The elastic scattering component is related to the ion-ion
structure factor along with the form factors in Eq. (2.2.4). At large momentum transfers, the
ion-ion structure factor and the form factor of the bound electrons reach the conditions of
ideal plasma i.e. unity and zero respectively. This results in the sensitivity of elastic scattering
to the ionic form factor related to the Fourier transform of the electron density bound to the
ions.
The quantities of interest are computed as follows [Kraus, 2012]:

f (~k) = 〈 Zc∑
j=1 e

i~k~rjl(t)
〉
, (2.2.5)

q(~k) = 1
2πN

√
Zf

Sii(k,ω)
∫
dt
′
〈 N∑

l

Zf∑
m

e
i~k[~Rl(t)–~rm(t+t′)]〉 expiωt′ , (2.2.6)
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Sii(k,ω) = 1
2πN

∫
dt
′
〈 N∑

l,m

Zf∑
m

e
i~k[~Rl(t)–~Rm(t+t′)]〉 expiωt′ , (2.2.7)

S
0
ee(k,ω) = 1

2πN
∫
dt
′
〈 Zf ,N∑

l,m

Zf∑
m

e
i~k[~rl(t)–~rm(t+t′)]〉 expiωt′ , (2.2.8)

where ~Rl(t) is the position of the lth ion and ~rm(t) is the position of the mth free electron.
The asymmetry in the DSF with respect to the frequency shift (±ω) is a key feature to unlock the
plasma properties in a Thomson scattering experiment. Let a photon with initial momentum
~ki and frequency ωi scatter inelastically into final momentum ~kf and frequency ωf . The proba-bility of the final state is proportional to the final momentum ~kf and frequency ωf . Under theconditions of equilibrium, the DSF is proportional to the Boltzmann factor [Höll et al., 2007]

S

(
ωi → ωf , ki → kf ∝ e

– h̄ωf
KBT

)
. (2.2.9)

This conditions also holds true for the case of reverse scattering
S

(
ωf → ωi, kf → ki ∝ e

– h̄ωi
KBT

)
. (2.2.10)

Using the expression for DSF in Eq. (2.2.1) and the analytical property of the retarded po-
larization function Π(k,ω) = Π∗(–k, –ω) (see section 2.1.1) via fluctuation dissipation theo-
rem [Kubo, 1966] leads to the detailed balance equation

S(–k, –ω)
S(k,ω) = e

– h̄ω

KBT , (2.2.11)
where ω = ωf – ωi and k = |~k| = |~kf – ~ki|. The detailed balance relation is hence a useful
way to infer the temperature of the plasma based on the scattering spectra obtained in the
experiments. In practice, this method does not always work, and that determining plasma
properties is an active area of research [Dornheim et al., 2022].

2.3 Density Functional Theory

For the computational modelling of materials, density functional theory (DFT) is of paramount
importance. The many-body problem of interacting electrons can be effectively reformu-
lated into a single particle problem. It greatly reduces the computational cost of calculat-
ing both ground state and equilibrium (finite-temperature) properties. This follows from the
Hohenberg-Kohn theorem [Hohenberg and Kohn, 1964] which states that in a system con-
sisting of interacting electrons, the ground state density can be mapped uniquely to a system
subjected to an external potential. The electron density of the ground state leads to the lowest
value for the ground state energy. Hence, the ground state density contains sufficient infor-
mation about the interacting many particle system.
Consider a system of N electrons subjected to an external potential V (r). The Hamiltonian is
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given by

H(r1, . . . rN) = N∑
j=1
(
–12∇2

rj
+ V (rj)

)
+ 1
2

N∑
j 6=k V (rj, rk). (2.3.1)

The Hamiltonian can be written as the sum of the kinetic and potential energy operators as
Ĥ = T̂ + V̂el + V̂ext where T̂ is the kinetic energy operator, V̂el is the interaction between electronsand V̂ext is the external potential. Let a functional F be defined such that it is minimized to
obtain the interacting density n for all the antisymmetric wavefunction of N electron system
as [Martin, 2020, Varsano, 2006]

F[n] = min
ψ→n
〈ψ|T̂ + V̂el|ψ〉, (2.3.2)

where ψmin[n] is the wavefunction that minimizes the functional for an interacting system at a
given density. Defining the energy functional for an external potential as

E[n] = F[n] +
∫
drn(r)V (r), (2.3.3)

with E[n] the expectation value of the Hamiltonian evaluated for ψmin[n] as E[n] =
〈ψmin[n]|Ĥ|ψmin[n]〉. This ensures that the energy functional is always an upper bound for
the energy of the ground state Egs as

E[n] ≥ Egs, (2.3.4)
and has a global minimum at the exact ground state energy. The ground state energy is ob-
tained by minimizing E[n] with respect to the density using the conditions∫

drn(r) = N, (2.3.5)
∂F

∂n(r) + V (r) = μ, (2.3.6)
where μ is the chemical potential. Henceforth with the full knowledge of the exter-
nal potential, the ground state energy of the system can be evaluated. A practical way
of obtaining the ground state energy is using the scheme introduced by Kohn-Sham
(KS) [Kohn and Sham, 1965] denoted hereafter by S in the subscript. The KS scheme involves
using the density of non-interacting electrons akin to the density of the interacting electrons
with the system subjected to an external potential VS. The KS functional is written as

FS[n] = T̂S[n] = min
ψ→n
〈ψ|T̂|ψ〉. (2.3.7)

The normalization conditions imposes
∂TS

∂n(r) + VS(r) = μ, (2.3.8)
and in comparsion with Eq. (2.3.6), the external potential can be obtained as
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VS(r) = V (r) – ∂TS
∂n(r) +

∂F
∂n(r) . (2.3.9)

Therefore the ground state energy of the system can be evaluated through the solution of the
non-interacting system. The full knowledge of the evaluation further requires an energy term
defined as exchange-correlation energy (EXC) and its functional derivative–exchange correla-
tion potential (VXC) in the following form

EXC[n] = F[n] – TS[n] – U[n], (2.3.10)

VXC [n(r)] = ∂EXC
∂n(r) , (2.3.11)

where U[n] is the Hartree energy functional which describes the classical electrostatic inter-
acting energy defined as

U[n] = –12
∫
d
3
r

∫
d
3
r
′n(r)n(r ′)|r – r ′| . (2.3.12)

The Hartree potential is obtained through the functional derivative via
VH [n(r)] = ∂U

∂n(r) = ∫ dr
′ n(r ′)
|r – r ′|. (2.3.13)

The potential for the non-interacting system or the KS potential can now be expressed as
VS[n(r)] = V (r) + VH [n(r)] + VXC [n(r)] . (2.3.14)

The KS Hamiltonian is given by ĤS = T̂ + V̂S[n] where T̂ is the single-particle kinetic energy
operator. The ground state energy of the system can be solved self-consistently using the set
of equations known as Kohn-Sham (KS) equations: [Kohn and Sham, 1965]∫

drn(r) = N, (2.3.15)

ĤS[n]|ψi〉 = εi|ψi〉, (2.3.16)

ĤS[n] = –12∇2 + V (r) + VXC [n(r)] + ∫ dr
′ n(r ′)
|r – r ′|, (2.3.17)

n(r) =∑
i

θ(μ – εi)ψ∗i (r)ψi(r), (2.3.18)
where ψi(r) is the single-particle wavefunction obtained as the solution of the non-interactingsystem with the corresponding eigenvalue εi. The obtained single-particle solutions via the
Kohn-Sham (KS) equations are called Kohn-Sham (KS) orbitals. In practice, the exact XC poten-
tial which contains the many-body physics of the system has to be approximated and a good
approximation is required to obtain the solution discussed in the next section.
A detailed formalism to extend DFT to finite-temperature i.e., thermal density functional theory

24



2.3 Density Functional Theory

is presented in Refs.[Pittalis et al., 2011, Pribram-Jones et al., 2014, Pribram-Jones et al., 2016,
Pribram-Jones and Burke, 2016, Burke et al., 2016, Smith et al., 2016, Smith et al., 2018,
Harding et al., 2022].

2.3.1 Exchange-Correlation Functionals

The construction of exchange-correlation (XC) functionals has been an active field of research
over the last few decades [Burke, 2012]. The accuracy and complexity of such functionals
is well categorized and is informally referred to as the rungs on "Jacobs ladder" based on
the complexity and higher order approximations involved for the evaluation shown in Fig.
2.3.1 [Perdew and Schmidt, 2001].
One of the simplest and widely used approximation is the local density approximation or LDA.
The LDA is based on the assumption that the density of the systen can be treated locally as
uniform electron gas (UEG). The XC energy is written as

E
LDA
XC [n] = ∫ drn(r)eUEGXC [n(r)] , (2.3.19)

where eUEG
XC

[n(r)] is the energy density of the UEG [Martin, 2020, Varsano, 2006]. This term
can be split into a simple analytic form for exchange and a numerical approximation for the
correlation part as

e
UEG
X [n(r)] = –34

[3n
π

]1/3, (2.3.20)

e
UEG
C [n(r)] = a11 + a2r1/2s + a3rs , (2.3.21)

where a1 = –0.1423, a2 = 1.0529 and a3 = 0.3334 are constants that have been obtained
from highly accurate QMC data for the UEG [Ceperley and Alder, 1980]. In the high-density
limit, Gell-Mann et. al. [Gell-Mann and Brueckner, 1957] obtained eC(rs) = 0.0622 log(rs) –
0.094 + O(rs). Carr and Maradudin [Carr and Maradudin, 1964] further extended this with an
additional term in the series: eC(rs) = 0.0622 log(rs) – 0.094 + 0.018rs log(rs) + ars + O(r2s ). At lowdensity, the calculations of the correlation energy becomes difficult as the electrons become lo-
calized [Mahan, 2013]. In the low density limit, the system is expected to exhibit Wigner crystal
phase [Wigner, 1934] and has the form eC(rs) = a/(rs)+b/(r3/2s )+c/(r2s )+. . .where a, b, . . . are con-
stants [Sun et al., 2010]. Various approximations for the correlation term have resulted in sev-
eral XC functionals [Perdew and Zunger, 1981, Perdew and Wang, 1992, Vosko et al., 1980].
The LDA works actually surprisingly well for systems far from uniform assuming it is only based
on the uniform electron gas. Still, more accurate approximations are required for more quan-
titative accuracy for van der Waals interactions, or insulating systems involving band gaps.
Another widely used approximation constitutes the generalized gradient approximation or
GGA. The XC energy is written as

E
GGA
XC [n(r)] = ∫ drn(r)eGGAXC [n(r),∇n(r)] , (2.3.22)
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LDA [n(r)] (PZ/PW/. . .)

GGA [n(r) ∇n(r)]
(PBE/BLYP/. . .)

Meta-GGA [n(r) ∇n(r) ∇2n(r)
τ(r)] (SCAN/TPSS/. . .)

Hybrid-GGA/Hybrid-Meta-GGA
[n(r) ∇n(r) ∇2n(r) τ(r) occupied

orbitals] (B3LYP/B97/. . .)

Fully non-local [n(r) ∇n(r)
∇2n(r) τ(r) all orbitals]
(vdW-DF2/VV-10/. . .)

Figure 2.3.1: Jacob’s ladder of XC functionals with some of the most common DFT function-als [Perdew and Zunger, 1981, Perdew and Wang, 1992, Perdew et al., 1996a,Becke, 1988, Lee et al., 1988, Sun et al., 2015, Tao et al., 2003, Becke, 1997,Lee et al., 2010, Vydrov and Van Voorhis, 2010] within each rung of the lad-der [Perdew and Schmidt, 2001]. The arrow represents the increasing chemicalaccuracy. n(r) is the electronic density and τ(r) = ∑occ.
i

12|∇ψi(r)|2 is the kineticenergy density for the occupied orbitals.

where eGGA
XC

is given by an analytic function of the density and the gradient of the density in-
volving free parameters obtained using sum rules. The GGA in general provides better total
energies for the atoms and molecules and also improves the band gap problem imposed by
LDA for the insulators. PBE [Perdew et al., 1996a] is a popular choice of the GGA range of
XC functionals and provides reasonable accuracy for the calculations involving bond-lengths
and bond-angles but still underestimates the band gaps. Further improvements to GGA can
be included with the additional use of kinetic energy density (∇2n(r)) which are known as
meta-GGA which vastly improves the evaluation at a higher computatational cost. With the
combination of Hartree-Fock exchange and the rest of the contribution arising from ab-initio

or empirical methods, hybrid class of functionals are constructed. HSE [Heyd et al., 2003] is a
popular choice for metallic systems with the XC energy given by

E
HSE
XC [n(r)] = αmE

SR
X [n(r)] + (1 – αm)ESRX [n(r)] + ELRX [n(r)] + EC[n(r)], (2.3.23)

where αm is the mixing fraction. The electron-electron interaction is separated into short-
range (SR) and long-range (LR) parts for the exchange terms only. The first term in Eq. (2.3.23)
contains the short-range Hartree-Fock exact exchange. The second term contains the short-
range exchange contribution evaluated using PBE. The third and the final terms contain the
long-range exchange contribution and the correlation energy evaluated using PBE respectively.
The range of XC functionals discussed in this section have been very successful in modeling
a variety of systems but lack the thermal XC effects of including temperature. This becomes
important in the warm dense regime as θ ≈ 1 and requires the construction of accurate finite-
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temperature XC functionals.

2.3.2 Finite-Temperature Exchange-Correlation Functionals

By replacing the XC energy EXC(rs, θ) of the system with the XC free energy fXC(rs, θ), the inputcan be used in DFT and DFT-MD for perfoming simulations at finite-temperature for the elec-
trons. To construct a finite-temperature version of the LDA requires parametrization of the
free energy with respect to density, temperature and spin.
Ebeling et al. [Ebeling et al., 1981, Ebeling and Richert, 1982, Ebeling and Richert, 1985b,
Ebeling and Richert, 1985a] produced a Padé aprroximation for the fXC which has been
used for studying non-ideal plasmas and correctly reproduced the ground state and
high temperature limit. Furthermore, Ichimaru and coworkers [Tanaka et al., 1985,
Tanaka and Ichimaru, 1986] obtained the interaction energy V (per particle) for the UEG us-
ing linear response theory via static structure factor in Singwi, Tosi, Land, and Sjölander (STLS)
approximation [Singwi et al., 1968] at finite-temperature

V = 1
2
∫
k<∞

dk

(2π)3 [S(k) – 1] 4π
k2 . (2.3.24)

Perrot and Dharma-wardhana [Perrot and Dharma-wardana, 1984,
Perrot and Dharma-wardana, 2000, Dharma-wardana and Perrot, 2000] obtained a
parametrization based on classical mapping. They introduced a modified temperature
Tm such that Tm = √

T2 + T2e and assumed an interpolation between the ground state and
classical high temperature regimes. The mapping is such that the ground state correlation
energy of the electron gas is recovered by mapping a classical sytem at an effective temper-
ature Te. The free energy paramaterization was obtained by performing simulations of the
uniform electron gas in the region θ = 0 – 10 and rs = 1 – 10 and fitted to a functional form.
Karasiev et al. [Karasiev et al., 2014b] obtained a parametrization for the free energy using
restricted path integral Monte Carlo (RPIMC) data for the uniform electron gas from Brown et
al. [Brown et al., 2013a] hereafter refered to as KSDT. It was shown to exhibit deviations in EXCof up to 10% [Schoof et al., 2015] and is the motivation behind GDSMFB [Groth et al., 2017c]
explored in further detail in chapter 4. The expression for the free energy and the constants
are given below:

fXC (rs, θ) = – 1
rs

aHF (θ) + b(θ)r1/2s + c(θ)rs1 + d(θ)r1/2s + e(θ)rs , (2.3.25)

aHF (θ) = 0.610887 tanh(θ–1)0.75 + 3.04363θ2 – 0.09227θ3 + 1.7035θ41 + 8.31051θ2 + 5.1105θ4 , (2.3.26)

b(θ) = tanh(θ–1/2)b1 + b2θ2 + b3θ41 + b4θ2 + b5θ4 , (2.3.27)

c(θ) = [c1 + c2 exp(–c3
θ
)] e(θ), (2.3.28)
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d(θ) = tanh(θ–1/2)d1 + d2θ2 + d3θ41 + d4θ2 + d5θ4 , (2.3.29)

e(θ) = tanh(θ–1)e1 + e2θ2 + e3θ41 + e4θ2 + e5θ4 , (2.3.30)
where aHF (θ) represents the Hartree-Fock limit as parametrized in
Ref. [Perrot and Dharma-wardana, 1984] and {bi, ci, di, ei} are con-
stants [Karasiev et al., 2014b]. Instead of utilizing the expression for the interacting energy,
the following equation is used to calculate the XC energy

Exc(rs, θ) = fxc(rs, θ) = θ
fxc(rs, θ)

∂θ |rs , (2.3.31)
and fitted to the EXC data by Brown et.al. [Brown et al., 2013a]. Furthermore, Karasiev
et.al. have constructed a finite-temperature GGA XC free-energy functional (KDT16)
and shown the thermal effects on the pressure of alumimum and deuterium Hugo-
niot [Karasiev et al., 2018b, Karasiev et al., 2019a]. The recently constructed thermal hybrid
functional (KDT0) [Mihaylov et al., 2020] based on previously developed KSDT and KDT16 of-
fers improvements to the static calculations of band structure and band gaps across various
temperature regimes. At low temperature, it reduces to the ground state hybrid PBE0 approx-
imation [Perdew et al., 1996b, Adamo and Barone, 1999].
Groth and coworkers [Dornheim et al., 2016b, Groth et al., 2017c] obtained a parametrization
for the free energy hereafter refered to as GDSMFB. The fXC is obtained from PIMC data for the
interaction energy using

f
ξ

XC
(rs, θ) = 1

r2s
∫ rs

0 dr
′
sr
′
sV

ξ(r ′s, θ), (2.3.32)

V
ξ(rs, θ) = 2f ξ

XC
(rs, θ) + rs∂f

ξ

XC
(rs, θ)

∂rs
|θ. (2.3.33)

f 0XC and f 1XC are fitted using the Padé fit

f (x) = ∑m≥0
i=0 aix

i

1 +∑n≥1
j=0 bjx

j
= a0 + a1x + a2x2 + . . . + amxm1 + b1x + b2x2 + . . . + bnxn , (2.3.34)

where {ai,bi} are constants.
In the high density limit, the Hartree-Fock limit is obtained, limrs→0 f HFXC (rs, θ) = aHF (θ)

rs
. At

the ground state limit, limθ→0 f HFXC (rs, θ) = –12εRy(rs) where εRy is the ground-state parameter-ization for the exchange correlation energy obtained by Ebeling et al. [Ebeling et al., 1981,
Ebeling and Richert, 1982, Ebeling and Richert, 1985b, Ebeling and Richert, 1985a] using a
Padé aprroximation in Rydberg atomic units given by

ε
Ry(rs) = 0.913

rs
+ 0.1244 log(1 + 2.117r1/2s1 + 0.3008r1/2s

). (2.3.35)
In the high-temperature limit, the Debye-Hückel result is obtained, limθ→∞ f HFXC (rs, θ) =
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– 131/2 r–3/2s θ–1/2. The XC energy is calculated using Eq. (2.3.31). The XC free energy at arbitrary
spin polarization is obtained using [Groth et al., 2017c, Groth et al., 2017b]

fXC (rs, θ, ξ) = f
0
XC (rs, θ0) +

[
f
1
XC(rs, θ0, 2–2/3) – f 0XC(rs, θ0)

]
Φ(rs, θ0, ξ), (2.3.36)

where ξ = (N↑ – N↓)/(N↑ + N↓) is the spin polarization and θ0 = θ(1 + ξ)2/3. The interpolation
function is given by

Φ(rs, θ, ξ) = (1 + ξ)α(rs,θ) + (1 – ξ)α(rs,θ) – 2
2α(rs,θ) – 2 , (2.3.37)

α(rs, θ) = 2 – h(rs)e–θλ(rs,θ), (2.3.38)

h(rs) = 2/3 + h1rs1 + h2rs , (2.3.39)

λ(rs, θ) = λ1 + λ2θr1/2s , (2.3.40)
where {hi, λi} are constants. The parametrization for the free energy (KSDT/GDSMFB) are avail-able as finite-temperature XC functionals for a suite of DFT codes via a library of XC functionals
(LIBXC) [Marques et al., 2012, Lehtola et al., 2018] package or can be incorporated into DFT
simulations using the parametrized form.

2.3.3 Density Functional Theory-Molecular Dynamics

Density functional theory is combined with molecular dynamics (DFT-MD) to perform simula-
tions at finite-temperature. The Born-Oppenheimer approximation is used to seperate the
electronic system from the ionic. The ionic and the electron motion are decoupled, hence
this combination allows for inexpensive computations compared to PIMC. Electrons can be
treated at finite temperature by extending the KS Ansatz through the Mermin formulation, for
which traditionally ground state (T=0) XC functionals are mostly used. Recent developments
in finite-temperature XC functionals have been successfully used for the equation of state
calculations using DFT-MD [Karasiev et al., 2016, Karasiev et al., 2018a, Karasiev et al., 2019b,
Ramakrishna et al., 2020]. The grand potential is minimized with respect to the minimizing
density i.e. equilibrium density and there exists a functional which is a finite-temperature ana-
log of the Hohenberg-Kohn functional [Hohenberg and Kohn, 1964, Mermin, 1965]. The tem-
perature is included in a self-consistency cycle at a finite-temperature where the free energy
is minimized instead of the energy.
With electronic smearing, the occupancy of the KS states is given by a smooth function. The
temperature for the electrons is set to finite-temperature by the method of electronic smear-
ing especially for metallic systems. This improves the convergence with respect to the sam-
pling of the Brillouin zone in metals. At T=0, the Fermi-Dirac distribution is step-like and
the degenerate states at the Fermi level leads to convergence issues while sampling. By
smearing or allowing fractional occupation, the problem can be mitigated. Fictitious smearing
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Figure 2.3.2: DFT-MD workflow represented in a flowchart.

choices include Gaussian smearing, usually employed for the calculations involving density of
states. Other popular alternatives include Methfessel-Paxton [Methfessel and Paxton, 1989]
or Marzari-Vanderbilt [Marzari et al., 1999] methods. The sampling in the Brillouin zone can
influence the computed energy of the system. A common approach is to sample the recip-
rocal space at only the gamma-point (Γ). This saves a lot of computation time and works well
for large system sizes. At large densities relevant in WDM, more k-points are required to sam-
ple the Brillouin zone. Monkhorst-Pack scheme [Monkhorst and Pack, 1976] can be utilized
to generate a discrete grid of k-points for improving the convergence. See section 4.1 for the
influence of k-point sampling.
The workflow of a typical DFT-MD simulation is shown in Fig. 2.3.2 [Graziani et al., 2014]. The
DFT step consists of solving the KS equations self-consistently to minimize the free energy
functional. In an MD step, the ions are moved for a finite time step by integrating Newton’s
equations using the Verlet algorithm [Verlet, 1967] and the resulting forces between the atoms
are computed based on the electronic potential energy surface provided by the solution of the
KS equations [Feynman, 1939, Hellmann, 2015]. The iteration has to be perfomed until the
energy is converged. The self-consistent cycle is repeated for the new ionic positions. Periodic
boundary conditions are employed for the simulation box. The temperature of the ions can
be adjusted with the help of a thermostat, typically Nosé-Hoover [Nosé, 1984b, Nosé, 1984a]
in the canonical ensemble.
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2.3.4 Kubo-Greenwood Formula

In WDM, linear response calculations using ab-initio methods can be computed using rela-
tively inexpensive (computationally) methods like the Kubo-Greenwood formula [Kubo, 1957,
Greenwood, 1958] hereafter refered to as KG. The linear response quantities are com-
puted only in the optical limit (q → 0) under this scheme. Using the extended Mer-
min ansatz discussed in section 2.1.3 , it can be further extended to finite wavenum-
bers [Plagemann et al., 2012, Witte et al., 2017a]. The KG results in WDM have generally been
applied to plasma and high energy densities and not in the calculations involving bound or par-
tially bound state systems. Due to the approximations made in the derivation of KG, certain
many body effects (that are usually collected in LFCs or XC kernels) are missing. In addition, KS
eigenfunctions and eigenvalues are used, which are strongly dependent of the XC functional.
KG on KS eigenfunctions and eigenvalues yields reasonable, if not accurate results which jus-
tifies their use on systems under certain conditions, but conceptually this procedure is wrong.
These restrictions produce inconsistent results in the linear response, see section 3.2. The
electrical conductivity can be evaluated from the wavefunctions evaluated from DFT using KG
by computing the dynamic Onsager coefficients [Mazevet et al., 2010, Calderin et al., 2017]

Lij(ω) = (–1)i+j 2π3V
∑
n,m,k,α

|〈ψSn,k|∇α|ψSm,k〉|2(εm,k – μ)i–1(εn,k – μ)j–1

× f (εm,k) – f (εn,k)
εn,k – εm,k δ(εn,k – εm,k – ω),

(2.3.41)

where V is the volume of the simulation cell, μ is the chemical potential, f (ε) is the Fermi-
Dirac distribution, α = x, y, z, and ψSn,k are the KS orbitals at band n and wavevector k with
corresponding energies εn,k [Di Paola et al., 2020]. The electrical conductivity is given by the
term L11(ω). As the summation is time consuming and too expensive for each time step of aDFT-MD simulation, it is instead performed for snapshots of the simulation.
The real part of the conductivity in Eq. (2.3.41) can be used to extract the imaginary part of the
dielectric function using the relation = [ε(ω)] = < [σ(ω)] /ε0ω and the real part of the dielectric
function is in turn calculated using the Kramer-Kronig relation.

< [ε(q,ω)] = 1 + P

+∞∫
–∞

dω′

2π
= [ε(q,ω′)]
ω′ – ω . (2.3.42)

2.4 Time-Dependent Density Functional Theory

Time-dependent density functional theory (TDDFT) extends DFT to study the dynamics and
phenomena of coupled electron-ion systems subject to time-dependent external fields. TDDFT
can describe electronic excitations in solids including plasmons and excitons. DFT is a
ground state theory and to study excited states requires an extension of the time-dependent
Schrödinger equation. This follows from the Runge-Gross theorem [Runge and Gross, 1984]
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akin to the KS scheme by introducing an external KS potential VS(r, t) to a non-interacting elec-tronic system that reproduces the time-dependent density n(r, t) of the interacting system. The
time-dependent KS equations take the following form

i
∂ψSj (r, t)

∂t = [–∇2
2 + VS [n(r, t)]]ψSj (r, t). (2.4.1)

The occupied time-dependent KS orbitals determine the density of the interacting system
n(r, t) =∑

j

|ψSj (r, t)|2. (2.4.2)
The KS potential similar to Eq. (2.3.14) is instead expressed as

VS(r, t) = Vext(r, t) + VH(r, t) + VXC(r, t). (2.4.3)
The first term is the external potential, the second term is the Hartree potential, and the final
term is the exchange correlation (XC) potential containing themany-body effects. The determi-
nation of XC potential in this formalism is not straightforward compared to DFT due to causality
and can instead be represented as a functional derivative of an action functional (AXC) derivedfrom the Keldysm formalism [Keldysh et al., 1965, Varsano, 2006] as

VXC [n(r, t)] = ∂AXC
∂n(r, t′)|n(r,t), (2.4.4)

where t′ is the Keldysh pseudo time. The Keldysh formalism describes the evolution of a quan-
tum mechanical system subjected to time-dependent external field or a systematic approach
to study non-equilibrium systems. The exact expression for VXC is unknown and the quality ofcalculations depend on the approximation for this term. The exchange-correlation kernel fXCin TDDFT is given by

fXC (r, r ′,ω) = ∂VXC [n(r,ω)]
∂n(r ′,ω) |δVext=0. (2.4.5)

Compared to DFT where good approximations exist for VXC, the simplest approximation in
TDDFT is given by the adiabatic local density approximation (ALDA) or time-dependent local
density approximation (TDLDA) where a static LDA functional is used for the dynamical prop-
erties [Onida et al., 2002]

V
ALDA
XC (r,ω) = VXC [n(r)] |n=n(t), (2.4.6)

by using the approximation that the time-dependent functional is local in time which works
for systems where the variation in temporal scale is negligible. Thus fXC under ALDA is not
frequency dependent. The kernel can now be written as

f
ALDA
XC (r, t, r ′, t′) = δ(r – r ′)δ(t – t′)∂VLDAXC

[n]
∂n |n=n(r,t). (2.4.7)

ALDA has issues as q → 0, f ALDAXC does not diverge but approaches a constant missing the
long range 1/q2 dependence and fails to describe excitonic effects. There has been extensive
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2.4 Time-Dependent Density Functional Theory

work on the construction of fXC kernels especially long-range kernels for determination of op-tical properties [Botti et al., 2004, Sharma et al., 2011, Sottile et al., 2003, Reining et al., 2002,
Ullrich, 2011].
The linear response of the system is measured by perturbing it with a time-dependent exter-
nal potential δW(r, t) which induces a time dependent density that is related to the perturbed
potential [Ullrich, 2011]

δn(r,ω) = ∫ dr
′
χ(r, r ′ω)δW(r ′,ω), (2.4.8)

where χ(r, r ′,ω) is the density-density response function of the system. Using the KS scheme,
the induced density can be related to the potential via

δn(r,ω) = ∫ dr
′
χS(r, r ′ω)δVS(r ′,ω), (2.4.9)

where δVS contains the external, Hartree and the XC potential. The response function using
the KS scheme is obtained by applying first-order perturbation theory to KS equations in terms
of ground state eigenvalues (εj) and eigenfunctions (ψj) using

χS(r, r′,ω) = lim
η→0+

∑
jk

(
fk – fj) ψj(r)ψ∗j (r′)ψk(r)ψ∗k(r′)

ω – (εj – εk) + iη , (2.4.10)
where fj is the KS orbital occupation numbers and η the Lorentzian broadening. Using Eqns.
(2.4.8) and (2.4.9), the Dyson equation for the interacting density-density response function
using the XC kernel is given by

χ(r, r ′ω) = χS(r, r,′ ω) +
∫
dr1dr2χS(r, r1,ω)

[ 1
|r1 – r2| + fXC(r1, r2,ω)

]
χ(r2, r ′,ω). (2.4.11)

The poles of Eq. (2.4.11) determine the excitiation energies of the system. Hence the knowl-
edge of fXC and χS allows to determine the full solution of Eq. (2.4.11). The Dyson equation
connecting the interacting and non-interacting polarization functions in matrix formalism is
written as

χ = [1 – χ0(V + fxc)–1] χ0. (2.4.12)
The inverse of the dielectric function is a measure of the screening using the ratio of the total
to the applied potential using

ε
–1(r, r,′ ω) = δVtot(r,ω)

δV (r ′,ω) . (2.4.13)
The dielectric matrix is now related to the polarizability using

ε
–1(r, r,′ ω) = δ(r – r ′) +

∫
dr
′
V (r, r ′)χ(r, r,′ ω). (2.4.14)

The dynamically screened Coulomb interaction which takes into account the screening impor-
tant for excitonic calculations is calculated using
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W(r, r ′,ω) = ∫ dr1V (r, r1)ε–1(r1, r,′ ω). (2.4.15)
The random phase approximation (RPA)1 calculations are performed by setting the exchange-
correlation kernel fXC → 0 in the density response function

χ(q,ω) = χ0
S
(q,ω)

1 – [V (q) – fXC(q,ω)] χ0S (q,ω)) . (2.4.16)
Here χ0

S
refers to the free density response function computed using the single particle KS

states using Eq. (2.4.10) [Marques and Gross, 2004]. The dielectric function in RPA is obtained
using

ε
–1
RPA = 1 + V (1 – χ0V )–1χ0, (2.4.17)

εRPA = 1 – χ0V . (2.4.18)
A simple way to construct an fXC kernel with long-range behavior is to set [Ullrich, 2011]

fXC(r, r ′) = – α

4π|r – r′|, (2.4.19)
and then performing a Fourier transformation, which is capable of accounting for the bound
excitons using TDDFT. A simple long-range kernel using a parameter (α,β) dependent form
fXC(q) = –α/q2 in the static limit and fXC(q,ω) = –(α + βω2)/q2 in the dynamical limit was de-
veloped which could capture the bound exciton with less comptational cost [Botti et al., 2004,
Sottile et al., 2003] and outperformed ALDA. Due to the strong dependence of (α,β) on the
material, the kernel is not so effective and simple to use until the development of a param-
eter free bootstrap kernel by Sharma et. al [Sharma et al., 2011] which effectively reproduces
the bound exciton and computationally less expensive compared to the use of Bethe Salpeter
equation discussed in section 2.6 .
The inverse of the dielectric function and the XC kernel are related by [Sharma et al., 2011]

ε
–1(q,ω) = 1 + χ0S (q,ω)V (q)

[1 – (V (q) + fXC(q,ω)) χ0S (q,ω)]–1 . (2.4.20)
The bootstrap kernel is approximated by

f
boot
XC (q,ω) = –ε–1(q,ω = 0)V (q)

ε000 (q,ω = 0) – 1 = ε–1(q,ω = 0)
χ000 (q,ω = 0) , (2.4.21)

where ε0(q,ω) is the RPA dielectric function. The superscript in the denominator term indicates
the evaluation with the reciprocal lattice vector components G = G′ = 0. Equation (2.4.21)
ensures the following conditions:
a) The long wavelength behavior fXC(q→ 0) = α/q2,
1Not to be confusedwith the Lindhard dielectric function/RPA based on plasma theory introduced in section 2.1.1.RPA calculation in TDDFT formalism here simply means the lack of an XC kernel.
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b) In the static limit ω → 0, the bootstrap kernel agrees closely with the RPA static dielectric
constants.
Equation (2.4.20) is first solved by setting fXC → 0 to obtain ε–1 and then bootstrapped in Eq.
(2.4.21) to obtain new fXC and the self-consistency procedure is repeated for the two equationsin the static limit. The procedure requires no external parameters and the computational cost
is minimal as the expensive calculation involving χ0

S
is only performed once.

2.5 GW Approximation

Using the second quantization formalism, the Green’s function is introduced in this section.
A single-particle Green’s function describes the propagation of a single particle through the
system containing the information on themomentumdistribution and the ground state energy
of the system. It is defined in coordinate and time space as

G(r1, t1, r2, t2) = –i〈φN|T [aH(r1, t1)a†H(r2, t2)] |φN〉, (2.5.1)
where φN is the N-electron ground state vector of the interacting system in the Heisenberg pic-
ture satisfying the Schrödinger equation Ĥ|φN〉 = E|φN〉 [Martin et al., 2016, Varsano, 2006].The creation and annihilation field operators are given by a†

H
and aH respectively defined as

aH(r, t) = e
iĤt
a(r)e–iĤt

a
†
H
(r, t) = e

–iĤt
a
† (r)eiĤt , (2.5.2)

and obeying the anti-commutation rules
aH(r), a†H(r ′) = δ(r – r ′)

aH(r), aH(r ′) = a
†
H
(r), a†

H
(r ′) = 0. (2.5.3)

T is the time-ordering operator such that

T

[
aH(r1, t1)a†H(r2, t2)

] = {aH(r1, t1)a†H(r2, t2), if t1 > t2–aH(r2, t2)a†H(r1, t1), if t1 < t2. (2.5.4)
The Green’s function G(r1, t1, r2, t2) describes the probability amplitude of the propagation of
an electron (hole) from position r2 at time t2 to position r1 at time t1 given t1 > t2 (t2 > t1). Byintroducing the complete set of the eigenstates of the Hamiltonian, for the (N + 1) and (N – 1)
particle systems and performing a Fourier transform, the Green’s function in frequency space
can be obtained as

G(r1, r2,ω) =∑
i

Fi(r1)F∗i (r2)
ω – εi + iηsign(εi – μ) , (2.5.5)

with μ the chemical potential of the system and εi are the single particle excitation energies
such that
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Figure 2.5.1: Single particle excitations correspond to the poles of single particle Green’s func-tions in the GW approximation.

εi = {EN+1i
– EN

N
, for εi ≥ μ

EN
N
– EN–1

i
, for εi < μ. (2.5.6)

where the subscript i indicates the label of the states of the N+1 (N–1) system for the total ener-
gies. The notation is made to distinguish the possible eigenstates of the system corresponding
to the ionization energy (removal) and affinity (addition) of the system. By removing (adding)
a particle the system gets excited in a combination of eigenstates with one less particle (one
more particle).
The amplitudes are given by

Fi(r) = {〈φN|a(r)|φN+1,i〉 for εi ≥ μ

〈φN–1,i|a(r)|φN〉 for εi < μ. (2.5.7)
From Eq. 2.5.5, the Green’s function essentially contains poles at the addition/removal eneries
of the electron and describes energies of the quasiparticle excitations between valence and
conduction bands depicted in Fig. 2.5.1. The resulting switching on of the interaction leads to
a change in the single particle energies Ei → Ei + Σ where Σ is the self-energy operator. Theself-energy can be treated as the potential felt by the addition or removal of an electron from
the interacting system. The self-energy can be defined using the equation of motion of a single
particle Green’s function using the two particle Green’s function

G(r1, t1, r2, t2) = GH(r1, t1, r2, t2) +
∫
dr3dr4dt3dt4GH(r1, t1, r3, t3)Σ(r3, t3, r4, t4)G(r4, t4, r2, t2), (2.5.8)

where GH is the Hartree Green’s function of the non-interacting system, given by the solutionof
[ω – ĥ(r1)]G(r1, r2,ω) = δ(r1 – r2), (2.5.9)

where ĥ(r) is the one-electron Hamiltonian ĥ(r) = –∇2
r /2 + Vext(r) + VH(r) with Vext and VH the

external potential and the Hartree potential respectively. The self-energy term contains all the
exchange and correlation many-body effects expressed in
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2.5 GW Approximation

Figure 2.5.2: Feynman diagram representation of the Green’s function and the interaction.

[ω – ĥ(r1)]G(r1, r2,ω) = δ(r1 – r2) +
∫
drΣ(r1, r,ω)G(r, r2,ω). (2.5.10)

Hedin’s equations for self-consistency provides a systemic way to construct the self-energy
using the screened Coulomb potential instead of the bare potential. It consists of a set of five
equations [Hedin, 1965, Hedin and Lundqvist, 1970]

P(12) = –i
∫
d(34)G(1, 3)G(4, 1+)Γ(34, 2), (2.5.11)

W(12) = V (12) +
∫
d(34)W(1, 3)P(34)V (4, 2), (2.5.12)

Σ(12) = i

∫
d(34)G(14)W(1+3)Γ(42, 3), (2.5.13)

G(12) = G
0(12) +

∫
d(34)G0(13)Σ(34)G(42), (2.5.14)

Γ(12, 3) = δ(12)δ(13) +
∫
(d4567) Σ(12)

G(45)G(46)G(75)Γ(67, 3), (2.5.15)
where P is the polarization function or the irreducible polarizability, W is the screened interac-
tion and Γ is the vertex function. The notation 1 = (r1, t1, σ1) is used for the position, time andthe spin. When Γ is set to unity, P describes non-interacting electron-hole pairs, or the random
phase approximation (RPA). The screened interactionW is dynamical due to the frequency de-
pendence of P.
Handling diagrams is much simpler than manipulating long and complex mathematical ex-
pressions. The Feynman diagrams explicitly unravel the physical content which underlies the
various terms. The Feynman diagrams general premise is to provide a simple set of rules to
convert a drawing into a well-defined mathematical quantity. The Green’s function G(1, 2) is
defined by a line oriented between 2 and 1. The line is designed to differentiate between
G(1, 2) and G(2, 1). Essentially from the picture, we create a particle in 2 and destroy it back in
1. Hence, the particle propagates between 2 and 1. The interaction V (1, 2) is represented by
a wavy line and has no direction V (1, 2) = V (2, 1) as the screened interaction between the par-
ticles is symmetric. The screened interaction W was earlier refered in the section 2.1.1 in Fig.
2.1.1 for the sum of all possible polarization diagrams. The graphical notation of the Feynman
diagrams are shown in Fig. 2.5.2 [Stefanucci and Van Leeuwen, 2013].
GW approximation consists in solving the set of Hedin’s equations self-consistently repre-
sented graphically in Fig. 2.5.3. A practical approach involves approximating the vertex Γ as
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a local and instanteneous function ΓGW = δ(12)δ(13), which makes the solution of four self-
conistent Hedin’s equations in Fig. 2.5.3 simpler [Gonze et al., 2009]. In the first iteration, one
starts with self-energy Σ set to zero, and G is approximated with the Green’s function, of an
appropriate non-interacting system (G0) i.e., the KS system substituted as

GS(r, r ′) =∑
j

ψS(r)ψ∗S(r ′)
ω – εSj – iηsign(μ – εSj ) , (2.5.16)

where ψS and εS are the KS orbitals and the eigenvalues respectively. The polarizability is givenby –iG0(12)G0(21+) and the screened interaction W = ε–1(1, 2)V (4, 2) is obtained using the di-
electric matrix of the KS system. W is usually calculated using RPA and calculations beyond
the level of RPA has little impact on the self-energy [Verdozzi et al., 1995]. The new self-energy
Σ(12) = iG0(12)W(1+2) is built, and the Schrödinger equation is solved to obtain a new set of
quasiparticle energies and amplitudes. The loop should be iterated self-consistently, but due
to the computational cost, an approach G0W0 in which only a single iteration is performed is
commonly used for most applications. The quasiparticle energies are given by

EQP = εS + Z〈ψS|Σ – VXC|ψS〉, (2.5.17)
where Z = [〈ψS| ∂Σ

∂εS|ψS〉
]–1 is the renormalization factor. It is defined as the amount of single-

particle behavior of the particle-like excitation in the electron gas and is a measure of the spec-
tral weight the quasiparticle peak carries [Mahan, 2013, Golze et al., 2019]. As the excitations
behave like particles, they are termed quasiparticles. The self-energy in the GW approximation
is represented as a Feynman diagram in Fig. 2.5.4 up to the leading contributing terms in the
second order. The first two terms comprise the Hartree-Fock self-energy. The third term de-
scribes a particle (hole) propagating with an interaction with a particle-hole pair. The last term
describes the correction to the exchange term in the second order.
The GW approximation provides good results for the calculation of band structures and band
gaps in close agreement with experimental results [Shishkin and Kresse, 2007]. For the calcu-
lation of absorption spectra, the GW approximation is not sufficient as it describes excitations
with the addition or removal of electrons whereas absorption involves the number of particles
to remain constant, an electron leaving the valence band and leaving an hole or an empty state.
Such a process requires the use of two particle propagators containing information about the
propagation of two particles (electron–hole pairs) to describe themany-body effects and needs
the inclusion of the vertex function.

2.6 Bethe-Salpeter Equation

The two particle (electron-hole) excitations can be described using the Bethe-Salpeter equa-
tion (BSE) [Salpeter and Bethe, 1951] which includes the electron-hole interaction. The vertex
function can be extended to higher orders using the Dyson equation, thus giving the Bethe-
Salpeter equation for the vertex function.
The functional derivative of the self-energy with respect to the Green’s function is given
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Σ =
iGWΓ

G =
G0ΣG

Γ = 1 +
∂Σ
∂G

GGΓ

P =
−iGGΓ

W =
V +WPV

Figure 2.5.3: Solution of Hedin’s equations in a self-consistency cycle.

Figure 2.5.4: Feynman diagram of the GW self-energy in second-order Born approximation.The first two terms are the Hartree and Fock terms respectively. The third termis the first-order bubble diagram. The last term is the correction to the exchangein the second-order.
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by [Onida et al., 2002, Strinati, 1988]
∂Σ
∂G = iW + iG∂W

∂G . (2.6.1)
It is an alternative to saying that the self-energy can be graphically described by removing the
Green’s function line from the vertex diagram. Furthermore, ignoring the iG(∂W/∂G) termwhich
has a very small contribution, the functional derivative for the vertex in Hedin’s equations [Eq.
(2.5.15)] can be expressed as

Σ(12)
G(45) = δ(14)δ(25)W(1+, 2). (2.6.2)

The vertex for the Bethe-Salpeter equation is now given by
Γ(12, 3) = δ(12)δ(13) + i

∫
(d45) ∂Σ(12)∂G(45)G(14)G(52)Γ(45, 3). (2.6.3)

The two-particle Green’s functions is given by

G(12; 34) = G(13)G(24)± G(14)G(23) +
∫
d(1′2′3′4′)G(11′)G(3′3)Kr(1′, 2′; 3′, 4′)G(4′4)G(22′).

(2.6.4)
The diagrammatic representation is shown in Fig. 2.6.1 with a square containing two incom-
ing and two outgoing lines. The diagrammatic sum includes the product of two single-particle
Green’s function along with a kernel (Kr) containing all the two-particle Green’s function dia-
grams of order greater than zero [Stefanucci and Van Leeuwen, 2013]. The two-particle den-
sity response function is given by

L(1, 2; 3, 4) = G(14)G(23)±
∫
d(1′2′3′4′)G(11′)G(3′3)K (1′, 2′; 3′, 4′)L(4′, 2; 2′, 4). (2.6.5)

By setting 1 = 3 and 4 = 2, Eq. (2.6.5) reduces to the polarizability (χ) form in Fig. 2.1.1.
The relation between χ and L is χ(1, 2) = L(1, 2; 1+, 2+). The time ordering is important as
L(1, 2; 3, 4) = G2(12; 34) – G(13)G(24) is calculated as the difference between two-particle andsingle-particle Green’s function. The ambiguity is removed by shifting the time arguments of
the starting points. The diagrammatic representation of L is shown in Fig. 2.6.2. The Dyson-like
equation for the kernel (K ) is given by

Figure 2.6.1: Feynman diagram representation of the two-particle Green’s function.
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Figure 2.6.2: Feynman diagram representation of the two-particle density response function.

Figure 2.6.3: Feynman diagrams for the leading terms of the reducible kernel.

Kr(1, 2; 3, 4) = K (1, 2; 3, 4) +
∫
d(1′2′3′4′)K (1, 2′; 3, 4′)G(4′1)G(3′2′)Kr(1′, 2; 3′, 4). (2.6.6)

The reducible kernel is represented diagramatically in Fig. 2.6.3. In the lowest order approxi-
mation in interaction, the kernel reduces to

K = –iδ(1, 4)δ(2, 3)V (1, 3) + iδ(1, 3)δ(2, 4)W(1, 2). (2.6.7)
The first term in Eq. (2.6.7) is the exchange term and the second term is the self-energy vari-
ation with respect to the single particle Green’s function. In terms of the GW approximation,
it is the screened Coulomb interaction. Furthermore, only static screening is considered to
simplify BSE time structure.
An electron in a valence band absorbs a photon and moves to the conduction band, leav-
ing behind a hole in the valence band. The bound electron-hole pair form a quasiparti-
cle known as exciton shown in Fig. 2.6.4. The approach to Bethe-Salpeter equation can be
seen as a two-step process, where a first step involving the calculation of GW results in a
sharp shift of the entire spectrum to higher energies and the subsequent inclusion of the
electron-hole interaction redistributes oscillator strength to low energy peaks. Finally the
peaks change, or creation of an additional peak in the quasiparticle gap. The description
of the optical spectra of semiconductors and insulators is one of the most popular appli-
cations of the Bethe-Salpeter equation. The measured optical spectra of several systems
with significiant excitonic features were found to be in good agreement with the experi-
ments [Onida et al., 2002, Stefanucci and Van Leeuwen, 2013].
The constructed BSE Hamiltonian has to be diagonalized or inverted. Diagonalization has the
advantage that it yields coefficients and transition energies which help interpret results. When
taking into account several transitions, the Hamiltonian matrix can be too big and cause mem-
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Figure 2.6.4: Two particle excitations correspond to the poles of two particle Green’s functions.Electron in the conduction band and the hole left behind in the valence band forma bound exciton.
ory issues, since at least half of the matrix has to be stored in memory for the diagonalization.
An alternative is the iterative inversion introduced by Haydock [Haydock, 1980] implemented
in several ab-initio codes [Gonze et al., 2020, Marini et al., 2009]. In the iterative approach a
matrix vector product must be performed at each iteration step, and the memory of the full
matrix is not required. In general, iterative methods are very good for massive parallelization,
even better than diagonalization. The calculation of matrix elements of W is the most time
consuming component of the BSE. The use of Cholesky factorization with singular value de-
composition has recently been demonstrated in reducing the computational cost at the same
level of accuracy obtained using eigenvalue decomposition [Benner and Penke, 2020].
Calculation of optical spectra needs a much denser k-point sampling than for the corre-
sponding ground-state computations. The explanation is that one is interested in more de-
tailed knowledge of the electronic structure. The electron-hole interaction results in en-
hancing the low-energy structures which can be effectively captured by sampling enough k-
points [Martin et al., 2016]. A good technique is to use a standard k-point grid, shifted by a
fraction of the distance between k-points in an off-symmetry direction. All points are non-
equivalent in this case, which corresponds to a better sampling in the Brillouin zone. The in-
fluence of k-point sampling on the spectrum of diamond is shown in Fig. 2.6.5. A k-point offset
vector (1/4, 1/2, 5/8) in lattice coordinates is used for the enhanced sampling in the Brillouin
zone. The calculations are explored in further detail in section 3.2.

2.7 Conclusions

X-ray thomson scattering (XRTS) provides an effective diagonistics for warm densematter. Tra-
ditionally, the inelastic scattering component of the XRTS spectra has beenmodeled using RPA
based on plasma theory with the inclusion of local field corrections and collision frequencies
built from quantum statistical approaches.
KS eigenvalues, which occur in the minimization of the density functional, do not bear a clear
physical significance even though they can be regarded as well-defined approximations to the
excitation energies. Particularly, they can be used as a good starting point for perturbative
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Figure 2.6.5: Effect of k-point sampling on the a) Real and b) Imaginary part of the dielectricfunction of diamond in the optical limit.

Figure 2.7.1: A flowchart of the procedure to obtain response function using density functionaltheory and many-body theoretical techniques.
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self-energy calculations. GW calculations have been successfully carried out for real systems
validating the experimental measurements.
The Bethe-Salpeter equation explains the electron-hole interaction (excitonic effects), through
the functional derivative of the self-energy. The electron-hole interaction can be used in order
to achieve improved response functions by adding the vertex corrections beyond the RPA,
which is achieved in practice by solving the polarizability of the four-point propagator. Al-
though computationally expensive, it generally leads to excellent absorption and energy-loss
spectra of electrons. Calculations in TDDFT are computationally less expensive (with the two-
point propagator) than the case with the Bethe-Salpeter method. The adiabatic local density
approximation (ALDA) kernel for TDDFT has yielded promising results for finite systems, but
has significant shortcomings in the definition of the absorption spectrum in solids, resulting
in incorrect excitation energies, the absence of bound excitonic conditions, and substantial
distortions of the spectral line shapes. The search for better TDDFT capabilities and kernels
are therefore a subject of rising interest. Better exchange-correlation kernels for TDDFT in
the ground state and an effective kernel for the warm dense matter regime can be developed
in the future with the advancements and availability of local field correction data from PIMC
simulations.
To conclude the section, a flowchart is presented in Fig. 2.7.1 showing the methodology in-
volved in the evaluation of the response function. Based on ab-initiomethods, DFT for ground
state or DFT-MD (snapshots of ionic configurations) for higher temperatures are used for cal-
culating the KS orbitals which are in turn used to calculate the response function based on the
many-body theoretical techniques discussed so far.
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Carbon is one of the most abundant elements in the universe. The wide array of al-
lotropes and compounds formed is due to the ability to form hybrid bonds. Due to the
extreme pressure and temperature conditions inside the planets, the material proper-
ties are drastically changed. Ross et.al. [Ross, 1981] predicted the occurance of diamond
rain due to the demixing of the carbon and hydrogen atoms of methane under ex-
treme conditions. Creating these conditions in the lab is possible using compression
methods like laser driven shock waves such that nano-diamonds can indeed be ob-
served [Kraus et al., 2017, Kraus et al., 2018, Schuster et al., 2020, Frydrych et al., 2020].
Recently, diamond formation is also observed in a doubly shocked epoxy sample additionally
containing oxygen, nitrogen, and chlorine mixture indiciating complex chemical processes and
kinetics plays an important role [Marshall et al., 2022]. Simulations can provide information
a priori to the design of such experiments and are essential for the evaluation and analysis
of the measurements [Kraus et al., 2018, Hartley et al., 2018]. For inertial confinement fusion
(ICF), target design is important for its feasibility. Due to its high atomic density, low reactivity
and high yield strength, diamond seems to be a promising candidate for the ablator mate-
rial [Biener et al., 2006, Biener et al., 2009].
Carbon has a rich phase diagram based on the theoretical predictions under extreme
conditions summarized in Fig. 3.0.1. Under ambient conditions of temperature and pressure,
carbon manifests in two allotropes: graphite and diamond [Grumbach and Martin, 1996].
Diamond has a face centered cubic (FCC) structure and stable at conditions of low pressure
and temperature. Graphite has an hexagonal strcuture (HCP) under ambient conditions. The
individual layers in graphite are known as graphene [Geim, 2009] arranged in an honeycomb
lattice. The BC8 (body centered cubic diamond) phase seen above 1000 GPa pressure
is predicted to be harder than diamond. In ICF, this phase has to be avoided along the
compression path. Apart from diamond, plastic materials are also interesting for ICF and the
phase separation of carbon and hydrogen could lead to hydrodynamic instabilities reducing
the implosion performance [Knudson et al., 2008, Biener et al., 2009, Hurricane et al., 2014].
Lonsdaleite or hexagonal diamond is a phase discovered for the first time in meteorite rem-
nants in 1967 and has subsequently been recreated in the lab [Frondel and Marvin, 1967].
Based on theoretical predictions under ambient conditions, it is found to be
metastable [Ferroir et al., 2010]. It is further reported in various laboratory exper-
iments, but the occurance of the phase under ambient conditions is still debat-
able [Bundy and Kasper, 1967, Yagi et al., 1992, Utsumi et al., 2004, Németh et al., 2014,
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Kraus et al., 2016, Turneaure et al., 2017, McCulloch et al., ].

Figure 3.0.1: Carbon phase diagram based on the theoretical work over the last threedecades [Grumbach and Martin, 1996, Glosli and Ree, 1999,Fried and Howard, 2000, Wang et al., 2005, Correa et al., 2006,Correa et al., 2008, Martinez-Canales et al., 2012, Benedict et al., 2014]. Dataprovided by Jan Vorberger.
The characterization of the electronic and ionic characteristics of carbon, its equation of state
(EOS) and the related phase boundaries includes state-of-the-art methods such as density
functional theory with molecular dynamics (DFT-MD) or path integral Monte Carlo (PIMC). A
combination of DFT and many-body quantum statistics allows to include higher order cor-
relations to be included such that the theoretical methods and predictive ability of dynamic
structure factor (DSF) and equation of state is enhanced. The DSF is of particular interest, as it
is an important quantity to assess the properties of high-pressure solids and fluids and warm
dense matter (WDM) states. Improved DSF models in particular involve interactions between
the electron–hole in semiconductors and insulators. This offers enhanced predictions for di-
electric functions and conductivities, especially when combined with higher rungs of exchange
correlation (XC) functionals to characterize the band gaps, thus leading to an improved de-
scription of the dielectric function or DSF. The determination of temperature based on the
x-ray Thomson scattering (XRTS) data is therefore improved as a practical application.

3.1 Electronic Properties under High-Pressure

In this section, electronic structure calculations are performed on three different carbon
phases: diamond, lonsdaleite and BC8. The crystal structure of the phases generated us-
ing VESTA [Momma and Izumi, 2011] are shown in Fig. 3.1.1. The calculations are performed
using the elk code [Dewhurst, 2021] to obtain the optimal lattice parameters, density of states
(DOS) and band gaps with the pressure varied. Furthermore, since the systems show interest-
ing behavior with wide-band semidconducting to semimetallic nature in the pressure range,
the choice of XC functionals and corrections to the band gap become important. The GW cal-
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culations are also performed to obtain accurate band gaps and are compared to a range of
XC functionals.

(a) Diamond (b) Lonsdaleite (c) BC8
Figure 3.1.1: Some of the crystal phases of carbon.

3.1.1 Diamond

Under ambient conditions, diamond has a face-centered cubic (FCC) structure with the space-
group Fd3̄m consisting of 2 atoms per primitive unit cell. The lattice parameters are a = b = c,
α = β = γ = 900. The electronic structure calculations are performed using the elk

code [Dewhurst, 2021] on a 20×20×20 k-point mesh and 16 bands using a PBE XC func-
tional [Perdew et al., 1996a] with Broyden mixing [Johnson, 1988]. The stated number of k-
points and bands ensures the convergence with the use of an all-electron code. The XC func-
tional is important for the reliability of the results as the electronic density fluctuations crucially
determine the pressure and energy of the system at the considered high pressures. Martinez-
Canales et. al. have successfully tested the PBE functional up to 1000 TPa for the carbon
allotropes [Martinez-Canales et al., 2012].
The total energy obtained from DFT calcularions for various volumes are used in the Vinet
equation of state (EOS) [Vinet et al., 1987, Vinet et al., 1989]

P(x) = 3B0 (1 – x)
x2 e

η(1–x), (3.1.1)
where x = (V/V0)1/3, η = 1.5(B′0 – 1) with V0 the equilibrium lattice volume. B0 and B′0 =
(∂B0/∂P)|T are the bulk modulus and the pressure derivative of the bulk modulus respectively.The obtained equilibrium lattice parameter a0 =3.569 Å is close to the experimental mea-
surement 3.567 Å [Madelung, 2012].
The density of states (DOS) provides information on the location of the eigenvalues and their
change with density or temperature. It is evaluated by a sum over the k-points

DOS(E) =∑
k

Wk

∑
i

γ(E – εi), (3.1.2)
where Wk is the weight associated with the k-point, γ is a broadening function, to account
for the discreteness of the eigenvalues and εi are the KS eigenvalues. For normalization, the
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Figure 3.1.2: Density of states for diamond as a) function of pressure using PBE XC, b) at202 GPa using various XC functionals. The pressures are in GPa and the valenceband maximum is adjusted to zero. K Ramakrishna and J Vorberger 2020 J.Phys.: Condens. Matter 32 095401.

Fermi energy is used in the case of metals and the valence band maximum in semiconduc-
tors [Seitsonen, 2000].
The electronic DOS at various pressures using the PBE XC functional are shown in Fig.
3.1.2(a). The valence band exhibits pressure broadening and an opening of the band
gap is observed with increasing pressure. Figure 3.1.2(b) shows the DOS at 202 GPa
using various XC functionals. With no XC included, the conduction band minimum is
vastly underestimated whereas the valence states are better represented. The use of LDA
(PZ) [Perdew and Zunger, 1981] or GGA (PBE) has very little differences to each other. The
DOS using BLYP (GGA) [Becke, 1988, Lee et al., 1988] and TPSS (meta-GGA) [Tao et al., 2003]
are computed using Quantum ESPRESSO [Giannozzi et al., 2009, Giannozzi et al., 2017] for 32
bands on a 20×20×20 k-point mesh using the tetrahedron method [Blöchl et al., 1994] for
Brillouin zone integration. PBE, BLYP and TPSS agree with each other remarkably well. This
also ensures the convergence of the calculations comparing an all-electron code and the use
of pseudopotential.
With the choice of LDA or GGA XC functionals, the band gap in semiconductors and insulators
is underestimated when compared with experiment [Perdew, 1985].
The fundamental band gap for an N-particle system is given by

EG = (EN+1 – EN) – (EN – EN–1), (3.1.3)
where EN is the ground state energy of N-particles. Let eG denote the energy gap obtained
from the exact KS equation for the N-particle ground state. The correction to the band gap is
given by

EG – eG = Δ = ∂EXC
∂n(r)|N+δ –

∂EXC
∂n(r)|N–δ. (3.1.4)

The correction Δ is called the derivative disconinuity, due to the fact that EN changes slope
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Figure 3.1.3: Band gap of diamond calculated using various XCfunctionals [Perdew et al., 1996a, Heyd et al., 2003, Becke, 1988, Lee et al., 1988,Sun et al., 2015, Perdew et al., 1996b] as function of pressure in DFT and withinthe GW approximation. The direct band gap is calculated using PBE. Theoreticaldata stems from Ref [Li et al., 2012, Gao, 2015]; Experimental data stems fromRef. [Peter and Cardona, 2010]. K Ramakrishna and J Vorberger 2020 J. Phys.:Condens. Matter 32 095401.
at integer particle number [Martin et al., 2016]. Based on the derivative discontinuity in Eq.
(3.1.4), improvements over LDA can be made with higher order XC functionals. Even with the
knowledge of the exact XC functional, the fundamental band gap of the interacting system is
not provided by the KS formalism [Sham and Schlüter, 1983, Perdew and Levy, 1983].
Based on the close agreement with experimental measurements, the GWmethod provides re-
liable band gaps [Shishkin and Kresse, 2007] discussed in section 2.5. The steps involve initial
evaluation of the KS orbitals and eigenvalues obtained using DFT, followed by the setting up
of the KS Green’s function in Eq. (2.5.16). This leads to iteratively solving Eqns. (2.5.11)-(2.5.15)
to obtain the self-energy and henceforth obtaining the corrections to the KS eigenvalues.
The correction is performed using the GW approximation implemented in
VASP [Kresse and Hafner, 1993, Kresse and Joubert, 1999, Kresse and Furthmüller, 1996b,
Kresse and Furthmüller, 1996a] with 64 bands on a 16×16×16 k-point mesh centered around
the Gamma point using the PBE XC functional with a hard carbon PAW pseudopotential and
the energy cutoff set to 10 Ha. The core electrons are frozen for the purpose of the calculation
while considering a core radius of rc = 1.5aB.
A significant number of empty bands is required for GW calculations. In the first step, a stan-
dard groundstate DFT calculation is performed to obtain the KS eigenvalues and eigenfunc-
tions. In step two, a single-shot calculation refered to as G0W0 calculates the quasiparticle
energies from a single GW iteration. The off-diagonal matrix elements of the self-energy are
neglected.
With increasing pressure, the direct and the indirect band gaps widen almost linearly as
shown in Fig. 3.1.3 corroborating the experimental evidence of the band gap opening
under compression by Gamboa et al. [Fahy et al., 1987, Gamboa et al., 2016]. The band
gap obtained using PBE is the smallest as expected and using advanced functionals fur-
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ther improves the band gap. The GW0 results are in the range obtained by other sim-
ulations [Zhu et al., 2011, Li et al., 2012, Gao, 2015, Shi et al., 2020] and agree with experi-
mental results [Peter and Cardona, 2010]. Hybrid functionals have been shown to provide
reliable bandgaps [Paier et al., 2008, Hummer et al., 2009] for carbon allotropes espcecially
HSE06 [Heyd et al., 2003, Paier et al., 2008]. Interestingly, the GW0 corrections performed on
PBE and HSE06 show no dependence on XC functionals.
The bulk diamond is characterized by a band gap renormalization induced
by the electron–phonon interaction. This renormalization is important to
the predictive power of ab-initio calculations when it comes to optical spec-
tra [Cannuccia and Marini, 2011, Antonius et al., 2014]. For diamond, the direct band
gap renormalization due to the electron-phonon coupling is shown to be 0.409 eV by
Poncé et. al. [Poncé et al., 2014]. It is ignored considering the high pressures considered
here [Zacharias and Giustino, 2016, Monserrat and Needs, 2014, Yang and Kawazoe, 2012,
Cannuccia and Marini, 2011, Marini, 2008].

3.1.2 Lonsdaleite

Lonsdaleite is a carbon allotrope with the spacegroup P63/mmc. The lattice parameters are
a = b 6= c, α = β = 900, γ = 1200. The unit cell volume is (√3/2)a2c with 4 atoms per unit
cell. The basis vectors in lattice coordinates are given by the 4f Wyckoff positions ( 13 , 23 , z1),(23 , 13 , 12 + z1), (23 , 13 , –z1), (13 , 23 , 12 – z1) with the internal parameter z1 [Mehl et al., 2017].
The DFT calculations are performed using the elk code [Dewhurst, 2021] for 16 bands on a
16×16×16 k-point mesh using PBE XC functional [Perdew et al., 1996a] with Broyden mix-
ing [Johnson, 1988]. To account for the various pressure ranges, the muffin-tin radius is ad-
justed from0.55 Å to 0.75 Å . Using the Vinet EOS, the equilibrium lattice constants a = 2.524 Å,
c = 4.128 Å with z1 = 0.0625 are obtained. While ideal hexagonal structures at ambient con-
ditions have z1 = 1/16 with c/a = √8/3, we have to relax the structure for each considered
pressure to minimize the enthalphy and to obtain the lattice parameters as shown in Figs.
3.1.4(a) and 3.1.4(b).
The electronic DOS is shown in Fig. 3.1.5(a). With increasing pressure, the band gap closes in
contrast to diamond. The band gap calculations are performed with a range of XC functionals
and GW approximation. The band gap is shown as function of pressure in Fig. 3.1.5(b). The
GW corrections are perfomed using VASP with a 16×16×16 k-point mesh centered around
the Gamma point for 64 bands, and PBE XC functional. The kinetic energy cutoff for the wave-
functions is set to 40 Ha. A single shot G0W0 approach is used to reduce the computational
cost also ignoring the off-diagonal elements of the self energy term. The indirect band gap,
unlike in the cubic diamond case, is across the points Γ → K [Salehpour and Satpathy, 1990].
Under ambient conditions, the GW and the PBE band gaps are in good agreement with the
available theoretical results [Zhu et al., 2011, Gao, 2015, De and Pryor, 2014]. Using advanced
XC functionals, HSE06 and B3LYP, the results are comparable to the GW band gaps.
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Figure 3.1.4: a) Variation of the parameters c/a and z1 for lonsdaleite, (b) Enthalpy vs pressurewith respect to z1 for lonsdaleite. The inset plot shows the relative enthalpieswith respect to z1 = 0.0625 vs pressure for c/a = 1.635. K Ramakrishna and J

Vorberger 2020 J. Phys.: Condens. Matter 32 095401.
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Figure 3.1.6: a) Variation of the parameter x1 for BC8. The inset panel zooms at the region ofthe minimum, (b) Enthalpy vs pressure with respect to x1 for BC8. The inset plotshows the relative enthalpies with respect to x1 = 0.1003 vs pressure.

x1 = 0.935 suggested by Clark et al. is ideal for the formation of BC8 phase fromdiamond and at higher pressures the larger internal parameter is bettersuited [Clark, 1994]. K Ramakrishna and J Vorberger 2020 J. Phys.: Condens.Matter 32 095401.

3.1.3 BC8

BC8 has a body-centered cubic structure with the spacegroup Ia3̄ consisting of 8 atoms per
unit cell with the unit cell volume a30/2 where a0 is the lattice constant. The lattice parametersare a = b = c, α = β = γ = 900 [Benedict et al., 2014, Zhang et al., 2017]. The basis vectors
in lattice coordinates are given by the 16c Wyckoff positions (2x1, 2x1, x1), (12 , 0, 12 – 2x1), (0, 12 –2x1, 12 ), (12 – 2x1, 12 , 0), (–2x1, –2x1, –2x1), (12 , 0, 12 + 2x1), (0, 12 + 2x1, 12 ), (12 + 2x1, 12 , 0) with x1 as aparameter [Mehl et al., 2017].
The DFT calculations are performed using the elk code [Dewhurst, 2021] for 32 bands on a
16×16×16 k-point mesh using PBE XC functional [Perdew et al., 1996a] with Broyden mix-
ing [Johnson, 1988]. The internal parameter x1 = 0.0935 compares favorably to the exper-
imental value, 0.1003 ± 0.0008 widely used for the BC8 phase of silicon. Several DFT sim-
ulations involving BC8 phase have also used this parameter [Clark, 1994, Crain et al., 1994,
Kasper and Richards, 1964]. Based on the enthalpy changes with respect to pressure as
shown in Fig. 3.1.6(b) up to 2500 GPa, the parameter x1 = 0.1003 is a suitable choice
for the calculations involving the range of pressure. The lattice constant a0=4.437 Å lies
within the range of the values 4.425–4.477 Å obtained by Z. Li and Crain et al. [Li et al., 2015,
Crain et al., 1994].
The electronic density of states calculated using the PBE XC functional with the elk

code [Dewhurst, 2021] on a 16×16×16 k-point mesh for 32 bands is shown in Fig. 3.1.7.
With increasing pressure, the band gap reduces in the inset plot and closes in the
vicinity of 2900 GPa, where the simple cubic structure is the thermodynamically stable
phase [Martinez-Canales et al., 2012]. The LDA and GW bandgaps reported by Z. Li and Zhu et
al. [Li et al., 2015, Zhu et al., 2011] are large compared to our GGA (GW) values 0.9 (1.94) eV,
which are comparable to early calculations by Johnston et al. [Johnston and Hoffmann, 1989].
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Using GGA XC, Correa et al. [Correa et al., 2006] obtained a bandgap of approximately 0.40 eV
near the phase transition boundary from diamond at T=0 which may be compared to the
0.15 eV obtained here.
To summarize the section, the cold curves (energy vs volume) and the equation of state
(EOS) for the carbon phases discussed in this section obtained using the Vinet equation of
state [Vinet et al., 1987, Vinet et al., 1989] are shown in Figs. 3.1.8 and 3.1.9 respectively. The
calculated equilibrium parameters are listed in Table 3.1.1 along with the available experimen-
tal results. The band gaps at equilibrium volume using GW0 and various XC functionals are
summarized in Table 3.1.2.

Table 3.1.1: Equilibrium lattice parameters, equilibrium volume per atom, bulk modulus,pressure derivative and static dielectric constants for various phases of carbon.The double row values shown for hexagonal diamond are for the latticeparameters, a=b and c. The static dielectric constant is computed using BSE. Thevalues shown in parentheses are experimental data. a [Madelung, 2012];
b [Bundy and Kasper, 1967]; c [Van Vechten, 1969]; d [De and Pryor, 2014]. K
Ramakrishna and J Vorberger 2020 J. Phys.: Condens. Matter 32 095401.
phase a0 (Å) V0 (Å3) B0 (GPa) B′0 ε1(0)
BC8 4.437 5.46 433.1 3.97 8.04
FCC 3.569 (3.567)a 5.68 430.8 3.82 5.76 (5.9)c
Hex. 2.524 (2.52)b 5.69 430.9 3.87 6.25 (6.31)b

4.128 (4.12)b 5.40 (5.79)d
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Table 3.1.2: Band gap (indirect) results in eV. GW0 with HSE for the FCC phase and PBE forthe other phases is used. a [Peter and Cardona, 2010]. K Ramakrishna and J
Vorberger 2020 J. Phys.: Condens. Matter 32 095401.

phase GW HSE06 PBE0 B3LYP SCAN PBE Exp.
BC8 1.94 1.89 2.64 2.24 1.11 0.90 -
FCC 5.47 5.31 6.04 5.61 4.56 4.19 5.48a
Hex. 4.65 4.66 5.40 4.93 3.86 3.48 -

3.2 Linear Response under Ambient and High-Pressure
Conditions

In this section, linear response calculations are perfomed on the KS orbitals obtained us-
ing DFT with a full-potential linearized augmented-plane wave (FLAPW) code implemented
in elk [Dewhurst, 2021]. The KS eigenvalues and orbitals are later used for the RPA1, TDDFT
and BSE calculations discussed in sections 2.4 and 2.6. The Kubo-Greenwood formula (KG),
Eq. (2.3.41) is used in the inbuilt VASP [Kresse and Hafner, 1993, Kresse and Joubert, 1999,
Kresse and Furthmüller, 1996b, Kresse and Furthmüller, 1996a] subroutines to obtain the di-
electric function.
The RPA is the first improvement to the Hartree–Fock approximation, representing
a change in electron’s self-energy due to dynamical screening [Pines and Bohm, 1952,
Bohm and Pines, 1953, Stefanucci and Van Leeuwen, 2013]. It uses electronic states from
DFT, but lacks the XC kernel as used in TDDFT due to setting fXC → 0. The XC kernel used
for the TDDFT calculations is the bootstrap, long range XC kernel implemented in the elk

code [Dewhurst, 2021, Sharma et al., 2011]. The BSE solution provides a systematic descrip-
tion of electron–hole pair correlations including the quasiparticle "excitons" within the gap. This
includes a two-step process where the quasiparticle electron states and wavefunctions calcu-
lated under the GW approximation are used to solve the BSE using a four-point polarization
propagator in a Dyson-like equation [Martin et al., 2016]. The electron-hole pair interaction
term is approximated by a Coulomb kernel along with a screened interaction term. The scal-
ing is given by O(n5), it is therefore the most computationally demanding method of all used
here. Diagonalization scaling is given by (Nc×Nv×Nk)3 whereNc, Nv andNk denotes the numberof conduction bands, valence bands, and k-points respectively. The BSE calculations in the op-
tical limit are performed using the method of diagonalization in the elk code [Dewhurst, 2021].
The exciting code [Gulans et al., 2014, Sagmeister and Ambrosch-Draxl, 2009] is used for the
finite-wavenumber BSE calculations.
1Not to be confusedwith the Lindhard dielectric function/RPA based on plasma theory introduced in section 2.1.1.RPA calculation in TDDFT formalism here simply means the lack of an XC kernel.
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Figure 3.2.1: Imaginary part of the dielectric function of diamond in the optical limit atambient conditions (ρ=3.509 g/cm3) using various approaches. The inset plotshows the imaginary part of the inverse of the dielectric function including theplasmon peaks. In the inset, the curves obtained using TDDFT/RPA and KG arescaled, for the purpose of visualization. Botti Ref. [Botti et al., 2004];Experimental data stems from Ref. [Palik, 1998]. K Ramakrishna and J
Vorberger 2020 J. Phys.: Condens. Matter 32 095401.

3.2.1 Diamond

The dielectric response function for diamond under ambient conditions evaluated using var-
ious approaches is shown in Fig. 3.2.1. As the band gap is large, excitonic effects are im-
portant and the BSE approach is required for an accurate calculation of absorption spectra.
The BSE calculations are perfomed using a 12×12×12 k-point mesh with 8 empty states. The
optical band gap can be deduced from the first peak of the imaginary part of the dielectric
function (absorption curve). In some cases there can be a dark state with small oscillator
intensities. In general, it is apparent that the onset of absorption happens softer and ear-
lier for KG, RPA, and the TDDFT result than for the BSE or for the experimental result. The
maximum in absorption ranges from 0.407 Ha for the KG model to 0.465 Ha in RPA. The
experimental maximum is located at 0.427 Ha and is best reproduced by TDDFT closely fol-
lowed by BSE. The oscillator intensity of BSE is quite large compared to the experimental re-
sult although the location of the absorption maxima is close to the experimental result. Such
findings in the overestimation of the oscillator intensity are also reported in other calcula-
tions [Sakurai et al., 2017, Sharma et al., 2011, Benedict et al., 1998]. The narrow peak width
in the BSE result indicates a more stable plasmon. Overall, the best match to the experimen-
tal result seems to be from the TDDFT method with the bootstrap kernel. The RPA devia-
tion is understandable due to the lack of fXC and therefore cannot capture bound excitons.
When including the electron-hole pair interaction in the XC kernel, oscillator intensity shifts to
lower energies. This effect is prominent for insulators and less for narrow-gap semiconductors
[Benedict et al., 1998].
The response function is an important aspect for interpreting the high-pressure phase behav-
ior, accessible via electron energy loss spectroscopy (EELS), x-ray Thomson scattering (XRTS),
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Figure 3.2.2: Imaginary part of the dielectric function of diamond in the optical limit forvarious pressures using BSE, TDDFT and RPA. The inset plot shows theimaginary part of the inverse of the dielectric function including the plasmonpeaks. In the inset, the curves obtained using TDDFT and RPA are scaled for thepurpose of visualization. All the pressures indicated are in GPa. The densities forthese pressures are 3.51, 5.50, 6.00 and 7.00 g/cm3 respectively. K
Ramakrishna and J Vorberger 2020 J. Phys.: Condens. Matter 32 095401.

x-ray Raman scattering (XRS) and othermethods, also see sections 3.4 and 3.5. The absorption
curve under high-pressure calculated using BSE, TDDFT and RPA are shown in Fig. 3.2.2. The
maximum of the imaginary part of the dielectric function shifts to higher energies even faster
than the edge, indicating a substantial shift in the absorption. At higher pressures, the broad-
ening of the peaks is observed and the plasmons turn less stable. This can be explained using
the Penn gap model in which the excitation energy of a collective excitation is a quadratic sum
of the band gap energy and square of the plasma frequency calculated from the valence elec-
tron density. An interesting observation is a similar behaviour of different theories for higher
pressures as for the zero pressure case of Fig. 3.2.1. The absorption peak at the highest ener-
gies is seen in the RPA results whereas BSE shows the highest absorption strength. The TDDFT
spectra is similar to BSE albeit with lower oscillator strengths near the right exciton energies.
The imaginary part of the inverse dielectric function is also of paramount importance as it can
be used to compute further quantities like the dynamic structure factor or the stopping power
that are directly experimentally accessible. The predictions of different models for different
densities in the optical limit are shown in the inset plots of Figures 3.2.1 & 3.2.2. The plas-
mon peak is given by the zero of the real part of the dielectric function that lies in the energy
range of weak damping, describing the collective excitation of valence electrons across the
band gap. There are more variations in the location, height and width of the plasmon peak
compared to the imaginary part of the dielectric function due to nonlinear effects introduced
by the Kramers-Kronig relation between the real and imaginary parts of the dielectric function.
Hence, the imaginary part of the inverse dielectric function adds necessary information in ad-
dition to the imaginary part of the dielectric function. The plasmon peaks are located at the
lowest energies in the BSE approximation whereas RPA and TDDFT predict similar plasmon
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locations at higher energies. The plasmon width is smallest for the BSE and a lot greater for
RPA/TDDFT. This is an indication of the BSE prediction for a stable quasiparticle. In the inset
of Fig. 3.2.2, the plasmon peaks shift to higher energies as well as broaden with increase of
pressure.
It is important to consider both the absorption and the energy-loss spectra (imaginary part of
the inverse dielectric function). For energy-loss spectra, it is a good approximation to use the
inverse of the dielectric function (ε–1) with χ constructed from DFT rather than the updated
ε–1 with GW eigenvalues. This seems contrary, especially when GW leads to improvement in
the quasiparticle energies for large band gap systems. Starting with a GW calculation iterat-
ing Hedin’s equations [Eqns. (2.5.11) - (2.5.15)] leads to P in the first iteration containing a
vertex correction. Substituting P further in the self-energy term leads to an appearance of
a second vertex and eventually the cancellation of the vertex in P and in the self-energy has
been shown. Neglecting the vertex in both the W and in the self-energy in principle is a better
approach [Onida et al., 2002].
It is of much interest to calculate the dielectric function at finite wavenumbers which is rele-
vant for experiments as shown in Fig. 3.2.3. The q-points are complementary to the k-points
using the relation nki × qi = N where nki is the number of k-points along ~x, qi is the numberof q-points along ~x, N is an integer which is also a factor of nki explained by the Monkhorst-
Pack k-sampling [Monkhorst and Pack, 1976]. The TDDFT calculations are performed using
an uniform 20×20×20 k-point mesh with 8 empty bands using the bootstrap kernel in the elk
code [Dewhurst, 2021]. The BSE results stem from the exciting code [Gulans et al., 2014] using
an uniform 12×12×12 k-point mesh with 16 empty bands.
A reduction of the peak height and a shift of the peak to higher energies in the imaginary part of
the dielectric function is seen with an increase in momentum. The reduction in peak height as
predicted by BSE is much more drastic in the considered q-range as the change in the TDDFT
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result. Further, the BSE peaks change their location more than the TDDFT peaks.
Awavenumber dependency of the dielectric function can also be obtained if a dynamic collision
frequency is calculated from optical data (using Kubo-Greewood results) and then used in a
Mermin dielectric function (MA) [Plagemann et al., 2012,Witte et al., 2017a]. Such a procedure
leads to results different from both BSE and TDDFT, partly due to the different shape of KG
in the optical limit and partly due to a different damping behaviour of the Mermin dielectric
function with an increase in wavenumber as shown in Fig. 3.2.3. In the Mermin approach,
an additional difficulty arises in having to choose a charge state Zi i.e. the charge state of theion, a choice that will have significant impact on the final result as the two curves for q =
0.76 Å–1 show. The extraction of an average charge state of an ion in the warm dense matter
or high-pressure solid range is not trivial and most models for ionization states work for hot,
low density plasmas. The most promising method seems to be the use of conductivity sum
rule ∫ +∞

–∞
dω

π
ω=[ε(q,ω)] = ω

2
pl
, (3.2.1)

where ωpl is the plasma frequency and a split of the conductivity into Drude like free part andcore part [Witte et al., 2017a, Bethkenhagen et al., 2020].
The dispersion of the plasmon subject to a change in wavenumber is shown in Fig. 3.2.4 with
the imaginary part of the inverse of the response function calculated using various approaches
at finite q. At small q, the behavior is similar to the optical limit. The excitation energy predicted
by the BSE is too small. The KG+Mermin approach and TDDFT predict nearly the same peak
location but slightly different peak widths. The free parameter of the ion charge state entering
the KG+Mermin formulation is not known a priori [Fortmann et al., 2010]. At the highest q =
1.51 Å–1 considered here, the TDDFT and KG+Mermin results differ strongly in peak position
and width indicating very different dispersion relations.
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The general functional form of the imaginary part of the inverse dielectric function as function
of energy and wavenumber is also of interest as shown in Fig. 3.2.5. The experimental results
are compared to the theoretical models using TDDFT with and without exact exchange (EXX)
and the KG extension to finite q based on the Mermin dielectric function . For small q, the
agreement is quite good. However, at large q, the peaks and distribution of weight deviate
between experiment and theory thus giving a more complete picture of the challenges for
theory.

3.2.2 Lonsdaleite

The dielectric function calculations based on TDDFT are performed using the bootstrap ker-
nel within the elk code [Dewhurst, 2021] on a 12×12×12 k-point mesh and 24 empty states.
The BSE calculations are done on a lower 8×8×8 k-point mesh and 16 empty states. As of
now, no known experimental band gaps are reported for lonsdaleite. Due to large band gap,
the screened Coulomb interaction is strong and the excitonic effects are still prominent at
lower pressures. As the pressure is increased, contrary to the case of diamond, the band gap
decreases until it finally closes in the vicinity of 1000 GPa.
The imaginary part of the response function using various methods along two orientations for
the hexagonal lattice structure at ~q = 0 is shown in panels a) and b) of Fig. 3.2.6. The TDDFT
results at finite-q are shown in panels c) and d). The optical limit spectrum is well represented
by BSE and TDDFT, while TDDFT doesn’t quite resolve the prominent peaks in the BSE spectra
along the two orientations. The maximum of the TDDFT spectra is located around the average
of the twin peaks of the BSE result for the perpendicular case and closer to the first peak in
the parallel case. Similar to the case of diamond, RPA predicts a blue shift in the maximum of
the imaginary part of the dielectric function compared to BSE or TDDFT for the case parallel
to z. Meanwhile, the KG calculation shows a red shift compared to BSE and TDDFT. In the case
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perpendicular to the z axis, all differences are mitigated.
The finite-q results from TDDFT together with results from theMermin response function using
a collision frequency obtained using DFT is shown in panels c) and d) of Fig. 3.2.6. An ionization
degree Zi=1 as the fitting parameter is chosen for |~q| = 0.57 Å–1 to fit theMermin ansatz (MA).
The Mermin+DFT spectrum is almost uniform along both the directions in stark contrast to the
TDDFT curves at ~q 6= 0, as shown in Fig. 3.2.6. The differences between the two orientations
parallel and orthogonal to z, respectively, observable in the optical limit (panels a) and b) in Fig.
3.2.6), vanish for the finite-q values as shown in panels c) and d).
The imaginary part of the inverse dielectric function for lonsdaleite at a pressure P=242 GPa is
presented in Fig. 3.2.7. TDDFT andMermin+DFT exhibit a difference in plasmon peak locations
around 0.3–0.4 Ha, which is larger than in the FCC diamond case. Mermin+DFT also exhibit
different structures near the peak parallel and perpendicular to z compared to TDDFT in Fig.
3.2.7.
To distinguish the phases in an inelastic x-ray scattering experiment would be advantageous.
It is possible to distinguish lonsdaleite from diamond at high-pressure conditions either in the
absorption spectrum or in the inelastic scattering spectrum by the characteristic positions of
the respective absorption and plasmon peaks. Figure 3.2.8 shows the difference in absorption
spectra and plasmon peaks in the optical limit and at finite-q. The differences in the q vector
chosen for lonsdaleite and diamond are due to the differences arising from lattice structures
and the k-point sampling considered.
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3.2.3 BC8

The TDDFT spectra is obtained using the bootstrap kernel [Sharma et al., 2011] within the elk
code [Dewhurst, 2021] for a 4×4×4 k-point mesh and 28 empty states. For the BSE calcula-
tions, the number of empty states is reduced up to 18 to reduce the computational cost. Due
to the close proximity of the band edges for small pressures, a smaller k-point mesh is suffi-
cient for convergence, see Fig. 3.2.9. The spectra in the optical limit obtained using RPA, TDDFT
and BSE exhibit close resemblance albeit with different peak locations for the different pres-
sures in Fig. 3.2.9. The KG results have an absorption peak near ω = 0 due to the nature of the
semi-metallicity prediction from DFT which is clearly absent from BSE spectra even at higher
pressures. A shift of the main absorption peak to higher energies is seen in the KG results
compared to the other methods considered. The agreement between the various methods
with the exception of KG is quite remarkable, especially in hindsight after having analyzed the
diamond and lonsdaleite phases.
The imaginary part of the inverse dielectric function obtained using various approaches is
shown in Fig. 3.2.10. The spectra obtained using RPA and TDDFT do not show the twin peaks
of the BSE and predict a very broad feature instead. A broad peak at a different location is seen
in the KG results. A shift to higher energies for higher pressures is observed in the plasmon
peaks obtained using TDDFT and BSE, whereas the KG result shows the opposite behaviour
for the case of the highest pressure. Similar to the case of diamond, the BSE curve predicts
the most stable plasmon excitation with a rather narrow peak and large intensity.

65



3 Ab Initio Dielectric Response Function of Diamond and Other Relevant High-Pressure Phases of

Carbon

−10

0

226 GPa

TDDFT
RPA
BSE
KG

−10

0

Im
[ε

−1
(q
,ω

)]

869 GPaMA q=0.7/Å
TDDFT q=0.7/Å

1 2
E [Ha]

−10

0

1518 GPaMA q=0.74/Å
TDDFT q=0.74/Å

Figure 3.2.10: Imaginary part of the inverse of the dielectric function of BC8 at variouspressures using BSE, TDDFT, RPA and the Kubo-Greenwood formula. TheTDDFT, RPA, and KG curves are scaled fivefold and the finite-q MA curve isscaled tenfold. All curves in the optical limit except the specially marked MAand TDDFT curves. K Ramakrishna and J Vorberger 2020 J. Phys.: Condens.Matter 32 095401.
For finite-q, a comparison between the MA approach and TDDFT at pressures of 869 GPa and
1518 GPa is also shown in Fig. 3.2.10. The collision frequency used in MA is taken from the
optical limit of TDDFT. Due to the small magnitude of ~q, the TDDFT results in the optical limit
are very similar to the finite-q vector considered. However, the MA approach shows drastically
different behavior with the peak location at smaller energy and the magnitude reduced.

3.3 Linear Response under Warm Dense Matter Conditions

A similar analysis can be performed for a warmdense state of carbon (P=150GPa, T=6000 K) as
presented in Fig. 3.3.1. In particular, TDDFT can also be used onDFT-MD snapshots in theWDM
regime. The system size should be as large as possible. This is more important in particular
for the TDDFT & RPA results that seem more dependent on the system size. A down shift of
the plasmon energy with increase in temperature analogue to the closing of the band gap due
to temperature effects is observed. Note that at conditions of P=150 GPa and T=6000 K, the
influence of finite-temperature XC functional (GDSMFB) and adiabatic approximation (ALDA)
built on finite-temperature local density approximation are negligible for carbon and carbon-
hydrogen mixtures considered.
The TDDFT calculations for N=64 are performed using the bootstrap ker-
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Figure 3.3.1: Imaginary part of the inverse dielectric function for diamond at WDM conditions(P=150 GPa, T=6000 K) in the optical limit. K Ramakrishna and J Vorberger 2020J. Phys.: Condens. Matter 32 095401.

nel [Sharma et al., 2011] in the elk code [Dewhurst, 2021] with a 3×3×3 k-point mesh
applying PBE for the XC potential. For the system size N=8, a denser 6×6×6 k-point mesh is
employed. Contrary to the KG result, the TDDFT result depends strongly on the system size.
The RPA calculations are also performed using the elk code [Dewhurst, 2021] on a similar k-
point mesh size. The KG results stem from calculations using VASP [Kresse and Hafner, 1993,
Kresse and Joubert, 1999, Kresse and Furthmüller, 1996b, Kresse and Furthmüller, 1996a].
N=64 particles is the maximum size choosen due to the computational cost of all-electron
calculations.
The influence of the XC kernel in TDDFT is shown in Fig. 3.3.2. The long-range contribution
(LRC) kernel [Botti et al., 2005] is computed using Quantum ESPRESSO [Giannozzi et al., 2009,
Giannozzi et al., 2017] and yambo [Marini et al., 2009] using an uniform 4×4×4 k-point mesh
with 144 bands and an energy cutoff of 40 Hawith a PBE pseudopotential. Marzari-Vanderbuilt
(MV) smearing [Marzari et al., 1999] of 0.019 Ha is used for the electronic temperature due to
the presence of the band gap from the DFT calculations. The LRC kernel uses free parameters
(α, β) in the dynamical XC kernel [Botti et al., 2005]

f
LRCXC (q,ω) = – 1

q2 (α + βω2), (3.3.1)
where α and β are fitted to reproduce the experimental spectra for diamond under am-
bient conditions. For calculations under WDM conditions, fitting the values for α and β is
not trivial, also due to lack of experimental spectra. Using a a self-consistency procedure
[Sharma et al., 2011] employed in bootstrap kernel, the free parameters can be avoided and
the XC kernel is still valid for conditions beyond the ideal solid regime. In metals, the adiabatic
LDA (ALDA) kernel describes very well the plasmon dispersion but for insulators and semicon-
dictors fails to capture the excitonic effects, see section 2.4. The ALDA kernel for TDDFT is
computed using elk [Dewhurst, 2021] with an uniform 2×2×2 k-point mesh for N=64 and a
denser 8×8×8 k-point mesh for N=8. For N=8, the ALDA and the bootstrap kernels converge
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quite well, whereas at N=64, the ALDA has the peak blue shifted compared to the bootstrap
kernel. For these conditions, the excitonic effects diminish and the ALDA kernel agrees with
the bootstrap kernel as expected. The slight shift in the energies near the peak is attributed
to the screening effects considered in the bootstrap kernel.
The demixing of a carbon-hydrogen (C-H) mixture is important for the understanding of plan-
etary behavior and the inelastic response functions evaluated from ab-initio methods are im-
portant for modeling and analyzing XRTS experiments, see section 3.4. Fig. 3.3.3(a) shows the
imaginary part of the inverse dielectric function at q= 1.13 Å–1 for a C-H mixture under WDM
conditions (P=150 GPa, T=6000 K). The response functions are evaluated using the ALDA ker-
nel for TDDFT in yambo [Marini et al., 2009] using the KS orbitals evaluated using Quantum
ESPRESSO [Giannozzi et al., 2009, Giannozzi et al., 2017]. For the CH curve in Fig. 3.3.3(a), the
simulations are perfomed for 64 carbon and 64 hydrogen atoms in a supercell using a 2×2×2
k-point mesh and 192 bands obtained from DFT-MD snapshots. The response function for
carbon (C) is evaluated using the bootstrap kernel as previously discussed for a system size
N=64. The response function for hydrogen (H) is evaluated for N=256 using 384 bands on a
2×2×2 k-point mesh. The plasmon peak of the CH is located in between the peaks of carbon
and hydrogen with the carbon component dominating the linear response. Furthermore, sto-
ichiometric components of the mixture can be evaluated by weighting the linear response of
the constituent parts and thus possible demixing is visible in the inelastic scattering signal. Fig.
3.3.3(b) shows the imaginary part of the inverse dielectric function at q= 1.13 Å–1 for a Cx-Hy

mixture. The location of the plasmon peaks are dominated by the constituent weight of the
carbon or the hydrogen components in the mixture. The carbon component in the mixture
has more contribution to the linear response compared to hydrogen as there are more elec-
trons attached to the carbon atom. This is evident in the linear response, see the overlap of
the curves for the C3H and C9H mixtures to pure carbon. The dynamic structure factor for a
warm dense C-H mixture at q= 0.94 Å–1 is shown in Fig. 3.3.4. When convoluted with the ex-
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Figure 3.3.3: Imaginary part of the inverse dielectric function at warm dense matterconditions (P=150 GPa, T=6000 K) at q= 1.13 Å–1 for a) C-H mixture withstoichiometric components, b) Cx-Hy mixture.
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Figure 3.3.4: Dynamic structure factor at warm dense matter conditions (P=150 GPa,T=6000 K) at q= 0.94 Å–1 for a Cx-Hy mixture.

perimental instrument function, it is possible to distinguish between the specta of fully mixed
C-H and the isolated spectra of carbon and hydrogen. The experimental resolution available in
current XRTS diagnostics could pave way to study the demixing and possibly characterize the
formation of metallic hydrogen [Ranjan et al., 2023]. The method in turn could also be applied
for studying other mixtures like hydrogen-helium relevant for understanding the planetary in-
teriors of jupiter and saturn.
The change in plasmon energy for a C-H mixture with wavenumber is shown in Fig. 3.3.5. The
calculations at WDM conditions are perfomed using TDDFT with an ALDA kernel. The ambient
carbon results computed are using the bootstrap kernel. The experimental results shown for
ambient diamond are from XRTS measurements by Gamboa et al. [Gamboa et al., 2016]. A
weak quadratic dispersion for the ambient diamond can be seen from the TDDFT and exper-
imental results. Calculations for carbon at WDM conditions with N=8 and N=64 demonstate
the finite size effects with the larger supercell resulting in a reduction of the plasmon energy
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by ∼0.05 Ha. The results for C-H mixtures are only shown in the range 0.8 Å–1 to 1.25 Å–1
relevant for the experimental conditions of the XRTS setup. At q = 0.8 Å–1, the difference in
plasmon energy (∼0.3 Ha) between carbon and hydrogen species shows the importance of
the wavenumber for the XRTS setup to characterize the demixing.
In Fig. 3.3.6, the density of states (DOS) is computed at ambient, compressed and warm dense
matter conditions. The band gap is determined from the difference in the energies between
the edges of the conduction and the valence band. With increasing pressure at ambient tem-
perature, the band gap of diamond increases as previously discussed in section 3.2.1. With the
change in temperature, the band gap decreases due to thermal effects. At theWDMconditions
(P=150 GPa, T=6000 K), the system is below the melting curve, see Fig. 3.0.1, also the DOS for
diamond indicates a presence of band gap. The change in band gap with respect to pressure is
more elevated than the change with respect to temperature. Correa et al. [Correa et al., 2006]
report a band gap of 6.8 eV at 1100 GPa at T=0 within the range of the values obtained us-
ing advanced XC functionals in Fig. 3.1.3. The band gap reduces to 3.6±0.5 eV at the melting
temperature (6750 K). Thus, diamond remains an insulator in the solid phase and the metal-
insulator transition occurs only uponmelting. The effect of the system size can also be seen on
the DOS as discussed for the evaluation of response function using DFT-MD snapshots. With
N=64, the band gap is lower as expected for the conditions. Evaluating with a smaller size N=8
leads to a higher band gap and hence the system size is important for effective evaluation of
properties under extreme conditions.

3.4 X-ray Thomson Scattering

In section 2.2, the theoretical description of the XRTS for obtaining diagnostics is briefly dis-
cussed. In this section, the focus is on direct comparison of the ab-initio results to experimental
measurements and on supporting the analysis of WDM x-ray scattering experiments using the
theoretical methods discussed in chapter 2.
The change in the location of the plasmon in the optical limit with density for diamond is shown
in Fig. 3.4.1. The increase in the plasmon energy predicted by all the methods is in agree-
ment with the XRTS measurements. BSE predicts the lowest values, about 30% lower than the
TDDFT, RPA, KG, and available experimental results. The KG and TDDFT results nicely agree
with the whole range of the experimental measurements [Gamboa et al., 2016]. The differ-
ences between KG and TDDFT arise as the pressure reaches 900 GPa (ρ=6.75 g/cm3), close
to the proposed transition to the BC8 phase. The differences in theoretical results at ambient
conditions arises from the implemenation of scissor correction in TDDFT which incorporates
the correct band gap [Sato et al., 2012, Waidmann et al., 2000, Azzolini et al., 2017].
The change in plasmon energy for diamond with wavenumber is shown in Fig. 3.4.2. The
BSE results are ignored, as the plasmon shift with respect to density shown in Fig. 3.4.1
is too small and the same trend is seen with respect to the change in wavenumber. The
experimental EELS measurements along different lattice directions stem from Waidman
et al. [Waidmann et al., 2000]. The EELS measurements are able to resolve the disper-
sion along different orientations absent in the XRTS measurements. The XRTS measure-
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Figure 3.4.1: Plasmon position in diamond in the optical limit as function of the density.Experimental data obtained via XRTS is taken from Gamboa et
al. [Gamboa et al., 2016], electron-energy loss spectroscopy (EELS) data by Sato
et al. [Sato et al., 2012] and Waidmann et al. [Waidmann et al., 2000], BSEcalculations for ambient conditions by Gao [Gao, 2015], TDDFT calculations atambient conditions by Azzolini et al. [Azzolini et al., 2017]. K Ramakrishna and J
Vorberger 2020 J. Phys.: Condens. Matter 32 095401.

ments are basically an arithmetic means of the EELS results with a weak quadratic disper-
sion [Gamboa et al., 2016]. The TDDFT and TDDFT+Mermin results agree in the optical limit
and at small wavenumbers. The TDDFT+Mermin results are strongly quadratic and devi-
ates largely from the XRTS measurements with increasing wavenumbers. Good agreement
with XRTS measurments over a wide range can be reached using RPA or TDDFT with dif-
ferent classes of approximations–with or without long range kernel (RPA vs TDDFT) and
comparing PBE XC versus exact exchange (EXX) [Görling, 1996]. Comparing the RPA and
TDDFT curves with PBE XC, the long range kernel lowers the plasmon energies. Azzolini et
al. [Azzolini et al., 2017] also report a flat plasmon dispersion similar to the TDDFT results.
The use of EXX improves the TDDFT results especially at higher wavenumbers. This is at-
tributed to the improvements in screening taken care by EXX and hybrid functionals like
HSE [Heyd et al., 2003].
Thus far, the XRTS measurements correspond to diamond at ambient and compressed
conditions. Moving on to the WDM regime, ab-initio methods have been successfully ap-
plied to model the XRTS experiments [Baczewski et al., 2016, Witte et al., 2017a, Witte, 2019,
Mo et al., 2018, Frydrych, 2018, Frydrych et al., 2020]. The schematic of the experimental
setup is shown in Fig. 3.4.3. Polystyrene (C8H8)n samples are shock compressed with two laserbeams and probed by x-rays with a photon energy of 8.18 KeV and a pulse duration of 50 fs.
The scattered x-rays are collected by the forward (FXRTS) and backward (BXRTS) spectrome-
ters at θf = 17◦, kf = 1.23/Å and θb = 124◦, kb = 7.3/Å respectively shown in Fig. 3.4.4. Based
on hydrodynamic simulations using the HELIOS code [MacFarlane et al., 2006], the thermody-
namic conditions of the sample are estimated to be T=5000 ± 500 K, P=150 ± 15 GPa as the
second shock reaches the sample. The inelastic scattering spectra recorded by the FXRTS is
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expected to be dominated by the carbon component in the CH mixture.
TDDFT is used to model the inelastic carbon signal corresponding to the thermodynamic con-
ditions (P=150 GPa, ρ=4.1 g/cm3) at ~q = 1.23/Å. The TDDFT calculations are performed in
elk [Dewhurst, 2021] using the bootstrap kernel with a PBE XC for the potential. The inelastic
TDDFT spectra is subtracted from the measured signal to obtain the elastic component of the
forward scattering shown in Fig. 3.4.4b.
At the time of measurement, the samples contain a mixture of polystyrene in various states as
well as diamond. The proportion of elastic and inelastic scattering in the measured spectra in
forward direction is determined by a fit (see Fig. 3.4.5). The TDDFT spectra for diamond is also
compared with the polystyrene spectra obtained using KG + Mermin Ansatz (MA) from DFT-
MD snpshots. For the inelastic spectra, the diamond signal calculated with TDDFT is used, but
with the intensity scaled. The elastic scattered component is modeled using a Gaussian curve.
Subsequently the inelastic signal scaled by the fit is subtracted from the measured signal, so
that only the elastic scatter signal remains [Frydrych, 2018].
The results are also in good agreement with the recorded x-ray diffraction (XRD) data and
shows the formation of nanodiamonds induced by the second shock wave [Kraus et al., 2017,
Schuster et al., 2020]. Contrary to the XRD method, the demixing values for the C-H sepa-
ration obtained using XRTS do not depend on the crystalline structures in the experiment.
The close resemblance of XRTS with XRD suggests that the observed carbon clusters seen
consists mostly of diamond, which is not embedded in a significant amount of liquid car-
bon [Frydrych et al., 2020].
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Figure 3.4.3: Experimental setup showing the compression of the polystyrene sample using adrive laser and the measurements using XRTS and XRD. Reprinted figure from S.
Frydrych et al., Demonstration of X-ray Thomson scattering as diagnostics formis-cibility in warmdensematter. Nat Commun 11, 2620 (2020) [Frydrych et al., 2020]licensed under CC-BY-4.0.

3.5 X-ray Raman Scattering

X-Ray Raman scattering (XRS) also known as non-resonant inelastic x-ray scattering (NRIXS)
probes the electronic transitions similar to the x-ray absorption spectroscopy (XAS). The in-
elastic scattering process of the excitations of the core electrons into unoccupied states can
be well understand with XRS. An important advantage of XRS over other methods is that tran-
sitions other than dipole can be switched on by varying the magntitude and the direction of
the momentum transfer. Due to the high penetrative capability of the hard x-rays, XRS has
an advantage over EELS for the investigation of samples under high-pressure. The electronic
transition can be approximated as a dipole transition in XAS, while higher order quadrupole
transitions are accesible via XRS based on the q-vector relating the incident and the scattered
x-rays.
Using first order perturbation theory, the double differential scattering cross section for a
scattering from ground state |i〉 with energy Ei to a final state |f 〉 with energy Ef is givenby [Schülke, 2007]

d2σ
dΩ2d̄hω = ( dσ

dΩ

)
S(q,ω), (3.5.1)

where dσ

dΩ
is the Thomson scattering cross section. The dynamic structure factor is given by

S(q,ω) =∑
f

|〈i|∑
n

e
(–iq.rn)|f 〉|2δ(Ei – Ef + ω), (3.5.2)

where q = (q1 – q2) is the momentum transfer. The initial state |i〉 is approximated by a
Slater determinant composed of single-electron orbitals φi of the core electrons and other
occupied orbitals ψj. The final state |f 〉 is represented by a transition of a core electron φn toan unocccupied Bloch orbital ψk with the same spin. The matrix element in Eq. (3.5.2) reduces
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Figure 3.4.4: Scattered x-ray spectra recorded using the a) Backward and b) Forwardspectrometers. Reprinted figure from S. Frydrych et al., Demonstration of X-rayThomson scattering as diagnostics for miscibility in warm dense matter. NatCommun 11, 2620 (2020) [Frydrych et al., 2020] licensed under CC-BY-4.0.
to

〈i|∑
n

e
(–iq.rn)|f 〉 = ∫ d

3
rψ
∗
k
(r)e(–iq.r)φn(r). (3.5.3)

Using the periodicty of the Bloch orbital ψk and writing r = Rn + r ′

〈i|∑
n

e
(–iq.rn)|f 〉 = e

–i(q+k).Rn
∫
d
3
r
′
ψ
∗
k
(r ′)e(–iq.r′)φn(r ′). (3.5.4)

Expanding the exponential in the matrix element of Eq. (3.5.4) as eiq.r = 1 + iq.r + (iq.r)2/2 + . . .
helps in better understanding of the transition processes. For small momentum transfers
q.ac � 1, where ac is the radius of the core orbital, the first term has no contribution due
to orthogonality and the second term dominates with the dipole transitions permitted. For
large momentum transfers, the contribution of the non-dipole transition terms increases. The
double differential scattering cross section can be represented in a tensor form as

d2σ
dΩ2d̄hω = ( dσ

dΩ

)
q.T (ω).q, (3.5.5)

with the tensor given by
T (ω) = ∑

unocc.

∫
d
3
rψi(r)rφ∗f (r)

∫
d
3
rψ
∗
f
(r)rφi(r)δ(Ei – Ef ),

.
The XRS simulations are performed using the FDMNES code [Joly, 2001, Bunău and Joly, 2009].
From the unit cell positions, the code evaluates the non-equivalent and equivalent atoms with
the symmetry operation relating them to each other. A cluster is formed around each non-
equivalent and absorbing atom based on the chosen radius of the cluster. The final states are
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Figure 3.4.5: a) Inelastic scattering spectra for diamond and polystyrene calculated withTDDFT (~q = 1.28/Å) and KG+Mermin (~q = 1.21/Å) respectively, b) Inelasticscattering spectra after folding with the detector function with a Gaussian curveof halfwidth 34 eV. The data is taken from Ref. [Frydrych, 2018].

calculated for each cluster. The Poisson equation is solved to get the Coulomb potential from
the superposed first guess atomic density, the XC potential is evaluated using an LDA Perdew-
Wang formulation [Perdew and Wang, 1992]. The constructed potential is used to solve the
Schrödinger equation to obtain the electronic structure which can be the final states when
there is a transition. The Schrödinger equation is solved using a finite difference method that
uses the full potential and the final states |f 〉 are calculated. The finite difference method
consists of constructing a space grid and discretizing the Schrödinger equation on the points
of the grid. Although the method is computationally expensive but provides an accurate de-
scription of the electronic structure in both occupied and non occupied states and thus of the
absorption-scattering phenomena. The matrix elements governing the transition depending
on the polarization condition are evaluated based on the electronic structure. The absorp-
tion coefficient is calculated by applying the Fermi golden rule ∑

f
|〈i|Ô|f 〉|2δ(Ei – Ef + ω) toget the matrix elements of the cross section. Ô is the field operator classically describing the

electron–photon interaction given by
Ô = ~E.~r(1 + i

2~k.~r), (3.5.6)
where ~r is the position from the absorbing ion, ~E the polarization of the photon and ~k its
wavevector [Bunău and Joly, 2009].
Figure 3.5.1(a) and 3.5.1(b) shows the variation of XRS with a change in cluster radius and finite
size effects. A cluster size of radius 5.0 Å and above ensures the convergence for N=4 and
N=8 atoms. With increase in cluster radius, the computational demands increase as the final
states calculated inside a sphere increase using the finite difference method. Figure 3.5.2(a)
shows the XRS spectra for diamond under ambient conditions comparing the theoretical pre-
dictions with the experimental results. The simulations are performed using the FDMNES
code [Joly, 2001, Bunău and Joly, 2009] for an ideal diamond lattice in an unit cell consisting
of 8 atoms. The transition matrix is evaluated for |~q| = 5.94/Å up to angular momentum
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l=2. The selected q vector in the experiment is carefully chosen to avoid the position of the
maxima of the Compton peak in the vicinity of the binding energy of the core electrons. The
obtained experimental spectra [Voigt et al., 2021] shows good agreement with the theoret-
ical predictions. The deconvolved experimetal data is obtained from deconvolution of the
instrument function from the scattering spectrum. The Compton background represented
using an exponential function is substracted in the vicinity of the K-edge. The dip around
300 eV is associated with the second band gap of diamond separating the lower set of con-
duction bands from the next set of higher level conduction bands. Transitions to these higher
states from the valence bands involve energies exceding 20 eV. Figure. 3.5.2(b) shows the
presence of a second band gap between the valence band edge and the higher conduction
band [Painter et al., 1971, Sokolov et al., 2003]. At a moderate momentum transfer of 5.94/Å,
the spectra is significantly dominated by dipole allowed transitions. This is observable in Fig.
3.5.3b where the calculated spectra are essentially identical after scaling the curve from Fig.
3.5.3a. Hence, XRS is a good alternative to soft XAS at moderate q values. With the intensity
of XRS scaling quadratically with q, and larger momentum transfers resulting in more count
rates, the method is highly beneficial [Galambosi et al., 2007].
To simulate the high temperature XRS spectra for carbon, DFT-MD simulations in combination
with XRS simulations are performed to understand the expected changes in the XRS signal of
heated and compressed diamond. VASP [Kresse and Hafner, 1993, Kresse and Joubert, 1999,
Kresse and Furthmüller, 1996b, Kresse and Furthmüller, 1996a] is used to perform density
functional molecular dynamics (DFT-MD) to obtain the equilibrated ionic configurations. The
simulations are performed using a Nosé-Hoover thermostat [Nosé, 1984b, Hoover, 1985] us-
ing a PBE functional [Perdew et al., 1996a]. The MD simulations ran on a timestep of duration
0.2 fs up to a total of 2 ps or more until equilibration. The system consists of 8 atoms sam-
pled using 2×2×2Monkhorst-Packmesh [Monkhorst and Pack, 1976] with a hard carbon PAW
pseudopotential and the energy cutoff set to 900 eV. The number of bands were consistently
increased at higher temperatures to achieve the convergence. The equilibrated snapshots ob-
tained using DFT-MD are used to perform the XRS calculations using FDMNES. Eight random
ionic configurations are chosen, which are subsequently used to compute the XRS spectra for
high temperatures.
Figure 3.5.4 shows the simulated spectra for isochorically heated diamond for a range of tem-
peratures from 0.5 to 7.5 eV with additional calculations for various pressure conditions from
150 GPa to 437 GPa corresponding to densities 4.41–5.5 g/cm3. The simulations for com-
pressed conditions are performed based on the lattice parameters obtained using the Vinet
equation of state [Vinet et al., 1987, Vinet et al., 1989] for diamond under ambient tempera-
ture. The increase in pressure results in reduction of the peak intensities and a shift of the
spectral features to higher energies. This is expected as the diamond’s indirect and direct
band gap increases with pressure. At temperatures above 0.5 eV, isochorically heated dia-
mond is in the liquid regime, refer Fig. 3.0.1 and Fig. 3.3.6. Comparing the 0.5 eV spectra
under ambient and compressed pressure conditions, the increase of the peak intensities to-
wards higher energies can also be observed in the results of the averaged XRS simulations with
the ionic configurations obtained from DFT-MD, as explained above. With further increase in
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Figure 3.5.1: X-ray Raman spectra for ambient diamond at |~q| = 5.94/Å with a variation inthe cluster radius. The simulation data is shown for diamond in an unit cell witha) 4 atoms and b) 8 atoms.
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Figure 3.5.2: a) Measured x-ray Raman spectra [Voigt et al., 2021] for diamond underambient conditions at |~q| = 5.94/Å. The simulation data is shown for an unitcell consisting of 8 atoms. The carbon K-edge is located at ≈285 eV, b) Densityof states for diamond at ambient conditions. The valence band maximum isadjusted to zero. Reprinted figure with permission from K. Voigt et al., Physics ofPlasmas 28 (8), 082701 (2021). Copyright 2021 by the AIP Publishing.
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Figure 3.5.3: X-ray Raman spectra for diamond at ambient conditions for a) Variouswavenumbers, b) Normalized with respect to 1.0 Å–1. The scaling factor isindicated in the brackets.
temperature >0.5 eV, the phase is purely in the liquid regime and this is evident in the absence
of the peak structures which are present under the cases of solid and warm dense conditions
(∼0.5 eV). The peak intensities in the liquid regime from 1.0 eV to 7.5 eV are further reduced
compared to the solid phases and remain more or less uniform.

3.6 Conclusions

The electronic density of states, the band gap, and the dielectric response function as a func-
tion of pressure for various phases of carbon, namely diamond, lonsdaleite, and BC8 are cal-
culated. In particular, the wavenumber dependence of the dielectric function is emphasized in
order to provide high quality predictions for the dynamic structure and XRTS signals of these
phases under high-pressure. The influence of different XC functionals on the band gaps and
eigenvalues and thus on the response functions are also investigated. These results can pro-
vide a theoretical reference for future experiments on band gaps and optical properties for
the various phases of carbon at high pressures.
BSE is the theory including the most advanced approximations and is expected to provide
the quantitatively best results. Meanwhile TDDFT can reproduce the excitonic effects of the
BSE reasonably well at a fraction of the computational cost and also at finite wavenumbers.
The standard Kubo-Greenwood approach and its extension to finite wavenumbers via the ex-
tended Mermin Ansatz are compared to RPA, TDDFT and BSE. Available experimental data for
diamondhave been compared to the results of the simulations. For lonsdaleite andBC8 phase,
experimental data under high-pressure are very sparse and only comparisons with different
theoretical methods were possible.
For WDM conditions, TDDFT and RPA give different results to KG, and particular care is needed
to eliminate finite size effects. The influence of the XC kernel in TDDFT is also investigated and
is important for obtaining accurate results based on the WDM regime.
The location of the plasmon position in diamond under ambient conditions is well modeled
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using TDDFT compared to other methods and in good agreement with the XRTS measure-
ments. The approach using TDDFT to compute the inelastic-scattering spectra is a viable tool
for experiments involving carbon and carbon bearingmixtures e.g. with attention to the forma-
tion of diamond [Kraus et al., 2017, Ramakrishna and Vorberger, 2019, Frydrych et al., 2020,
Schuster et al., 2020]. The formation of diamond under WDM conditions is experimentally
observed in polystyrene and polycrystalline graphite [Kraus et al., 2017, Frydrych et al., 2020,
Schuster et al., 2020]. The simulations performed under this work further presents a scope
to understand the complicated XRTS signals for understading the demixing of the carbon-
hydrogen species. The demixing occurs at the predicted metallic hydrogen conditions and
XRTS can be used in conjuction with LR-TDDFT predictions to obtain reliable diagnostics. The
developed method is suitable especially considering the WDM regime for carbon-hydrogen
mixtures in the recent experimental campaigns [Kraus et al., 2017, Frydrych et al., 2020]
where carbon component is still strongly bounded and using RPA with plasma theory fails
even combined with Mermin Ansatz providing unrealistic plasmon properties. The many-
component species involved further complicates the use of the free-electron model of the
RPA plasma theory including local-field corrections. The formation of metallic hydrogen is ex-
perimentally predicted to occur at these conditions, (see chapter 4) for the Equation of State.
As comparable XRS measurements can be performed at XFEL sources in the future for low-Z
materials, XRS is a viable tool for understanding the electronic structure i.e. changes in the
chemical bonding and characterizing phase behavior in WDM regime.
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The success of density functional theory (DFT) regarding the description of materials was facili-
tated by the availability of accurate exchange-correlation (XC) functionals, which, however, can-
not be obtained within DFT itself and have to be supplied as input. While the exact functional is,
in general, not known, this quantity can often be reasonably approximated on the basis of the
properties of the uniformelectron gas (UEG) [Loos and Gill, 2016, Dornheim et al., 2018a]. The
key quantity is given by the XC energy of the UEG, which, at zero temperature, was accurately
computed by Ceperley and Alder [Ceperley and Alder, 1980]. These data were subsequently
used as input for different parametrizations [Vosko et al., 1980, Perdew and Zunger, 1981,
Perdew and Wang, 1992] of the XC energy EXC(rs), which allow for DFT calculations on the level
of the local density approximation (LDA). These results further constitute the basis for more
advanced functionals like the PBE [Perdew et al., 1996a].
While the generalization of DFT to finite-temperature was introduced over 50
years ago by Mermin [Mermin, 1965], most results pertaining to warm dense mat-
ter (WDM) have been obtained on the basis of the zero-temperature approximation

e.g., Refs. [Mazevet et al., 2005, Mattsson et al., 2010, Schöttler and Redmer, 2018,
Witte et al., 2017b, Baczewski et al., 2016, Whitley et al., 2015]), i.e., using XC func-
tionals that were designed for the ground-state. Meanwhile, the assumption is
questionable, as the thermal DFT formalism requires as input a parametrization of
the XC free energy fXC(rs, θ) that explicitly depends both on density and temper-
ature [Gupta and Rajagopal, 1982, Smith et al., 2018]. Hence, replicating the suc-
cess of ground state DFT at elevated temperatures requires an accurate descrip-
tion of the UEG in the WDM regime [Karasiev et al., 2016, Karasiev et al., 2019a,
Luo et al., 2020, Ramakrishna et al., 2020, Mihaylov et al., 2020]. Perrot and Dharma-
wardhana [Perrot and Dharma-wardana, 1984, Perrot and Dharma-wardana, 2000,
Dharma-wardana and Perrot, 2000] introduced a classical mapping for the free energy
parametrization and the overall accuracy is comparable to that obtained by Vashishta and
Singwi [Vashishta and Singwi, 1972] and inferior to that given by the Singwi, Tosi, Land, and
Sjölander (STLS) scheme [Singwi et al., 1968, Tanaka and Ichimaru, 1986].
As the overall accuracy of the free energy parametrizations was unknown, it has sparked
a surge of new developments regarding quantum Monte Carlo (QMC) simulations of elec-
trons in the WDM regime [Brown et al., 2013a, Blunt et al., 2014, Dornheim et al., 2015a,
Malone et al., 2015, Dornheim et al., 2015b, Groth et al., 2016, Dornheim et al., 2016a,
Malone et al., 2016, Dornheim et al., 2016b, Claes and Clark, 2017, Dornheim et al., 2017,
Groth et al., 2017c, Dornheim et al., 2019]. Brown et al. [Brown et al., 2013a] presented
the first path integral Monte Carlo (PIMC) results for the warm dense UEG, which
were subsequently used as input for several parametrizations [Brown et al., 2013b,
Sjostrom and Dufty, 2013, Karasiev et al., 2014b]. The Brown et al. [Brown et al., 2013a]
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data were obtained by imposing a restriction on the nodal structure of the thermal density
matrix (fixed node approximation) [Ceperley, 1991] so that the quality of these data had
remained unclear. Schoof et al. [Schoof et al., 2015] were able to unambiguously quantify
the nodal errors by presenting an independent data set using the exact configuration PIMC
method [Schoof et al., 2011]. It was found that the restricted PIMC data exhibit systematic
deviations of up to 10%.
A set of unbiased PIMC data [Dornheim et al., 2016b] in the thermodynamic limit was used to
construct a new parametrization Groth-Dornheim-Sjostrom-Malone-Faulkes-Bonitz (GDSMFB)
of fXC [Groth et al., 2017c]), which is employed throughout this work. The earlier parametriza-tion by Karasiev et al. [Karasiev et al., 2014b] (KSDT) and also an improved version "cor-
rKSDT" [Karasiev et al., 2018b] exhibits a comparable accuracy in the relevant WDM regime.
The investigation of gradient corrections by Sjostrom and Dali-
gault [Sjostrom and Daligault, 2014] based on the the KSDT functional concludes that
the finite-temperature XC effects start to matter at around T=104 K. The first thorough investi-
gation of finite temperature XC effects was presented by Karasiev et al. [Karasiev et al., 2016],
where the limits of the zero-temperature approximation were pointed out for a few different
materials and quantities. Shortly thereafter, Karasiev et al. also presented a finite temper-
ature GGA functional [Karasiev et al., 2018b] and reported a significant improvement in the
principal Hugoniot of shocked deuterium [Karasiev et al., 2019a]. Recently, a thermal hybrid
XC functional [Mihaylov et al., 2020] has been presented which could provide a significant
improvement to static calculations of electronic band gap and band structure at temperatures
within the WDM regime.
Yet, a detailed study of the impact of XC effects considering different relevant physical regimes
(e.g., WDM, electron liquid, etc) was still missing, the aim is to fill this gap by carrying out
extensive thermal DFT calculations of hydrogen and comparing different zero-temperature
approximations to the GDSMFB functional [Groth et al., 2017c, Ramakrishna et al., 2020]. In
this regard, hydrogen constitutes an obvious choice as it is the most abundant element in
our universe and offers a plethora of interesting physical effects [McMahon et al., 2012] such
as the liquid-liquid insulator-to-metal phase transition [Wigner and Huntington, 1935,
Ashcroft, 1968, Weir et al., 1996, Dalladay-Simpson et al., 2016, Knudson et al., 2015,
Celliers et al., 2018, Dias and Silvera, 2017, Eremets and Troyan, 2011]. Moreover,
hydrogen-helium mixtures have been predicted to undergo temperature driven phase
transition from a high temperature liquid (fully miscible) to a low temperature phase
dominated with helium droplets. The experimental data on the phase diagram of
hydrogen-helium mixtures are very scarce and the existing knowledge is based on
simulations. Under the planetary interiors of jupiter and saturn, the interaction be-
tween hydrogen and helium leads to challenges in determining the equation of state
(EOS) due to the miscibility [Schöttler and Redmer, 2018, Helled et al., 2020]. Further
actively investigated questions regarding hydrogen at extreme conditions include ion-
ization potential depression [Stransky, 2016, Saha, B. et al., 2002] and proton crystalliza-
tion [Bonitz et al., 2005, Filinov et al., 2012].
The relative importance of thermal XC effects as a function of density (rs) and temperature for
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Figure 4.0.1: Map of the density-temperature plane showing the importance of thetemperature dependence in finite-temperature XC free energy functional. Thex-axis represents the density (rs) in logarithmic scale. The y-axis represents thetemperature (×103 K) in logarithmic scale. The color map shows the deviation[Eq. (4.0.1)] in logarithmic scale. Reprinted figure with permission from V. V.
Karasiev et al., Phys. Rev. E 93, 063207 (2016). Copyright 2016 by the AmericanPhysical Society.

an uniform electron gas is shown in Fig. 4.0.1. The quantity is plotted as
log10

(|fXC(rs, T ) – eXC(rs)||fn(rs, T ) + eXC(rs)|
)
, (4.0.1)

where fXC is the XC free energy per particle, eXC is the ground state XC energy per particle, and
fn is the non-interacting XC free energy per particle. The domain where the temperature de-
pendence of the XC effects is most important is indicated by the yellow and orange regions.
For example, a 10% change is expected in the XC free energy per particle at the onset of the
red region in the map. It is clear that the finite-temperature XC is expected to be important
at low temperature for large rs (> 5). Also, in the large temperature limit, the importance van-
ishes as the system becomes increasingly ideal for large temperatures, and XC overall become
unimportant [Karasiev et al., 2016].
The XC free energy per particle based on the GDSMFB parametrization [Eq. (2.3.25)] is plotted
as a function of density and reduced temperature for a spin unpolarized case (ξ = 0) in Fig.
4.0.2(a). The spin polarization is given by ξ = (N↑–N↓)/(N↑+N↓) ∈ [0, 1]. Looking at a contour for
a high density case, e.g., at rs = 1.0, the influence of thermal XC has amaximum around θ = 0.5
(≈ 3× 105 K), also evident in Fig. 4.0.1. Similarly, for a low density case, e.g., at rs = 14, the XC
free energy is small but the significance of thermal XC is spread over a wide range of reduced
temperatures in Fig. 4.0.2(b), seen in the wide heat map (orange-red) around 104 K in Fig.
4.0.1. These effects are further explored in detail in the following sections for various density
and temperature ranges. The spin dependency of the XC free energy is plotted as a function
of density and reduced temperature in Fig. 4.0.2(c). For a spin polarized (ferromagnetic) case
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(ξ = 1), as the temperature increases, the fXC of the polarized case increases relative to the
unpolarized case.
A detailed phase diagram of hydrogen is shown in 4.0.3. The blue dotted lines are the phases
between the solid molecular phases and the melt line from Refs. [Goncharov et al., 2011,
Howie et al., 2015, Eremets et al., 2016]. The vertical yellow line is a proposed phase line
distinguishing the semiconducting and semimetallic solid phases [Eremets et al., 2019]. The
grey region is a hypothetical transition to an atomic solid phase stable beyond 500 GPa still
not reached within the experimental means. The solid phases comprises crystal structure
of various symmetries with same of the phases yet to be experimentally determined, so far
the theoretical predictions are restricted to the stability of the phases at thermodynamic
conditions from DFT and QMC simulations [Pickard and Needs, 2007, Geneste et al., 2012,
Azadi et al., 2014, Drummond et al., 2015]. At high temperature, the insulator-metal transi-
tion is shown by the red curve before the existence of an intermediate semiconducting fluid
state.

4.1 Computational Details

The DFT-MD simulations are performed using the CP2K code [Hutter et al., 2014]. The Kohn-
Sham (KS) equations are solved using the Gaussian plane waves (GPW) method with the basis
set consisting of Gaussians along with additional plane waves as auxiliary basis. The auxil-
iary basis is of the form ψ(~r) = Ri(r)Yli ,mi

(θ,φ), with Ri(r) denoting the radial part and Yl,m de-
noting the angular part. The electron-proton potential is approximated using Goedecker-
Teter-Hutter pseudopotentials [Goedecker et al., 1996] of LDA form with a cutoff radius of
rc = 0.2 aB. The standard T=0 LDA XC functional is hereafter referred to as PZ (Perdew-
Zunger) [Perdew and Zunger, 1981] and the parametrized temperature dependent LDA form
of the XC functional asGDSMFB [Groth et al., 2017c]. TheGDSMFB functional is accessed in the
CP2K code using the library of exchange-correlation functionals (LIBXC) [Lehtola et al., 2018,
Marques et al., 2012].
The convergence tests in terms of energy are performed using full DFT-MD simulations by
varying the system parameters: system size, basis set, k-point sampling and plane wave energy

cutoff. Simulations are run up to 10000 steps and the equilibrated snapshots are averaged to
obtain the statistics: pressure/energy of the system. Full scale DFT-MD simulations although
expensive are considered in this work for achieving the convergence involving a broad range
of system parameters.
The right basis set is important for obtaining accurate results, while staying within reasonable
limits for the computational demand [Ferrario et al., 2007]. The best accuracy with sufficient
speed can be obtained when using the double-zeta valence polarized (DZVP) basis set for the
computation of the pressure as summarized in Fig. 4.1.1(a) for the PZ functional. Computa-
tionally more expensive basis sets can be ignored as the pressure results are converged to
≈0.3%. DZV/DZVP basis sets have been previously utilized in the simulations of warm dense
hydrogen and hydrogen-heliummixtures [Li et al., 2017b, Liu et al., 2018]. The plane wave en-
ergy cutoff is set between 450-800 Ry and the Gaussian basis set cutoff is set to 90–180 Ry
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Figure 4.0.2: Exchange-correlation free energy per particle (fXC) as a function of density (rs)and reduced temperature (θ) for a) a spin unpolarized case, b) a spinunpolarized case at low densities rs = 5.0 – 14.0 and small reducedtemperatures, c) a spin polarized case. The change in the XC free energy is given
by [ fXC(rs,θ,ξ=1)–fXC(rs,θ,ξ=0)

fXC(rs,θ,ξ=0) × 100%].
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Figure 4.0.3: Phase diagram of hydrogen at high temperatures and pressures. Republishedwith permission of AIP Publishing from Phase diagram of hydrogen at extremepressures and temperatures; updated through 2019, Low Temperature Physics
46, 97 (2020) [Goncharov, 2020]. Permission conveyed through CopyrightClearance Center, Inc.

depending on the density and the temperature of the system.
With the DZVP basis set chosen, the choice of the system size is tested next. The smallest
system size considered for the DFT-MD simulations (N=32) shows finite size effects at a range
of densities and temperatures and the minimum size required for sufficient accuracy is given
by N=256 as shown in Figure 4.1.1(b). Due to high computational demands required, which is
explicitlymentioned in those cases, a sytem size N=32 is used for cases of small/large densities.
Lorenzen et al. [Lorenzen et al., 2010] also observed a similar effect of the system size on the
EOS for dense hydrogen. The effect is seen in Fig. 4.1.1(b) for rs = 3.0 with a pressure variation
of 4.7% with the change in system size from N=32 to N=256. At rs = 4.0, the pressure variation
with the same change in system size is 2.5%. At much lower densities (rs ≥ 10) a system size of
N=32 or N=108 only is feasible for simulations due to bigger simulation boxes requiring more
plane waves.
The computed energy and pressure of the system can be influenced by the choice of k-point
sampling. At rs = 3.0, T=15625 K, no dependence on k-point sampling is observed based on
the system size for obtaining the convergence as shown in Fig. 4.1.1(c). With a small system size
of N=32, the pressure difference between gamma-point sampling and the usage of k-points
are negligible but the pressures obtained are comparatively higher than the values reported
by Hu et al. andWang et al. respectively [Hu et al., 2011, Wang and Zhang, 2013]. The pressure
difference between gamma-point sampling and 3 × 3× 3 is < 0.1% for N=108. Higher k-point
sampling has a smaller effect for bigger supercells as the case of N=256 particles demonstrates
where the change in pressure is still < 0.1% going from gamma-point sampling to a 3 × 3× 3
grid of k-points. A system size of N=256 sampled at the gamma-point is considered based on
the aforementioned reasons.
To account for the large kinetic energies of the protons at higher temperatures, the sim-
ulation time step needs to be varied. It ranges in between 0.02 fs for the highest tem-
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peratures and 0.1 fs for the lowest temperatures considered. At least 10000 time steps
for the simulations are considered until the system had equilibrated and then further
time steps of 4000–5000 are considered for obtaining the statistics. A Fermi occupa-
tion of the bands/eigenvalues is used to set the electronic temperature [Mermin, 1965,
Gupta and Rajagopal, 1982] along with a Nosé-Hoover thermostat to control the ionic tem-
perature in the canonical ensemble [Nosé, 1984b, Nosé, 1984a]. The simulation box con-
sisted of an hexagonal cell (a=b, c=1.63a) under periodic boundary conditions and the cell
size varied depending on the density. The simulations cover the density range from rs =
0.8137 . . .14 for a wide range of temperatures T=250–400000 K. Simulations of tempera-
ture ranges beyond 400000 K are at present computationally too expensive using KS DFT
formalism. Alternatives include orbital-free DFT [Karasiev et al., 2013, Karasiev et al., 2014c,
Zhang et al., 2016, Luo et al., 2020], an extended KS formalism [Zhang et al., 2016], a
stochastic-deterministic scheme [White and Collins, 2020], and Spectral Quadrature DFT
(SQDFT) [Suryanarayana et al., 2018] for large-scale parallel KS DFT calculations which, how-
ever, are beyond the scope of this work.

4.2 High-Pressure Fluid

This section focuses on the finite-temperature XC effects on the equation of state (EOS) in the
high-pressure fluid regime (rs < 2.0) for T ≤ 10000 K and a comparison is made to the avail-
able ab-initio results. While nuclear quantum effects (NQE) have been shown to influence the
EOS at lower temperatures and the liquid-liquid phase transition (LLPT) [Morales et al., 2010b,
Morales et al., 2013], they are not considered in this work as the focus is on the thermal XC
effects on the electrons.
The simulations are performed for a system size N=256 and the k-point sampling is per-
formed only at the gamma-point. Figure 4.2.1 shows the EOS at 1000 K computed with
various XC functionals and ab-initio methods. In the PVT diagram, the LLPT can be recog-
nized [Morales et al., 2010b] by its characteristic signature (∂P/∂ρ)|T = 0. CEIMC gives a very
clear signature of the LLPT. The DFT-MD results, which can be calculated for a finer grid of
points and have to utilize a dense k-point grid near the transition region, show a slightly lower
transition pressure [Lorenzen et al., 2010].
The incorporation of finite-temperature XC has no significant change in the EOS as the re-
duced temperatures are low at these densities, 0.003 < θ < 0.004. At T=1000 K, the LDA
results (PZ/GDSMFB) are in the range obtained by Alavi et al. [Alavi et al., 1995]. Since LDA
fails to capture the molecular dissociation correctly, the effect of finite-temperature XC on
the LLPT can be ignored. There are obviously differences to the pressure isotherms ob-
tained with different XC functionals, in particular in the molecular region. The most accu-
rate EOS under these conditions is provided by the CEIMC method, and the next best ap-
proach would be DFT-MD if higher rungs of XC functionals, especially non-local density func-
tionals, are used. Indeed, several papers recently reported a higher transition pressure com-
parable to and even above CEIMC when using functionals featuring van-der-Waals correc-
tions [Knudson et al., 2015, Lu et al., 2019, Hinz et al., 2020].
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101, 195129 (2020). Copyright 2020 by the American Physical Society.

The computed EOS in comparison toQMC and Born-Oppenheimermoleclar dynamics (BOMD)
at temperatures 6000 K, 8000 K and 10000 K are shown in Figs. 4.2.2(a)-4.2.2(c). The relative
difference in pressure shown in the inset plot is given by

(PGDSMFB – P)
PGDSMFB

× 100%. (4.2.1)
The LDA (PZ) results and the BOMD results obtained by Morales et al. using PBE consistently
exhibit deviations from each other with smallest deviations for the lowest rs (highest densi-
ties) where the system is metallic [Morales et al., 2010a]. A divergence is observed between
the CEIMC method and the PBE results of Morales et al. with increasing rs, where the CEIMC
data more closely agree with the LDA results [Morales et al., 2010a]. A possible explanation
for this trend would be a systematic bias in the CEIMC data due to the employed LDA based
trial wave function in this approach, although this cannot be resolved on the basis of the
data obtained here. In Fig. 4.2.2(a), the close agreement for lower densities (rs > 1.4) be-
tween the PZ/GDSMFB results and QMC as well as PBE-BOMD data obtained by Mazzola et
al. [Mazzola et al., 2018] and Vorberger et al. [Vorberger et al., 2007] are shown. The GDSMFB
results in a higher pressure compared to PZ by 0.2–0.5% at these conditions, which is reason-
able as θ ≈ 0.01 – 0.03. A similar trend can also be observed in Fig. 4.3.2 discussed in section
4.3 where the pressure difference is positive for similar densities at low temperatures.
For completeness, as it is not really related to the influence of thermal XC effects, the
phase diagram of hydrogen at high densities including the LLPT is shown in Fig. 4.2.3.
The LDA (PZ/GDSMFB) results are not included in the diagram as they fail to capture
the LLPT and the EOS is inconsistent with the other XC functionals and experimental re-
sults [Mazzola et al., 2018, Morales et al., 2010a, Pierleoni et al., 2016, Pierleoni et al., 2018,
Lorenzen et al., 2010, Tamblyn and Bonev, 2010, Zaghoo et al., 2016, Knudson et al., 2015,
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Figure 4.2.2: EOS at a) T=6000 K, b) T=8000 K, and c) T=10000 K comparing our results withthe previous results obtained using PIMC and DFT. The inset plot shows therelative difference (Eq. 4.2.1) in pressure with respect to the finite-temperaturecase. Morales Ref. [Morales et al., 2010a]; VorbergerRef. [Vorberger et al., 2007]; Mazzola Ref. [Mazzola et al., 2018]. Reprinted figurewith permission from K. Ramakrishna et al., Phys. Rev. B 101, 195129 (2020).Copyright 2020 by the American Physical Society.
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Celliers et al., 2018]. The Pierleoni et al. data are shown both for quantum and classical pro-
tons [Pierleoni et al., 2016, Pierleoni et al., 2018]. The figure nicely demonstrates the wide
spread of the predictions of the LLPT in the high-pressure fluid of hydrogen and the asso-
ciated problems with the treatment of exchange and correlation in this correlated system.

4.3 Warm Dense Matter

In this section, the warm dense matter regime is explored, where thermal XC effects are ex-
pected to be important. The DFT-MD simulations need good convergence with respect to the
simulation parameters. In section 4.1, the choice of the DZVP basis set is reasoned based on
the computational cost and the accuracy for rs = 3.0 – 4.0. The pseudopotential was further
optimized using ATOM within the CP2K code that ensures even at the highest densities that
there is no overlap of cores. In particular, the core radius was lowered even further to 0.1 aBfor high densities. At lower rs (< 1.0), the basis set and the energy cutoff for the plane waves
are important. A cutoff of 500 Ry and above with the DZVP basis set ensures the convergence
in pressure calculations. Figure. 4.3.1 shows the energy cutoff for rs = 0.8137 (5.0 g/cm3)
using various basis sets with PZ XC for 32 atoms at two different temperatures. The simulation
parameters are well optimized at the higher densities considered for simulations, ensuring the
consistent quality of the calculation across the whole range of WDM.
The equation of state for rs = 0.8137 . . .1.4 corresponding to densities in the range of
5.0 . . .0.98 g/cm3 are compared in Figs. 4.3.2(a)-4.3.2(c). Overall, the agreement between
LDA-BOMD of different sources and PIMC is reasonable. The PZ/GDSMFB results are con-
sistently closest to PIMC of all DFT-MD data at the highest temperatures. However, the re-
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Figure 4.3.1: The convergence of pressure with respect to the plane wave energy cutoff andbasis sets [single-zeta valence (SZV), double-zeta valence polarization (DZVP),double-zeta valence polarization short-range (DZVP-SR)] at 62500 K and 250000K for rs = 0.8137. Reprinted figure with permission from K. Ramakrishna et al.,Phys. Rev. B 101, 195129 (2020). Copyright 2020 by the American PhysicalSociety.
sults deviate from the data by Wang et. al [Wang and Zhang, 2013] at lower temperatures for
rs = 0.8137 shown in Fig. 4.3.2(a). At high densities and temperatures, the computational
cost of the mixed Gaussian plane wave method increases hence the choice of N=32 for all
of the simulations shown in this section. Also, the k-point sampling is performed only at the
Gamma-point. The resulting finite-size effects have been demonstrated for lower tempera-
tures at rs = 3.0, where the obtained pressures are higher for smaller system sizes. Wang
et al. [Wang and Zhang, 2013] use a system size ranging from 8–512 atoms sampled at the
gamma-point with the KS DFT simulations restricted to T < TF for ρ > 0.5 g/cm3. The finite-size
effects do not necessarily constitute a problem, as the focus is on the pressure differences
due to the use of the GDSMFB functional instead of PZ. For this difference, finite size effects
are expected to cancel as has been reported for ab-initio PIMC calculations of the static local
field correction [Dornheim et al., 2019, Groth et al., 2017a].
Thus, the relative difference in the total pressure calculated using

(PPZ – PGDSMFB)
PPZ

× 100%. (4.3.1)
shown in the inset plots in Fig. 4.3.2 is in good agreement with the KS DFT and orbital-free
DFT results obtained by Karasiev et al. [Karasiev et al., 2016]. Danel et al. [Danel et al., 2016]
estimated the temperature dependence in the XC functional based on a local density approxi-
mation, using an expression for the excess free energy by Ichimaru et al. [Ichimaru et al., 1987].
The electronic pressure variation with respect to temperature and density is shown in Fig.
4.3.3, obtained by subtracting the ideal ion pressure from the total pressure. A similar pro-
cedure is also used by Karasiev et al. [Karasiev et al., 2016]. The ionic excess pressure as can
be obtained for instance by integrating over the pair correlation function, has not been sub-
tracted [Kremp et al., 2006]. While density decreases, the relative difference in electronic pres-
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sure at a fixed temperature increases as the temperature effects on the electronic correlations
are more prominent as the Fermi temperature decreases with density. As the density de-
creases from rs = 0.8137 to rs = 1.4, at 125000 K, θ changes from 0.14 to 0.42 and a large
deviation in the electronic pressure is noted. At rs = 0.8137, notable deviations in the elec-
tronic pressure begin to appear at temperatures above 400000 K which, however, is beyond
the scope of this work based on KS DFT.
Summarizing, the new simulation results further corroborate the observations by Karasiev et
al. [Karasiev et al., 2016], and stress the importance of finite-temperature XC effects for DFT
simulations in the WDM regime.

4.4 Moderately Coupled Plasma and Electron Liquid Regime

With increasing rs (i.e., decreasing density), electronic correlations become more impor-
tant and the system will eventually form an electron liquid [Giuliani and Vignale, 2005,
Ichimaru and Utsumi, 1981, Utsumi and Ichimaru, 1981, Dornheim et al., 2018b,
Groth et al., 2019, Dornheim et al., 2020b] for rs & 10. A natural realization of the 2D
electron liquid is given by the localization of the electrons at the surface of elemental
metals [Tamm, 1932]. In metals, 3D electron liquids can be found if the Fermi surface
of the conducting electrons is spherical to facilitate the movement of electrons as free
particles [Tamm, 1932, Giuliani and Vignale, 2005]. Controlling the amount of dopants
in semiconductors also facilitates it. Although these exotic conditions are rather diffi-
cult to realize experimentally at present, they offer the valuable opportunity to study the
nontrivial interplay of temperature and Coulomb coupling (Γ = 1/(akBT )) with quantum
diffraction and exchange effects. The emergence of a collective excitonic mode for large
rs based on ground-state many-body theory was predicted by Takada [Takada, 2016],
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which was recently substantiated by more accurate ab-initio PIMC calculations at finite-
temperature [Dornheim et al., 2018b, Groth et al., 2019]. An exciting opportunity for future
research is the possibility of an experimental detection of the associated negative dispersion
relation of the dynamic structure factor [Dornheim et al., 2018b].
The thermal XC effects are more pronounced even at low temperatures for lower densities.
The energy cutoff for rs = 14.0 using various basis sets with PZ exchange correlation for 32
atoms at four different temperatures is shown in Fig. 4.4.1. A cutoff of 500 Ry and above
ensures the convergence in pressure calculations. At high temperatures, the differences be-
tween the basis sets reduce irrespective of the energy cutoff. At low temperatures, triple-zeta
valence polarization (TZVP) basis set fares marginally well with respect to DZVP, but is compu-
tationally expensive. The choice of DZVP basis set with the energy cutoff and other parameters
discussed in section 4.1 is also justified at far lower densities.
The EOS for rs = 2.0 . . .14 corresponding to densities in the range 9.8 × 10–4 . . .0.34 g/cm3
is shown in Fig. 4.4.2(a). The system size is N=256 except at rs ≥ 10 where the system size is
reduced to N=32 due to the large simulation box required at these low densities. The k-point
sampling is performed only at the gamma-point. The EOS using PZ/GDSMFB fits well with the
PIMC andDFT-MDdata of Hu et al. andWang et al., respectively across a gamut of temperatures
for the densities considered [Hu et al., 2011, Wang and Zhang, 2013]. The relative difference
in total pressure between PZ and GDSMFB is shown in Fig. 4.4.2(b).
At intermediate temperatures, ΔP exhibits a sign change, which is shifted to larger temper-
atures for increasing density. This is again a consequence of the rs dependence of the re-
duced temperature θ, which decreases with rs. Such a sign change has been reported for
the pressure in previous DFT calculations [Karasiev et al., 2012, Sjostrom and Daligault, 2014,
Karasiev et al., 2016]. A similar behaviour was found in QMC calculations for the XC part of the
kinetic energy of the UEG [Militzer and Pollock, 2002].
The relative difference in pressure is more pronounced in the range rs = 5.0 . . .10.0, with
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positive differences at low temperatures and negative differences at higher temperatures be-
ing of a similar magnitude. The maximum changes for rs = 10.0 are observed in a broad
range of reduced temperatures of θ = 0.6 – 6.0. For comparison, we mention that the positive
maximum deviation for rs = 5.0 is found for θ = 0.3 – 0.7, whereas the negative maximum
deviation extends to temperatures beyond the depicted range. At moderately coupled regime
rs = 2.0 . . .3.0, the onset of the significant changes begin near the maximum of the tempera-
ture considered in Fig. 4.4.2(b). This can be observed in Fig. 4.4.3(a), where the temperature is
held constant and the relative difference in total pressure is evaluated with the change in den-
sity and the electron degeneracy. The positive pressure difference is maximal for the density
range rs = 2.0 . . .3.0 in the vicinity of θ ∼ 1 and Γ ∼ 2. In order to achieve pressure/energy
convergence for very low densities, e.g., rs = 14.0, the plane wave energy cutoff needs to be
increased up to 800 Ry. Then, agreement with Hu et al. and Wang et al., respectively, across a
range of temperatures is found[Hu et al., 2011, Wang and Zhang, 2013]. Due to the large sim-
ulation box, the sampling is performed only at the gamma-point for a system size set to N=32.
As before, finite size effects should be unimportant as the interest is in the relative differences
in total pressure.

The relative difference in total pressure across a wide range of temperature at rs = 14.0 is
shown in Fig. 4.4.3(b). The maximum relative differences can be seen at the reduced temper-
atures θ = 1.18 and θ = 5.90, respectively. These deviations exceed 20% and, thus, are even
more pronounced than for the previously considered WDM regime.
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Ramakrishna et al., Phys. Rev. B 101, 195129 (2020). Copyright 2020 by theAmerican Physical Society.

4.5 Density of States

The density of states (DOS) is computed for rs = 2.0 simulating N=256 atoms sampled at the
gamma-point using Eq. (3.1.2). A set of 5 independent equilibrated configurations from differ-
ent simulation runs are averaged to obtain the corresponding DOS. In Figs. 4.5.1(a)-4.5.1(d),
the DOS is shown for a range of temperatures and compared to the ground-state GGA cal-
culations by Collins et al. [Collins et al., 2001]. At T=2000 K, the system is still insulating with a
band gap shown in Fig. 4.5.1(a) while the results from Collins et al. show a slight increase in the
DOS near the Fermi level. At a slightly higher temperature of T=5000 K, the system is metallic
and our results match the trend obtained by Collins et al. Between T=2000 K and T=5000 K,
the DOS is hardly influenced by finite-temperature XC effects as the reduced temperature is
still low. At T=15625 K (θ = 0.107), the results follow the trend seen by Collins et al., with the√
E feature of the 3D electron gas clearly visible at 62500 K (θ = 0.43). Noticeable differences

between the DOS computed with the PZ (T=0) functional and the GDSMFB finite-temperature
functional start to appear at these two temperatures, which are still below the regime where
the maximum change in finite-temperature XC effects can be observed.

4.6 Electronic Density

Figure 4.6.1(a)-4.6.1(b) shows snapshots of an electronic density isosurface computed using
PZ and GDSMFB for rs = 2.0, T=62500 K (i.e., θ = 0.43, which is located in the WDM regime)
and for the same ionic configuration. The snapshot has been obtained by performing DFT-MD
simulations with the PZ functional until the system equilibrated and a random ionic config-
uration is chosen, which is subsequently used to compute the density with the different XC
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Ramakrishna et al., Phys. Rev. B 101, 195129 (2020). Copyright 2020 by theAmerican Physical Society.
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4.6 Electronic Density

Figure 4.6.1: Snapshot of an electronic density isosurface for rs = 2.0, T=62500 K (θ = 0.43)using a) PZ and b) GDSMFB for the same ionic configuration with N=256. Panelc) shows magnified insets for PZ (top) and GDSMFB (bottom) for the bottom leftcorner of the respective simulation cells. Reprinted figure with permission from
K. Ramakrishna et al., Phys. Rev. B 101, 195129 (2020). Copyright 2020 by theAmerican Physical Society.

functionals. A large system size of N=256 sampled at the gamma-point in an hexagonal super
cell ensures the convergence at high densities. The visualization of the results are generated
using VESTA [Momma and Izumi, 2011].
The two panel snapshots a) and b) from Fig. 4.6.1 has a similar structure, with the electronic
isosurfaces centered around the ions. Still, distinct systematic differences exist, which can be
seen especially well in Fig. Fig. 4.6.1(c) displaying a magnified section around the bottom left
corner of the simulation cell. Using the PZ functional (top), there tends to be a substantial over-
lap between the electronic orbitals around individual atoms; on the other hand, the GDSMFB
functional (bottom) results in a slightly reduced overlap. The thermal wavelength λ ∼ 1/√T
decreases with increasing temperature, and thus the electronic orbitals are less extensive. Ul-
timately this leads to convergence in the high temperature limit of standard point-like particles.
This phenomenon can not be reliably captured by the PZ functional, which was built strictly on
the basis of ground state data for the uniform electron gas and the extension of the electronic
isosurfaces is significantly overestimated.
Fig. 4.6.2 shows snapshots of an electronic density isosurface computed using PZ andGDSMFB
for rs = 2.0, T=15625 K (θ = 0.107) and for the same ionic configuration. The influence of
finite temperature XC results in a change of 2% in the total pressure but there appears to be
negligible impact on the electronic density.
The inclusion of finite-temperature XC effects in a thermal DFT simulation of a warm dense
matter system is critical to capturing the related physics, although the impact may be compar-
atively low on average quantities such as total or electronic pressure (3%, refer Fig. 4.4.3). For
example, local electronic density fluctuations are important for the measurement of response
functions and hence the prediction of structure factors as measured, e.g. through x-ray scat-
tering [Falk, 2018, Graziani et al., 2014].
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Figure 4.6.2: Snapshot of an electronic density isosurface for rs = 2.0, T=15625 K (θ = 0.107)using a) PZ and b) GDSMFB for the same ionic configuration with N=256.

4.7 Conclusions

In summary, the impact of finite-temperature XC effects on the results of DFT simulations
of hydrogen over a vast range of conditions has been studied in detail. More specifi-
cally, extensive DFT calculations have been carried out using the ground-state functional by
Perdew and Zunger (PZ) [Perdew and Zunger, 1981] and the finite temperature analogue
GDSMFB [Groth et al., 2017c]. This allows to unambiguously quantify the impact of finite-
temperature XC for different quantities and in different physical regimes for hydrogen.
The electronic temperature effects do not play a significant role for the description of the
LLPT, as the reduced temperature is small, θ . 0.01. An improved agreement between simu-
lation and experiments will most likely require to further ascend Jacob’s ladder of XC function-
als [Perdew and Schmidt, 2001], but in the ground state. In the warm dense matter regime,
temperature-effects in the XC functional become more important, the deviations in the elec-
tronic pressure clearly exceeding 5%. These deviations are non monotonous with respect to
temperature, and a sign change is found in the pressure difference, which is shifted to larger
temperatures with increasing density. The further development of XC functionals to consis-
tently take into account thermal excitations is of central importance to achieve predictive ca-
pability for DFT calculations in the WDM regime.
In addition, the finite-temperature DFT results for hydrogen in the electron liquid regime have
been presented. At these conditions, electronic XC effects are even more important for an
accurate description, and, consequently, the temperature-dependence of the XC functional is
crucial. The pressure differences between the PZ and GDSMFB functionals is seen to be ex-
ceeding 20% at rs = 14.0 in the vicinity of the Fermi temperature. This could be of high impor-
tance for the future investigation of interesting phenomena such as the possible emergence
of an incipient excitonic mode, which might occur at even lower densities [Takada, 2016].
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4.7 Conclusions

Finally, other physical properties of hydrogen like the density of states, and the electronic den-
sity in coordinate space have been considered. Regarding the DOS, the finite-temperature XC
effects do indeed significantly influence the DFT results in the WDM regime, as it is expected.
The simulation results for the electronic isosurfaces in coordinate space are even more re-
markable, as the PZ XC functional is not capable to describe the reduction of electronic overlap
at finite temperature.
Possible topics for future research include the consideration of other materials and mixtures
such as helium, hydrogen-helium, carbon-hydrogen and the investigation of transport prop-
erties like the electrical conductivity and the diffusion coefficient for hydrogen in warm dense
matter regime.
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Aluminum under Ambient and
Extreme Conditions
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Results of this chapter are published in
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A coherent framework for modeling the properties of plasmons in the matter in the spec-
trum from ambient to warm dense conditions is of vital importance for both improving our
fundamental understanding of extreme states of matter and facilitating the diagnosis of scat-
tering experiments. While the properties of plasmons with standard techniques of solid-state
physics are well comprehended from an experimental and theoretical perspective under am-
bient conditions, capturing them both in experiment and theory becomes challenging under
warm dense conditions. Because both classical and quantum effects in the warm dense mat-
ter system have to be considered into account, well-established methods of plasma physics
and condensed-matter physics break down. Therefore, understanding plasmons under warm
dense conditions is based on an interplay of theory and experiment.
Plasmons provide information on the collective excitations of the material in the form of longi-
tudinal oscillations. Such measurements can be carried out using various techniques such
as x-ray Thomson scattering (XRTS) [Glenzer and Redmer, 2009, Glenzer et al., 2007], elec-
tron energy-loss spectroscopy (EELS) [Egerton, 2008] or inelastic x-ray scattering (IXS) at syn-
chrotrons [Mao et al., 2001]. Diamond anvil cells or (laser generated) shocks can produce high
pressures. The combination of high power lasers and powerful x-ray sources creates pres-
sures on the order of a few Megabar and temperatures up to a few electronvolts enabling
one to study astrophysical phenomena under laboratory conditions [Bostedt et al., 2016,
Tschentscher et al., 2017, Falk, 2018]. This allows one to access the dynamic structure fac-
tor (DSF) via XRTS [Glenzer and Redmer, 2009]. By fitting the XRTS signal to the theoreti-
cal DSF models, important plasma parameters such as density and temperature are then
determined. Local field corrections, possibly with additional collision frequencies within
an extended Mermin approach [Fortmann et al., 2010], as been a tool for quick computa-
tional evaluation of the DSF for the plasma parameters. More accurate modeling tech-
niques such as the Kubo-Greenwood formalism (KG) [Kubo, 1957, Greenwood, 1958] based
on DFT-MD simulations or TDDFT capture electron-ion correlations at a more rigorous level
but are significantly expensive computationally [Plagemann et al., 2012, Baczewski et al., 2016,
Magyar et al., 2016, Witte et al., 2017a, Witte et al., 2018, Ramakrishna and Vorberger, 2019,
Ramakrishna et al., 2021, Mo et al., 2020].
In this chapter, an assessment of several state-of-the-art modeling techniques to predict plas-
mon properties, both under ambient and warm dense conditions is made. Examples are given
for properties such as dynamic structure factor, plasmon dispersion and plasmon width and
compared to measurements on aluminum accessible via XRTS for different dispersion angles
and sample conditions. The numerical modeling techniques tested include dielectric models
based on static local field corrections (LFC) obtained using path integral Monte Carlo (PIMC)
data for the uniform electron gas (UEG) at ground state [Corradini et al., 1998] and finite tem-
perature [Dornheim et al., 2019, Dornheim et al., 2020a]. They also include linear response
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time-dependent density functional theory (TDDFT) as well as adiabatic exchange-correlation
approximations (ALDA).

5.1 Computational Details

The linear response calculations involving random phase approximation (TDDFT-RPA)1, lo-
cal field corrections (TDDFT-LFC) and time-dependent density functional theory (TDDFT-XC)
computations are performed using a full-potential linearised augmented-plane wave code im-
plemented in the elk code [Dewhurst, 2021] for ambient conditions. The TDDFT calculations
are performed using the adiabatic local density approximation (ALDA) for the fXC kernel. TheTDDFT-RPA calculations are performed by setting the exchange-correlation kernel fXC → 0 in
the density response function

χ
GG′ (q,ω) = χGG

′
S

(q,ω)
1 – [V (q) + fXC(q,ω)] χGG′S

(q,ω) . (5.1.1)
Here χGG′

S
refers to the free density response function computed using the single particle KS

states using Eq. (2.4.10) [Marques and Gross, 2004]. V (q) = 4πδ(G –G′)/(|(G + q)(G′ + q)|) is the
Coulomb potential with G, G′ being the reciprocal lattice vectors. The DSF is computed given by
the macroscopic response functions which are obtained using χ(q,ω) by setting G = 0, G′ = 0.
By default, Adler-Wiser local field effects [Adler, 1962, Wiser, 1963] for ideal lattice conditions
are used. The correlation between the electrons beyond the mean field level are represented
by the XC kernel defined as

fXC(q,ω) = χ
–1
S (q,ω) – χ–1(q,ω) – V (q), (5.1.2)

related to the XC potential VXC via fXC(q,ω) = δVXC(q,ω)/δn(q,ω) and to the local field correctionsof dielectric models via fXC(q,ω) = –V (q)G(q,ω), where V (q) = 4π/q2.
The local field corrections (TDDFT-LFC) in this work are incorporated by setting the
term fXC in the expression for the density response function in Eq. (5.1.2) to Eq.
(2.1.31) [Corradini et al., 1998]. Due to the static limit of the local field corrections, the cor-
rection term is substituted in Eq. (5.1.2) as fXC = G(q, rs) at ground state and as fXC = G(q, rs, θ)
at finite-temperature where θ = KBT/EF is the degeneracy parameter.
The DFT calculations for ambient conditions (T=300 K) are performed using the elk

code [Dewhurst, 2021] on a 40×40×40 k-point mesh on 80 bands with Perdew-Zunger XC
functional [Perdew and Zunger, 1981]. The electronic smearing is of Fermi-Dirac type and set
to 0.01 Ha. Fig. 5.1.1 shows the influence of the XC functional (PZ/PBE) in the evaluation of
dynamic structure factor using TDDFT. LDA and PBE give very similar results hence LDA (PZ)
XC functional is considered in the calculations.
1Due to the many approximations involved, it is careful to note the distinction between TDDFT-RPA and RPA inthe following sections. Without the TDDFT prefix, RPA generically refers to response functions calculated usingmodel dielectric functions. With the TDDFT prefix it refers to LR-TDDFT calculations in which G(q) = fXC = 0.Similarly, this distinction also applies to the response functions involving local field correction: TDDFT-LFC andRPA-LFC where G(q) = fXC=CDOP [Corradini et al., 1998].
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Figure 5.1.1: Dynamic structure factor evaluated using TDDFT (fXC=ALDA) for aluminum in
atomic units under ambient conditions at 0.54 Å–1 using PZ and PBE XCfunctionals.

Simulations involving large system sizes at high temperatures and pressures are com-
putationally expensive using a full-potential linearised augmented-plane wave hence
VASP [Kresse and Hafner, 1993, Kresse and Joubert, 1999, Kresse and Furthmüller, 1996b,
Kresse and Furthmüller, 1996a] is used to perform density functional molecular dynamics
(DFT-MD) to obtain the equilibrated ionic configurations used for the calculation of the re-
sponse function using TDDFT. PAW pseudopotentials [Blöchl, 1994] with three electrons con-
sidered valence and a core radius of rc = 1.7 aB are used throughout. The plane wave cut-
off was set to 350 eV and the convergence in each self-consistency cycle was set to 10–5.
The Mermin formulation [Mermin, 1965] of thermal density functional theory and Fermi oc-
cupation of the eigenvalues is considered. The first Brillouin zone was sampled on a 2×2×2
grid of k-points. The number of bands varied with the temperature up to 1050 for the high-
est electron temperature of T=12 eV for an N=32 supercell. LDA as well as PBE are consid-
ered for the exchange correlation. The thermostat in the NVT ensemble was of Nose-Hoover
type [Nosé, 1984b, Hoover, 1985]. Ionic time steps of Δt = 0.2 fs were taken.
The TDDFT calculations at extreme conditions are performed for large system sizes us-
ing yambo [Marini et al., 2009] package with the KS wavefunctions generated from Quan-
tum ESPRESSO [Giannozzi et al., 2009, Giannozzi et al., 2017]. The KS wavefunctions as in-
put to yambo [Marini et al., 2009] are generated for a supercell containing 32 aluminum
atoms using the Quantum ESPRESSO electronic structure code [Giannozzi et al., 2009,
Giannozzi et al., 2017]. The LDA norm-conserving pseuopotentials generated with the OPIUM
package [opi, 2018] are adopted for the TDDFT calculations. 11 valence electrons are consid-
ered for the psuedopotential, while the 1s2 core is ignored. The plane-wave cutoff to represent
the KS wave functions is set to 70 Ry. Electronic occupations are generated using aMethfessel-
Paxton smearing [Methfessel and Paxton, 1989] where the number of bands at an electronic
temperature of 12 eV is set to 1050. The Brillouin zone was sampled using 3×3×3Monkhorst-
Pack mesh throughout.
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Figure 5.2.1: Dynamic structure factor for aluminum (rs = 2.07, ρ = 2.7 g/cm3) in atomic unitsunder ambient conditions at a) q = 1.08/Å, b) q = 1.48/Å, c) q = 1.75/Å, d)

q = 1.88/Å. Experimental data in black stems fromRef. [Cazzaniga et al., 2011, Schülke et al., 1993, Tischler et al., 2003]. Theoreticaldata in red stems from Ref. [Cazzaniga et al., 2011].TDDFT-RPA/TDDFT-XC/LFC/RPA/RPA-LFC results of this work are shown in blue.Reprinted figure with permission from K. Ramakrishna et al., Phys. Rev. B 103,125118 (2021). Copyright 2021 by the American Physical Society.

5.2 Ambient Conditions

Solid aluminum under ambient conditions has the space group Fm3̄m in the cubic face cen-
tered phase (FCC) with lattice constant 4.05 Å and density 2.7 g/cm3. With aWigner-Seitz radius
of 2.07 atomic units and a density of states similar to the free electron gas, the RPA should be
able to adequately explain plasmon dispersion [Ashcroft and Mermin, 1976].

5.2.1 Dynamic Structure Factor

In Fig. 5.2.1(a)-(d), the dynamic structure factor at ambient conditions for a range of wavenum-
bers is shown. The calculations are shown here in comparison to the nearest set of q-vectors
available from the literature.
The discussion starts with panel a) at a wavenumber 1.08/Å for which the system is clearly
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5.2 Ambient Conditions

dominated by collective effects, and the sharp plasmon carries bulk of the spectral weight.
The peak of the free electron RPA result is roughly 2 eV above both experiments and all of the
TDDFT calculations. That the TDDFT-RPA result gives a plasmon peak that is more consistent
with these results suggests that deviations from a free electron model due to the lattice are
a critical feature of the density response. In fact, the TDDFT-XC and TDDFT-LFC results both
agree well with TDDFT-RPA, suggesting that XC effects and LFCs do not matter as much as
capturing deviations from the dielectric model due to band structure effects at this value of
~q. These results stem from the same initial set of KS orbitals and thus capture the deviations
from a free electron model in the same way.
Surprisingly, TDDFT-XC calculations by Cazzaniga et al. [Cazzaniga et al., 2011] yielded an iden-
tical peak location, but a rather smaller peak height. This means that in the energy range of
the plasmon, imaginary part of the response function by Cazzaniga et al. is about 10% larger
than the TDDFT calculations obtained here. The main difference between these results and
those of Cazzaniga et al. is that here the results are obtained using an all-electron code and
Cazzaniga et al. use a norm-conserving pseudopotential.
The shape and location of the experimentally determined plasmon peaks for this wavenumber
are even more dissimilar. The two different experimental results are in good agreement with
each other [Cazzaniga et al., 2011, Schülke et al., 1993]. However, they are another factor of
1.5 smaller than Cazzaniga’s and therefore only 60% as high as our results. Its location is lower
by another eV. The differences become considerably more evident when the wavenumbers
under consideration are not identical.
There are several plausible explanations for the discrepancy between experiment and theory.
Cazzaniga et al. noted that the use of an adiabatic XC kernel might be one, and they report
an improvement in the agreement from GW calculations by incorporating lifetimes. However,
even this method does not give good agreement between experiment for all wavenumbers
and theory. A non-local dynamical kernel as suggested by Panholzer et al. might give improve-
ments [Panholzer et al., 2018]. However, there is also always the possibility that the KS orbitals
and therefore the XC functional are not good enough when they are to be used to calculate
the KS response function. Increasing the wavenumber of the perturbation as shown in panels
b) to d) leads to a broadening of the plasmon peak and finally to a mix of collective and single-
particle effects which all contribute to the DSF. As was the case in panel a), the TDDFT peaks
occur at lower energies than for the RPA. The influence of the LFC is best visible at large qwhen
compared to the free electron RPA, with lower intensities at the peaks and a shift towards lower
energies at small q. In the TDDFT results, the difference between no LFC and different types
of LFCs (ALDA or CDOP) is less distinct, still the same trend of redshift remains. The effect of
LFCs in aluminum has been determined experimentally by Larson et al. [Larson et al., 1996]
for q up to 4.37/Å and the experimental results suggest a stronger impact than theoretical LFC
predictions for large wavenumbers.
The TDDFT results deviate from the experimental results in Fig. 5.2.1(c)-(d). The TDDFT curves
start to show a double peak structure still absent in the experimental curves displayed here,
though the maximum intensity is now in better agreement with the theoretical results. The
overall peak position in the TDDFT results remains shifted to higher energies as compared
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Figure 5.2.2: Aluminum plasmon dispersion under ambient conditions. The critical and theFermi wavevectors are indicated by the vertical lines. Experimental data in blacksymbols stems from Ref. [Sprösser-Prou et al., 1989, Batson and Silcox, 1983,Cazzaniga et al., 2011, Höhberger et al., 1975]. Theoretical data shown in redsymbols are taken fromRef. [Cazzaniga et al., 2011, Budagosky and Krasovskii, 2019,Lee and Chang, 1994, Quong and Eguiluz, 1993].TDDFT-RPA/TDDFT-XC/LFC/RPA-LFC/RPA results of this work are indicated withblue symbols. Reprinted figure with permission from K. Ramakrishna et al., Phys.Rev. B 103, 125118 (2021). Copyright 2021 by the American Physical Society.

to the experimental and Cazzaniga’s theoretical results. The disagreement is considerably
more concerning. when considering the higher number of k-points, bands, and the number of
explicitly treated electrons that are taken into account as compared to the earlier published
results.
Usually, a two peak structure, as it seems to emerge from TDDFT at the higher wavenumbers in
Fig. 5.2.1, is associated with plasmon and double plasmon excitations. It is already accounted
for by the non-interacting electron-hole bubble along with the band structure and does not
need higher order Coulomb correlations to appear. However, it seems that our TDDFT cal-
culations overestimate the double plasmon excitations as in experiments they appear only at
larger wavenumbers.
Inclusion of many-body effects, in the form of vertex correction for the irreducible polar-
izability is found to improve the agreement with the experimental measurements at large
q [Fleszar et al., 1995]. The inclusion of a nonlocal and dynamical XC kernel in TDDFT is
further shown to improve the DSF in some metals and semiconductors including the double-
plasmon excitation [Panholzer et al., 2018, Sternemann et al., 2005, Huotari et al., 2008,
Petri et al., 1976]. Sturm et al. [Sturm and Gusarov, 2000, Pandey et al., 1974] demonstrated
that at large wavenumbers and at higher energies, dynamical correlations in fXC are more
important than band structure effects in the description of the DSF.
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5.2 Ambient Conditions

5.2.2 Plasmon Dispersion

The plasmon dispersion under ambient conditions is shown in Fig. 5.2.2. The plasmon is stable
up to the critical wavenumber (qc) with a quadratic dispersion feature and a flattering feature
is observed for q > qc. The wavenumber at which the dispersion merges into the continuum
of the single-particle excitations is given by qc [Pines, 2018b, Ichimaru, 1982]. For very small
wavenumbers, in the optical limit, the Landau damping is very small [Landau, 1946] and the de-
cay of the plasmon is mainly due to band structure effects [Ichimaru, 1982]. Electron-electron
interactions play a stronger role with increasing wavenumber. For wavenumbers above qc, a
plasmon cannot be defined based on many-particle dielectric theories [Hamann et al., 2020],
hence a shift based on the location of the peak of the DSF is given, see Fig. 5.2.1.
For large wavenumbers, the experimental results obtained by Bat-
son [Batson and Silcox, 1983] and Höhberger [Höhberger et al., 1975] et al. agree with
our results. In this case, one should not speak of a plasmon anymore. The observed feature
is better described by a shift of the peak of the DSF that is now dominated by single-particle
excitations. The results of Batson [Batson and Silcox, 1983] et al. show a flattening in the
plasmon dispersion curve only for larger q as shown in 5.2.2.
The inclusion of different LFCs (TDDFT-LFC, CDOP), and XC kernels (TDDFT-XC) results
in a lowering of the plasmon shift at intermediate and large wavenumbers. The in-
fluence of the TDDFT XC kernel compared to RPA in the lowering of the plasmon
shift is also observed in the theoretical results of Quong et al. and Cazzaniga et

al. [Quong and Eguiluz, 1993, Cazzaniga et al., 2011]. Further improvements to the ALDA ker-
nel can be achieved by considering an exact-exchange kernel (EXX) [Marques et al., 2006].
The inclusion of lifetime effects in TDDFT lowers the shift further as shown by
Cazzaniga et al. [Cazzaniga et al., 2011]. However, the experimental results at large
wavenumbers by Cazzaniga et al. [Cazzaniga et al., 2011] seem to contradict the re-
sults of Sprösser [Sprösser-Prou et al., 1989], Batson [Batson and Silcox, 1983], and Höh-
berger [Höhberger et al., 1975]. This mainly illustrates the difficulty of extracting peak posi-
tions from DSF at large wavenumbers.

5.2.3 Plasmon Lifetimes

The full width at half maximum (FWHM) of the plasmon is shown in Fig. 5.2.3. This quantity
reflects the strength of plasmon damping as can be extracted from the Lorentz profile of the
weakly damped plasmon at small wavenumbers. It can also be determined by finding the
zeros of the complex dielectric function ε[q,ω(q) – iγ(q)] [Ichimaru, 1982, Hamann et al., 2020]
in which the imaginary parts correspond to inverse lifetimes.
As the FWHMs computed using TDDFT depend on the Lorentzian broadening (η), see Eqn.
2.4.10, it is necessary to consider how to extract this quantity consistently. This is done by
extrapolating the value of the FWHM for multiple values of η to the η→ 0 limit [Li et al., 2017a].
Fig. 5.2.4a) shows the influence of the Lorentzian broadening (η) in the evaluation of the FWHM
at q = 0.54 Å–1 and Fig. 5.2.4b) shows the influence of the Lorentzian broadening in the
evaluation of dynamic structure factor using TDDFT.
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Figure 5.2.3: Aluminum plasmon peak FWHM under ambient conditions. The criticalwavevector is indicated by the vertical line. Experimental and theoretical data inblack symbols stems from Ref. [Krane, 1978, Batson and Silcox, 1983,Festenberg, 1967, Kloos, 1973, Gibbons et al., 1976, Pal and Tripathy, 1985].TDDFT-RPA/TDDFT-XC/LFC results of this work are indicated with blue symbols.Reprinted figure with permission from K. Ramakrishna et al., Phys. Rev. B 103,125118 (2021). Copyright 2021 by the American Physical Society.

The data in Fig. 5.2.3 is shown up to the wavenumbers near qc where a stable plasmon feature
is obtained from S(q,ω). The width calculated within TDDFT-RPA and TDDFT-XC has a flat fea-
ture for q < 1.0/Å and then grows rapidly with increasing qwhich can also be seen in the experi-
mental measurements [Krane, 1978, Kloos, 1973, Batson and Silcox, 1983, Festenberg, 1967].
The inclusion of LFC increases the width for q above qc and has negligible impact for small q
where the width is dominated by the band structure as calculated in the DFT calculations. This
is exemplified by the good agreement of TDDFT-RPA and TDDFT-XC for q < 1.0/Å. Significant
deviations between the two emerge near qc when the LFC has an increasing impact. However,
the deviations between TDDFT-RPA and TDDFT-XC for the plasmon dispersion starts to appear
at much smaller wavenumbers.
While our calculated plasmon dispersion curves are in good agreement with the results of
Batson et al. [Batson and Silcox, 1983], the lifetimes given by Batson deviate from our results.
Our plasmon lifetime results are in best agreement with the experimental results of Krane et
al. [Krane, 1978] and, at small q, with the experimental results of Kloos et al. and Von Festen-
berg et al. [Kloos, 1973, Festenberg, 1967].
Any experimental measurement, e.g., via EELS, XRTS, gives a q-dependent scattering signal
featuring a plasmon energy shift and a width associated with it. Information on both of these
parameters are vital to benchmark (dynamic) LFCs, collision frequencies, and kernels in or-
der to produce accurate TDDFT models. However, most experimental results available to us
for ambient aluminum provide either the dispersion or the decay rates with the exception of
Batson et al. [Batson and Silcox, 1983]. Thus, with the Batson data in its entirety not being con-
sistent with our results and the lack of further consistent plasmon position and FWHM data
from experiments, it yields an inconclusive, hence, very unsatisfactory picture. We are not
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Figure 5.2.4: a) FWHM of the plasmon peak evaluated using TDDFT (fXC=ALDA) for aluminumunder ambient conditions at q = 0.54 Å–1 for various values of Lorentzianbroadening (η), b) Dynamic structure factor evaluated using TDDFT (fXC=ALDA)for aluminum in atomic units under ambient conditions at q = 0.54 Å–1 forvarious values of Lorentzian broadening (η) in eV.
able to compare both plasmon position and FWHM of the plasmon peak to other theoretical
predictions either due to a lack of data.

5.3 Extreme Conditions
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Figure 5.3.1: Phase diagram of aluminum. The melting curve is shown as dashed line. Thedata is taken from Ref. [Kudasov et al., 2013, Bouchet et al., 2009].
Measurements of the plasmon shift and width at extreme conditions of high-pressure and
temperature are quite challenging. Solid aluminum foils can be heated to high temperatures
by using isochoric heating with optical or x-ray pulses. The electronic response of WDM can be
obtained by combining such a setup with x-ray and optical diagnostics [Sperling et al., 2015].
High-intensity laser pulses can be used to achieve higher densities and, consequently, higher
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Ramakrishna et al., Phys. Rev. B 103, 125118 (2021). Copyright 2021 by theAmerican Physical Society.

pressures through isentropic or shock compression [Preston et al., 2019].
The phase diagram of aluminum at megabar pressures based on ab-initio calculations is
shown in Fig. 5.3.1. The results indicate that with application of pressure, an FCC–HCP
transition takes place followed by the transition to the BCC phase [Fiquet et al., 2019]. At
very high pressures (>3.2 TPa), aluminum undergoes a transition to an Al16 structure with
symmetry I4/mcm [Pickard and Needs, 2010]. The melting curve for aluminum pressure
obtained using ab-initio molecular dynamics simulations considering N=512 atoms is also
shown [Bouchet et al., 2009]. At ambient pressure, the melting of aluminum takes place at
≈1000 K [Boehler and Ross, 1997, Hänström and Lazor, 2000].

5.3.1 Plasmon dispersion

In Fig. 5.3.2, the plasmon dispersion is shown for densities 2.7 g/cm3 (uncompressed) and
3.5 g/cm3 (compressed) at ambient temperature and at T=0.3 eV. At these conditions, the
temperature should have negligible impact on the plasmon dispersion, because it depends
primarily on the electron density when the Fermi energy exceeds the temperature (i.e., for
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ρ (g/cm3) T (eV) q (Å–1) LFC T-LFC
2.7 1.0 3.02 0.79 0.792.7 3.0 3.02 0.79 0.792.7 6.0 3.02 0.79 0.762.7 8.0 1.89 0.33 0.342.7 8.0 2.36 0.53 0.512.7 8.0 2.83 0.72 0.672.7 8.0 3.02 0.79 0.742.7 12.0 0.47 0.02 0.022.7 12.0 0.94 0.08 0.092.7 12.0 1.42 0.19 0.202.7 12.0 1.89 0.33 0.342.7 12.0 2.36 0.53 0.482.7 12.0 2.83 0.72 0.633.5 0.3 2.83 0.63 0.633.5 0.3 3.02 0.70 0.70

Table 5.3.1: Local field corrections (LFC) and finite-temperature local field corrections (T-LFC)for aluminum at 2.7 and 3.5 g/cm3 for various temperatures and q-vectors.Reprinted table with permission from K. Ramakrishna et al., Phys. Rev. B 103,125118 (2021). Copyright 2021 by the American Physical Society.

small θ). However, the quadratic term in Eq. (2.1.24) is generally temperature dependent. The
influence of any finite-temperature LFC (T-LFC), G(q, rs, θ), can be readily assessed based on
the density, temperature and the momentum vector of the system, see Table 5.3.1. Due to
extremely small θ = 0.02 – 0.025, temperature effects can be ignored in G(q, rs, θ) → G(q, rs).
To this end, we also perform a comparison with RPA and TDDFT results computed at ambient
temperature.
When the static LFC is included, the plasmon dispersion is reduced at large wavenumbers and
approaches the results obtained with TDDFT akin to the LFC approximation used for the XC
kernel in TDDFT. Within the RPA, we also investigated the effect of treating the electrons within
an all-electron formalism rather than a pseudopotential-based formalism. We found that in-
cluding the core electrons on a system size up to N=32 yields only an insignificant deviation
on the shift from those calculated with the use of a pseudopotential, see Fig. 5.3.4 in section
5.3.3.
We compare our data for the uncompressed case at T=0.3 eV with both the experimental
measurements (black symbols) and the theoretical plasma physics models (green curves) of
Witte et al. [Witte et al., 2017a]. For small wavenumbers, all our TDDFT results agree well with
the experimental and other curves, which is mainly an indication that the density is correct.
At larger wavenumbers, deviations are apparent which are caused by differing temperatures
and different levels of approximations. Due to the large error bars, it is not possible to outright
discard any theory with the exception of the pure RPA (green dashed). However, it seems that
within the TDDFT results, there is no indication of the temperature being as extracted by Witte
et al. [Witte et al., 2017a]. The T=0.3 eV results (red) seem consistently on the lower end of
error bars of the measurements. A better agreement is reached when considering the ions at
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ideal lattice positions and not in a molten state (blue symbols). This seems reasonable, as the
time frame of the measurements is in the 100 fs range and, hence, too short for the onset of
any significant ion motion. This highlights the problem of the model-dependent temperature
extraction in such experiments [Mo et al., 2018, Mo et al., 2020].
The available data set is restricted to two measurements, i.e., at small and large q for the com-
pressed case. The data agree well with the experimental measurement at small q indicating
the density determination seems reasonable. The TDDFT results are much lower than the
experimental results at large q due to the strong influence of the ions, which are in a liquid
state, at the elevated temperature. Ignoring the ionic temperature (ideal lattice at ambient
temperatures), the simulations are in better agreement with the experimental plasmon shift.
The transition from a quadratic dispersion to a flat feature can be observed at a smaller qwhen
compared to ambient density (uncompressed). RPA+LFC theory and TDDFT results indicate an
increased damping with an increase in density (top versus lower panels in Fig. 5.3.2, but the
experimental data remain inconclusive.
In summary, both XRTS measurements are in much better agreement with the ambient data
than the results obtained at T = 0.3 eV[Mo et al., 2018]. Thus, temperature measurements via
XRTS, if not done via detailed balance, are always model dependent. LR-TDDFT is significantly
more capable than any other theory of including electron-electron as well as electron-ion cor-
relations in the computation of collective effects and structure factors when employing suitable
XC kernels or LFCs, respectively.

5.3.2 Plasmon Lifetimes

In Fig. 5.3.3, the plasmon width is shown for a density of 2.7 g/cm3 and temperatures of 0.3
and 6.0 eV. The data is compared to the available experimental results of Witte et al. and the
calculations involving plasma theory [Witte et al., 2017a, Witte et al., 2018]. At T=0.3 eV, the
experimental data nicely agrees with the ab-initio results for the cold case. The width resulting
from TDDFT in the cold case features a similar trend than the free electron gas where both
methods agree for small wavenumbers. At T=0.3 eV, the width is obtained from the linear
response calculations involving DFT-MD snapshots. Here, the TDDFT results feature larger
widths for small q but the data still lies within the large error bars of the experimental results
at large q.
A similar trend can be observed for the case of T=6 eV as presented in the bottom panel of
Fig. 5.3.3. The cold TDDFT results (ambient) fit the experimentally determined width much
better than the TDDFT data at elevated temperatures where the width is increased strongly
due to the liquid structure of the ions. Remarkably, the cold data is in much better agreement
with the XRTS measurements than results at 0.3 eV and 6 eV data. Apart from the model-
dependent temperature determination as mentioned above, this hints at the fact that the
experimental time scales are too short to allow an equilibrium of the coupled electron-ion
system to be established.
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Figure 5.3.3: Aluminum plasmon peak FWHM under extreme conditions for 2.7 g/cm3 atT=0.3 eV (top) and T=6 eV (bottom). The Fermi wavevector is indicated by thevertical line. Experimental and theoretical data for RPA, MA stems fromRef. [Witte et al., 2017a, Witte et al., 2018]. Reprinted figure with permissionfrom K. Ramakrishna et al., Phys. Rev. B 103, 125118 (2021). Copyright 2021 bythe American Physical Society.

5.3.3 Temperature Dependence of the Dynamic Structure Factor

The convergence with respect to the number of bands and k-points is important for accuracy
and to balance computational cost. The dynamic structure factor for aluminum at 2 eV and
6 eV using 32 atoms for 600 and 750 bands respectively is shown with respect to the k-points
and the number of electrons considered in the pseudopotential in Fig. 5.3.4. The results are
well converged with respect to the k-points and the AE (all electron) pseudopotential results
in lowering of the peak intensity and an increase in the intensity to higher energies at the
shoulder for T=6 eV at energies near 10 eV. In Fig. 5.3.5, the influence of the XC functional
(PZ/PBE) is shown in the evaluation of dynamic structure factor from snapshots obtained using
MD simulations. LDA and PBE give very similar results for a variety of quantities like the band
structure, the density of states, the electron-phonon coupling [Waldecker et al., 2016], and
the dynamic structure factor [Dornheim et al., 2020a]. As the discrepancies due to the XC
functional is minimal, LDA (PZ) is considered for the calculations.
In Fig. 5.3.6, the dynamic structure factor of aluminum for various temperatures is shown.
Panels a) to c) clearly shows the dispersion and change in lifetime of the plasmon. In the
TDDFT results, the plasmon peak locations at a specific q are independent of temperature as
long as the plasmon dominates the spectrum in panels a) and b). This is in contrast to the
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Lindhard-RPA calculation (cyan and olive curves, respectively, for with and without LFCs), in
which the plasmon’s energy varies dramatically with temperature (panel b). The width of the
plasmon peak naturally increases with temperature. At large wavenumbers, as single-particle
effects begin to influence the structure factor seen in panel c), temperature effects also cause
a change in the position of the peak as predicted by TDDFT too.
A downshift of the intensities to lower frequencies is obtained with the inclusion of LFCs. A
slight increase of the peak height at large q is observed in panel c) with the TDDFT results.
At large q and at high temperatures, the influence of finite-temperature LFC (T-LFC) is apparent,
at T=12 eV with deviations occuring from ground state LFC in the energy range 0-10 eV. The
local field corrections for aluminum for various temperatures and wavenumbers are given in
Table. 5.3.1. Determining temperature from plasmon peak and width is highly model based,
and that the applied theory should be used with great care.

5.3.4 Static Structure Factor

In Fig. 5.3.7, the electronic static structure factor for aluminum (rs = 2.07) is shown for several
values of the degeneracy temperature θwithin different theories. The PIMC results (red circles)
are compared with the RPA calculations including static local field corrections at finite temper-
ature (T-LFC) and ground state (CDOP). The TDDFT-XC results (blue symbols) are also shown
for comparison in the range up to 12 eV for q/qF .1.0. Only the contribution of the valence
electrons are considered for the TDDFT-XC results. The TDDFT-XC results are only considered
up to this range as at higher wavenumbers there are other excitations (L-edge, specifically with
L2,3 and L1) which do not occur in an electron gas considered in PIMC simulations. The static
structure factor is obtained using DSF according to
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S(q) = ∞∫
–∞

S(q,ω)dω. (5.3.1)
The curves in green have been obtained using the effective static approximation
(ESA) [Dornheim et al., 2020a], which has been shown to yield highly accurate results for S(q)
over the entire WDM regime, with a typical systematic error of∼0.1% as compared to PIMC ad-
ditionally at a fraction of the computational cost. The agreement between the static structure
from both PIMC and ESA and the integrated TDDFT spectra is quite satisfactory and serves as
a benchmark of the quality of the TDDFT spectra.

5.4 Conclusions

The capabilities of LR-TDDFT in calculating plasmon dispersion, lifetimes and the DSF for the
simple metal aluminum at ambient (FCC lattice) and extreme conditions (high-pressure fluid)
are well demonstrated. Starting with the use of a simple first-principle approximation (TDDFT-
RPA), a variety of XC kernels in the LR-TDDFT equations: ALDA, static T=0 LFCs (CDOP), and
temperature-dependent LFCs (T-LFC), the latter two based on QMC simulations. The obtained
results are compared to other TDDFT results and to plasma physics theories using the Mermin
dielectric function and several different collision frequencies. Additionally, also compared to
experimental values where they were accessible.
The analysis are based on a small number of complete data sets for aluminumat room temper-
ature, including plasmon lifetimes and plasmon dispersion some of which are newly presented
here. There is almost no consistent case in this dataset where two theories (or experiments)
agree in plasmon position and lifetime at the same time. Even more concerning is the fact
that TDDFT calculations that should produce very similar results based on the published set
of parameters and methods fail to do so. Although this is true for aluminum at room temper-
ature, the situation is actually worse for warm dense, or high temperature aluminum, which
has greater error bars and uncertainties due to experimental difficulties and computational
challenges. The effect of LFCs experimentally determined at ambient conditions show that the
inclusion is of much importance for strongly correlated low dimensional systems and in mate-
rials exhibiting anisotropic dielectric properties [Inaoka et al., 2014, Sato and Terauchi, 2022].
Since such spectra are also used for temperature and density determination of the created
states, this has important implications for the evaluation of experimental spectra from XRTS
and other experiments. While this is less of a concern for states in ambient conditions or
in solids at high-pressure, it is an issue for WDM states. In theory, XRTS is one of the few
methods capable of obtaining such fundamental parameters, which are then used as refer-
ence to subsequent simulation techniques. As a result, we need not only accurate and re-
liable methods for calculating the dynamic structure, but also fast methods for fitting spec-
tra [Dornheim et al., 2022]. The findings clearly show that reliable approaches, such as LR-
TDDFT, are in desperate need of development or enhancement possibly through the inclusion
of effective local field corrections and advanced exchange-correlation kernels compared to
ALDA.
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In chapter 4, the influence of finite-temperature exchange correlation (XC) effects based on
the GDSMFB parametrization on the equation of state (EOS) of hydrogen has been rigorously
demonstrated. The inclusion of finite temperature XC effects in a warm densematter system is
vital to capture the related physics, although the impact may be comparatively low on average
quantities such as electronic pressure or density of states. The local electronic density fluc-
tuations are important for the measurement of response functions and hence the prediction
of structure factors as measured through x-ray scattering. The calculations in this work are
mainly restricted to the computation of static quantities. Furthermore, dynamical properties
like electrical and thermal conductivities relevant for astrophysical modeling of the planetary
systems can be effectively evaluated [Helled et al., 2020].
In this work, predictive capabilities formodeling warmdensematter is approached in a system-
atic way based on first-principlesmethods. An improved understanding of the linear response
under warm dense conditions is viable only if the linear response under ambient conditions is
well understood with regard to the experimental results leading to a systematic approach for
the extreme conditions.
Linear-response TDDFT (LR-TDDFT) based on the assessment of the exchange correlation (XC)
kernel in the evaluation of the density response function is successful in capturing the essen-
tial physics as demonstrated in Chapter 3 and 5 for carbon and aluminum respectively. The
adiabatic local density approximation (ALDA) has been revealed to give good results for the
study of plasmons in solids, and metals in particular. Moreover, it constitutes a substantial
improvement over the more simple RPA (fXC=0) [Botti et al., 2007, Onida et al., 2002]. ALDA isalso successful in general for treating non-metallic systems particularly for inelastic spectra in
the small q limit but not for absorption in the optical limit. ALDA fails to capture the bound
excitons in materials like diamond demonstrated in Chapter 3 [Giuliani and Vignale, 2005]. In-
stead, the bootstrap kernel [Sharma et al., 2011] for TDDFT, and higher rungs of XC functionals,
especially hybrid functionals are well suited for carbon based materials. The evaluation of the
dynamic structure factor (DSF) with ALDA for simple metals can be further improved with the
inclusion of non-local and non-adiabatic effects for e.g. using the 2p2h kernel by Panholzer et
al. [Panholzer et al., 2018]. The novel kernel provides details on the dynamic behavior of the
uniform electron gas including the feature of the double plasmon behavior observed in simple
metals not captured by the ALDA kernel.
An alternative method to LR-TDDFT is real-time propagation in time-dependent density
functional theory (RT-TDDFT) [Yabana and Bertsch, 1996, Bertsch et al., 2000]. RT-TDDFT has
evolved into a computationally powerful simulation approach for studying non-equilibrium
electron dynamics. It is distinct from LR-TDDFT and it enables one to go beyond the
linear-response regime. As in LR-TDDFT, the response function computed using RT-TDDFT
captures collective effects that aren’t captured in the standard approach using the Kubo-
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Greenwood (KG) formula. For certain regimes of electronic excitation, and large systems, RT-
TDDFT can be computationally more efficient than LR-TDDFT for calculating optical proper-
ties [Tussupbayev et al., 2015].
The formulation describes how an external electric field E(ω) gives rise to an induced electric
current

J(ω) = σ(ω) E(ω) , (6.0.1)

where the constant of proportionality can be identified as the electrical conductivity σ(ω). This
is formulated in the frequency domainwith both the current and the electric field being vectors,
while the conductivity is a tensor. The induced current can be computed on the atomistic level
by using RT-TDDFT. By applying an electric field E(t) = –(1/c)(∂A/∂t), where A is the impressed
vector potential and c is the speed of light, we obtain the induced time-dependent current
density

j(r, t) = =[ N∑
i

φ
∗
Sn,k (r, t)∇φSn,k (r, t)] + n(r, t)AS(r, t)/c. (6.0.2)

When integrated over the spatial coordinates, it yields a time-dependent electric current J(t).
By taking the Fourier transform we obtain Ohm’s law in the frequency domain as denoted in
Eq. (6.0.1). The time-dependent current density is obtained by solving the time-dependent
Kohn-Sham (KS) equations

ĤSφSn,k (r, t) = i
∂
∂tφSn,k (r, t) , (6.0.3)

for the KS orbitals φSn,k (r, t). Here, the effective Hamiltonian is given by

ĤS = 1
2
[
–i∇ + 1

c
AS(r, t)

]2 + VS(r, t) (6.0.4)

where VS(, t) = Vext(r, t) + VH(r, t) + VXC(r, t) is the KS potential involving the sum of the external,
the Hartree, and XC potentials, while the effective vector potential AS(r, t) = A(r, t) + AXC(r, t)comprises the sum of the external vector potential and the XC contribution.
The following RT-TDDFT results are obtained from the all-electron full-potential linearized aug-
mented plane wave (FP-LAPW) method [Singh and Nordstrom, 2006] as implemented in the
elk [Dewhurst, 2021] and excitng [Gulans et al., 2014, Pela and Draxl, 2021] codes.
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A sigmoidal pulse of vector amplitude 0.1 a.u. (atomic units) is applied with a peak time 2 a.u.
having a full-width half maximum (FWHM) of 0.5 a.u. for a total simulation time up to t =250 a.u
with a time-step Δt =0.02 a.u . Here we adopt Hartree atomic units, i.e., h̄ = e = me = a0 = 1.
The aforementioned pulse parameters are applied in the ~z direction shown in Fig. 6.0.1a). The
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induced current density along ~z is shown in Fig. 6.0.1b). The total duration of the real-time
propagation is essential to obtain a smaller resolution in the frequency space while also en-
suring the current density reaches a steady state with time. The spectral energy resolution
is inversely proportional to the total time propagation and the energy window of the simula-
tion is inversely proportional to the FWHM of the pulse. The dynamical electrical conductivity
obtained using the Fourier transform of the induced current density is shown in Fig. 6.0.1c)
(blue). The results shown are for ferromagnetic body centered cubic (BCC) iron under ambient
conditions (T=300 K). The RT-TDDFT result is overall in good agreement with the dynamical ex-
perimental results [Paquin, 1995] compared to LR-TDDFT (yellow and red curves) computed
using RPA XC kernel (fXC = 0) and ALDA respectively. LR-TDDFT falls short of providing an accu-
rate description across the entire frequency domain. Especially, the feature at ∼55 eV which
stems from 3p to conduction band transitions is missing in the LR-TDDFT results. The influ-
ence of XC kernel (ALDA vs RPA) has negligible impact in the energy range considered except
around ∼50 eV where the peak feature has a slight redshift. In essence, RT-TDDFT captures
the electronic excitationsmuchmore effectively than LR-TDDFT which are especially important
for strongly correlated and localized 3d electrons in iron.
The real-time formalism of time-dependent DFT is a powerful tool for computing trans-
port properties in materials under extreme conditions. It offers a feasible alternative to
current cutting-edge methodologies, such as evaluating the KG formula using DFT data.
We anticipate that this technique will be widely utilized for interpreting forthcoming free-
electron laser scattering experiments at facilities such as LCLS [Fletcher et al., 2015], and
the European XFEL [Tschentscher et al., 2017]. This will also enable studying the non-
linear response [Dornheim et al., 2020c, Dornheim et al., 2021] of materials under extreme
conditions accessible through recent advances in free-electron lasers [Zastrau et al., 2021,
Cerantola et al., 2021].
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.1 List of Acronyms

• ALDA : adiabatic local density approximation
• B3LYP : Becke-3-parameter-Lee–Yang–Parr xc functional
• BLYP : Becke-Lee–Yang–Parr xc functional
• BC8 : body centered cubic diamond
• BCC : body centered cubic
• BOMD : Born-Oppenheimer molecular dynamics
• BSE : Bethe-Salpeter equation
• CDOP : Corradini-Del Sole-Onida-Palummo parametrization
• CEIMC : coupled electron ion Monte Carlo
• DFT : density functional theory
• DOS : density of states
• DZVP : double-zeta valence polarization basis set
• DZVP-SR : double-zeta valence polarization short-range basis set
• DSF : dynamic structure factor
• EOS : equation of state
• EELS : electron energy loss spectroscopy
• ESA : effective static approximation
• EXX : exact exchange
• FCC : face centered cubic
• FP-LAPW : full-potential linearized augmented plane wave
• GDSMFB : Groth-Dornheim-Sjostrom-Malone-Faulkes-Bonitz finite temperature XC func-
tional

• GGA : generalized gradient approximation (includes the density and the first derivative
in the XC potential)

• GPW Gaussian plane waves
• GW : Green’s (G) screened interaction (W)



List of Figures

• HCP : hexagonal close packed
• HSE : Heyd-Scuseria-Ernzerhof xc functional
• IXS : inelastic x-ray scattering
• KG : Kubo-Greenwood formula
• KS : Kohn-Sham
• KSDT : Karasiev-Sjostrom-Dufty-Trickey finite temperature XC functional
• LDA : local density approximation
• LFC : local field correction
• LRC : long range correlation
• LR-TDDFT : linear-response time-dependent density functional theory
• MA : extended Mermin ansatz
• meta-GGA : XC functional dependent on higher derivatives of the density (second deriva-
tive) than a GGA

• MD : molecular dynamics
• NRIXS : non-resonant inelastic x-ray scattering
• PAW : projector augmented wave
• PBE : Perdew-Burke-Ernzerhof xc functional
• PBE0 : XC functional with 25% Hartree-Fock exchange, 75% PBE exchange and full PBE
correlation

• PIMC : path integral Monte Carlo
• PW : Perdew-Wang xc functional
• PZ : Perdew-Zunger xc functional
• QMC : quantum Monte Carlo
• RPA : random phase approximation
• RT-TDDFT : real-time time dependent density functional theory
• SCAN : strongly constrained and appropriately normed XC functional
• SZV : single-zeta valence basis set
• TDDFT : time-dependent density functional theory
• T-LFC : temperature-dependent local field correction
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.2 Codes Utilized in this Work

• TPSS : Tao-Perdew-Staroverov-Scuseria XC functional
• TZVP : triple-zeta valence polarization basis set
• UEG : uniform electron gas
• VASP : Vienna ab-initio simulation program
• WDM : warm dense matter
• XC : exchange–correlation
• XRD : x-ray diffraction
• XRS : x-ray Raman scattering
• XRTS : x-ray Thomson scattering

.2 Codes Utilized in this Work

• CP2K
CP2K is a general public license (GPL) code for performing electronic structure calcula-
tions using a mix of Gaussian and plane waves method.

• ELK
ELK is an all-electron full-potential linearised augmented-plane wave (FP-LAPW) code.

• Exciting
Exciting is an FP-LAPW code. The main emphasis is on the excited states within many-
body perturbation theory.

• FDMNES

Finite difference method near edge structure (FDMNES) is an open source code de-
veloped by Institut NEEL for the simulation of x-ray absorption and scattering spectro-
scopies.

• Quantum ESPRESSO

Quantum ESPRESSO is a GPL code using pseudopotentials and plane wave basis sets for
calculations involving electronic structure.

• VASP
Vienna Ab initio Simulation Package (VASP) is a proprietary code available under license
for performing electronic structure calculations using pseudopotentials, plane wave ba-
sis sets and projector augmented wave method (PAW).
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• YAMBO

Yet Another Many Body code (YAMBO) available under GPL for performing calculations
involving excited state properties using the Kohn-Sham wavefunctions generated using
Quantum ESPRESSO.
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