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Hajg mociaemoBaTteabHoCTAMU HaHHBIX (IFIL)
. A. KOHJIpaTbeBl DOI: 10.18255/1818-1015-2023-3-214-233

"Mucruryr cucrem nupopmaruxu um. AIL Eprmora Cubupckoro oraernenus Pocenitckoit akamemmu Hayk, 630090, Poccuiickas
denepanms, r. HoBocubupck, npocrnext Axagemuka JlaBpeHTheBa, 6.

YK 004.052.42 ITonyuena 29 mas 2023 r.
Hayunas cratbes ITocie mopaborkm 16 mioHs 2023 T.
IlonHBIN TEKCT HA AaHTIIUIICKOM S3bIKE IpuusTa k ny6aukarun 20 moHst 2023 1.

Kiraccuueckast meyKTuBHas BepuuKanys He OpMEHTIPOBAaHA Ha NOKa3aTeJbCTBO HEKOPPEKTHOCTM IporpaMm. [oka-
3aTeJIbCTBO HEKOPPEKTHOCTI IIPOrpaMM C IIOMOIIbBI0 (JOpMaIbHBIX METOMOB SIBJISETCS aKTyalbHOI 3afadell B HACTOSI-
mree Bpems. CrienuanapHble JIOTUKH, Takue Kak Incorrectness Logic, Adversarial Logic, Local Completeness Logic, Exact
Separation Logic u Outcome Logic, 6p111 HetaBHO IIpeIIOKEHBI IS pellleHNst JaHHO 3afgaun. Ho y JaHHBIX JIOTUK MMe-
eTcsi ABa HefocTaTka. Bo-IiepBhIx, B JaHHBIX JIOTMKAX MCIIOJIb3YIOTCS IIOAXO0ABI, OCHOBAaHHbIE Ha HIDKHEI allIIPOKCUMAaLINIL,
TOTa KaK B KJIACCUUECKOI AeAYKTUBHO BepupUKAIMM MCIIOTIb3yeTCsI ITIOAX0M, OCHOBAHHBII Ha BEpXHEl allIIPOKCIMa-
uyu. C qpyTroit CTOPOHBL, NCIIOIb30BAHNE KIACCUUECKOT0 IOAX0a TpebyeT B 0011eM cilyuae 3aJaHusI MHBAPUAHTOB LMK~
J10B. BO-BTOPBIX, MCIIOIB30BaHIE IIPABUI BHIBOJA I IPOrPAMMHBIX KOHCTPYKI[MIL B IX CAMOM OOILEeM BU€E IIPUBOIUT
K HeOOXOIMMOCTY JOKa3aTeNbCTBA CIOKHBIX (OPMYI B IPOCTHIX CUTyarysax. Hammm pesynbraToM, IIpefcTaBIeHHBIM
B JJAHHOJI CTaThe, SIBJISETCS HOBAs JIOTMKA IS PELIeHVs JaHHBIX NIPo0JeM B cilyuae IUKIOB Haj IOCJIEeX0BATENbHOCTSI-
My paHHbIX. Takas IIMKIBI MBI Ha3bIBaeM (pUHUTHBIMI UTepaumsMu. [IpeqIoskeHHYI0 JIOTMKY MBI Ha3bIBaeM JIOTMKOIL
VIS CYKOEeHuit 0 HekoppeKTHOCTH (puHuTHBIX uteparuit (IFIL). Mbr n3beraem 3amaHus MHBapMAHTOB GUHUTHBIX MTe-
paimii ¢ MOMOIIBI0 CMBOJIMYECKOI 3aMeHBI B YCJIOBUAX KOPPEKTHOCTY IIePEMEHHBIX TaKUX IMKIJIOB IIPUMEHEHUIMU
pexypcuBHbIX (yHKIumit. Hamra jornka ocHOBaHa Ha CIELMAJbHBIX IIPaBIJIaX BBIBOAA MJIS (PMHUTHBIX UTepaL(mil. ITu
IpaBmiIa II03BOJISIOT BBHIBOANUTH (GOPMYIIBI C IIPUMEHEHUIMI PEKYypPCUBHBIX (PYHKINIL, COOTBETCTBYIOIINX UHUTHBIM
nreparysM. VcTHHOCTD 3TUX (opMyJI MOXKET O3HA4YaTh Hauuuue OUIMOOK B (MHUTHBIX UTeparusax. [JaHHas JIOTUKa
ObLTa peajn3oBaHa B HOBOI Bepcuyu Iporpammuoit cucrembl C-lightVer mius menykrtmBHOM BepuduKaium IIporpaMm
Ha sa3bike C.

KiroueBble ciroBa: JefyKTUBHas BepuQUKaIsg; JIOTMKa Xoapa; JIOKAIM3alus OILIMO0K; HEKOPPEKTHOCT IIPOrPaMM;
VHBapMaHT LuKIa; puauTHas nrepauus; C-lightVer; ACL2
MHPOPMAIIMA Ob ABTOPAX

IOmurpuit Anexcanaposuu | orcid.org/0000-0002-9387-6735. E-mail: apple-66@mail.ru
KoHppaTheB | HayuHBIN COTPYAHMK, KAHAMOAT (p113.-MaT. HAYK.
aBTOP [UIs KOPPECTIOHIEHIIUN

s muruposanus: D. A. Kondratyev, “Logic for reasoning about bugs in loops over data sequences (IFIL)”, Modeling and analysis
of information systems, vol. 30, no. 3, pp. 214-233, 2023.

© Konpgpartses [1. A., 2023
Jra crarks oTKphITOro pocrymna nox jurensueir CC BY license (https://creativecommons.org/licenses/by/4.0/).

215


http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2023-3-214-233
https://orcid.org/0000-0002-9387-6735
mailto:apple-66@mail.ru
https://creativecommons.org/licenses/by/4.0/

Kondratyev D. A.

Introduction

Deductive verification allows reasoning about program correctness [1]. Classic deductive verification
is based on Hoare Logic (HL) [2-4]. Hoare Logic for a particular programming language contains a set of
correct inference rules and axioms for all programming constructs. This set is referred to as the axiomatic
semantics of programming language. Verification conditions (VC) are the result of the application of infer-
ence rules to an annotated program. The validity of the verification conditions means the correctness of the
annotated program.

Classic deductive verification is not focused on reasoning about program incorrectness. Reasoning about
incorrectness using formal methods is an important task nowadays [5, 6]. Special logics such as Incorrect-
ness Logic (IL) [6-8], Adversarial Logic (AL) [9], Local Completeness Logic (LCL) [10, 11], Exact Separa-
tion Logic (ESL) [12], Outcome Logic (OL) [13] and Hyper Hoare Logic (HHL) [14] have recently been
proposed to address it. However, these logics have two disadvantages. One is that they are based on the
under-approximation approach, while classic deductive verification is based on the over-approximation ap-
proach [12]. The disadvantage of the under-approximation approach is the following inference method: for
correctness reasoning, you have to forget information as you go along a path, but you must remember all the
paths; for incorrectness reasoning, you must remember information as you go along a path, but you have
to forget some of the paths [7]. One the other hand, the use of the classic approach requires defining loop
invariants in a general case. Let us note that loop invariant problem can be solved in the cases of certain
kinds of loops [15-17]. The second disadvantage is that the use of generalized inference rules from these
logics results in having to prove too complex formulas in simple cases [6].

We have proposed a new logic to address these problems in the case of loops over data sequences. The
development and implementation of our logic is based on the use of the following existing methods and
tools:

« The core of Hoare logic [2-4]. The inference rules in our logic correspond to the classic form of
inference rules proposed in Hoare logic. Our logic may be considered as a special version of Hoare
logic for reasoning about the incorrectness of finite iterations.

« The symbolic method of verification of finite iterations [17]. This method is applied to a special
kind of loop, finite iterations. The core of this method is a symbolic replacement of finite iterations
with special recursive functions. This method allows us to avoid defining invariants in the case of
finite iterations.

+ The memory model of two subsets of C programming language, C-light and C-kernel [18,
19]. This semantics uses the memory model based on the MeM and MD functions. MeM maps an
object’s name to its address, and MD maps an object’s address to its value. This memory model is
insufficient for reasoning about low-level memory operations, but allows proving properties of simple
programs with pointers. However, the other part of C-light and C-kernel semantics is excessive for
us; for example, so are special functions for modelling types or the inference rule for goto statement.

+ The mixed axiomatic semantics method [20]. The goal of this method is to simplify verification
conditions. This method is based on context-based inference rules. For example, many C variables are
Pascal-like variables, i. e., the address-of and dereference operators are not applied to them. For the
“Pascal” context, semantics based on a simpler schema including only one map of variable names to
values is used.

+ The C-lightVer tool [21, 22]. This is a system for C program deductive verification. The main advan-
tage of this system is the implementation of the symbolic method of verification of finite iterations.

« The ACL2 theorem prover [23]. The ACL2 tool is used as a theorem prover in the C-lightVer system.
Applicative Common Lisp (ACL) is the input language of the ACL2 system. Thus, C-lightVer system
generates verification conditions written in ACL. The advantage of ACL2 system is a special logic based
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on computable recursive functions. It allows ACL2 to automatize proving verification conditions with
the use of recursive functions corresponding to finite iterations.

+ The algorithm of the generation of recursive functions corresponding to loops [21, 22, 24].
This algorithm is based on a translation of the loop body to the definition of a recursive function
written in the Applicative Common Lisp language. This algorithm was implemented in the C-lightVer
system.

« Strategies for proving properties that may indicate possible errors [21, 22]. Our logic has been
inspired by these strategies. These strategies are checking the validity of certain properties of finite
iterations. The validity of these properties may indicate the presence of bugs in the input annotated
program. The properties of the loops are generated as formulas with recursive functions corresponding
to finite iterations. The proven formulas are added to the underlying theory as lemmas about the loops.
Some lemmas may indicate the presence of bugs in the loops. These lemmas may be considered as
unsafe properties of loops. The following strategies have been suggested:

1. Try to prove property that checks whether break is always executed at the first loop iteration.
2. Try to prove the property that checks whether assignments to array elements in the loop body
exist and array elements after the loop execution are identical to the array elements before the
loop execution. These assignment statements may be never be used in this case.
These strategies generate implications where the premises are the loop preconditions and the conclu-
sions are the properties of the recursive functions corresponding to finite iterations. However, this
approach has two disadvantages:
1. The user of the verification system should define a loop precondition such that it is sufficient to
prove the properties of the finite iterations.
2. Only two loop properties are checked using these strategies.
Our logic is focused on the solution of these problems. First, our logic allows us to obtain loop pre-
conditions using inference rules. Second, our logic allows us to define more general properties of the
loops.

+ Strongest postcondition calculus [2]. This approach is used to transform precondition of a given
program to generate the strongest postcondition of this program. This approach allows us to obtain
the loop precondition in our logic.

Our contribution is a logic for reasoning about bugs in loops over data sequences. This logic was imple-

mented in the new version of the C-lightVer system.

This paper has the following structure. Preliminary information is provided in Section 1. The contribu-

tion of this paper is described in Section 2. The experiment demonstrating the application of our logic is
described in Section 3.

Related works. The idea of Partial Incorrectness Logic (PIL) has been presented in the paper [25]. Let us
note that Partial Incorrectness Logic is based on the same inference method (strongest postcondition cal-
culus) as our logic. However, Partial Incorrectness Logic is applied to nondeterministic programs whereas
our logic is applied to deterministic programs. Besides the aforementioned Incorrectness Logic (IL) [6-8],
Adversarial Logic (AL) [9], Local Completeness Logic (LCL) [10, 11], Exact Separation Logic (ESL) [12], Out-
come Logic (OL) [13] and Hyper Hoare Logic (HHL) [14], there are more practical approach to finding bugs
using formal methods. The use of a counterexample generated by an SMT solver for error localization was
described in [26]. However, analysis of the counterexample can be fairly complicated, which was demon-
strated in [27]. Constrained Horn Clauses (CHCs) [28] allow reasoning about program properties; however,
this approach requires defining special proving strategies in the case of real-world programs. Bounded ver-
ification described in [29] is based on loop unrolling without using loop invariants. But efficiency of this
strategy depends on how many iterations are chosen to be unrolled. The approach [30] based on the deduc-
tive verification of the program with a mutation in the conditions of the if statements and while loops was
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implemented in the Frama-C tool [31]. However, this approach requires that loop invariants to be defined.
Model checking based on k-induction has been implemented in the ESBMC tool [32]. However, the efficiency
of this approach depends on finding inductive invariants. Model checking based on counterexample-guided
abstraction refinement (CEGAR) has been implemented in the CPAchecker tool [33]. However, the efficiency
of this approach depends on the efficiency of a reachability analysis. The approach based on symbolic execu-
tion has been implemented, for example, in the CPA-SymExec tool [34] and in the KLEE tool [35]. However,
this approach depends on the efficiency of constraint solvers in reasoning about path feasibility.

1. Existing methods and tools that we use to develop and implement our logic

To develop and implement our logic, we used the following methods and tools: the core of Hoare logic [2-
4], the symbolic method of verification of finite iterations [17], the memory model of two subsets of C
programming language (C-light and C-kernel) [18, 19], the mixed axiomatic semantics method [20], the
C-lightVer tool [21, 22], the ACL2 theorem prover [23], the algorithm of generation of recursive functions
corresponding to loops [21, 22], strategies for proving properties that may indicate possible errors [21, 22]
and the strongest postcondition calculus [2].

1.1. The core of Hoare logic

Deductive program verification is applied to the Hoare triple. The Hoare triple has the following form:

{P} S {0},

where

« P is the precondition (logical formula);

« S is the program (sequence of program statements);

« Q is the postcondition (logical formula).

Deductive program verification is an automatic derivation of valid (partially correct) Hoare triples. The
partial correctness [2-4] of the Hoare triple means that if the precondition is true before the execution of a
program fragment and if its execution terminates, then the postcondition is true upon its completion.

The inference rule has the following structure:

P
where
« U1,...,, are premises (Hoare triples and logical formulas);
« ¢ is the conclusion (Hoare triple).
This notation means that ¢ is derived from ¢y,...,,,. As an example, let us consider the classic inference rule
for the while loop:

(P} prog; {I}, {IAB}S{I}, [A~B — 0
{P} prog; while BinvIdoS {Q}

where [ is the loop invariant.

It is necessary to use induction to derive the Hoare triple for the while loop. The induction statement in
this case is called the loop invariant: this statement is true before the loop execution, true after each loop
iteration, and ensures the correctness of loop exit. If the loop has a general form, it is necessary to define
the loop invariant.

The syntax-driven axiomatic system (i. e. the one that contains inference rules for all syntax constructs
of the programming language) is called Hoare logic or axiomatic semantics.
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1.2. The symbolic method of verification of finite iterations

Given that memb(S) denotes the multiset of elements of a data sequence S and empty(S) = true if
|memb(S)| = 0, let us define two functions:

1. choo(S) returns an arbitrary element of memb(S), if —~empty(S).

2. rest(S) = S’, where memb(S’) = memb(S) \ {choo(S)}, if —empty(S).

A finite iteration corresponds to the form:

for x in S do v := body(v, x) end,

where
« S is the data sequence;
« x is the variable of type “element of S”;
« o is the tuple of the loop variables excluding x;
« body represents the loop body which does not alter x and terminates for every x € S.
Let vy denote the initial values of variables from ov. Let us define replacement operation rep(v, S, body) for
this loop:
1. if empty(S), then rep(vy, S, body) = vy.
2. if mempty(S), then

rep(vy, S, body) = body(rep(vy, rest(S), body), choo(S)).

The following inference rule has been suggested for a finite iteration:

{P} prog; {Q(v < rep(v, S, body))}
{P} prog; for x in S do v := body(v, x) end {Q}’
where < denotes a simultaneous substitution.

This method allows us to avoid defining invariants in the case of loops corresponding to finite itera-
tions [17].

1.3. The memory model of two subsets of C programming language, C-light and C-kernel

The C-light language [18] is a representative subset of C. The operational semantics was developed for
the C-light language. The memory model based on the MeM and MD functions is used in this semantics.
MeM maps an object’s name to its address, and MD maps an object’s address to its value.

The upd operation allows us to create a new MD map when the memory state changes. Let us define the
value of the expression upd(MD, addr, val), where MD is an address — value map, addr is an address and val
is a value. If MD contains an (adr val’) pair, where val’ is some value, then upd(MD, addr, val) differs from
MD in that ih has (adr val) instead of (adr val’). If addr is not in the range of MD, then upd(MD, addr, val)
differs from MD in that an (adr val) pair is added to it.

Let us consider axioms about MeM and MD:

1) MD(NULL) = void;

2) MeM(obj) # NULL;
3) upd(MD, NULL, val) = MD;
4) upd(MeM, obj, NULL) = MeM;
5) delete(MD, NULL) = MD;
6) (upd(MD, addr, val))(addr) = val,
7) (upd(MD, adry, val))(adr,) = MD(adr,)
if adry # adrs;
8) upd(MD, MeM(obj), MD(MeM(obj))) = MD;
9) upd(MeM, obj MeM(obj)) = MeM,
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10) (upd(MeM, obj, addr))(obj) = addr;
11) (upd(MeM, obj,, adr))(obj,) = MeM(obj,)
if obj, # objy;
12) (delete(MD, addr))(addr) = void,
13) (delete(MD, adry))(adry) = MD(adrs)
if adry # adry;
14) (delete(MeM, obj))(obj) = void;
15) (delete(MeM, obj,))(obj,) = MeM(obj,)
if objy # objy;
16) delete(upd(MD, addr, val), addr) = MD;
17) delete(upd(MeM, obj, addr), obj) = MeM.
Incidentally, because the operational semantics of C-light has an unstructured memory model, this lan-
guage does not support machine word level operations.
Since the C-kernel language [19] is a subset of the C-light language, its operational semantics is the
same as the C-light semantics. Thus, the memory model of C-kernel language is equal to memory of C-light
language.

1.4. The C-lightVer tool

The C-lightVer system is based on the classic deductive verification method [21, 22]. C-light is an in-
put language of this system. C-kernel is an intermediate verification language of this tool. The axiomatic
semantics has been defined for the C-kernel language.

At the first stage, C-light is translated into an intermediate language, C-kernel. This stage is necessary
for elimination of constructs that are complicated for axiomatic semantics. A set of formal rules is used for
this translation. For example, increment operators are eliminated by translation into pieces of code with
assignments and addition.

At the second stage, verification conditions are generated for the intermediate C-kernel program. This
process is based on the axiomatic semantics of C-kernel. Once generated, the verification conditions are
passed to the theorem prover.

1.5. The ACL2 theorem prover

ACL2 [23] is used in the C-lightVer system for proving verification conditions with the use of recursive
functions corresponding to finite iterations. There are two main advantages of the ACL2 theorem prover:
o If the formula to be proved contains a recursive function, ACL2 can automatically run proving by
induction using the definition of this function as the induction schema.
« If the underlying theory contains a theorem that can be considered as a rewriting rule, then ACL2 can
automatically apply this rule for rewriting the formula to be proved.
These features allows automatizing proving formulas with rep functions in a lot of cases.

1.6. The mixed axiomatic semantics method

The method of mixed axiomatic semantics allows using particular versions of inference rules for par-
ticular versions of program constructs [20]. Let us note that there are variables in C programs that are
used without referencing and dereferencing operators. A large number of such variables may be used in C
programs. A simpler memory model may be used for such variables than the one based on MeM and MD.
Therefore, simpler inference rules may be applied to program constructs with such variables. This allows
verification conditions to be simplified.

1.7. The algorithm of the generation of recursive functions corresponding to loops
Let us consider a finite iteration over one-dimensional array:

for (i=1p; i < m; i++) v :=body(v,i) end,
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where

» o is the tuple of modifiable variables;

« Sia an one-dimensional array of n elements;

e Sev;

« body is the admissible construct.

The admissible construct is one of the following C-kernel operators:

1. An empty operator, including an empty block.

2. The break; operator ending the loop.

3. The assignment operator a = b;, where a is a simple type variable or a variable S[i], and b is an

expression in C-kernel.

4. The conditional statement if (a) b, where a is an expression in C-kernel and b is an admissible con-

struct.

5. The conditional statement if (a) b else ¢, where a is an expression in C-kernel, and b and ¢ are admis-

sible constructs.

6. The block {a; a; ... ax_q ax}, where a, is the admissible construct for each r: 1 < r < k.

7. The nested finite iteration

for G = jo; j < m; j++) u:=body(u, j) end.

Since n is not constant in the general case, we can not apply full loop unrolling in this case. We apply
the symbolic method of verification of finite iterations in this case. The tuple v includes S and simple type
variables that may be changed in the loop body. Let vy denote the initial values of variables from v. Let us
consider the rep definition in this case:

« rep(vg, S, body, 0) = vy,

« rep(vo, S, body, i) = body(rep(vy, S, body,i — 1), S;_1)

foreachi=1,2,...,n.

If a finite iteration has a break statement, we suggest the following solution: when the execution of the
loop is terminated by this statement, we assume that the loop iterations continue, but the v values remain
unchanged. If break was executed at iteration i (0 < i < n), then for each j (i < j < n):

rep(vo, S, body, j) = rep(v, S, body, i),
The inference rule in this case has the following form:

{P} prog; {Q(v < rep(v, S, body,n))}
{P} prog; for (i = ip; i < n; i++) v:=body(v, i) end {Q}’

The method for generating the rep function body is based on the algorithm that translates loop body
constructs to Applicative Common Lisp (the ACL2 language). Let us consider this algorithm [21, 22, 24].

The structure type frame is generated. The fields of such structure correspond to loop variables, the
rep function returns object of type frame. All objects of the type frame are referred to as fr. Each loop
instruction can be represented as a creation of new fr object with the fields in it appearing as the updated
fields of previous fr object.

The sequential execution of the statements is translated to b construct:

(b (...(var expr)...) result),

where (var expr) means binding var to the value of expr which may depend on previously bound variables.
We use fr as such var and we use the updates of the fr fields as expr. To simulate the loop exit, we use the
Boolean field loop-break of the frame object. This field is true only after break has been executed.

The following definition of gen_rep is the implementation of translation of admissible constructs to Ap-
plicative Common Lisp:
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« gen_rep(empty statement) = (fr fr)
. gen,rep(break ) = ((whent) fr)
« gen_rep(c = (fr (change-frame fr :c b))
« gen_rep(ali] = b;) = (fr (change-frame fr :a (update-nthi b fr.a)))
« gen_rep(if (c) b else d) =
(fr (if c
(b (gen_rep(b)) fr) (b (gen_rep(d)) fr)))
((when fr.loop-break) fr)
. genrep({aj az ... ax_1 ax}) =
(fr (b*(gen_rep(ay) ... gen_rep(ay)) fr))
((when fr.loop-break) fr)

The replacement operation obtained returns not only the tuple v, but also a structure with the Boolean
field (loop-break). The default value of loop-break is false. The rep function obtained contains the break
condition. Once the break statement has been executed, this rep will return a structure with the true value
of the loop-break field. Additionally, this rep checks the value of the loop-break field from the result of the
recursive call. If this value is true, than this rep returns the same result as this recursive call. Thus, the values
of the loop variables do not change after the execution of the break statement in this implementation.

1.8. Strategies for proving properties that may indicate possible errors

Given the user-defined precondition P of the loop, two strategies for proving properties that may indicate
possible errors have been suggested [21, 22].

1.8.1. A strategy for finding loops with unused assignments to array elements

Let a loop implementing a finite iteration over an array contain assignments to elements of this array,
and let the values of the array elements after the loop execution be equal to the values of these elements
before the loop execution.

The strategy for finding such loops checks each loop over the array containing assignments to the array
elements [21]. Let this loop be the i-th in the program code. The strategy is based on generating the lemma
P — (a = rep,(a, args).a), where

« P is the precondition;

« ais the array over which the finite iteration is performed;

« rep; is the replacement operation for the finite iteration;

+ args are the arguments of rep;;

« rep;(a, args).a is the array a after the loop execution,
and checking the validity of this lemma.

If this lemma was proved, than these assignments can appear to be unused statements, which may indi-
cate the presence of an error.

1.8.2. A strategy for checking the execution of the break statement at the first loop iteration

Suppose that the loop implementing a finite iteration over an array contains a break statement that is
always executed at the first loop iteration.

The strategy checks each loop over an array containing a break statement [21]. Let the loop be the i-th
in the program code. The strategy is based on generating the lemma

P — ((jo = rep;(a, args).j) A (rep;(a, args).loop-break)),

where
« P is the precondition;
+ a is the array over which the finite iteration is performed;
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« j is the counter of the for loop which implements the finite iteration;

« args are the arguments of rep;; the value j; of the loop variable j before the loop execution;

« rep;(a, args).j is the value of j after the loop execution;

« loop-break is a special field in the returned data structure; its value is true if and only if the break

statement was executed during the loop execution,
and checking the validity of this lemma.

Thus, the first clause in the lemma conclusion is the assertion that the loop execution did not change the
value of the loop counter. The second clause in the conclusion is the assertion that the break statement in
the loop was executed.

If this lemma was proved, then this case may indicate the presence of an error.

Both strategies have been integrated in our logic.

1.9. Strongest postcondition calculus

The strongest postcondition [2] inference is applied to a program and its precondition. The formula
sp(S, P) is the strongest postcondition of a program S with a precondition P iff
« the triple {P} S {sp(S, P)} is correct and
« if Q is a formula then validity of the formula sp(S,P) — Q implies the correctness of the triple
{P}S{0Q}.
This calculus allows defining axiomatic semantics using the following approach: if stmt is a program
statement, then the inference rule for this statement may be defined as

{sp(stmt, P)} prog; {Q}
{P} stmt; prog {Q}
This approach can be considered as forward tracking: moving from the beginning of the program to its

end and eliminating the leftmost statement (at the top level) by applying the corresponding inference rule.
Our logic was developed using this inference style.

2. Logic for reasoning about bugs in loops over data sequences

The set of inference rules from our logic can be partitioned into the following two subsets: base inference
rules and main inference rules. The goal of the base inference rules is to obtain the loop precondition. The
goal of the main inference rules is to obtain the properties that may indicate the presence of bugs in the
loops.

2.1. Base of logic for reasoning about bugs in loops over data sequences

Let us consider the inference rules for the kernel of the C-kernel-like subset of C language.
The inference rule for an empty program is:
P—-Q
{P} emptyProgram {Q}"

The strongest postcondition of the empty program has the following form:

sp(emptyProgram, P) = P.
The inference rule for the variable declaration is:

{3IMeM’'P(MeM «— MeM’) A MeM = upd(MeM’, var, addr)} prog; {Q}
{P} type var; prog {Q}
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where addr is the new address (addr ¢ Dom(MD)). The strongest postcondition of variable declaration has
the following form:

sp(type var, P) =
AMeM'P(MeM «— MeM') A MeM = upd(MeM’, var, addr).

The inference rule for variable assignment is:

{3IMD’P(MD « MD’) A MD = upd(MD’, MeM(var), rval)} prog; {Q}
{P} var = rval; prog {Q} '

The strongest postcondition of variable assignment is:

®3)

sp(var =rval, P) =
AMD’P(MD «— MD’) A MD = upd(MD’, MeM(var), rval).

The mixed axiomatic semantics method allows us to define the following version of this inference rule when
neither referencing nor dereferencing operators are used on var:
{3var'P(var « var’) A var = rval(var < var’)} prog; {Q}

{P} var = rval; prog {Q}

The strongest postcondition of variable assignment in this case is:

4)

sp(var = rval, P) =
Avar’P(var « var’) A var = rval(var < var’).

The inference rule for assignment to an array element has the following form:

{IMD’'P(MD «— MD’) A MD = upd(MD’, MeM(a, i), rval)} prog; {Q}
{P} a[i] = rval; prog {Q} '

Strongest postcondition of assignment to an array element has the following form:

®)

sp(a[i] =rval, P) =
AMD’P(MD «— MD') A MD = upd(MD’, MeM(a, i), rval).

The mixed axiomatic semantics method allows us to define the following version of this inference rule when
neither referencing nor dereferencing operators are used on the array element:

{3a’P(a « a’) A a = update(a’, i, rval)} prog; {Q}
{P} a[i] = rval; prog {Q}

where update is the array update operation with the following axioms:

1) (update(a, i, val))[i] = val;

2) (update(a, iy, val))[iz] = a(iz)

if iy # iy

3) update(a, i, a[i]) = a.

The strongest postcondition of assignment to an array element has the following form in this case:

: (6)

sp(ali] =rval, P) =
Ja’P(a « a’) A a = update(a’, i, rval).
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The inference rule for the if statement has the following form:

{P A B} S; prog {Q}, {P A —B} Sp; prog {Q}
{P} if B then S else Sz; prog {Q} '

The strongest postcondition of the if statement has the following form:

sp(if B then S, else Sy, P) =
sp(S1, P A B) V sp(Sa, P A —B).

These inference rules allow obtaining the finite iteration precondition that is used in the main inference
rules.

2.2. Main inference rules of the logic for reasoning about bugs in loops over data sequences

Let us consider inference rules for the inference of formulas whose validity may indicate the presence
of bugs.

The following inference rule corresponds to the strategy for finding loops with unused assignments to
array elements:

P — (S =rep(v,S,n).S)
{P}for (i = ip; i < m; i++) v:=body(v, i) end; prog {Q}’

(8)

where

« P is the precondition;

« S is the array over which the finite iteration is performed;

« rep is the replacement operation for the finite iteration;

« rep(v, S, n).S is the array S after the loop execution.

The following inference rule corresponds to the strategy for checking the execution of the break state-
ment at the first loop iteration:

P — ((ip = rep(v, S, n).i) A (rep(v, S, n).loop—break))
{P} for (i = ip; i <mn;i++)v:=body(v, i) end; prog {Q}’

©)

where

« P is the precondition;

+ S is the array over which the finite iteration is performed;

« rep is the replacement operation for the finite iteration;

« rep(v, S, n).i is the value of the loop counter i after the loop execution;

. rep(v, S, n).S is the array a after the loop execution.

The next inference rules are based on modifying the definition of the rep function. Let us note that the
next inference rules are not strategies from [21, 22] encoded in our logic, they represent a completely new
approach. If the rep function contains an if statement, than we add to two new fields to the frame structure:
if —truey and if —false,, where k is the number of if statement in the finite iteration.

The if —truey field contains a conjunction of the values of the condition of the k-th if statement on each
iteration. Thus, the true value of this field means that the condition of the k-th if statement is true on each
iteration. This information may be indicative of an error.

The if —false,. field contain a conjunction of negations of the values of the condition of the k-th if state-
ment on each iteration. Thus, the true value of this field means that the condition of the k-th if statement
is false on each iteration. This information may be indicative of an error.
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For each k (for each if statement in the finite iteration) the following inference rules are applied:

P — rep(v, S, n).if —truey

> 10
{P}for (i = ip; i < n; i++) v:=body(v, i) end; prog {Q} (10)
where

« P is the precondition;

« S is the array over which the finite iteration is performed;

« rep is the replacement operation for the finite iteration;

« rep(v, S, n).if —truey. is the value of the if —truey field after the loop execution,
and

P — rep(v, S, n).if —false
p(0, S, n).if —false, (11)

{P}for (i = ip; i < n; i++)v:=body(v, i) end; prog {Q}

where

« P is the precondition;

« S is the array over which the finite iteration is performed;

« rep is the replacement operation for the finite iteration;

« rep(v, S, n).if —false,. is the value of the if —false, field after the loop execution.

We can modify the definition of the rep function to calculate the values of arbitrary formulas over finite
iteration variables. It allows reasoning about the properties of finite iterations. It is possible to extend our
logic with new inference rules for error localization.

Let us note that we may apply several inference rules to a particular finite iteration to reason about
several types of bugs. We call the proposed logic the Incorrectness Finite Iteration Logic (IFIL).

2.3. Termination of inference based on the proposed logic

Let us consider the following theorem:

Theorem 1. Ifthe inference rules from IFIL are applied to an annotated sequence of program statements that can
contain only variable declarations, assignments to variables, assignments to elements of arrays, ©f statements
and finite iterations then this inference will be terminated.

Proof. Given

« statements is the name of the sequence of the program statements considered in the statement of the
theorem,

« count_of_statements is the function that returns the count of statements in the sequence of the program
statements (including nested statements, for example, statements from branches of if statements),

« count_of _statements(statements) = n,

o top_level_head is the function that returns the first element at the top level of the sequence of the
program statements (for example, we consider each if statement as one statement at the top level of
the sequence of the program statements),

« top_level_tail is the function that returns the sequence of the program statements without the first
element at the top level of the sequence of the program statements (for example, we consider each if
statement as one statement at the top level of the sequence of the program statements),

let us prove this theorem by induction on n. Thus, the proof consists of two cases:
1. Induction base. This case corresponds to n = 0. The statements has the following form

emptyProgram
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in this case. Thus, top_level_head(statements) is equal to

emptyProgram

and top_level_tail(statements) is equal to emptyProgram. Let us note that

Thus,

count_of _statements(top_level_head(statements)) = count_of _statements(emptyProgram) = 0

count_of _statements(top_level_tail(statements)) =
n — count_of _statements(top_level_head(statements)) = 0

We should apply inference rule 1 from Section 2.1 in this case. Since the application of inference rule 1
from Section 2.1 will be terminated, the inference process will be terminated, too.
2. Induction step. Let us consider all possible values of top_level_head(statements):

(@)

Variable declaration. The statements has the following form
type var; prog
in this case. Thus, top_level_head(statements) is equal to
type var
and top_level_tail(statements) is equal to prog. Let us note that
count_of _statements(top_level_head(statements)) = count_of _statements(type var) = 1
Thus,

count_of _statements(top_level_tail(statements)) =
n — count_of _statements(top_level_head(statements)) = n — 1

We should apply inference rule 2 from Section 2.1 in this case. Since the application of inference
rule 2 will be terminated and

count_of _statements(prog) = count_of _statements(top_level_tail(statements)) = n — 1

in this case, we can apply the induction hypothesis. The induction hypothesis means that the
application of the inference process to annotated program code prog will be terminated in this
case. Thus, the inference process will be terminated.

Variable assignment. The statements has the following form

var = rval; prog
in this case. Thus, top_level_head(statements) is equal to
var = rval
and top_level_tail(statements) is equal to prog. Let us note that
count_of _statements(top_level_head(statements)) = count_of _statements(var = rval) = 1
Thus,

count_of _statements(top_level_tail(statements)) =
n — count_of _statements(top_level_head(statements)) = n — 1

We should apply either inference rule 3 from Section 2.1 or inference rule 4 from Section 2.1 in
this case. Since the application of either of the inference rules will be terminated and

count_of _statements(prog) = count_of _statements(top_level_tail(statements)) = n — 1
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in both cases, we can apply the induction hypothesis. The induction hypothesis means that
application of inference process to annotated program code prog will be terminated in this case.
Thus, the inference process will be terminated.

Assignment to an array element. The statements has the following form

ali] = rval; prog
in this case. Thus, top_level_head(statements) is equal to
ali] = rval
and top_level_tail(statements) is equal to prog. Let us note that
count_of _statements(top_level_head(statements)) = count_of _statements(a[i] = rval) = 1
Thus,

count_of _statements(top_level_tail(statements)) =
n — count_of _statements(top_level_head(statements)) = n — 1

We should apply either inference rule 5 from Section 2.1 or inference rule 6 from Section 2.1 in
this case. Since the application of either of the inference rules will be terminated and

count_of _statements(prog) = count_of _statements(top_level_tail(statements)) = n — 1

in both cases, we can apply the induction hypothesis. The induction hypothesis means that the
application of the inference process to annotated program code prog will be terminated in this
case. Thus, the inference process will be terminated.
if statement. The statements has the following form

if B then S, else Sy; prog
in this case. Thus, top_level_head(statements) is equal to
if B thenS; else S,
and top_level_tail(statements) is equal to prog. Let us note that

count_of _statements(top_level_head(statements)) =
count_of _statements(if B then S; else S;) =
1+ count_of _statements(Sy) + count_of _statements(S,)

Thus,

count_of _statements(top_level_tail(statements)) =
n — count_of _statements(top_level_head(statements)) =
n — 1 — count_of _statements(S;) — count_of _statements(S;)

Let us note that

count_of _statements(prog) = count_of _statements(top_level_tail(statements)) =
n — 1 — count_of _statements(S;) — count_of _statements(S;)

Consequently,

count_of _statements(Sy; prog) = count_of _statements(S1) + count_of _statements(prog) =
count_of _statements(S;) + n — 1 — count_of _statements(S;) — count_of _statements(S,) =
n — 1 — count_of _statements(S;)

and

count_of _statements(Sy; prog) = count_of _statements(S,) + count_of _statements(prog) =
count_of _statements(S;) + n — 1 — count_of _statements(S;) — count_of _statements(S,) =
n — 1 — count_of _statements(Sy)
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Let us
infer only
Proving other properties of our logic is a difficult problem due to the heuristic nature of our logic. In any
case, we are planning to discovery and to prove other properties of our logic in a future work.

void

Since count_of _statements(S;) > 0,

count_of _statements(Sy; prog) = n — 1 — count_of _statements(S;) < n—1
Since count_of _statements(S;) > 0,

count_of _statements(S,; prog) = n — 1 — count_of _statements(S;) < n—1

We should apply inference rule 7 from Section 2.1 in this case. Since the application of inference
rule 7 will be terminated and

count_of _statements(S1; prog) < n-—1
and
count_of _statements(S2; prog) <n-—1

we can apply the induction hypothesis. The induction hypothesis means that the application of
the inference process to annotated program code S;; prog will be terminated and the applica-
tion of the inference process to annotated program code S,; prog will be terminated. Thus, the
inference process will be terminated.

Finite iteration. The statements has the following form

for (i = ip; i < n; i++)v:=body(v, i) end; prog
in this case. Thus, top_level_head(statements) is equal to
for (i = ip; i < n; i++)v:=body(v, i) end

and top_level_tail(statements) is equal to prog. We should apply one the following rule:

« inference rule 8 from Section 2.2,

- inference rule 9 from Section 2.2,

. inference rule 10 from Section 2.2,

« inference rule 11 from Section 2.2
in this case. Since the application of all mentioned inference rules from Section 2.2 will be ter-
minated, the inference process will be terminated.

O

note that if the input sequence of the program statements does not contain finite iteration, we
the strongest postcondition instead of the formula describing the property of a finite iteration.

Experiment

Our logic was implemented in the C-lighVer system as an alternative semantics for the C-kernel lan-
guage. We performed a bug localization experiment on the negate first program from the well-known
verification challenge [36]:

negate_first(int n, int* a) {
int i;
for (i = 0; i < n; i++) {
if (ali]l < 0) {alil = -al[il; break;}}}

The precondition of this program is

(ap =a) A (0 <n) A (n < length(ay))
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The postcondition of this program is

(—found_negative(n, ag) —
a = aop)
A
(found_negative(n, ag) —
a = update(ay, count_index(n, ay), —ag[count_index(n, aop)]))

where
« found-negative predicate checks if there is a negative element in the array;
« count-index function calculates the index of the first negative element of the array if the array contains
such an element. The value of this function is undefined in other cases.
The main problem of reasoning about this program is the break statement in the loop.
Let us consider the negate_first program with an introduced error:

1. /*@ requires (a0 = a) && (0 < n) && (n <= length(a0));

2. ensures (!found_negative(n, a0) ==> a == a0) &&
3. (found_negative(n, a0) ==>
a == update(a0, count_index(n, a0), -aO[count_index(n, a0)]))
4. */
5. void negate_first(int n, int* a) {
6. int i;
7. for (i = 0; 1 < n; i++) \{
8. if (ali] < a[il]) {alil = -alil]; break;}}}

The specifications of this function were defined using the ACSL language. The error is using a[i] instead
of 0 in the if condition at line 8.
The following formulas obtained have been proved automatically using the ACL2 system:

(implies
(and (integer-listp a) (integer-listp a_0) (equal a a_0)
(integerp n) (< 0 n) (<= n (length a_0)))

(equal
a
(rep
(frame-init
0
a
nil
)
(envir-init
n
)
).a
)
)
and
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(implies
(and (integer-listp a) (integer-listp a_0) (equal a a_0)
(integerp n) (< 0 n) (<= n (length a_0)))

(equal
t
(rep
(frame-init
0
a
nil
)
(envir-init
n
)
).iffalsel
)
)
where

« frame-init is the constructor of the frame structure;
» envir-init is the constructor of the envir structure which stores values that have not been modified
by the finite iteration.

The mixed axiomatic semantics method allows using simple inference rules without MeM or MD to obtain
these formulas.

The validity of these formulas means the following:

« assignment in the loop body is never used;

+ the condition of if statement is always false.

Thus, our logic can help localize bug without using loop invariants.

Conclusion

The new result presented in this paper is a logic for reasoning about bugs in loops over data sequences.
This logic is based on special inference rules for finite iterations. These rules allow generating properties that
may indicate errors in finite iterations. These properties are generated as formulas with recursive functions
corresponding to finite iterations. This logic has been implemented in a new version of the C-lightVer system
for a deductive verification of C programs. We have performed reasoning about the incorrectness of an
illustrative example to demonstrate how our logic works.

There are three advantages of our approach:

1. Our logic does not require defining invariants of finite iterations.

2. Our logic is based on an over-approximation approach similar to classic deductive verification. It

simplifies the development of a unified approach to reasoning about correctness and incorrectness.

3. Our logic is based on the use of special inference rules for finite iterations. These rules allow generating

simple formulas to be proved in the case of finite iterations.

We believe that our approach has promise, because we can extend our logic with new special inference
rules for finite iterations. Thus, we are planning to extend our logic with new inference rules to handle more
types of bugs. For example, we will soon be applying our approach to finite iterations over lists, trees and
other dynamic data structures.
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