
MODELING AND ANALYSIS OF INFORMATION SYSTEMS, VOL. 30, NO. 3, 2023
j o u r n a l h o m e p a g e : w w w . m a i s - j o u r n a l . r u

THEORY OF COMPUTING

Logic for reasoning about bugs in loops over data sequences (IFIL)
D.A. Kondratyev1 DOI: 10.18255/1818-1015-2023-3-214-233

1A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences, 6, Acad. Lavrentjev pr., Novosi-
birsk 630090, Russia.

MSC2020: 68Q60 Received May 29, 2023
Research article Aer revision June 16, 2023
Full text in English Accepted June 20, 2023

Classic deductive verication is not focused on reasoning about program incorrectness. Reasoning about program incorrect-
ness using formal methods is an important problem nowadays. Special logics such as Incorrectness Logic, Adversarial Logic,
Local Completeness Logic, Exact Separation Logic and Outcome Logic have recently been proposed to address it. However,
these logics have two disadvantages. One is that they are based on under-approximation approaches, while classic deduc-
tive verication is based on the over-approximation approach. One the other hand, the use of the classic approach requires
dening loop invariants in a general case. e second disadvantage is that the use of generalized inference rules from these
logics results in having to prove too complex formulas in simple cases. Our contribution is a new logic for solving these
problems in the case of loops over data sequences. ese loops are referred to as nite iterations. We call the proposed logic
the Incorrectness Finite Iteration Logic (IFIL). We avoid dening invariants of nite iterations using a symbolic replacement
of these loops with recursive functions. Our logic is based on special inference rules for nite iterations. ese rules allow
generating formulas with recursive functions corresponding to nite iterations. e validity of these formulas may indicate
the presence of bugs in the nite iterations. is logic has been implemented in a new version of the C-lightVer system for
deductive verication of C programs.

Keywords: deductive verication; Hoare logic; bug localization; program incorrectness; loop invariant; nite iteration;
C-lightVer; ACL2

INFORMATION ABOUT THE AUTHORS
Dmitry A. Kondratyev
corresponding author

orcid.org/0000-0002-9387-6735. E-mail: apple-66@mail.ru
researcher, PhD in Computer Science.

For citation: D. A. Kondratyev, “Logic for reasoning about bugs in loops over data sequences (IFIL)”, Modeling and analysis of
information systems, vol. 30, no. 3, pp. 214-233, 2023.

© Kondratyev D. A., 2023
is is an open access article under the CC BY license (hps://creativecommons.org/licenses/by/4.0/).

214

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2023-3-214-233
https://orcid.org/0000-0002-9387-6735
mailto:apple-66@mail.ru
https://creativecommons.org/licenses/by/4.0/

МОДЕЛИРОВАНИЕ И АНАЛИЗ ИНФОРМАЦИОННЫХ СИСТЕМ, ТОМ 30, № 3, 2023
с а й т ж у р н а л а : w w w . m a i s - j o u r n a l . r u

THEORY OF COMPUTING

Логика для суждений об ошибках в циклах
над последовательностями данных (IFIL)
Д.А. Кондратьев1 DOI: 10.18255/1818-1015-2023-3-214-233

1Институт систем информатики им. А.П. Ершова Сибирского отделения Российской академии наук, 630090, Российская
Федерация, г. Новосибирск, проспект Академика Лаврентьева, 6.

УДК 004.052.42 Получена 29 мая 2023 г.
Научная статья После доработки 16 июня 2023 г.
Полный текст на английском языке Принята к публикации 20 июня 2023 г.

Классическая дедуктивная верификация не ориентирована на доказательство некорректности программ. Дока-
зательство некорректности программ с помощью формальных методов является актуальной задачей в настоя-
щее время. Специальные логики, такие как Incorrectness Logic, Adversarial Logic, Local Completeness Logic, Exact
Separation Logic и Outcome Logic, были недавно предложены для решения данной задачи. Но у данных логик име-
ется два недостатка. Во-первых, в данных логиках используются подходы, основанные на нижней аппроксимации,
тогда как в классической дедуктивной верификации используется подход, основанный на верхней аппроксима-
ции. С другой стороны, использование классического подхода требует в общем случае задания инвариантов цик-
лов. Во-вторых, использование правил вывода для программных конструкций в их самом общем виде приводит
к необходимости доказательства сложных формул в простых ситуациях. Нашим результатом, представленным
в данной статье, является новая логика для решения данных проблем в случае циклов над последовательностя-
ми данных. Такая циклы мы называем финитными итерациями. Предложенную логику мы называем логикой
для суждений о некорректности финитных итераций (IFIL). Мы избегаем задания инвариантов финитных ите-
раций с помощью символической замены в условиях корректности переменных таких циклов применениями
рекурсивных функций. Наша логика основана на специальных правилах вывода для финитных итераций. Эти
правила позволяют выводить формулы с применениями рекурсивных функций, соответствующих финитным
итерациям. Истинность этих формул может означать наличие ошибок в финитных итерациях. Данная логика
была реализована в новой версии программной системы C-lightVer для дедуктивной верификации программ
на языке C.

Ключевые слова: дедуктивная верификация; логика Хоара; локализация ошибок; некорректность программ;
инвариант цикла; финитная итерация; C-lightVer; ACL2

ИНФОРМАЦИЯ ОБ АВТОРАХ
Дмитрий Александрович

Кондратьев
автор для корреспонденции

orcid.org/0000-0002-9387-6735. E-mail: apple-66@mail.ru
научный сотрудник, кандидат физ.-мат. наук.

Для цитирования: D. A. Kondratyev, “Logic for reasoning about bugs in loops over data sequences (IFIL)”,Modeling and analysis
of information systems, vol. 30, no. 3, pp. 214-233, 2023.

© Кондратьев Д. А., 2023
Эта статья открытого доступа под лицензией CC BY license (https://creativecommons.org/licenses/by/4.0/).

215

http://www.mais-journal.ru
https://doi.org/10.18255/1818-1015-2023-3-214-233
https://orcid.org/0000-0002-9387-6735
mailto:apple-66@mail.ru
https://creativecommons.org/licenses/by/4.0/

Kondratyev D. A.

Introduction
Deductive verication allows reasoning about program correctness [1]. Classic deductive verication

is based on Hoare Logic (HL) [2–4]. Hoare Logic for a particular programming language contains a set of
correct inference rules and axioms for all programming constructs. is set is referred to as the axiomatic
semantics of programming language. Verication conditions (VC) are the result of the application of infer-
ence rules to an annotated program. e validity of the verication conditions means the correctness of the
annotated program.

Classic deductive verication is not focused on reasoning about program incorrectness. Reasoning about
incorrectness using formal methods is an important task nowadays [5, 6]. Special logics such as Incorrect-
ness Logic (IL) [6–8], Adversarial Logic (AL) [9], Local Completeness Logic (LCL) [10, 11], Exact Separa-
tion Logic (ESL) [12], Outcome Logic (OL) [13] and Hyper Hoare Logic (HHL) [14] have recently been
proposed to address it. However, these logics have two disadvantages. One is that they are based on the
under-approximation approach, while classic deductive verication is based on the over-approximation ap-
proach [12]. e disadvantage of the under-approximation approach is the following inference method: for
correctness reasoning, you have to forget information as you go along a path, but you must remember all the
paths; for incorrectness reasoning, you must remember information as you go along a path, but you have
to forget some of the paths [7]. One the other hand, the use of the classic approach requires dening loop
invariants in a general case. Let us note that loop invariant problem can be solved in the cases of certain
kinds of loops [15–17]. e second disadvantage is that the use of generalized inference rules from these
logics results in having to prove too complex formulas in simple cases [6].

We have proposed a new logic to address these problems in the case of loops over data sequences. e
development and implementation of our logic is based on the use of the following existing methods and
tools:

• e core of Hoare logic [2–4]. e inference rules in our logic correspond to the classic form of
inference rules proposed in Hoare logic. Our logic may be considered as a special version of Hoare
logic for reasoning about the incorrectness of nite iterations.

• e symbolic method of verication of nite iterations [17]. is method is applied to a special
kind of loop, nite iterations. e core of this method is a symbolic replacement of nite iterations
with special recursive functions. is method allows us to avoid dening invariants in the case of
nite iterations.

• e memory model of two subsets of C programming language, C-light and C-kernel [18,
19]. is semantics uses the memory model based on the MeM and MD functions. MeM maps an
object’s name to its address, and MD maps an object’s address to its value. is memory model is
insucient for reasoning about low-level memory operations, but allows proving properties of simple
programs with pointers. However, the other part of C-light and C-kernel semantics is excessive for
us; for example, so are special functions for modelling types or the inference rule for goto statement.

• e mixed axiomatic semantics method [20]. e goal of this method is to simplify verication
conditions. is method is based on context-based inference rules. For example, many C variables are
Pascal-like variables, i. e., the address-of and dereference operators are not applied to them. For the
“Pascal” context, semantics based on a simpler schema including only one map of variable names to
values is used.

• e C-lightVer tool [21, 22]. is is a system for C program deductive verication. e main advan-
tage of this system is the implementation of the symbolic method of verication of nite iterations.

• eACL2 theorem prover [23]. e ACL2 tool is used as a theorem prover in the C-lightVer system.
Applicative Common Lisp (ACL) is the input language of the ACL2 system. us, C-lightVer system
generates verication conditionswrien in ACL.e advantage of ACL2 system is a special logic based

216

Logic for reasoning about bugs in loops over data sequences (IFIL)

on computable recursive functions. It allows ACL2 to automatize proving verication conditions with
the use of recursive functions corresponding to nite iterations.

• e algorithm of the generation of recursive functions corresponding to loops [21, 22, 24].
is algorithm is based on a translation of the loop body to the denition of a recursive function
wrien in the Applicative Common Lisp language. is algorithm was implemented in the C-lightVer
system.

• Strategies for proving properties that may indicate possible errors [21, 22]. Our logic has been
inspired by these strategies. ese strategies are checking the validity of certain properties of nite
iterations. e validity of these properties may indicate the presence of bugs in the input annotated
program. e properties of the loops are generated as formulas with recursive functions corresponding
to nite iterations. e proven formulas are added to the underlying theory as lemmas about the loops.
Some lemmas may indicate the presence of bugs in the loops. ese lemmas may be considered as
unsafe properties of loops. e following strategies have been suggested:

1. Try to prove property that checks whether break is always executed at the rst loop iteration.
2. Try to prove the property that checks whether assignments to array elements in the loop body

exist and array elements aer the loop execution are identical to the array elements before the
loop execution. ese assignment statements may be never be used in this case.

ese strategies generate implications where the premises are the loop preconditions and the conclu-
sions are the properties of the recursive functions corresponding to nite iterations. However, this
approach has two disadvantages:

1. e user of the verication system should dene a loop precondition such that it is sucient to
prove the properties of the nite iterations.

2. Only two loop properties are checked using these strategies.
Our logic is focused on the solution of these problems. First, our logic allows us to obtain loop pre-
conditions using inference rules. Second, our logic allows us to dene more general properties of the
loops.

• Strongest postcondition calculus [2]. is approach is used to transform precondition of a given
program to generate the strongest postcondition of this program. is approach allows us to obtain
the loop precondition in our logic.

Our contribution is a logic for reasoning about bugs in loops over data sequences. is logic was imple-
mented in the new version of the C-lightVer system.

is paper has the following structure. Preliminary information is provided in Section 1. e contribu-
tion of this paper is described in Section 2. e experiment demonstrating the application of our logic is
described in Section 3.

Related works. e idea of Partial Incorrectness Logic (PIL) has been presented in the paper [25]. Let us
note that Partial Incorrectness Logic is based on the same inference method (strongest postcondition cal-
culus) as our logic. However, Partial Incorrectness Logic is applied to nondeterministic programs whereas
our logic is applied to deterministic programs. Besides the aforementioned Incorrectness Logic (IL) [6–8],
Adversarial Logic (AL) [9], Local Completeness Logic (LCL) [10, 11], Exact Separation Logic (ESL) [12], Out-
come Logic (OL) [13] and Hyper Hoare Logic (HHL) [14], there are more practical approach to nding bugs
using formal methods. e use of a counterexample generated by an SMT solver for error localization was
described in [26]. However, analysis of the counterexample can be fairly complicated, which was demon-
strated in [27]. Constrained Horn Clauses (CHCs) [28] allow reasoning about program properties; however,
this approach requires dening special proving strategies in the case of real-world programs. Bounded ver-
ication described in [29] is based on loop unrolling without using loop invariants. But eciency of this
strategy depends on how many iterations are chosen to be unrolled. e approach [30] based on the deduc-
tive verication of the program with a mutation in the conditions of the if statements and while loops was

217

Kondratyev D. A.

implemented in the Frama-C tool [31]. However, this approach requires that loop invariants to be dened.
Model checking based on𝑘-induction has been implemented in the ESBMC tool [32]. However, the eciency
of this approach depends on nding inductive invariants. Model checking based on counterexample-guided
abstraction renement (CEGAR) has been implemented in the CPAchecker tool [33]. However, the eciency
of this approach depends on the eciency of a reachability analysis. e approach based on symbolic execu-
tion has been implemented, for example, in the CPA-SymExec tool [34] and in the KLEE tool [35]. However,
this approach depends on the eciency of constraint solvers in reasoning about path feasibility.

1. Existing methods and tools that we use to develop and implement our logic
To develop and implement our logic, we used the followingmethods and tools: the core of Hoare logic [2–

4], the symbolic method of verication of nite iterations [17], the memory model of two subsets of C
programming language (C-light and C-kernel) [18, 19], the mixed axiomatic semantics method [20], the
C-lightVer tool [21, 22], the ACL2 theorem prover [23], the algorithm of generation of recursive functions
corresponding to loops [21, 22], strategies for proving properties that may indicate possible errors [21, 22]
and the strongest postcondition calculus [2].

1.1. e core of Hoare logic

Deductive program verication is applied to the Hoare triple. e Hoare triple has the following form:

{𝑃} 𝑆 {𝑄},

where
• 𝑃 is the precondition (logical formula);
• 𝑆 is the program (sequence of program statements);
• 𝑄 is the postcondition (logical formula).
Deductive program verication is an automatic derivation of valid (partially correct) Hoare triples. e

partial correctness [2–4] of the Hoare triple means that if the precondition is true before the execution of a
program fragment and if its execution terminates, then the postcondition is true upon its completion.

e inference rule has the following structure:

𝜓1, . . . ,𝜓𝑛

𝜑
,

where
• 𝜓1,. . . ,𝜓𝑛 are premises (Hoare triples and logical formulas);
• 𝜑 is the conclusion (Hoare triple).

is notation means that 𝜑 is derived from𝜓1,. . . ,𝜓𝑛 . As an example, let us consider the classic inference rule
for the while loop:

{𝑃} prog; {𝐼 }, {𝐼 ∧ 𝐵} S {𝐼 }, 𝐼 ∧ ¬𝐵 → 𝑄

{𝑃} prog; while B inv I do S {𝑄} ,

where 𝐼 is the loop invariant.
It is necessary to use induction to derive the Hoare triple for the while loop. e induction statement in

this case is called the loop invariant: this statement is true before the loop execution, true aer each loop
iteration, and ensures the correctness of loop exit. If the loop has a general form, it is necessary to dene
the loop invariant.

e syntax-driven axiomatic system (i. e. the one that contains inference rules for all syntax constructs
of the programming language) is called Hoare logic or axiomatic semantics.

218

Logic for reasoning about bugs in loops over data sequences (IFIL)

1.2. e symbolic method of verication of nite iterations

Given that memb(𝑆) denotes the multiset of elements of a data sequence 𝑆 and empty(𝑆) = true if
|memb(𝑆) | = 0, let us dene two functions:

1. choo(𝑆) returns an arbitrary element of memb(𝑆), if ¬empty(𝑆).
2. rest (𝑆) = 𝑆 ′, where memb(𝑆 ′) = memb(𝑆) \ {choo(𝑆)}, if ¬empty(𝑆).
A nite iteration corresponds to the form:

for x in S do v := body(v, x) end,

where
• 𝑆 is the data sequence;
• 𝑥 is the variable of type “element of 𝑆”;
• 𝑣 is the tuple of the loop variables excluding 𝑥 ;
• body represents the loop body which does not alter 𝑥 and terminates for every 𝑥 ∈ 𝑆 .

Let 𝑣0 denote the initial values of variables from 𝑣 . Let us dene replacement operation rep(𝑣, 𝑆, 𝑏𝑜𝑑𝑦) for
this loop:

1. if empty(𝑆), then rep(𝑣0, 𝑆, body) = 𝑣0.
2. if ¬empty(𝑆), then

rep(𝑣0, 𝑆, body) = body(rep(𝑣0, rest (𝑆), body), choo(𝑆)).

e following inference rule has been suggested for a nite iteration:

{𝑃} prog; {𝑄 (𝑣 ← rep(𝑣, 𝑆, 𝑏𝑜𝑑𝑦))}
{𝑃} prog; for x in S do v := body(v, x) end {𝑄} ,

where← denotes a simultaneous substitution.
is method allows us to avoid dening invariants in the case of loops corresponding to nite itera-

tions [17].

1.3. e memory model of two subsets of C programming language, C-light and C-kernel

e C-light language [18] is a representative subset of C. e operational semantics was developed for
the C-light language. e memory model based on the MeM and MD functions is used in this semantics.
MeM maps an object’s name to its address, and MD maps an object’s address to its value.

e upd operation allows us to create a newMD map when the memory state changes. Let us dene the
value of the expression upd (MD, addr, val), whereMD is an address→ valuemap, addr is an address and val
is a value. IfMD contains an (adr val′) pair, where val′ is some value, then upd (MD, addr, val) diers from
MD in that ih has (adr val) instead of (adr val′). If addr is not in the range ofMD, then upd (MD, addr, val)
diers from MD in that an (adr val) pair is added to it.

Let us consider axioms about MeM and MD:
1) MD(NULL) = void;
2) MeM (obj) ≠ NULL;
3) upd (MD, NULL, val) = MD;
4) upd (MeM, obj, NULL) = MeM;
5) delete(MD,NULL) = MD;
6) (upd (MD, addr, val)) (addr) = val;
7) (upd (MD, adr1, val)) (adr2) = MD(adr2)

if adr1 ≠ adr2;
8) upd (MD, MeM (obj), MD(MeM (obj))) = MD;
9) upd (MeM, obj MeM (obj)) = MeM;

219

Kondratyev D. A.

10) (upd (MeM, obj, addr)) (obj) = addr ;
11) (upd (MeM, obj1, adr)) (obj2) = MeM (obj2)

if obj1 ≠ obj2;
12) (delete(MD, addr)) (addr) = void;
13) (delete(MD, adr1)) (adr2) = MD(adr2)

if adr1 ≠ adr2;
14) (delete(MeM, obj)) (obj) = void;
15) (delete(MeM, obj1)) (obj2) = MeM (obj2)

if obj1 ≠ obj2;
16) delete(upd (MD, addr, val), addr) = MD;
17) delete(upd (MeM, obj, addr), obj) = MeM .
Incidentally, because the operational semantics of C-light has an unstructured memory model, this lan-

guage does not support machine word level operations.
Since the C-kernel language [19] is a subset of the C-light language, its operational semantics is the

same as the C-light semantics. us, the memory model of C-kernel language is equal to memory of C-light
language.

1.4. e C-lightVer tool

e C-lightVer system is based on the classic deductive verication method [21, 22]. C-light is an in-
put language of this system. C-kernel is an intermediate verication language of this tool. e axiomatic
semantics has been dened for the C-kernel language.

At the rst stage, C-light is translated into an intermediate language, C-kernel. is stage is necessary
for elimination of constructs that are complicated for axiomatic semantics. A set of formal rules is used for
this translation. For example, increment operators are eliminated by translation into pieces of code with
assignments and addition.

At the second stage, verication conditions are generated for the intermediate C-kernel program. is
process is based on the axiomatic semantics of C-kernel. Once generated, the verication conditions are
passed to the theorem prover.

1.5. e ACL2 theorem prover

ACL2 [23] is used in the C-lightVer system for proving verication conditions with the use of recursive
functions corresponding to nite iterations. ere are two main advantages of the ACL2 theorem prover:

• If the formula to be proved contains a recursive function, ACL2 can automatically run proving by
induction using the denition of this function as the induction schema.

• If the underlying theory contains a theorem that can be considered as a rewriting rule, then ACL2 can
automatically apply this rule for rewriting the formula to be proved.

ese features allows automatizing proving formulas with rep functions in a lot of cases.

1.6. e mixed axiomatic semantics method

e method of mixed axiomatic semantics allows using particular versions of inference rules for par-
ticular versions of program constructs [20]. Let us note that there are variables in C programs that are
used without referencing and dereferencing operators. A large number of such variables may be used in C
programs. A simpler memory model may be used for such variables than the one based on MeM and MD.
erefore, simpler inference rules may be applied to program constructs with such variables. is allows
verication conditions to be simplied.

1.7. e algorithm of the generation of recursive functions corresponding to loops

Let us consider a nite iteration over one-dimensional array:

for (i = i0; i < n; i + +) v := body(v, i) end,
220

Logic for reasoning about bugs in loops over data sequences (IFIL)

where
• 𝑣 is the tuple of modiable variables;
• 𝑆 ia an one-dimensional array of 𝑛 elements;
• 𝑆 ∈ 𝑣 ;
• body is the admissible construct.

e admissible construct is one of the following C-kernel operators:
1. An empty operator, including an empty block.
2. e break; operator ending the loop.
3. e assignment operator a = b;, where 𝑎 is a simple type variable or a variable 𝑆 [𝑖], and 𝑏 is an

expression in C-kernel.
4. e conditional statement if (a) b, where 𝑎 is an expression in C-kernel and 𝑏 is an admissible con-

struct.
5. e conditional statement if (a) b else c, where 𝑎 is an expression in C-kernel, and 𝑏 and 𝑐 are admis-

sible constructs.
6. e block {a1 a2 . . . ak−1 ak}, where 𝑎𝑟 is the admissible construct for each 𝑟 : 1 ≤ 𝑟 ≤ 𝑘 .
7. e nested nite iteration

for (j = j0; j < m; j + +) u := body(u, j) end.
Since 𝑛 is not constant in the general case, we can not apply full loop unrolling in this case. We apply

the symbolic method of verication of nite iterations in this case. e tuple 𝑣 includes 𝑆 and simple type
variables that may be changed in the loop body. Let 𝑣0 denote the initial values of variables from 𝑣 . Let us
consider the rep denition in this case:

• rep(𝑣0, 𝑆, body, 0) = 𝑣0,
• rep(𝑣0, 𝑆, body, 𝑖) = body(rep(𝑣0, 𝑆, body, 𝑖 − 1), 𝑆𝑖−1)
for each 𝑖 = 1, 2, . . . , 𝑛.

If a nite iteration has a break statement, we suggest the following solution: when the execution of the
loop is terminated by this statement, we assume that the loop iterations continue, but the 𝑣 values remain
unchanged. If break was executed at iteration 𝑖 (0 < 𝑖 ≤ 𝑛), then for each 𝑗 (𝑖 ≤ 𝑗 ≤ 𝑛):

rep(𝑣0, 𝑆, body, 𝑗) = rep(𝑣0, 𝑆, body, 𝑖),

e inference rule in this case has the following form:

{𝑃} prog; {𝑄 (𝑣 ← rep(𝑣, 𝑆, body, 𝑛))}
{𝑃} prog; for (i = i0; i < n; i + +) v := body(v, i) end {𝑄} ,

e method for generating the rep function body is based on the algorithm that translates loop body
constructs to Applicative Common Lisp (the ACL2 language). Let us consider this algorithm [21, 22, 24].

e structure type frame is generated. e elds of such structure correspond to loop variables, the
rep function returns object of type frame. All objects of the type frame are referred to as fr. Each loop
instruction can be represented as a creation of new fr object with the elds in it appearing as the updated
elds of previous fr object.

e sequential execution of the statements is translated to 𝑏∗ construct:

(𝑏 ∗ (. . . (var expr) . . .) result),

where (var expr) means binding var to the value of expr which may depend on previously bound variables.
We use fr as such var and we use the updates of the fr elds as expr. To simulate the loop exit, we use the
Boolean eld loop-break of the frame object. is eld is true only aer break has been executed.

e following denition of gen rep is the implementation of translation of admissible constructs to Ap-
plicative Common Lisp:

221

Kondratyev D. A.

• gen rep(empty statement) = (fr fr)
• gen rep(break;) = ((when 𝑡) 𝑓 𝑟)
• gen rep(c = b;) = (fr (change-frame fr :𝑐 𝑏))
• gen rep(a[i] = b;) = (fr (change-frame fr :𝑎 (update-nth 𝑖 𝑏 fr .𝑎)))
• gen rep(if (c) b else d) =
(fr (if 𝑐
(𝑏 ∗ (gen rep(𝑏)) fr) (𝑏 ∗ (gen rep(𝑑)) fr)))
((when fr .loop-break) fr)

• gen rep({a1 a2 . . . ak−1 ak}) =
(fr (𝑏∗(gen rep(𝑎1) . . . gen rep(𝑎𝑘)) fr))
((when fr .loop-break) fr)

e replacement operation obtained returns not only the tuple 𝑣 , but also a structure with the Boolean
eld (loop-break). e default value of loop-break is false. e rep function obtained contains the break
condition. Once the break statement has been executed, this rep will return a structure with the true value
of the loop-break eld. Additionally, this rep checks the value of the loop-break eld from the result of the
recursive call. If this value is true, than this rep returns the same result as this recursive call. us, the values
of the loop variables do not change aer the execution of the break statement in this implementation.

1.8. Strategies for proving properties that may indicate possible errors

Given the user-dened precondition 𝑃 of the loop, two strategies for proving properties that may indicate
possible errors have been suggested [21, 22].

1.8.1. A strategy for nding loops with unused assignments to array elements

Let a loop implementing a nite iteration over an array contain assignments to elements of this array,
and let the values of the array elements aer the loop execution be equal to the values of these elements
before the loop execution.

e strategy for nding such loops checks each loop over the array containing assignments to the array
elements [21]. Let this loop be the 𝑖-th in the program code. e strategy is based on generating the lemma
𝑃 → (𝑎 = rep𝑖 (𝑎, args) .𝑎), where

• 𝑃 is the precondition;
• 𝑎 is the array over which the nite iteration is performed;
• rep𝑖 is the replacement operation for the nite iteration;
• args are the arguments of rep𝑖 ;
• rep𝑖 (𝑎, args) .𝑎 is the array 𝑎 aer the loop execution,

and checking the validity of this lemma.
If this lemma was proved, than these assignments can appear to be unused statements, which may indi-

cate the presence of an error.

1.8.2. A strategy for checking the execution of the break statement at the rst loop iteration

Suppose that the loop implementing a nite iteration over an array contains a break statement that is
always executed at the rst loop iteration.

e strategy checks each loop over an array containing a break statement [21]. Let the loop be the 𝑖-th
in the program code. e strategy is based on generating the lemma

𝑃 → ((𝑗0 = rep𝑖 (𝑎, args) . 𝑗) ∧ (rep𝑖 (𝑎, args).loop-break)),

where
• 𝑃 is the precondition;
• 𝑎 is the array over which the nite iteration is performed;

222

Logic for reasoning about bugs in loops over data sequences (IFIL)

• 𝑗 is the counter of the for loop which implements the nite iteration;
• args are the arguments of rep𝑖 ; the value 𝑗0 of the loop variable 𝑗 before the loop execution;
• rep𝑖 (𝑎, args) . 𝑗 is the value of 𝑗 aer the loop execution;
• loop-break is a special eld in the returned data structure; its value is true if and only if the break
statement was executed during the loop execution,

and checking the validity of this lemma.
us, the rst clause in the lemma conclusion is the assertion that the loop execution did not change the

value of the loop counter. e second clause in the conclusion is the assertion that the break statement in
the loop was executed.

If this lemma was proved, then this case may indicate the presence of an error.
Both strategies have been integrated in our logic.

1.9. Strongest postcondition calculus

e strongest postcondition [2] inference is applied to a program and its precondition. e formula
sp(𝑆, 𝑃) is the strongest postcondition of a program 𝑆 with a precondition 𝑃 i

• the triple {𝑃} 𝑆 {sp(𝑆, 𝑃)} is correct and
• if 𝑄 is a formula then validity of the formula sp(𝑆, 𝑃) → 𝑄 implies the correctness of the triple
{𝑃} 𝑆 {𝑄}.

is calculus allows dening axiomatic semantics using the following approach: if stmt is a program
statement, then the inference rule for this statement may be dened as

{sp(stmt, 𝑃)} prog; {𝑄}
{𝑃} stmt; prog {𝑄} .

is approach can be considered as forward tracking: moving from the beginning of the program to its
end and eliminating the lemost statement (at the top level) by applying the corresponding inference rule.
Our logic was developed using this inference style.

2. Logic for reasoning about bugs in loops over data sequences
e set of inference rules from our logic can be partitioned into the following two subsets: base inference

rules and main inference rules. e goal of the base inference rules is to obtain the loop precondition. e
goal of the main inference rules is to obtain the properties that may indicate the presence of bugs in the
loops.

2.1. Base of logic for reasoning about bugs in loops over data sequences

Let us consider the inference rules for the kernel of the C-kernel-like subset of C language.
e inference rule for an empty program is:

𝑃 → 𝑄

{𝑃} emptyProgram {𝑄} . (1)

e strongest postcondition of the empty program has the following form:

sp(emptyProgram, 𝑃) = 𝑃 .

e inference rule for the variable declaration is:

{∃MeM ′𝑃 (MeM ← MeM ′) ∧MeM = upd (MeM ′, var, addr)} prog; {𝑄}
{𝑃} type var; prog {𝑄}

, (2)

223

Kondratyev D. A.

where addr is the new address (addr ∉ Dom(MD)). e strongest postcondition of variable declaration has
the following form:

sp(type var, 𝑃) =
∃MeM ′𝑃 (MeM ← MeM ′) ∧MeM = upd (MeM ′, var, addr).

e inference rule for variable assignment is:

{∃MD′𝑃 (MD← MD′) ∧MD = upd (MD′,MeM (var), rval)} prog; {𝑄}
{𝑃} var = rval; prog {𝑄}

. (3)

e strongest postcondition of variable assignment is:

𝑠𝑝 (var = rval, 𝑃) =
∃MD′𝑃 (MD← MD′) ∧MD = upd (MD′,MeM (var), rval).

e mixed axiomatic semantics method allows us to dene the following version of this inference rule when
neither referencing nor dereferencing operators are used on var :

{∃var ′𝑃 (var ← var ′) ∧ var = rval(var ← var ′)} prog; {𝑄}
{𝑃} var = rval; prog {𝑄}

. (4)

e strongest postcondition of variable assignment in this case is:

𝑠𝑝 (var = rval, 𝑃) =
∃var ′𝑃 (var ← var ′) ∧ var = rval(var ← var ′).

e inference rule for assignment to an array element has the following form:

{∃MD′𝑃 (MD← MD′) ∧MD = upd (MD′,MeM (𝑎, 𝑖), rval)} prog; {𝑄}
{𝑃} a[i] = rval; prog {𝑄}

. (5)

Strongest postcondition of assignment to an array element has the following form:

sp(a[i] = rval, 𝑃) =
∃MD′𝑃 (MD← MD′) ∧MD = upd (MD′,MeM (𝑎, 𝑖), rval).

e mixed axiomatic semantics method allows us to dene the following version of this inference rule when
neither referencing nor dereferencing operators are used on the array element:

{∃𝑎′𝑃 (𝑎 ← 𝑎′) ∧ 𝑎 = update(𝑎′, 𝑖, rval)} prog; {𝑄}
{𝑃} a[i] = rval; prog {𝑄}

, (6)

where update is the array update operation with the following axioms:
1) (update(𝑎, 𝑖, val)) [𝑖] = val;
2) (update(𝑎, 𝑖1, val)) [𝑖2] = 𝑎(𝑖2)

𝑖 𝑓 𝑖1 ≠ 𝑖2;
3) update(𝑎, 𝑖, 𝑎[𝑖]) = 𝑎.

e strongest postcondition of assignment to an array element has the following form in this case:

sp(a[i] = rval, 𝑃) =
∃𝑎′𝑃 (𝑎 ← 𝑎′) ∧ 𝑎 = update(𝑎′, 𝑖, rval).

224

Logic for reasoning about bugs in loops over data sequences (IFIL)

e inference rule for the if statement has the following form:

{𝑃 ∧ 𝐵} S1; prog {𝑄}, {𝑃 ∧ ¬𝐵} S2; prog {𝑄}
{𝑃} if B then S1 else S2; prog {𝑄}

. (7)

e strongest postcondition of the if statement has the following form:

sp(if B then S1 else S2, 𝑃) =
sp(S1, 𝑃 ∧ 𝐵) ∨ sp(S2, 𝑃 ∧ ¬𝐵).

ese inference rules allow obtaining the nite iteration precondition that is used in the main inference
rules.

2.2. Main inference rules of the logic for reasoning about bugs in loops over data sequences

Let us consider inference rules for the inference of formulas whose validity may indicate the presence
of bugs.

e following inference rule corresponds to the strategy for nding loops with unused assignments to
array elements:

𝑃 → (𝑆 = rep(𝑣, 𝑆, 𝑛) .𝑆)
{𝑃} for (i = i0; i < n; i + +) v := body(v, i) end; prog {𝑄} , (8)

where
• 𝑃 is the precondition;
• 𝑆 is the array over which the nite iteration is performed;
• rep is the replacement operation for the nite iteration;
• rep(𝑣, 𝑆, 𝑛).𝑆 is the array 𝑆 aer the loop execution.
e following inference rule corresponds to the strategy for checking the execution of the break state-

ment at the rst loop iteration:

𝑃 → ((𝑖0 = rep(𝑣, 𝑆, 𝑛) .𝑖) ∧ (rep(𝑣, 𝑆, 𝑛) .loop−break))
{𝑃} for (i = i0; i < n; i + +) v := body(v, i) end; prog {𝑄} , (9)

where
• 𝑃 is the precondition;
• 𝑆 is the array over which the nite iteration is performed;
• rep is the replacement operation for the nite iteration;
• rep(𝑣, 𝑆, 𝑛).𝑖 is the value of the loop counter 𝑖 aer the loop execution;
• rep(𝑣, 𝑆, 𝑛).𝑆 is the array 𝑎 aer the loop execution.
e next inference rules are based on modifying the denition of the rep function. Let us note that the

next inference rules are not strategies from [21, 22] encoded in our logic, they represent a completely new
approach. If the rep function contains an if statement, than we add to two new elds to the frame structure:
if −true𝑘 and if −false𝑘 , where 𝑘 is the number of if statement in the nite iteration.

e if −true𝑘 eld contains a conjunction of the values of the condition of the 𝑘-th if statement on each
iteration. us, the true value of this eld means that the condition of the 𝑘-th if statement is true on each
iteration. is information may be indicative of an error.

e if −false𝑘 eld contain a conjunction of negations of the values of the condition of the 𝑘-th if state-
ment on each iteration. us, the true value of this eld means that the condition of the 𝑘-th if statement
is false on each iteration. is information may be indicative of an error.

225

Kondratyev D. A.

For each 𝑘 (for each if statement in the nite iteration) the following inference rules are applied:

𝑃 → rep(𝑣, 𝑆, 𝑛) .if −true𝑘
{𝑃} for (i = i0; i < n; i + +) v := body(v, i) end; prog {𝑄} , (10)

where
• 𝑃 is the precondition;
• 𝑆 is the array over which the nite iteration is performed;
• rep is the replacement operation for the nite iteration;
• rep(𝑣, 𝑆, 𝑛) .if −true𝑘 is the value of the if −true𝑘 eld aer the loop execution,

and

𝑃 → rep(𝑣, 𝑆, 𝑛) .if −false𝑘
{𝑃} for (i = i0; i < n; i + +) v := body(v, i) end; prog {𝑄} , (11)

where
• 𝑃 is the precondition;
• 𝑆 is the array over which the nite iteration is performed;
• rep is the replacement operation for the nite iteration;
• rep(𝑣, 𝑆, 𝑛) .if −false𝑘 is the value of the if −false𝑘 eld aer the loop execution.
We can modify the denition of the rep function to calculate the values of arbitrary formulas over nite

iteration variables. It allows reasoning about the properties of nite iterations. It is possible to extend our
logic with new inference rules for error localization.

Let us note that we may apply several inference rules to a particular nite iteration to reason about
several types of bugs. We call the proposed logic the Incorrectness Finite Iteration Logic (IFIL).

2.3. Termination of inference based on the proposed logic

Let us consider the following theorem:

eorem1. If the inference rules from IFIL are applied to an annotated sequence of program statements that can
contain only variable declarations, assignments to variables, assignments to elements of arrays, if statements
and nite iterations then this inference will be terminated.

Proof. Given
• statements is the name of the sequence of the program statements considered in the statement of the
theorem,

• count of statements is the function that returns the count of statements in the sequence of the program
statements (including nested statements, for example, statements from branches of if statements),

• count of statements(statements) = 𝑛,
• top level head is the function that returns the rst element at the top level of the sequence of the
program statements (for example, we consider each if statement as one statement at the top level of
the sequence of the program statements),

• top level tail is the function that returns the sequence of the program statements without the rst
element at the top level of the sequence of the program statements (for example, we consider each if
statement as one statement at the top level of the sequence of the program statements),

let us prove this theorem by induction on 𝑛. us, the proof consists of two cases:
1. Induction base. is case corresponds to 𝑛 = 0. e statements has the following form

emptyProgram

226

Logic for reasoning about bugs in loops over data sequences (IFIL)

in this case. us, top level head (statements) is equal to

emptyProgram

and top level tail(statements) is equal to emptyProgram. Let us note that

count of statements(top level head (statements)) = count of statements(emptyProgram) = 0

us,

count of statements(top level tail(statements)) =
𝑛 − count of statements(top level head (statements)) = 0

We should apply inference rule 1 from Section 2.1 in this case. Since the application of inference rule 1
from Section 2.1 will be terminated, the inference process will be terminated, too.

2. Induction step. Let us consider all possible values of top level head (statements):
(a) Variable declaration. e statements has the following form

type var; prog

in this case. us, top level head (statements) is equal to
type var

and top level tail(statements) is equal to prog. Let us note that

count of statements(top level head (statements)) = count of statements(type var) = 1

us,

count of statements(top level tail(statements)) =
𝑛 − count of statements(top level head (statements)) = 𝑛 − 1

We should apply inference rule 2 from Section 2.1 in this case. Since the application of inference
rule 2 will be terminated and

count of statements(prog) = count of statements(top level tail(statements)) = 𝑛 − 1
in this case, we can apply the induction hypothesis. e induction hypothesis means that the
application of the inference process to annotated program code prog will be terminated in this
case. us, the inference process will be terminated.

(b) Variable assignment. e statements has the following form

var = rval; prog

in this case. us, top level head (statements) is equal to
var = rval

and top level tail(statements) is equal to prog. Let us note that

count of statements(top level head (statements)) = count of statements(var = rval) = 1

us,

count of statements(top level tail(statements)) =
𝑛 − count of statements(top level head (statements)) = 𝑛 − 1

We should apply either inference rule 3 from Section 2.1 or inference rule 4 from Section 2.1 in
this case. Since the application of either of the inference rules will be terminated and

count of statements(prog) = count of statements(top level tail(statements)) = 𝑛 − 1

227

Kondratyev D. A.

in both cases, we can apply the induction hypothesis. e induction hypothesis means that
application of inference process to annotated program code prog will be terminated in this case.
us, the inference process will be terminated.

(c) Assignment to an array element. e statements has the following form
𝑎[𝑖] = rval; prog

in this case. us, top level head (statements) is equal to
𝑎[𝑖] = rval

and top level tail(statements) is equal to prog. Let us note that
count of statements(top level head (statements)) = count of statements(𝑎[𝑖] = rval) = 1

us,
count of statements(top level tail(statements)) =

𝑛 − count of statements(top level head (statements)) = 𝑛 − 1
We should apply either inference rule 5 from Section 2.1 or inference rule 6 from Section 2.1 in
this case. Since the application of either of the inference rules will be terminated and

count of statements(prog) = count of statements(top level tail(statements)) = 𝑛 − 1
in both cases, we can apply the induction hypothesis. e induction hypothesis means that the
application of the inference process to annotated program code prog will be terminated in this
case. us, the inference process will be terminated.

(d) if statement. e statements has the following form
if 𝐵 then 𝑆1 else 𝑆2; prog

in this case. us, top level head (statements) is equal to
if 𝐵 then 𝑆1 else 𝑆2

and top level tail(statements) is equal to prog. Let us note that
count of statements(top level head (statements)) =

count of statements(if 𝐵 then 𝑆1 else 𝑆2) =
1 + count of statements(𝑆1) + count of statements(𝑆2)

us,
count of statements(top level tail(statements)) =

𝑛 − count of statements(top level head (statements)) =
𝑛 − 1 − count of statements(𝑆1) − count of statements(𝑆2)

Let us note that
count of statements(prog) = count of statements(top level tail(statements)) =

𝑛 − 1 − count of statements(𝑆1) − count of statements(𝑆2)
Consequently,

count of statements(𝑆1; prog) = count of statements(𝑆1) + count of statements(prog) =
count of statements(𝑆1) + 𝑛 − 1 − count of statements(𝑆1) − count of statements(𝑆2) =

𝑛 − 1 − count of statements(𝑆2)
and

count of statements(𝑆2; prog) = count of statements(𝑆2) + count of statements(prog) =
count of statements(𝑆2) + 𝑛 − 1 − count of statements(𝑆1) − count of statements(𝑆2) =

𝑛 − 1 − count of statements(𝑆1)

228

Logic for reasoning about bugs in loops over data sequences (IFIL)

Since count of statements(𝑆2) ≥ 0,

count of statements(𝑆1; prog) = 𝑛 − 1 − count of statements(𝑆2) ≤ 𝑛 − 1
Since count of statements(𝑆1) ≥ 0,

count of statements(𝑆2; prog) = 𝑛 − 1 − count of statements(𝑆1) ≤ 𝑛 − 1
We should apply inference rule 7 from Section 2.1 in this case. Since the application of inference
rule 7 will be terminated and

count of statements(𝑆1; prog) ≤ 𝑛 − 1
and

count of statements(𝑆2; prog) ≤ 𝑛 − 1
we can apply the induction hypothesis. e induction hypothesis means that the application of
the inference process to annotated program code 𝑆1; prog will be terminated and the applica-
tion of the inference process to annotated program code 𝑆2; prog will be terminated. us, the
inference process will be terminated.

(e) Finite iteration. e statements has the following form

for (𝑖 = 𝑖0; 𝑖 < 𝑛; 𝑖 + +) 𝑣 := body(𝑣, 𝑖) end; prog
in this case. us, top level head (statements) is equal to

for (𝑖 = 𝑖0; 𝑖 < 𝑛; 𝑖 + +) 𝑣 := body(𝑣, 𝑖) end
and top level tail(statements) is equal to prog. We should apply one the following rule:

• inference rule 8 from Section 2.2,
• inference rule 9 from Section 2.2,
• inference rule 10 from Section 2.2,
• inference rule 11 from Section 2.2

in this case. Since the application of all mentioned inference rules from Section 2.2 will be ter-
minated, the inference process will be terminated.

�

Let us note that if the input sequence of the program statements does not contain nite iteration, we
infer only the strongest postcondition instead of the formula describing the property of a nite iteration.
Proving other properties of our logic is a dicult problem due to the heuristic nature of our logic. In any
case, we are planning to discovery and to prove other properties of our logic in a future work.

3. Experiment
Our logic was implemented in the C-lighVer system as an alternative semantics for the C-kernel lan-

guage. We performed a bug localization experiment on the negate first program from the well-known
verication challenge [36]:

void negate_first(int n, int* a) {

int i;

for (i = 0; i < n; i++) {

if (a[i] < 0) {a[i] = -a[i]; break;}}}

e precondition of this program is

(𝑎0 = 𝑎) ∧ (0 < 𝑛) ∧ (𝑛 ≤ length(𝑎0))

229

Kondratyev D. A.

e postcondition of this program is

(¬found negative(𝑛, 𝑎0) →
𝑎 = 𝑎0)
∧

(found negative(𝑛, 𝑎0) →
𝑎 = update(𝑎0, count index (𝑛, 𝑎0),−𝑎0 [count index (𝑛, 𝑎0)]))

where
• found-negative predicate checks if there is a negative element in the array;
• count-index function calculates the index of the rst negative element of the array if the array contains
such an element. e value of this function is undened in other cases.

e main problem of reasoning about this program is the break statement in the loop.
Let us consider the negate first program with an introduced error:

1. /*@ requires (a0 = a) && (0 < n) && (n <= length(a0));

2. ensures (!found_negative(n, a0) ==> a == a0) &&

3. (found_negative(n, a0) ==>

a == update(a0, count_index(n, a0), -a0[count_index(n, a0)]))

4. */

5. void negate_first(int n, int* a) {

6. int i;

7. for (i = 0; i < n; i++) \{

8. if (a[i] < a[i]) {a[i] = -a[i]; break;}}}

e specications of this function were dened using the ACSL language. e error is using a[i] instead
of 0 in the if condition at line 8.

e following formulas obtained have been proved automatically using the ACL2 system:

(implies

(and (integer-listp a) (integer-listp a_0) (equal a a_0)

(integerp n) (< 0 n) (<= n (length a_0)))

(equal

a

(rep

(frame-init

0

a

nil

)

(envir-init

n

)

).a

)

)

and

230

Logic for reasoning about bugs in loops over data sequences (IFIL)

(implies

(and (integer-listp a) (integer-listp a_0) (equal a a_0)

(integerp n) (< 0 n) (<= n (length a_0)))

(equal

t

(rep

(frame-init

0

a

nil

)

(envir-init

n

)

).iffalse1

)

)

where
• frame-init is the constructor of the frame structure;
• envir-init is the constructor of the envir structure which stores values that have not been modied
by the nite iteration.

e mixed axiomatic semantics method allows using simple inference rules without MeM or MD to obtain
these formulas.

e validity of these formulas means the following:
• assignment in the loop body is never used;
• the condition of if statement is always false.
us, our logic can help localize bug without using loop invariants.

Conclusion
e new result presented in this paper is a logic for reasoning about bugs in loops over data sequences.

is logic is based on special inference rules for nite iterations. ese rules allow generating properties that
may indicate errors in nite iterations. ese properties are generated as formulas with recursive functions
corresponding to nite iterations. is logic has been implemented in a new version of the C-lightVer system
for a deductive verication of C programs. We have performed reasoning about the incorrectness of an
illustrative example to demonstrate how our logic works.

ere are three advantages of our approach:
1. Our logic does not require dening invariants of nite iterations.
2. Our logic is based on an over-approximation approach similar to classic deductive verication. It

simplies the development of a unied approach to reasoning about correctness and incorrectness.
3. Our logic is based on the use of special inference rules for nite iterations. ese rules allow generating

simple formulas to be proved in the case of nite iterations.
We believe that our approach has promise, because we can extend our logic with new special inference

rules for nite iterations. us, we are planning to extend our logic with new inference rules to handle more
types of bugs. For example, we will soon be applying our approach to nite iterations over lists, trees and
other dynamic data structures.

231

Kondratyev D. A.

References
[1] R. Hähnle andM. Huisman, “Deductive soware verication: From pen-and-paper proofs to industrial

tools”, in Computing and Soware Science, vol. 10000, Springer, 2019, pp. 345–373.
[2] K. R. Apt and E.-R. Olderog, “Fiy years of Hoare’s logic”, Formal Aspects of Computing, vol. 31, no. 6,

pp. 751–807, 2019.
[3] K. R. Apt and E.-R. Olderog, “Assessing the success and impact of Hoare’s logic”, in eories of

Programming: e Life and Works of Tony Hoare, 2021, pp. 41–76.
[4] C. A. R. Hoare, “An axiomatic basis for computer programming”, Communications of the ACM, vol. 12,

no. 10, pp. 576–580, 1969.
[5] B. Möller, P. O’Hearn, and T. Hoare, “On algebra of program correctness and incorrectness”, in

Relational and Algebraic Methods in Computer Science, vol. 13027, Springer, 2021, pp. 325–343.
[6] Q. L. Le, A. Raad, J. Villard, J. Berdine, D. Dreyer, and P.W. O’Hearn, “Finding real bugs in big programs

with incorrectness logic”, Proceedings of the ACM on Programming Languages, vol. 6, no. OOPSLA1,
pp. 1–27, 2022.

[7] P. W. O’Hearn, “Incorrectness logic”, Proceedings of the ACM on Programming Languages, vol. 4,
no. POPL, pp. 1–32, 2019.

[8] A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard, “Local reasoning about the
presence of bugs: Incorrectness separation logic”, in Computer Aided Verication, vol. 12225, Springer,
2020, pp. 225–252.

[9] J. Vanegue, “Adversarial logic”, in Static Analysis, vol. 13790, Springer, 2022, pp. 422–448.
[10] M.Milanese and F. Ranzato, “Local completeness logic on Kleene algebra with tests”, in Static Analysis,

vol. 13790, Springer, 2022, pp. 350–371.
[11] B. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato, “A correctness and incorrectness program logic”,

Journal of the ACM, vol. 70, no. 2, pp. 1–45, 2023.
[12] P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner, “Exact separation logic:

Towards bridging the gap between verication and bug-nding”, in 37th European Conference
on Object-Oriented Programming (ECOOP 2023), vol. 263, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023, 19:1–19:27.

[13] N. Zilberstein, D. Dreyer, and A. Silva, “Outcome logic: A unifying foundation of correctness and
incorrectness reasoning”, Proceedings of the ACM on Programming Languages, vol. 7, no. OOPSLA1,
pp. 522–550, 2023.

[14] T. Dardinier and P. Müller, Hyper hoare logic: (Dis-)Proving program hyperproperties (extended version),
2023. arXiv: 2301.10037 [cs.LO].

[15] A. Humenberger, M. Jaroschek, and L. Kovács, “Invariant generation for multi-path loops with
polynomial assignments”, in Verication, Model Checking, and Abstract Interpretation, vol. 10747,
Springer, 2018, pp. 226–246.

[16] S. Chakraborty, A. Gupta, and D. Unadkat, “Full-program induction: Verifying array programs sans
loop invariants”, International Journal on Soware Tools for Technology Transfer, vol. 24, no. 5,
pp. 843–888, 2022.

[17] V. A. Nepomniaschy, “Symbolic method of verication of denite iterations over altered data
structures”, Programming and Computer Soware, vol. 31, no. 1, pp. 1–9, 2005.

[18] V. A. Nepomniaschy, I. S. Anureev, I. N. Mikhailov, and A. V. Promskii, “Towards verication of C
programs. C-light language and its formal semantics”, Programming and Computer Soware, vol. 28,
no. 6, pp. 314–323, 2002.

232

https://arxiv.org/abs/2301.10037

Logic for reasoning about bugs in loops over data sequences (IFIL)

[19] V. A. Nepomniaschy, I. S. Anureev, andA. V. Promskii, “Towards verication of C programs: Axiomatic
semantics of the C-kernel language”, Programming and Computer Soware, vol. 29, no. 6, pp. 338–350,
2003.

[20] I. V. Maryasov, V. A. Nepomniaschy, A. V. Promsky, and D. A. Kondratyev, “Automatic C program
verication based on mixed axiomatic semantics”, Automatic Control and Computer Sciences, vol. 48,
no. 7, pp. 407–414, 2014.

[21] D. A. Kondratyev and V. A. Nepomniaschy, “Automation of C program deductive verication without
using loop invariants”, Programming and Computer Soware, vol. 48, no. 5, pp. 331–346, 2022.

[22] D. A. Kondratyev andA. V. Promsky, “e complex approach of the C-lightVer system to the automated
error localization in C-programs”,Automatic Control and Computer Sciences, vol. 54, no. 7, pp. 728–739,
2020.

[23] J. S. Moore, “Milestones from the pure lisp theorem prover to ACL2”, Formal Aspects of Computing,
vol. 31, no. 6, pp. 699–732, 2019.

[24] D. A. Kondratyev, I. V. Maryasov, and V. A. Nepomniaschy, “e automation of C program verication
by the symbolic method of loop invariant elimination”, Automatic Control and Computer Sciences,
vol. 53, no. 7, pp. 653–662, 2019.

[25] L. Zhang and B. L. Kaminski, “antitative strongest post: A calculus for reasoning about the ow of
quantitative information”, Proceedings of the ACM on Programming Languages, vol. 6, no. OOPSLA1,
pp. 1–29, 2022.

[26] S. Dailler, D. Hauzar, C. Marché, and Y. Moy, “Instrumenting a weakest precondition calculus for
counterexample generation”, Journal of Logical and Algebraic Methods in Programming, vol. 99,
pp. 97–113, 2018.

[27] B. Becker, C. B. Lourenço, and C. Marché, “Explaining counterexamples with giant-step assertion
checking”, in Proceedings of the 6th Workshop on Formal Integrated Development Environment, vol. 338,
2021, pp. 82–88.

[28] Q. L. Le, J. Sun, L. H. Pham, and S. Qin, S2TD: A separation logic verier that supports reasoning of the
absence and presence of bugs, 2022. arXiv: 2209.09327 [cs.PL].

[29] T. Dardinier, G. Parthasarathy, and P.Müller, “Verication-preserving inlining in automatic separation
logic veriers”, Proceedings of the ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 789–818,
2023.

[30] R. Könighofer, R. Toegl, and R. Bloem, “Automatic error localization for soware using deductive
verication”, in Hardware and Soware: Verication and Testing, vol. 8855, Springer, 2014, pp. 92–98.

[31] P. Baudin, F. Bobot, D. Bühler, L. Correnson, F. Kirchner, N. Kosmatov, A. Maroneze, V. Perrelle, V.
Prevosto, J. Signoles, and N. Williams, “e dogged pursuit of bug-free C programs: e Frama-C
soware analysis platform”, Communications of the ACM, vol. 64, no. 8, pp. 56–68, 2021.

[32] M. R. Gadelha, F. Monteiro, L. Cordeiro, and D. Nicole, “ESBMC v6.0: Verifying C programs using
𝑘-induction and invariant inference”, in Tools and Algorithms for the Construction and Analysis of
Systems, vol. 11429, Springer, 2019, pp. 209–213.

[33] S. Löwe, “CPAchecker with explicit-value analysis based on CEGAR and interpolation”, in Tools and
Algorithms for the Construction and Analysis of Systems, vol. 7795, Springer, 2013, pp. 610–612.

[34] D. Beyer and T. Lemberger, “CPA-SymExec: Ecient symbolic execution in CPAchecker”, in
Proceedings of the 33rd ACM/IEEE International Conference on Automated Soware Engineering, 2018,
pp. 900–903.

[35] C. Cadar andM. Nowack, “KLEE symbolic execution engine in 2019”, International Journal on Soware
Tools for Technology Transfer, vol. 23, no. 6, pp. 867–870, 2021.

[36] B. Jacobs, J. Kiniry, and M. Warnier, “Java program verication challenges”, in Formal Methods for
Components and Objects, vol. 2852, Springer, 2003, pp. 202–219.

233

https://arxiv.org/abs/2209.09327

	Existing methods and tools that we use to develop and implement our logic
	The core of Hoare logic
	The symbolic method of verification of finite iterations
	The memory model of two subsets of C programming language, C-light and C-kernel
	The C-lightVer tool
	The ACL2 theorem prover
	The mixed axiomatic semantics method
	The algorithm of the generation of recursive functions corresponding to loops
	Strategies for proving properties that may indicate possible errors
	A strategy for finding loops with unused assignments to array elements
	A strategy for checking the execution of the break statement at the first loop iteration

	Strongest postcondition calculus

	Logic for reasoning about bugs in loops over data sequences
	Base of logic for reasoning about bugs in loops over data sequences
	Main inference rules of the logic for reasoning about bugs in loops over data sequences
	Termination of inference based on the proposed logic

	Experiment

