An Investigation of Learning Curves and Their Use in Simulation

Jennie H. Lommel

Follow this and additional works at: https://scholar.afit.edu/etd
Part of the Operational Research Commons

Recommended Citation

Lommel, Jennie H., "An Investigation of Learning Curves and Their Use in Simulation" (1996). Theses and Dissertations. 6226.
https://scholar.afit.edu/etd/6226

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.

AN INVESTIGATION OF LEARNING CURVES AND THEIR USE IN SIMULATION

THESIS
Jennie H. Lommel, Captain, USAF

AFIT/GOR/ENS/96M-05

DISTRDOTICA STATEMENT I
Approved for publle releases
Distribution Unlimited
DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

AN INVESTIGATION OF LEARNING CURVES AND THEIR USE IN SIMULATION

THESIS

Jennie H. Lommel, Captain, USAF

AFIT/GOR/ENS/96M-05

DTTC QUALITY INSPECTED 2

Approved for public release; distribution unlimited

AN INVESTIGATION OF LEARNING CURVES AND THEIR USE IN SIMULATION

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of Master of Science Operations Research

Jennie H. Lommel, B.S.E.E. Captain, USAF

April 1996

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain Jennie H. Lommel
CLASS: GOR-96M

THESIS TITLE: An Investigation of Learning Curves and Their Use in Simulation

DEFENSE DATE: 10 April 1996

COMMITTEE: NAME/TITLE/DEPARTMENT SIGNATURE

ACKNOWLEDGMENTS

Kate and Alex, my dear children, thank you for helping me keep things in perspective; you are the motivation behind my success. Thanks also, to my 'in-law' and friend, Wendy Lommel, who not only helped me through some tough times, but created some too. Gary Halliday and my sister Judy, have been fiercely loyal friends, and compassionate, insightful, and thorough critics. Truly, I appreciate the wisdom, guidance and encouragement ("I don't think you are going to graduate on time!") I received from my advisor, Dr. Edward F. Mykytka; he always had a way of looking across his desk at me that made me wish I'd accomplished more. Thanks also to my reader, LTC James Shedden who waited patiently until the last half of the last quarter for (part of) my first draft. Finally, I would like to thank my parents, Jane and Norton Hutchinson of Oyster Bay, New York. They always insisted that I could do anything if I'd just set my mind to it. They gave me the perseverance, the optimism, and the basic constitution I needed to make it through this demanding part of my life. If it had not been for their undying faith in me over the years, I would not be who or where I am today. Thanks.

Table of Contents

Page
ACKNOWLEDGMENTS iii
LIST OF FIGURES. viii
LIST OF TABLES. x
ABSTRACT. xi

1. MOTIVATION FOR THE STUDY. 1-1
1-1. Background 1-1
1-2. Problem Statement $1-2$
1-3. Approach 1-3
2. PREVIOUS WORK IN LEARNING CURVES. 2-1
2-1. Definition of Learning Curve. 2-1
2-2. Terminology 2-3
2-3. Geometric Versions of the Learning Curve. 2-4
The Log-Linear (Crawford) Model. 2-4
Pegel's Exponential Function 2-6
Forsythe $\mathrm{C}_{\text {min }}$ Approach. 2-7
Levy's Adaptation Function 2-7
The Stanford-B Model 2-8
DeJong's Learning Formula with an Incompressibility Factor 2-10
The S-Curve 2-11
Non-Linear Estimation 2-12
2-4. Summary 2-13
3. PROPOSED ARMA LEARNING CURVE MODELS. 3-1
3-1. Introduction to ARMA Models. 3-1
Stationarity 3-1
Nonstationarity 3-1
Parsimony 3-2
Autoregressive Proceses. 3-2
Moving Average Prcesses. 3-2
Autoregressive/Moving Average Processes. 3-2
3-2. Autoregressive (AR) Processes 3-3
3-3. Moving Average (MA) Processes. 3-8
3-4. Autoregressive/Moving Average Processes 3-9
3-5. ARIMA Models for Learning. 3-10
3-6. Fitting ARMA Models to a Log-Linear Learning Curve. 3-11
4. A COMPREHENSIVE MODEL COMPARISON. 4-1
4-1. Introduction 4-1
4-2. Fitting Simulated Log-Linear Data. 4-2
4-3. Fitting Historical F-102 Data 4-5
4-4. Fit/Forecasting Historical F-102 Data. 4-10
4-5. Fit/Forecasting Notional C-17 Data 4-13
4-6. Summary 4-14
5. SIMULATING FUTURE PERFORMANCE. 5-1
5-1. Problem Statement 5-1
5-2. Simulation Based on a Fitted Linear Metamodel (Theory) 5-2
Method 1 (starting algorithm -- has constant variance) 5-4
Method 2 (corrected algorithm -- has increasing variance). 5-6
Method 3 (final algorithm -- has constant variance). 5-7
5-3. Linear Case Studies (Practical). 5-8
Method 1 5-9
Method 2 5-10
Method 3 5-12
5-4. Log-Linear Learning Curve Case Studies. 5-13
Method 1 5-13
Method 2 5-15
Method 3 5-17
5-5. Conclusions. 5-18
6. CONCLUSIONS 6-1
BIBLIOGRAPHY BIB-1
APPENDLX A -- FORECAST-PRO WORKSHEETS AND SUMMARY. A-1
APPENDIX B -- FITTING THE SIMULATED LOG-LINEAR DATA. B-1
APPENDIX C -- FITTING HISTORICAL F-102 DATA C-1
APPENDLX D -- FORECASTING HISTORICAL F-102 DATA D-1
APPENDLX E -- HISTORICAL F-102 DATA BASE E-1
APPENDLX F -- FIT/FORECASTING NOTIONAL C-17 DATA. F-1
VITA VITA-1
EPILOGUE EPIL-1

List of Figures

Page
Figure 2-1 -- Example of a Log-Linear Model 2-4
Figure 2-2 -- Pegel's Exponential Function 2-6
Figure 2-3 -- Stanford-B Curve. 2-9
Figure 2-4 -- The S-Curve. 2-11
Figure 3-1 -- Illustration of the AR(1) Model. 3-7
Figure 3-2 -- Illustration of the Log-Linear Learning Curve Model. 3-7
Figure 3-3 -- Illustration of the MA(1) Model 3-9
Figure 3-4 -- Illustration of the ARMA(1,1) Model. 3-10
Figure 4-1 -- Plot of F-102 Data -- TOTHRS vs OBS 4-7
Figure 4-2 -- Plot of F-102 Data -- TOTHRS vs PLN 4-7
Figure 4-3 -- F-102 Data (TOTHRS vs PLN) Starting at PLN 11. 4-8
Figure 4-4 -- Forsythe Model vs Log-Linear Model in F-102 Fit. 4-10
Figure 4-5 -- AR(2) Forecast of F-102 Data. 4-11
Figure 5-1 -- Method 1 for Equation of Line -- Four Simulations. 5-10
Figure 5-2 -- Method 2 for Equation of Line -- Four Simulations. 5-11
Figure 5-3 -- Method 3 for Equation of Line -- Four Simulations 5-12Figure 5-4 -- Method 1 for Log-Linear Equation in Log Space --
\qquad
Four Simulations. 5-14
Figure 5-5 -- Method 1 for Log-Linear Equation in Linear Space -- \qquad
Four Simulations. 5-15
Figure 5-6 -- Method 2 for Log-Linear Equation in Log Space --

\qquad
Four Simulations. 5-16
Figure 5-7 -- Method 2 for Log-Linear Equation in Linear Space --
\qquad
Four Simulations 5-16
Figure 5-8 -- Method 3 for Log-Linear Equation in Log Space --.Four Simulations.5-17
Figure 5-9 -- Method 3 for Log-Linear Equation in Linear Space --

\qquad
Four Simulations. 5-18
Figure A-1 -- Forecast-Pro, Exponential Smoothing A-2
Figure A-2 -- Forecast-Pro, Simple Exponential Smoothing A-3
Figure A-3 -- Forecast-Pro, Simple Moving Average. A-4
Figure A-4 -- Forecast-Pro, Holt Exponential Smoothing A-5
Figure A-5 -- Forecast-Pro, AR(1). A-6
Figure A-6 -- Forecast-Pro, AR(2). A-7
Figure A-7 -- Forecast-Pro, AR(3) A-8
Figure A-8 -- Forecast-Pro, AR(4). A-9
Figure A-9 -- Forecast-Pro, MA(1). A-10
Figure A-10 -- Forecast-Pro, MA(2) A-11
Figure A-11 -- Forecast-Pro, MA(3). A-12
List of Figures, cont'd Page
Figure A-12 -- Forecast-Pro, MA(4) A-13
Figure A-13 -- Forecast-Pro, ARMA(1,1) A-14
Figure A-14 -- Forecast-Pro, ARMA(2,1) A-15
Figure A-15 -- Forecast-Pro, ARMA(1,2). A-16
Figure A-16 -- Forecast-Pro, ARMA(2,2) A-17
Figure B-1 -- EXCEL, Log-Linear Fit to Log-Linear Data. B-4
Figure B-2 -- EXCEL, Forsythe Fit to Log-Linear Data. B-4
Figure B-3 -- EXCEL, Stanford-B Fit to Log-Linear Data. B-5
Figure B-4 -- EXCEL, Pegel's Fit to Log-Linear Data. B-5
Figure B-5 -- EXCEL, S-Curve Fit to Log-Linear Data. B-6
Figure B-6 -- EXCEL, AR(1) Fit to Log-Linear Data. B-6
Figure B-7 -- EXCEL, AR(2) Fit to Log-Linear Data. B-7
Figure B-8 -- EXCEL, AR(3) Fit to Log-Linear Data. B-7
Figure B-9 -- EXCEL, AR(4) Fit to Log-Linear Data B-8
Figure B-10 -- EXCEL, MA(1) Fit to Log-Linear Data B-8
Figure B-11 -- EXCEL, ARMA(1,1) Fit to Log-Linear Data. B-9
Figure B-12 -- EXCEL, ARMA(1,2) Fit to Log-Linear Data B-9
Figure B-13 -- EXCEL, ARMA(2,1) Fit to Log-Linear Data. B-10
Figure B-14 -- EXCEL, ARMA(2,2) Fit to Log-Linear Data B-10
Figure C-1 -- EXCEL, Log-Linear Fit to F-102 Historical Data. C-3
Figure C-2 -- EXCEL, Forsythe Fit to F-102 Historical Data. C-3
List of Figures, cont'd Page
Figure C-3 -- EXCEL, Stanford-B Fit to F-102 Historical Data C-4
Figure C-4 -- EXCEL, AR(1) Fit to F-102 Historical Data C-4
Figure C-5 -- EXCEL, AR(2) Fit to F-102 Historical Data C-5
Figure C-6 -- EXCEL, AR(3) Fit to F-102 Historical Data C-5
Figure C-7 -- EXCEL, AR(4) Fit to F-102 Historical Data C-6
Figure C-8 -- EXCEL, ARMA(1,1) Fit to F-102 Historical Data. C-6
Figure C-9 -- EXCEL, ARMA(1,2) Fit to F-102 Historical Data C-7
Figure C-10 -- EXCEL, ARMA(2,1) Fit to F-102 Historical Data. C-7
Figure C-11 -- EXCEL, ARMA(2,2) Fit to F-102 Historical Data. C-8
Figure D-1 -- EXCEL, Log-Linear Forecast of F-102 Historical Data D-3
Figure D-2 -- EXCEL, Forsythe Forecast of F-102 Historical Data. D-3
Figure D-3 -- EXCEL, Stanford-B Forecast of F-102 Historical Data D-4
Figure D-4 -- EXCEL, AR(1) Forecast of F-102 Historical Data. D-4
Figure D-5 -- EXCEL, AR(2) Forecast of F-102 Historical Data. D-5
Figure D-6 -- EXCEL, AR(3) Forecast of F-102 Historical Data D-5
Figure D-7 -- EXCEL, AR(4) Forecast of F-102 Historical Data. D-6
Figure D-8 -- EXCEL, ARMA(1,1) Forecast of F-102 Historical Data D-6
Figure D-9 -- EXCEL, ARMA(1,2) Forecast of F-102 Historical Data D-7
Figure D-10 -- EXCEL, ARMA(2,1) Forecast of F-102 Historical Data D-7
Figure D-11 -- EXCEL, ARMA(2,2) Forecast of F-102 Historical Data. D-8
Figure F-1 -- EXCEL, Log-Linear Fit/Forecast of Notional C-17 Data F-3
List of Figures, cont'd Page
Figure F-2 -- EXCEL, Forsythe Fit/Forecast of Notional C-17 Data. F-3
Figure F-3 -- EXCEL, Stanford-B Fit/Forecast of Notional C-17 Data F-4
Figure F-4 -- EXCEL, AR(1) Fit/Forecast of Notional C-17 Data F-4
Figure F-5 -- EXCEL, AR(2) Fit/Forecast of Notional C-17 Data. F-5
Figure F-6 -- EXCEL, AR(3) Fit/Forecast of Notional C-17 Data F-5
Figure F-8 -- EXCEL, AR(4) Fit/Forecast of Notional C-17 Data F-6
Figure F-9 -- EXCEL, ARMA(1,1) Fit/Forecast of Notional C-17 Data F-6
Figure F-10 -- EXCEL, ARMA(1,2) Fit/Forecast of Notional C-17 Data F-7
Figure F-11 -- EXCEL, ARMA(2,1) Fit/Forecast of Notional C-17 Data F-7
Figure F-12 -- EXCEL, ARMA(2,2) Fit/Forecast of Notional C-17 Data. F-8

List of Tables

Page
Table 3-1 -- Fifty Unit EXCEL-Simulated Log-Linear Data Set 3-13
Table 3-2 -- Model Measures of Appropriate Summary. 3.-15
Table 4-1 -- Summary of Log-Linear Fitting. 4-4
Table 4-2 -- Sample of the Historical F-102 Data Base 4-5
Table 4-3 -- Summary of F-102 Curve Fitting Investigation. 4-9
Table 4-4 -- Summary of the F-102 Fit/Forecast Investigation. 4-10
Table 4-5 -- Summary of the Notional C-17 Fit/Forecast Investigation 4-14
Table 4-6 -- Investigation Summary -- Ranks Based on SSE's. 4-14
Table A-1 -- Table A-1 Forecast-Pro, Summary of Statistics and Parameters A- 1
Table B-1 -- Detailed Summary of Log-Linear Fitting. B-1
Table B-2 -- Brief Summary of Log-Linear Fitting B-3
Table B-3 -- Simulated Log-Linear Data Base. B-11
Table C-1 -- Detailed Summary of Fitting the Historical F-102 Data Base. C-1
Table C-2 -- Brief Summary of Fitting the Historical F-102 Data Base. C-2
Table D-1 -- Detailed Summary of Forecasting the Historical F-102 Data Base D-1
Table D-2 -- Brief Summary of Forecasting the Historical F-102 Data Base. D-2
Table E-1 -- The Historical F-102 Data. E-1
Table F-1 -- Detailed Summary of Fit/Forecasting the Notional C-17 Data. F-1
Table F-2 -- Brief Summary of Fit/Forecasting the Notional C-17 Data F-2
Table F-3 -- The Notional C-17 Data F-8

Abstract

In 1995, the C-17 Factory Simulation Model (FSM) was developed for the C-17 System Program Office at Aeronautical Systems Center (ASC), Wright-Patterson AFB, Ohio. Designed to enable analysts to address "what-if" questions about the resources required to build future aircraft, the FSM is based on learning curve models that are used to both portray and simulate future aircraft production.

In this thesis, we examine and develop alternate learning curve models that also utilize a small amount of initial production data (about 20 observations) to portray the relationship between the number of aircraft built and the amount of resources required to build them. The goal is to identify a model which not only provides a good fit and forecast based on a small amount of data but is also intuitive and reasonably simple to apply. In addition to examining variations on the Log-Linear Learning Curve model, we propose and evaluate the use of Box and Jenkins Autoregressive Moving Average (ARMA) models for modeling the effects of learning.

These models are exercised in fitting simulated log-linear data, as well as in fitting and forecasting historical F -102 manufacturing data and notional C -17 manufacturing data. The results are somewhat inconclusive since they do not identify any one model as the best for all data sets. They do, however, suggest that ARMA models are a very promising alternative to the standard log-linear learning curve.

The thesis concludes with an examination of the effects of explicitly accounting for uncertainty in parameter estimation when simulating future performance based on the

traditional log-linear learning curve model. The results show that the approach employed in the FSM is viable even though it does not directly account for this uncertainty.

AN INVESTIGATION OF LEARNING CURVES
 AND
 THEIR USE IN SIMULATION

1. Motivation for the Study

1-1. Background

One of the fundamental quantities of interest when estimating the life cycle costs of weapon systems such as the $\mathrm{C}-17$, is an estimate of the resources required to build a given number of systems. This estimate provides the basis upon which many other costs and performance measures can be calculated. Given these, reasonably accurate answers can be given to questions such as, "How will the utilization of resources such as manpower or tooling be affected by changes in the 'buy profile' for the weapon system?" or "How will delivery dates be affected by changes in the assembly process?" and other "what if?" questions proposed by Congress and senior management regarding the effects of various changes in planning and production strategies. Models which can help to answer these kinds of questions are invaluable tools in the estimation of life cycle costs, but their development requires serious scrutiny and analysis if they are to provide useful information.

In many production, assembly, or maintenance operations, the amount of time required to complete a task tends to decrease each time the task is undertaken. A common approach in modeling this phenomenon is to use a learning curve in which the number of hours required to complete the task is modeled as a function of the number of units completed to date. This longterm relationship is often estimated on the basis of initial production data using straightforward regression procedures. The resulting fitted relationship then provides a forecast of the expected number of hours that will be required for the task to be performed in future operations .

When simulating such production processes, one needs not only to portray the expected number of hours required in future production, but also how those hours can be expected to vary about their mean. For example, in the C-17 Factory Simulation Model (FSM), which is a largescale model of the C-17 assembly process recently developed for the C-17 System Program Office (SPO), this was handled by treating the fitted regression equation (based on data collected during the assembly of the first 20 aircraft) as if it provided a perfect forecast of the mean time required to complete a task in the future. Once this relationship was determined, random errors were generated about the fitted curve to simulate how actual performance might vary in the future. The validity of this procedure is somewhat in doubt, however.

An important source of doubt centers on how well this strategy can be expected to model future performance. This is an especially important question because the underlying learning curves have been estimated on the basis of a limited amount of data. The approach used in the C-17 FSM does not take into account the uncertainty surrounding the mathematical form of the learning curve model nor the values of the parameters within that model. For example, might the relationship be more accurately described with of an equation of a different form? Alternately, how (if at all) should predictions based on the fitted relationship account for one's uncertainty about the values of the parameters which specify that relationship? Should the simulation of the production of future aircraft account for this uncertainty? Further analysis of the appropriateness of this strategy and an investigation into possible alternative strategies is clearly warranted.

1-2. Problem Statement

An analysis of the current methods used in the C-17 FSM and, potentially, the development of improved models and methods for modeling and simulating learning curve relationships will enable analysts to provide better answers to the kinds of questions which are
asked in the acquisition process, and allow for better planning. This, in turn, will help to minimize (or avoid for the most part!) future cost and time overruns and allow for a more efficient allocation of resources.

1-3. Approach

In this thesis, we provide an analysis and assessment of some of the specific methods used to model and simulate learning curve relationships as implemented in the C-17 FSM. We begin with a thorough literature review to discover what is known about learning curves and to assess what new thinking must be done. The review covers a variety of learning curve models and the use of learning curves to simulate future performance. We next assess the adequacy of the approach used in the C-17 FSM and evaluate other possible approaches in an effort to determine what learning curve models might be most appropriate for this application.

We also propose a new approach to modeling and simulating learning using autoegressive $[\operatorname{AR}(p)]$ models and AutoRegressive Moving Average [ARMA(p,q)] models. Since we generally do not expect to have much data upon which to fit such models, it is necessary to keep the number of parameters (p and q) small; hence, we focus on $\operatorname{AR}(1)$ and $\operatorname{ARMA}(1,1)$ models.

We then attempt to make a formal comparison of the models examined, comparing them to each other, to data similar to that used in developing the C-17 FSM, and to historical data from the F-102 manufacturing program. These comparisons enable us to draw some basic conclusions and to make recommendations for future studies in this area. We conclude with an examination of the effects of explicitly accounting for uncertainty in parameter estimation in the traditional log-linear learning curve model.

2. Previous Work in Learning Curves

2-1. Definition of Learning Curve

A learning curve, also known as a progress, improvement, or experience curve, is a graphical or mathematical representation of how the requirement for resources is reduced as the production of a product or service is repeated. The learning curve concept may be used to predict production costs from the known costs of producing a product or service, the future service time from a history of service times, or the time required to build the $\mathrm{n}^{\text {th }}$ aircraft from a history of times spent building previous copies of the aircraft. The term "learning" is used in this thesis rather than "progress," "improvement," or "experience" because of its common use in the United States Air Force and most of the literature. "Learning," as used here, includes worker learning, management innovations, engineering changes, and work simplification (Orsini, 1970:pgs 2:3).

The aircraft industry was the first to recognize the predictive value of learning curves. The earliest known work on the learning curve phenomenon was done by T.P. Wright who stated in his 1936 article, "Factors Affecting the Cost of Airplanes," that he "started his studies of the variation of cost with quantity in 1922." (Wright, 1936:122). He hypothesized that the cumulative average labor cost for any quantity of airplanes produced decreases by a constant amount as the quantity of airplanes is doubled. To calculate the cumulative average cost, we utilize equation (2-1).

$$
\begin{equation*}
Z_{X}=\frac{1}{X} \sum_{i=1}^{X} Y_{X} \tag{2-1}
\end{equation*}
$$

where,
X is the unit number, and
Y_{X} is the number of hours (cost) for unit X .
As an example of an 80% learning curve, if it takes 100,000 hours of labor to produce Ship \#1, it would take an average of 80,000 hours to produce Ships \#1 and \#2 (or 60,000 hours for Ship \#2 alone), an average of 64,000 hours for the first four ships, 51,200 hours for the first eight ships, and so on.

In the example above, it is important to stress that the numbers 100,000 and 80,000 and 64,000 , etc., are cumulative averages; they are the average costs of producing the first, first two, ans first four aircraft, respectively. The number describing the cost of Ship \#2 alone $(60,000)$ is known as its marginal or unit cost; it is the cost of producing the second aircraft alone. Most of the data considered in this thesis is marginal or unit cost data.

Who or what is doing the learning? In organizations, the learning curve describes the improvement in either individual productivity or organizational productivity. Individual learning is improvement that results when people repeat a process and gain skill or efficiency from their own experience. Organizational learning results from practice as well, but also comes from changes in administration, equipment, and product design.

Learning rates in organizations differ in their performance for a number of reasons. One factor affecting this performance, and hence affecting the learning rate, is the volume of the output; all other things being equal, the firm that has the higher cumulative output should have the lower cost. Another factor which weighs heavily is the rate of output; studies have shown that recent experience has much more effect in reducing cost than more distant experience. As a result, if we compare two companies
with the same cumulative output, the firm with the higher rate should have a lower cost curve because its experience is more recent. In organizations, both kinds of learning occur simultaneously but are most frequently modeled with a single learning curve.

2-2. Terminology

Before starting a discussion of the various forms of learning curves (Section 2-3, below) it is imperative that the terminology used throughout the remainder of this work be clearly defined. This is important because the terminology is not consistent between references. Some of the definitions (those annotated with an asterisk, *), have been taken directly from a thesis by Orsini (Orsini, 1970:pgs 2:3), the others have been gathered from other sources.
(1) direct man-hours - These are the hours expended to manufacture a unit of output. In the airframe industry, these hours consist of fabrication, assembly, production flight, and other production work associated with the basic aircraft (Orsini, 1970:pgs 2:3).
(2) direct man-hours for Unit One - The total direct labor hours expended to complete the first operable unit (Orsini, 1970:pgs 2:3).
(3) learning rate - A per cent figure which determines the number of direct manhours required for each doubled production quantity in relation to the previous doubled quantity. For example, if a learning curve has an eighty percent learning rate, the direct man-hours required to produce unit 2 will be eighty percent the number required to produce unit one; the direct man-hours required to produce unit four will be eighty percent the number required to produce unit two; the direct man-hours required to produce unit eight will be eighty percent the number required to produce unit four; etc.
(4) cost - Refers to the quantity of resource required to perform a given activity. The cost could be in terms of dollars, direct man-hours, or other resource.
(5) cumulative average cost curve - A curve representing the cumulative average cost as the total number of units increases.
(6) unit marginal cost curve - A curve representing the average cost of each unit as the total number of units increases.

2-3. Geometric Versions of the Learning Curve

The Log-Linear (Crawford) Model. The most useful and most widely used learning curve model, the log-linear or constant percentage model, was first introduced in 1944 (Smith, 1989). This model, which states that the improvement in productivity is fairly constant as output increases, is depicted in Figure 2-1.

Figure 2-1 Example of a Log-Linear Model

The equation for this model is

$$
\begin{equation*}
Y \approx a X^{b} \tag{2-2}
\end{equation*}
$$

where
Y is the cumulative average amount of resources, or 'cost,' of producing the first X units,

X is the unit number,
a is the 'cost' of producing the first unit, and
b is a constant which determines the learning rate.
The learning percentage (learning rate), ρ, can be determined via

$$
\begin{equation*}
\rho=2^{b} \tag{2-3}
\end{equation*}
$$

Equivalently, for a given learning percentage, b can be set by specifying

$$
\begin{equation*}
b=\ln (\rho) / \ln (2) \tag{2-4}
\end{equation*}
$$

In order to estimate the parameters, a and b, of the model given above, a linear regression using a logarithmic transformation is conducted. The resulting model is

$$
\begin{equation*}
\ln (Y)=\ln (a)+b^{*} \ln (X) \tag{2-5}
\end{equation*}
$$

According to Forsythe et al, there are some distinct disadvantages which arise from taking this standard approach. First of all, the large variability associated with the early observations will skew the estimated parameters which will then be dominated by the first few observations. Second, the per unit cost predicted by a log-linear learning curve will converge to zero for sufficiently large volume. If convergence to zero occurs within a realizable volume, the log-linear model produces unrealistic forecasts.

Both the problem of early observations skewing the estimated parameters, and the fact that the log-linear learning curve will converge to zero for sufficiently large volume are important considerations since they are far more pronounced when applied to unit
costs as opposed to cumulative average costs. This is especially important to us because the C-17 FSM implicitly applies the log-linear model to unit costs.

Pegel's Exponential Function. In an effort to develop more realistic forms of the learning curve, some authors have proposed models which are based on exponential functions. One of these authors, Pegel, proposed an algebraic exponential function to complement the power function (log-linear) model (Smith, 1989). Pegel's model gives the marginal cost per unit for the $X^{\text {th }}$ unit as

$$
\begin{equation*}
M C(X)=\alpha a^{X-1}+\beta \tag{2-6}
\end{equation*}
$$

where
α, a, and β are empirically based parameters.
Using $\alpha=1000, \mathrm{a}=.8$, and $\beta=100$, the curve appears as shown in Figure 2-2.
Figure 2-2 Pegel's Exponential Function

Note that, as the number of units increases, the marginal cost approaches a minimum
value of 100 which is given by the value of β. This model may be integrated across X to
find the total cost up to the $X^{\text {th }}$ unit in terms of the marginal cost per unit. It may also be algebraically manipulated to give the average cost of the first X units in marginal cost index terms. The biggest advantage in Pegel's model is that where the basic power function shows both the average and marginal costs decreasing with increasing output, Pegel's exponential function shows that the marginal cost becomes constant after a certain number of units is produced (Belkaoui, 1986:pgs 8:9).

Forsythe $\mathbf{C}_{\text {min }}$ Approach. A similar approach which addresses and includes the constant nature of marginal cost mentioned above is proposed by Forsythe (Forsythe, Green, White, and Elmer, 1995: pgs 3:4). He says that it is possible to tailor specific model parameters to account for characteristics of the manufacturing process. For example, when the absolute minimum number of hours required to produce a unit is known or can be estimated, the basic log-linear model can be revised as shown below.

$$
\begin{equation*}
Y(X)=a X^{b}+C_{m i n} \tag{2-7}
\end{equation*}
$$

In this equation, $\mathrm{C}_{\text {min }}$ is the minimum time needed to produce a unit. As the log-linear part of this equation approaches zero with large values of X, the time required to build the Xth unit approaches $\mathrm{C}_{\text {min }}$; this makes intuitive sense. This adjustment, like Pegel's Exponential Function, prevents the time to produce a unit from reaching the unrealistic value of zero as the quantity produced, X , gets large.

Levy's Adaptation Function. Another twist on the marginal cost theme is given by Levy's Adaptation Function (Levy, 1966). Levy's function is useful for showing how a firm can adapt itself to the learning process and isolate the variables which influence learning. His function is given below.

$$
\begin{equation*}
M C=\left[I / \beta-\left(1 / \beta-X^{b} / a\right) * C^{C X}\right]^{-1} \tag{2-8}
\end{equation*}
$$

where

MC is the marginal cost,
a and b are parameters analogous to the power function parameters,
C is analogous to Cmin , and
β is the production index for the first unit.
The parameter, C, serves to flatten the curve for large values of X. So, just as Pegel and Forsythe propose, the learning function reaches a plateau and does not continue to decrease (or increase) the way the log-linear function does (Belkaoui, 1986: pg 10).

The Stanford-B Model. One of the most well-known learning curve models is the Stanford-B Model. Like the models described above, this model came into existance because the log-linear model doesn't always provide the best fit to activity/time data. The Stanford-B formula, also known as the learning formula with the B-factor (Summers and Welsch, 1970: pgs 45:50), is given by the following equation.

$$
\begin{equation*}
Y=a(X+B)^{n} \tag{2-9}
\end{equation*}
$$

where
Y is direct man-hours required for cumulative unit number X ,
a is a constant which is equivalent to the cost of the first unit when $\mathrm{B}=0$,
n is the exponent which describes the slope of the asymptote (-0.5 is typical),
B is a constant which may be expressed as the number of units theoretically produced prior to the first unit acceptance. (B is typically between 0 and 10 with 4 being a common value).

Given the 'typical' values above, the Stanford-B curve is depicted in Figure 2-3.
Figure 2-3 Stanford-B Curve

The main feature of the model is the B factor which measures variations in design or other complexities which management cannot control through engineering or retooling. Another way to think of this model is that it accounts for previous learning by using the B factor as a scale of displacement.

To illustrate, Belkaoui (Belkaoui, 1986:pg 11) suggests we note that when n is set equal to -0.5 , the Stanford-B model yields a unit learning curve equation as follows:

$$
\begin{equation*}
Y \approx \frac{a}{\sqrt{x+B}} \tag{2-10a}
\end{equation*}
$$

If B is set to 0 , this becomes

$$
\begin{equation*}
Y \approx a x^{-0.5} \tag{2-10b}
\end{equation*}
$$

Using the equation

$$
\begin{equation*}
\rho=2^{b}=2^{-0.5}=.707, \tag{2-10a}
\end{equation*}
$$

we can see that this is equivalent to a 70.7 percent log-linear learning curve. Smith notes that the Stanford-B isn't used much in the aircraft industry anymore (Smith, 1989).

DeJong's Learning Formula with an Incompressibility Factor. Another form of the log-linear model, which is similar to the models proposed by Pegel, Forsythe, and Levy (in that the value of MC levels out after a large number of builds) is DeJong's Learning Formula with an Incompressibility Factor. This model takes into account the differing nature of manual and machine labor. DeJong refers to manual activity time as being compressible (subject to learning); he considers machine activity time to be incompressible. His model has the following form which consists of a variable part representing manual activity and a fixed part representing machine activity.

$$
\begin{equation*}
M C \approx a\left(M+\frac{1-M}{X^{n}}\right) \tag{2-11}
\end{equation*}
$$

where

MC is the marginal time for the xth unit,
a and n are parameters analogous to the power function parameters, and
M is the factor of incompressibility.
The value of M varies between 0 and 1 and would be, approximately, .25 for manually dominated activities and .50 for machine-dominated activities. Note that for an activity which is 100% manual, M would be zero and DeJong's formula reduces to the log-linear model. For an activity which is 100% machine dominated, M equals 1 and MC is a constant. Since we really don't expect machines to be able to improve their performance this makes intuitive sense. Some learning curve prognosticators (Smith, 1989: pg 7) have suggested, however, that machines can 'learn' through the adjustment of machine parameters or production methods. Smith suggests that, "The DeJong model may not be
particularly useful in machine intensive industries, especially considering the model adds so much more complexity to learning curve mathematics and almost eliminates any intuitive understanding of real-life application to the typical factory worker or cost estimator." (Smith, 1989)

The S-Curve. The S-Curve is another curve which has been used to model the learning process seen in manufacturing. An S-type function can be represented by a composite function whose shape resembles the flattened horizontal S shown below.

Figure 2-4. The S-Curve

Note the flatness of the earliest part of the curve. This can be attributed to the fact that experiments are being made on the production process in an effort to find the best tooling and methods. The numerous mid-course changes made at this time preclude rapid improvement in the amount of time to build each unit. Once all the corrections are made to the toolings and methods, it is possible to obtain very rapid learning; this is shown in
the center part of the curve. Finally, once most of the learning has been done, the curve starts leveling out and approaches a minimum time required to build an individual unit.

As mentioned above, the S-Curve can be represented by a composite function. According to Belkaoui (Belkaoui, 1986:pg 14) we can constuct an S-function by using the Stanford-B curve to represent the early part of the curve and the DeJong curve to represent the latter part of the curve. In this case, the S-Curve function would look like:

$$
\begin{equation*}
M C=a\left[M+(1-M)(X+B)^{n}\right] \tag{2-12}
\end{equation*}
$$

where (as before):
MC is the marginal time for the Xth unit,
a and n are parameters analogous to the power function parameters,
M is the factor of incompressibility, and
B is a constant which may be expressed as the number of units theoretically produced prior to the first unit acceptance. (B is between 0 and 10 with 4 being a typical value).

Like all models, S-shaped curves have their advantages and dissadvantages. These curves can model more complex learning curves which do not follow a simple exponential form. However, when we have initial production data, only S-shaped curves may not have sufficient data to accurately estimate long-term production.

Non-Linear Estimation. Thomas (Thomas, 1975) compared log-linear and nonlinear estimation techniques for the standard learning curve model. Each model assumes that the error is distributed normally under the logarithmic transformation and that it tends to be proportional to the value of the dependent variable and multiplicative in nature. The nonlinear estimation techniques, on the other hand, generally assume a
constant error term which is additive. Thomas found that the nonlinear estimation techniques were robust and performed well in estimating the parameters of the model with either error distribution; the log-linear model did not perform as well when the error was additive and constant in nature.

2-4. Summary

Over the course of the last eighty years, the learning curve has been used extensively as a management accounting tool; this type of curve can provide important information for decision making. In this chapter, we have presented the concept of the learning phenomenon and have gone on to briefly outline not only the theory behind the basic log-linear learning curve but some 'new' geometric versions as well.

The Crawford Model (or the basic log-linear learning curve model) states that the improvement in productivity is fairly constant as output increases. The main shortcoming of this model lies in the fact that as the number of units produced increases, the time/cost to produce them approaches the unrealistic value of zero. The Forsythe and Pegel models are more realistic than the Crawford since they include a minimum cost per unit which does not allow the unrealistic approach towards zero. The Stanford-B model attempts to account for prior learning by including a displacement or B factor.

The models mentioned in the preceding paragraph, seem to be worth further investigation since they are fairly simple and are intuitive for the most part. On the other hand, due to their complex nature, we will not devote further study to of DeJong's Learning Formula, and Levy's Adaptation Function within this thesis. Although the SCurve has the ability to model more complex learning functions which do not follow the
simple exponential form, it may also be unsuitable due to its complexity. Further, the SCurve model may require more than just initial production data if they are to accurately estimate long term production; initial production data is frequently the only data we have.

Variations on the basic learning curve have proliferated mainly because the loglinear model does not always provide a good fit or forecast for the data at hand. The next chapter explores a completely different class of models as an alternative method of predicting future aircraft build times; enter the ARIMA models.

3. Proposed ARMA Learning Curve Models

3-1. Introduction to ARMA Models

With the advent of widespread computer availability in organizations, the general and statistically based methods of time-series analysis know as Box-Jenkins or ARIMA processes have been developed and applied to forecasting (Makridakis, Wheelwright, and McGee, 1983). ARIMA, which is an abbreviation for autoregressive (AR) integrated (I) moving average (MA), describes a broad class of time-series models. Before we present a detailed discussion of the two basic ARIMA processes which are of interest in this study, we briefly define some of the terms used in the rest of this chapter and discuss why these processes are being explored.

The following definitions are based on discussions found in Makridakis, Wheelwright, and McGee (1988), Box and Jenkins (1976), and Mongomery, Johnson, and Gardiner (1990). A process is stationary if its statistical properties are independent of the particular time during which it is observed. Specifically, if the process underlying a time series is based on a constant mean and variance, then the time series is said to have a stationary mean and variance. If a process is stationary, the Box and Jenkins model used is generally an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$. As discussed in subsequent sections of this chapter.

A process is nonstationary if its statistical properties (especially its mean and variance) depend on the time during which it is observed. In other words, if the process underlying the time series does not have a constant mean and/or a constant variance, it is nonstationary. If a processes is non-stationary, the Box and Jenkins model generally used
is an $\operatorname{ARIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ with the differencing term, d , not equal to zero. In this thesis, attention will be focused on stationary models.

An ARIMA model is parsimonious if it uses as few parameters as possible in the model/data fitting process. For example, if we assume that an AR(1) process, which has one parameter, and an $\mathrm{AR}(2)$ process, which has two parameters, both provide reasonable fits to a particular data series, the concept of parsimony would have us choose the AR(1) model over the AR(2).

An autoregressive process is a form of regression where, instead of the dependent variable (the item to be forecast) being related to independent variables, it is related to past values of itself at varying time lags. Thus, an autoregressive model would express the observation at time t as a function of previous values of that time series. This matches up well with the logic behind learning curves since, if learning is indeed occurring, one would expect that the amount of resources required to produce a given unit would depend, or be related to, the amount of resources required to produce previous units.

A moving average process is a process in which the value of the time series at time t is influenced by a current error term and (possibly) weighted error terms from the past. The error terms of which we speak, are independent and identically distributed random noises or shocks that are generally uncontrollable or unpredictable.

Autoregressive/moving average (ARMA) schemes can be autoregressive (AR) in form, moving average (MA) in form, or a combination of the two (ARMA). In an ARMA model, the series to be forecast is expressed as a function of both previous values of the series (autoregressive terms) and previous random errors (the moving average terms).

In the next three sections I will discuss, in somewhat more detail, the nature and structure of three ARIMA processes, $\operatorname{AR}(p), \operatorname{MA}(q)$, and $\operatorname{ARMA}(p, q)$, (more formally known as $\operatorname{ARIMA}(p, 0,0), \operatorname{ARIMA}(0,0, q)$, and $\operatorname{ARIMA}(p, 0, q)$ processes respectively) which are of interest in this study. We'll also consider, the suitability of each model to simulate learning.

3-2. Autoregressive Processes

As stated above, autoregressive (AR) processes are a form of regression where the dependent variable is related to past values of itself at varying time lags. This might seem contrary to regression methods which attempt to forecast variations in some variable of interest, the dependent variable, on the basis of variations in a number of other factors, the independent variables. The general form of AR processes may be developed by starting with the basic causal or explanatory regression equation which has the form

$$
\begin{equation*}
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2} \ldots+b_{k} X_{k}+e \tag{3-1}
\end{equation*}
$$

where
Y is the dependent variable,
$X_{1}, X_{2}, \ldots, X_{k}$, are the independent variables,
$b_{0}, b_{1}, b_{2}, \ldots, b_{k}$ are the linear regression coefficients, and
e is an error term which is assumed to have

$$
\mathrm{E}[e]=0 \text { and } \operatorname{Var}[e]=\sigma^{2}
$$

The independent variables, $X_{1}, X_{2}, \ldots, X_{k}$, can represent any factors such as the number of parts to be installed, the quality of parts, the type of aircraft to be built, while the dependent variable, Y , could represent the time it took to build an aircraft.

Some principles of regression can be applied to time series methods. We could, for example, allow the independent variable to represent previous values of Y , the time required to build the aircraft at previous times in the past, and suggest that the time it takes to build the $\mathrm{t}^{\text {th }}$ aircraft depends not on the number of parts to be installed or on the quality of the parts, but on the time it took to build the $t-1^{\text {st }}$, and even $t-2^{\text {nd }}$ and $t-3^{\text {rd }}$, etc., aircraft in the past. We could define the dependent variable as

$$
\begin{equation*}
Y_{t}=\mu^{\prime}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-3}+\phi_{4} Y_{t-4}+\ldots .+\phi_{k} Y_{t-k}+e_{t} \tag{3-2}
\end{equation*}
$$

where
Y_{t} is the value of the dependent variable at time t,
$Y_{t-1}, Y_{t-2}, Y_{t-3}, Y_{t-4}, \ldots, Y_{t-k}$, are the 'independent' variables, which represent the prior values of the dependent variable,
$\mu^{\prime}, \phi_{1}, \phi_{2}, \ldots, \phi_{k}$ are the linear regression coefficients, and
e_{t} is an error term which is assumed to have

$$
\mathrm{E}\left[e_{t}\right]=0 \text { and } \operatorname{Var}\left[e_{t}\right]=\sigma^{2} .
$$

This is called the basic autoregressive (AR) form since the independent factors are simply time-lagged values of the dependent variable.

One of the $\operatorname{AR}(\mathrm{p})$ models which I explore as part of this thesis is the $\operatorname{AR}(1)$ model. The model takes the following form

$$
\begin{equation*}
Y_{t}=\mu^{\prime}+\phi_{I} Y_{t-1}+e_{t} \tag{3-3}
\end{equation*}
$$

where the the variables are the same as defined in equation (3-2). Before plotting the $\operatorname{AR}(1)$ model given in equation (3-3), we'll define the difference between unconditional and conditional means.

If ϕ_{1} is chosen between -1 and +1 , the $\mathrm{AR}(1)$ process is stationary with mean

$$
\begin{equation*}
E(Y)=\mu=\frac{\mu^{\prime}}{1-\phi_{1}} . \tag{3-4}
\end{equation*}
$$

Since we make no assumption about previous values observed, this is referred to as the unconditional mean. The unconditional mean differs from the conditional mean in that the conditional mean takes previous values of the time series into account. For example, suppose for an $A R(1)$ process, the value observed at time $t-1$ is y_{t-1}. Then the expected value at time t given this information is given by:

$$
\begin{align*}
E\left[Y_{t} \mid Y_{t-1}=y_{t-1}\right] & = \\
& =E\left(\mu^{\prime}+\phi_{1} Y_{t-1}+\varepsilon_{t} \mid Y_{t-1}=y_{t-1}\right) \\
& =\mu^{\prime}+\phi_{1} y_{t-1}+E\left(\varepsilon_{t}\right) \\
& =\mu^{\prime}+\phi_{1} y_{t-1} \tag{3-5}
\end{align*}
$$

where we assume that $\mathrm{E}\left(\varepsilon_{\mathrm{t}}\right)=0$. The quantity in equation (3-5) is not necessarily equal to
μ. In particular,

$$
E\left(Y_{2} \mid Y_{1}=y_{1}\right)=\mu^{\prime}+\phi_{1} y
$$

and similarly

$$
\begin{aligned}
E\left(Y_{3} \mid Y_{1}=y_{1}\right) & =E\left(\mu^{\prime}+\phi_{1} Y_{2}+\varepsilon_{2}\right) \\
& =\mu^{\prime}+\phi_{1} E\left(Y_{2} \mid Y_{1}=y_{1}\right)+E\left(\varepsilon_{2}\right) \\
& =\mu^{\prime}+\mu^{\prime} \phi_{1}+\phi_{1}^{2} y_{1} \\
& =\mu^{\prime}\left(1+\phi_{1}\right)+\phi_{1}^{2} y_{1}
\end{aligned}
$$

In general, for $t \geq 2$,

$$
\begin{equation*}
E\left(Y_{t} \mid Y_{1}=y_{1}\right)=\mu^{\prime}\left(1+\phi_{1}+\phi_{1}^{2}+\ldots+\phi_{1}^{t-2}\right)+\phi_{1}^{t-1} y_{1} \tag{3-6}
\end{equation*}
$$

This illustrates the fact that the initial conditions (the value observed at time 1) has decreasing effect on the long run provided that $-1 \leq \phi_{1} \leq+1$. In fact, in the long run,

$$
\begin{align*}
\lim _{t \rightarrow \infty} E\left(Y_{t} \mid Y_{1}=y\right)= & \mu \\
& =\lim _{t \rightarrow \infty}\left[\mu^{\prime} \sum_{i=1}^{t-2} \phi_{1}^{i}+\phi_{1}^{t-1} y_{1}\right] \\
& =\frac{\mu^{\prime}}{1-\phi_{1}} \tag{3-7}
\end{align*}
$$

provided $-1 \leq \phi 1 \leq+1$. The quantity given in equation (3-7) is the unconditional mean.
To see why the the unconditional mean is useful in simulating the effects of learning, suppose $\mu^{\prime}=25, \phi_{1}=0.75$ so that $\mu=\frac{\mu^{\prime}}{1-\phi_{1}}=100$. We can then generate simulated values of Y_{t} for $t=2, \ldots, 50$ assuming that $Y_{1}=1000$ and the e_{t} 's are uniformly distributed with $E\left(e_{t}\right)=0$ and $\operatorname{Var}\left(e_{t}\right)=25$. The plot which results from using the above assumed values in equation (3-3) (the equation forAR(1)) is given in Figure (3-1)

Figure 3-1 Illustration of the AR(1) Model

Figure 3-2 Illustration of the Log-Linear Learning Curve Model

In Figure 3-2, we have a plot of a typical learning curve for comparison. Note the similarity between the $\mathrm{AR}(1)$ curve and the typical learning curve. The main difference between the two curves is that in the long run, the $\mathrm{AR}(1)$ model approaches

$$
E(Y)=\mu=\frac{\mu^{\prime}}{1-\phi_{1}}=100
$$

while the learning curve continues to approach zero. As a result,the AR(p) model may actually prove to be more useful for predicting learning types of data.

3-3. Moving Average Processes

In a manner analogous to writing the basic regression equation (3-1) in terms of past values of the dependent variable to define the AR process given by equation (3-2), we define an MA process by writing the basic regression equation in terms of past error terms; in other words, we let the past error terms be the independent variables. The general equation for an MA model is

$$
\begin{equation*}
Y_{t}=\mu+\theta_{1} e_{t-1}+\theta_{2} e_{t-2}+\theta_{3} e_{t-3}+\ldots+\theta_{k} e_{t-k}+e_{t} \tag{3-8}
\end{equation*}
$$

where
Y_{t} is the value of the dependent variable at time t ,
$e_{t}, e_{t-1}, e_{t-2}, e_{t-3}, \ldots, e_{t-k}$, are the 'independent' variables, which represent the time-lagged error terms. These error terms are defined as $e_{t}=X_{t}-Y_{t}$, $e_{t-1}=X_{t-1}-Y_{t-1}, e_{t-2}=X_{t-2}-Y_{t-2}$, and so on. X is the actual value while Y is the forecasted value.
$\mu, \theta_{I}, \theta_{2}, \ldots, \theta_{k}$ are the linear regression coefficients.
One of the MA(q) models which we explore as part of this thesis is the MA(1) model. The model takes the following form

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{t}}=\mu+\mathrm{e}_{\mathrm{t}}-\theta_{1} \mathrm{e}_{\mathrm{t}-1} . \tag{3-9}
\end{equation*}
$$

To assess the usefulness of the MA(1) models for forecasting learning data we fix $\mathrm{Y}_{1}=$ $1000, \theta_{1}=-0.75$, and assume the errors are $\sim \mathrm{N}(0,25)$; specifically,

$$
\mathrm{E}\left[e_{t}\right]=0 \text { and } \operatorname{Var}\left[e_{t}\right]=\sigma^{2}=25
$$

Since we wish to fix $Y_{1}=1000$, this implies

$$
1000=100+\mathrm{e}_{1}-\theta_{1} \mathrm{e}_{0}
$$

If we assume $\mathrm{e}_{0}=0$, then we should have $\mathrm{e}_{1}=900$. After time 1 , we go on to compute ten more values of Y_{t} using equation (3-10).

$$
\begin{equation*}
Y_{t}=100+e_{t}-\theta_{1} e_{t-1} \tag{3-10}
\end{equation*}
$$

The plot of the resulting data is given in Figure (3-3).
Figure 3-3 Illustration of MA(1) Model

Observe that Y_{1}, the cost of unit 1 , is 1000 (by design). The value of Y_{2} is affected by the large error at unit 1. By unit 3, the effect of unit one on the cost seems to be almost completely gone. Since the effect of unit one dissipates so quickly, we feel that MA models will not be useful for forecasting learning type data.

3-4. AutoRegressive/Moving Average Processes

As stated in Section 1, ARMA schemes can be autoregressive (AR) in form, moving average (MA) in form, or the two can be effectively coupled to form a very general and useful class of time-series models called autoregressive/moving average (ARMA) processes. In the ARMA model, the series to be forecast is expressed as a
function of both the previous values of the series (the autoregressive terms) and the previous random errors (the moving average terms). The basic elements of AR and MA processes can be combined to produce a large variety of models. As part of this study we explore the ARMA $(1,1)$ model which has the following form

Here, the dependent variable, Y_{t}, depends on one previous value of the dependent variable, $\mathrm{Y}_{\mathrm{t}-1}$, one previous error term, $\mathrm{e}_{\mathrm{t}-1}$, and a constant which adjusts the mean of the process. Under specific conditions on the $\theta^{\prime} s$, ARMA models are considered stationary in both the mean and the variance. A plot of a simulated ARMA(1,1) process is shown below.

Figure 3-4 Illustration of the ARIMA(1,0,1) Model

This particular model is calculated using ϕ_{1} and θ_{1} equal to $.75, \mu^{\prime}$ equal to 25 , and Y_{1} equal to 1000 . The initial value for error, ε_{1}, was taken as zero since the first unit cost was given with certainty. The remaining errors have an $N(0,25)$ distribution. Note how the curve levels out after about twenty units to a mean of approximately 100 ; this is similar
to the curve calculated for the $\mathrm{AR}(1)$ model in Section 3-2. ARMA models appear to be well suited to forecasting learning type data.

3-5. ARIMA Models for Learning

As discussed earlier, a major criticism of the basic log-linear learning curve is that it does not completely level out in the long run; it continues to approach zero through successive unit builds. We find this pleasing, 'though unrealistic, because it implies that if we build enough aircraft, it eventually will take no time at all to build them!! In Chapter 2, this problem was addressed through the use of modified learning curve models such as the Stanford B Model and Pegel's Exponential Function which both provided curves that level out in the long run. In this chapter, however, we have presented examples of ARMA models that exhibit a similar pattern of a dramatic initial decline followed by a leveling out to a long-run mean. This suggests that stationary ARMA models might be useful for modeling the build history of an aircraft manufacturing process.

In the next chapter, we attempt to fit ARMA models to real and simulated sets of learning data, and compare the results with those of fitting standard learning curve models to the same data. In the next section, however, we first exploit a commercial forecasting software package, FORECAST PRO, to fit various ARMA models to the first 50 observations from a simulated log-linear learning curve. The purpose of this exercise is simply to assess how well stationary ARMA models can represent traditional log-linear learning curves, especially in the short-run. (In the long-run, we know that a stationary ARMA model converges to its unconditional mean while the log-linear learning curve converges to zero.)

3-6. Fitting ARMA Models to a Log-Linear Learning Curve

To represent a log-linear learning curve, we simulate the first 50 values from a model of the form

$$
\begin{equation*}
Y=a X^{b}+e \tag{3-12}
\end{equation*}
$$

where (as presented in Chapter 2)
Y is the number of hours, or 'cost,' of producing the $X^{\text {th }}$ unit,
X is the unit number,
a is the 'cost' of producing the first unit,
b is a constant which determines the learning rate, and
e is error uniformly distributed (1% above and 1% below the expected value of Y for each X.

Arbitrarily, and for purposes of illustration, we let the parameter, a, the cost of producing the first unit, be equal to 1000 . We additionally assume the learning rate, ρ, to equal eighty percent (0.8), and then calculate the value of b using equation (2-3) as follows:

$$
\begin{equation*}
b=\ln (\rho) / \ln (2)=\ln (0.8) / \ln (2)=-.322 . \tag{2-3}
\end{equation*}
$$

For our value of ρ, b turns out to equal -0.322 . The final model which we use to generate data for units 1 through 50, takes on the following form:

$$
\begin{equation*}
Y=1000 X^{-0.322}+\mathrm{e} \tag{3-13}
\end{equation*}
$$

To generate the data, we start by using the spreadsheet software package, EXCEL 5.0, by Microsoft Corporation, to generate the values of Y for units 1 through 50 by using equation (3-13). Since the equation used to calculate the data has a random component to it (error is uniformly distributed about the mean) the simulated data does also. For this reason, we can't just take one sample data set, analyze it and draw conclusions; we need
additional data sets to analyze. For our purposes, we generate eight sets of simulated data. A sample of this data is given in Table 3-1.

On the other hand, in hindsight, the variance of the random error terms that we have simulated is so small that we essentially are fitting models to the first 50 values expected from the log-linear model. Thus, our results provide a measure of how well the fitted models reproduce the expected behavior of a log-linear learning curve.

Table 3-1 Fifty Unit EXCEL-Simulated Log-Linear Data Set

1	1009.96	11	4 5001	,	37224	31	340.78	4	3220
2	80.81	12	46	22	34671	32	337.70	42	30684
3	$766 \times$	13	4760	2	3067	33	37.50	43	835
4	6279	14	387.03	2	320.10	34	324.5	4	20.31
5	577.24	15	37.43	2	30080	35	31211	45	278.97
6	58641	16	421.72	26	3259	36	30	46	2680
7	530.17	17	377.53	27	34374	37	30834	4	2066
8	464.78	18	37	28	3364	38	281.6	48	36.5
9	521	19	38215	29	321.94	39	310.45	49	277.8
0	513,	20	416	30	3504	40	33218	50	233

As a preliminary investigation into the potential of candidate models to fit and forecast log-linear types of data, we use FORECAST-PRO to fit selected ARMA(p,q) models to each of the eight data sets. The models we fit are $\operatorname{AR}(1), \operatorname{AR}(2), \operatorname{AR}(3)$, $\operatorname{AR}(4), \operatorname{MA}(1), \operatorname{MA}(2), \operatorname{MA}(3), \operatorname{MA}(4), \operatorname{ARMA}(1,1), \operatorname{ARMA}(1,2), \operatorname{ARMA}(2,1)$, and ARMA(2,2). Since we are assuming that the process underlying the actual aircraft build time-series is stationary (which, however, is not strictly true for the log-linear data), we choose not to fit any ARIMA $(\mathrm{p}, \mathrm{d}, \mathrm{qld} \neq 0)$ to the simulated data. While using Forecast-

Pro, curiosity also dictates that we run its Expert Data Exploration routine, and also fit various Exponential Smoothing models to the data.

Using Forecast-Pro, we fit the selected models to the simulated log-linear data. The output standard diagnostics (including R^{2}, Adjusted R^{2}, Durbin-Watson and LjungBox test statistcis, $\mathrm{MAPE}^{1}, \mathrm{MAD}^{2}, \mathrm{BIC}^{3}, \mathrm{RMSE}^{4}$, and the Forecast Errors) from Forecast-Pro are given in Appendix A. In addition to the standard diagnostics, Appendix A contains plots of the data (the models for only one of the eight repetitions is shown), including the fitted curves, forecasts with confidence intervals, and model parameter estimations along with their associated Standard Errors, t-Statistics, and Significance levels. This data is consolidated into one table, Table A-1. The data is reduced to essential measures of model appropriateness (averaged across all eight repetitions) which is included, below, in Table 3-2. Tables similar to Table 3-2 are also given in Appendix A for each of the eight repetitions; they are given as Tables A-2 through A-9.

[^0]Table 3-2 Model Measures of Appropriateness Summary

Simulation Model	BSAR	ADIRSA	MAPE:	MAD	RMSE
Simple Exp Smoothing					
Simple Exp. Smoothing SMA(1)	\%	088088	0.0639	2\% ${ }^{\text {2/48509 }}$	
	¢0844.	0.8tey	0ut510\%	27.9463	459000/
$\operatorname{AR}(1)$	08976	08088	00639	27.3638	4 s 65 s
AR(2)	09126.	0.9105	00621.	26.2300\%	30.8150
AR(3)	0.9243	0.9211	0.0619	25.4559	37.3200
AR(4)	0.9350	0.9308	0.0607	24.8680	34.7200
MA(1)		๑107\%	94s	S444250	763s\%
MA(2)	0861.	OSSeo	O1019	309700\%	510089
MA(3)	0902.7.	0.8986	0.0821	324¢8\%	42.4975
MA(4)	09223	09173	04860	29,8850	37.5200\%
ARMA(1,1)	0.9056	0.9047	00641	27 1563	42.1275
ARMA(2,1)	09161	0.9125	00626	26014.	38773893
ARMA(1,2)	0.9381	0.9224	0.0615	25.2964	36.6213
ARMA $(2,2)$	0.9261	0.9217	0.0610	24.9766	36.1988
AR Average MA Average ARMA Average	09174	099153	0.0621	25.9794	39.2050
	-84\%\%	08456	912699.	39.8872	5.4882\%
	0.9217	0.9153	00623	25.8602	38.4216
$\begin{gathered} \text { sum } \\ \text { average } \end{gathered}$	12.4763	12.4352	1.2213	419.5383	610.2325
	0.8912	0.8882	0.0872	29.9670	43.5880

Observing the data contained in Table 3-2, we note the following:
(1) Starting at the top of Table 3-2, we see that Simple Exponential Smoothing, and SMA $(1)^{5}$, turn in a relatively poor performance. The statistics for simple exponential smoothing are below average ${ }^{6}$ in the categories of RSQR, and RMSE, but are above

[^1]average in the categories of MAPE, ADJRSQ, and MAD. Four out of five of the statistics for SMA(1) are below average; the only above average statistic is in the category of MAD.
(2) The AR models seem to do quite well. $\mathrm{AR}(1)$ and $\mathrm{AR}(2)$ have above average statistics in all but one category; $\operatorname{AR}(1)$ is below average in $\operatorname{RMSE} . \operatorname{AR}(3)$ and $\operatorname{AR}(4)$ do remarkably well in that their statistics are among the best four statistics in every single category.
(3) As expected, the MA models have generally the poorest results in the investigation. $\mathrm{MA}(1)$ and $\mathrm{MA}(2)$ have below average scores in every single category. The MA(3) and MA(4) models do better; each of them are above average in four of the five categories; MA(3) is below average in the MAD category while MA(4) is below average in the MAPE category.
(4) Like the AR models, all of the ARMA models are above average in all categories; ARMA $(1,2)$ and ARMA(2,2) have statistics which are among the best four in every single category.

The overall results seem to suggest that the Simple Exponential Smoothing model and the Simple Moving Average model do a mediocre job of fitting the simulated loglinear learning curve data. Consider the AR, MA, and ARMA averages given at the bottom of the table; they summarize the over-all findings quite well. The AR models, overall, are better than average in all categories, are best in the category of MAPE, and are tied for best with the ARMA models in the category of ADJRSQ. Overall, the MA models turn in a below average statistic in every single category. Finally, overall, the

ARMA models do very well in fitting the data. They had the best average statistic in all categories but one; they were simply above average in the category of MAPE.

What we've established is that the AR and ARMA models generally seem well suited to fitting the log-linear data despite the fact that the true log-linear model has a nonstationary mean. Observation of the statistics reveals, however, that the statistics differ very little from one model to another within each category. The fact that one is better than another is just a puff of air. The only serious difference between statistics from one model to another occurs in the MA(1) and MA(2) models which seem to have much worse statistics than the other models.

Now that this analysis is complete, we move on to a forum which provides equal treatment to all potential models ${ }^{7}$ including the modified learning curve models discussed in Chapter 2. This is the topic on which we concentrate our energy in Chapter 4.

[^2]
4. A Comprehensive Model Comparison

4-1. Introduction

To be useful in program management, a model must be accurate. This raises a very important question, "How do we pick a model from among the models we've been considering thus far, that will provide reasonably accurate predictions of future build times?"

To help focus our sights, our next effort is organized into three main stages which are discussed in detail in Sections 4-2, 4-3, and 4-4, respectively. In each stage we fit the candidate models to a particular set of data, using the spreadsheet program EXCEL to estimate the various model parameters. The purpose of using EXCEL is to put each model into an environment where it may be compared with the other potential models on an equal basis. (Forecast Pro is good for helping choose some promising ARIMA models but since it doesn't have a facility to fit learning curve models, it really can't be used to complete the analysis; there's just no common footing.)

The first stage, discussed in Section 4-2, uses a simulated log-linear data base to test the potential models' ability to fit a log-linear curve. The second stage, discussed in Section 4-3, uses data obtained from the F-102 production program to

1. test the potential models' ability to fit the complete data set, and to
2. test, using a hold-out set ${ }^{1}$, the potential models' ability to forecast future build times.
[^3]Finally, the third phase, discussed in Section 4-4, sets out to forecast future build times in the $\mathrm{C}-17$ program.

4-2. Fitting Simulated Log-Linear Data

In this part of the investigation, we take a closer look at each of the most promising Log-Linear and ARMA models identified in Chapters 2 and 3. Each of the models is used to fit a data base consisting of a 50-unit sequence of simulated log-linear data.

First, EXCEL is used to generate fifty observations of log linear data. The equation used is

$$
\begin{equation*}
Y=a X^{b}+\text { error } \tag{4-1}
\end{equation*}
$$

where as in Chapter 3,
a is the first unit cost and is taken to be 1000 ,

X , is the unit number, and ranges from 1 to 50 ,
b is the learning rate. and is taken to be $-0.3219(80 \%$ curve $)$, and
the error is uniformly distributed (one percent above and one percent below) about the expected value of Y for each unit X .

Once the data is generated, and the initial individual models are constructed, EXCEL's Solver Function is used to find the parameter values that minimize the Sum of Squared Errors (SSE). Each error is the residual computed by calculating the difference
forecasted values can then be compared to the hold out set (the remaining observations from the given data set) to determine the fidelity of the fitted model.
between the fitted values and the actual values ${ }^{2}$. We deem the model with the smallest SSE to be the one which provides the best fit to the data.

The models and their respective equations are given in Table B-1 in Appendix B. Also included in this table are the parameter estimates which result from minimizing SSE. Note that asterisked parameters are the parameters which are adjustable during the optimization process. This table also includes the minimized values obtained for SSE.

The results are summarized below in Table 4-1 (This table is the same as Table B2 in Appendix B.). This table is broken into two groups of model data. The first group summarizes the learning-curve models and the second group summarizes the ARIMA models. Note, also, that this table displays the rank of each model's SSE across the two groups. On the basis of SSE alone, the best overall model for curve fitting seems to be the basic Log-Linear Learning Curve model which comes in with a low SSE total of 763.7; this seems like an intuitive result since this is the same model which was used to produce the simulated data in the first place. The best ARIMA model for fitting this curve seems to be the AR(4) Model which comes in with an SSE of 1438.8. From this table, we also see that, based once again on the magnitude of SSE, the worst models for fitting seem to be the S-Curve, Pegel, and MA(1) models.

The SSE of the MA(1) and Pegel models turn out to be one and two orders of magnitude larger than the average SSE, which suggests they might be inferior to the other models. The poor performance of these models in fitting the Log-Linear Data base lead us to believe that they may also do poorly at forecasting this type of data. The Pegel model

[^4]is similar to the Forsythe model in that it contains a minimum cost term. Since the Forsythe model performed so much better than the Pegel in this fit test, we chose to keep it and to discard the Pegel model from futher consideration in this chapter. The results also confirm our suspicions from Chapter 3 regarding the MA(1) model; we recall that the MA(1) model did not appear to be well suited to modeling learning curves since rather than showing an extended downward trend similar to learning, the curve had reached its mean within just two time periods. Retaining the S-Curve for further study is questionable also since it not only performed poorly in the fit test, but also suffers from high complexity. For the reasons cited above, we drop these three models (MA(1), Pegel, and S -Curve) from further consideration in this thesis.

Table 4-1 Summary of Log-Linear Fitting

Model	SSE	Rank
Log-Linear	763.7	1
Forsythe	2256.4	4
Stanford-B	11576.1	11
Pegel	242678.9	13
S-Curve	43241.7	12
MA(1)	2665105.0	14
AR(1)	9685.7	10
AR(2)	4851.1	7
AR(3)	1756.4	3
AR(4)	1438.8	2
ARMA(1,1)	5856.5	8
ARMA(1,2)	6274.5	9
ARMA(2,1)	3714.9	5
ARMA(2,2)	4468.4	6

Plots which include the original data as well as the fitted curve for each model. are contained in Appendix B.

4-3. Fitting Historical F-102 Data

The data set for this section ${ }^{3}$ was obtained from the document entitled Cost
Functions for Airframe Production Programs (Womer, 1982) which draws its data from the F-102 Program Cost History (1965). This report says very little about the data. It tells us that the F102 program was comprised of 1000 aircraft which were constructed during the years 1953 through 1958. Further, it tells us that of these 1000 aircraft, 889 are F102A interceptors and 111 are TF102 trainers. Unfortunately, we are not told which aircraft are which within the data base, and can therefore not adjust for any irregularities this might produce in the data.

The variable of primary interest in the data base is the direct labor hours for each airframe; this is the column in Table E-1 (Appendix E) entitled TOTHRS. A portion of this table is shown in Table 4-2 for the reader's convenience.

Table 4-2 A Sample of the Historical F-102 Data Base

OBS	PLN	DelaySeq	TOTHRS	Lot	Contract\#	DM
1	1	1	402475	1	5942	1
2	2	2	375849	1	5942	3
3	3	3	278963	2	5942	7
4	4	4	271223	2	5942	7
5	5	5	262498	2	5942	8
6	6	6	258078	2	5942	9
7	7	7	243726	2	5942	10
8	8	8	232766	2	5942	10
9	9	9	220833	2	5942	11
10	10	10	218827	2	5942	12
11	11	11	322447	3	5942	15
12	12	12	306736	3	5942	16
13	13	13	290470	3	5942	17
14	14	14	282951	3	5942	18
15	15	15	233125	4	5942	21

[^5]The first question which arises is, "Against what should TOTHRS be plotted?" This is an important question because we note that there are two columns in the data base with headings that suggest they would be good candidates for the abscissa or unit number. The first possible column is labeled OBS; the second possible column is labeled PLN. Since we have no written description of the data in these columns, we make the following assumptions. We assume OBS is an indication of the relative position of an aircraft with respect to the end of the manufacturing process. For example, the first aircraft off the assembly line would be OBS 1 , the second would be OBS 2 , etc. We assume that the OBS number has nothing whatsoever to do with the position, in the manufacturing line, in which the plane started. We next assume PLN is an indication of the relative position of an aircraft with respect to the start of the manufacturing process. For example, the first aircraft started on the manufacturing line would be PLN 1, the second would be PLN 2, etc. We assume that the PLN number has nothing to do with the position in which the aircraft finishes the manufacturing process. For example, PLN 1 might, actually, not be completed until after PLN 2. So we could have a situation where PLN 1 could be the same aircraft as OBS $2!$ How do we decide which column of data to use?

To help us decide, we use EXCEL to sort the data first by OBS number and then by PLN number. We generate plots for each of these reordered data sets and present these in Figures 4-1 and 4-2. The most obvious problem seen in the figures is the large jump and then decline in the TOTHRS data at about PLN (and OBS) 11-15. Since it occurs in the both the plots of TOTHRS vs PLN and TOTHRS vs OBS, we can not choose which column to use based on this characteristic. Looking again, we also see
some small perturbations (spikes) in the dataplots. From these we choose to use TOTHRS vs PLN since the perturbations are much smaller in this reordered series.

Figure 4-1 Plot of Data -- TOTHRS vs OBS

Figure 4-2 Plot of Data -- TOTHRS vs PLN

Adjusting for the 'jump' in the data which appears in both figures is just a little difficult since we have no documentation and can't be sure of the cause for this jump; it could be a major modification in aircraft design which required new learning. We could either ignore the jump or we could make some kind of adjustment for it so the models
might deal better with it. We seem to have two options for adjustment: we could either start at PLN number one and skip ${ }^{4}$ Lot 3 (see column 5 in Table 4-2) Appendix D or column or we could just skip the first 10 observations (PLNs) and start the data at PLN
11. We arbitrarily decide to use the data starting at PLN 11. The resulting plot is shown in Figure 4-3.

Figure 4-3 F-102 Data (PLN vs TOTHRS) Starting at PLN 11

Once the data is adjusted, as described above, we are ready to start exercising the models. First thing we do is use EXCEL the same way we did in Section 2, to see how well each of the potential models can fit the F-102 data. As before, EXCEL's Solver Function is used to find the model parameters that minimize the Sum of Squared Errors (SSE). The models and their respective equations are given in Appendix C in Table C-1. Also included in this table are the parameter estimates that result from the use of the solver. Asterisked parameters are the parameters which are adjustable during the

[^6]optimization process. The table also includes the minimum values for SSE. We again use SSE as the measure of performance to compare the models against one another.

The results of using the models to fit the F-102 data are summarized in Table 4-3 (This table is the same as Table C-2 in Appendix C.). Like Table 4-1, Table 4-3 is broken into two groups of model data. The first group summarizes the learning-curve models and the second group summarizes the ARIMA models. Note, also, that the table contains the ranks for each model with respect to SSE across the two groups. Plots which include the original data as well as the fitted curve for each model. are contained in Appendix C.

Table 4-3 Summary of F-102 Curve Fitting Investigation

Model	SSE	Rank
Log-Linear	$5.503 \mathrm{E}+10$	10
Forsythe	$5.503 \mathrm{E}+10$	10
Stanford-B	$4.540 \mathrm{E}+10$	9
AR(1)	$2.722 \mathrm{E}+10$	8
AR(2)	$4.930 \mathrm{E}+09$	2
AR(3)	$2.637 \mathrm{E}+10$	7
AR(4)	$4.877 \mathrm{E}+09$	1
ARMA(1,1)	$2.089 \mathrm{E}+10$	6
ARMA(1,2)	$2.079 \mathrm{E}+10$	4
ARMA(2,1)	$2.087 \mathrm{E}+10$	5
ARMA(2,2)	$2.079 \mathrm{E}+10$	3

The best over-all model for curve-fitting appears to be the $\operatorname{AR}(4)$ model which comes in with a low SSE total of 4.877 e 9 . The best learning curve model for fitting this curve is the Stanford-B Model which comes in with an SSE of 4.54e10. Note that the SSE values, and hence the ranks, for the Standard Log-Linear and the Forsythe models are the same. This occurs because in this case, the solver estimated the parameter $\mathrm{C}_{\text {min }}$ to be zero in the Forsythe model $\left(\mathrm{Y}=\mathrm{aX}^{\mathrm{b}}+\mathrm{C}_{\text {min }}\right)$; when this occurs, the Forsythe model is the same
as the Standard Log-Linear model $\left(\mathrm{Y}=\mathrm{aX}^{\mathrm{b}}\right)$. For purposes of comparison, plots of both fitted models as well as the F-102 data are shown in Figure 4-4. Note that although the plots below show the data and fitted model up through the 200th observation, the fit was actually performed using the observations up through 500 .

Figure 4-4 Forsythe Model vs. Log-Linear Model in F-102 Fit

What have we done here? All we've done is use our potential models to see which can most closely follow the input data. In Section 4-2, we checked the models against a simulated log-linear data set. In Section 4-3, we checked the models against the F-102 data set. These experiments are good for giving us an idea which models might give a reasonable fit to this type of data but the only way to really find out which ones work and which ones don't work in forecasting, is to actually forecast with them!!

4-4. Fit/Forecasting Historical F-102 Data

In this section, we use the F-102 data to test the ability of the potential models to forecast future build times. To accomplish this we use each of the models to fit the first twenty observations in the data set ${ }^{5}$. This is done in a manner similar to that used in Sections 4-2 and 4-3; we use EXCEL's solver to minimize the SSE by adjusting the

[^7]parameter values. The output of the solver includes not only the minimized SSE, but the parameter estimates for each of the models. We use these parameters to build the forecast models. Once the forecast models are built, we use each of them to forecast out to unit 500. Then two more SSE's are calculated based on the hold out set of 480 and the full series of 500, as measures of each model's forecasting fidelity.

An example plot which includes the original data as well as the fitted $\operatorname{AR}(2)$ model (best forecast) is shown in Figure 4-5. Although the AR(2) provided the best forecast, we can see that the fit still isn't very good. The plots for the remainder of the models' forecasts are contained in Figures D-1 through D-11 in Appendix D.

Figure 4-5 AR(2) Forecast of F-102 Data

The rank results of the forecasting are summarized in Table 4-4 (This table is the same as Table D-2.).

Table 4-4 Summary of the F-102 Fit/Forecast Investigation

Model	SSE (1st 20)	SSE (last 480)	Rank (1st 20)	Rank (last 480)
log-linear	$2.965 \mathrm{E}+09$	$6.175 \mathrm{E}+11$	10	4
Forsythe	$2.965 \mathrm{E}+09$	$6.175 \mathrm{E}+11$	10	4
Stanford-B	$2.814 \mathrm{E}+09$	$1.278 \mathrm{E}+10$	9	2
AR(1)	$2.452 \mathrm{E}+09$	$1.073 \mathrm{E}+12$	8	6
\#\#\% AR(2)	$2.350 \mathrm{E}+09$	$7.064 \mathrm{E}+09$	6	1
(\%) AR(3)	$2.257 \mathrm{E}+09$	$2.158 \mathrm{E}+12$	5	9
(AR(4)	$1.707 \mathrm{E}+09$	$3.892 \mathrm{E}+10$	4	3
ARMA(1,1)	$2.414 \mathrm{E}+09$	$1.034 \mathrm{E}+12$	7	5
ARMA(1,2):	$1.153 \mathrm{E}+09$	$1.293 \mathrm{E}+12$	3	7
\% ARMA(21)	8.848E+08	$3.319 \mathrm{E}+12$	2	10
¢ ARMA 2 2)	8.793E+08	$1.457 \mathrm{E}+12$	1	8

If we examine the table, we see that it not only includes the SSE for the first 20 observations (the 'fitting' set) and for the last 480 observations (the 'hold-out' set), it includes ranking data which gives first place to the model with the lowest SSE. We can think of the SSE for the 'First 20' as a measure the goodness of the model's fit and the SSE for the 'Last 480' as a measure of the goodness of the model's forecast. Note that the $\operatorname{ARMA}(2,2)$ has the lowest SSE for the first twenty observations but ended up with only the eighth lowest SSE for the last 480 observations. This indicates that although this model provided the closest fit on the first twenty, it did not provide the best forecast for the entire sequence. The best forecast is provided by $\operatorname{AR}(2)$ which came in as the sixth best fit for the first 20. A model which provides the best forecast doesn't necessarily provide the best fit. Once again, the SSE values, as well as the ranks for the Standard Log-Linear and Forsythe models are the same because $\mathrm{C}_{\text {min }}$ in the Forsythe model was estimated to be zero by EXCEL's solver.

4-5. Fit/Forecasting Notional C-17 Data

In this section we use notional C-17 data to further test the ability of the models to fit/forecast future aircraft build times. Since the actual C-17 data is proprietary, we rescaled it so it would not show the actual production capability of the contractor. The data we use in this section, therefore, is not actual C-17 data but notional data.

Since the number of hours seems to increase between units 1 and 3.5 , we start our test data set at observation 3.5. We are not sure why the hours increase within this range, but we can speculate that perhaps the early production units were used for some kind of testing which resulted in their completion taking longer than it normally might have. In order to give the models a slightly less confusing data set on which to work, we left out these observations and started, simply, at observation 3.5.

To test the ability of our potential models to forecast we proceed in a manner similar to that used in the previous section. We use each of the models to fit the first fifteen observations (observations 3.5 through 18) in the data set ${ }^{6}$. We then use EXCEL's solver to minimize the SSE by adjusting the parameter values. Once again, the output of the solver includes not only the minimized SSE, but the parameter estimates for each of the models. We use these parameters to build the forecast models. Once the forecast models are built, we use each of them to forecast build times for units 19 through 23. Finally, as before, two more SSE's are calculated based on the 'fitting. set' of 15 and the 'hold-out set' of 8 ; these are utilized as measures of each model's forecasting fidelity. The results of the forecasting are summarized in Table 4-5 (This table is the same as

[^8]Table F-2 in Appendix F.). Plots which include the original data as well as the fitted curve for each model. are contained in Appendix F.

Table 4-5 Summary of the Notional C-17 Fit/Forecast Investigation

Model	SSE (1st 15)	SSE (all 23)	SSE (last 8)	Rank (1st 15)	Rank (all 23)	Rank (8)
log.linear	870.7	1040.1	169.4	6	6	3
Forsythe.	291.1	386.5	95.4	2	2	2
Stanford-b	359.2	364.7	5.5	5	1	1
AR(1)	1266.9	1727.7	460.8	7	8	10
AR(2)	1340.4	1753.9	413.6	9	9	9
AR(3)	1405.5	1754.0	348.4	10	10	8
AR(4)	1302.1	1503.5	201.4	8	7	4
APMA(1,1)	89.9	398.1	308.2	1	3	7
ARMIA(1,2)	3699.0	10270.0	6571.0	11	11	11
ARMA 2,1)	329.9	572.3	242.3	4	5	6
ARMA(2,2)	302.9	524.1	221.2	3	4	5

Note that the table not only has the actual SSE's for the fit set, the hold-out set, and the entire set, it has corresponding columns of ranks for each model. From table 4-5, we see that based on the SSE values of the hold-out set, the first and second best forecasts were turned in by the Stanford-B and the Forsythe Models with SSEs of 5.5 and 95.4 respectively.

4-6. Summary

The results of this chapter's investigations is summarized in Table 4-6.
Table 4-6 Investigation Summary -- Ranks Based on SSE's

Investigations: Models/Ranks:	(Section 4-2) Fitting Log-LInear Data	(Section 4-3) Fiting F-102 Data	(Section 4-3) FiVForecast F-102 Data	(Section 44) FitForecast Notional C-17 Data
First Best	Log-Linear	AR(4)	AR(2)	Stanford-B
Second Eest	AR(4)	AR(2)	Stanford-B	Forsythe
	AR(3)	$\operatorname{ARMA}(2,2)$	AR(4)	Log-Linear
Fouth Best	Forsythe	ARMA(1,2)	Log/Lin and Forsythe	AR(4)

In Section 4-2, we investigated the ability of the candidate models to fit a simulated log-linear data set. The standard Log-Linear Learning Curve model provided the best fit to the data; this makes perfect sense since it was the standard Log-Linear Learning curve which produced the data in the first place! The second and third best fits were provided by the $\operatorname{AR}(4)$ and $\operatorname{AR}(3)$ models respectively; their SSE statistics were very nearly the same (1438.8 vs 1756.4) so if we had to chose a model to fit log-linear data based on this investigation, the concept of parsimony would probably have us choose AR(3).

In section 4-3, we investigated the ability of the candidate models to fit historical F-102 data. In the fit test, the models which provided the first and second best fits to the 500 observation data set were the $\mathrm{AR}(4)$ and $\operatorname{AR}(2)$ models respectively. Their SSE statistics were very close ($4.977 \mathrm{E}+09$ vs $4.930 \mathrm{E}+09$), so if we had to choose a model to fit the F-102 the concept of parsimony would have us choose the AR(2) model.

Also in section 4-3, we developed forecast models for the F-102 data by using hold-out sets; we used the first 20 observations to fit the forecast model and went on to test it against the 480 observation hold-out data set. Based on SSE values alone, the first and second best forecast models appear to be the AR(2) and Stanford-B models respectively. The SSE for the $\operatorname{AR}(2)$ was only about half as large as the SSE for the Stanford-B. In third place was the AR(4) model with an SSE about twice the value of the Stanford-B value. One interesting thing to note is that the model which provided the best fit to the first 20 observations did not provide the best forecast. The ARMA(2,2) model provided the best fit to the first 20 observations but came in with the 8th best forecast.

In section 4-4, we developed forecast models for the notional C-17 data by using hold-out sets. The fit set consisted of the first 15 observations while the hold out set consisted of the last 8 observations. The first, second, and third best forecasts seem to be given by the Stanford-B, the Forsythe, and the Log-Linear Learning Curve models respectively. Once again, the models which provide the best forecasts did not necessarily provide the best fits. The Stanford-B, the Forsythe, and the Log-Linear Learning Curve models provided the 5th, 2nd, and 6th best fits, respectively.

The results are somewhat inconclusive in that the study does not identify any one model as always being the best fitting or forecasting tool for all data sets. It does, however, provide an important general observation that ARMA models are a promising alternative to the standard log-linear learning curve approach which is widely in use today; they are comparatively simple to use, intuitive in nature and seem to provide a good forecast based on a small amount of data.

5. Simulating Future Performance

5-1. Problem Statement

The purpose of this thesis up to this point has been to investigate existing learning curve models and to examine alternative models which, based on initial production data, might better predict the amount of time future aircraft builds will take. One of the things we have addressed only briefly, if at all, has been the uncertainty in fit of the models under study. In the C-17 Factory Simulation Model, predictions of future performance were made by treating the fitted regression as if it provided a perfect forecast of the mean time required to complete a task in the future. Once this relationship was determined, random errors were generated about the fitted curve to simulate how actual performance might vary in the future. In this case, the simulation team felt they could adequately predict future performance by ignoring the uncertainty of the fitted regression.

The goal of this chapter is to explore various methods for addressing the following questions. Given a learning curve model, how can we best account for the uncertainty in fit? Should we just ignore it as has been done in previous aircraft manufacturing simulations? Is this a sound procedure? Alternately, should we adjust the variance of future observations to account for uncertainty? Or should we sample from a distribution of parameter estimates in each replication? We explore this through the use of basic meta-modeling concepts applied to the learning curve model.

5-2. Simulation Based on a Fitted Linear Metamodel

What is a metamodel? The following definition, lifted from the dictionary (MeriamWebster, 1977), gives a small amount of insight into the meaning of the meta (or met) prefix and starts us on our way to understanding what a metamodel is!
meta- or met- prefix [from Latin, change, or Greek, among, with, after] 1a: occuring later than or in successsion to: after $\mathbf{1 b}$: situated behind or beyond $\mathbf{1 c}$: later or more highly organized or specialized form of 2 : change : transformation 3: more comprehensive : transcending <metapsychology> -- used with the name of a discipline to designate a new but related discipline designed to deal critically with the original one <metamathematics>

To put it more succinctly, Russell R. Barton (Barton, 1992) says, "a metamodel is a model of a model."

Let's look at an example of a metamodel. We first use an equation, say the learning curve equation ($\mathrm{Y}=\mathrm{aX} \mathrm{X}^{\mathrm{b}}+$ error), to generate a data base; we did this in Chapter 3 when we generated the first fifty observations of a specific learning curve. We next use the technique of Ordinary Least Squares (OLS regression), to 'fit' a predictive model to that data. What we end up with are parameter estimates defining a fitted model which characterizes the data base we have generated (a model of a model!). When we make a (regression) model of the simulation model, we speak of a (regression) metamodel. (Kleijnen, 1992)

In this section, we examine strategies for generating simulated values from a fitted linear model. We, in particular, want to simulate future performance; in other words, we want to extrapolate outside of the design region of the fitted model. The case in which we are interested, and with which we start, is the case where the independent variable, X , represents time, or some function of time. We assume we have observed the dependent variable, Y , for values of the independent variable ranging from $\mathrm{X}=1$ to $\mathrm{X}=\mathrm{n}$. What we wish to do is to repeatedly simulate
future sequences of the dependent variable, Y , for values of the independent variable ranging from $X=n+1$ to $X=n+k$ for some specified k.

For simplicity, let's assume that the relationship between a dependent variable, Y , and an independent variable, X, can be described via a simple linear model of the form

$$
\begin{equation*}
Y=\alpha+\beta X+\epsilon \tag{5-1}
\end{equation*}
$$

where $\in \sim N\left(0, \sigma^{2}\right)$. If we know the values of the parameters α, β, and σ^{2}, we can say that

$$
\begin{equation*}
\mathrm{Y} \sim \mathrm{~N}\left(\alpha+\beta \mathrm{X}, \sigma^{2}\right) \tag{5-2a}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{(Y-\alpha-\beta X)}{\sigma} \sim N(0,1) . \tag{5-2b}
\end{equation*}
$$

Better yet, and still equivalently, we could denote this as

$$
\begin{equation*}
\mathrm{Y}=\alpha+\beta \mathrm{X}+\sigma[\mathrm{N}(0,1)] \tag{5-2c}
\end{equation*}
$$

Where the last term in (5-2c) indicates that we have added to the mean $(\alpha+\beta X)$ a standard deviation term which is normally distributed with a mean of zero and a standard deviation of one. We can use this to generate simulated values of Y for given values of X . If we wish to generate a value of the dependent variable for, say, $X=X_{h}$, we can use the following simple algorithm:

1. Generate $Z \sim N(0,1)$.
2. Set $Y=\alpha+\beta X_{h}+\sigma Z$.

For our purposes we assume, for simplicity, that $X_{h}=h$. This allows the simulated sequences $\left(Y_{n+1}, Y_{n+2}, \ldots, Y_{n+k}\right)$ to be generated in a relatively straightforward manner. So, when we know the values of the parameters α, β, and σ^{2}, there is no uncertainty in the fit since the mean and standard deviation are known.

The uncertainty problem arises when we $D O N^{\prime} T$ know the values of these parameters. This leads us to the first of three methods of dealing with uncertainty in fit.

Method 1

If we do not know the values of the parameters α, β, and σ^{2}, which is most often the case, they must be estimated from sample data. Let's assume we observe the data points $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$, $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right), \ldots,\left(\mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right)$; from these, we can estimate α, β, and σ^{2} via ordinary least squares. The least squares estimates of these parameters turn out to be,

$$
\begin{gather*}
a=\bar{Y}-b \bar{X}, \tag{5-3}\\
b=\frac{\sum X_{i} Y_{i}-\frac{\sum X_{i} \sum Y_{i}}{n}}{\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}}, \tag{5-4}
\end{gather*}
$$

and,

$$
\begin{equation*}
\hat{\sigma}^{2}=M S E=\frac{\sum\left(Y_{i}-a-b X_{i}\right)^{2}}{n-2} \tag{5-5}
\end{equation*}
$$

(Neter, Wasserman, and Kutner: 1990, pgs 50, 145). We know from basic statistics that, in this case,

$$
\begin{align*}
& \mathrm{E}(\mathrm{a})=\alpha, \tag{5-6a}\\
& \mathrm{E}(\mathrm{~b})=\beta, \tag{5-6b}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{E}(\mathrm{MSE})=\sigma^{2} \tag{5-6c}
\end{equation*}
$$

Furthermore, in most statistics texts, the predicted value of Y at $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$ is generally denoted as $\hat{Y}_{h}=\mathrm{a}+\mathrm{bX} \mathrm{X}_{\mathrm{h}}$. Under the assumptions we have made, we can say that

$$
\begin{equation*}
E\left(\hat{Y}_{h}\right)=E\left(a+b X_{h}\right) \tag{5-7}
\end{equation*}
$$

and, since we know (as stated above in equations 5-6) that a, b, and MSE are unbiased estimators of α, β, and σ^{2}, respectively, we can go a step further to say

$$
\begin{equation*}
E\left(\hat{Y}_{h}\right)=E\left(\alpha+\beta X_{h}\right) . \tag{5-8}
\end{equation*}
$$

All of this having been said, we might be tempted, for simplicity, to generate simulated values of Y at $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$, via the algorithm:

1. Generate $Z \sim N(0,1)$.
2. Set $\mathrm{Y}=\hat{Y}_{h}+(\mathrm{MSE})^{1 / 2} \mathrm{Z}$
or, equivalently,

$$
\begin{equation*}
\mathrm{Y}=\mathrm{a}+\mathrm{bX} \mathrm{X}_{\mathrm{h}}+(\mathrm{MSE})^{1 / 2} \mathrm{Z} \tag{5-9b}
\end{equation*}
$$

This method yields a distribution of Y's which has a constant variance, as we would expect, and is very similar to the strategy implemented in the recent Factory Simulation Model of the C-17 assembly process. The factory simulation model is consistent with the model we postulate above in that it has the property that the variance of the simulated Y's is constant and not dependent on X_{h}. Unfortunately, because it is implicitly based on the assumption that

$$
\begin{equation*}
Y \sim N\left(\hat{Y}_{h}, M S E\right) \tag{5-10a}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{\left(Y-\hat{Y}_{h}\right)}{(M S E)^{1 / 2}} \sim \mathrm{~N}(0,1) \tag{5-10b}
\end{equation*}
$$

we find that our postulated model cannot be strictly correct. We say this because according to Neter, Wasserman \& Kutner (1990), for example, that

$$
\begin{equation*}
\operatorname{Var}\left(\hat{Y}_{h}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right] \tag{5-11}
\end{equation*}
$$

and thus that the quantity

$$
\begin{equation*}
\frac{Y-\hat{Y}_{h}}{\sqrt{\left(M S E\left[1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right]\right.}} \tag{5-12}
\end{equation*}
$$

(which is proportional to the quantity on the left hand side of equation 5-10b) does not have a $\mathrm{N}(0,1)$ distribution as stated above. Instead of an $\mathrm{N}(0,1)$ distribution, it has a Student's -t distribution with n-2 degrees of freedom. Based on this realization, we can propose another strategy which might be more accurate.

Method 2

The next possible strategy is given by the following algorithm.

1. Generate $T \sim t(n-2)$.
2. Set $Y=\hat{Y}_{h}+\sqrt{M S E\left[1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right]} T$

A potential weakness of this strategy is that the variance of the simulated Y 's is not constant but, as can be seen from inspection of equation (5-13), depends on X_{h}. In fact, the variance of the simulated Y 's increases as the distance between X_{h} and \bar{X} increases. Although this strategy correctly accounts for the uncertainty within our estimates of the parameters α and β, it is somewhat undesirable since the behavior is not consistent with that which would be expected from the real system ${ }^{1}$. This would be especially unappealing in the

[^9]time-dependent case where we successively generate values of Y corresponding to values of X ranging from $\mathrm{X}=\mathrm{n}+1$ to $\mathrm{n}+\mathrm{k}$. Finally, we are led to a third method which attempts to deal with this shortcoming.

Method 3

The third method takes into consideration the fact that, since a and b are normally distributed, the standardized statistics $(b-\beta) / s(b)$ and $(a-\alpha) / s(a)$, where $s(a)$ and $s(b)$ are estimates of the standard deviation of a and b respectively, are distributed as t with $n-2$ degrees of freedom. Since the estimates of the standard deviations, $s(a)$ and $s(b)$, are given by

$$
\begin{equation*}
\sqrt{M S E\left[\frac{1}{n}+\frac{\overline{X^{2}}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right]} \tag{5-14}
\end{equation*}
$$

(Neter, Wasserman \& Kutner: 1990, pg 71), the standardized statistics $(\mathrm{b}-\beta) / \mathrm{s}(\mathrm{b})$ and $(\mathrm{a}-\alpha) / \mathrm{s}(\mathrm{a})$ become
$\frac{a-\alpha}{\sqrt{M S E\left[\frac{1}{n}+\frac{\overline{X^{2}}}{\sum\left(X_{i}-\overline{X)^{2}}\right.}\right]}}$

$$
\begin{equation*}
\frac{b-\beta}{\sqrt{\frac{M S E}{\sum(X-\bar{X})^{2}}}} \tag{5-15b}
\end{equation*}
$$

and are distributed as $t(n-2)$.
This in mind, a possible strategy for generating simulated values of Y for $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$ is as follows:

1. Generate T_{1} and $\mathrm{T}_{2} \sim \mathrm{t}(\mathrm{n}-2)$
2. $\operatorname{Set} \mathrm{A}=a+\sqrt{\operatorname{MSE}\left[\frac{1}{n}+\frac{\overline{X^{2}}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right]} * T_{1}$
3. Set $\mathrm{B}=b+\sqrt{\frac{M S E}{\sum\left(X_{i}-\bar{X}\right)^{2}}} * T_{2}$
4. Generate $\mathrm{Z} \sim \mathrm{N}(0,1)$
5. Set $Y=A+B X_{h}+(M S E)^{1 / 2} Z$.

If a sequence of values starting at $\mathrm{X}=\mathrm{n}+1$ is desired, one could repeat steps 3 and 4 for each successive sequence of variables. Although the resulting values of Y will, in the aggregate, have a variance that increases as the distance between X_{h} and \bar{X} increases, if we apply steps 3 and 4 iteratively for given values of A and B, the individual sequences generated will behave like observations from a linear model with a constant variance.

With all of this theory behind us, we next demonstrate each of the three methods using, first, a linear model, and second, a log-linear model.

5-3. Linear Case Studies

To simplify the development process, we start with modeling and simulating a simple linear relationship. Once the methods outlined above are demonstrated using this example, we go on, in the next section, to apply them to the Log-Linear Learning Curve equation.

Generating 20 Simulated Observations: Here we assume we know the values of the parameters α (intercept), β (slope), and σ^{2} (fixed variance). Using EXCEL, we start out by simulating a set 20 observations calculated from the following equation.

$$
\begin{equation*}
\mathrm{Y}=\alpha+\beta \mathrm{X}+\sigma[\mathrm{N}(0,1)] \tag{5-17}
\end{equation*}
$$

We've added the $\sigma \mathrm{N}(0,1)$ term to stochasticize the simulated observations!

Once the data is simulated, we use the method of ordinary least squares to fit a linear regression model to the 20 simulated observations; this, of course, yields estimated values for α, β, and $\sigma^{2}(\mathrm{a}, \mathrm{b}$, and MSE, respectively). So, we've made a model of a model. These fitted values are used throughout the following three methods as the basis in simulating future values of the dependent variable.

Method 1:

Once the theoretical line and confidence interval are plotted, we simulate and plot five future sequences of values Y_{h} for $X=X_{h}$ for $n=21$ through $n=120$ on the same set of axes. To calculate these sequences, we use equation (5-9b). This done, we repeat starting with three more sets of 20 initial observations and recalculate the plot three times to show the random nature of the simulated data and the uncertainty in fit of the predicted line. These plots are shown below, in Figure 5-1 for illustration.

Note, in the plots, how the random nature of the simulated data has a significant effect on the the fitted regression line. The fitted line does not always accurately model the true relationship; a small error in the estimate of slope can seriously skew the fit away from the simulated data in the long run. As might possibly have been uttered before, perhaps we shouldn't treat the fitted regression as if it provided a perfect forecast of the expected value in the future.

We also note that the variance of each individual simulated sequence is, by construction, constant over time. This is as we would expect from a real life system.

Figure 5-1 Method 1 for Equation of Line -- Four Simulations

We must keep in mind that the calculations done to generate the preceding simulated sequences were not entirely correct since they were built upon the assumption, as given in equation (5-10b), that

$$
\frac{\left(Y-\hat{Y}_{h}\right)}{(M S E)^{1 / 2}} \sim \mathrm{~N}(0,1)
$$

when in actuality, it is proportional to the student's-t distribution. Method 2 will work the student's-t distribution into the calculation of the Y_{h} 's.

Method 2

In a manner analogous to the techniques used in Method 1, we again generate 20 simulated observations, use them to fit a curve, and then predict five series of Y_{h} for $\mathrm{X}=21$ to
$\mathrm{X}=120$. To calculate these new sequences, we use equation (5-13). The only difference here is, as outlined in Section 2, Y is estimated as (Yhat) $)_{\mathrm{h}}$ plus a standard deviation times a student's t distribution. The standard deviation term is dependent on X_{h} and grows in magnitude as we go forward in time; see Figure 5-2. Once again we can observe the uncertainty in fit of the regression line and the five simulated sequences; their slopes vary from plot to plot. This could be the case in subsequent experiments since the simulated sequences are built upon the fitted regression line.

Figure 5-2 Method 2 for Equation of Line -- Four Simulations

The variance, unfortunately, is not constant as we expect to find in the real life system. To compensate for this disparity between the simulated sequences and what we expect in reality, we go on to Method 3 which provides us with simulated sequences which each appear to have relatively constant variance through the range of X_{h} 's.

Method 3

Following the same technique used for Methods 1 and 2, above, we can, once again, generate 20 simulated observations, use OLS regression to fit a line, and then predict five series of Y_{h} for $\mathrm{X}=21$ to $\mathrm{X}=120$ for comparison to the theoretical line. To calculate these sequences, we use equations (5-16a and 5-16b). The resulting plots are shown in Figure 5-3.

Figure 5-3 Method 3 for Equation of Line -- Four Simulations

Note how each of the five simulated series of Y_{h} 's, for $\mathrm{Xh}=21$ through $\mathrm{Xh}=120$, unlike the series produced in Methods 1 and 2 above, all go off in slightly different directions while at the same time maintaining a constant variance within each individual series. What this helps us to see is that we can take into account the uncertainty of the fit of the regression line by simulating not just one but multiple series of future values for Y_{h}. In this way, we build a confidence interval of sorts (made up of the plots of the individual sequences) which helps us to keep in
mind the fact that the regression line and its confidence intervals do not necessarily provide a perfect fit for what the actual data might be expected to do! In the C-17 Factory Simulation, little or no effort was made to account for this uncertainty.

In the next section (Section 4), we simulate the first twenty observations of the learning curve the same way we simulate them for the equation of the line above. As before, we also go on to fit this simulated data (building a model of a model) using a log transformation and OLS regression. The goal of the next section is to investigate the nature of the uncertainty in the LogLinear Learning curve forecasts and to determine if we even need to account for it in the construction of our simulated sequences of Y_{h} 's. Because of the rescaling produced by the log transformations, the discrepancy in fit which we see in the linear case may not be apparent in the case of the log-linear learning curve.

5-4. Log-Linear Learning Curve Case Studies

Although we discovered with the linear cases above that the uncertainty in fit could produce significant inaccuracy, we may not discover that the uncertainty for the log-linear case is worth accounting for. Since this is difficult to know without investigation, we shall now go on to see what effect Methods 1,2 , and 3 have on the associated plots for the learning curve.

Method 1

In a manner analogous to the techniques used in Method 1 (Section 5-3), we again generate 20 simulated observations; this time we use the log-linear learning curve equation $\mathrm{Y}=\mathrm{aX}^{\wedge} \mathrm{b}+$ error. We then fit a curve to these observations, and predict five series of Y_{h} for $\mathrm{X}=$ 21 to $X=120$. To calculate these new sequences, we use equation (5-9b). Again, we recalculate the simulated observations, the regression curve, and the simulated sequences of Y_{h} 's.

These are all shown in Figure 5-4. We note, from the four simulations in Figure 5-4, that the fit of the regression line varies almost indiscernably from plot to plot.

Figure 5-4 Method 1 for Log-Linear Equation In Log Space -- Four Simulations

In addition to the plots in \log space shown in Figure 5-4, we also generated plots in linear space by plotting hours vs.unit number instead of plotting the natural log of hours versus the natural \log of the unit number as we did for the plots in \log space; the plots in linear space are shown in Figure 5-5. We can make the same observations about these plots that we made regarding those in Figure 5-4; the fit of the regression curve varies almost indiscernably from plot to plot. Since Method 1 is very similar to the method used in the C-17 FSM, we start to think, based on these plots, that ignoring the uncertainty in fit might not have the high price-tag which we originally expected. Despite these early indications that we might not need to account for
uncertainty (at least not in the case of the log-linear learning curve), we'll look at the effects that Methods 2 and 3 have on the fitted regression curves.

Figure 5-5 Method 1 for Log-Linear Equation In Linear Space -- Four Simulations

Method 2

Once again, we generate four sets of simulated observations, four fitted regression lines, and four sets of five sequences of simulated future observations (Y_{h} 's). This time, as in Method 2 , Section 5-3, we use equation (5-13) which corrects the incorrect assumption regarding the distribution of the error which is actually distributed as $t(n-2)$ not $N(0,1)$. We plot the resulting data both in log space and in linear space; these plots are shown in Figures 5-6 and 5-7
respectively. In Figure 5-6, we see the same increasing variance evident in Method 2, Section 5-
3. Once again, however, the fitted regression curve seems not to vary noticiably from simulation to simulation.

Figure 5-6 Method 2 for Log-Linear Equation In Log Space -- Four Simulations

Theoretical Curve and Canfidence Interval, Simulated Observationa
Predicted Orve, and Simulated Sequences
(Method 2-Log Space)

Figure 5-7 Method 2 for Log-Linear Equation In Linear Space-- Four Simulations

Method 3

One last time, we generate the 20 simulated observations, the fitted regressions, and the simulated sequences of future observations. This time when we generate the simulated sequences, we use equations (5-16a through 5-16c). The result is a series of simulated sequences each of which seem to have a constant variance. Once again, we've gone on to plot the resulting data in both \log and linear space; these plots are shown below in Figures 5-8 and 5-9.

Figure 5-8 Method 3 for Log-Linear Equation In Log Space -- Four Simulations

Figure 5-9 Method 3 for Log-Linear Equation In Linear Space -- Four Simulations

5-5. Conclusions

From the plots in Figures 5-4, through 5-9, we can say that perhaps the C-17 FSM was not seriously injured by the fact that during its development, uncertainty in fit was ignored. Method 1, which is similar to the methods used in the C-17 FSM, produced reasonable fits, not only in Log-Space, but in linear space as well. Method 2 and Method 3 seemed to make no appreciable amount of inprovement in the fits.

6. Conclusions

The results of this thesis are somewhat inconclusive since the study does not identify any one model as always being the best fitting or forecasting tool for all sets of data. It does, however, provide an important general indication that ARMA models, particularly the AR models, are a promising alternative to the standard log-linear learning curve approach which is widely in use today; they are comparatively simple to use, intuitive in nature and seem to provide a good forecast based on a small amount of data.

The investigation of metamodels and the question of accounting for the uncertainty in fit within the C-17 Factory Simulation Model yielded some encouraging, as well as potentially usefil, results. In the case of the simple linear model, we found that the application of our proposed Methods 2, and especially, 3 did a good job of accounting for uncertainty within the fit of the regression line; the resulting simulated sequences seemed to cluster well around the theoretical confidence interval. In the case of the log-linear learning curve, however, the results were not as striking. In particular, we found that our Method 1 , which is very similar to the methods used in the C-17 FSM, did a reasonable job of simulating sequences of (future) observations which, for the most part, fell within the theoretical prediction interval. Application of Methods 2 and 3 did not noticeably improve the fidelity of the simulated sequences. The bottom line, here, is that ignoring the uncertainty in fit (as the C-17 FSM does) doesn't seem to carry the high cost we expected!

There are a few things which, based on hindsight, I might have done differently. First of all, in Sections 3-6 and 4-2, I would have used a log-linear learning curve data set
which had no error in it. (The model we used had a uniformly distributed error term with a very small variance.) Using data which had no error term may have provided a more useful initial analysis since the models would have had a 'clean' data set for the initial test instead of having to deal with the random component injected by the error term. Of course, the error we used in the model was quite small and may have had a negligible effect anyway.

Another thing I might have done differently was to use all of the models to fit/forecast the log-linear learning curve data the same way we used them to fit/forecast the F-102 data and the Notional C-17 data; this would have provided a more complete picture of the abilities of the candidate models. As it was, in Section 4-2, we used the models only to fit the log-linear data; in Section 4-3, we used the models to fit the F-102 data and then went on and used them to fit/forecast the F-102 data; in Section 4-4, we used the models only to fit/forecast the Notional C-17 data. Each section should have used precisely the same set of investigations.

Yet another modification I might make to my investigations would be to have picked a sample size for the fit/forecasting investigations which was common to all data sets. For example, since the Notional C-17 data fit/forecasting investigations used a sample of 15 observations on which to base the fitting of the models, we should have used this same number in the fit/forecasting of the F-102 data; furthermore, if our investigations had included fit/forecasting for the log-linear data, this number should also have been the same for them. Using different numbers of observations in the fit part of the
fit/forecasting, put the candidate models on uneven ground and make it difficult to evaluate the results of the study.

One more thing I would do if there was more time, would be to take a closer look at the SSE's (used as measures of performance in Chapter 4). It would be interesting to see how close in magnitude each of the resulting SSE's are. Perhaps we'd find that there is virtually no difference between the fidelity of the top four models; we might find that any one of them will do an equally good job at forecasting so we could choose the lowest order or simplest model from among them in pursuit of parsimony or simplicity. On the other hand, we might find that the model ranked number one had a statistic which was six orders of magnitude better than the next best model's statistic; this might keep us from choosing a lower order model. I feel that the relative magnitudes of the SSE's is quite an important consideration in the analysis of the results.

The point of this thesis was not to show that log-linear learning curve models are me not good at forecasting learning type data, that ARMA models were the best models for this type of forecasting, or that the C-17 FSM should be scrapped because it failed to account for uncertainty in fit. Instead, the objective was to show that there are other models which provide a viable alternative to the standard learning curve. The secondary emphasis was to investigate the merit/cost of ignoring, within the C-17 FSM, the uncertainty in fit. I believe I've accomplished both of these things! Hopefully, model developers can utilize some of the information in this thesis to assist them in developing the best forecasting models possible.

Bibliography

Alchian, Armen, An Airframe Production Function. The Rand Corporation, 1949.

Author, An. Predicting Startup Progress: Learning Curves

Barton, Russell R. Metamodels for Simulation Input-Output Relations. Proceedings of the 1992 Winter Simulation Conference. pg 289.

Belkaoui, Ahmed. The Learning Curve -- A Management Accounting tool. Westport, Connecticut: Quorum Books, 1986.

Box, George.E.P. and Gwilym.M. Jenkins. Time Series Analysis: Forecasting and Control (Revised Edition). San Francisco: Holden-Day, 1976.

Book, Stephen A. and Erik L. Burgess. The Learning Rate's Overpowering Impact on Cost Estimates and How to Diminish It. The Aerospace Corporation. 63rd MORS Symposium. (6 June 1995)

Brewer, Glenn M. The Learning Curve in the Airframe Industry. MS thesis, AFIT. School of Systems and Logistics. Air Force Institute of Technology (AU), Wright-Patterson AFB OH, August 1965 (SLSR-18-65)

Colasuonno, Vincent. An Analysis of Progress Curve Conceptual Advances and Progress Curve Uses, Since 1956. MS thesis, AFIT/GSM/SM/67-5. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1967 (AD-664952).

F-102 Program Cost History. CRA-1-7.1, a report prepared by the Cost Research Department, Fort Worth Division, General Dynamics Corproation, June, 1965.

Forsythe, Steven, Dan Green, Tom White, and Mike Elmer. Forecasting and Modeling Learning Curves: A Study of Certain Important Considerations. AFIT Term paper. March 1995.

Forecast-Pro for Windows, Standard Edition, Version 2.00, Business Forecast Systems, Inc., Copyright [C] BFS 1992-93.

Kleijnen, Jack P.C., and Willem van Groenendaal. Simulation -- A Statistical Perspective. John Wiley \& Sons, Inc., 1992.

Levy, F. K. "Adaptation in the Production Process," Management Science (Vol. 11, No. 6, April 1965), pp. B136-B154.

Makridakis, Spyros, Steven C. Wheelwright, and Victor E. McGee. Forecasting: Methods and Applications. John Wiley \& Sons, Inc., 1983.

Merriam-Webster, Webster's New Collegiate Dictionary. G. C. Merriam Company Springfield, Massachucetts, 1977

Montgonery, Douglas C., Lynwood A. Johnson, and John S. Gardiner. Forecasting \& Time Series Analysis. McGraw-Hill, Inc., 1990.

Neter, John, William Wasserman, and Michael H. Kutner. Applied Linear Statistical Models:Regression, Analysis of Variance, and Experimental Designs. Third Edition, Richard D. Irwin, Inc., 1990

Orsini, Joseph A. An Analysis of Theoretical and Empirical Advances in Learning Curve Concepts, Since 1966. MS thesis, AFIT/GSA/SM/70-12. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1970

Smith, Jason. Learning Curves for Cost Control . Industrial Engineering and Management Press, 1989

Summers, E.L. and G.A. Welsch, How Learning Curve Models Can Be Applied to Profit Planning, Management Sciences (March-April 1970), pp.45-50.

Thomas, Charles A. A Monte Carlo Study of Least Squares Parameter Estimation for the Learning Curve Equation. MS Thesis, AFIT/GOR/MA/75-3. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1975 (AAI-4107)

Womer, N. Keith, Cost Functions for Airframe Production Programs. Occasional Paper Series. Department of Management, Clemson University. 1982.

Wright, T. P. "Factors Affecting the Cost of Airplanes." Journal of the Aeronautical Sciences: 122-128 (February 1936).

Appendix A

Forecast-Pro Summary and Worksheets (Work done in Forecast-Pro.)

Table A-1 Forecast-Pro, Summary of Statistics and Parameters

Forecast Pro for Windows Standard Edition Version 2.00
Mon Jan 29 19:55:18 1996

Expert data exploration of dependent variable PWRMEANS

Length 50 Minimum 283.069 Maximum 1002.019
Mean 402.219 Standard deviation 141.123

Series too short to determine seasonality. Treating as nonseasonal.
Classical decomposition (nonseasonal)
Trend-cycle: 97.11% Irregular: 2.89%
Log transform recommended for Box-Jenkins.
There are no strongly significant regressors, so I will choose a univariate method.

Exponential smoothing outperforms Box-Jenkins by 2.588 to 3.628
out-of-sample (MAD). I tried 21 forecasts up to a maximum horizon 6.
For Box-Jenkins, I used a log transform.
Series is trended and nonseasonal.

Recommended model: Exponential Smoothing
Figure A-1 Forecast-Pro, Exponential Smoothing

Simple exponential smoothing

Forecast Model for PWRMEANS
Simple exponential smoothing: No trend, No seasonality
Confidence limits proportional to level
Smoothing Final

Component	Weight	Value
Level	1.00000	286.22

Standard Diagnostics

Sample size 50	Number of parameters 1
Mean 402.2	Standard deviation 142.6
R-square .9954	Adjusted R-square 0.9382
Durbin-Watson 0.9442	\quad ** Ljung-Box(18) $=42.45$ P=0.999
Forecast error 35.43	BIC 36.47
MAPE 0.02687	RMSE 35.07
MAD 14.53	

Figure A-2 Forecast-Pro, Simple Exponential Smoothing

Naive (SMA(1), Random walk)

Forecast Model for PWRMEANS
Automatic model selection
Naive (SMA(1), Random walk)

Standard Diagnostics

Sample size 49	Number of parameters 0
Mean 390	Standard deviation 114.4
R-square 0.9022	Adjusted R-square 0.9042
Durbin-Watson 0.2607	$\quad * *$ Ljung-Box (18) $=41.51 \quad \mathrm{P}=0.9987$
Forecast error 35.43	BIC 35.43
MAPE 0.02742	RMSE 35.43
MAD 14.83	

Figure A-3 Forecast-Pro, Simple Moving Average (SMA(1))

Holt exponential smoothing

Forecast Model for PWRMEANS
Automatic model selection
Holt exponential smoothing: Linear trend, No seasonality
Confidence limits proportional to level

	Smoothing	Final
Component	Weight	Value
Level	0.99973	286.22
Trend	0.23092	-1.3716

Standard Diagnostics

Sample size 50	Number of parameters 2
Mean 402.2	Standard deviation 142.6
R-square 0.9611	Adjusted R-square 0.9603
Durbin-Watson 1.938	Ljung-Box(18) $=6.991 \mathrm{P}=0.009796$
Forecast error 28.39	BIC 30.08 (Best so far)
MAPE 0.02575	RMSE 27.82
MAD 13.83	

Figure A-4 Forecast-Pro, Holt Exponential Smoothing

Forecast Model for PWRMEANS ARIMA(1,0,0)

Term Coefficient Std. Error t-Statistic Significance

a[1]	0.9953	0.0056	178.7528	1.0000

_CONST 1.9008

Standard Diagnostics

Sample size 50	Number of parameters 1
Mean 402.2	Standard deviation 142.6
R-square 0.9401	Adjusted R-square 0.9401
Durbin-Watson 0.9888	$\quad * *$ Ljung-Box(18)=40.21 P=0.998
Forecast error 34.89	BIC 35.91
MAPE 0.02714	RMSE 34.54
MAD 14.58	

Figure A-5 Forecast-Pro, AR(1)

Forecast Model for PWRMEANS ARIMA(2,0,0)

Term	Coefficient	Std. E	t-Statis	Significance
a [1]	1.7947	0.0479	37.4544	1.0000
a[2]	-0.8018	0.0494	-16.2365	1.0000
_CONST	2.8753			

Standard Diagnostics

Sample size 50	Number of parameters 2
Mean 402.2	Standard deviation 142.6
R-square 0.9841	Adjusted R-square 0.9838
Durbin-Watson 2.04	Ljung-Box(18)=5.466 P=0.002073
Forecast error 18.16	BIC 19.24 (Best so far)
MAPE 0.01623	RMSE 17.79
MAD 8.227	

MAD 8.227

Figure A-6 Forecast-Pro, AR(2)

Forecast Model for PWRMEANS
ARIMA(3,0,0)

Term	Coefficient	Std. Err	t-Stati	Significanc
a[1]	1.5845	0.0448	35.3651	1.0000
a[2]	-0.2266	0.0986	-2.2984	0.9740
a[3]	-0.3632	0.0556	-6.5293	1.0000
_CONST	2.14			

Standard Diagnostics

Sample size 50	Number of parameters 3
Mean 402.2	Standard deviation 142.6
R-square 0.9833	Adjusted R-square 0.9826
Durbin-Watson 1.686	\quad Ljung-Box(18) $=3.235 \mathrm{P}=4.927 \mathrm{e}$-005
Forecast error 18.83	BIC 20.53
MAPE 0.01657	RMSE 18.25
MAD 8.382	

Figure A-7 Forecast-Pro, AR(3)

Forecast Model for PWRMEANS ARIMA(4,0,0)

Term Coefficient Std. Error t-Statistic Significance

$\mathrm{a}[1]$	1.6203	0.0414	39.1669	1.0000
$\mathrm{a}[2]$	-0.2361	0.1250	-1.8883	0.9347
$\mathrm{a}[3]$	-0.4572	0.1958	-2.3350	0.9760
$\mathrm{a}[4]$	0.0676	0.0995	0.6791	0.4995
_CONST	2.1717			

Try alternative model ARIMA $(3,0,0)$
Standard Diagnostics

Sample size 50	Number of parameters 4
Mean 402.2	Standard deviation 142.6
R-square 0.9844	Adjusted R-square 0.9833
Durbin-Watson 1.733	Ljung-Box $(18)=3.237$ P=4.951e-005
Forecast error 18.4	BIC 20.64
MAPE 0.01603	RMSE 17.65
MAD 8.023	

Figure A-8 Forecast-Pro, AR(4)

Forecast Model for PWRMEANS
 ARIMA(0,0,1)

Term	Coefficient Std. Error t-Statistic Significance			
b [1]	-0.9675	0.0200	-48.4850	1.0000
_CONST	402.218			

Standard Diagnostics

Sample size $50 \quad$ Number of parameters 1
Mean 402.2
Standard deviation 142.6
R-square 0.8037
Durbin-Watson 0.05782
Forecast error 63.16
MAPE 0.1155
Adjusted R-square 0.8037
** Ljung-Box(18)=158.7 $\mathrm{P}=1$

MAD 47.34

Figure A-9 Forecast-Pro, MA(1)

Forecast Model for PWRMEANS

ARIMA(0,0,2)

Term	Coefficient Std. Error t-Statistic Significance			
b[1]	-1.3321	0.0563	-23.6572	1.0000
b[2]	-0.9397	0.0413	-22.7603	1.0000
_CONST	402.2187			

Standard Diagnostics
Sample size $50 \quad$ Number of parameters 2

Mean 402.2
Standard deviation 142.6
R-square 0.9254
Durbin-Watson 0.5625
Forecast error 39.33
MAPE 0.07117
MAD 28.74

Adjusted R-square 0.9239
** Ljung-Box(18)=121.6 P=1
BIC 41.67
RMSE 38.53

Figure A-10 Forecast-Pro, MA(2)

Forecast Model for PWRMEANS ARIMA($\mathbf{0 , 0 , 3)}$

Term Coefficient Std. Error t-Statistic Significance

$\mathrm{b}[1]$	-1.5788	0.0562	-28.0915	1.0000
$\mathrm{~b}[2]$	-1.5280	0.0661	-23.1201	1.0000
$\mathrm{~b}[3]$	-0.8981	0.0410	-21.8820	1.0000
_CONST	402.2187			

Standard Diagnostics

Sample size 50	Number of parameters 3
Mean 402.2	Standard deviation 142.6
R-square 0.9723	Adjusted R-square 0.9711
Durbin-Watson 0.8157	$\quad * *$ Ljung-Box(18) $=128.3$ P=1
Forecast error 24.23	BIC 26.42
MAPE 0.04995	RMSE 23.49

Figure A-11 Forecast-Pro, MA(3)

Forecast Model for PWRMEANS ARIMA(0,0,4)

Term	Coefficien	Std. E	t-Statis	Signific
b[1]	-1.7923	0.0546	-32.7994	1.0000
b[2]	-2.2399	0.0883	-25.3794	1.0000
b[3]	-1.6646	0.0802	-20.7439	1.0000
b[4]	-0.8566	0.0452	-18.9600	1.0000
_CONST	402.2187			

Standard Diagnostics

Sample size 50	Number of parameters 4
Mean 402.2	Standard deviation 142.6
R-square 0.9872	Adjusted R-square 0.9863
Durbin-Watson 1.09	** Ljung-Box(18)=107.4 P=1
Forecast error 16.66	BIC 18.69 (Best so far)
MAPE 0.03225	RMSE 15.98
MAD 12.63	

Figure A-12 Forecast-Pro, MA(4)

Forecast Model for PWRMEANS ARIMA(1,0,1)

Term	Coefficient Std. Error t-Statistic Significance			
$\mathrm{a}[1]$	0.9954	0.0061	163.9297	1.0000
b [1]	-0.8783	0.0604	-14.5466	1.0000
_CONST	1.8609			

Standard Diagnostics

Sample size $50 \quad$ Number of parameters 2
Mean 402.2 Standard deviation 142.6
R-square $0.9646 \quad$ Adjusted R-square 0.9639
Durbin-Watson 0.8359
Forecast error 27.09
Ljung-Box(18)=20.31 $\mathrm{P}=0.6841$
MAPE 0.02662
BIC 28.7
MAD 13.28
RMSE 26.54

Figure A-13 Forecast-Pro, ARMA(1,1)

Forecast Model for PWRMEANS ARIMA(2,0,1)

Term	Coefficient Std. Error t-Statistic Significance			
a [1]	1.8974	0.0387	49.0106	1.0000
$\mathrm{a}[2]$	-0.9048	0.0403	-22.4327	1.0000
b [1]	-0.2490	0.1061	-2.3476	0.9768
_CONST	2.9941			

Standard Diagnostics

Sample size 50	Number of parameters 3
Mean 402.2	Standard deviation 142.6
R-square 0.9865	Adjusted R-square 0.9859
Durbin-Watson 2.348	Ljung-Box(18)=6.226 P=0.004808
Forecast error 16.92	BIC 18.45 (Best so far)
MAPE 0.0181	RMSE 16.4
MAD 8.177	

Figure A-14 Forecast-Pro, ARMA(2,1)

Forecast Model for PWRMEANS ARIMA(1,0,2)

Term	Coefficient	Std. Err	t-Statis	Significance
a[1]	0.9991	0.0041	241.5930	1.0000
b[1]	-1.1743	0.0591	-19.8619	1.0000
b[2]	-0.9597	0.0334	-28.7005	1.0000
_CONST	0.3623			

Standard Diagnostics

Sample size 50	Number of parameters 3
Mean 402.2	Standard deviation 142.6
R-square 0.9908	Adjusted R-square 0.9904
Durbin-Watson 1.73	Ljung-Box(18) $=28.68$ P $=0.9476$
Forecast error 13.97	BIC 15.23 (Best so far)
MAPE 0.01687	RMSE 13.54
MAD 8.051	

Figure A-15 Forecast-Pro, ARMA(1,2)

Forecast Model for PWRMEANS ARIMA(2,0,2)

Term	Coefficient Std. Error t-Statistic Significance			
a [1]	1.8956	0.0462	41.0309	1.0000
$\mathrm{a}[2]$	-0.9072	0.0468	-19.3879	1.0000
b[1]	-0.4297	0.1050	-4.0940	0.9998
b[2]	-0.5006	0.1039	-4.8165	1.0000
_CONST	4.6625			

Standard Diagnostics
Sample size $50 \quad$ Number of parameters 4
Mean $402.2 \quad$ Standard deviation 142.6
R-square 0.9893
Durbin-Watson 2.207
Forecast error 15.23
MAPE 0.01859
MAD 8.357

Adjusted R-square 0.9886 Ljung-Box $(18)=14.53 \mathrm{P}=0.3059$
BIC 17.08 (Best so far)
RMSE 14.61

Figure A-16 Forecast-Pro, ARMA(2,2)

Appendix B

Fitting the Simulated Log-Linear Learning Curve Data Using 50 Observations (Work done in EXCEL)

Table B-1 Detailed Summary of Log-Linear Fitting

(more) Table B-1 EXCEL, Detailed Summary of Log-Linear Fitting

Table B-2 Brief Summary of Log-Linear Fitting

Model	SSE	Rank
Log-LInear	763.7	1
Forsythe	2256.4	4
Stanford-3	11576.1	11
Y Fegel	242678.9	13
WS-Curve	43241.7	12
(\% MA(1)	2665105.0	14
AR(1)	9685.7	10
(\% AR(2)	4851.1	7
(AR(3)	1756.4	3
(\% AR(4)	1438.8	2
ARMA(1,1)	5856.5	8
ARMA (1,2)	6274.5	9
ARMA(2,1)	3714.9	5
ARMA(2,2)	4468.4	6

Figure B-1 EXCEL, Log-Linear Fit to Log-Linear Data

Figure B-2 EXCEL, Forsythe Fit to Log-Linear Data

Figure B-3 EXCEL, Stanford-B Fit to Log-Linear Data

Parameters:	alpha*	a*	beta*
	6055:319671/	0977241524	o.022758471.
SSE:	2426789E+035.../	1	
Equation:	$\mathrm{MC}(\mathrm{x})=$ alpha*a^$(\mathrm{x}-1)$		

Figure B-4 EXCEL, Pegel's Fit to Log-Liner Data

Parameters:	\mathbf{a}^{*}	L*	b^{*}	\mathbf{k}^{*}
	50366257676	4718.942513	0.150662349	0.149861837
SSE:	II. 43241.67424 .	0		
Equation:	' $(\mathrm{x})=L^{*} \exp \left(-\mathrm{b}^{*} \exp \left(-\mathrm{k}^{*} \mathrm{t}\right)\right.$)			

Figure B-5 EXCEL, S-Curve Fit to Log-Linear Data

Parameters:	phi*	const*
	O7892/"	70.5523
SSE:	$9.686 \mathrm{E}+03$	
Equation:	AR(1) $=\mathrm{phi}^{*}$ (AR1	st+noise

Figure B-6 EXCEL, AR(1) Fit to Log-Linear Data

Figure B-7 EXCEL, AR(2) Fit to Log-Linear Data

Parameters:	phi_1*	phi_2*	phi_3*	const*
	0.7564	0036941845	0.059262984	45.7989
SSE:	‥ $1.756 \mathrm{E}+03$			
Equation:	AR(3) $=$ phi1* ${ }^{\text {(AR3-1 }}$) + phi2* ${ }^{*}$ (AR3-2) + phi3* ${ }^{*}$ AR3-3)+const+noise			

Figure B-8 EXCEL, AR(3) Fit to Log-Linear Data

Parameters:	phi_ ${ }^{*}$	phi 2**	phi ${ }^{*}$	phi_4*	const**
	$\begin{aligned} & 0.7587 \\ & 1.439 \mathrm{E}+03 \end{aligned}$	0.037070476	0.046871928	0.01883124	423711
SSE:					
Equation:	AR(4)= phi1*(AR4-1)+phi2*(AR4-2)+phi3*(AR4-3)+phi4*(AR4-4)+const+noise				

Figure B-9 EXCEL, AR(4) Fit to Log-Linear Data

Parameters:	myou*	theta*
	455.6495	0.4720.
SSE:	2665E+06.	
Equation:	MA(1)=myou-theta*errorminus1+noise	

Figure B-10 EXCEL, MA(1) Fit to Log-Liner Data

Parameters: SSE:	muprime*	theta*	phi*
	88.7787	-0.7728	0.7408
	-5.856E-03		
	ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise		

Figure B-11 EXCEL, ARMA(1,1) Fit to Log-Linear Data

Parameters: SSE: Equation:	muprime*	phi1*	theta1*	theta2*
	88.9569	0.7438	-0.6197.	0.037368591
	\% $6.274 E+03$			
	ARMA(1,2)=phi1*(ARMA(1,2)-1)+muprime-theta1*errorlasttheta 2 *errorlastlast+noise			

Figure B-12 EXCEL, ARMA(1,2) Fit to Log-Linear Data

Parameters: SSE: Equation:	muprime*	phi1*	phi2*	theta*
	$\oiiint \begin{aligned} & 63.7918 \\ & 3.715 \mathrm{E}+03 \end{aligned}$	0.7645	0.041791709	-0.7055
	ARMA(2,1)=phi1*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+ muprime-theta*errorlast+noise			

Figure B-13 EXCEL, ARMA(2,1) Fit to Log-Linear Data

Parameters:	muprime*	phi1*	phi2*	theta1*	theta2*
	. 62.5070	0.7384	00704	0.037567463	. 0.319203866
SSE:	\% $4.468 \mathrm{E}+03$				
Equation:	ARMA(2,2)=phi1*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+muprime-				

Figure B-14 EXCEL, ARMA(2,2) Fit to Log-Linear Data

Table B-3 EXCEL, Simulated Log-Linear Data Base
The Simulated Log-Linear Data Base

Unit Number	Log-Lin(stoch)	Unit Number	Log-Lin(stoch)
$\mathbf{1}$	1010.832269	26	347.6588376
2	808.3325458	27	346.8230994
3	691.2839896	28	340.5004826
4	641.1901161	29	336.3884482
5	595.4460444	30	335.0655174
6	557.2059351	31	329.6040636
7	527.0011364	32	332.1842007
8	508.4621019	33	325.4725805
9	496.9922034	34	320.8691874
10	469.848955	35	316.8387424
11	462.2715407	36	315.0144544
12	454.8076222	37	316.1912111
13	442.1848743	38	311.1881426
14	432.8762252	39	311.0490991
15	414.1127291	40	304.7384949
16	403.5124097	41	304.5376237
17	396.6960025	42	300.691177
18	391.530033	43	297.5358953
19	383.1869894	44	296.2756757
20	379.2670047	45	292.0449126
21	377.8492397	46	289.0213147
22	372.9927929	47	286.4419215
23	366.6170179	48	285.358444
24	364.765332	49	284.2516737
25	352.3002239	50	287.7423919

Appendix C

Fitting the Historical F-102 Data Using 500 Observations (Work done in EXCEL)

Table C-1 Detailed Summary of Fitting the Historical F-102 Data Base

(more) Table C-1 Detailed Summary of Fitting the Historical F-102 Data Base

Table C-2 Brief Summary of Fitting the Historical F-102 Data Base

Model	SSE	Rank
log-Linear	$5.503 \mathrm{E}+10$	10
Forsythe	$5.503 \mathrm{E}+10$	10
Stanford-B	$4.540 \mathrm{E}+10$	9
AR(1)	$2.722 \mathrm{E}+10$	8
AR(2)	$4.930 \mathrm{E}+09$	2
AR(3)	$2.637 \mathrm{E}+10$	7
AR(4).	$4.877 \mathrm{E}+09$	1
ARMA (1,1)	$2.089 \mathrm{E}+10$	6
ARMA (1,2)	$2.079 \mathrm{E}+10$	4
ARMA (2,1)	$2.087 \mathrm{E}+10$	5
ARMA(2,2)	$2.079 \mathrm{E}+10$	3

Figure C-1 EXCEL, Log-Linear Fit to F-102 Historical Data

Parameters:	a*	b*	cmin*
	838249883	0.514392071	0.【.【.3
SSE:	$5.503 \mathrm{E}+10$		
Equation:	$\mathbf{Y}(\mathbf{x})=\mathrm{a}^{*} \mathbf{x}^{\wedge} \mathbf{b}+\mathrm{cmin}$		

Figure C-2 EXCEL, Forsythe Fit to F-102 Historical Data

Parameters:	a^{*}	beta*	n^{*}
	45456836.63	29.56069441	. 1.418710319
SSE:	(4.540E+10		
Equation:	$\mathrm{Y}(\mathrm{x})=\mathrm{a}^{*}\left(\mathrm{x}+\mathrm{beta} \wedge^{\wedge} \mathrm{n}\right.$		

Figure C-3 EXCEL, Stanford-B Fit to F-102 Historical Data

Parameters:	phi* const*
	$0.916219997 /=\int / 4629.392506$
SSE:	$2722 \mathrm{E}+10$
Equation:	AR1 $\mathbf{(x)}=$ phi* $^{*}(\mathbf{Y s u b x}-1)+$ const+error

Figure C-4 EXCEL, AR(1) Fit to F-102 Historical Data

Parameters:	phi_1*	phi_2*	const*
	0.87589	-0.00905	1731532341
	2787E+10		
Equation:	AR2 $=$ phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+const+error		

Figure C-5 EXCEL, AR(2) Fit to F-102 Historical Data

Parameters:	phi_1*	phi_2*	phi_3*	const*
	0.877114341	.0095597138	0.160885068	3096.15527
SSE:	\4.03selion			
Equation:	AR3 $=$ phi_1*(Y	phi_2*(Ysub	*(Ysubx-2)+c	

Figure C-6 EXCEL, AR(3) Fit to F-102 Historical Data

Parameters:	phi_1*	phi_2*	phi_3*	phi_4*	const*
	0894643206	0.138970848	O. 595511384	0.2836932	9123.75263
SSE:	$2.349 \mathrm{E}+10$				
Equation:	AR4 $=$ phi_1*(Ysubx-1)+ phi_ 2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error				

Figure C-7 EXCEL, AR(4) Fit to F-102 Historical Data

Parameters: SSE: Equation:	muprime*	theta*	phi*
	3426.4751	0.5234	0.9349
	$2089 \mathrm{E}+10$		
	ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise		

Figure C-8 EXCEL, ARMA(1,1) Fit to F-102 Historical Data

Parameters:	muprime*	phi1*	theta1*	theta2*
	3468 5690	0.9342	0.5668	.0.06678403
SSE:	- $2.079 \mathrm{E}+10$			
Equation:	ARMA(1,2)=phi1*(ARMA(1,2)-1)+muprime-theta1*errorlasttheta2*errorlastlast+noise			

Figure C-9 EXCEL, ARMA(1,2) Fit to F-102 Historical Data

Parameters:	muprime*	phi1*	phi2*	theta*
	3400.5396	0.9251	0.01020035	0. 5218
SSE:	$2.087 \mathrm{E}+10$			
Equation:	ARMA(2,1)=phi1*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+			

Figure C-10 EXCEL, ARMA(2,1) Fit to F-102 Historical Data

Parameters:	muprime*	phi1*	phi2*	thetal*	theta2*
	3477.1898	0.9366	000026	O.569487058	-0.070032389
SSE:	$2.079 \mathrm{E}+10$				
Equation:	ARMA(2,2)=phi1*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2) + muprime-theta1*errorlast-theta2*errorlastlast+noise				

Figure C-11 EXCEL, ARMA(2,2) Fit to F-102 Historical Data

Appendix D

Forecasting the Historical F-102 Data Using 20 Observations and a Hold-out Sample of 480 Observations
(Work done in EXCEL)

Table D-1 Detailed Summary of Forecasting the Historical F-102 Data Base

(more) Table D-1 Detailed Summary of Forecasting the Historical F-102 Data Base ARMA(1,1)

Table D-2 Brief Summary of Forecasting the Historical F-102 Data Base

Model	SSE (1st 20)	SSE (last 480)	SSE (all 500)	Rank (1st 20).	Rank (last 480)
Log-Linear	$2.965 \mathrm{E}+09$	$6.175 \mathrm{E}+11$	$6.204 \mathrm{E}+11$	10	4
Forsythe	$2.965 \mathrm{E}+09$	$6.175 \mathrm{E}+11$	$6.204 \mathrm{E}+11$	10	4
Stanford-3	$2.814 \mathrm{E}+09$	$1.278 \mathrm{E}+10$	$1.560 \mathrm{E}+10$	9	2
AR(1)	$2.452 \mathrm{E}+09$	$1.073 \mathrm{E}+12$	$1.075 \mathrm{E}+12$	8	6
AR(2)	$2.350 \mathrm{E}+09$	$7.064 \mathrm{E}+09$	$9.413 \mathrm{E}+09$	6	1
AR(3)	$2.257 \mathrm{E}+09$	$2.158 \mathrm{E}+12$	$2.160 \mathrm{E}+12$	5	9
\#\#\% AR(4)	$1.707 \mathrm{E}+09$	$3.892 \mathrm{E}+10$	$4.063 \mathrm{E}+10$	4	3
\#. ARMA(1,1)	$2.414 \mathrm{E}+09$	$1.034 \mathrm{E}+12$	$1.036 \mathrm{E}+12$	7	5
ARMA(1,2)	$1.153 \mathrm{E}+09$	$1.293 \mathrm{E}+12$	$1.294 \mathrm{E}+12$	3	7
(\% ARMA(2,1)	$8.848 \mathrm{E}+08$	$3.319 \mathrm{E}+12$	$3.320 \mathrm{E}+12$	2	10
(\% ARMA (2,2)	$8.793 \mathrm{E}+08$	$1.457 \mathrm{E}+12$	$1.458 \mathrm{E}+12$	1	8

Figure D-1 EXCEL, Log-Linear Forecast of F-102 Historical Data

Figure D-2 EXCEL, Forsythe Forecast of F-102 Historical Data

Parameters:	\mathbf{a}^{*}	beta*	n*
	1753527.473	33272394	0.83366665...
SSE(1st 20):	2814E409		
SSE(all 500):	1560E+10...		
Equation:	$\mathrm{Y}(\mathrm{x})=\mathrm{a}^{*}(\mathrm{x}+\mathrm{beta})^{\wedge} \mathrm{n}$		

Figure D-3 EXCEL, Stanford-B Forecast of F-102 Historical Data

Figure D-4 EXCEL, AR(1) Forecast of F-102 Historical Data

Parameters:	phi_1*	phi_2*	const*
	/ 0.903242252	-0,03405886:	14658.23013
SSE (1st 20):	2550RHO9		
SSE (all 500):	9413E409		
Equation:	AR(2) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+const+error		

Figure D-5 EXCEL, AR(2) Forecast of F-102 Historical Data

Figure D-6 EXCEL, AR(3) Forecast of F-102 Historical Data

Parameters:	phi_1*	phi 2*	phi 3*	phi_4*	const*
	0.853808835	0011344383	0025242833	.0081935584	29783.44523
SSE (1st 20): SSE (all 500):	ITOTE+09				
	(\%) $463 \mathrm{~F}+10$				
Equation:	AR(4) = phi_1*(Y	2*(Ysubx-2	*(Ysubx-2)+c		

Figure D-7 EXCEL, AR(4) Forecast of F-102 Historical Data

Figure D-8 EXCEL, AR(1,1) Forecast of F-102 Historical Data

Parameters:
SSE (1st 25):
SSE (all 500):
Equation:

Figure D-9 EXCEL, AR(1,2) Forecast of F-102 Historical Data

Parameters:	muprime*	phi1*	phi2*	theta*
	ॠॅ. 26833.4934	0.9152	-0.108931066	1.7250
SSE (1st 25):	\%/...8848E408\%			
SSE (all 500):	3320E+12			
Equation:	$\operatorname{ARMA}(2,1)=\text { phi }$	$\begin{aligned} & (2,1)-1) \\ & \text { ime-the } \end{aligned}$	$\begin{aligned} & \text { RMA (2,1)-2)+ } \\ & \text { last+noise } \end{aligned}$	

Figure D-10 EXCEL, AR(2,1) Forecast of F-102 Historical Data

Parameters:	muprime*	phi1*	phi2*	theta1*	theta2*
SSE (1st 20):	($8.793 \mathrm{E}+08$				
SSE (all 500):) $1.458 \mathrm{E}+12$.				
Equation:	$\text { ARMA }(2,2)=\text { phi1 }^{*}(\text { ARMA }(2,2)-1)+\text { phi2 } *(\text { ARMA }(2,2)-2)+$				

Figure D-11 EXCEL, AR(2,2) Forecast of F-102 Historical Data

Appendix E

The Historical F-102 Data Base - 500 Observations

Table E-1 The Historical F-102 Data

Appendix F

Fit/Forecasting the Notional C-17 Data Using 15 Observations and a
Hold-out Sample of 8 Observations (Work done in EXCEL)

Table F-1 Detailed Summary of Fit/Forecasting the Notional C-17 Data

(more) Table F-1 Detailed Summary of Fit/Forecasting the Notional C-17 Data

Table F-2 Brief Summary of Fit/Forecasting the Notional C-17 Data

Model	SSE (1st 15)	SSE (all 23)	SSE (last 8)	Rank (1st 15)	Rank (all23)	Rank (8)
Log-linear	870.7	1040.1	169.4	6	6	3
Forsythe	291.1	386.5	95.4	2	2	2
Stanford-B.	359.2	364.7	5.5	5	1	1
AR(1)	1266.9	1727.7	460.8	7	8	10
AR(2)	1340.4	1753.9	413.6	9	9	9
AR(3)	1405.5	1754.0	348.4	10	10	8
(AR(4)	1302.1	1503.5	201.4	8	7	4
ARMA(1,1)	89.9	398.1	308.2	1	3	7
ARMA(1,2)	3699.0	10270.0	6571.0	11	11	11
ARMA(2,1)	329.9	572.3	242.3	4	5	6
ARMA 2,2$)$	302.9	524.1	221.2	3	4	5

Parameters:	a^{*}	b*
	2772899795	-0.907621213
SSE(1st 15):	8.707E+02	
SSE(all 23):	- $1.040 \mathrm{E}+03$	
Equation:	$\mathbf{Y}(\mathbf{x})=\mathbf{a} \mathbf{x}^{\wedge} \mathbf{b}$	

Figure F-1 EXCEL, Log-Linear Model Fit/Forecast of Notional C-17 Data

Parameters:	a*	b*	cmin*
	1698.476005	2500637253	26.70880797
SSE(1st 15):	2911 EH 02		
SSE(all 23):	3 $3665 \mathrm{E}+02$		
Equation:	$\mathbf{Y}(\mathbf{x})=\mathbf{a}^{*} \mathbf{x}^{\wedge} \mathbf{b}+\mathbf{c m i n}$		

Figure F-2 EXCEL, Forsythe Fit/Forecast of Notional C-17 Data

Parameters:	a*	beta*	n*
	68.192195	-3.15186838	-0.365773163
SSE(1st 15):	§3.592E+02		
SSE(all 23):	364.7427137		
Equation:	$\mathbf{Y}(\mathbf{x})=\mathbf{a}^{*}(\mathbf{x}+$ bet		

Figure F-3 EXCEL, Stanford-B Fit/Forecast of Notional C-17 Data

Parameters:	phi* const*
	0.884635386 .0882021084
SSE (1st 15):	1.267E+03
SSE (all 23):	$1.728 \mathrm{E}+03$.
Equation:	AR(1) $=$ phi*(Ysubx-1)+const+error

Figure F-4 EXCEL, AR(1) Fit/Forecast of Notional C-17 Data

Parameters:	phi_1*	phi_2*	const*
	0.90103771	-0.034061831	-0.25282540
SSE (1st15):	- $1340 \mathrm{E}+03$		
SSE (all 23):	- $1754 \mathrm{E}+03$		
Equation:	AR(2) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+const+error		

Figure F-5 EXCEL, AR(2) Fit/Forecast of Notional C-17 Data

Parameters:	phi_1*	phi_2*	phi 3*	const*
	0.8889754711	-0.009425773	-0.032953591	0.481052734
SSE (1st 15):	$1.406 \mathrm{E}+03$			
SSE (all 23):	$1.754 \mathrm{E}+03$			
Equation:	AR(3) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error			

Figure F-6 EXCEL, AR(3) Fit/Forecast of Notional C-17 Data

Parameters:	phi_1*	phi_2*	phi_3*	phi_4*	const*
	O. 0.552839607	011344546	0.02524206	0.0819432	2.673475955
$\begin{aligned} & \text { SSE (1st 15): } \\ & \text { SSE (all 23): } \end{aligned}$	$1.302 \mathrm{E}+03$				
	$1.503 \mathrm{E}+03$				
Equation:	AR(4) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error				

Figure F-7 EXCEL, AR(4) Fit/Forecast of Notional C-17 Data

Parameters:	muprime*	theta*	phi*
	\% 16.9352	1.7443	0.4474
SSE (1st 25):	$8.991 \mathrm{E}+01$		
SSE (all 500):	§ $3.981 \mathrm{E}+02$		
Equation:	ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise		

Figure F-8 EXCEL, ARMA(1,1) Fit/Forecast of Notional C-17 Data

Parameters:	muprime*	phi1*	theta1*	theta2*
	15.9419	0.8994	0.4915	0.13380841
$\begin{aligned} & \text { SSE (1st 15): } \\ & \text { SSE (all23): } \\ & \text { Equation: } \end{aligned}$	§3.699E+03			
	\$1.027E+04			
	$\text { ARMA }(1,2)=p h$		muprim +noise	ta 1 *errorlast-

Figure F-9 EXCEL, ARMA(1,2) Fit/Forecast of Notional C-17 Data

Parameters:	muprime*	phi1*	phi2*	theta*
	21.6784	0.4097	105210976	-0.4249
SSE (1st 15):	$3.299 \mathrm{E}+02$			
SSE (all 23):	$5.723 \mathrm{E}+02$			
Equation:	$\begin{gathered} \text { ARMA }(2,1)=\text { phi1 } *(\text { ARMA }(2,1)-1)+\text { phi } 2 *(\text { ARMA }(2,1)-2)+ \\ \text { muprime-theta }{ }^{*} \text { errorlast+noise } \end{gathered}$			

Figure F-10 EXCEL, ARMA(2,1) Fit/Forecast of Notional C-17 Data

Parameters:	muprime*	phi1*	phi2*	theta1*	theta2*
	20.4647	0.4147	.0.0766	0.20163926	-0.137342779
SSE (1st 15): SSE (all 23): Equation:	$3.029 \mathrm{E}+02$				
	§ $5.241 \mathrm{E}+02$				
	ARMA(2,2)	RMA		$(2,2)-2)+$	
	-	me-1	rias	errorlast	noise

Figure F-11 EXCEL, ARMA(2,2) Fit/Forecast of Notional C-17 Data

Table F-3 The Notional C-17 Data Base

Unit Number	Adj. Hours
3.5	100
5	63.04729214
6	40.06102212
7	39.63005339
8	33.24942792
9	35.25934401
10	32.31121281
11	25.27841342
12	31.03928299
13	34.94279176
14	39.33638444
15	27.60869565
16	23.78718535
17	28.80244088
18	23.69946606
19	23.85964912
20	23.07398932
21	24.00839054
22	21.73150267
23	23.67276888

Captain Jennie H. Lommel

After graduating from Oyster Bay High School in Oyster Bay, New York in 1976, she worked for a couple of years before marrying her husband Walter Lommel, also of Oyster Bay. They both enlisted in the United States Air Force early in 1979.

Upon graduation as an honor graduate from Electronic Warfare Systems School school in 1980, she was assigned to Eglin AFB as an EW technician. Upon completion of her assignment at Eglin, she volunteered for instructor duty at the EW school at Keesler AFB, Mississippi. During both of these assignments, Jennie took classes towards the completion of her degree in Electrical Engineering.

In 1986, she was selected to participate in the Airman's Education and Commissioning Program (AECP) and went off to complete her BSEE at Arizona State University. After graduation from ASU and from Officer Training School, Jennie was commissioned a second lieutenant in the United States Air Force. After her commission, Lt Lommel's first assignment was to Aeronautical Systems Division (ASD), WrightPatterson AFB, Ohio, where she was assigned as an analyst in the Aeronautical Observables Branch. During this time, Lt Lommel also acted as the executive officer to the director of the Avionics Systems Directorate.

Captain Lommel entered the School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio in 1994. After graduating with a Master of Science degree in Operations Research, she was assigned NAIC at WrightPatterson AFB, Ohio.

Captain Lommel has two children: a daughter, Kate; and a son, Alex.

Epilogue

The Data -- A Humorous Aside

As an entertaining aside which may actually not survive the editorial shears of my advisor, I've got to say that searching for a data base on which to test the aforedeveloped models turned out to be quite the formidable and frustrating task! In the final frantic throws of my thesis process (and under penalty of not graduating....), I searched high and low for this data. My advisor searched high and low too and even went so far as to call in some personal debts -- all to no avail (???).

My search led me to an old friend in the Defensive Avionics System Program Office (SPO) here on base. He pointed me towards, what he termed, the 'manufacturing pukes' (MPs) in the aircraft SPOs. One after another, the MPs suggested, "Sorry, we can't help you. You'll need to go directly to the manufacturer to get that kind of data! Be forewarned, however, they might consider it proprietary and opt not to give it to you."

So, that suggestion fresh in my mind, I went to the Aeronautical Systems Center (ASC) Technical Library to see what they had before attempting an assault on the manufacturers. When the people at the Tech Library heard what I wanted, they did the proverbial, "You want it WHEN????!!!" Then they told me, "Sorry, we can't help you. You'll need to go directly to the manufacturers to get that kind of data. Be forewarned, however, they might consider it proprietary and opt not to give it to you." (Sound familiar?)

Okay, manufacturers, here I come! Upon questioning, the one fellow I did manage to get in contact with at an un-named aircraft manufacturing company (my
middle name is chicken or I'd name the company as well as the individual) said, "I can't help you; that data is proprietary. You'd do best to talk to the people at the SPOs."

Geee Wizzz! I think I'm on my own.

This tale of woe does have a good as well as an entertaining ending. In my final search for a lead and one last attempt to secure my graduation, I spoke to the Operations Research Department Head, Lieutenant Colonel Paul Auclair. He promptly pointed me towards the Logistic School (another school at AFIT) to a man named Dr. Vaughn (AFIT Department of Research), who promptly pointed me towards Professor Roland Kankey (AFIT Department of Acquisition) who promptly pointed me (and quite accurately so!) to the ASC Cost Library where I found the data for which I'd been so fervently searching.

I left the library with a plethora of publications with dates ranging from 1949 to 1982. The study dated 1982 and entitled The Learning Curve in the Airframe Industry (Brewer, 1982) is the source of my actual aircraft build history data -- the 1000 unit history of the F-102. Before I discovered my wonderful data base, and while leafing through the stack of documents, I found an interesting comment in the work entitled An Airframe Production Function (Alchian, 1949):
> "Within individual airframe manufacturing facilities, estimates of costs of producing airplanes are frequently based on the learning curve. Unfortunately, no data on the estimates made by aircraft manufacturing facilities themselves have been available, so tests of their reliability could not be made. Naturally enough, individual business units are not willing to publicly reveal their cost estimating records."

I guess maybe he didn't graduate on time.

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In 1995, the C-17 Factory Simulation Model (FSM) was developed to enable analysts to address "what-if" questions about the resources required to build future aircraft, and is based on learning curve models that are used to both portray and simulate future aircraft production. In this thesis, we examine and develop alternate learning curve models that also utilize a small amount of initial production data to portray the relationship between the number of aircraft built and the resources required to build them. The goal is to identify a model which not only provides a good fit and forecast based on a small amount of data but is also intuitive and reasonably simple to apply. We also propose and evaluate the use of Autoregressive Moving Average (ARMA) models for modeling the effects of learning. These models are exercised in fitting simulated \log-linear data, as well as in fitting and forecasting historical F - 102 manufacturing data and notional $\mathrm{C}-17$ manufacturing data. The results are somewhat inconclusive since they do not identify any one model as the best. They do, however, suggest that ARMA models are a promising alternative to the standard log-linear learning curve. The thesis concludes with an examination of the effects of explicitly accounting for uncertainty in parameter estimation when simulating future performance based on the traditional log-linear learning curve model. The results show that the approach employed in the FSM is viable even though it does not directly account for this uncertainty.

14. SUBJECT TERMS			15. NUMBER OF PAGES
Learning Curves; ARIMA; Parameter Estimation;		Modeling; Metamodeling	16. price code
	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

[^0]: ${ }^{1}$ MAPE - Mean Absolute Percent Error
 ${ }^{2}$ MAD - Mean Absolute Deviation
 ${ }^{3}$ BIC - Bayesian Information Criterion
 ${ }^{4}$ RMSE - Root Mean Square Error

[^1]: ${ }^{5}$ SMA - Single Moving Average, in which the forecast for time $t+1$ is simply the observation at time t
 ${ }^{6}$ The statistics which are calculated (and which are displayed in Table 3-2) for the various models under study in this section cannot all be compared directlly. For example, the RSQR and ADJRSQ statistics are considered better if their magnitude is larger. The MAPE, MAD, and RMSE, being measures of error are considered to be better if their magnitudes are smaller. So, for purposes of clarity, we refer to statistics as being better or worse than average. A better than average RSQR statistic is a statistic which is larger

[^2]: statistic.
 ${ }^{7}$ Forecast-Pro's repertoire of models does not include models based on the learning-curve.

[^3]: ${ }^{1}$ 'Hold out set,' is a reference to the method of using a portion (x out of n observations) of a given set of data to develop a model. The resulting model is then used to forecast the next $n-x$ values in the series; the

[^4]: 2 In this thesis, the term 'fitted value' refers to the per-unit value produced by the model which is fitted to the simulated data. The term 'actual value' refers to the (simulated) data to which the model is being fit.

[^5]: ${ }^{3}$ The full data set is given in Appendix E. See the Epilogue at the end of this thesis for a short description of the search for this data.

[^6]: ${ }^{4}$ Lot 3 contains all four of the points which make up the 'jump.'

[^7]: ${ }^{5}$ Recall that the data set starts at PLN Number 11; the first twenty observations, therefore, consist of PLN Number 11 through PLN Number 30. The forecast starts with PLN Number 31.

[^8]: ${ }^{6}$ Recall that the data set starts at PLN Number 3.5; the first fifteen observations, therefore, consist of Observation Number 3.5 through Observation Number 18. The forecast starts with Observation Number 19.

[^9]: ${ }^{1}$ In a real system, we would expect the variance to remain constant.

