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Abstract

The use of control variates is a well-known variance reduction technique for discrete

event simulation experiments. Currently, internal control variates are used almost

exclusively by practitioners and researchers when using control variates. The primary

objective of this study is to explore the variance reduction achieved by the replicative use

of an external, analytical model to generate control variates. Performance for the

analytical control variates is compared to the performance of typical internal and external

control variates for both an open and a closed queueing network. Performance measures

used are confidence interval width reduction, realized coverage, and estimated Mean

Square Error. Results of this study indicate analytical control variates achieve comparable

confidence interval width reduction with internal and external control variates. However,

the analytical control variates exhibit greater levels of estimated bias. Possible causes and

remedies for the observed bias are discussed and areas for future research and use of

analytical control variates conclude the study.

xi



REPLICATIVE USE OF AN EXTERNAL MODEL

IN SIMULATION VARIANCE REDUCTION

1. Introduction

1.1 Statement of the Problem

Air Force and industry analysts often use computer simulations to study large scale

systems. Decision makers use the results of these simulations to set policy and allocate

scarce resources. In many applications, analysts focus on one measurement of

effectiveness as the basis for evaluating competing policies or allocations. Obviously, the

better an analyst can estimate this measure, the better the final decision.

Simulations produce random outputs, not exact answers. To interpret a simulation

output, analysts typically use statistical confidence intervals based on the mean and

variance of the output random variable in order to estimate its true expected value.

Analysts may not have the time or budget to complete enough replications to produce a

sufficiently small confidence interval. By using an appropriate variance reduction

technique, the analyst can significantly shrink the size of the confidence interval or reduce

the computational effort needed to obtain an estimate of specified accuracy.

Control variates comprise one method that has been shown to significantly reduce

variance. Control variates are usually classified as either internal or external control

variates. Both methods attempt to take advantage of correlation between selected random

variables to reduce variance. Internal control variates can be the input random variables,

or simple functions of them. Unfortunately, selecting a subset of all the possible internal
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control variates for a given simulation study that produces the small and reliable

confidence intervals can be a difficult problem [14]. External control variates require the

creation of a simplified analytical model of the system under study and an associated

simulation model based on the analytical model. Applying external control variates to

large simulations can be quite difficult since common random numbers must be applied to

each simulation [13]. For these reasons, external control variates are rarely used in

practical applications [17].

By using an external, analytical model to generate a single control variate for each

replication of a simulation, it may be possible to avoid both the undesirable impact of

using multiple control variates and the difficult application of common random numbers.

Sharon [ 19] first used Jackson networks to generate control variates for queueing network

simulations. Tomick, Litko, and Bauer [21] demonstrated that in small queueing networks

significant variance reduction can be achieved by generating control variates using an

analytical model. Dietz and Harmonosky [6] achieved significant variance reduction in an

aircraft sortie generation simulation by using a composite control variate representing a

total expected "hands-on" time per sortie. If this same technique can reduce variance in

large real world simulations, study times can be significantly reduced. This study will

explore the variance reduction achieved with the replicative use of an external model to

generate control variates when applied to simulations of varying sizes. The variance

reduction achieved using this method will be compared to the variance reduction obtained

in the same simulations using typical internal and external control variate techniques.
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1.2 Background

The following background information is provided as motivation for the development

of this study. First, the theory of control variates (particularly how they reduce variance

and how simulation confidence intervals are formed) is presented, followed by a discussion

of internal and external control variates. The theoretical basis for using an external model

to generate a single control variate is discussed next.

1.2.1 Control Variates. This variance reduction technique attempts to take

advantage of the correlation between different random variables in order to obtain a

tighter estimate of a response variable. For example, suppose an analyst is trying to

estimate p = E[Y], where the random variable Y is the waiting time for a customer in a

bank line. To reduce the variance, the analyst can then use another random variable, say

C, that the analyst believes to be correlated to Y and that has a known expectation Pc =

E[C]. A new random variable Y(b) = Y - b(C -/uc) can be constructed for each replication

where

E[Y(b)] = E[Y] -b(E[C] - pce)(1)

is an unbiased estimator for p for any real number b. Then since,

Var(Y(b)) = Var(Y) + b2 Var(C) - 2bCov(Y, C) (1.2)

Var(Y(b)) will have a smaller value than Var(Y) if and only if

2aCov(Y, C) > b 2 Var(C) (1.3)
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which will be the case if Y and C are highly correlated and b is selected appropriately. Let

f8 be the optimal value for b that minimizes Var(Y(b)). By setting the derivative of

equation (1.2), (with respect to b), equal to zero we find

j6 Cov(YC) (1.4)

Var(Y)

Normally Cov(YC) and Var(Y) are not known. Then for n replications, j8 can be

estimated by

j=1 (1.5)

j=1

where Y is the mean of the n observations of Y and C is the mean of the n observations

of C. Then for the same n replications we can estimate q with the controlled estimate

Y(/J) = Y=-A(C-,U') (1.6)

This method can be generalized for several control variates, C1, C2, ..., Cq with

respective means a,, /2, ..., liq to

q

Y(b)= Y-"bk(Ck - I/k) (1.7)
k=1

where the bk's are any real numbers. If the bk's are estimated in the same manner as

equation (1.6), the variance of Y(/6) is given by [14]

Var[Y(?)] = n-2 (I- R)Var[] (1.8)
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and the associated confidence interval is

- ^ - t I (n-2) R2)Var[Y]

Y (l) -t- /'"--'(n - q - 2)

where R2 is the coefficient of correlation between Y and C = [C1, ..., Cq], n is the number

of replications, and q is the number of control variates. (Note equations (1.8) and (1.9)

are not computational formulas. The computational formulas are given in chapter 3.) As

each additional control variate is added, the t-statistic loses an additional degree of

freedom and the loss term (n-2)/(n-q-2) increases, while R2 may increase. Due to these

countering effects, at some point the addition of another control variate can cause the

confidence interval to grow rather than decrease. [ 13]

1.2.2 Internal and External Control Variates. Control variates can be obtained

either internally or externally. Internal control variates arise from the simulation itself and

are normally some combination of the input random variables or simple functions of them.

Examples are interarrival times, service times, and demand levels since their expectations

are known and analysis of the system should provide the sign of the correlation between

them and the output random variable. As demonstrated in the previous section, as more

control variates are added to induce more correlation, the corresponding confidence

interval will begin to grow at some point. Selection of the best subset of all possible

internal control variates then becomes a problem of its own [12].

External control variates are normally obtained by simultaneously simulating a similar

system that has an analytical solution. By using common random numbers the output

variable of the simple simulation should be positively correlated to the output variable of
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the system under study (hopefully highly correlated). Using external control variates is

usually not "cheap" due to the extra work required to develop a similar, simpler system,

the effort required to synchronize the common random numbers, and the additional

computer time required to run the external simulation [6]. However, it can pay off if the

resulting variance reduction is larger than that of the internal control variate.

1.2.3 External Model (Analytical) Control Variates. Since finding the "best" subset

of internal control variates or synchronizing common random can be difficult tasks in large

simulations, control variates are often not considered. However, Tomick et al. [21] and

Dietz and Harmonosky [6] both demonstrated that control variates could be obtained

directly from an analytical model. The control variates obtained in each paper can be

viewed simply as new random variables that are functions of the input random variables.

This type of control variate can be considered a hybrid of both internal and external

control variates since it is found using an external model -- like external control variates --

and is a function of the input random variables that doesn't require another simulation

model -- like internal control variates. In order to avoid confusion, control variates found

in this manner will be referred to as analytical control variates throughout the rest of this

study.

To illustrate how an analytical control variate can be generated consider a simulation

model where Y is the output random variable of interest with E[Y] = p. Also, let X = (XI,

X2, ..., X,,) be the vector of input random variables that drive the simulation model with

E[X] = (,al, p2, .... .). An appropriate analytical model is essentially a function of some

subset of the same input random variables that drive the simulation, ideally all of the input
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random variables. This function should then provide an approximation of the output of

the simulation. To illustrate, represent the analytical model as the function 1(X) = Z. Let

E[f(X)] =Ali, ..., p ) = Z,. Then a new random variable, the analytical control variate,

can be constructed as before by Y(b) = Y - b(f(X) - Z,), so that

E[Y(b)] = E[Y]- b(E[f (X)]- Z,) (1.10)

is an unbiased estimator of u for any real number b.

To generate analytical control variate point estimates let Xj be the mean of the

observed values of X for the j-th replication. Further let f(Xj)= Zj be the value of the

analytical model for thej-th replication and let Z be the mean of these calculations for all

n replications performed. Then an analytically controlled estimate of /1 is

Y(,8) =Y-fl(Z-Z ) (1.11)

where / is estimated using equation (1.5). As long as f(X 3 ) and Yj are correlated

variance reduction should occur.

1.3 Objective

The primary objective of this study is to investigate the variance reduction of the

replicative use an external model to generate analytical control variates for simulations.

This study will focus on simulations with a single random variable output. The primary

performance characteristic for this study will be confidence interval width rather than

variance. Confidence interval width is chosen for two reasons. First, analysts are

primarily concerned with confidence interval width when performing simulation studies.
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Secondly, confidence interval width is a function of variance, the number of control

variates chosen, and number of replications. Thus, internal control variates can be

compared to external and analytical control variates in a meaningful manner. Comparisons

of the point estimate confidence interval width will be made when no control variates are

used to the point estimate confidence interval width when internal control variates,

external control variates, and analytical control variates are used on the same simulation.

In addition, realized confidence interval coverage and estimated mean square error will be

compared for all cases to investigate the possibility of bias error.

1.3.1 Approach. The objectives of this study will be accomplished in the following

manner.

1. Create a simple open queueing network and an appropriate simulation model.

Develop an external analytical model whose output is correlated to the output of

the simulation model. Create a separate simulation model of the analytical model.

2. Perform simulation experiments on three different design points of the open

queuing network and generate internal, analytical, and external control variates.

Calculate response statistics without controls and with controls and compare the

resulting confidence intervals.

3. Create or find a more complex closed queueing network and build an appropriate

simulation model. Using the mean value analysis algorithm as the analytical model,

create a simulation program of the analytical model.

4. Perform simulation experiments on twelve different design points of the closed

queuing network and generate internal, analytical, and external control variates.
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Calculate response statistics without controls and with controls and compare the

resulting confidence intervals.

1.3.2 Scope. Only estimates of single random variable confidence intervals will be

explored. Estimating the reduction in multivariate confidence intervals will not be

discussed. Estimating simulation outputs can be accomplished using replication methods,

batch means, or the regenerative method. Only the replication method will be considered

in this study. Other variance reduction techniques such as common random numbers,

antithetic variates, indirect estimation, or conditional expectations will not be considered.
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2. Previous Work

2.1 Introduction

A review of the current literature on the use of control variates to reduce the variance

of simulation studies as it pertains to this study is presented below. The discussion will

focus on the use of control variates when estimating single variate responses using

replicative simulation methods. The first section presents some of the basic references on

control variates, followed by a review on the use of external control variates. Selected

topics on the use of specific internal control variates as applicable to this study are

presented next. The final section reviews the literature on analytical control variates

2.2 General Control Variate Methodology

2.2.1 Law and Kelton (1991). Several authors present excellent references on the

use of control variates to reduce variance. The Law and Kelton textbook (1991) on

simulation modeling includes a section on the use of control variates in their chapter of

variance reduction techniques. They provide an overview on control variate theory,

application, and a brief discussion on the difference between internal and external control

variates. In addition to their excellent coverage of control variates, they also provide an

extensive reference list of control variate literature.

2.2.2 Nelson (1987). This article presents a guide for simulation practitioners for

applying three variance reduction techniques, including control variates. Nelson provides

methods for finding point and interval estimators, software requirements, and guidelines
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for experiment design when using control variates. This article is designed as a tutorial,

not as a definitive presentation of control variate theory. As such it is very useful in

understanding how the theory of control variates is applied to actual simulation studies.

For example, Nelson points out that the computation of control variate point and interval

estimators is the same as estimating the intercept term of a least-squares regression of the

responses on the control variates minus their known means.

Nelson goes on to describe two methods for deciding which subset of possible

control variates to use for reducing variance. (It should be noted that when Nelson refers

to control variates, he is referring to only internal control variates.) One method is to use

a regression software package and perform stepwise regression on all possible control

variates and then select the subset of controls that create the largest amount of variance

reduction. He also proposes a means of determining a marginal improvement ratio for

adding an additional control variate to the set of controls already in use. For example, for

a set of q control variates, the marginal improvement ratio is computed by comparing 1-

R2 for the set of q + 1 control variates, and 1 - R2 for q control variates, where R 2 is an

estimate of the square of the multiple correlation coefficient of the response variable. He

then provides a table of marginal improvement ratios necessary for adding an additional

control variate based on the number of replications performed and number of control

variates already included.

2.2.3 Lavenberg and Welch (1981). This is a very detailed survey on the application

of control variates. The methods they present in generating confidence intervals form the

foundation of the methods used in this study. As in Nelson (1987), the focus is on internal
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control variates, but Lavenberg and Welch do point out that control variates can be

obtained from the simulation of a second related model that has a known expected value

and is driven by the same sequences of random numbers that are used in the simulation

under study. These control variates can then be looked upon as complex functions of the

input random variables and the theory of control variates they present holds for these

types of control variates too.

Other areas investigated include techniques for generating control variates (internal),

inefficiencies resulting from estimating control variate coefficients, a review of the studies

completed at the time of the article, and directions for future research. Particularly useful

are the two appendices of this article which provide detailed discussions on the application

of control variates to generate confidence intervals. The first appendix describes the

generation of confidence intervals using the method of independent replications, (and

equivalently the method of batch means) while the second appendix presents the

generation of confidence intervals using the regenerative method of simulation.

2.3 External Control Variates

2.3.1 Burt, Gaver, and Perlas (1970). The effectiveness of several variance

reduction techniques on project graph analysis (PERT, GERT, CPM, etc.) network

simulations is examined in this article. The techniques considered are antithetic variates,

stratification, and what we would now call external control variates. They generate the

external control variates by first constructing simplified networks that have analytical

solutions and are "similar" to the networks under study. They then simulate both models
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separately using the same random number stream to drive both simulations. The

generated control variates are then applied in two ways. First, no effort is made to

determine an optimal control variate coefficient, and therefore "-1" is used to calculate the

controlled response. They call this straight control estimates. Burt et.al. then use the

regression technique to estimate the optimal coefficient. Two different networks are

simulated with control variates and results are reported of significant variance reduction

with the regression method being the most effective.

2.3.2 Gaver and Shedler (1971). The application of external control variates to

simulations of a multiprogrammed computer system is examined by the authors. In a

similar manner to the study above, Gaver and Shedler propose a model of a

multiprogrammed computer system and a similar model that can be solved analytically. In

the same manner as above, both models are simulated and the generated control variates

are applied using both the straight control variate and regression to estimate an optimum

coefficient. Results indicate significant reduction in variance with the best results from the

use of regression.

2.4 Internal Control Variates

2.4.1. Lavenberg, Moeller, and Welch (1982). The authors propose three different

internal control variates (service time variable, flow variable, and work variable) that can

be used in simulation studies of a wide class of closed queueing networks. The closed

networks under study consist of a finite number of service centers with one or multiple

servers. Additionally, there is a fixed number of customers of different classes. Service
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time variables are the sample mean service time for a particular class of customers at a

specific service center. The fraction of service completions at a specific service center that

are for a particular class of customers is defined as a flow variable. The product of these

two variables, the sum of service times for a class of customers at a service center,

constitute the work variables. Lavenberg et. al. then perform experiments on a simple

model of an interactive multiprogrammed computer system. This same model is used in

this study to assess the performance of analytical control variates on closed queueing

networks. Results from their experiments show work variables produce significant

reduction in variance over several different experimental configurations.

2.4.2 Wilson and Pritsker (1984). Standardized work variables are developed for

queueing systems with the regenerative property in this study. Given a service process

{Uj (k): j> 1, at service center k with known expected value /A and variance of o'

standardized work variables are defined as

a(k,t)

Ck (t) =[a(k, t)]11 2 
1 [us. (k) - p,11-
j=l

where a(k, t) is the number of service times started at center k during the time period [Ot].

These standardized work variables are used later in this study and are defined for use with

the models under study in sections 3.3.1 and 3.4.1 below. A need for these standardized

variables was seen since the work variables presented in Lavenberg (1982) have been

shown to have an asymptotic variance equal to zero which causes the variance covariance

matrix for a set of these controls to be asymptotically singular. Since an iniverse of this

matrix (or usually an estimate of it) must be computed to find (or estimate) the optimal
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control coefficient, numerical problems can arise as replication length increases. The

standardized work variables, on the other hand, have an asymptotic variance of 1.

Experiments on a simple network were performed with substantial variance reduction

reported.

2.4.3 Bauer and Wilson (1993). Another set of standardized control variables,

standardized routing variables, are developed which can be used for discrete-event

simulation models that use a multinomial construct. These control variates attempt to

exploit the correlation between departures from the mean branching probabilities in a

network and the resultant network response. Standardized routing variables are defined in

the following manner. Consider a multinomial branching process of g branches leading to

g service centers, and define an indicator variable as

10 if the i - th departing customer goes to center j,

I (j) otherwise.

Then a standardized routing variable for centerj is defined as

N(t)Rj = I- , (j = p, _.])

i=1 {N(t)[ - p(j)]p(j)} ,  =

where N(t) is the total number of transits through all g branches in the time interval [0,t]

and p(j) is the probability that a customer is sent to center j. Standardized routing

variables are used in this study and are defined in terms of the study model in section 3.4.1

below. Bauer and Wilson performed several experiments on a simple network with results

indicating significant confidence interval length reduction, particularly when the

standardized routing variables are used in conjunction with standardized work variables.
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2.5 Analytical Control Variates

2.5.1 Tomick (1988) and Tomick, Litko, and Bauer (1989). Both of these works

report variance reduction achieved for external control variates that are obtained by

solving approximate queueing models. These types of control variates are called analytical

in this study to differentiate them from external control variates obtained via the simulation

of a separate simulation model. Throughout the rest of this discussion, Tomick's external

control variates will be called analytical control variates to maintain consistency in this

study. Tomick computes the analytical control variates two ways. The first method

consists of solving a related Jackson network using the observed values of the input

random variables for each replication. The second method uses the Queueing Network

Analyzer software developed by Whitt [22] with inputs of the observed values of the

random variables for each replication. Experiments were conducted on a simple open

queueing network in Tomick (1988) that indicated analytical control variates achieved

significant levels of variance reduction, however confidence interval coverages were less

than satisfactory indicating a bias problem with the analytical control variates under study.

2.5.2 Dietz and Harmonosky (1989). This paper examines the applicability of a single

internal control variate that is formulated by aggregating many of the key input random

variables for use with a simulation model of an aircraft sortie generation model. The

control variate used is an analytical model of the "hands-on" time between each sortie,

which includes all ground activities and flying time with inputs being the observed

parameters from the simulation run. Obviously this single internal control variate is the

same as the analytical control variate referred to in this study. Several experiments were
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run for different values of aircraft reliability, aircraft maintainability and maintenance

resource availability. Results indicate significant variance and confidence interval length

reduction can be obtained using this approach. Results on confidence interval coverage

are not reported.
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3. Methodology

3.1 Introduction

The performance of analytical control variates will be compared to that of various

internal and external control variates. This will be accomplished on several configurations

of two queuing network models. All control variates will be compared using the Method

of Independent Replications [12] as described in section 3.2. The method is commonly

referred to as the "regression method" since linear regression formulas can be used to find

controlled responses as well as estimate controlled variance values and their associated

confidence intervals.

The following sections present the two queueing networks and the particular

statistical performance measurements for each model. The first section addresses a simple

open queueing network and the second deals with a more complex closed queuing

network. Each section includes model-specific discussion on the selection of internal

control variates, external models for external control variates, and analytical control

variates.

3.2 Control Variate Method of Independent Replications.

The following methods will be used to calculate controlled responses and estimate

controlled response variances and confidence intervals. First define Pu as the expected

value of a system response measurement which we wish to estimate and Yj as an unbiased
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estimator of p for thej-th replication of a simulation. Then define

1Y(n)= . (3.1)

.=1

Let C = (C1 , C2,...,Cq)' be a q x I vector of control variates with the known mean

vector of /c = (I21,/12,--., Pq)'. Let B = (bl,b 2 ,...,bq)' be a q x I vector of constants.

Then a controlled estimate of an expected response, u, is given by [13]

Y(B) = Y(n)- B'(C- pu) (3.2)

The variance of Y(B) is minimized by the optimal vector of control coefficients given by

'8 = o-re Y-1 (3.3)

where a-c is the covariance vector between Y and C, and XCC is the covariance matrix

of C Since these values are normally unknown, f8 is estimated by

P = SrCSC-C (3.4)

where

1 n

(n j=- (3.5)

scc = I' (cj - (cj - Q)
(n 1) 1

Then a controlled estimate of p is given by

Y(P) =Y(n)- ,fl'(C - /u) (3.6)

If we assume both Y and C have the following joint normal distribution

Lcj -Ni+q[[Py],32[UY YC (3.7)
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then Y(f8) is an unbiased estimator of p and the estimated variance is given by [2]

s= ( ) ) = D 2SY2.C (3.8)

where

D2 + 1 (

-- (n [(C- PC)'Scj(C-p)] (3.9)

and

s n-- [52 _SrcSccSrc] (3.10)
n-q-1

Then a 100(1- a)% confidence interval is given by

Y(fl) ± tI_-12,n-q1 IDSr~c  (3.11)

Since we have assumed Y and C to have a multivariate normal distribution, the

application of control variates using fi can be considered a classical regression problem

[9]. Computationally, this can be a simpler method for finding Y(fl) and estimating it's

variance and associated confidence interval. Since

E[Y]C=c]=u +/3'(c-p,) (3.12)

the problem can be stated as

Y =xr +

where Y'=[Y,Y,...,Y] (3.13)

and3
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with

C1 1 - I . .. Cq P flq

x (3.14)

L ~ PI .. qn Pqj

Then to find the least squares estimators set

L I = (x x)-' x'Y (3.15)

Since [1 1]

it follows that f is equal to Y(/6). Then from regression theory results for j [16], the

estimated variance of Y(fl) is given by

Var(Y(/)) = s,1 MSE (3.17)

where s 1 is the upper left element of (XX)-' and MSE can be computed as

MSE= ( I Y'Y-;,x'Y (3.18)

Then the 100(I-a)% confidence interval can be given by

Y(fl) ± t1l/.12,nq1 s 1 MSE (3.19)

3.3 Open Queuing Network.

The open queuing system studied consists of three server stations connected in

series, (see figure 3.1). Call this model Mi. Each station, or node, has a dedicated single
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server that can provide service to only one entity at a time. All arrivals enter the system at

node I with balking not considered. Upon completion of service at node 1 all entities

proceed on to nodes 2 and 3 consecutively. Entities depart the system after receiving

service at node 3.

Service Service Service
Center Center Center

1 2 3
Customer ([rifiite q-uee capacity) (Infinte queue capacity) (Queue capacity 2)

Arrivals - Expoiertal Customers leave system

Service time - Weibull Service time - Weibull Service time - Weibull

Figure 3.1. Open queueing system model M

System interarrival times are iD exponential random variables with a mean

interarrival time equal to A (Poisson arrival process) and probability density function

I e-x 2 ifX O!
f(x) Ae (3.20)

=0 otherwise

Each service node has a different service time distribution, but each is an lID Weibull

random variable with probability density function

a a-l - 16 if x _ 0;a,/8> 0
/(X)= 8(3.21)

otherwise

Node l's service time distribution has shape parameter a, and scale parameter IA, node

2's parameters are a 2 and P2 , and node 3's parameters are a3 and A. Then the mean

service time for each node is equal to
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Ak :/1k ' 1 / + k = 1, 2, 3 (3.22)

with a variance of

_____ .akY)

(Typical service time and arrival probability density functions are shown in figure 3.2.)

Nodes 1 and 2 have an infinite queue capacity while node 3 has a finite queuing capacity

of 2. If node 3's queue is full and an entity has finished service at node 2, that entity will

wait at node 2 and block node 2's server until a spot becomes available in node 3's queue.

0.15 1 1 1

<-- p= 10.0 (Weibull)
0.1

/--= 15.0 (Weibull)

0.05 /= 18.0 (Weibull)

2 = 20.0
(exponential)

0 5 10 15 20 25 30 35 40

Time

Figure 3.2. Typical service time distributions (Weibull: P = 10.0, 15.0, and 18.0) and
typical interarrival distribution (exponential: A = 20.0).

This network is a simple model of a hypothetical fast-food restaurant drive through

window system. The first node represents the order microphone, the second node
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represents the pay window, and the third node represents the pick-up window. Entities

being served within the system are fast-food drive through customers. The model is not

meant to represent any specific facility, but has been created for illustrative purposes and

the system assumptions have been made for ease of analysis.

The system performance measurement that will be estimated is the expected time a

customer spends in the system (sojourn time) under steady state conditions. Let U be the

true steady state expected sojourn time which we wish to estimate and let yy be the

sojourn time of the i-th customer during thej-th replication. Also let I be the number of

customers in the warm-up period, m be the total number of customers for each replication,

and n the number of replications. Then, let

I m

Yj =m- Z:lyo j = 1, 2, ..., n (3.24)

so that p can be estimated using the replication/deletion method [13] by

In

,h=Y(n) = I y. 3.5
jn (3.25)

which has an estimated variance of

n

IZ(
n  - Y(n)) 2

- - (3.26)
Y(n) n n n-I

and an approximate 100(1 -a) percent confidence interval given by

- S2 (n)
Y(n) ±n tl_/ (3.27)
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3.3.1 Internal Control Variates (Open Queueing Network). Internal control variates

are random variables generated within the simulation that have known means. For the

open queueing model, candidate random variables can be derived from the interarrival

distribution and the three service time distributions. Standardized work variables, which

are a function of the service time distribution at a specific service center, have been shown

to be good control variate candidates [23]. Let the service time process at service center k

be the ID sequence U, (k): i > 1, k = 1, 2, 3; (1 = order microphone, 2 = pay window, 3 =

pickup window). Then a standardized work variable is defined by

I.M Uj(k)-pk j=1, 2,...,n (3.28)

where Jk and k are given by equations (3.22) and (3.23) respectively for model M1 . Each

Wk. has a mean of zero as (m -1) -* oo [23].

Another candidate internal control variate is a standardized interarrival variable.

Similarly let V:i > 1, be the ID sequence of system interarrival times. Since 2 is the

mean of the interarrival time distribution for model M, define a standardized interarrival

variable as

Aj = U j = 1, 2, ..., n (3.29)

which also has a mean of zero as (m-/) --> c [23].

Given the four candidate internal control variates defined above, fifteen (24 - 1)

different combinations of control variates could be used to reduce the variance of the
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estimated average sojourn time. Let Cd'N be the matrix of all candidate internal control

variates such that

CINT W21 W (3.30)
W1 . . A

in I n
Also let Wk =- W and A =- A. Then let

N = W (3.31)

be the vector of internal control variate means. Then for p = 1, 2, ... , 15, C rIT is one of

-INT
the possible matrices of selected control variates and C is the associated vector of

sample means. Table 1.1 enumerates the different internal control variate combinations.

Let Y(fl),NT be the internally controlled, estimated expected sojourn time using CMr , p =

1, 2, ..., 15, so that

Y(,8) Ir = Y(n)-fp(C7 -0) (3.32)

Then each Y(f )P can be calculated using equation (3.15) and the estimated variance

and confidence intervals can be found using equations (3.17) and (3.19) respectively.

Performance of each controlled estimator can be compared based on variance reduction

and confidence interval reduction for each estimator.
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1W1
2 [Wsl~

3 [W31
4 A 1

5 [W 1 W2 '
6 [W, W3 ]

7 [WiA]'

8 [W 2 W3 '
9 [W 2A 1'
10 [ W3 AJ'

11 [W W2 W3 ,
12 [W W2A]I

13 [ W 1 W3 A]"
14 [ W2 W3 A]'

15 [ W W2 W3 AJ

Table 3.1. All possible combinations of internal control variates

3.3.2 Analytical Control Variate (Open Queueing Network). Application of

analytical control variates requires the development of a separate model, say M2, that can

be solved analytically. Additionally, the solution to the analytical model M 2 must be

correlated to the response of each replication of the simulation model M1 in order to

reduce the variance of the response using control variate techniques. In this specific case,

the analytical model is a series M/M!1 open queuing network with three nodes as depicted

in figure 3.3. The interarrival rate is 1/A, same as M, and the three service rates are given

by I1/p,, 1/4/p2, and I1//3, with pk given by equation (3.21). Based on parameters Cak and A

3-10



from model M1 . Then, from queuing theory, the expected steady state sojourn time is

known to be [18]

"ANALYT 11+11 I+ 1 (3.33)

P1 2 P2 2 P3 2

Service Service Service
Center Center Center

1 2 3
Customer (Infinite queue capacity) (Infinite queue capacity) (Infinite queue capacity)

Arrivals - Exponential Customers leave system

Service time - exponential Setrice time - exponential Service time - exponential

Figure 3.3. Open M/M/I queueing network model M2 and M3

Define C4
4L

Y'T as the 1 x n vector of analytic control variates for the n replications.

To find C' Tr , first define r. as the i-th customer's interarrival time for the j-th

replication of M. Using the replication/deletion method with a warm-up of I customers

and a total of m customers simulated, estimate the expected interarrival time during the j-

th replication by

S 1 "
i - I r, j =1, 2, ...,n (3.34)

M - I i=1+1

Similarly define v#(k) as the service time for the i-th customer at the k-th service center

during the j-th replication of Mi. Then to estimate the expected service time at the k-th

service center during thej-th replication let

Vi(k) -m-l (k)  k = 1, 2, 3; j = 1, 2, ..., n (3.35)
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Then C;ALYT , the analytic control variate for thej-th replication is calculated as

CIALYT= 1 +1 1 (3.36)1 1 +  1 1 1

Vj (1) Rj Vj (2) -Rj Vj (3) Rj

with

-ANALYT 1C LT (3.37)= Ci " r
(.7

j=1

Define y(f) AALYT as the analytically controlled estimate of expected sojourn time,

where

y(,8) ALYT = Y(n) - /),(CAM rT _ ANALYT) (3.38)

which can be computed using equation (3.15). The estimated variance and confidence

interval of Y(fl) ANALYT can be calculated using equations (3.17) and (3.19).

3.3.3 External Control Variate (Open Queueing Network). Application of external

control variates requires a separate, similar simulation model with a known expected

sojourn time, IFp . Call the external simulation model M 3. Using common random

numbers between models MA and M 3 the estimated expected sojourn time between the two

models should be highly correlated so that variance reduction can be obtained using

control variate techniques.

For our example, simulation model Ad3 has the same characteristics and parameters as

model M 2 -- a series of three M/M/l infinite capacity queues with the same interarrival and
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service time distributions as M2 (see figure 1.2). Therefore

EX NLT_ 1 1 1
A ALr- + + (3.39)1 1 1 1 1 1 (.9

2 2 2 P1 3  2

Random numbers are synchronized between M and 3 for all arrival times and

service times at each service center. Since both M 1 and M 2 have exponential interarrival

times, customer arrival times will be the same for each simulation model. At the service

centers, the same random number streams of uniformly distributed random variables

between zero and one are used to generate the random service time. The streams will

produce different service times since the distributions are different for each model

(Weibull and exponential respectively), but will be highly correlated since both Weibull

and exponential random variables are generated using the inverse transform method [ 17]

and therefore have a one to one relationship with each uniform [0, 1] random variable

generated by each stream.

To generate the control variates, let y.rr be the system sojourn time for the i-th

customer during thej-th replication of external model M 3.As with model MI, m customer

arrivals are simulated (with a warm-up period of / customers), in order to find the mean

sojourn time for replicationj as
-~ 1 m

Y" = - -FT j= 1,2,..,n (3.40)

Then define C7 T, the external control variate for thej-th replication, as

C = Yj j = 1, ..., n, (3.41)
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and

= (3.42)
nj=1

Then, the externally controlled estimated sojourn time is given by

Y(,6) Y(n) -f6'(C - (3.43)

which can be computed using equation (3.15). As with the other controlled responses, the

estimated variance and confidence interval can be found using equations (3.17) and (3.19).

3.4 Closed Queueing Network

The closed network studied has the basic form shown in figure 3.4. The network

structure is the same as the network examined by Lavenberg, Welch, and Moeller (1982).

An additional variation of this network, (shown in figure 3.5) will be examined.

Service Service
Center I Center 3

-CService

Center2

Service
Center S

Figure 3.4. Closed queueing network model Q
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As depicted in figure 3.4, the network has a total of S service centers with a total of

N customers within the closed network. Call this model 01. Service center 1 has exactly

N servers resulting in no queues at center 1. The remainder of the centers are single server

queues with customers being served with a 'first in - first out' queue priority. The

underlying transition probability matrix for customer movement throughout 01 is given by

0 1 0 .. 0

PI 0  P2 Ps
P= 0 1 0 .. 0 (3.44)

0 1 0 .. 0

with p, > 0, k = 1, 3, ..., S. As indicated above, all customers completing service at

center I are routed to center 2. Upon completion of service at center 2, the customer is

routed to centers 1, 3, ..., or S with probabilitypk, k = 1, 3, ..., S.

The service time distributions at centers 1, 3, ..., S are characterized as different IID

Weibull random variables with probability density function

ax' -Ie - x' /,6 if x>O; a, 8 >O0
f(x) = (3.45)

otherwise

Each of these centers has a service time distribution with shape parameter cxk and scale

parameter A, k = 1, 3, .., S. Then the mean service time for each service center is equal to

Pk = lk I/aF a k-1 k= 1, 3, ...,S (3.46)
\ k
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and with variance given by

2 2 +12

-k  k r a±2_ F JJ k=1, 3,...,S (3.47)

Service center 2 has an exponential service time distribution with probability density

function

f(x){ Ae x/ _ (3.48)
0 otherwise

with mean service time 2.

Q1 can be considered a simple model of an interactive multiprogrammed computer

system [10]. The customers in this network are users of the system with service center 1

representing the user terminals with the a service time associated with the user's

"thinking" time between system requests. Service center 2 represents the system's central

processing unit (CPU) and service centers 3, ..., S model the system's mass storage units

(disk, drum, tape, etc.). The service time at center 2 represents processing time for the

user's task request until either the task is completed, which will cause the customer to

return to center 1 and start another "think" time, or until data from a mass storage unit is

required. Service times at centers 3, ..., S model the time required to transfer data from

the device it represents to the main memory where it can be acted upon by the CPU

(center 2).
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Since users must be allocated a portion of main memory in order to access the CPU

and storage devices in these types of systems, main memory limitations may not make it

possible for all users to have access at the same time. This leads to the variation of O,

discussed previously, called Oc, as shown in figure 3.5. In Oc at most N' < N customers

can enter the subnetwork of centers 3, ..., S with service center 3 representing the CPU

and centers 4, ..., S being the mass storage devices. Service center 2 holds customers until

the number of customers in the subnetwork is less than N'. The service time random

variables for center 2 are identically zero and there is no queueing at center 2 if the

number of customers in the subnetwork is less than N'.

--------------------------------------

Service Service
Center 1 Center 4

Service Service
Center 2 Center 3

Service
___Center S

Capacity N' < N

Figure 3.5. Closed queuing network model Qc

Several measurements of system performance may be of interest for such a system,

but we will focus on two of them. The first being the steady state expected system

response time, defined as the long run average time it takes for customers departing
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service center 1 to return to center 1. The other performance measurement of interest is

the steady state expected CPU utilization -- the fraction of time service center two is

serving customers. It should be noted that these performance measurements are of

interest in both Q and Qc and the following discussion on estimating these values applies

to both models.

To estimate the expected system response time for Q, using computer simulations,

let z- be the true steady state expected system response time which we wish to estimate,

and let t0- be the response time of the i-th return to center 1 during the j-th simulation

replication. If we define an event as the completion of service at any of the service

centers, terminate each replication upon completion of M events. Let Z be the number of

events in a warm-up period in order to eliminate bias from the initial transient behavior.

Define mj as the number of times customers return to center 1 before event M and , as the

first return to center 1 following event Z for replicationj. Then let

Tj m= I = j = 1, 2 . ............ n (3.49)

so that z can be estimated using the replication/deletion method [13] by

T(n) = ZTj (3.50)
n3=1

which has an estimated variance of

(T _(n))2
S2(n) j=1 (3.51)

n n n-1
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and an approximate 100(1-a) percent confidence interval given by

S(n)
T(n) ± t,-1,1-al2 (3.52)

CPU utilization can be estimated in the following manner. Let v be the true steady

state expected CPU utilization. Now let b . be the amount of simulated time service center

2 is serving the i-th customer to visit center 2 during replication j. Define ej as the

simulated time of replication j when event M occurs and g. as the simulated time of

replication j when event Z occurs. Further let q, equal the number of customers that

complete service at center 2 before time e . and let r be the first customer to complete

service at center 2 following time g, during replicationj. Then let

1 qj

e - b3 , j= 1,2,...,n (3.53)g=ej - 9j I=rj

so that v can be estimated using the replication/deletion method [13] by

In
U)= (n) = -Uj (3.54)

n.=,

which has an estimated variance of

Z(uj - u(n))
S.(n) =1 l (3.55)

n n n-i

and an approximate 100(1-a) percent confidence interval given by

S (n)
U(n) ± t ._,_ /2 (3.56)

n
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3.4.1 Internal Control Variates (Closed Queueing Network). Possible random

variables with known means for model 01 include the S service time distributions and S-I

values of the routing variablespi, p3 ...., ps. Again, the following discussion applies to Qc

as well as 01. As in the open queueing network, standardized work variables should be

good control variate candidates. Another set of candidate internal control variates with

demonstrated utility that are appropriate to 01 are standardized routing variables [2].

Each of these internal control variates are applied to estimate both expected response time

and expected CPU utilization.

The standardized work variables are derived in the same manner as they were for

model Mi. Let s, (k): i _> 1, k = 1, 2, ...., S represent the service time process at the k-th

service center. Further let aj(k) be the number of service times completed at center k, and

let b/k) be the first service time completed at center k after time g, for replicationj. Then

the standardized work variables are

a1 (k) s-(k)-

W#. /a(k)-b (k)+I i=bj(k) Uk (3.57)

forj= 1, 2,...,n andk= 1,2,...,S

where y and sk are given in equations (3.46) and (3.47) respectively. Each W9 has a

mean of zero as a(k) - b,(k) goes to infinity [23].
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Standardized routing variables are developed in the following manner. Given the five

branching processes at service center 2, (center 3 for Qc), define an indicator variable as

F10 if the i -th departing customer goes to center k for replicationj, (3.58)
1 . (k) =~ otherwise.

Then a standardized routing variable for activity k for replicationj is defined as

aj(2) 4 (k) - Pk (3.59)
i=bj(2) {[a3 (2) - bj (2) + Ill - Pk kP

fork=l,3,4,...,S andj=1,2,...,n

where [a( 2 ) - bj(2) + 1] is the total number of service completions at service center 2 for

replicationj during the time interval [gj, ej] and the pk are the transition probabilities from

service center 2 to center k as given by Q1's transition probability matrix P. It has been

shown that the vector of routing variables, R, converges in distribution to a multivariate

normal distribution with a mean of 0 as the simulation run length increases [2].

As with model M, the 2S - 1 internal control variates make 22 -1 - 1 different

combinations of control variates, so define C( r as the (2S - 1) x n matrix of all possible

internal control variates for n replications. Then forp = 1, 2, ..., 2S - 1; let C'T be one of

the possible matrices of selected control variates and let C be defined as the mean

vector of the associated matrix C 7 T (same as equation (3.30)).

The controlled system response time, T(,)7 r , is defined by

P T(n) -f3'(C p -0) (3.60)
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which can be calculated using equation (3.15) and the estimated variance and confidence

intervals can be found using equations (3.17) and 3(. 19).

Similarly, the controlled CPU utilization fraction U(fi) NT is

U(fl)'T = U(n)-fi'(Cp -0) (3.61)

and the associated variance and confidence intervals can be estimated using the regression

equations of section 3.2.

3.4.2 Analytical Control Variate (Closed Queueing Network). To find analytical

control variates for both 01 and Oc consider a new model, Q2, that can be solved

analytically and is similar in structure to models 01 and Qc. Let Q2 have the same

structure and transition probability matrix as model Qa, except that all service time

distributions for 02 are IID exponential random variables with mean service times equal to

those of 01. Using the Mean Value Analysis (MVA) algorithm [11] the steady state

expected system response time and CPU utilization fraction can be determined exactly.

Let AN-A r and oNALTT be the expected response time and expected CPU utilization for the

analytical model Q2.

The MVA algorithm is for closed networks that have closed form solutions. The

algorithm yields the mean values of the network performance characteristics response

time, queue length, throughput, and utilization for each service center in the network.

Basically the MVA solves the network by first determining system characteristics with

only one customer in the system and then solves it for two customers based on the

information obtained for one customer using the mean value theorem. The mean value
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theorem relates the response time of a service center when n customers are present to the

length of the queue at the service center when n - 1 customers are present. The algorithm

is reapplied until the system is solved for N customers.

To calculate the value of the analytical control variate for each replication, the

ForQue computer program [7], which implements the MVA algorithm, is used. ForQue

requires the following information about a network in order to arrive at a solution:

number of customers (N), number of service centers (S), number of servers at each center

( N at center 1, one at all the others), mean service times at each center (,Uk), and the

transition probability matrix (P). Obviously, N, S, and the number of servers remain

constant for each replication. Additionally, rows 1, 3, ..., S of P remain the same for each

replication and are all identically equal to the 1 x S vector [0 1 0 ........ 0]. To find the

analytical control variates the mean service times and actual branching proportions from

center 2 must be calculated and input to ForQue for each replication.

Define C(T) -r LYT as the analytical control variate for expected response time for

the j-th replication. Also let C(U)ALT be the analytical control variate for expected

CPU utilization. To find each of these control variates using ForQue, define vo(k) as the

service time of the i-th customer to visit center k during replicationj. Then to find the

average service time at each center let

1 , .j ( k )
4_vo.(k) k=l,2, .... ,S;jl= 1 ..,n (3.62)m(k)-Ij(k)+ 1=,(k)
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where mk) is the number of customers completing service at center k and /(k) is the first

customer to complete service at center k following time gj for replication j. To find the

realized routing proportions from center 2, define the indicator variable I/(k) that equals

one when the i-th customer leaving center 2 enters center k, and zero otherwise for

replicationj. Then let

mj (k)

It,(k)

Pjk s -,j(2) k = 1, 3, ..., S andj = 1, 2, ...n (3.63)

1 ZI (k)
k=1 i=j(2)

Given these values, following each replicationj, input Vk for k = 1, 2, ..., S and kfk for k

= 1, 3, ..., S into ForQue to obtain C(T)"ALY and C(U) JVALY T . Then the controlled

responses are

T(O)AIALYT = T(n) - 1 '(C(T) AALYT - . "A-NALYT) (3.64)

and

U(3) AALYT = U(n) - fi'(C(U) ' TT 
- . XvLrr) (3.65)

where C(T) "ALYT and C(U) ANL r are the means of the n values of each analytical

control variate. These controlled responses and their associated estimated variances and

confidence intervals can be calculated using the equations of section 3.2.

3.4.3 External Control Variate (Closed Queueing Network). External control

variates can be obtained by creating a simulation model, 03, of the same form as model

Q2. The true steady state expected response time, ZF-1 and expected CPU utilization,

VoxT , will be the same as those for model 02. Using common random numbers, this
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simulation model can then be used to produce external control variates for both models 0

and Qc. However, due to the nature of a closed network, exact synchronization of

common random numbers becomes very difficult.

Since the service time distributions of centers 1, 3, ..., S in Q1 are III) Weibull random

variables, it is possible to use the same underlying uniform random number to produce the

i-th service time at service center k in Q3, producing highly correlated service times.

Additionally, the routing random variables for the i-th customer to complete service at

service center 2 can be the same random number for both models 0 and Q2. The inability

to produce exact synchronization with this scheme comes from the fact that the i-th

service time at service center k, although highly correlated, will not be exactly the same for

both models which results in a different sequence of specific customers arriving at service

center 2 for each model so that the each customer will likely have a different sequence of

service centers visited for each model. It seems the only way around this is to assign all

routing and service time random variables to each specific customer at the beginning of

each replication for both Q, and Q3. Although this is possible, it is an extremely

cumbersome way to program both simulation models.

Although exact synchronization of common random numbers is not achieved, the

following scheme for random number generation is used for Q3. The same random

number streams of uniformly distributed random numbers between zero and one will be

used to generate the i-th service time exponential random variable for Q3 and Weibull

random variable for Q1, at service centers 1, 3, ..., S. The stream of routing random

variables will be identical for both models as well as the stream of random service times at
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service center 2. Based on this scheme, the output of Q3 should still have some

correlation with 01 and produce variance reduction.

To generate the external control variate for expected response time, let t,' be the

response time for the i-th customer for replicationj of model 03. Using the same number

of events (M) to terminate Q3 and Q1, and the same number of events (Z) to define the

warm-up period for both models, define e' as the simulated time in which M events

occur for replicationj of Q3. Further define g7'r as the simulated time Z events occur for

replicationj of Q3. Then define Mr7 as the number of customers that return to service

center 1 before time ef "T and let IE' be the first customer to return to center 1 following

time g7 for replicationj. Then define the external control variate for response time as
1.77

C(T) =-t j = 1, 2, ....,n (3.66)

For the external control variate for expected CPU utilization, let b' be the amount

of time it takes to service customer i at service center 2 for replication j of model Qs.

Also let q7-r be the number of customers that complete service at service center 2 before

e=r and let rf T be the first customer to complete service at center 2 following time
i3

g7cr for replicationj. Then the external control variate for CPU utilization for replication

j is defined as

C(U) - eU 7- bF" j = 1, 2, ..., n (3.67)
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The externally controlled responses are given by

T(8) ' = T(n)- 8)'(C(T) r -r) (3.68)

and

U(,8) z r= U(n) - fl'(C(U) z  - v=w )  (3.69)

where C(T) = and C(U)= are the means of the n values of the respective external

control variates. These controlled responses and associated estimated variance and

confidence intervals can be found using the regression formulas.
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4. Results

4.1 Introduction

This chapter details the results of several experiments on both the open and closed

queueing networks described in chapter 3. First, experimental procedures used for both

networks are discussed below, followed by a discussion on computer implementation of

the simulation models and the controlled response formulas. Finally, experimental results

from the from the two queueing models are presented.

4.2 Experimental Procedures

Several experiments are conducted on each network. Number of replications and

network parameters are changed for each design point. Three different network settings

have been chosen for the open network and twelve different network settings have been

selected for the closed network (six for Q1 and six for Qc). Selection of particular

network settings and their values are discussed below in section 4.2.2. At each network

setting, 100 experiments are conducted with replication size of 10, and 50 experiments are

conducted with replication size set at 20.

For every experimental setting, performance measures for internal, analytical, and

external control variates are compared. Estimated variance, confidence interval size,

coverage, and estimated Mean Square Error values for the controlled responses are

compared to the same values for the uncontrolled responses. For the internal control

variates, comparisons are made for all possible combinations of internal control variates

for the closed network. All possible combinations of standardized work variables and
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standardized routing variables are considered separately for the open network. The

internal control variates are then screened and all combinations of the best performing

internal control variates are considered for the closed network. Performance

considerations are described below.

4.2.1 Comparison Techniques. Comparisons were made using the generalized

method presented by Bauer and Wilson [2]. Let /U be the expected value of the

performance measurement of concern. For the n = 10(20) replications for the k-th

experiment, k = 1, 2, ..., m (m = 100(50)), an estimate of U is computed. Call the estimate

/.k(1), where I = 1 or 2. When I = 1, no controls are used and / = 2 when some set of

control variates are used. In a similar manner, let &2 (1) be the uncontrolled (1 = 1) and

controlled (1 = 2) estimates, for the k-th experiment, of the variance of tk (1). Then the

average variance estimator over all m experiments for a given setting is

__ I &2 I= 1,2 (4.1)
M k-I

The percentage change in estimated variance due to the use of control variates is then

estimated by 100[&2 (1)- a2 (2)]/a2(1).

For the k-th experiment the confidence interval estimate is given by

Ak (/) = Pk(I) ± tk () (4.2)

where I4 k (1) is the estimated half-width as given in equation (3.19) with a = 0.10. By

letting /k() = 2 H-k (1) be the estimated width of confidence interval, we can find the

average width of the confidence interval estimator over all m experiments for a given
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setting as

L() = ( 1= 1,2. (4.4)
M k=

Then, as with the variance estimates, the percentage change in estimated confidence

interval width due to the use of a particular set of control variates is estimated by

100[L() - L(2)]/L(1).

An area of concern for control variate performance is the amount of bias in the

controlled estimates of u. Any bias induced is due to the fact that 6 must be estimated and

is generally not independent of Y(m) [13]. One measurement that is effected by bias is an

estimated confidence interval coverage probability. To find one, let

0) otherwise

for I = 1, 2 and k = 1, 2, ..., m. As before let 1 = 1 for no controls and I = 2 when some set

of controls is used. Then an estimate of the confidence interval coverage probability is

given by the actual coverage fraction for A k (1) given by

-(/ Y = k (1) 1= 1, 2 (4.4)
Mk=I

Realized coverage may not always be the best indicator of bias. For example, a point

estimate may be "close" to u, but if the associated confidence interval is small enough,

coverage may not be realized. In order to measure this "closeness", another measure of

bias, the estimated value of the Mean Square Error of a point estimator, will be computed.

To estimate the average value of the Mean Square Error for all m experiments of a given
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setting let

MY) = (uk(/)- l= 1,2 (4.5)

4.2.2 Open Queueing Network Settings. The open queueing network presented in

section 3.3 is examined at three different settings. For a given arrival rate of 20 customers

per time period, the traffic intensity at every server station is set to approximately 0.50,

0.75, and 0.90 for each experimental setting. Specific system settings for model M are

given in table 4.1. At each of these settings, results are obtained for replication sizes of 10

and 20. For the first two design points 1,000 customers are simulated for every

replication with data from the first 300 customers ignored in order to minimize the effect

of the initial transient. Statistics are gathered on the final 700 customers. More customers

were simulated for the third design point (0.90 traffic intensity) since it takes longer to

exhibit steady-state behavior due to the saturated state of the system. In this case 20,000

customers transit through the system with data ignored on the first 10,000 customers.

Design Point Activity Distribution a ** Mean Variance
Arrivals exponential - - 20.0 400.000

1. Center 1 service Weibull 3.6150 6000.0 10.0 9.448
Center 2 service Weibull 3.5416 6000.0 10.5 10.808
Center 3 service Weibull 3.2080 3000.0 10.0 13.829
Arrivals exponential - - 20.0 400.000

2. Center 1 service Weibull 3.0850 6000.0 15.0 28.266
Center 2 service Weibull 3.0489 6000.0 15.5 30.830
Center 3 service Weibull 2.8355 3000.0 15.0 32.883
Arrivals exponential - - 20.0 400.000

3. Center 1 service Weibull 3.4398 30000.0 18.0 33.479
Center 2 service Weibull 3.4081 30000.0 18.5 35.958
Center 3 service Weibull 3.7790 3000.0 18.0 34.591

Table 4.1. Experimental Settings for open queueing network
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4.2.3 Closed Queueing Network Settings. For the closed queueing network presented

in section 3.4., six different experimental design points are selected for both models Q

and Qc. For all design points, the number of service stations, S, is 6 (S = 7 for model Qc),

and the number of customers, N, is equal to 25. For model Qc, the number of customers

allowed into the subnetwork, N', is equal to 5 for all settings. To create the 6 different

settings for each model, 2 different transition probability matrices are applied to 3 sets of

service time distributions. By applying equation (3.43), the 2 transition probability

distributions are provided in table 4.2 and the 3 service time settings are listed in table 4.3.

Then the 12 different design points for the closed queueing network are outlined in table

4.4. Results are obtained for each design point for replication size of both 10 and 20.

In all 12 cases, replications of the closed queueing network are terminated following

the completion of 2,000 events. To minimize the effect of the initial transient behavior,

data from the first 500 events is ignored. In addition, the initial state of the network

(number of customers in each service center) is based on the expected number of

customers at each center for analytical model Q2. These expected values are determined

by solving the system with the ForQue program. The probability that a customer is at a

given service center is determined by dividing the expected number of customers at a

service center by the number of total customers (25). Then at the start of each replication

(for Q, Qc, and Q3) each customer is assigned a uniform random number in the interval

[0, 1] and is routed to a particular service center by the above probabilities.
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Model Q, (Qc)

Matrix A I P3 (P4) P4 (P5) P5 (P6) P6 (P7)

P 0.20 0.36 0.36 0.040 0.040

P2  0.25 0.30 0.30 0.075 0.075

Table 4.2. Transition probability matrix values for closed queueing network

Model 0 (Qc)
Service Center Distribution a Mean Variance
Setting A.

1 Weibull 1.46824 1000.0 100.00 4795.784
2(3) exponential - - 1.00 1.000

3(4) Weibull 5.6476 10.0 1.39 0.081
4(5) Weibull 5.64760 10.0 1.39 0.081
5 (6) Weibull 2.61249 1000.0 12.50 26.442
6(7) Weibull 2.61249 1000.0 12.5 26.442

Setting B.

1 Weibull 1.46824 1000.0 100.0 4795.784
2(3) exponential - - 1.0 1.000

3(4) Weibull 1.50438 10.0 4.17 7.973
4(5) 1 Weibull 5.64760 10.0 1.39 0.081
5(6) 1 Weibull 2.61249 1000.0 12.5 26.442
6(7) Weibull 2.61249 1000.0 12.5 26.442

Setting C.
1 Weibull 1.46824 1000.0 100.0 4795.784

2(3) exponential - - 1.0 1.000

3(4) Weibull 5.6476 10.0 1.39 0.081
4(5) Weibull 5.6476 10.0 1.39 0.081
5(6) Weibull 2.06810 1000.0 25.0 160.798
6(7) Weibull 2.61249 1000.0 12.5 26.442

Table 4.3. Service time distribution settings for the closed queueing network
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Design Model Transition Matrix Service Time Setting
Point 01 Qc P1  P2  A. B. C.

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X

11 X X X _ X
12 X E 1 X X

Table 4.4. Design points for closed queueing network

4.3 Computer Implementation

All simulation models are programmed in the simulation language SLAM II and

implemented on a Sun SPARC 4 work station. Response statistics, internal control

variates, and external control variates are collected and calculated using FORTRAN user-

inserts with the SLAM II programs. For the open queueing network of section 3.3,

analytical control variates are calculated using the FORTRAN insert. The Pascal program

ForQue is used to calculate the analytical control variates for the closed network.

Controlled responses, estimated variances, and confidence intervals, as well as the

statistical comparisons of section 4.2.1 above, are calculated using the MATLAB

computer language. SLAM II and FORTRAN source code is provided in appendix A for

one design point of each network. This also includes the code necessary to generate the

external control variates for that design point (models M3 and 0-). Appendix B contains

the MATLAB script files used to calculate and compare controlled response performance.
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Application of these programs at a design point is a three step process. First the

model under study (M, Q1, or Qc) is replicated 1,000 times using the SLAM II code.

Following the end of each replication, the FORTRAN insert collects the appropriate

statistics and calculates the values of the response values, internal control variates, and (in

the case of the open network) analytical control variates. These values are then put into a

MATLAB file of formatted matrices by subroutines in the FORTRAN insert. In the case

of the closed network, the appropriate statistics required by ForQue to calculate the

analytical control variates are put in a text file by the FORTRAN insert. Following all

1,000 replications the text file is read by ForQue which calculates the analytical control

variates for each replication and puts these values in another text file. Next, the external

model (M3 or Q3) is replicated 1,000 times in a synchronized manner. Another

FORTRAN insert collects the appropriate statistics following each replication and places

the external control variates in a MATLAB formatted file. Finally, the MATLAB script

file reads the appropriate MATLAB and text files and calculates uncontrolled and

controlled responses and performs the necessary comparisons.

The expected values of the steady-state sojourn time for the open network and the

system sojourn time and CPU utilization fraction for the closed network are estimated by

making 25,000 replications at each design point. While these values are estimates, the

associated .90 confidence intervals are sufficiently tight (less than 0.5% of estimated value

in all cases) to make good estimates of coverage and Mean Square Error for comparison

purposes.
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4.4 Open Queueing Network Results

Analytical control variates provide significant variance and confidence interval

width reduction on the estimates of customer sojourn time at each of the 3 design points

for both 10 and 20 replications. Since confidence interval width is a function of variance,

and of primary concern in most simulation studies, only confidence interval width

reduction is presented. Table 4.5 presents confidence interval width reduction percentages

achieved for the analytical and external control variates as described in section 4.2.

Results for the "best" combination of internal control variates are also included. The

"best" combination is defined as the combination of internal control variates that produce

the most confidence interval width reduction.

Achieved coverage percentages for uncontrolled and controlled responses are

presented in table 4.6. The internal control variate results are from the same combination

of internal control variates used in table 4.5. Estimated Mean Square Error values are

listed in table 4.7.

Confidence Interval Width Reduction (%)
Analytical External control Internal control

Traffic Intensity Replications control variates variates variates
0.50 10 15.5 29.7 9.3
0.50 20 19.7 32.6 13.9
0.75 10 25.5 34.4 20.2
0.75 20 28.5 37.5 24.1
0.90 10 26.2 38.7 22.0
0.90 20 28.7 41.7 25.1

Table 4.5. Confidence interval width reduction (%) for open queueing network
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Coverage (%)
Analytical External Internal

Traffic control control control
intensity Replications Uncontrolled variates variates variates

0.50 10 86 89 88 91
0.50 20 86 84 90 88
0.75 10 87 72 84 86
0.75 20 88 64 80 84
0.90 10 87 84 84 89
0.90 20 92 82 82 92

Table 4.6. Realized coverage (%) for open queueing network

Mean Square Error
Analytical External Internal

Traffic control control control
intensity Replications Uncontrolled variates variates variates

0.50 10 0.222 0.129 0.093 0.169
0.50 20 0.132 0.063 0.037 0.076
0.75 10 16.003 12.190 6.551 10.965
0.75 20 7.641 7.274 3.141 5.770
0.90 10 360.694 185.446 126.482 173.598
0.90 20 186.145 89.724 75.283 66.380

Table 4.7. Estimated Mean Square Error for open queueing network
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Several interesting results become evident from the collected data. First, in terms of

confidence interval width reduction, external control variates provide the best

performance, followed by analytical and then internal control variates. The superior

performance of the external control variates is due primarily to the fact that the customer

arrival sequence is exactly the same for M1 and M2. Furthermore, customers then proceed

through the network in the same order they enter the network and experience correlated

service times in only three service centers before exiting the system. Also, the

performance of all of the control variates improves as traffic intensity increases, which

corresponds to the increasing value of variance of the uncontrolled response estimate.

It is apparent from the table 4.6 that analytical control variates may be inducing bias

into the controlled estimate of customer sojourn time. As discussed above in section 4.2,

bias can be introduced in the process of estimating fi. Particularly poor coverage is

realized for the traffic intensity of 0.75. External control variates also indicate a possible

problem with bias, but not to as great an extent as that of the analytical control variates.

However, internal control variate realized coverages are all within 6 percent of the

nominal.

On the other hand, estimated MSE values are not indicative of significant bias for

analytical control variates. In all cases the estimated MSE for analytical control variates is

less than that for the uncontrolled sojourn time estimate. It should be noted though, that

MSE estimates for external and internal control variates are less than that of the analytical

control variates, except for one case, indicating that analytical control variates are not
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performing with the same accuracy as that of the other types. The issue of bias will be

explored in more detail for the closed queuing network in the next section.

Another interesting observation is that the "best" internal control variate combination

at 4 of the design points is the standardized arrival variable and at the other 2 design

points the combination of the standardized arrival variable and the standardized work

variable for center 2 achieves the best confidence interval width reduction. (It should be

noted that the 2 design points where 2 internal control variates achieve the most variance

reduction consist of 20 replications. See section 4.5.1 below for a discussion of the loss

factor as a probable cause of this behavior.) As a point of reference, table 4.8 lists the

confidence interval width reduction of the 5 best internal control variate combinations at

the design point of traffic intensity equal to 0.75 with replication size of 20. Due to the

nature of the network, it can be expected that customer arrivals should drive system

performance since arrivals, being exponentially distributed, are highly variable. The

Weibull service times are not as variable. The performance of the standardized arrival

variable, and the implicit high correlation between it and customer sojourn time, bears out

this expectation. For the open queueing network, using internal control variates provides

additional insight into system performance that analytical and external control variates

don't necessarily provide.
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Internal control Confidence Confidence
variates interval width interval width

reduction (%)
W2A 6.71 24.1
A 6.74 23.7
WA 6.92 21.7
W2W-A 6.93 21.6
W1W2A 7.02 20.5

Table 4.8. Performance of 5 best internal control variate combinations for open queueing
network (traffic intensity = 0.75, replications = 20)

4.5 Closed Queueing Network Results

Results for the closed queueing network are presented below. A discussion of

confidence interval width reduction is presented followed by a discussion on estimation of

bias.

4.5.1 Confidence Interval Width Reduction. Analytical control variates provide

significant confidence interval reduction on estimates for both system sojourn time and

CPU utilization for the closed queueing network. Across the range of all design points,

except for a few isolated cases, analytical control variate performance is similar to that of

external and internal control variates. Confidence interval width reductions, as a

percentage of the uncontrolled estimated confidence interval are provided in tables 4.9

through 4.12. System sojourn time results are listed in tables 4.9 and 4.10 while results

for CPU utilization are enumerated in tables 4.11 and 4.12. Results are included for

analytical control variates, external control variates, and internal control variates. The

internal control variates form the combination of standardized work variables and

standardized routing variables, that produces the greatest reduction in confidence interval
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width. It should be noted that for one design point (when measuring CPU utilization for

model Qc) external control variates fail to produce any variance reduction. Where this

occurs, the symbol "-" is used in the table.

Of particular interest is the performance of external and analytical control variates for

model Qc. External control variates fail to provide the same level of confidence interval

width reduction, particularly for CPU utilization, for model Qc as they do for model Q.

Recall that in model Qc, only 5 customers at a time are allocated a portion of main

memory, and therefore access to the CPU and mass storage devices (centers 3 through 7).

On the other hand, model 03 has an unconstrained subnetwork and an unlimited number

of customers may access the CPU and storage devices. Certainly the variance in external

control variate performance is due to this dissimilarity in model structure. This difference

causes the sequence of customers visiting a particular service center to differ even more

than when model 01 is the model under study. Under these conditions, the common

random numbers lose even more synchronization and the system responses from each

model are not as highly correlated.

Analytical control variates, on the other hand, continue to perform at the same level

for Qc. Although the underlying model, Q2, is also unconstrained, the model relies only

on the mean responses of system parameters from Qc. Therefore, the same conditions

that cause longer sojourn times or greater CPU utilization levels in model Qc will do the

same in Q2. Hence, correlation from replication to replication is maintained and analytical

control variates continue to reduce variance for 0c.
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Model Q, - System sojourn time
Confidence interval width reduction (%)

(Replications = 10(20))
Service time Transition Analytical External control Internal control

setting probability control variate variate variates
matrix

A. P 51.8(52.5) 51.9(52.5) 44.9(56.9)
P2  42.5(43.7) 48.5(50.4) 28.6(45.0)

B. P 46.1(46.9) 63.0(64.2) 56.8(66.4)
P2  47.1(48.4) 56.3(57.2) 42.0(52.4)

C. P 22.0(25.8) 52.6(55.7) 28.8(43.6)

P2  18.8(21.9) 47.6(50.8) 57.6(64.3)

Table 4.9. Confidence interval width reduction for system sojourn time for model Q,

Model Qc - System sojourn time
Confidence interval width reduction (%)

(Replications = 10(20))
Service time Transition Analytical External control Internal control

setting probability control variate variate variates
matrix

A. P 55.8(56.9) 38.8(40.0) 41.3(49.2)
P2  50.7(52.6) 28.5(32.3) 32.2(46.0)

B. P1  60.3(61.8) 37.5(39.8) 59.8(68.0)
P2  56.8(57.2) 20.4(22.4) 40.4(46.8)

C. P1  49.3(50.1) 19.9(24.4) 37.9(49.7)
P2  55.8(57.9) 7.4(10.6) 63.3(68.6)

Table 4.10. Confidence interval width reduction for system sojourn time for model Qc
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___________Model 0 1 - CPU utilization

Confidence interval width reduction(%
(eplications = 10(2 )

Service time Transition Analytical External control Internal control
setting probability control variate variate vaniates

____________ matrix__ _ _ _ ___ _ _ _ _ _

A. P1  54.2(55.6) 45.0(46.8) 39.0(47. 1)

__________P 2  57.4(60.5) 47.9(50.1) 31.7(54.3)
B. P1  68.7(70.6) 61.8(63.3) 77.8(81.1)

_________P 2  54.4(57.4) 49.8(52.0) 32.2(47.8)
C. P1  39.7(42.4) 54.0(55.8) 18.8(34.8)

__________P 2 41.6(44.9) 49.0(51.6) 80.1(83.6)

Table 4.11. Confidence interval width reduction for CPU utilization for model Q,

_________MO Moel Qc - CPU utilization

Confidence interval width reduction()
(Replications = 10(2 ))

Service time Transition Analytical External control Internal control
setting probability control variate variate, vaniates
____________ matrix _ _ _ _ _ _

A. P, 37.2(38.7) 12.5(16.2) 16.6(34.9)
________P 2  41.2(43.3) 5.6(11.0) 9.4(30.9-')

B. P1  63.8(65.4) 12.8(16.6) 59.8(65.5)
__________P 2  29.4(32.5) -(3.6) 16.8(32.4)

C. P1  42.2(44.3) 4.9(10.5) 30.1(42.3)

________P 2  68.3(69.3) L 5.3(9.7) 67.3(71.3)

Table 4.12. Confidence interval width reduction for CPU utilization for model Qc
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Replication length seems to influence internal control variate performance more than

that of the other control variates. Analytical and external control variates produce only

slightly more confidence interval width reduction when 20 replications are used versus 10

replications. However, for internal control variates, the increased number of replications

produce significantly more confidence interval width reduction than when only 10

replications are used. On average, internal control variates produce 11.2 percent more

confidence interval width reduction for 20 versus 10 replications across all design points.

Analytical and external control variates only produce 1.9 percent and 2.7 percent more

reduction for 20 replications.

The poorer performance of the internal control variates at 10 replications can be

explained by the loss factor discussed in section 1.2.1. Recall that the variance of a

controlled point estimate is given by

Var [Y() 2 (1I-R )Var[I] (4.6)

where n is the number of replications, q is the number of control variates, and R2 is the

coefficient of correlation between the random variable Y and the vector of control variates,

and the loss factor is (n - 2)/(n - q - 2). For the closed queueing network, the average

number of internal control variates in the "best" combination is 3.21 for 10 replications

and 4.46 for 20 replications. Calculating the loss factor for 3 control variates yields 1.6

for 10 replications and 1.2 for 20 replications. For 4 control variates the loss factor is 2

and 1.29 respectively. The loss factors for both analytical and external control variates
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remain fixed at 1.14 and 1.05 for 10 and 20 replications, since each is a single control

variate. Obviously, at 10 replications the loss factor has a higher detrimental effect on

variance reduction for the larger combinations of internal control variates than it does on

the analytical and external control variate.

As with the open queueing network, internal control variates provide additional

insight into system performance at each design point. By studying the reduction achieved

by the different combinations of internal control variates, critical system characteristics

become apparent. For example, table 4.13 lists the confidence interval width reduction

achieved by the 5 best combinations of internal control variates for CPU utilization. The

design point is model Q1, with service time setting C., probability transition matrix P2, and

replications equal to 20. Obviously, the proportion of customers routed to center 5, and

the deviation from the mean service time at center 5 play a significant role in system

performance.

Internal control Confidence interval
variate combination width reduction (%)
W2WR 5  83.6

W1W2 W5R5  83.4
W2WR 3R5  83.2
W2WRIR 5  83.2
W2W5R1R3R5  82.6

Table 4.13. Confidence interval width reduction (%) for CPU utilization. Design point:
Q1, service time setting C., P2, and 20 replications.

The results of analytically controlled responses themselves cannot provide the same

insight. However, the mean value analysis algorithm used by ForQue, the program used
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to calculate the analytical control variate, provides more information about the network

than just system sojourn time and CPU utilization. Given the good performance of the

analytical control variates for both performance measures across all design points, the

output of ForQue must be highly correlated to the output of both Q1 and Qc. In a sense,

the variance reduction performance of the analytical control variates provides validation

for the analytical model's ability to predict model Q1 and Qc behavior. For example, table

4.14 is the output from ForQue using the mean values of the system parameters of the

same design point described above for table 4.13. The extremely high utilization fraction

and significantly longer response time at center 5 predicted by ForQue point to the same

inferences about system performance as those made in the previous section by analyzing

the internal control variates.

*** FORQUE PERFORMANCE REPORT *

Number of Customers = 25

Sta- Nmbr Average Visit Through Queue Respons Utiliz
tion Chis Svc Tm Ratio -put Length Time -ation

1 25 100.0000 1.0000 0.1317 13.1747 100.0000 13.1747
2 1 1.0000 4.0000 0.5270 1.0940 2.0759 0.5270
3 1 1.3900 1.2000 0.1581 0.2810 1.7775 0.2198
4 1 1.3900 1.2000 0.1581 0.2810 1.7775 0.2198
5 1 25.0000 0.3000 0.0395 9.2069 232.9453 0.9881
6 1 12.5000 0.3000 0.0395 0.9624 24.3501 0.4940

Sojourn time = 89.7583

Table 4.14. Output from ForQue computer program. Network settings: Q2, service time
setting C., transition probability matrix P2.
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4.5.2 Estimation of Bias. Realized confidence interval coverage for uncontrolled

and controlled response estimates are enumerated in tables 4.15 through 4.18. Nominal

coverage is 90 percent. Due to the similarity in coverage achieved, only results for 20

replications are provided. Internal control variate coverage corresponds to the same

internal control variate combinations reported above for confidence interval width

reduction. As with the open queuing network, analytical control variates seem to induce

bias into the controlled estimates of system sojourn time and CPU utilization. Internal and

external control variate coverage results indicate little, if any, problem with bias for their

controlled estimates.

Estimated Mean Square Error values are listed in tables 4.19 through 4.22. Despite

the indications of bias from the realized coverage percentages, estimated MSE for the

analytical control variates is substantially less than that of the uncontrolled responses in

almost every case. This indicates that both T(,6)"7rT and U()"ANALY are more

accurate, on the average, in estimating system sojourn time and CPU utilization

than T(20) and U(20). However, some combination of the reduced confidence interval

width and real bias is preventing analytical control variates from achieving reasonable

levels of realized coverage. Other indicators need to be examined to determine what is

affecting the coverage values.
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Model Q, - System sojourn time
Coverage (%)

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P 92 68 90 86

P2  86 64 90 84
B. P1  86 78 94 88

P2  84 62 92 88
C. P 94 72 82 88

P2  88 88 88 90

Table 4.15. Realized coverage for system sojourn time for model Q1 (replications = 20)

Model Qc - System sojourn time
Coverage (%)

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P 90 66 92 80

P2  88 50 94 90
B. P 90 78 90 94

P2  94 38 96 88
C. P 1  98 52 96 96

P2  88 92 86 88

Table 4.16. Realized coverage for system sojourn time for model Qc (replications = 20)
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Model 01 - CPU utilization
Coverage (%)

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P1  90 68 92 88

P2  90 62 84 88
B. P, 88 82 80 92

P2  92 58 92 90
C. PI 92 54 82 88

P2  86 92 80 86

Table 4.17. Realized coverage for CPU utilization for model Q1 (replications = 20)

Model Qc - CPU utilization
Coverage (%)

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P1  90 88 94 86

P2  84 82 84 86
B. P1  92 92 94 88

P2  88 90 88 84
C. P 90 68 88 96

P2  90 78 86 92

Table 4.18. Realized coverage for CPU utilization for model Qc (replications = 20)
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Model 01 - System sojourn time
Estimated Mean Square Error

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P1  3.146 1.609 0.713 0.629

P2  2.976 1.635 0.511 0.842
B. PA 22.530 6.509 1.993 2.070

P2  5.244 2.602 0.590 1.070
C. P 5.671 5.881 1.473 2.480

P2  38.641 18.654 8.239 3.938

Table 4.19. Estimated Mean Square Error for system sojourn time for model Q1
(replications = 20)

Model Qc - System sojourn time
Estimated Mean Square Error

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P1  5.830 2.635 1.390 1.623

P 2  6.387 3.876 1.730 1.413
B. P1  25.902 5.902 7.755 1.679

P2  8.584 8.006 4.579 2.356
C. P 15.605 16.121 8.027 2.623

P 2  54.500 7.247 35.259 4.264

Table 4.20. Estimated Mean Square Error for system sojourn time for model Qc
(replications = 20)
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Model 01 - CPU utilization
Estimated Mean S uare Error (* 10")

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P1  6.44 3.55 2.36 2.09

P2  9.08 4.19 2.88 2.59
B. P1  10.72 1.08 1.77 0.48

P2  5.82 3.10 1.26 1.49
C. P 18.10 17.96 5.88 7.33

P2  26.70 6.46 8.84 0.55

Table 4.21. Estimated Mean Square Error (* 10-5) for CPU utilization for model Q1
(replications = 20)

Model Oc - CPU utilization
Estimated Mean Square Error (* 10

Service time Transition Uncontrolled Analytical External Internal
setting probability response control control control

matrix variate variate variate
A. P, 4.82 2.61 3.18 2.72

P2  11.10 3.86 9.02 3.84
B. P 7.35 0.66 4.11 0.70

P2  5.25 2.15 4.81 2.37
C. P1  18.10 12.90 14.70 3.66

P2  18.60 3.11 13.20 1.77

Table 4.22. Estimated Mean Square Error (* 105) for CPU utilization for model Qc
(replications = 20)
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Another indication of the coverage problem for analytical control variates is presented

in tables 4.23 and 4.24. These tables list the estimated mean for each design point found

using 25,000 replications and the average controlled response estimated using analytical

control variates (T(3)Arr and U(j8) AL' ). For system sojourn time, the analytically

controlled response is lower than the estimated response at every design point. The

situation is reversed for CPU utilization where the analytically controlled estimate is

consistently higher, with the exception of 2 design points. Both of these points

correspond to the same service time setting (C.) and transition probability matrix (P 2).

Tables 4.25 and 4.26 compare the realized estimates for system sojourn time and

CPU utilization with the mean values obtained at each design point using ForQue. Note

that the mean value analysis of the exponential network provided by ForQue is

consistently higher for system sojourn time and consistently lower for that of CPU

utilization than the estimates obtained with 25,000 replications for Q1. These relationships

are directly opposite of that for the analytically controlled response and the estimated

means. These relationships could have some bearing on the problem.
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System so journ time
Transition

Service time probability T(25,000) T(/3) ANALYT Percentage
Model setting matrix difference

Q1 A. P1  38.9 37.9 -2.6
P2  32.9 31.9 -3.0

B. P1  88.5 87.1 -1.6
P2  46.3 44.9 -3.0

C. P 47.8 46.0 -3.8
P 2  87.7 86.9 -0.9

Qc A. P 45.0 43.6 -3.1
P 2  41.9 40.2 -4.1

B. P 103.9 102.2 -1.6

P 2  64.1 61.6 -3.9
C. P 62.8 59.2 -5.7

P2  97.3 96.2 -1.1

Table 4.23. Estimated system sojourn time for 25,000 replication vs analytical controlled
response for 20 replications

CPU utilization
Transition

Service time probability U(25,000) U(s)ANALYT Percentage
Model setting matrix difference

Q1 A. P 0.903 0.907 0.44
P2  0.755 0.761 0.79

B. P1  0.663 0.664 0.15
P2  0.686 0.691 0.73

C. P1  0.850 0.861 1.29
P 2  0.539 0.536 -0.56

Qc A. P1  0.866 0.868 0.23
P2  0.708 0.712 0.56

B. P1  0.618 0.618 0.00
P2  0.612 0.615 0.49

C. P1  0.775 0.784 3.74
_P2  0.516 0.512 -0.77

Table 4.24. Estimated CPU utilization for 25,000 replication vs analytical controlled
response for 20 replications
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System sojourn time
Transition Mean value

Service time probability T(25,000) analysis
Model setting matrix (ForQue)

Q1 A. P 38.9 41.2
P2  32.9 37.2

B. P1  88.5 91.1
P2  46.3 51.0

C. P 47.8 52.3
P2  87.7 89.8

Table 4.25. Comparison of estimated system sojourn time and mean value analysis

CPU utilization
Transition Mean value

Service time probability U(25,000) analysis
Model setting matrix (ForQue)

Q1 A. P1  0.903 0.885

P2  0.755 0.729
B. P1  0.663 0.654

P2  0.686 0.662

C. P 0.850 0.821

P2  0.539 0.527

Table 4.26. Comparison of estimated CPU utilization and mean value analysis

To get a better idea of exactly how this induced bias is affecting the analytically

controlled estimates, the following figures are provided. Each figure depicts the

estimated responses and associated confidence intervals for all experiments at a single

design point. For system sojourn time, model 01 with service time setting B., transition

probability matrix P2, and 20 replications (50 experiments) is presented. The 50 diamond

symbols in each figure represent the 50 point estimates made at this design point using 20

replications. The bracketed lines above and below each diamond represent the width of
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the estimated confidence interval for the associated 20 replication design point. For

reference the estimated mean found using 25,000 replications is represented by the

horizontal line across each figure. Figure 4.1 presents the values obtained by T(20) and

figures 4.2 and 4.3 compare T(fi)"LYr and T(fl)Frr for the same experiments. Figure

4.2 clearly shows how T(8)ANL r' consistently underestimates system sojourn time while

T(f) ' r appears to be evenly scattered about the estimated mean. Although the

analytically controlled estimates are mostly lower than the mean, on average they are

closer than the uncontrolled estimate, hence the lower estimated MSE. T(,6) ' on the

other hand, appears to exhibit no evidence of bias.

1~ 50

T' TI Irl

40

I I I I
Experiments

0 T(20)
I Confidence interval

7-- Mean = 46.3

Figure 4.1 T(20) experimental results with estimated confidence interval. Design point:

Q1, service time setting B., transition probability matrix P2. (Each point
represents one point estimate and confidence interval realization.)
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0~ T(fi) A 4a

I Confidence interval
--- Mean = 46.3

Figure 4.2. T(fl) AL
YT experimental results with estimated confidence interval. Design

point: Qi, service time setting B., transition probability matrix P2. (Each
point represents one point estimate and confidence interval realization.)

.5 50

40

ExperimentS

0~ T(fl(-
I Confidence interval

--- Mean = 46.3

Figure 4.3. T(fl) = experimental results with estimated confidence interval. Design

point: Q1, service time setting B., transition probability matrix P2. (Each
point represents one point estimate and confidence interval realization.)

4-29



Finally, model Qc with service time setting C., probability transition matrix P2, and 20

replications is used to create the same figures for CPU utilization. Figure 4.4 shows the

experimental results for U(20), and figures 4.5 and 4.6 present the experimental results

for U(fl)AL rY and U(flf)N. The internal control variates used are the same as reported

above for confidence interval width reduction. As above, the analytically controlled

response is consistently on one side of the estimated mean while consistently closer to the

mean than the uncontrolled response. Similarly, the internal control variates are evenly

scattered about the mean and exhibit no evidence of bias.

The above figures coupled with the data on realized coverage and the consistent

difference between the estimated mean and analytically controlled responses point to a real

problem with bias for the analytical control variates in this study. The mechanism(s)

causing the bias in the analytically controlled response estimates is(are) not totally clear.

Means of possibly reducing the bias are discussed in the following chapter.

_ T T.4- TIT WT11 , ,>rTr II, -'
' -t .5

0.45 I I I
0.45 nments

0 U(20)
I Confidence interval

Mean = .5158

Figure 4.4. U(20) experimental results with estimated confidence interval. Design point:

Qc, service time setting C., transition probability matrix P2 . (Each point
represents one point estimate and confidence interval realization.)
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--- Mean =.5158

Figure 4.5. U(p)I"  YTL experimental results with estimated confidence interval. Design

point: Qc, service time setting C., transition probability matrix P2. (Each
point represents one point estimate and confidence interval realization.)

0.55

u 0.5 ]

0.45 I I IExperiments

I Confidence interval
--- Mean =.5158

Figure 4.6. U(fl)" r experimental results with estimated confidence interval. Design

point: Qc, service time setting C., transition probability matrix P,!. (Each
point represents one point estimate and confidence interval realization.)
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5. Conclusions and Recommendations for Future Research

5. 1 Introduction

The motivation for this research was to determine if a hybrid type of control variate,

called an analytical control variate in this study, could effectively reduce the width of point

estimate confidence intervals of replicative simulation studies while avoiding some of the

limitations of internal and external control variates. In terms of confidence interval width

reduction, the experimental results indicate that analytical control variates are quite

successful for the networks studied. Unfortunately point estimates found using analytical

control variates appear to have significant levels of bias. However, there may be

occasions where the bias is not a problem. For example, analytical control variates could

be useful when assessing the percentage change in performance when system parameters

are changed. The following sections contain observations on the differences in application

of analytical control variates versus external and internal control variates. Additionally, a

discussion on possible remedies to the bias problem is presented. Recommendations for

future research end this chapter.

5.2 Study Time Efficiencies

Analytical control variates outperform external control variates in this study in terms

of time efficiency. For example, to generate the external control variates for the 1,000

replications at one design point, 1,000 replications of the external simulation model must

be made as well. The similarity of the two models translates into approximately equal

computer run times for each model. Of course, in some computers, such as the Sun
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SPARC 4 work stations used in this study, these replications can be run at the same time.

However parallel processing of this type increases average run time for each model.

Obviously, only truly significant gains in variance reduction over other control variates

would make external control variates worth while. If there is enough time to make the

additional external simulations, there is time to make that many more replications of the

original model and apply internal or analytical control variates to the additional

replications.

Computer run times for analytical control variates are virtually instantaneous in

comparison. For the open system studied, analytical control variates are calculated in the

FORTRAN routine used to collect replication statistics, so analytical control variates

require only a few simple calculations following each replication. Approximate run times

for the closed queueing system studied are 15 minutes for 1,000 replications on a Sun

SPARC 4 work station. The ForQue computer program can generate the 1,000 analytical

control variates for these replications in less than 10 seconds on the same computer

system.

The generation of internal control variates is virtually instantaneous as well. In both

models studied, the standardized arrival, work, and routing variables are calculated in the

same FORTRAN routine that collects the statistics necessary to compute them. Although

the generation of the internal control variates is as rapid as that for analytical control

variates, application of internal control variates may not be as quick.

Unlike analytical (and external) control variates, some effort (and -time) must be

spent in choosing the "best" subset of all possible internal control variates. First of all, not
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all of the internal control variates generated are sufficiently correlated with the system

output to produce any variance reduction. Secondly, as pointed out in section 1.2.1, at

some point adding additional control variates that are correlated with the system output

cannot overcome the effect of the loss factor in the estimated variance. Research has been

conducted on the best way to select an optimum, or close to optimum, set of internal

control variates. Two approaches are presented in Nelson (1987) (see section 2.2.2).

One approach involves step-wise regression and the other proposes the computation of a

marginal improvement ratio. Bauer and Wilson (1992) develop a method for

multiresponse simulations that minimizes the mean-square confidence-region volume.

One obvious time advantage to internal control variates over both analytical and

external control variates is that no analytical model that approximates the behavior of the

system under study is necessary. Depending on the system simulated finding or creating

an appropriate analytical model can be a daunting problem, however there are many useful

analytical models in existence and research continues in the development of more. The

mean value analysis algorithm used for the closed network in this study is just one

example.

From this study, it appears that if an adequate analytical model is available, analytical

control variates provide an advantage in terms of study completion times. Further, if a

particular simulation model is used regularly to conduct many studies, time spent

developing or finding an appropriate analytical model could pay time dividends in the

future. Otherwise, internal control variates are the only option available.
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5.3 Effectiveness over Different Model Configurations

As the synchronization of common random numbers between the model under study

and the external model decreased, the effectiveness of the external control variates

decreased. Obviously, the correlation between the outputs of the two models depends on

the correlation of the input random variables. As models increase in complexity,

synchronicity becomes problematic. Furthermore, the service time distributions for the

models under study in this research effort (Weibull) have the characteristic of being

generated using the inverse transform method. This produces a one to one relationship

between the Weibull random variable and the uniform random number stream used to

generate them. This characteristic made the level of synchronization achieved in this study

possible. Many other random variable distributions that may be required to adequately

model some other situation can't be generated using the inverse transform method and

therefore require several random numbers to generate one random variable [13].

Achieving any random number synchronization under those circumstances becomes

extremely difficult and can increase computer run time as well.

Analytical control variates rely only on the correlation between one replication of the

model under study and the result of an analytical model calculation using the observed

mean values of the input random variables for that replication. As long as the analytical

model responds in a correlated manner, variance reduction occurs. In this research effort,

analytical control variates perform essentially the same for all models and design points

considered irregardless of their departure from the analytical model. Both Tomick (1988)

and Dietz and Harmonosky (1989) reported similar results.
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Internal control variates don't depend on some external approximation to the model

under study and model configuration had little effect on their performance. Traffic

intensities and utilization rates seemed to have the most effect on internal control variate

performance. Variance reduction increases, in this study, for internal control variates

when the model under study has one or more service centers with high traffic intensity or

utilization rates inducing high correlation between the internal control variates that

correspond to that service center and the system output.

5.4 System Insight

As discussed previously in section 4.5, the variance reduction achieved for the

different internal control variates provides insight into the behavior of the network under

study. The internal control variates that produce the most variance reduction indicate that

behavior (service times, routing probabilities) at the service centers associated with them

has the highest correlation to system performance.

External and analytical control variates can't provide this same post-simulation

analysis. However, the analytical models used to produce the analytical control variates

can predict similar results if the model provides system parameter values (see section 4.5).

Obviously these predictions are only as good as the analytical model approximates the

system under study behavior. As discussed in section 4.5, the variance reduction

produced by a particular analytical control variate is a function of the correlation between

the analytical model and the system under study. Significant variance reduction across a

range of system parameters indicates that the analytical model output tracks with the
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output of the model under study. Given this variance reduction validation, the analytical

model could be used by analysts to quickly provide decision makers with useful answers

when there is not enough time to make simulation studies. The analytical models could be

used in much the same way response surface meta-models are now used.

Analytical control variates can also provide pre-simulation analysis that neither of the

other two types of control variates can. The analytical model used to generate analytical

control variates can also be used to find excellent starting points for studies when different

configurations or resources are being compared. Neither external nor internal control

variates can provide the analyst with the same information before any replications are

made. Given a good starting point, study times for large projects can be significantly

reduced.

5.5 Loss Factor and Confidence Interval Width

Discussion in Chapter 1 pointed out that the variance estimator when control variates

are used includes a loss factor of (n-2)/(n-q-2) where n is the number of replications and q

is number of control variates. Further, the degrees of freedom for the associated t-statistic

used to estimate a confidence interval is equal to n-q-1. Of course, if an additional control

variate is sufficiently correlated to the response statistic, its addition can overcome the loss

factor and reduced degrees of freedom. Replication size must also be considered when

taking the loss factor into account. For example, in this study, internal control variates

show higher levels of improvement in confidence interval width reduction over the other

control variates when replications are increased from 10 to 20 (see section 4.5.1).
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However, even at 10 replications, internal control variates performed at similar levels of

variance reduction as the other control variates. It is this problem that leads to the process

of internal control variate selection discussed above in section 5.2. Analytical and external

control variates have fixed loss factors and associated degrees of freedom of (n-2)/(n-3)

and n-2 respectively. Despite this possible disadvantage for internal control variates, when

some effort is made to find the best subsets, confidence interval width reduction is

comparable with that of the other control variates in this study.

5.6 Bias of Analytical Control Variate Point Estimates

Both this study and Tomick (1988) reveal a problem with bias in the estimation of

system responses when using analytical control variates. This bias is induced when the

optimal control coefficient j6 is estimated [13]. For the regression method of estimating

f8 , we assume that the response variable and control variate(s) have a multivariate normal

distribution [12]. If this is not the case, bias could be the outcome when making point

estimates of the response variable.

To investigate the normality assumption, a histogram of the 1,000 analytical control

variates generated to estimate system sojourn time for model Q1 with service time setting

A. and transition probability matrix P2 is provided by figure 5.1 below. From the

histogram, it appears the analytical control variates may have more values to the right of

the mean than might be expected for a normal distribution. This additional weight in the

higher value tail could be the cause for the consistently under estimating of mean sojourn

time by the analytical control variates. A chi-square Goodness of Fit test, with a null
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hypothesis of normality, provides a test statistic with a p-value of approximately .28. This

value is insufficient to reject the null hypothesis, however distribution selection software

indicates other distributions which provide a better fit of the data. In terms of the chi-

square test, the lognormal, chi-square, logistic, and Erlang distributions all provide

significantly better test statistics. Other design points provide similar results. Given an

indication of non-normality for the analytical control variates, one possible means of

reducing the induced bias is to perform a transformation on the analytical control variates

that will produce values that are more nearly normally distributed.

140
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Figure 5.1. Histogram of 1,000 analytical control variate values of estimated sojourn time,
for model Q, at service time setting A. and transition probability matrix P 2.

Another means of possibly reducing the bias, suggested by Dietz [4], is to adjust the

means of the analytical model parameters so that the output of the analytical model is

closer to the output of the simulation model. Experimental results (see tables 4.23-4.26)

show a consistently longer estimate of system sojourn time and a consistently smaller
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CPU utilization rate for the analytical model versus the simulation result. In this study, the

selection of the mean for the exponentially distributed service times of the analytical model

is arbitrarily set to equal the mean of the simulation Wiebull service time distributions.

Dietz proposes making the adjustment to the exponential distributions based on the

difference between the analytical mean queueing length and an estimate of the true average

queueing length. This method could be accomplished in our case by using some pilot runs

of the simulation model to make the appropriate adjustments. Although this method will

produce analytical solutions closer to the simulation model, it doesn't guarantee the

elimination of bias.

Nelson (1990) evaluates several techniques for computing the controlled response in

an effort to remedy bias problems. For the replication sizes used in this study, Nelson

recommends using a technique known as splitting for estimating the response variable and

associated confidence interval when bias is suspected. Simply put, splitting consists of

computing / from a preliminary, or pilot, sample rather than the 10(20) replications used

to estimate the responses. Then even if the response variable and control variate(s) are

not normal, the controlled estimate will still be unbiased. To see this, let / * be the usual

regression estimator of 8 for an independent sample of m replications for response variable

Y and control variate vector C. Then for n different (independent) replications, using

equation (3.6), the control variate estimator

Y(P*) = Y(n)-6 *' (C -,u,) (5.1)

is unbiased since/3* and C are independent of each other.
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Nelson proposes the use of what he calls an extreme form of splitting where n

replications are split into n groups. In effect this consists of estimating a different /J for

every j-th replication from the n-1 other replications. He goes on to provide

computational formulas to find the controlled, split point estimates, and estimated variance

and confidence interval. Nelson reports excellent results using this splitting technique with

variance estimates nearly identical to those using the regression method.

5. 7 Recommendations for Future Research

There are many possible benefits from using analytical control variates. Before we

can take advantage of them in many real applications, a solution to the bias problem must

be found. Further research into the actual distribution of the analytical control variates

and associated transformation techniques could provide significant reduction in the

observed bias. The results from Nelson (1990) indicate future research into the

application of the splitting technique with analytical control variates should be pursued.

Additionally, the method of "correcting" the analytical response by adjusting the

parameters of the analytical model should be explored. A study that explores the results

from each of these methods separately and together should prove to be very valuable.

If any of these techniques eliminates the bias problem, research into real world

applications would be appropriate. One such example that could use the same mean value

analysis program ForQue would be an Air Force manpower requirement study. Studies of

this type are conducted using the Logistics Composites Model (LCOM) computer

simulation model. Jenkins (1994) developed a mean value heuristic for the analysis of the
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aircraft sortie generation process, the same process used to evaluate manpower

requirements. These studies showed excellent correlation between the output of LCOM

and the heuristic (contained in ForQue) for a simple sortie generation process. This

heuristic should serve as an excellent analytical model for generating analytical control

variates for a manpower study.

Another area for future research is to find methods to use the variance reduction

obtained from analytical control variates to validate the analytical model as an adequate

surrogate model for the simulation model. A technique might be developed similar to that

used to create response surface methodology meta-models.
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Appendix A: Computer Source Code

A. SLAM II Source Code for Model M1

;XX(I) Variable definitions

XX(l)=service time one distribution beta parameter
XX(2)=service time one distribution alpha parameter

;XX(3)=service time two distribution beta parameter
;XX(4)=service time two distribution alpha parameter
;XX(5)=service time three distribution beta parameter
;XX(6)=service time three distribution alpha parameter
;XX(7)-mean of service time one distribution
XX(8)=mean of service time two distribution

;XX(9)-mean of service time three distribution
;XX(l0)=standardized work variable one
XX(1l)=standardized work variable two

;XX(12)=standardized work variable three
;XX(13)=standardized arrival variable
;XX(14)=sum of standardized work variable one
;XX(15)=sum of standardized work variable two
;XX(16)=sum of standardized work variable three
;XX(17)=sun of standardized arrival variable
XX(18)=arrival time of previous customer

; XX(25)=counter of customers
;XX(26)=standard deviation of service time one distribution

; XX(27)=standard deviation of service time two distribution
; XX(28)=standard deviation of service time three distribution

Atrib definitions

Atrib(l)=arrival time
Atrib(2)=center one service time
Atrib(3)=center two service time
Atrib(4)=center three service time
Atrib(5)=interarrival time
Atrib(6)=sojourn time

GEN,IRISH,MICKEY D TEST MODEL,10/14/1995,1000,Y,N,Y/Y,N,N/l,132;
LIMITS, 3, 6, 100;
INTLC,XX(1)=6000,XX(2)=3.085,XX(3)=6000,XX(4)=3.0489;
INTLC,XXC5)=3000,XX(6)=2.8355,XX(7)=15,XX(8)=15.5,XX(9)=15;
INTLC,XX(10)=0,XX(11)=0,XX(12)=0,XX(13)=0,XX(14)=0,XX(15)=0;
INTLC,XX(16)=0,XX(17)=0,XX(18)=0,XX(25)=0;
INTLC,XX(26)=5.3166,XX(27)=5.5524,XX(28)=5.7344;
NETWORK;

CREATE, EXPON(20, 1)1,1,1000,1;
ACTIVITY;

;*Assign service times*

ASNl ASSIGN,ATRIB(2)=WEIBL(XX(l),XX(2),2),ATRIB(3)=WEIBL(XX(3),
XX(4),3),ATRIB(4)=WEIBL(XX(5),XX(6),4),l;

ACTIVITY, ...ASN2;

A-1



ASN2 ASSIGN,ATRIB(5)=TNOW-XX(18),XX(18)=TNOW,1;
ACTIVITY, ... ORDR;

ORDR. QUEUE(1),... Service center one
ACTIVITY(1)/l,ATRIB(2) ,,PAY;

PAY QUEUE(2),... Service center two
ACTIVITY(1)/2,ATRIB(3) ,,PU;

PU QUEUE(3),,2,BLOCK; Service center three
ACTIVITY(1) /3,ATRIB(4) ,,ASN3;

*Calc sojourn time and count customners*

ASN3 ASSIGN,ATRIB(6)=TNOW-ATRIB(l),XX(25)=XX(25) +1,1;
ACTIVITY,,XX (25) .LE.300,TERM'; Warm-up period
ACTIVITY, ...ASN4;

*Calculate internal cv's*

ASN4 ASSIGN,XX(10)=ATRIB(2)/XX(26)-XX(7)/XX(26) ,XX(1l)=ATRIB(3)/XX(27)-
XX(8)/XX(27),XX(12)=ATRIB(4)/XX(28)-XX(9)/XX(28),
XX(13)=ATRIB(5) /20. 0-1.0;

ACTIVITY, ...ASN5;

*Sumn internal cvls*

ASN5 ASSIGN,XX(14)=XX(14)+XX(10) ,XX(15)=XX(15)+XX(11),
XX(16)=XX(16)+XX(12),XX(17)=XX(17)+XX(13);

ACTIVITY,,, COLl;

*Collect statistics*

COLl COLCT(1) ,ATRIB(2) ,ORDERTIME, , ;
ACTIVITY, ,COL2;

COL2 COLCT (2) ,ATRIB (3), PAYTIME,, 1;
ACTIVITY .. ,COL3;

COL3 COLCT(3),ATRIB(4),PU TIME,,l;
ACTIVITY, ...COL4;

COL4 COLCT(4),ATRIB(5),INTER ARRIVE,,1;
ACTIVITY,. , COL5;

COL5 COLCT(5) ,ATRIB(6) ,SOJOURN,,4;
ACTIVITY,,.. COL6;

COL6 COLCT(6),XX(10),WORK VAR1,1;
ACTIVITY, ...COL7;

COL7 COLCT(7),XXC11),WORK VAR2,,l;
ACTIVITY, ,COL8;

COL8 COLCT(8),XX(12),WORK VAR3,1;
ACTIVITY,,.. COL9;

COL9 COLCT(9),XX(13),STD ARRV,,l;
ACTIVITY, ...TERM;

TERM TERMINATE;
END;

FIN;
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A.2 FORMTAN Subroutine for ModelM

Main program*

PROGRAM MAIN
DIMENSION NSET(5000)
INCLUDE 'PAPAM.INC'
COMM4ON/SCOM1/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,
1MSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MMXXV)
COMM4ON QSET(5000)
EQUIVALENCE (NSET(1) ,QSET(1))
NNSET=5000
NCRDR=5
NPRNT= 6
NTAPE=7
OPEN (UNIT=NCRDR, FILE=' fort. 5')
OPEN (UNIT=NPRNT, FILE=' fort. 6')
CALL SLAM
STOP

END

*Subroutine to calculate stats and controls at end of each run*

*Subroutine variable definitions
*Y(J)=average time in system for J'th replication
*W(J,K)=standard work variable K for J'th replication
*S(J,K)=service time mean for center K for J'th replication
*A(J)=analytical control variate for J'th replication
*DENOM(J)=j'th denominator for calculation of external control variate

* using Jackson network approximation
*R(J)=j'th mean interarrival time

Number=number of replications

SUBROUTINE OTPUT

INCLUDE 'PARAM.INC'
COMON/SCOMl/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,

1MSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MrVXXV)
DOUBLE PRECISION Y(1000), W(1000,3), S(1000,3)
DOUBLE PRECISION A(1000), R(1000)
DOUBLE PRECISION DENOM(3), SA(1000)
INTEGER matOpen, mxCreateFull, matClose
INTEGER mxGetPr, MatPut Matrix
INTEGER b, c, FP, STAT
INTEGER J, K, NUMBER
NUMBER = 1000
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" Calculate average time in system for each replication

Y(NNRJN) = CCAVG(5)

" Calculate standardized work variables and service time means

DO 10 J = 1, 3
W(NNRUN,J) = XX(J+13)/SQRT(CCNUM(J+5))
S (NNRUN, J) = CCAVG (J)

10 CONTINUE

" Calculate mean interarrival time and standardized arrival variable

SA(NNRUN) = XX(17)/SQRT(CCNUM(9))
R(NNRUN) = CCAVG(4)

" Calculate analytical control variate

DO 20 K = 1, 3
DENOM(K) =(l.0/S(NNRUN,K)) - (l.0/R(NNRUN))

20 CONTINUE

A(NNRUN) = (l.0/DENOM(l)) + (l.0/DENOM(2)) + (l.0/DENOM(3))

SOutput data in MATLAB format

IF (NNRUN .GE. NUMBER) THEN

FP = matOpen('onethouw.mat', 'w')
b= mxCreateFull (NUMBER, 1,0)
call mxCopyReal8ToPtr(Y, mxGetPr(b), NUMBER)
call mxSetName(b, 'sojourn')
stat = matPutMatrix(fp, b)

c= mxCreateFull (NUMBER, 3, 0)
call mxCopyReal8ToPtr(W, nixGetPr(c), 3*NUMBER)
call mxSetName(c, 'stdwork')
stat = matPutMatrix(fp, c)
call mxFreeMatrix (c)

call mxCopyReal8ToPtr(SA, mxGetPr(b), NUMBER)
call mxSetName(b, 'stdarrive')
stat = matPutMatrix(fp, b)

call mxCopyReal8ToPtr(A, mxGetPr(b), NUMBER)
call mxSetName(b, 'analytical')
stat =matPutMatrix(fp, b)
stat = matClose(fp)
call mxFreeMatrix (b)

END IF

RETURN
END
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A. 3 SLAM II Source Code for Model M3

XX(I) Variable definitions

XX(l)=exponential service time one distribution mean
XX(2)=exponential service time two distribution mean
XX(3)=exponential service time three distribution mean

Atrib definitions

Atrib(l)=arrival time
Atrib(2)=center one service time
Atrib(3)=center two service time
Atrib(4)=center three service time
Atrib(5)=sojourn time

GEN,IRISH,MICKEY D TEST MODEL, lO/l4/l995,l000,Y,N,Y/Y,N,N/l,132;
LIMITS, 3,5,200;
INTLCIXX(l)=15.0,XX(2)=15.5,XX(3)=15.0;
INTLC, XX (2 5) =0;
NETWORK;

CREATE,EXPON(20,1) ,,l,1OOO,l;
ACTIVITY;

*Assign service times*

ASN1I ASSIGN,ATRIB(2)=EXPON(XX(l),2),ATRIB(3)=EXPON(XX(2),3),
ATRIB(4)=EXPON(XX(3) 14);

ACTIVITY,,, ,ORDR;

ORDR QUEIJE~i),,,; Service center one
ACTIVITY(1) /l,ATRIB (2) ,,PAY;

PAY QTJETE(2),... Service center two
ACTIVITY(l)/2,ATRIB(3) ,,PIJ;

PU QUEUE(3),,,; Service center three
ACTIVITY(1) /3,ATRIB(4) ,,ASN2;

*Calculate sojourn time and count customers*

ASN2 ASSIGN,ATRIB(5)=TNOW-ATRIB(l),XX(25)=XX(25) +1;
ACTIVITY, ,XX(25) .LE.300,TERM; Warm-up period
ACTIVITY, ,XX(25) .GT.300,COLl;

COUl COLCT(l),ATRIB(5),SOJOURN,,l;
ACTIVITY, ,,TERM;

TERM TERMINATE;
END;

FIN;
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A. 4 FOR TRAN Subroutine for Model M;

Main program

PROGRAM MAIN
DIMENSION NSET(5000)
INCLUDE 'PAPAM.INC'
COMMON/SCOMl/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,

lMSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(PDMXV)
COMMON QSET(5000)
EQUIVALENCE (NSET(1) ,QSET(l))
NNSET=5000
NCRDR=5
NPRNT= 6
NTAPE=7
OPEN (UNIT=NCRDR, FILE=' fort. 5')
OPEN (UNIT=NPRNT, FILE=' fort. 6')
CALL SLAM

STOP

END

*Subroutine to calculate stats and controls at end of each run*

*Subroutine variable definitions
*Y(J)=average time in system for J'th replication
*Number=number of replications

SUBROUTINE OTPUT

INCLUDE 'PARAM.INC'
COMMON/SCOM1/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,

1MSTOP,NCLNR, NCRDR, NPPNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MThVXV)

DOUBLE PRECISION Y(1000)
INTEGER matOpen, mxCreateFull, matClose
INTEGER mxGetPr, MatPut Matrix
INTEGER b, FP, STAT
INTEGER NUMBER

NUMBER = 1000

*Calculate average time in system for each replication

Y(NNRUN) =CCAVG(1)
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*Output data in MATLAB format

IF (NNRUN .GE. NUMBER) THEN

FP = iatOpen('extthou.mat', 'w')
b= mxCreateFull (NUMBER, 1,0)
call mxCopyReal8ToPtr(Y, mxGetPr(b), NUMBER)
call mxSetName(b, 'extcontrol')
stat = matPutMatrix(fp, b)
stat = matClose(fp)
call mxFreeMatrix (b)

END IF
RETURN
END
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A.5 SLAMII Source Code for Models Q, and Qc

XX(I) Variable definitions

XX(1)=event counter
; XX(2)=time when first statistics are gathered

XX(3)=standardized work variable one
; XX(4)=sum of standardized work variable one

XX(5)=standardized work variable two
XX(6)=sum of standardized work variable two
XX(7)=standardized work variable three
XX(8)=sum of standardized work variable three
XX(9)=standardized work variable four
XX(10)=sum of standardized work variable four
XX(ll)=standardized work variable five
XX(12)=sum of standardized work variable five
XX(13)=standardized work variable six
XX(14)=sum of standardized work variable six
XX(15)=customer capacity for subnetwork (=25 for Q-l)
XX(20)= service time one distribution beta parameter

; XX(21)= service time one distribution alpha parameter
; XX(22)= service time one distribution mean
; XX(23)= service time one distribution standard deviation
; XX(24)= service time three distribution beta parameter
; XX(25)= service time three distribution alpha parameter
; XX(26)= service time three distribution mean
; XX(27)= service time three distribution standard deviation
; XX(28)= service time four distribution beta parameter
; XX(29)= service time four distribution alpha parameter
; XX(30)= service time four distribution mean
; XX(31)= service time four distribution standard deviation
; XX(32)= service time five distribution beta parameter
; XX(33)= service time five distribution alpha parameter
; XX(34)= service time five distribution mean
; XX(35)= service time five distribution standard deviation
; XX(36)= service time six distribution beta parameter
; XX(37)= service time six distribution alpha parameter
; XX(38)= service time six distribution mean
; XX(39)= service time six distribution standard deviation

Atrib definitions

Atrib(l)=time leaving center one
Atrib(2)=center two service time
Atrib(3)=center three service time
ATRIB(4)=center four service time
Atrib(5)=center five service time
Atrib(6)=center six service time
Atrib(7)=center one service time
Atrib(8)=sojourn time
Atrib(9)=routing random draw from center two
Atrib(10)=initial starting position random draw

GEN,THOMAS H. IRISH,COMPUTER,lI/28/1995,1000,Y,N,Y/Y,N,N/I,132;
LIMITS,8,10,25;
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INTLC,XX(l)=O,XX(2)=O,XX(3)=O,XX(4)=O,XX(5)=O,XX(6)=O,XX(7)=O,XX(8)=O;
INTLC,XX(9)=O,XX(lO)=O,XX(1l)=O,XX(12)=O,XX(13)=O,XX(14)0O,XX(15)=25;
INTLC,XX(20)=1000.O,XX(21)=l.46824,XX(22)=lOO.O,XX(23)=69.2516;
INTLC,XX(24)=1O.O,XX(25)=5.6476,XX(26)=1.39,XX(27)=.28477;
INTLC,XX(28)=lO.O,XX(29)=5.6476,XX(30)=l.39,XX(3l)=.28477;
INTLC,XX(32)=1000.O,XX(33)=2.61249,XX(34)=12.5,XX(35)=5.14217;
INTLC,XX(36)=lOOO.O,XX(37)=2.61249,XX(38)=12.5,XX(39)=5.l4217;
NETWORK;

RESOTJRCE/l, SPACE (XX(15) ),7,8;

CREATE, .Ol,,,25,1;
ACTIVITY;

*Send customers to initial service centers*

STRT ASSIGN,ATRIB(lO)=UNFRM(O,1,8) ,l;
ACTIVITY, ,ATRIB(lO) .LE. .708,ASNA;
ACTIVITY,,ATRIB(lO).GT..708.AND.NNRSC(l).LT.l,CAPl;
ACTIVITY, ,ATRIB(lO) .GT..7O8.AN~D.NNRSC(1) .GT.O,CAP2;

CAP2 AWAIT(7),S PACE,,l; (Center 2 in Q-c)
ACTIVITY, ,ATRIB(10) .GT..708.AND.ATRIB(lO) .LE..877,TWOS;
ACTIVITY, ,ATRIB(lO) .GT. .877.AND.ATRIB(lO) .LE. .9078,SRV4;
ACTIVITY, ,ATRIB(1O) .GT..9078.AND.ATRIB(IO) .LE..9386,SRV4;
ACTIVITY, ,ATRIB(lO) .GT..9386.AND.ATRIB(1O) .LE..9693,SRV5;
ACTIVITY, ,ATRIB(lO) .GT. .9693,SRV6;

ASNA ASSIGN,ATRIB(7)=WEIBL(XX(20),XX(21),l),l; Service time I.
ACTIVITY, ...Ql;

Qi QUEUE(l),... Service center 1
ACTIVITY(25)/l,ATRIB(7);

ASNi ASSIGN,XX(l)=XX(l)+l,ATRIB(l)=TNOW,l; Count customers
ACTIVITY, ,XX(1) .GE.2000,TERN; End replication
ACTIVITY, ,XX(l) .EQ.500; Start stats
ACTIVITY,,XX(1) .GT.500,WRK1; Collect stats
ACTIVITY, ,XX(l) .LT.500,CAPl; Warm-up period

CLKl ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

*Calc std. work cv and service time #1*

WRKl ASSIGN,XX(3)=ATRIB(7)/XX(23)-XX(22)/XX(23),XX(4)=XX(4) + XX(3),l;
ACTIVITY;

WKC1 COLCT(7),XX(4),WORK ONE,,l;
ACTIVITY;

SVCl COLCT(13),ATRIB(7),SERVICE 1,,l;
ACTIVITY,,, CAPi;

TWOS ASSIGN,ATRIB(2)=EXPON(1,2),l; Service time 2(3)
ACTIVITY;

Q2 QUETJE(2) ... Service center 2(3)
ACTIVITY(1)/2,ATRIB(2);

*Draw routing rv, and count event*

ASN2 ASSIGN,XX(1)=XX(l)+l,ATRIB(9)=JNFRM(O,1,lO) ,l;
ACTIVITY,,XX(l) .GE.2000,TERM; End replication
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ACTIVITY,,XX(l) .EQ.500; Start stats
ACTIVITY,,XX(1) .GT.500,WRK2; Collect stats
ACTIVITY, ,XX(1) .LT.500,PROB; Warm-up period

CLK2 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

*Calc std work cv and service time #2(3)*

WRK2 ASSIGN,XX(5)=ATRIB(2)-l,XX(6)=XX(6) + XX(5),l;
ACTIVITY;

WKC2 COLCT(8),XX(6),WORK TWO,,l;
ACTIVITY;

SVC2 COLCT(14),ATRIB(2),SERVICE 2,1l;
ACTIVITY, ...TWOS;

*Branch to next service center*

PROB GOON,l;
ACTIVITY,,ATRIB(9).LE..2 .AND. XX(l).LT.500;
ACTIVITY,,ATRIB(9).LE..2 .AND. XX(1).GE.500,RTE1;
ACTIVITY, ,ATRIB(9) .GT..2 .AND. ATRIB(9) .LE..56,SRV3;
ACTIVITY,,ATRIB(9).GT..56 .AND. ATRIB(9).LE..92,SRV4;
ACTIVITY,,ATRIB(9).GT..92 .AND. ATRIB(9).LE..96,SRV5;
ACTIVITY, ,ATRIB(9) .GT. .96,SRV6;

FREl FREE, SPACE, 1;
ACTIVITY .. ,ASNA;

RTE1 COLCT(19),ALL,ROUTE 1,1l; Collect routing #1 info
ACTIVITY;

FRE2 FREE, SPACE, 1;
ACTIVITY, ...ASN7;

*Assign service times for centers 4-6 (5-7) and caic routing info*

SRV3 ASSIGN,ATRIB(3)=WEIBL(XX(24),XX(25),3),l;
ACTIVITY,,XX(l) .LT..500,Q3;
ACTIVITY;

RTE3 COLCT (20) ,AIL,RQUTE3, , ;
ACTIVITY, ...Q3;

SRV4 ASSIGN,ATRIB(4)=WEIBL(XX(28),XX(29),,4),1;
ACTIVITY,,XX(l) .LT.500,Q4;
ACTIVITY;

RTE4 COLCT(21),ALL,ROUTE 4,1l;
ACTIVITY, ... Q4;

SRV5 ASSIGN,ATRIB(5)=WEIBL(XX(32),XX(33),5),l;
ACTIVITY,,XX(l) .LT.500,Q5;
ACTIVITY;

RTE5 COLCT(22),ALL,ROUTE 5,1l;
ACTIVITY, .. Q5;

SRV6 ASSIGN,ATRIB(6)=WEIBL(XX(36),XX(37),6),1;
ACTIVITY, ,XX(l) .LT.500,Q6;
ACTIVITY;

RTE6 COLCT(23),ALL,ROUTE 6,,1;
ACTIVITY, ...Q6;

Q3 QTEUE(3) ... Service center 3(4)
ACTIVITY(l)/3,ATRIB(3);

ASN3 ASSIGN,XX(1)=XX(l)+l,1; Count event
ACTIVITY, ,XX(l) .GE.2000,TERM; End replication
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ACTIVITY, ,XX(l) .EQ.500; Start stats
ACTIVITY, ,XX(l) .GT.500,WRK3; Collect stats
ACTIVITY, ,XX(l) .LT.500,TWOS; Warm-up period

CLK3 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

*Collect std work and service time #3(4)

WRK3 ASSIGN,XX(7)=ATRIB(3)/XX(27)-XX(26)/XX(27),XX(8)=XX(8) + XX(7) ,l;
ACTIVITY;

WKC3 COLCT(9),XX(8),WORK THREE,,l;
ACTIVITY;

SVC3 COLCT(15),ATRIB(3),SERVICE 3,1;
ACTIVITY, ... TWOS;

Q4 QUEUE(4),... Service center 4(5)
ACTIVITY(l)/4,ATRIB(4);

ASN4 ASSIGN,XX(1)=XX(l)+l; Count event
ACTIVITY, ,XX(l) .GE.2000,TERM; End replication
ACTIVITY,,XX(1) .EQ.500; Start stats
ACTIVITY, ,XX(l) .GT.500,WRK4; Collect stats
ACTIVITY, ,XX(l) .LT.500,TWOS; Warm-up period

CLK4 ASSIGN,XX(2)=TNOW,l; Record stats start time
ACTIVITY;

*Calc and collect std work and service time #4(5)*

WRK4 ASSIGN,XX(9)=ATRIB(4)/XX(3l)-XX(30)/XX(31),XX(1O)=XX(lO)+XX(9),l;
ACTIVITY;

WKC4 COLCT(lO),XX(1O),WORK FOUR,,l;
ACTIVITY;

SVC4 COLCT(16),ATRIB(4),SERVICE 4,1l;
ACTIVITY, ... TWOS;

Q5 QUETJE(5) ... Service center 5(6)
ACTIVITY(1) /5,ATRIB(5);

ASN5 ASSIGN,XX(l)=XX(l)+l; Count event
ACTIVITY, ,XX (1).GE.2000,TERM; End replication
ACTIVITY,,XX(1) .EQ.500; Start stats
ACTIVITY,,XXC1) .GT.500,WRK5; Collect stats
ACTIVITY, ,XX(l) .LT.500,TWOS; Warm-up period

CLK5 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

*Calc and collect std work and service time #5(6)*

WRK5 ASSIGN,XX(ll)=ATRIB(5)/XX(35)-XX(34)/XX(35),
XX(12)=XX(12)+XX(l) , 1;

ACTIVITY;
WKC5 COLCT(ll),XX(12),WORK FIVE,,l;

ACTIVITY;
SVC5 CCLCT(17),ATRIB(5),SERVICE 5,,l;

ACTIVITY, ,,TWOS;

Q6 QUEUE(6) ... Service center 6(7)
ACTIVITY(l)/6,ATRIB(6);

ASN6 ASSIGN,XX(l)=XX(l)+l; Count event
ACTIVITY, ,XX(l) .GE.2000,TERM; End replication
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ACTIVITY,,XX(1) .EQ.500; Start stats
ACTIVITY, ,XX(1) .GT.500,WRK6; Collect stats
ACTIVITY,,XX(1) .LT.500,TWOS; Warm-up period

CLK6 ASSIGN,XX(2)=TNOW,1; Record stat start time
ACTIVITY;

*Calc and collect std work and service time #6(7)*
WRK6 ASSIGN,XX(13)=ATRIB(6)/XX(39)-XX(38)/XX(39),

XX(14)=XX(14)+XX(13) ,1;
ACTIVITY;

WKC6 COLCT(12),XX(14),WORK SIX,,1;
ACTIVITY;

SVC6 COLCT(18),ATRIB(6),SERVICE 6,,1;
ACTIVITY, ...TWOS;

ASN7 ASSIGN,ATRIB(8)=TNOW-ATRIB() , 1;
ACTIVITY;

COLl COLCT(1) ,ATRIB(8) ,RESPONSE TIME, ,1; Sojourn time
ACTIVITY, ...ASNA;

TERM TERMINATE,1;

CAP1 AWAIT(8),SPACE,,1; (Service center 2 in Q-c)
ACTIVITY, ... TWOS;
END;

FIN;
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A. 6 FORTRAN Subroutine for Models Q, and Qc

* Main program *
************+**************************** *******

PROGRAM MAIN
DIMENSION NSET(5000)
INCLUDE 'PARAM.INC'
COMMON/SCOMI/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,

IMSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MMXXV)
COMMON QSET(5000)
EQUIVALENCE (NSET(l),QSET(i))
NNSET=5000

NCRDR=5
NPRNT=6

NTAPE=7
OPEN(UNIT=NCRDR, FILE='fort.5')
OPEN(UNIT=NPRNT,FILE='fort.6')
OPEN(10, FILE='analytical.in',STATUS='UNKNOWN')
CALL SLAM
CLOSE(10)
STOP
END

* Subroutine to calculate stats and controls at end of each run *

* Subroutine variable definitions
* Y(NNRUN) = average return time for each replication (response)
* WAIT(NNRUN,J) = average wait at J'th station for each replication
* UTILIZ(NNRUN) = average utilization of station 2 (CPU)
* W(NNRUN,J) = standardized work variable for J'th station
* R(NNRUN,J) = standardized routing variable for J'th route
* PROB(J,K) = empirical transition probability matrix
* S(NNRUN, J) = average service time for J'th station
* DENOM(J) = denominator for J'th standardized routing variable
* P(J) = actual routing probability
* NUMBER = number of replications
* CUST = number of customers in network
* STATION = number of stations in network

SUBROUTINE OTPUT

INCLUDE 'PARAM.INC'
COMON/SCOM/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,
IMSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MMXXV)
DOUBLE PRECISION Y(1000), W(1000,6), R(1000,5), WAIT(1000,5)
DOUBLE PRECISION UTILIZ(1000), DENOM(5), P(5)
REAL PROB(6,6), S(1000,6)
INTEGER matOpen, mxCreateFull, matClose
INTEGER mxGetPr, MatPut Matrix
INTEGER b, c, d, FP, STAT
INTEGER J, K, NUMBER, CH(6)
INTEGER CUST, STATION
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DATA CH / 25,1,1,1,1,1 /
DATA (PROB(l,J), J=l,6) / 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 I

+ (PROB(2,J), J=1,6) / 0., 0., 0., 0., 0., 0. /
+ (PROB(3,J), J=1,6) / 0., 1., 0., 0., 0., 0. /
+ (PROB(4,J), J=l,6) / 0., 1., 0., 0., 0., 0. /
+ (PROB(5,J), J=1,6) / 0., 1., 0., 0., 0., 0. /
+ (PROB(6,J), J=1,6) / 0., 1., 0., 0., 0., 0. /

P(1) = .2
P(2) = .36
P(3) = .36
P(4) = .04
P(5) = .04

NUMBER = 1000
CUST = 25
STATION = 6

* Calculate system response characteristics *

Y(NNRUN) = CCAVG(1)
UTILIZ(NNRUN) = (CCAVG(14)*CCNUM(14))/(TNOW-XX(2))

* Calculate internal control variates *

* Calculate standardized work variables

DO 10 J = 1, 6
W(NNRUN,J) = XX(2*J+2)/SQRT(CCNUM(J+6))

10 CONTINUE

" Calculate standardized routing variables

DENOM(1) = SQRT(CCNUM(8)*(l-P(1))*P(1))
R(NNRUN,1) = (CCNUM(7)-CCNUM(8)*P(1))/DENOM(1)
DO 20 J=2, 5

DENOM(J) = SQRT(CCNUM(8)*(I-P(J))*P(J))
R(NNRUN,J) = (CCNUM(J+7)-CCNUM(8)*P(J))/DENOM(J)

20 CONTINUE

* Output response data and internal cv's in MATLAB format

IF (NNRUN .GE. NUMBER) THEN

FP = matOpen('model.mat', 'w')

b= mxCreateFull (NUMBER, 1,0)

call mxCopyReal8ToPtr(Y, mxGetPr(b), NUMBER)
call mxSetName(b, 'sojourn')
stat = matPutMatrix(fp, b)
call mxCopyReal8ToPtr(UTILIZ, mxGetPr(b), NUMBER)
call mxSetName(b, 'utiliz')
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stat = matPutMatrix(fp, b)

call mxFreeMatrix (b)

c= mxCreateFull (NUMBER, 6,0)

call mxCopyReal8ToPtr(W, mxGetPr(c), 6*NUMBER)
call mxSetName(c, 'stdwork')
stat = matPutMatrix(fp, c)
call mxFreeMatrix (c)

d= mxCreateFull (NUMBER, 5,0)

call mxCopyReal8ToPtr(R, mxGetPr(d), 5*NUMBER)
call mxSetName(d, 'stdroute')
stat = matPutMatrix(fp, d)
call mxCopyReal8ToPtr(WAIT, mxGetPr(d), 5*NUMBER)
call mxSetName(d, 'wait')
stat = matPutMatrix(fp, d)
call mxFreeMatrix (d)

stat = matClose(fp)

END IF

* Calculate and format output for analytical control program (ForQue) *

* Calculate average service times and actual routing proportions

DO 30 J=l, 6
S(NNRUN,J) = CCAVG(J+12)

30 CONTINUE
K= 2
PROB(K,l) = CCNUM(19)/CCNUM(8)
DO 40 J=3, 6

PROB(K,J) = CCNUM(J+17)/CCNUM(8)
40 CONTINUE

* Output data for analytical program for each replication

WRITE (10,100) CUST, STATION
WRITE (10,200)
WRITE (10,500) (S(NNRUN,J), J=1,6)
WRITE (10,300) (CH(J), J=1,6)
WRITE (10,200)
WRITE (10,400) ((PROB(J,K), K=1,6), J=1,6)
WRITE (10,200)

100 FORMAT (213)
200 FORMAT (/)
300 FORMAT (613)
400 FORMAT (6(6F9.5/))
500 FORMAT (6F9.5)

RETURN
END
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A. 7 SLAM HJ Source Code for Model Q2

XX(I) Variable definitions

XX(l)=event counter
XX(2)=time when first statistics are gathered

Atrib definitions

Atrib(l)=time leaving center one
Atrib(2)=center two service time
Atrib(3)=center three service time
Atrib(4)=center four service time
ATRIB(5)=center five service time
ATRIB(6)=center six service time

;ATRIB(7)=center one service time
;ATRIB(8)=sojourn time
;ATRIB(9)=routing random draw from center two
;ATRIB(10)=initial starting position random draw

GEN,THOMAS H. IRISH,COMPUTER,1l/28/1995,1000,Y,N,Y/Y,N,N/1,132;
LIMITS, 6,10,25;
INTLC,XX (1) =0,XX (2) =0;
NETWORK;

CREATE, 0,1,25,1;
ACTIVITY;

*Send customers to initial service center*

STRT ASSIGN,ATRIB(10)=UNFRM(0,l,8),1;
ACTIVITY, ,ATRIB(10) .LE. .708,ASNA;
ACTIVITY,,ATRIB(10) .GT..708.AND.ATRIB(10) .LE..877,TWOS;
ACTIVITY, ,ATRIB(10) .GT..877.AND.ATRIB(10) .LE..9078,SRV4;
ACTIVITY,,ATRIB(10).GT..9078.AND.ATRIB(10) .LE..9386,SRV4;
ACTIVITY,,ATRIB(10) .GT..9386.AND.ATRIB(10) .LE..9693,SRV5;
ACTIVITY, ,ATRIB(10) .GT. .9693,SRV6;

ASNA ASSIGN,ATRIB(7)=EXPON(100,l) ,l; Service time 1
ACTIVITY,,. ,Ql;

Qi QUEUE(1) ... Service center 1
ACTIVITY(25)/l,ATRIB(7);

ASNi ASSIGN,XX(1)=XX(l)+l,ATRIB(1)=TNOW,l; Count event
ACTIVITY,,XX(1) .GE.2000,TERM; End replication
ACTIVITY,,XX(l) .EQ.500; Start stats
ACTIVITY,,XX(l) *GT.500,ZAAH; Collect stats
ACTIVITY, ,XX(l) .LT.500,TWOS; Warm-up period

CLK1 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

ZAAH GOON,l;
ACTIVITY, ,TWOS;

TWOS ASSIGN,ATRIB(2)=EXPON(l,2),l; Service time 2
ACTIVITY;
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Q2 QUEUE(2),...; Service center 2
ACTIVITY(l)/2,ATRIB(2);

*Coun event and assign branching rv*

ASN2 ASSIGN,XX(1)=XX(l)+1,ATRIB(9)=UNFRM(O,1,lO) ,l;
ACTIVITY,,XX(l) .GE.2OOO,TERM; End replication
ACTIVITY, ,XX(l) .EQ.500; Start stats
ACTIVITY, ,XX(l) .GT.500,SVC2; Collect stats
ACTIVITY, ,XX(l) .LT.500,PROB; Warm-up period

CLK2 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

SVC2 COLCT(14),ATRIB(2),SERVICE 2,1l;
ACTIVITY,,. TWOS;

PROB GOON,l;

,Branch customers to service center 3-6*

ACTIVITY, ,ATRIB(9) .LE..2 .AND. XX(l) .LT.500,ASNA;
ACTIVITY,,ATRIB(9).LE..2 .AND. XX~l).GE.500;
ACTIVITY, ,ATRIB(9) .GT. .2 .AND. ATRIB(9) .LE..56,SRV3;
ACTIVITY,,ATRIB(9).GT..56 .AND. ATRIB(9).LE..92,SRV4;
ACTIVITY,,ATRIB(9).GT..92 .AND. ATRIB(9).LE..96,SRV5;
ACTIVITY, ,ATRIB(9) .GT. .96,SRV6;

*Assign service times*

SRV3 ASSIGN,ATRIB(3)=EXFON(l.39,3) ,l;
ACTIVITY.,, Q3;

SRV4 ASSIGN,ATRIB(7)=EXPON(l.39,4),l;
ACTIVITY,,. Q4;

SRV5 ASSIGN,ATRIB(3)=EXPON(12.5,5),l;
ACTIVITY, ...Q5;

SRV6 ASSIGN,ATRIB(6)=EXPON(12.5,6) ,l;
ACTIVITY, ...Q6;

Q3 QUEUE(3) ... Service center 3
ACTIVITY(l)/3,ATRIB(3);

ASN3 ASSIGN,XX(l)=XX(l)+l,l; Count event
ACTIVITY,,XX(1) .GE.2000,TERM; End replication
ACTIVITY,,XX(l) .EQ.500; Start stats
ACTIVITY,XX(1) .GT.500,ZAAJ; Collect stats
ACTIVITY, ,XX (1).LT.500,TWOS; Warm-up period

CLK3 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

ZAAJ GOONfl;
ACTIVITY .. ,TWOS;

Q4 QUEUE(4) ... Service center 4
ACTIVITY(l)/4,ATRIB(7);

ASN4 ASSIGN,XX(1)=XX(1)+1,l; Count event
ACTIVITY,,XX(1) .GE.2000,TERM; End replication
ACTIVITY,,XX(1) .EQ.500; Start stats
ACTIVITY,,XX(l) .GT.500,ZAAK; Collect stats
ACTIVITY, ,XX(l) .LT.500,TWOS; Warm-up period

CLK4 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;
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ZAAK GOON,l;
ACTIVITY, ... TWOS;

Q5 QTJEUE(5),... Service center 5
ACTIVITY(1)/5,ATRIB(5);

ASN5 ASSIGN,XX(1)=XX(l)+l,1; Count event
ACTIVITY,,XX(l) .GE.2000,TERM; End replication
ACTIVITY,,XX(l) .EQ.500; Start stats
ACTIVITY,,XX(1) .GT.500,ZAAL; Collect stats
ACTIVITY,,XX(l) .LT.500,TWOS; Warm-up period

CLK5 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

ZAAL GOON,1;
ACTIVITY, ...TWOS;

Q6 QUEUE(6),... Service center 6
ACTIVITY(l)/6,ATRIB(6);

ASN6 ASSIGN,XX(l)=XX(1)+1,l; Count event
ACTIVITY,,XX(l) .GE.2000,TERM; End replication
ACTIVITY,,XX(l) .EQ.500; Start stats
ACTIVITY,,XX(1) .GT.500,ZAAM; Collect stats
ACTIVTTY,,XX(1) .LT.500,TWOS; Warm-up period

CLK6 ASSIGN,XX(2)=TNOW,l; Record stat start time
ACTIVITY;

ZAAM GOON,l;
ACTIVITY, ...TWOS;

ASN7 ASSIGN,ATRIBC8)=TNOW-ATRIB(l) ,l;
ACTIVITY;

COLl COLCT(l) ,ATRIB(8) ,RESPONSE TIME,,l; Sojourn time
ACTIVITY, ...ASNA;

TERM TERMINATE,l;
END;

FIN;
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A.8 FORTRAN Subroutine for Model 02

*********************~********** **************** *

* Main program *

PROGRAM MAIN
DIMENSION NSET(5000)
INCLUDE 'PARAM.INC'
COMMON/SCOMI/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,
IMSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX((MMXXV)

COMMON QSET(5000)
EQUIVALENCE (NSET(1),QSET(I))
NNSET=5000
NCRDR=5
NPRNT=6
NTAPE=7
OPEN (UNIT=NCRDR, FILE= 'fort. 5')
OPEN (UNIT=NPRNT, FILE=' fort. 6')
CALL SLAM
STOP

END

* Subroutine to calculate stats and controls at end of each run *

* Subroutine variable definitions
* Y(NNRUN) = average return time for each replication (response)
* RATE(NNRUN) = average event rate
* WAIT(NNRUN,J) = average wait at J'th station for each replication
* Number = number of replications

SUBROUTINE OTPUT

INCLUDE 'PARAM.INC'
COMMON/SCOMI/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,

IMSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEQT),TNEXT, TNOW, XX(MMXXV)
DOUBLE PRECISION Y(1000), WAIT(1000,5), UTILIZ(1000)
INTEGER matOpen, mxCreateFull, matClose
INTEGER mxGetPr, MatPut Matrix
INTEGER b, d, FP, STAT
INTEGER J, NUMBER

NUMBER = 1000

* Calculate system response characteristics *

* Calculate average response time for each replication

Y(NNRUN) = CCAVG(1)
UTILIZ(NNRUN) = (CCAVG(14)*CCNUM(14))/(TNOW-XX(2))
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*Output response data in Matlab format

IF (NNRUN ..GE. NUMBER) THEN

FP = matOpen('external.mat', 'w')
b= mxCreateFull (NUMBER, 1, 0)
call mxCopyReal8ToPtr(Y, mxGetPr(b), NUMBER)
call mxSetName(b, 'extcontrol')
stat = matPutMatrix(fp, b)
call ixCopyReal8ToPtr(UTTLIZ, mxGetPr(b), NUMBER)
call ixSetName(b, 'extutiliz')
stat = matPutMatrix(fp, b)
call mxFreeMatrix (b)

d= mxCreateFull (NUMBER, 5, 0)
call rxCopyReal8ToPtr(WATT, rnxGetPr(d), 5*NUMBER)
call mxSetName(d, 'extwait')
stat = matPutMatrix(fp, d)
call mxFreeMatrix (d)
stat = matClose(fp)

END IF

RETURN
END
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Appendix B: MA- TLAB Script Files

B.] A TLA4B Main Program for Analysis of Simulation Data

%Computes and compares controlled responses from SLAM data

% Load data

load model; %Internal cv's (stdwork, stdroute)
load external; %External cv's (extcontrol extutiliz)
load analytical.out -ascii; %Analytical cv's
load cntl; %t-statistics and binary matrices
load mu; %expected values of response stats
load extmu; %expected values of analytical model

%Set response and analytical and external control variates to be
%analyzed

response=[sojourn utiliz];
ext=[extcontrol extutiliz];
int=[stdwork stdroutel;
[runs,numberj=size (response);
for q=l:number

resp=response (:,
analytcv--analytical (:,
extcontrolcv--ext (:,

%Calculate results for 10 reps/l00 exps, then 20 reps/50 exps

for p=l:2
rep s=l O*p;
expslOO0/p;

%Perform analysis on {reps} replications with fexps} experiments

for k1l:exps
yresp ((k-l) *reps+l k*reps,:);
intcv =int( (k-l)*reps+l:k*reps,:);
analyt=analytcv( (k-l) +reps+l:k*reps,:);
extcv--extcontrolcv( (k-l) *reps+l:k*reps,:);

%Compute uncontrolled response

uncntl(k, :)=uncntlst(y,mu(q));

%Compute controlled responses

anltcntl (k,:)=control (y,mu(q) ,analyt,extmu(q));
extcnt.(k,:)=control (y,mu(q) ,extcv,extmu(q));
mnt temp=control(y,mu(q) ,intcv,0.0);
tota l=size(int);
for r=l:(2Atotal(l,2))-l

row=-(r-l) *exps+k;

end for loop-r
end % for loop-k (all experiments of 10/20 reps)
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% Calculate average results for 10/20 reps

% Calculate average responses

if p==l
resultl0(q, :)--mean(uncntl);

% Calculate controlled responses

redl0 int=result(resultl0(q, :),q,p, intcntl,total(1,2)) ;

redl0 anal=result(resultlO(q, :),q,p, anltcntl,l);
redlOext=result(resultl0(q, :),q,p,extcntl,l);
if q==l

redl0=[redl0_int;redlOanal;redl0_ext];
else

redl0=[redlO;redl0_int;redl0_anal;redl0_ext];
end %if-q
clear uncntl anltcntl extcntl intcntl int temp

else

% Calculate averages for 20 reps

result20(q,:)-mean(uncntl);

% Calculate controlled responses

red20 int=result(result20(q,:),q,p,intcntl,total(1,2));
red20-anal=result(result20(q,:),q,p,anltcntl,l);
red20-ext=result(result2O(q,:),q,p,extcntl,l);
if q==l

red20=[red20_int;red20_anal;red20_ext];
else

red20=[red20;red2Oint;red20_anal;red20 ext];
end %if-q

end %if-p (100 or 50 experiments)
end %for loop-p (10 or 20 runs)

end %for loop-q (response under study)

% Save results

save resultl0.out resultl0 -ascii
save redl0.out redlO -ascii
save result20.out result20 -ascii
save red20.out red20 -ascii
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B.2 AMATLAB Function for Calculating Controlled Responses

function z = control (y,mu,x,extmu)
load cntl;

% Returns controlled responses and associated statistics
% Input:

y = uncontrolled response
%mu = known mean of y

x = control variates
%extmu = known mean(s) of x
% Output:

z = [controlled mean, variance, confidence interval width,
% coverage (0 or 1), mean square error from mu]

[len,widjj=size(x);

% Load appropriate binary matrix to compute
% all possible combinations of cv's

bin=binary(wid);

% compute z for all possible cv combinations

comb= (2^wid) -1;
e=ones (len, 1);
x=x- extmu;
for j=l:comb

X=[e x(:,bin(j,:))];
beta=X\y;
z(j,l)=beta(l,l);
[l,w] =size (X) ;
sigma=inv(X'*X);
SSE=y'*y-beta' *X '*y;
MSE= (1/(l-w) ) *SSE;
z (j,2)=sigma(i,i) *MSE;
z (j, 3)=2*t (len-w, : ) *sqrt (z (j, 2));
ul=z(j,l)+.5*z(j,3);
ll=z(j,l)-.5*z(j,3);
z(j,4)=mu<=ul & mu>=ll;
z (j,5)=(z(j,l)-mu) A2;

end
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B. 3 MA4 TLAB Function for Computing Uncontrolled Response and Statistics

function z=uncntlst (y,mu)
load cntl;

% Computes uncontrolled response and statistics
% Input:

y = uncontrolled response
% mu = true mean
% Output:
% z = [mean, variance, confidence interval width, coverage
%(0 or 1), mean square error from true mean]

z(1)--mean(y);
z(2)=(std(y)^2)/length(y);
z (3) =2*t (length (y)-l, : )*sqrt (z (2)) ;
ul=z (1) +. 5 *z(3) ;
ll=z (1)-.5*z (3) ;

z(4)=mu<=ul & mu>=ll;
z(5)=(z (1)-mu) ̂2;
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B. 4 MA ThAB Function to Average Statistics over all Experiments

function zresult (y,q,n,x,w)

% Calculate average controlled responses for 100/n experiments

% Input:
% y = uncontrolled responses
% q = response statistic indicator
% n = counter to determine number of experiments
% x = controlled responses
Q6 w = number of control variates

% Output:
% z = [q, variance, confidence interval width, coverage, MSE,
% variance reduction percent, confidence interval percent]

expsl0 0/n;
for m--l: (2^w)-l

z (i,1) =q;
z(m,2)=-mean(x(Cm-l)*exps+l:m*exps,2)) ;
z(m,4)=mean(x((m-l)*exps+l:m*exps,3));
z(m,6:7)=mean(x(Cm-l)*exps+l:m*exps,4:5));

z(m,8)=-mean(x((m-l)*exps+l:m*exps,l));
end
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B.5 A TLAB Function for Returning Appropriate Binary Matrix

function z=binary (wid)

% Returns appropriate "binary" file for number of control variates
% (For example if number of cv's is 3, then appropriate binary
% matrix is: [0 0 1; 0 1 0; 1 0 0; 0 1 1; 1 0 1; 1 1 0; 1 1 1]

% Input:
% wid = number of control variates

% Output:
z = [binary matrix]

if wid==1
binbinl;

elseif wid==2
bin=bin2;

elseif wid==3
bin=bin3;

elseif wid==4
binbin4;

elseif wid==5
bin=bin5;

elseif wid==6
bin=bin6;

if wid==7
binbin7;

elseif wid==8
binbin8;

elseif wid==9
bin=bin9;

elseif wid==10
bin=binl0;

elseif widll
bin=binll;

end
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