Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1995

Multiple Model Adaptive Control of the Vista F-16

Michael J. Stepaniak

Follow this and additional works at: https://scholar.afit.edu/etd

b Part of the Aeronautical Vehicles Commons, and the Controls and Control Theory Commons

Recommended Citation

Stepaniak, Michael J., "Multiple Model Adaptive Control of the Vista F-16" (1995). Theses and
Dissertations. 6205.

https://scholar.afit.edu/etd/6205

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.


https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/219?utm_source=scholar.afit.edu%2Fetd%2F6205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F6205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6205?utm_source=scholar.afit.edu%2Fetd%2F6205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

MULTIPLE MODEL ADAPTIVE CONTROL

OF THE VISTA F-16

THESIS

Michael Joseph Stepaniak
Second Lieutenant, USAF

AFIT/GE/ENG/95D-26

DISTRIBUTIOR STATTMENT K
Anmcvpd for pum;c relecan)

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio




AFIT/GE/ENG/95D-26

MULTIPLE MODEL ADAPTIVE CONTROL

OF THE VISTA F-16

THESIS

Michael Joseph Stepaniak
Second Lieutenant, USAF

AFIT/GE/ENG/95D-26

19960617 007

Approved for public release; distribution unlimited




THIS DOCUMENT IS BEST
"QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

- CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.



The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U. S. Government.




AFIT/GE/ENG/95D-26

MULTIPLE MODEL ADAPTIVE CONTROL OF THE VISTA F-16

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Michael Joseph Stepaniak, B.S.E.E.

Second Lieutenant, USAF

December, 1995

Approved for public release; distribution unlimited




Acknowledgements

First and foremost I would like to thank my wife, Annie, for being there through it all. Her
patignce and support made the long hours tolerable. I was (and am) blessed to have her at my side.
At the same time, I could not have asked for a better thesis advisor than Dr. Peter Maybeck. It was
a very rewarding experience to have worked with him, and his guidance made this thesis possible.
I would be remiss if I did not mention my fellow guidance and control classmates. Without their
comic relief, life at AFIT would have been a most unpleasureable experience. Thanks also to my
family who has always provided the encouragement for me to keep going. Last, but certainly not
least, I thank God for staying up with me late into the night, for keeping me focused, and for seeing

me safely through to the end.

Michael Joseph Stepaniak

i




Table of Contents

Page

Acknowledgements . . . . . . ... i
List of Figures . . . . . .« .ot ittt vil
List of Tables . . . . . . . o o o e e e e X
ADSETact . . . . . e e e e e e e e e e e e e xi
1. Introduction . . . . . . . . . e e e e e e e e e 1-1
1.1 Chapter Overview . . . . . . . . .. . . . 1-1

1.2 Motivation . . . . . . . .. .. 1-1

1.3 Problem Statement . ... ... .. ... ... ... ... 1-2

1.4 Assumptions . . . . . . .. ... .. 1-3

1.5 Thesis Format . .. ... . ... . .. ... 1-3

1.6 Chapter Summary . . . . . . . . . ... 1-3

2. Algorithm Development . . . . . .. . ... ... ... o o 2-1
2.1 Chapter Overview . . . . . . . . . . ... ... 2-1

2.2 Summary of Current Knowledge . . . . ... . ... .......... 2-1

2.2.1 History of Multiple Model Techniques . . . . ... ... ... 2-1

2.2.2 Contributions at AFIT . ... ... ... ........... 2-3

2.3 MMACOverview . . . . . . . . vttt it 2-6

23.1 KalmanPFilters . . . . . ... ... oL 2-8

2.3.2 Conditional Hypothesis Probability Evaluator . . . . . . . .. 2-10

2.3.3 MMAE-Based Control ve. MMAC . . . .. ... ....... 2-13

2.3.4 LQG Elemental controllers . . . .. .. ... ... ...... 2-15

2.3.5 Reverse Engineering the Block 40 Flight Control System . . . 2-16

2.3.6 Alternate Controller Synthesis: Control Redistribution . . . . 2-17

iil




3.

2.4 Modifications Necessary for Implementation . . . . . . ... ... ...
24.1 Lower Bounding . . ... ... e

24.2 BetaDominance . ... .. ... ... ... ... .. ..

2.4.3 ScalarPenalty . . ... ... ... ... .. . ... ...

24.4 Dither . . . . ... L

2.4.5 Hierarchical Structure . . . . . ... ... ... ...

2.4.6 Probability Smoothing . . . . . .. ... ... L.

2.4.7 Scalar Residual Monitoring . . . . . .. .. ... ... .. ..

2.5 Chapter SUmMmary . . . . . . . . .. ...
Controller Development . . . . . . .. ... . ... ... . ... . ...
3.1 Chapter Overview . . . . . . . . . .. ... ..
3.2 VISTAF-16 . . . . .. e
33 TruthModel . . .. . ... .. .
34 Design Model . . . . . ... ... ... oL
3.4.1 Analysis of the Linear Model . . . . . ... ... .......

3.4.2 Measurement and Output Models . . . .. .. .. ... ...

343 NoiseModels . . ... ... ... ... ... ..

3.44 ActuatorModels . . . . .. ... oo oo

3.4.5 Equivalent Discrete-Time Model . . . ... ... . ... ...

35 FailureModels . . . . . .. .. ..
36 LQG Synthesis . . . . oo e
361 LQRegulator . . . . o oo e

362 PlControl . ... ..... ... ... .. ... ...

3.6.3 Implicit and Explicit Model Following . . . . . .. ... ...

3.7 LQG Design Procedure . . ... ... ... .. .. ... ... . ...
3.8 Control Redistribution Synthesis . . . . ... ... ... ... .....
3.9 Chapter Summary . . ... ... ... ... ... ..

2-20

2-20

2-22

2-24

2-24

2-25

3-1

3-2

3-2

3-18

3-19

3-21

3-25

3-28

3-29

3-33




Results . . . . . . . . . e 4-1
41 Chapter Overview . . . .. .. .. .. . ... ... 4-1
4.2 Interpretation of the Probability Summary Plots . . . . . .. ... .. 4-1
4.3 Lateral Acceleration Model . . . . . . . . ... ... L0000 4-6

4.3.1 Tuning via Pseudonoise . . . . . ... ... ... ....... 4-8
4.3.2 Removing the Lateral Acceleration Measurement . . . . . . . 4-14
4.4 Final Tuning of the Kalman Filters . . . ... ... ... ..... .. 4-14
4.5 Asymmetric Dither . . . . ... ... oo oo L. 4-16
4.6 Numerical Difficulties in the LQG Synthesis . . . . . .. . . ... ... 4-24
4.6.1 Inverting the Il Matrix . ... ... . ... ... ....... 4-24
4.6.2 Comparison to a Previous LQG/PI Synthesis . . . . ... .. 4-28
4.6.3 Response of the LQG/PI Controller . . ... ... ... ... 4-28
4.7 Matching the LQG/PI Controller to Block 40 FCS . . . . . . ... .. 4-31
4.8 Investigation of Possible Errors in the Linear Model . . . . . ... .. 4-36
4.9 Implementation of the MMAC . . . . . ... . ... ... ...... 4-43
4.10 Control Redistribution . . . . . . . ... ... . ... .. ..., 4-45
4.10.1 Verification of Control Redistribution . .. . ... ... ... 4-45
4.10.2 MMAE-based Control Redistribution . ... ... ... ... 4-52
4.11 Chapter Summary . . . . . . .. . . .. ... e 4-60

Conclusions and Recommendations . . . . . . ... ... ... ... ... ... . 5-1
5.1 Chapter Overview . . . . . .. . .. .. ... . 5-1
52 LQG/PI Performance . .. ... .... ... .. ... ... ....... 5-1
5.3 Control Redistribution Performance . . . ... ... ... ... ... .. 5-2

5.3.1 Partial and Multiple Failures . . .. .. .. ... .. ... .. 5-2
5.3.2 Modeling . . ... ... ... 5-3
5.3.3 Preventing Saturations. . . . . . ... ... L. 5-3
5.3.4 Intermittent Failures . . . . . . . .. .. ... ... ...... 5-4




Page

54 Dither . . . . . . . . e 5-5

5.5 Enhancing Robustness of the Linear MMAE . . . . ... ... .. .. 5-5

5.6 Redistribution Applied to Sensor Failures . . . . .. ... .. ... .. 5-7

5.7 Real-Time, Man-in-the-Loop Simulation . . . . . . .. ... ... ... 5-8

5.8 In-flight Implementation . . . . . . ... ...... ... ........ 5-8

5.9 Chapter Summary . . . .. . . . . ... 5-10

Appendix A. MMAE-Based Control Redistribution Plots . . . . . ... ... .. .. A-1
Appendix B. White Noise Approximation to the Dryden Wind Model . . . . . . . . B-1
Appendix C. SRF Modification Table . . . . . . .. ... ... o L 0L, C-1
Bibliography . . . . . .. . ... . BIB-1
VIta . o o e e e e e e e e e e e e e e VITA-1

vi




List of Figures

Figure Page
2.1. Multiple Model Adaptive Estimator . . . . . ... ... .. .. ... .. ... 2-7
2.2. Multiple Model Adaptive Estimation Based Control With State Estimation . . 2-13
2.3. Multiple Model Adaptive Controller . . . . . ... .. ... ... .. .... 2-14

2.4. Multiple Model Adaptive Estimation Based Control With Parameter Estimation 2-15

2.5. Block 40 with Control Redistribution . . . . . .. ... ... . ... ... .... 2-17
2.6. Hierarchical Structure . . . . . . . . .. ... 2-23
3.1. VISTA F-16 . . . . . e e e e e e e 3-1
3.2. Effect of Non-Zero Normal Acceleration Trim . . . ... ... ... ....... 3-5
3.3. C*Schedule . . . . . . . ... 3-10
3.4. Comparison of Normal Acceleration Models . . . ... .............. 3-10
3.5. Compa;rison of Lateral Acceleration Models . . . . . . . ... ... ....... 3-11
3.6. General Control Problem . . . . . . .. ... ... oo 3-18
3.7. Potential Controller Design Based on Full-State LQ Regulator . . . . . .. ... 3-22
3.8. Closed Loop System with Position Form PI Control Law . . . . . ... ... .. 3-22
3.9. Closed Loop Command Generator Tracker . . . . ... ... .. ......... 3-27
3.10. Control Redistribution . . . . . . ... ... ... ..o oL 3-29
4.1. Example Probability Plot - Normal Acceleration Sensor Failure . . . ... ... 4-3
4.2. Example Probability Plot - Left Flaperon Failure . . . .. .. ... ....... 4-5
4.3. Strip Showing Ounly the a, Filter’s Probabilities . . . . . .. .. ... ... ... 4-6
4.4. Example Summary Plot . ... ... .. ... ... ... ... . ... 4-7
4.5. Retaining the Nonlinear a, Calculation . . . . .. ... .. .. ... ... 4-9
4.6. Retaining the Nonlinear a, Calculation - Fully Functional Probability Plot . . . 410
4.7. Retaining the Nonlinear a; Calculation - Normal Acceleration Sensor Failure . 4-11
4.8. Retaining the Nonlinear ay Calculation - Adding a; Pseudonoise . . ... ... 4-12

vil




Figure

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32.
4.33.

4.34.

Retaining the Nonlinear a, Calculation - Reducing the a, RMS Noise Level . .
Removing the ay, Measurement . . . ... .. ......... ... ... .. ..
Final MMAC Performance . . . . . . ... . ... ... o .,
Effect of “Menke” Dither on the Angular Rates . . . . . ... . ... ... ...
Illustration of the Interference Patterns Caused By Dither . . . . . . ... ...
Commanded Actuator Positions Resulting From Original Dither . . . . . . . ..
Commanded Actuator Positions Resulting From Modified Dither . . ... ...
Aircraft States Resulting from Modified Dither . . . . .. .. ... .. ... ..
Induced Actuator Rates due to Dither . . . . . . . ... ... ... ... ...
Effect of Scaling the C* Penalty . . . . . . .. .. ... .. ... .. .......
Effect of Scaling Pseudorate Penalties . . . . . ... ... ... ... .......
Effect of Scaling Actuator Position Penalties . . . . . . .. ... ... ... ...
Nonlinear Response Characteristic of the Block 40 FCS . . . . . .. ... .. ..
Linear Simulation of LQG/PI Controller - Pitch Doublet . . . . . . ... . ...
Linear Simulation of LQG/PI Controller - Roll Doublet . . . . . .. . ... ..
Linear Simulation of LQG/PI Controller - Yaw Doublet . . . . ... ... . ..
Linear Simulation of LQG/PI Controller - Negative Yaw Doublet . . . . . . ..
Linear Simulation of LQG/PI Controller - Negative Roll Doublet . . . . .. ..
Summary Plot for the MMAC with LQG/PI Controllers . . . . ... ... ...
Composite Test Input . . . . . . ... ... ... . L.
Verification of Control Redistribution - Left Stabilator Failure . . . . . .. . ..
Verification of Control Redistribution - Right Stabilator Failure . . . ... . ..
Verification of Control Redistribution - Left Flaperon Failure . .. ... .. ..
Verification of Control Redistribution - Right Flaperon Failure . . . . ... . ..
Verification of Control Redistribution - Rudder Failure . . . . ... ... .. ..

Verification of Control Redistribution - Effect of Position Limiting with Rudder

Failure and Increased Yaw Doublet . . . . . . . . ... .. ... ... ......

viii

Page
4-13
415
4-17
4-19
4-19
4-20
4-21
4-22
4-23
4-31
4-32
4-32
4-34
4-37
4-38
4-39
4-40
4-41
4-44
4-46
4-47
4-48
4-49
4-50

4-51

4-53




Figure

4.35. Comparison of the Original Block 40 FCS to an MMAE-based Controller using

4.36.

4.37.

4.38.

4.39.

5.1

Al

A2,

A3.

A4

A5

A.6.

AT

A 8.

A9,

A.10.

Al

A.12.

A.13.

A 14.

A.15.

B.1.

the Block 40 FCS . . . . . . . . . .. . .
MMAE-based Control Redistribution - Pitch Doublet - Left Stabilator Failure .
MMAE-based Control Redistribution - Roll Doublet - Right Flaperon Failure .
MMAE-based Control Redistribution - Yaw Doublet - Rudder Failure. . . . . .

MMAE-based Control Redistribution - Roll Doublet - Rudder Failure . . . . . .

Possible In-flight Implementation of MM AE-based Redistribution . . . . . . ..

MMAE-based Control Redistribution - Pitch Doublet - Left Stabilator Failure .
MMAE-based Control Redistribution - Pitch Doublet - Right Stabilator Failure
MMAE-based Conttol Redistribution - Pitch Doublet - Left Flaperon Failure

MMAE-based Control Redistribution - Pitch Doublet - Right Flaperon Failure .
MMAE-based Control Redistribution - Pitch Doublet - Rudder Failure . . . . .
MM AE-based Control Redistribution - Roll Doublet - Left Stabilator Failure . .
MMAE-based Control Redistribution - Roll Doublet - Right Stabilator Failure .
MMAE-based Control Redistribution - Roll Doublet - Left Flaperon Failure . .
MMAE-based Control Redistribution - Roll Doublet - Right Flaperon Failure .
MMAE-based Control Redistribution - Roll Doublet - Rudder Failure . . . . . .
MMAE-based Control Redistribution - Yaw Doublet - Left Stabilator Failure

MMAE-based Control Redistribution - Yaw Doublet - Right Stabilator Failure .
MMAE-based Control Redistribution - Yaw Doublet - Left Flaperon Failure . .
MMAE-based Control Redistribution - Yaw Doublet - Right Flaperon Failure .

MMAE-based Control Redistribution - Yaw Doublet - Rudder Failure . . . . . .

Block Diagrams for Deriving Cross Spectral Densities . . . . . .. .. ... ...

ix

Page

4-55
4-57
4-58
4-59

4-61

5-9

A-3
A-4

A-5

A-10
A-11
A-12
A-13
A-14
A-15

A-16




Table

2.1.

3.1

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

4.1.

4.2

4.3.

4.4.

4.5.

4.6.

4.7.

B.1.

C.1.

C.2

C.3.

List of Tables

Page
Summary of Lower Bounds . . . . . . ... ... oL 2-19
State and Input Vectors . . . . . .. .. . .. ... L 3-4
Primed Dimensional Stability Derivatives . . . . . . .. ... ... ........ 3-5
Modified Input Vector . . . . .. . . ... .. 3-7
Measurement and Output Vectors . . . . . .. ... ... ... ... ....... 3-7
Plant Dynamics and Sensor Noise . . . . . . ... ... ... ... ........ 3-12
Augmented State Vector . . . . .. ... Lo 3-15
Augmented Input Vector . . . . . . .. . L oL 3-15
Actuator Deflection and Rate Limits . . . . . .. ... .. ... ......... 3-23
Definition of the Y-axis Labels on Summary Plots . . . . .. ... ... .. ... 4-2
Original Dither Signals . . . . . . ... .. ... .. . . . L 4-18
Modified Dither Signals. . . . . . .. ... .. ... 4-21
Eigenvalues and their Ratio to Sample Period . . . . . . ... ... ... ... 4-27
Maximum Allowable Command Inputs . . . .. ... .. ... . ......... 4-29
Test Doublets . . . . . . . .. .. . ... 4-35
Interpretation of the Modified Input Matrix . . . ... ... ........ ... 4-42
Dryden Wind Model Noise Strength Approximations . . . ... ... ... ... B-5
Modified SRF Files . . . . . . . . . .. ... C-1
Additional MMAC Files . . . . . .. ... .. ... ... C-2
SRF Parameter Values . . . . . ... ... ... ... .. ... ... ..... C-3




AFIT/GE/ENG/95D-26

Abstract

Multiple model adaptive control (MMAC) is investigated using the high-fidelity, nonlinear,
six-degree-of-freedom Simulation Rapid-Prototyping Facility VISTA F-16. Detection of single ac-
tuator and sensor failures is considered, with an MMAC algorithm initially pursued which allows
a controller specifically designed for each particular failure condition to replace the standard F-16
Block 40 flight control system (FCS) once the failure is detected. The synthesis of certain discrete-
time LQG/PI controllers (those using control variables linearly dependent on state derivatives) is
shown to be unattainable due to numerical difficulties. A novel control technique, termed control
redistribution, is introduced which redistributes control commands (that would normally be sent to
failed actuators) to the non-failed actuators, accomplishing the same control action on the aircraft.
Multiple model adaptive estimation-based control redistribution is demonstrated to detect single
failures in less than one second and to provide a response nearly identical to that anticipated from
a fully functional aircraft in the same environment. Moreover, this method directly employs the
proven Block 40 FCS, and no other, thereby guaranteeing desirable closed loop performance. A
description of modifications necessary for in-flight testing is also provided. This research represents

the most realistic simulation of multiple model adaptive control for flight control to date.




MULTIPLE MODEL ADAPTIVE CONTROL OF THE VISTA F-16

1. Introduction
1.1 Chapter Qverview

This thesis details the implementation of a Multiple Model Adaptive Controller for the VISTA
F-16 confronted with failed actuators and sensors. This chapter will first provide the motivation
for an MMAC. Section 1.3 will then present the problem statement and define the scope of the
research. Major assumptions of this research will be noted in Section 1.4. Finally, a reference

format for the rest of this document is provided, and a chapter summary given.

1.2 Motivation

In designing flight control systems, aircraft are often modeled as deterministic, linear time
invariant systems [3,38]. In reality, many uncertain parameters exist in these models, as well as all
other real world models. For example, sensor measurements are always noise corrupted, and system
performance often changes as the true operating condition varies over time. Even if the model were
somehow to account for these uncertainties, physical components generally degrade over time, and
sometimes fail. Furthermore the model itself is always suspect; the real world is never truly linear,
and the higher order terms neglected during linearization can be cast as uncertain parameters.
At issue then is the ability of the controller to compensate for changes in system parameters and

maintain stable flight with as much a preservation of handling qualities as possible.

Multiple model adaptive control (MMAC) is a modern technique that allows for continuous,
real-time adaptation to parameter variation. Of particular interest in flight control is the ability
to compensate for changes due to damage, degradation, or complete failure of the sensors and/or

actuators. In doing so, the MMAC may lessen the reliance on redundant hardware systems, freeing
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up the limited payload for more critical functions. MMAC also enhances mission effectiveness by
allowing crippled aircraft to maintain handling qualities so they may either continue the mission,
return to base for repairs, or, as a minimum, provide a stable platform for safe egress of the air
crew. While other robust techniques strive to meet the same goals, MMAC potentially provides

greater levels of performance for a wide range of flight conditions.’

1.3 Problem Statement

Multiple Model Adaptive Control provides the ability to detect changes in the uncertain
parameters, and reconfigure in real-time the control law to compensate for these changes. Previous
research has already demonstrated that multiple model techniques are capable to detecting and
isolating actuator and sensor failures [31,35]. Further, MMAC’s have been shown to provide stable,
satisfactory flight in the face of single and most double failures? when tested against linear truth
models [20,31]. An MMAE-based controller [34] was also able to maintain a stable, straight and level
flight trajectory despite failures when verified against a nonlinear truth model. This research will
demonstrate that a multiple model structure is capable of providing appropriate responses to pilot
commands in the face of sensor and actuator failures by implementing two forms of multiple model
adaptive controllers for the VISTA F-16 and verifying their performance on a nonlinear, six-degree-
of-freedom simulation. The first implementation is an MMAC using LQG/PI controllers designed
to match the performance of the Block 40 flight control system (FCS). The second implementation
is an MMAE-based controller using a novel control technique, termed control redistribution, which
is first presented in Section 3.8 of this thesis. These demonstrations will provide critical data
ascertaining the MMAC’s ability to detect and compensate for actuator and sensor failures in as

realistic a scenario as possible.

1Gain scheduling is used to provide control throughout the flight envelope. In the event that the scheduled
variable, typically dynamic pressure, is also considered an uncertain parameter, a multiple model adaptive estimator
could be used to provide estimates of the required measurements to be used as inputs to the flight control system [2].

2There are certain cases where the loss of two control surfaces does not leave the airframe with enough control
authority to provide stable flight under any circumstances.




1.4 Assumptions

Although the design is intended for the VISTA F-16, the truth model used in this research is
the SRF VISTA F-16 simulation [15,16]. The verification of this simulation as a valid model of the
true aircraft is beyond the scope of this thesis. The accuracy of this model is therefore assumed
acceptable, at least for the duration of the eight second runs used for performance analysis. The
failure models generated intuitively appear to be reasonable models of true failure conditions.
Results derived from these failure models will presumably be indicative of the performance of the
actual VISTA F-16 experiencing real failures. Other assumptions will be addressed throughout the

following chapters as they arise.

1.5 Thesis Format

Chapter 1 has provided a brief motivation into the need for a multiple model adaptive con-
troller. Chapter 2 will begin with a chronological summary of the contributions to the multiple
model design, followed by an analysis of the elements of an MMAC/MMAE. The concept of con-
trol redistribution is also introduced. A list of all modifications made for implementation is then
provided. The truth and design models are presented in Chapter 3, along with derivations of the
LQG controller and control redistribution. The results of the research will be given in Chapter 4,
followed by conclusions and recommendations in Chapter 5. The appendices will provide additional

information so that the research and its results may be easily duplicated.

1.6 Chapter Summary

This chapter serves as a motivation for adaptive control of sensor and actuator failures, and
gives an introduction to the point of research: synthesis of a multiple model adaptive controller.
The problem statement, scope, and major assumptions of this research were then defined, and a
brief format of the entire document was provided for reference. Chapter 2 will begin to flesh out

the concepts introduced in this chapter.
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2. Algorithm Development
2.1 Chapter Qverview

This chapter provides a brief synopsis of the developments leading up to the current research
on multiple model adaptive control (MMAC). An overview is then provided in Section 2.3 to ac-
quaint the reader with the basic MMAC structure, and to introduce the two types of controllers
which will be implemented in this research. Section 2.4 covers issues related to design implemen-
tation, with modifications detailed as necessary. This chapter concludes with a chapter summary

in Section 2.5.

2.2 Summary of Current Knowledge

2.2.1 History of Multiple Model Techniques.  The concept of a multiple model structure
was first introduced by Magill in 1965 [19]. Though not referred to as a multiple model adaptive
estimator (MMAE), his design was sftikingly similar, and his notion that an “optimal adaptive
estimate is an appropriately weighted summation of conditional estimates which are formed by
a set of elemental estimators” serves as the foundation to the MMAE design. Later Lainiotis
incorporated elemental controllers [17] to develop the first multiple model adaptive controller. At
this time multiple model research remained purely theoretical {2], though Lainiotis realized that
an implementation would be ideally suited for parallel processors. Also, only constant parameters
could be considered since the recursive probability calculations allowed the computed conditional
probabilities of assumed discrete values for parameters being correct to go to zero, i. e. the system

was learning the uncertain parameters so well that it became insensitive to change.

In 1977 a group of researchers from the Massachusetts Institute of Technology, led by Athans,
developed the firss MMAC implementation {2], coincidentally in a flight control application, though
they estimated flight condition rather than failure mode. However, the importance of their find-

ings cannot be overlooked. First, they introduced a lower bound on the probability calculations,
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increasing response times and allowing the system to respond to time-varying parameters. Sec-
ond, the presence of “beta dominance”, discussed in Section 2.4.2, was first made known. Also a
weighted average (or Bayesian method) was used to calculate the control signal. Finally, the need
for a test input, or dither, to excite the system to promote identification was addressed. Equally
important was the realization that this dither should be subliminal so as not to impact the pilot
and his mission adversely. Unfortunately, a valid assessment of the MMAC’s effectiveness could not
be made due to limitations in the experiment. For example, the NASA-supplied F-8 which served
as the testbed, was outright inherently stable and easy to control, and therefore not a particularly
challenging problem for any type of adaptive control. Also, the computer technology for digital
flight control systems was not yet advanced enough to allow a full implementation. As a result,
only four models were implemented (out of the sixteen which were designed), each operating at a

slow sampling rate of 8 Hz (compared to 64 Hz for VISTA F-16).

Chang and Athans [6] later revealed that the Bayesian method of estimate or control calcu-
lation was only optimal provided the true parameter value matched one of the assumed hypotheses
and provided the unknown parameter remained constant. The earlier implementation on the F-8
was therefore suboptimal. Although Chang and Athans attempted to extend optimality to include
Markov 1 processes (time-varying processes where knowledge of the current time step is sufficient to
completely characterize the transition to the next step), their algorithm was shown by Tugnait [49]
to be suboptimal again. However, because the number of hypotheses required for the optimal de-
sign grows exponentially with the number of possible parameter realizations [6], only suboptimal

designs are realizable for most problems anyway.

The computational resources required for implementation has always been prohibitive, though
the use of parallel processor greatly reduces the apparent load [10,17]. Fry and Sage [10] investi-
gated the use of a hierarchical structure to reduce computational loading further. Used for system

identification, they broke the problem into separate subsystems. with one unknown parameter per
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subsystem, all coordinated by a “supremal” unit. By reducing the number of on-line filters needed
at any one time, the multiple model structures became more plausible for implementation on a
real world system with many uncertain parameters. In the context of flight control, sensor and
actuator failures are well suited to hierarchical structures in which the MMAC swaps in and out
different banks of filters/controllers. For example, the first bank may contain Kalman filters and
associated controllers tuned to look for single failures. Should a failure occur, perhaps in the rudder,
the MMAC swaps out the entire filter/controller bank in exchange for a second bank containing
Kalman filters and associated controllers tuned for two failures, one of which is known to be the
rudder. This second bank also contains a filter embedded with the fully functional hypothesis so
that the MMAC can reverse a declaration (in the event of a false alarm or intermittent failure)
and return back to the first bank. With eleven possible sensor and actuator failures, a single bank
without the hierarchical structure would require 67 filter/controller pairs to account for all possible
single and/or double failures. Hierarchical structuring, on the other hand, reduces the number
of filter/controller pairs to only twelve at any one time, all of which can be running on separate,
parallel processors so that the effective computational loading is that of only one Kalman filter,

one controller, and the probability evaluator which contains the detection and switching logic.

2.2.2 Contributions at AFIT.  The Air Force Institute of Technology (AFIT) is a driving
force behind the research into MMAC. A 1985 contribution by Maybeck and Suizu [22] alleviated
the beta dominance effect in a very different problem context by removing the 2 term altogether.
This solution is problem dependent though, because some systems may rely in part on the 8 term to
distinguish between models. In Section 2.3.1, the 8 term will be shown to be inversely proportional,
for a linear time-invariant system, to the determinant of HP(¢7 )HT 4+ R, and Section 2.4.2 will fully
discuss its importance for sensor failure detection. Later, Stevens [31] and Menke [35] investigated

scalar residual monitoring as an alternate solution to the beta dominance problem.




In 1987, Maybeck and Hentz [27] considered reducing the total number of online filters (or
filter/controller pairs) in a multiple model algorithm by means of a moving bank of filters; this is
analogous to the hierarchical structure pursued specifically in flight control applications later [8,
31,35]. Of particular concern to them was the logic needed to govern the movement of the bank.
Other researchers used moving banks of elemental filter/controllers in an MMAC structure to quell
vibrations in flexible space structures [1,30]. Another application of multiple model algorithms at

AFIT is target tracking using infrared measurements and laser illumination [28].

The first implementation of MMAC for flight control applications at AFIT was by Pogoda [29]
in 1988. Pogoda’s analysis focused on detecting sensor and actuator failures on the longitudinal
channel of the STOL F-15. A year later, Stevens [31,46] furthered the STOL F-15 research by
investigating partial and multiple failures. Partial failures are controlled through the use of Bayesian
blending [6,24], discussed in Section 2.3.2, which uses a probability weighted average to blend the
control laws from two or more elemental controllers, thereby accounting for failure conditions not
explicitly hypothesized by any one filter/controller pair in the MMAC. More importantly, Stevens
verified that removing the troublesome beta term, discovered by Athans, did indeed eliminate the
false alarms caused by beta dominance. In fact, the modified MM AC responded ‘faster to failures in
general, and the probabilities displayed smaller steady-state standard deviations, than in the case of
the unmodified MMAC. Stevens’ results also revealed that more work was needed to detect partial
failures, but that, even before removing the beta term, single and double failures yielded good
detection and a stabilized aircraft with satisfactory control in approximately 93% of the test cases.
For the remaining cases, the majority could be countered through additional voting or removing
the beta term, and the few remaining exceptions involved double failures in which the aircraft was

rendered with inadequate control authority to remain stable with any controller.

Following the STOL F-15 research, Martin [20] successfully implemented elemental controllers

for an MMAC for both the longitudinal and lateral/directional channels of the AFTI F-16. Con-

2-4




trollers for nine points in the flight envelope were designed, with special emphasis placed on high
angle-of-attack. The elemental controllers were synthesized via the LQG design method, mcorpo-
rating both implicit and explicit model following. Both the LQG synthesis and model following
will be described in more detail in Chapter 3. Again, and for all continuing research at AFIT, the
uncertain parameter is the failure status of the aircraft: varying from a fully functional aircraft to

allowing sensor and actuator failures.

One problem plaguing the MMAC and MMAE-based controllers is that of observability. For
instance, an aircraft flying straight and level is not using the rudder. As a result, the MMAC
or MMAE-based controller will not detect a damaged rudder until the pilot initiates maneuvers.
If defensive maneuvers requiring severe turns are commanded, the control system may not have
enough time to detect and compensate for the failed rudder to give the pilot the proper response
that he commands. A solution is to apply a dither signal which moves all control surfaces, exciting
the aircraft states enough to facilitate detection. Stratton and Menke [35,48] used an MM AE-based
controller on the VISTA F-16 to investigate the effective use of dither to enhance failure detection.
With a sinusoidal dither signal, Menke was able to detect all single failures, most double failures, and
many partial failures. Stratton and Menke also investigated scalar residual monitoring (breaking
the residual vectors from the Kalman filters into their component scalars) to provide corroborating

votes for a failure declaration.

Next, a series of implementations [18,26] on the LAMBDA Unmanned Research Vehicle
(URV) investigated probability smoothing to reduce occurrences of false alarms, increased residual
propagation to enhance detection by allowing the residuals to grow in size before updating the
Kalman filters, and increasing the scalar penalty for measurement residuals to increase the speed
of response. Note that, unlike the STOL F-15 and AFTI F-16 research, the VISTA F-16 and
LAMBDA URV controllers did not use an MMAC, but rather they relied on MM AE-based control.

The difference between these two control methodologies will be further discussed in Section 2.3.3.
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Most recently, Eide [8] successfully implemented an MMAE-based controller on the six degree-
of-freedom Simulation Rapid-Prototyping Facility (SRF) simulation for the VISTA F-16. The SRF
VISTA simulation includes complete nonlinear lateral/directional and longitudinal dynamics. The
F-16’s Block 40 flight control system, including the aileron-rudder interconnect, is encoded as the
controller. All actuator saturations and rate limits are also included in the simulation. Eide was
able to demonstrate convergence to the correct failure hypothesis for exhaustive cases of both single
and double actuator and sensor failures. This SRF implementation represents the most thorough
and realistic simulation and analysis of multiple model flight control techniques to date, and is the

basis for this research effort.

2.3 MMAC Overview

If all parameters of a system were perfectly known, then an ideal model could be created
and there would be little motivation to pursue a multiple model structure. Unfortunately, in the
real world, uncertainties exist even in the best of models. The multiple model synthesis provides
the means to estimate the uncertain parameters accurately and then adapt the control signal

accordingly.

The foundation of multiple model techniques is the discretization of the generally continuous
and infinite space of uncertain parameters, such as a p-dimensional Euclidean space with the
uncertain parameter vector denoted a, into a finite number of representative points, denoted ap,
as,..., ag [25]. Each of these points represents an implicit hypothesis concerning the realization
of the uncertain parameters. A bank of estimators is then designed, with each discrete point tied
to an estimator embedded with the corresponding hypothesis. Based on the residual difference
between measured sensor values and the predicted measurements output by these estimators, a
determination is made on the probability of each hypothesis being true, and a state estimate is

formed as a probability-weighted average of the individual filter state estimates. The resulting
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structure, pictured in Figure 2.1, is referred to as a multiple model adaptive estimator (MMAE). If
the output, a state estimate, is used to drive a controller, the result is then termed an MM AE-based
controller. Alternatively, a multiple model adaptive controller (MMAC) pairs each estimator, and
its associated hypothesis about the parameter realization, with a separate controller. The output
of an MMAC is then a probability-weighted control to be used as the commanded input into the
dynamic system. Diagrams and a comparison of the MMAC and MMAE-based controllers will be

presented later in Section 2.3.3.
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Figure 2.1 Multiple Model Adaptive Estimator

For the sequence of research on the VISTA F-16, the uncertain parameters in question span the
space of all possible failure modes. The discretized space contains twelve points: a fully functional
hypothesis, a failure hypothesis for each of five control surfaces, and a failure hypothesis for each
of six sensors. The control surfaces are the left and right stabilators, the left and right flaperons,

and the rudder. The leading edge flap is omitted primarily due to its lack of control authority at
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the design point chosen for this research. The sensors are chosen based on the requirements of the
VISTA F-16’s Block 40 flight control system. The measured variables are angle of attack, pitch

rate, normal acceleration, roll rate, yaw rate, and lateral acceleration.

The estimators and controllers have been selected as Kalman filters and LQ (linear system,
quadratic cost) optimal controllers. The Kalman filters are already designed for the MMAE-
based controller previously implemented on the SRF simulation of the VISTA F-16. The LQ
synthesis provides deterministic, optimal, full-state feedback controllers. An important aspect of
LQ controllers is that they can easily be designed independent of the filters due to the separation
principle [24] of LQG (linear, quadratic, Gaussian) optimal stochastic control, discussed later in
Section 3.6. An alternate method of control, MMAE-based control redistribution, will also be
introduced. Finally, a Bayesian approach is used for the probability evaluator. These three parts
of the MMAC, the elemental Kalman filters, the elemental LQ controllers, and the conditional
hypothesis probability evaluator, as well as MMAE-based control redistribution, will be discussed

in more detail in the remainder of this chapter.

2.3.1 Kalman Filters. The estimators used in this research are Kalman filters. These
filters use the control signals as inputs to propagate an internal model, which is based on the cor-
responding assumed failure hypothesis. The Kalman filter then performs an update cycle, merging
the internally computed states and the information from system measurements to form a state
estimate, X(t7), and a residual vector, r(t;), defined in Equation (2.7) as the difference between
the measured value and the filter predicted value of that measurement. A complete derivation can
be found in Stochastic Models, Estimation, and Control Volume 1 [23]; only the resulting equations

will be summarized here.
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The dynamics model is assumed to be a linear time-invariant, discrete-time system of the

form:

x(t,-) = Qx(t,-) + Bdu(t,-) + Wd(t,')

Z(t,')

(2.1)
Hx(t;) + Dzu(t,-) + V(ti)

where x is the vector of system states, u the control input vector, z the measurement vector, and
where dynamics driving noise, w4(t;), and measurement corruption noise, v(¢;), are discrete-time,

white Gaussian noises with the statistics:

E[wg(t;)]=0 E [Wd(t,' )Wg’(t.')]ZQd
E [Wd(t,;)VT(t,')] =0 (2'2)
E[v(t;)]=0 E [v(t:)vT(t)]=R

The k*® elemental filter in the multiple model structure is propagated forward by

ik(ti+1-) = Qkﬁk(ti"')-l-Bdku(ig) (2.3)

Pir(tiy1”) = @®Pp(t:iV)®] + GuQur GY, (2.4)

starting from the initial conditions, %(tg) and P(¢y). The filter is updated by

Ap(t;) = HiPy(t;7)HT + Ry (2.5)
Ki(t:) = Pe(t:7)HLAF'(t:) (2.6)
ri(t) = 2 — Heke(t;7) (2.7)
Re(t:Y) = Rie(ti7) + Ke(t)re(t:) (2.8)
Pr(t;it) = Pi(t:7) — Kip(t:)HyPy(t; ) (2.9)

where the — and + superscripts indicate before and after the measurement is taken, respectively,

and the subscript k denotes the k** elemental filter in the filter bank. Note that the residuals
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can be shown to be zero mean, and with the filter-predicted covariance of the k** filter’s residuals

described by Ag(t;), as computed in Equation (2.5).

The state estimates, X, are optimal provided that the filter model matches the true character-
istics of the airframe. In the multiple model structure, each elemental filter is based on a different
failure hypothesis, so this relationship can hold true for at most one filter (and then only if the
parameters can assume only the hypothesized point values). This filter will then have the most
accurate estimates, and the correct hypothesis is easily selected by monitoring the residuals in the
K filters. Consider, however, the general situation in which the true failure mode does not match
any of the discretized parameter point values. In this case. the probability evaluator is called on to

formulate a best guess based on the residuals from all of the filters.

2.3.2 Conditional Hypothesis Probability Evaluator.  While the state estimates from the
filters are passed on to the corresponding elemental controller, the residuals are evaluated by the
conditional hypothesis probability evaluator. As the name implies, this element calculates, for each
Kalman filter, the probability that its hypothesis is currently correct, conditioned on knowledge of

the measurement history. This probability can be expressed as

pk(t,') = Prob(a = a};IZ(t,') = Z,') (2.10)

where Z(t;) represents the time history of measurements up to and including that taken at time ¢;,
a is the random variable representing the failure condition. and a;, is the realization of the failure

assumed by the k*® elemental filter.

It has been shown [25] that probabilities can be computed as:

Fatola,2(tio1)(Bilak, Zim1)pr(tiz1)
Z,K:l Jetolaz(tio)(Zilag, Zio1)pj(tizy)

pe(ti) = (2.11)
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Note the function of the denominator; it acts as a scaling factor to ensure that the probability is

properly defined in the sense that

K
pr(t;) >0 forall k& and Zpk(t,-) =1 (2.12)

k=1
The conditional density function in Equation (2.11) is recognized as the density function for
the current measurement based on the assumed parameter value and the observed time history of

all previous measurements, and can be expressed as:
fatola, 2ty (Zilak, Zic1) = B (t;)el= Frx(t)T Ax T (t)ra(2)] (2.13)

where
1

N 2.14
(27) 7 |Ak(t:)] (214

Be(ti) =

W

Careful inspection reveals that Equation (2.13) is actually the density function for the k'* Kalman

filter’s residuals, which are white and Gaussian with zero mean and covariance Ag.

For convenience, define the quadratic term in Equation (2.13) to be the likelihood quotient:

Li(t;) = i (t:)T A~ (8)re(t:) (2.15)

Assume that the &** filter’s hypothesis best matches the true failure mode. Then its residuals will
have a mean squared value most in consonance with the corresponding filter-predicted covariance,
and therefore the likelihood quotient will approach m (the dimension of the measurement vector,
z(t;), and the residual vector, rg(t;)). Compare this to the likelihood quotient for the mismatched
filters. As the measurements deviate farther from the filter-predicted values, both the residual
vector and the likelihood quotient increase in magnitude. Referring back to Equation (2.13), when

multiplied by the negative scalar coefficient, the argument of the exponential term becomes increas-
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ingly negative, and so the density calculations for the mismatched filters quickly drop off toward
zero. On the other hand, the terms corresponding to the best matched filters approach a finite pos-
itive value, e=™/2. The terms corresponding to the more closely matched filters will then dominate
when the probability is calculated using Equation (2.11). The ability of the MMAC to converge
to the correct hypothesis is critical to its operation. Although convergence can be guaranteed the-
oretically, the necessary proofs [7,14,37] provide no insight as to the time involved. Fortunately,
empirical studies of failures in flight control systems have shown that the filters do indeed converge

in a reasonable amount of time (on the order of seconds or fractions of seconds).

Having determined the corresponding probability for each filter’s hypothesis, a decision must
be made in order to determine which hypothesis will be considered correct, and how the control
law will be generated. One approach, the maximum a posteriori (MAP) approach, is to believe
the hypothesis with the highest corresponding probability. Previous research has shown that this
decision logic results in quick convergence to the single filter that has the smallest residuals. However
by converging to a single filter, the MAP method precludes the option that the true parameter
realization may in fact fall outside of the discretized parameter space. For example, an MAP
implementation confronted with a partial rudder failure might converge to the hypothesis of a
complete rudder failure. The same partial rudder failure would be better modeled as a blending of
estimates from two filters based on the fully functional hypothesis and the completely failed rudder
hypothesis. Even better, would be the inclusion of a new point in the discretized parameter space
which corresponds to the partial failure. However, the number of points needed to cover all partial
failures grows quickly and without bound, so the blending is the best solution for implementation.
The Bayesian approach accomplishes the required blending by using a weighted average to construct

the state estimate (for an MMAE) or the control law (for an MMAC).

The ability of Bayesian blending to compensate for any realization of a far outweighs any loss

of speed of convergence, and empirical results have shown that very little speed of convergence is




lost in practice anyway, so the Bayesian method is used in this research. It should be noted however,
that other options for selecting the control law do exist, including a combination of the maximum
likelihood and the Bayesian technique. This issue will be discussed further in Section 2.4.1 when

modifications are made for implementation.
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Figure 2.2 Multiple Model Adaptive Estimation Based Control With State Estimation

233 MMAE-Based Conirol vs. MMAC. There are several ways to provide control within
a multiple model framework. One method is to use MMAE-based control, shown in Figure 2.2,

which is constructed by sending a probability-weighted state estimate in the form of

K

fumac(ty) =D pe(t)%e(t}) (2.16)
k=1

to a single robust controller. Similarly, the single controller may not require full-state feedback,

but instead rely on a set of measurements {possibly just a subset of the states), estimates of which
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can be calculated from the state estimates by
(2.17)

2(t;+) = HJ)\(MMA(;(EF)

MMAE-based controllers providing state or measurement estimates have already been implemented

for the LAMBDA URV [18,26] and the VISTA F-16 [8,35,48].
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Figure 2.3 Multiple Model Adaptive Controller

An MMAC, by incorporating a bank of elemental controllers specifically tuned for the desired
failure conditions, has the ability to provide greater performance than the above MMAE-based
control. For instance, in this specific application, both types of controllers can adapt appropriately
to sensor failures, but only the MMAC can reconfigure the control law to provide the best possible

control in the presence of actuator failures. The output of the MMAC, depicted in Figure 2.3, is
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the probability weighted control law:

K
wprarac(t) = Y pe(tius (2.18)

k=1
Alternatively, the MMAE-based controller can also directly provide parameter estimates, a,
to be used in the calculation or scheduling of the controller in addition to the state or measurement
estimates. This form of MMAE-based control, shown in Figure 2.4, has, like the MMAC, the
advantage that the controller is explicitly made aware of change in parameters and can adapt
accordingly. Both MMAC and MMAE-based implementations will be investigated in this thesis

using LQG controller and control redistribution, respectively.

2.3.4{ LQG Elemental controllers.  The elemental controllers of Figure 2.3 can be designed
using any synthesis technique, the only criteria being that the resulting MMAC converge quickly
and be robust enough to provide a stable response during the adaptation process. An LQ design,

based on the results of past research [20,29,31], satisfies these requirements. Additionally, it is
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Figure 2.4 Multiple Model Adaptive Estimation Based Control With Parameter Estimation
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well suited for use in multivariate control. Equally important is the separation property [24] which
applies to Kalman filters and LQG controllers. This principle allows a deterministic LQ controller
to be designed based on the assumption of full-state feedback, x, with the actual state feedback
being replaced by an estimate, X, in implementation. Because of the separation property, this
substitution yields an optimally performing stochastic controller. This attribute allows direct use
of the Kalman filter structure already designed for the VISTA F-16 MMAE-based controller. The

LQG design process is presented more thoroughly in Chapter 3.

Not only can the elemental controllers be designed via any synthesis technique, but, in fact,
the MMAC has no requirement that all controllers be synthesized by the same method. There-
fore, in order to maintain the integrity of the VISTA F-16 to the fullest extent, the existing Block
40 flight control system is used wherever possible. For example, the Kalman filter based on the
fully functional hypothesis will be linked to the Block 40 controller. Also, since the Kalman filters
already compensate for missing sensor information, the Block 40 controller will also be linked to
elemental filters hypothesizing sensor failures. For single actuator failure hypothesis and for dual
failure hypotheses involving an actuator and a sensor, the LQG controller having the correspond-
ing actuator failure hypothesis embedded in its design is used. The decision to use links to the
controllers (i. e. have one Block 40 controller that gets called several times for different hypothe-
ses), versus running multiple copies of the same controller, was made after optimized simulations,
executing controllers sequentially, indicated that real-time operation may be possible without the

need for parallel processors.

2.3.5 Reverse Engineering the Block 40 Flight Control System. The first step in the
LQG synthesis will be to reverse engineer the Block 40 flight control system by designing an LQG
controller with the same structure and performance characteristics. Although an LQG controller
will not be used for the fully functional hypothesis, there exist two motivations for designing

this as the initial LQG controller. First, insights gained from this first design, particularly with
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relation to the weighting matrices, will be exploited in the synthesis of LQG controllers for the
failed actuator hypotheses. Second, by designing the controller’s response to be similar to that of
the Block 40, the LQG controller should meet or exceed military aircraft specifications as given in
MIL-STD-1797A [36]. In turn, since the LQG controllers for failed hypothesis should have response
characteristics close to this initial design, they too should be as close to meeting specs as can be

reasonably expected for a failed aircraft.

Because of the nonlinear nature of the Block 40, it will not be possible to match its structure
completely with a linear synthesis technique such as the LQG synthesis. However, certain insights
as to the structure can still be gained. For instance, 1t is clear on the Block 40 functional block
diagram [11] that the longitudinal channel relies on a proportional plus integral (PI) control to
provide tracking. Therefore, PI control will also be incorporated into the LQG synthesis. Because
of the inability to match the nonlinear and linear structures, the performance characteristics will
be used as the primary basis for comparison. The quadratic weights used in the LQG synthesis
will be chosen such that the resulting controller, when simulated on the nonlinear trutl-l model,

approximates the responses given by the Block 40 simulated on the same truth model.

r
1 N Block 40 U} Control u,
Z Flight Control System Redistribution
A MMAE | 2
—_—

Figure 2.5 Block 40 with Control Redistribution

2.3.6 Alternate Controller Synthesis: Control Redistribution. The MMAE-based con-
troller has the advantage that the existing Block 40 flight control system is carried over with no
internal modifications. The only enhancements, as shown in Figure 2.5, are an MMAE front-end
which provides state estimates, and control redistribution logic which, based on a parameter es-

timate from the MMAE, reroutes commands intended for a failed actuator to other functional
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actuators that can, in combination, have the same effect on the aircraft as the actuator that is no
longer available due to failure. If the estimated parameter corresponds to either a fully functional
aircraft or sensor failures, then the control signals are simply passed through, and the effective sys-
tem is identical to a simple MMAE-based controller using only the Block 40 controller. As with the
LQG synthesis, the development of the control redistribution will be developed more thoroughly in

Chapter 3.

2.4 Modifications Necessary for Implementation

As presented, the basic multiple model theory is complete. However, many modifications
and enhancements are made before the design is implemented. With one exception (the second
lower bound described in Section 2.4.1 is only applicable to an MMAC), these enhancements apply
equally to MMAC and MMAE-based controllers. Therefore, for the remainder of this thesis, the
term MMAC will be used generically to refer to both control methodologies, except where obvious

by content. The remainder of this chapter will summarize the necessary modifications.

2.4.1 Lower Bounding. Due to the recursive nature of the probability calculation, Equa-
tion (2.11), if a probability is ever allowed to become zero, it will remain at zero thereafter, effec-
tively locking out the corresponding hypothesis. To prevent this from occurring, the probabilities
are artificially lifted off of zero by introducing an artificial lower bound [2], and then rescaling the
probabilities so that they still sum to one. For the VISTA F-16 MMAE implementation where
the output is only a state estimate, the lower bound was selected with no regard for the control
generation to be 0.001 [31]. The larger the magnitude of this lower bound, the faster probabilities
will respond to an actual failure. However, when used with Bayesian blending, large magnitudes
attributed to unlikely hypotheses also result in degraded performance due to undesirable control
efforts being summed into the MMAC control law via Equation (2.18). To maintain performance, a

second lower bound (of larger magnitude) is then introduced, and the probabilities that fall below




Table 2.1 Summary of Lower Bounds

Effect on...
Probability Calculation | Control Law Computation
pr > 0.003 No change No change
0.003 > pr > 0.001 No change u; set to 0
pr < 0.001 pr set to 0.001 u; set to 0

this bound are set to zero (and all other probabilities rescaled so as to still sum to one) before being
included in control vector calculation of Equation (2.18). Note that these modified probabilities are
not used in Equation (2.11), so that the second lower bound has no impact on the probability cal-
culations. Previous empirical research for flight control applications placed this bound at 0.003 [8].
When one or both lower bounds are applied, the probability computation method is termed the

modified Bayesian approach. The effects of the lower bounds are summarized in Table 2.1.

2.4.2 Beta Dominance. Beta dominance {2] is the tendency of the probability evaluator to
calculate probabilities incorrectly because of an erroneous contribution by the g term of Equations
(2-13) and (2.14). The result is a tendency to declare incorrect failures corresponding to filters with
the smallest precomputed covariance, Ag. Consider the situation where two filters have nearly
the same value for the likelihood quotient, L; = L, = L. One would expect that the MMAC
would assign equal probabilities to both filters, and indeed the exponential term of the probability
density, Equation (2.13), will have the same value, e~ 3L, However, the f3; term will typically differ,
based on the magnitude of |A|, resulting in the filter with the smaller (in the norm sense) filter-
predicted covariance being weighted more highly than the other. Recall from Equation (2.5) that
the covariance is calculated as Ay (t;) = HiPi(t;")HiT + Ri. All other things being equal, the
filter whose hypothesis predicts a sensor failure will tend to have a smaller filter-predicted covariance
due to the failure model (presented in Section 3.5) which zeros out the row of H corresponding
the failed sensor. Previous multiple model implementations for flight control systems have indeed

demonstrated a propensity for false sensor failure declarations.
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Two methods have been used to remove the beta dominance effect. The first uses scalar
residual monitoring [31], discussed in Section 2.4.7, to provide additional votes to determine whether
or not a sensor failure declaration is correct. While demonstrated effective at eliminating false
alarms [31,35], this method does not prevent beta dominance from adversely affecting the MMAC
by introducing erroneously high probabilities. A second technique simply removes the 3 term
altogether [22,31]. This technique has demonstrated even better results than that of residual

monitoring [8,26], and will be used in this research. Even though the resulting expression,

fatolaz(tio)(Zilak, Zic1) = el=3Lx(t)] (2.19)

is no longer a proper Gaussian density (the area under the function is no longer unity,) this is of
no overriding concern since the density function is used only to calculate the py probabilities in
Equation (2.11). The normalizing effect of the denominator in Equation (2.11) assures that use of

Equation (2.19) still yields a valid set of probabilities in the sense that Equation (2.12) is satisfied.

2.4.3 Scalar Penalty. The scalar coefficient of —-% in the exponential term of Equa-
tion (2.13) is directly related to the sensitivity of the MMAC [26]. Increasing the magnitude of this
term drives probabilities associated with large residuals to zero faster. Ideally, this should result
in a faster adaptation process; however, increasing the scalar penalty also increases the incidence

1

of false alarms. The —3 coefficient can then be treated as a sensitivity gain which can be adjusted

to tune performance if need be.

2.4.4 Dither. Dither is the introduction of low magnitude control signals in order to
excite the system and enhance identifiability. To illustrate the need for a dither signal, consider an
aircraft flying in a straight and level flight path. Should a rudder fail, the loss or degradation in
control authority may well go unnoticed by both the pilot and the adaptive controller, particularly

if the surface fails in such a manner that it floats in the relative wind (a failure to free stream).
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Only after the pilot initiates a maneuver will the residuals in the MMAC begin to reflect the change
in system parameters, resulting in a period of degraded performance until the failure is declared.
A better design detects the failure when it happens regardless of flight path, allowing the MMAC

to reconfigure appropriately and provide maximum performance to the pilot at all times.

Subliminal dither signals force this early detection by exercising the control surfaces, which
excites the state vector. Any deviation from the filter-predicted state values will then show up in the
residuals and trigger a failure declaration. Though several forms of dither have been suggested [18,
35, 48], varying waveform, frequency content, and amplitude. arguably the best for enhancing
failure detection is a simple sinusoid [35]. A periodic dither has the additional advantage that
sophisticated algorithms can monitor the residuals not just for magnitude but also for frequency
effects corresponding to the input dither. By sending a different frequency or phase to each channel,
the confounding effects of cross-coupling between channels can be minimized. The dither signals
need to be kept subliminal to reduce pilot strain, but with an associated drawback that the smaller
amplitudes required for subliminal dither are less effective at enhancing parameter identification.
An alternative implementation may be to introduce larger magnitudes, but infrequently and only for
short periods of time, possibly even allowing the pilot to control their application. Note that dither
is only needed during benign flight conditions when the MM AC does not receive enough information
to make accurate decisions. During strong maneuvers, the system is excited sufficiently without
the addition of dithering. In fact, dither may not be needed at all if pilots were trained to induce
maneuvers which shook up the system either periodically throughout the flight or just before the

onset of deliberate maneuvers.

Of utmost concern is the need to keep the dither subliminal so as not to introduce additional
discomfort or fatigue on the pilot. The effects of vibration on human subjects was researched in
the 1960’s in conjunction with the space program [12,45]. Although scientists at the time were

considering unwanted vibrations, their conclusions are equally pertinent to dither, which can be
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thought of as an induced vibration. The limits on dither magnitude used for the VISTA F-16 stem
from this research, and the maximum allowable magnitude response is set to be & 0.1 g’s in the

longitudinal channel and + 0.2 g’s in the lateral channel.

The initial dither signal used in this research is chosen based on past work [35] to be sinusoidal
with a frequency 15 radians/second. The signal is applied to each of the three control channels
(pitch stick, roll stick, and pedals) at an appropriate amplitude to be considered subliminal. Sec-
tion 4.5 details changes that were made to the dither signal before successful detection of all failure

conditions was possible.

2.4.5 Hierarchical Structure.  The VISTA F-16 flight control system runs at 64 Hz, requir-
ing all computations for the filters, controllers, and probability evaluator to take place in less than
16 msec. Clearly the computational loading of the MMAC is a severe constraint, especially as the
number of points in the discretized space grows. For example, if only single failure hypotheses are
considered, 1+ K filters and controllers are required (one fully functional hypothesis and K different
failure hypotheses). However, if both single and double failure are allowed, the number grows to
1+ K+ ﬁ In this research, where eleven failure conditions are considered, these numbers are
12 and 67, respectively. If only single failures were considered, a parallel implementation of twelve
processors could be used to bring the effective computational loading down to that of one filter,
one controller, and the probability evaluator. However, in the case of single and double failures, a
real time implementation would require 67 parallel processors - a very poor allocation of computer

resources.

The solution is to implement the hierarchical structure [31] depicted in Figure 2.6. The failure
hypotheses are grouped in banks of twelve, and only one bank is put on-line at once. Should a
failure be detected in the k** filter, a failure being defined as having the corresponding probability,
Pk, be over a given threshold for a given number of samples, the “Level 0” bank is switched out

for the “Level 1”7 bank that hypothesizes two failures: the k!" failure and an additional second
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Figure 2.6 Hierarchical Structure

failure. To allow for the possibility that a false initial declaration is made, each “Level 1” bank also
contains a filter hypothesizing that no failure occurred, allowing the MMAC effectively to back out
of the false declaration by moving back up to the “Level 0” bank. The depth of the hierarchical
structure can be extended as needed, with the MMAC able to traverse up and down between banks

at different levels, but never between two banks at the same level.

For the MMAC used in this research, the probability threshold is set at 0.95, and the time
interval over which it must be exceeded is set to be one sample period. With failure modes confined
to single or double failures only, this MMAC only requires a two-level hierarchical structure, with

each bank containing eleven failure modes and one fully functional mode.

2-23




2.4.6 Probability Smoothing. Immediately following a failure insertion into the truth
model, the probabilities go through a transient period before converging to the correct solution.
Probability smoothing [26] is introduced to reduce the possibility that the MMAC will declare
false alarms based solely on these transients. Removing these false alarms becomes even more
important when using a hierarchical structure since a failure declaration results in bank swapping.
The probabilities are smoothed using a moving window of a given size, which is specific to each
application. The MMAE-based controller implementation for the VISTA F-16 [8] did not require
a probability smoothing at all (a window size of zero). Note that smoothed probabilities are
used only for making the decision as to whether or not a failure has occurred and to invoke bank
swapping in the hierarchical structure; the blended control law calculated in Equation (2.18) uses

the unsmoothed probabilities.

2.4.7 Scalar Residual Monitoring. The MMAC calculates probabilities based on the
likelihood quotient, Li(¢;). Though unused in this MMAC, additional insight can be gained by
monitoring the scalar residuals themselves [31,35]. Referring to the residuals from the filter hy-
pothesizing a fully functional aircraft, a sensor failure will manifest itself not only as an increase in
the likelihood quotient, but also as a direct increase in one of the corresponding scalar residuals.
Checking these terms can then be used as an additional vote either to increase the convergence
time if there is an indication of convergence to the wrong hypothesis, or to eliminate false alarms.
For example, when beta dominance causes false alarms in the filters hypothesizing a yaw sensor
failure, the MMAC can test the scalar residual corresponding to yaw. If the result of the test does

not corroborate the failure declaration, then the failure declaration is labeled false and is ignored.

Several methods exist for testing scalar residuals, all of which rely on the statistical properties
of residuals, which are white Gaussian processes with zero mean and a variance of the appropriate
diagonal term of A(t;), provided that the presumed k' hypothesis is correct. A simple way

to evaluate the whiteness of the residual is to count the number of zero crossings [35], once the
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residuals are corrected for zero-meanness. A white process is indicated by a significantly higher
count than would be present for colored noise. In practice, an arbitrary threshold can be set, above
which whiteness is declared satisfied. Another test counts the number of times that the residual
breaks the o boundaries [25]. For a true Gaussian distribution, the residual should be inside the
one-o boundary 68.3% of the time. Similarly, statistics for the two- and three-o boundaries are
95.4% and 99.7% respectively. Because failures will often appear as a bias in the residuals, a third
test is to calculate the mean of a finite number of samples. Any deviation from a small range about

zero could then indicate, or be used to corroborate, a failure.

Other more sophisticated tests also exist, such as calculating the scalar quadratic term
rfj /Ak,;, representing the ratio of the true square of the j** scalar residual to its filter predicted
variance in the k' elemental filter [35]. Similar to the likelihood quotient calculation, filters with the
correct hypothesis will have residual-squared values most in consonance with the filter’s predicted
variance. This method is particularly useful for detecting sensor failures which tend to affect the
single scalar residual corresponding to the associated measurement, unlike actuator failures which
appear in multiple scalar residuals (and are thus harder to detect in general for any method). Also,
if dither is applied, the appearance of that dither frequency in a given residual is another indica-
tion of incorrectness of the corresponding hypothesis [35]. The dither, which is very nonwhite and
easily detected since it is of known frequency, should not appear in the otherwise zero-mean, white
residuals if the corresponding hypothesis is correct. In this research, scalar residual monitoring will

not be used unless false alarms or poor convergence dictate the need for corroborating votes.

2.5 Chapter Summary

This chapter highlighted the historical development of multiple model techniques, particularly
at AFIT where a strong sequence of applications based on the F-15, the LAMBDA URV, and the

VISTA F-16 has created a solid foundation for continued research into multiple model adaptive
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control. A brief overview of the MMAC was then provided, accompanied by a detailed description
of the three basic elements: the Kalman filter, the LQ full-state feedback controller, and the
probability evaluator. A comparison of MMAC and MMAE-based control was made, and control
redistribution was introduced as a viable alternative to a true MMAC implementation. Finally,
the modifications necessary to implement a useful MMAC were given, including lower bounding,
removing beta dominance effects, and applying a subliminal dither. The next chapter will focus

more on the design and implementation of the controllers.
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3. Controller Development
3.1 Chapter Overview

This chapter begins with an introduction to the host aircraft, the VISTA F-16, depicted in
Figure 3.1, and a description of the available simulation. Sections 3.3 and 3.4 present the truth and
design models used for controller synthesis. Immediately following is a description of the failure
models used for both actuator and sensor failures. Section 3.6 then presents the linear quadratic
full-state feedback controller in its entirety. The need for proportional plus integral control is
addressed in Section 3.6.2, including explicit details on how to implement PI control within the
framework of a linear quadratic regulator synthesis. Other enhancements, such as implicit and
explicit model following, are mentioned, followed by a step-by-step summary of the LQG design
procedure so that the interested reader can reproduce the results. Section 3.8 develops the control
redistribution method used for the MMAE-based controller. Finally, a chapter overview is given in

Section 3.9.

Figure 3.1 VISTA F-16




3.2 VISTA F-16

Designed to replace the aging NT-33A, the VISTA F-16 is a Variable-Stability In-Flight
Simulator Test Aircraft which provides an in-flight simulator for modern, high-performance aircraft.
Through the variable stability flight control system (VSS), the VISTA F-16 is able to provide test
pilots with the look and feel of another aircraft. The VISTA F-16 is modified from a F-16D airframe

and is built under contract by Calspan and General Dynamics [50].

The VISTA F-16 was chosen as the host for a sequence of research at AFIT primarily due
to the availability of an advanced flight simulation at the Flight Dynamics Directorate of Wright
Laboratory. This simulation, running as part of the Simulation Rapid-Prototyping Facility (SRF)
software package, incorporates General Dynamic’s VISTA F-16 simulation software with VSS soft-
ware provided by Calspan. A convenient user interface is provided by the Transportable Applica-
tions Executive (TAE), which, among other functions, allows the user to configure the F-16, select
a flight condition, and command pilot inputs in non-real time [50]. For this research, the Fortran

source code is modified to accommodate the multiple model architecture.

3.3 Truth Model

The truth model used in this research is the SRF VISTA F-16 simulation. The SRF provides
a full six-degree-of-freedom simulation using nonlinear equations of motion, and it incorporates
features such as advanced actuator modeling, the complete Block 40 controller, and the Aileron
Rudder Interconnect, used for turn coordination. As has been done previously, the SRF VISTA
simulation is assumed to be a valid model of the VISTA F-16 since verification is not possible within
the bounds of this research effort [8]. The availability of a high order truth model is a significant,
improvement in failure detection and control via MMAC, since earlier attempts at failure detection

were either verified using only linear dynamics [20] or else they modeled only the longitudinal
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channel [29,31], and therefore their results were not necessarily indicative of the response of a real

aircraft.

The VSS capabilities included in the SRF VISTA simulation will not be used in this research.
Additionally, the SRF VISTA is modified in the following ways: the existing wind model is replaced
by a more accurate model based on on a zero-order Dryden wind model [8,42]; the limited failure
modes are replaced by code which allows dual simultaneous failures at user-specified times [8];
sensor noise is incorporated to provide more realistic measurements [8]; and the lateral acceleration
measurement computation is replaced by a linear model for reasons discussed in Section 3.4.2. A

more detailed summary of changes made to the original source code can be found in Appendix C.

3.4 Design Model

The design model is selected to be a linear time-invariant, discrete-time model, implemented
on the VISTA F-16’s digital flight control system. The basis for the design model is the continuous-

time model, provided by the SRF VISTA, of the form:

x = Ax + Bu (3.1)
where
- - - -

0 0 0 1 0 0 0 0 0 0 0 0 0
Xo X, X, X; 0 o0 0 o0 X;, 0 X5 0 (1

Zo Zo Zy Zy 0 0 0 O Zs, 0 Z;, 0 0
M, M, M, M, 0 ¢ 0 0 My, 0 M; 0 0

A= and B =

0 0o o0 o0 0 0 1 ¢ 0 0 0 0 0

0 0 0 0 Y, Y Y, Y 0 Y5, 0 Y, Y.

o o o o o Iy L, L. 0 Lsj. O 5. Ls,

0 0 0 0 0 Ni N, N 0 Ng, 0 Nj N
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The state and input vectors are defined in Table 3.1.

Table 3.1 State and Input Vectors

| x || State Variables [ Units —I

1 || 0 Pitch angle i rad [ u ” Input Variables [ Units—f

2 || u Forward velocity | ft/sec L[5, Elevator position ad

3| A.n gle of attack rad 2 || 84 Differential tail position | rad

4 | ¢ Pitch rate rad/sec 313, Flap position ad

2 g SB'z:inkl.angle I r:g 4 {| 64 Aileron position rad
1Cesip ang’e . 5 || & Rudder position rad

7 » Roll rate rad/sec

8 || » Yaw rate rad/sec

This model facilitates the synthesis and analysis of linear estimators and control laws which
minimize the computational burden compared to a design for the nonlinear truth model. However,
before implementation, the input matrix will be redefined, measurement and controlled variable
output models added, white noise incorporated into the dynamics and measurement models, and
finally the system converted to a discrete-time system. These modifications are discussed in the

remainder of this section.

8.4.1 Analysis of the Linear Model The plant matrix, A, is expressed in terms of
primed dimensional stability derivatives (primed indicating that angles, o and B, are included in
the state vector instead of velocities, v and w) which can be supplied as an option of the SRF
VISTA simulation. First, the aircraft configuration is specified via the TAE as “up-and-away”
flight with two AIM-9L missiles and wing tanks empty. Then the flight condition, chosen to allow
verification with the MMAE work already accomplished [8], is selected to be Mach 0.4 at an altitude
of 20,000 feet in a standard climate (purposefully chosen to be a challenging condition with low
dynamic pressure). The resulting primed stability derivatives, grouped in terms of forces (X,Y,Z)
and moments (L,M,N) about the body axis, are given in Table 3.2. Complete descriptions of the

individual stability derivatives and the body axis are given by Blakelock [3] and Nelson [38].
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Table 3.2 Primed Dimensional Stability Derivatives

X] = 816771 (fi/sec?)  Zj = -.141578E-01 (1/sec) M, = 0.642121E-03 (1/sec)
X! = 0.243115E-02 (1/sec) Z. = -0.195975E-03 (1/ft) M. = -0.134645E-02 (1/ft - sec)
X! = 16.3530 (ft/sec?) Z! = -0.440414 (1/sec) M! = 1.52512 (1/sec?)

X; = -73.4589 (ft/sec) Z{l = 0.997196 M; = -0.526916 (1/sec)
X, = 208784 (ft/sec?)  Zj = -0.684394E-01 (1/sec) M} = -3.64478 (1/sec?)
X3, = -0.542584 (ft/sec?) Z;, = -0.337867TE-01 (1/sec) Mj, = 0.285675 (1/sec?)

Y} = 0.775991E-01 (1/sec) ¢ = 0.182448

Y} = -0.109880 (1/sec) Ly = -18.5276 (1/sec) N} = 2.83301 (1/sec?)

Y;)’ = 0.180844 L; = -1.55588 (1/sec) IVI; = -0.432911E-01 (1/sec)
Y/ = -0.997627 L' = 0.413477TE-01 (1/sec) N! = -0.282169 (1/sec)

Y, = 0.137713E-01 (1/sec) Lj, = -8.99043 (1/sec?) Nj, = -1.03452 (1/sec?)

Yy = 0.569506E-03 (1/sec) Lj = -12.4072 (1/sec?) N. = -0.130713 (1/sec?)
Y, = 0.169586E-01 (1/sec) Lj = 2.86294 (1/sec’) N; = -1.16519 (1/sec?)

An analysis of the resulting design point shows that the trimmed aircraft is not in true steady-
state flight; normal acceleration is trimmed at a non-zero value, a, = —0.120997 x 10~3. For this
research, which only considers eight seconds of flight, a, is assumed to be negligible, and in fact
Figure 3.2 shows that small angles are maintained, so this assumption is justified. Note also the

dimensional units of the state and control variables. Although the original SRF output file assigns

Longitudinal - No Dither - No Failure

1 : . T . . . T
é 105} /
1% 1 2 3 . s 6 7
415 - ? : T 8
s4145}F \
o
104 v : T . - T T
%_10_3 \______,//‘:
2
102 1 2 3 n 5 5 7
0.1 . : ks ; - s T 8
o0.05F
0 : A A \ . ; ;
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20005} ]
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Figure 3.2 Effect of Non-Zero Normal Acceleration Trim
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units of degrees to them, a thorough analysis of the source code (particularly of file convert.F)

shows that the proper set of units for all rotational variables is in fact radians.

The input vector, u, merits explanation. The VISTA F-16 has four sets of control surfaces:
leading edge flaps, flaperons, stabilators, and a rudder. Note that the linearized model does not
include the leading edge flaps in the input vector. These flaps are primarily used for take-off and
landing, and have virtually no control authority at the design point used in this research, so their
omission is justified. Flaperons span much of the trailing edge of the wings and can be commanded
differentially as ailerons to produce rolling moments, symmetrically as flaps to produce pitching
moments, or as a blending of the two commands. Stabilators compose the horizontal tail, and
they can also be commanded in the same manner as with the flaperons. The VISTA F-16 has a
single vertical tail with a rudder on the trailing edge which is used to produce yawing moments

and coordination.

For better failure modeling, and to facilitate control of a failed aircraft, the input is rearranged
somewhat to provide individual control of each surface position. The modified input vector is given

in Table 3.3 and the modified input matrix is:

0 0 0 0 0
1yt 1y 1y 1y
2X5e 2X6¢ 2X5f 2X6/ 0
1o 1o 1o 11
7%, 325, 325, 3%Z5, O
1ag/ 1 agr 1agt 1agr
sMj BMp iM; iMoo
Briod =
0 0 0 0 0
_ 1y 1y 1y 1y /
2Yout Ve ~3Ys, Y5, Y5
_ 1y 1y 175 1lyrs /
ilow glsn —3Ls, 3Ls, ILj
1 1 ant _1am 1ars 1
i Vs 3Ns. —3Nj, 5Ns, Ny
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Table 3.3 Modified Input Vector

[Umoda ]|  Modified Input Variables [ Units |

1 b1y Left stabilator position rad
brs Right stabilator position | rad
b1y Left flaperon position rad
éry  Right flaperon position | rad
bruq  Rudder position rad

QY i

3.4.2 Measurement and Qutput Models.  The measurement and controlled variable output

models are

Z(t,') = Hx(t,-)—{—Dzu(tg) (3.2)

y(®) Cx(t) + Dyu(?) (33)

where the measurement matrices, H and D,, and output matrices. C and Dy, used for estimation
and control respectively, are user defined based on the variables of interest. For this research, the
measurement variables, shown in Table 3.4, are identical to those used in the previous MMAE
implementation with the exception of velocity, u, which is unused by the Block 40 flight control
system, and therefore was removed. Note the discrete form of the measurement model in Equa-
tion (3.2), reflecting the fact that all sensor readings contain sampled-data measurements. The
output variables, also shown in Table 3.4, are chosen to coincide with the control variables specified

by the Wright Laboratories Flight Dynamics Directorate for Martin’s research [20].

Table 3.4 Measurement and Output Vectors

[z | Measurement Variables [ Units |
1| @ A.ngle of attack rad [y [ Output Variables [ Units |
2 llg Pitchrate rad/sec 1 || C* Blend of q and @, | rad
3 || an Normal acceleration | g’s 517 Roll tat 9 n 17
4 {| p Rollrate rad/sec o e rac/sec
5| r Yaw rate rad/sec 3 ||  Sideslip angle rad
6 || @y Lateral acceleration | g’s

Note: All accelerations are measured at the pilot’s station
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While most of these variables of interest are readily available as states, models for normal
acceleration, ay,, lateral acceleration, a,, and C* must be developed. Blakelock [3] gives equations

for accelerations at the center of gravity as :

a, = -—u(a-gq) (3.4)

u(B+r) (3.5)

13
«
Il

These accelerations can be translated forward to the pilot’s station and converted to the amount
of g’s (ratio of acceleration caused by aerodynamic forces to the acceleration caused by gravity)
felt by the pilot. First, the contribution due to gravity, as resolved into the normal and lateral

directions, must be removed so that only aerodynamic forces are considered:

—u(a — q) — g cos(a) (3.6)

an

u(ﬂ + ) — gsin(¢) (3.7)

Q
<
1]

Next, small angle approximations are used to remove the transcendental terms. Then, the gravity
term is divided out so that the units of acceleration are in terms of g’s. Finally, because the
accelerometers on the VISTA F-16 are located near the pilot’s station, the equations must be

translated forward from the center of gravity. The resulting models are:

an = L g)+ g 3.8

no= mola-g+ g (3.8)
. 11-

ay = —s(ﬂ+r)—¢+;7’ (3.9)

where g is the acceleration due to gravity (32.17ft/sec?) and I, is the moment arm to the pilots
station. Neglecting the small I; contribution, the SRF VISTA software (source file afmic.F) calcu-

lates the moment arm as I = 9.988 4 ¢ -z, - 0.01, where ¢ is defined as the mean aerodynamic
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chord and z., is the location of the center of gravity on the x-axis. Note that for this research,
an average value of ., is used in order to generate filters independent of aircraft configuration.

Values used are: z., = 37.376, ¢ = 11.32f¢, and I, = 14.219ft.

C* is a scheduled blending of pitch rate and normal acceleration based on dynamic pressure

used for longitudinal control [41]. The C* scheduling is modeled as [5]:

C” = g1 -a, +gacosq (3.10)
where

g1 = 143/(3+ 113) (3.11)

2 = (1—g1) (3.12)

Note that C* is scheduled based on dynamic pressure, §, and that at low dynamic pressure C*
is composed mostly of pitch rate, while at high dynamic pressure C* is predominately normal
acceleration. The dynamic pressure corresponding to the flight condition used in this research is
109 lbs/sq ft. This blending, shown graphically in Figure 3.3 with the gains corresponding to 109
lbs/sq ft dynamic pressure marked by an X, was chosen as the longitudinal controlled variable

based on the preference of an experienced pilot [41].

Attempts to verify the a, model show a significant bias, Figure 3.4, which is attributed to the
first order approximation used in resolving the gravity contribution in Equation (3.6). Assuming
that the angle of attack, a, varies slowly, which it does in this research, there will be no affect on
the perturbation states, and the a, model is acceptable as is. If necessary, however, the bias could

also be removed by including the second order term, such that cos(a) = 1+ "Tz

Attempts to verify the a, model revealed large errors in both magnitude and phase, as seen in
Figure 3.5. Since a reasonable explanation is unavailable for this difference, attempts (documented
in Section 4.3) were made to incorporate knowledge of the discrepancy. First, the poor sensor

reading was acknowledged by adding pseudonoise through increasing the R(6,6) term, thereby
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Gain Schedule for C* Parameters
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Figure 3.3 C* Schedule
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Figure 3.4 Comparison of Normal Acceleration Models
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Comparison of Lateral Acceleration Models
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Figure 3.5 Comparison of Lateral Acceleration Models

informing the Kalman filters to rely more on its internal model and less on the sensor reading.
When no amount of pseudonoise tuning gave reasonable results. the entire measurement itself was
removed. Without the measurement, however, the MMAC was unable to declare failures of the

rudder or yaw-rate sensor.

Being forced to include the lateral acceleration measurement, two options were available: form
a linear model to match the (possibly incorrect) nonlinear model, or incorporate the linear dynamics
into the truth model. Based on time constraints, the latter route was chosen, with Equation (3.7)

incorporated as the model for lateral acceleration measured at the center of gravity.

3.4.8 Noise Models. The stochastic nature of problem is incorporated by adding white
Gaussian noise to the the plant and measurements. The resulting continuous-time system with

sampled-data measurements in state-space notation is:

x(t) = Ax(t)+ Bu(t) + Gw(t)
z(t;) = Hx(t;)+ D.u(t)+ v(t) (3.13)
y(t) = Cx(t)+Dyu(t)




Table 3.5 Plant Dynamics and Sensor Noise

[ Q || Average Noise Strength | Units ]
Q(L,1) w 45x 102 FtZ/rad - sec [ R ] RMS Noise | Units _|
Q(2,2) a 3.0x 107° rad - sec R(1,1) ||« 0004 | rad
Q(23) |[avs.g 1.1x1073 rad R(22) [ ¢ 0.006 | rad/sec
Q(3,3) q 1.5x 107° rad/sec R(3,3) || an 0.01 | ¢'s
Q(4,4) p 6.0x 10=° rad/sec R(44) [|p 002 | rad/sec
Q(5,5) 3 3.0x10°° rad - sec R(55) || r 0006 | rad/sec
Q(5,6) [ Bvs.r 63x107° rad R(6,6) || ay 0.005 | ¢’s
Q(6,8) r 24x107° rad/sec

where dynamics driving noise, w(t), represents noise gusts and mismodeling effects (due to lin-
earization and low-order models) and discrete-time noise, v(t;), represents sensor noise. Previously
established values for average strength of the dynamics driving noise and RMS values for measure-
ment corruption noises, as given in Table 3.5, are used for the noise models {8,34,42,46]. Note that
these tables show the values actually used in the previous research, not necessarily the values that
were documented. Lacking data for the VISTA F-16, the sensor model RMS values are conservative
estimates based on Elliott’s 1977 description of the F-8 digital fly by wire aircraft [9]. Considering
the advances in technology over the last 18 years, the VISTA F-16’s sensors should be considerably
more accurate than those of the F-8, resulting in lower RMS values for sensor models which would
greatly enhance the MMAC'’s ability to detect failures. The bandwidth of these sensors was given
to be at least 300 rad/sec. In relation to the low frequency response of the aircraft, the sensor noise

can be considered essentially white [20].

Pogoda [42] originally derived the dynamics noise model for the STOL F-15 from the Dryden
wind model specified in MIL-STD-1797A [36]. This model was later adapted for use on the VISTA
F-16 [8,34]. The zero-order Dryden wind model was also incorporated into the SRF VISTA sim-
ulation, which previously had neglected all rotational effects of the Dryden wind model [8]. This
improved SRF wind model is retained for this research, and the zero-order Dryden wind model
is incorporated into the design model. The derivation of the zero-order Dryden wind model is

presented in Appendix B for reference.

3-12




Note that the value of the dynamics noise strength for the velocity term (i. e. , the noise
directly driving the velocity differential equation in Equation (3.13)), has been decreased by two
orders of magnitude to reflect the fact that the original noise models were found to be represen-
tative of heavier turbulence than the light turbulence specified [8]. Also, the units of the average
noise strength, Table 3.5, are appropriate since the noise injection matrix, G in Equation (3.13),
is dimensional. Because the units corresponding to direct feed-through of each white noise com-
ponent are 1/sec, the appropriate units of the white noise components must match the units of
the corresponding state variable. The units of Q are then calculated as [units of corresponding
state variable]?/[rad/sec]. For example, the units of the average noise strength corresponding to

velocity, Q(1,1) in Table 3.5, are [ft/sec]?/[rad/sec] = ft?/rad - sec.

The noise injection matrix used to introduce the dynamics ﬁoise into the continuous-time
model is presented by Eide [8], and is given in Equation (3.14) in terms of the primed dimensional
stability derivatives from Section 3.4.1. Note that the fourth and fifth columns of G are interchanged
with respect to the order of the state vector given in Table 3.1. This discrepancy results from a

different order of these same variables in the Q matrix, as given in Table 3.5.

G = (3.14)
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3.4.4 Actuator Models. The linear model supplied by the SRF VISTA simulation does
not incorporate any actuator models, naively assuming an instantaneous response. A more real-
istic response is achieved by using the fourth order servo-actuator models given on the Block 40
functional diagram [11]:

Bact (20.2)(144.8)(71.4)2

Sema (5 +20.2)(s + 144.8)(s2 4 2(0.736)(71.4)s + 71.4?) (3.15)

Note that the same fourth order model is given for all five of the control surfaces. For the design
model, the actuators are modeled as first order lags to reduce computational loading from that of
higher order models; this does not degrade model adequacy in any appreciable manner. The break
point selected for the actuators is w = 14, which has the response empirically determined to match

the SRF VISTA actuator simulation best [8]. Using a generic label, the actuator states then have

the form:

6act = _‘146(16! + 14‘5<:md (316)

These states are then augmented to the state-space model, yielding

[ A B, 0 G
Xaug(t) = Xaug(t) + Ugyg(t) + wi(t) (3.17)
0 -14-1 14-1 0
Z(ti) = H D, } xaug(t,-) + V(t,') (3.18)
y) = | cCc D, ] Xaug(ti) (3.19)

where the augmented state and input vectors are shown in Tables 3.6 and 3.7. Note that the
leftmost column of these two tables specifies the component index of the named vector, and that
the first eight components of the augmented state vector are identical to the eight states of the

original state vector, given in Table 3.1.
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Table 3.6 Augmented State Vector

[ Xaug | Augmented State Variables | Units |
9 b1s Left stabilator position rad
10 Ors Right stabilator position | rad
11 61y Left flaperon position rad
12 6,7  Right flaperon position rad
13 bruq Rudder position rad

Table 3.7 Augmented Input Vector

ruaug ” Augmented Input Variables [ UnitsJ
1 bls—ec Left stabilator command rad
2 Srs—c Right stabilator command | rad
3 Sip_c Left flaperon command rad
4 6,5 Right flaperon command | rad
5 8;ud—c Rudder command rad

3.4.5 Equivalent Discrete-Time Model. Because the MMAC will be implemented on a
digital computer, the last step in generating the design model is to convert Equations (3.17) - (3.19)
to an equivalent discrete-time representation [23,43] based on a sampling frequency of 64 Hz. In
truth. the measurement model is already in a discrete-time form, and the output model is carried
over with no change. The appropriate terms for the dynamics model are computed for the LTI

system as [43]:

® = ehersdT (3.20)
AT

By = </ eAder)Baug (3.21)
1]

where AT is the sample period. The appropriate discrete-time white noise, wg, has the statis-

tics {23]:

E{w4t)} = 0 (3.22)
AT -
E {wd(t,-)wg(ti)} = Qu= / eAons" GQGTeAersTdr (3.23)
0
E{wa(twi(t;)} = 0, ti# (3:24)




The resulting system description is summarized as:

xdug(ti+1) = Qxaug(ti) + Bdllaug(t,') + wq(t)
Z(t,‘) = Haugxaug(ti) + V(t,’) (325)
y(ti) = Caugxaug(ti)

3.5 Failure Models

Both actuator and sensor failure models are incorporated into both the design and the truth
models. In the linear design model, failures are modeled by multiplying the appropriate column of
the input matrix (for actuator failures) or row of the measurement matrix (for sensor failures) by a
scalar, €, where 0 < € < 1, with the ’0’ representing a complete failure and ’1’ representing a fully
functional component. Note that a completely failed actuator can be regarded as either an actuator
failure to free stream, in which the surface simply floats in the relative wind, or as a complete loss
of the surface, possibly due to damage. Also, sensor failures still admit the sensor noise into the
measurement vector. Incorporating the failure modes results into the continuous-time dynamics

and sampled-data measurement equations yields:

%(t) = AgugX(ts) + BawgFaiu(t) + Gw(?) (3.26)

z(t;) = F,jHaugx(tg)+v(t,-) (3.27)

where F;; and F,; are identity matrices of appropriate size except that Fa;(¢,7) = € if the ith
actuator has failed and F,;(j,j) = e if the j** sensor has failed. The failures are incorporated
before the system is converted to the discrete time to reflect the fact that the truth model, where

the failures will actually be inserted, uses continuous-time dynamics.

Implementation of the sensor failures in the nonlinear truth model can be accomplished in

much the same manner as in the design model; the noise-free sensor reading is multiplied by e,
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and the sensor noise is admitted into the measurement unchanged. Modeling the actuator failures,
however, is more difficult. Ideally, the portion of the aerodynamic equations which calculate the
failed surface’s contribution would be scaled by €. Unfortunately, due to time restrictions, a detailed
analysis of the implication of surface failure on the aerodynamic computations is not possible, so
actuator failures are instead modeled by commanding the appropriate surface to its trim position.
The trim position is used for two reasons. First, it approximates the “failure to free stream” position
that was assumed with the linear design model. Secondly, although the (linear perturbation)
design model’s actuator failures effectively zero out the commanded (perturbation) position (for a
complete failure), the nominal position remains unaffected, so the true failed position on the design
model (i. e., zeroed perturbation variable) does indeed equal the trim position (for total versus

perturbation variables), just like the truth model’s failure position.

In reality, more complex failure modes may be experienced, such as biased sensors, stuck
actuators, or a deterioration in the actuator’s time response. Battle damage may even contribute
to the loss of part or all of a control surface. These failures are more accurately modeled by changes
in the stability derivatives, effecting the A matrix in addition to the B and H matrices. However,
these simplified failure modes are used for two reasons. First they are easy to implement and they
accurately model a fair range of possible failures. Second, through the use of Bayesian blending,
the MMAC may still provide suitable control of the more complex failure modes, and an extension

of this research may be to add the additional failure modes to the truth model to verify this ability.

Due to time constraints, this research will focus only on single, complete failures, leaving
double failures and partial failures to future consideration. A side effect is that the bank swapping
associated with a hierarchical structure will no longer be implemented. Technically, the hierarchical

structure still exists, but with only a depth of one, and therefore only one bank.




3.6 LQG Synthesis

The general control problem, pictured in Figure 3.6, is representative of all elemental fil-
ter/controller pairs in the MMAC. The output of the plant, in this case the VISTA F-16, is re-
quired to track a reference input in the presence of both modeled and unmodeled disturbances.
These disturbances include wind gusts and the effects of higher order terms neglected in linearizing
the design model. Recognizing that full-state feedback is not available on the VISTA F-16, and
that the available measurements are corrupted by noise due to imperfect sensors, Kalman filters,
incorporated within the block labeled “Controller” in Figure 3.6, provide optimal state estimates

which drive the deterministic controllers.

One controller is needed for the fully functional aircraft, with an additional controller required
for each actuator failure case. Note that the sensor failures do not necessitate a unique controller
since the estimates from the Kalman filters already compensate for missing sensor information.
Thus the controllers in Figure 2.3 for failed-sensor hypotheses will be the same as the controller for
the fully functional aircraft, namely the original Block 40 flight control system already implemented

in the SRF VISTA simulation.

An LQG controller for each failed-actuator hypothesis is selected based on several factors.
First, it yields “readily synthesized, efficiently implemented, feedback control laws” [24]. Second,
it has been successfully implemented with excellent results in previous MMAC designs [20,29,31].

Also, as a modern technique the LQG design method is well suited for the multi-variable aircraft

Disturbances - ———————>Controlled Output

Reference input ——>€?__> Plant

Controller [<——{)<—Measurement noise

Figure 3.6 General Control Problem
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control problem. Finally, through use of the certainty equivalence property [24], the LQG controller
can be designed assuming full state feedback is available, with an independently designed Kalman
filter providing state estimates in the absence of full state feedback. Certainty equivalence is
especially applicable in this research since full state feedback is not available and the Kalman

filters have already been designed for the MMAE-based controller of the previous research.

The three assumptions of the LQG controller are easily accommodated. The design model
is a linear, discrete-time model. The quadratic cost function is well suited to aerospace problems
since it attempts to minimize deviations in the state and control vectors, thereby helping to validate
the linear perturbation models. Finally, many aircraft disturbances, such as sensor noise and wind
gusts, have successfully been modeled in the past by Gaussian noise, and the central limit theorem
provides justification for using Gaussian noise models as being either the best models or very close

approximations to best models for physically observed noises [23].

In the following sections the LQ full-state feedback controller will be reviewed as the second
essential building block for the LQG controller, to be augmented to the already designed Kalman
filter. As Type I properties are desired, PI compensation is introduced to the controller. Implicit
and explicit model following techniques are then described which could be added, if necessary, to

enhance tracking performance or robustness.

3.6.1 LQ Regulator.  The objective of the LQ regulator [24] is to determine the control
function, u* (for consistency with the development of the design model, the augmented vectors,
Xaug and Ugyg, from Equation (3.25) should be used here and throughout the remainder of this
chapter, but for notational convenience, the subscripts are dropped), which minimizes the quadratic
cost function

x(t:) X(t:)  S(t) x(t:) 1

N
r=33" + 5xT (v e) Xy v )x(tves)  (3.28)
i=0 | u(t;) ST(t;) U®) | | ut)
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where X penalizes deviations of the states from zero, U penalizes deviations of the control signal
from zero, and X penalizes deviations of the states from zero at the final time, ty4+1. Note that
the control signal is not weighted at the final time since there is no physical reason to expend
control authority after the problem has already finished (by contrast, a final state, such as position,
may be critical.) S represents cross-weighting between the states and inputs which arises due to
weighting on output variables dependent on the derivatives of states or due to the discretization of
a cost function originally posed in continuous-time as an integral instead of a summation [24]. If
the time horizon, as in this case, is stretched to infinity, the final state is essentially never reached
and can be disregarded. Therefore, the second term in Equation (3.28) is removed when the intent

is to synthesize such an infinite-horizon controller.

If one wishes to regulate an output vector, y, instead, the cost function can be written

(neglecting the penalty on the final state) as

N
T =53 T )Y )y () +u” (t)Uo(t:)u(t:)] (3.29)

i=0

This cost function can be recast into the form of

T

N1 ox(t) X(t:) S(t) (t:)
J= %Z * (3.30)

i=0 | u(t;) ST(t:) Ut) | | ult)

if the following substitutions are made:

X)) = CTY(t)C (3.31)
S(t;) = CcTy@)D (3.32)
U(t) = Uo(t;)+DTY()D (3.33)
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From this definition of the cost function, the LQ control laws can be synthesized. The reader is
assumed to be familiar with the basic LQ regulator, so these equations are presented below without
proof (Maybeck presents a more detailed derivation in Stochastic Models, Estimation, and Control
Volume 3 [24]). Assuming X, S, and U to be constants, and ignoring initial and terminal transients

(by letting N go to infinity in Equation (3.30)), the steady-state constant-gain control law is

ll(t,‘) = —G:X(ti) (3.34)
where
G; = [U+B]K.B '[B]K.® + 5] (3.35)
and
K. = [® — BsG*|TK.[® - B;G}] + G.TUG! + X - SG; - G;Ts” (3.36)

Note that the the state vector, x(¢;), in Equation (3.34) gets replaced by the estimate, %(t}), using
certainty equivalence. Optionally, the sub-optimal controller, using X(#;"), could be used to keep

computational delay time to a minimum.

3.6.2 PI Control. The desire to achieve Type I performance characteristics, i. e. to
track a constant reference input with zero steady-state mean error despite unmodeled constant
disturbances, motivates the need for proportional plus integral (PI) control. Consider the closed
loop system shown in Figure 3.7, where the error vector is defined as e(t;) = r — y(¢;)'. For a
stable system in steady state, the error, and thus the control input, approaches zero. For a linear
system, a zero input vector will drive the output to zero as well. While this type of response is
appropriate for a regulator, the system as is cannot track a reference input while maintaining zero

error. For tracking, the controller must be able to deliver a nonzero steady state control when

INote the omission of a time dependence on the reference signal, r. The implicit assumption is that r is piecewise
constant, not overly restrictive since the sampling rate for the VISTA F-16 is a fast 64 Hz.
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Figure 3.7 Potential Controller Design Based on Full-State LQ Regulator
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Figure 3.8 Closed Loop System with Position Form PI Control Law

its own input is zero [24]. This necessary characteristic can be realized by augmenting integrators
(actually pseudointegrators, or summations, for the discrete time problem) such that the integral
channel maintains a nonzero value even after the proportional channel (corresponding to the error)
has gone to zero. The LQG/PI controller gains (K,, K;, and G) of Figure 3.8, are then computed
by applying the LQ regulator synthesis to the augmented system. These pseudointegrators may be
augmented either before or after the original plant model to define the augmented system for use

in the LQ regulator synthesis. In the former case the augmented states represent the derivative of
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the control input, while in the latter implementation they describe the integral of the regulation
error. Because of physical limitations in the aircraft actuators, the latter method is used here so
that a quadratic penalty can be applied to the actuator rates. For reference, the deflection and
rate limits incorporated in the SRF VISTA simulation are given in Table 3.8. Note that when, as
in this research, the true plant states, x, are not really accessible, noise-corrupted measurements,
z, are extracted from the system and used as inputs to a Kalman filter, which generates X to use

in place of x in Figure 3.8.

Table 3.8 Actuator Deflection and Rate Limits

Actuator Upper Limit | Lower Limit | Rate Limit
(deg) (deg) (deg/sec)
Left Stabilator 23 -19 60
Right stabilator 23 -19 60
Left flaperon 21.5 -21.5 62
Right flaperon 21.5 -21.5 62
Rudder 30 -30 120

If the pseudorate is defined to be the difference between the control signal at two consecutive
sampling instants, Au(t;) = u(ti4+1) — u(ty), then the original plant states can be augmented with

the pseudorate states, resulting in:

6X(t,'+1) $® By &x(t;) 0
= Au(t;) (3.37)

du(tiyy) 0 I du(t;) ) |
ye(ti) = Cauy O &x(t;) (3.38)

Careful inspection reveals that the PI controller synthesis has now been recast as a regulator

with a new cost function given by

&x(t:) X S ox(t;)

1
J= + §Au(t,»)TURAu(t,-) (3.39)

N o=

N
=0

su(t;) sT U du(t;)
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where the new quadratic weighting matrix, Up, is used to penalize deviations of the pseudorates
from zero. The steady-state, constant-gain control law (again letting N — o0) is calculated using
Equations (3.34)-(3.36). By partitioning the augmented state vector as [ §xT §u” |7, the feed-
back gain, G can be partitioned as [ G, G, ], allowing the control law to be written in an

incremental form as

fu'(tiyr) = 6u'(t) — Goox(t;) — Ghdu®(t:) (3.40)

Despite the addition of pseudointegrators to the model, some manipulation of the control law

is still required to attain Type I properties. The desired form of the control law is

u(t;) = uti-1) — Ko [x(t:) — x(ti-1)] + K [r — y(ti-1)] (3.41)

where the last feedback term, r —y(t;—1), is the regulation error intended to be driven to zero. The
following extract from Stochastic Models, Estimation, and Control Volume 3 [24] shows the steps

necessary to massage the control law into this form.

Written in terms of perturbation states, and substituting in for 8y(t;) using Equation (3.25)

(expressed in terms of perturbations), Equation (3.41) becomes

6u(t,~+1) = 5u(tg) -K; [6X(t,'+1) - 5x(t,')] + KE [~(5y(t,')] (3.42)

611(1,') - K, [6x(t,-+1) - 6x(t,-)] — Kg [Caugéx(t,-)] (3.43)
Manipulating Equation (3.25) to get §x(t;41) — 6x(t;) = [® — I} 6x(t;) + Bgdu(t;), Equation (3.43)
can be rewritten as

&-1 By || 6x(t)
6u(t,—+1) = 6u(t,~) - [ K:: Kf ] (344)
Caug 0 6u(t,~)
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Comparing this result to that obtained from the LQ regulator synthesis, Equation (3.40), it is seen

that the two forms are equivalent if K, and K¢ are chosen to satisfy

-1 B,
[ K. K ] = [ G:, G, ] (3.45)
Coug O
or
- - -1
1 11 -1 By
[ K. K; ] = G, G, (3.46)
) " Caug O
I 11 Hiua IlIi2
= G, G, (3.47)
” ’ anl II2;
which yields the final result of
K, = Gzlnll + GL1Iy (3.48)
K¢ = Gz + GLIIx (3.49)

3.6.3 Implicit and Ezxplicit Model Following.  Two model following techniques are avail-
able to enhance the performance and/or robustness of the LQG controller. They may also be used
to attempt to match the structure of the Block 40 flight control system more closely, as described
in Section 2.3.5. The first technique is implicit model following [4] which penalizes deviations from
a desired trajectory by modifying the existing feedback gains via the quadratic weighting terms.
Performance is not necessarily greatly affected, nor is the controller dimensionality affected at all,
but because the feedback is modified, robustness can be enhanced. Note that the traditional tech-
nique of robustness enhancement for an LQG controller, LTR tuning [24], is not applicable for the
MMAC since the increased pseudonoise strength in the filter design dynamics model incapacitates

the adaptation process [35].
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The desired output is modeled by
yi(tiv1) = Biyi(ts) (3.50)

System robustness is maximized if the eigenvectors are orthogonal [13,32]. The simplest model
satisfying this condition is a diagonal state transition matrix (block diagonal if complex eigenvalues
are used):
i

&; = (3.51)

<I’in

Equation (3.50) can be rearranged and incorporated into the cost function as

N
J = Z [(Y(ti+1) - §iY(ti))T Y (y(tiv1) — ®iy(ts)) + u(t,-)TUmu(tg) (3.52)

BN}

Substituting with the discrete-time model shown in Equation (3.25), and removing the time argu-

ments for convenience, the cost function can also be expressed as:

T

N x(2; Xr(ts) Si(ts x(t;
J:%Z (t:) 1(t:)  Si(t) (t:) (3:53)

=01 u(ty) ST(t:) Uro(t:) u(t;)

where

Xr(t;) = (C®—®;C)TY[(t;)(C® — &;C) (3.54)
U;(t) = Um(t{)-}-BgCTYI(t,')CBd (3.55)
Si(t;) = (C®—&;C)TY[(t;)CBy (3.56)
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Conveniently, this form is now that of the standard LQ Regulator, and the control law can be
evaluated using Equations (3.34-3.36), again letting N — oo to achieve a constant-gain steady

state design.

The second method is explicit model following through use of a command generator tracker
(CGT), shown in Figure 3.9, where the controlled system can represent either a simple LQ regulator
or a regulator incorporating PI control for tracking. The CGT forces the plant to follow a desired
output model, yn, generated by

Xm(tiz1) = & X (t:) + Bnum(ti)
(3.57)

Ym(ti) = mem(ti) + Dmum(ti)
From the block diagram, it is apparent that the resulting CGT/PI controller is a feed-forward de-
sign, and as such it does not provide robustness enhancement, a primary concern of this research.
Also, the states of the explicit model are appended to the original plant, increasing the dimension-
ality. To avoid the additional computational burden, explicit model following will not be used in

this research unless the required performance characteristics cannot be achieved with PI control

alone.
jmT T T T TS T oo T TS smsmmsssssemee True disturbances
! X ru
Up ! (Ciomma:;d 7| Multplications : -
enerator
: ‘ by constant | | X; ‘,L u | Controlled | X
: matrices ! K —=>
X ! System
e e o e e e e e e e e — = J

Open Loop CGT

Figure 3.9 Closed Loop Command Generator Tracker
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3.7 LQG Design Procedure

Before the MMAC can be assembled, a few steps must be taken. First, the SRF VISTA
software must be modified to allow the inclusion of the MMAC. In doing so, the existing MMAE
structure will be exploited to the fullest extent. As a first step, the MMAE function call must
be relocated from its current location at the end of the simulation loop to a point before the
controller function call. Doing so will remove a half sample period delay (the SRF VISTA updates
the airframe dynamics at 128 Hz - twice the frequency of the flight control system), necessitating

the need to retune the Kalman filters.

Next, a PI (or CGT/PI if required) controller must be synthesized which can reproduce the
performance of the existing Block 40 flight control system as closely as possible. The steps used in
the synthesis are summarized as:

1. Generate the plant and input matrices: A and B

2. Specify the measurement and output models: H, D,, C, and D,
3. Augment the actuator models

4. Convert augmented system to discrete time

5. Specify the initial tracking weighting matrices: Y and U

6. Calculate the LQ regulator weighting matrices: X, S, and U

7. Specify the weighting matrix for the pseudorates: Upg

8. Specify the implicit and explicit models (if used)

9. Generate the feedback gain, G}

10. Evaluate the closed loop system response, iteratively tuning the weighting matrices as needed

Based on this initial controller, additional controllers will be designed for each failure hy-

pothesis involving at least one actuator failure. As described in Section 2.3.4, the actual Block 40
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FCS will be used for the controller corresponding to the fully functional hypothesis and hypotheses

involving only sensor failures.

Several MATLAB script files have been written to assist in tuning and evaluating the Kalman
filters and LQG controllers: filtergen.m, lgggen.m, probplot.m and stateplot.m. Additional software
has been written to facilitate the interaction with the SRF VISTA during the iterative tuning

processes: monte, singlerun, and tune.

3.8 Control Redistribution Synthesis

As an alternative to replacing or modifying the existing, tested, and well-performing Block 40
flight control system, the method of control redistribution leaves the Block 40 intact. As depicted
in Figure 3.10, MMAE-based control redistribution uses an MMAE as a front-end to provide
parameter and state estimation, and control redistribution as a back-end to process the actuator
commands sent from the Block 40. The basic premise of control redistribution is that sufficient
redundancy is inherent in the existing aircraft control surfaces so that commands intended for
a failed control surface can be redistributed to the remaining functional control surfaces with
virtually no noticeable change in performance. Although control redistribution cannot completely
compensate for the loss of an actuator (the total amount of control authority available to any flight

control system is decreased an amount commensurate with the control authority possessed by the

N

——L Block 40 u Control u; VISTA F-16
Flight Control System Redistribution Dynamics

MMAE

&>

Sensors

Figure 3.10 Control Redistribution
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individual actuator before it failed), for small to moderate commands, the drop in performance will

be shown in Chapter 4 to be negligible.

Mathematically, the desired redistribution relationship (redistributed control applied to the

failed system is equivalent to control applied to the fully functional system) can be expressed as

Bfa,'zu,- =~ Bu (3.58)

where By, represents the input matrix corresponding to a failed actuator condition and u, rep-
resents the redistributed control signals. The need for an approximate relationship (versus a true
equality) will become apparent later, though physically one might expect that the use of redis-
tributed control will not have exactly the same contribution to the dynamics as using the original
control (unless the actuators in question truly are redundant components). Recall from Section 3.5
that the failed input matrix has one or more columns scaled by a constant, 0 < € < 1. As in the
MMAE, the redistribution matrix will be constructed using completely failed assumptions, € = 0.

Using the failure model developed in Section 3.5, the failed input matrix is expressed as:

Byait = BF (3.59)

Assuming a linear transformation for the redistribution matrix, the redistribution control input

becomes:

u, = D,,gu (3.60)

where the notation Dy; represents the redistribution matrix corresponding to complete failure of the
it? actuator. Note that a redistribution matrix corresponding to a double actuator failure condition,

D; ; can also be synthesized by using the combined actuator failure matrix, Fa; ; = F4iFgj, in
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Equation (3.59). Substituting Equations (3.59) and (3.60) into Equation (3.58) yields:

BF,;D,u ~ Bu (3.61)

Because the solution must be true for a general control input, u is removed from both sides of
Equation (3.61), leaving:

BFG,'DG.' ~ B (3.62)

The temptation to remove B from both sides must be avoided since no solution for D exists for the
expression Fg;Dg; = I when a complete failure is hypothesized. The problem is that, when F; is
rank deficient (recall that failed actuators are indicated by columns of zeroes), a pseudoinverse is
needed to find a solution, and, whereas for a true inverse the equality, (AB)™! = B~1A~! exists,
this relationship does not hold for a pseudoinverse. The solution for the redistribution matrix is
then:

D,; ~ (BF,)"B (3.63)

where the pseudoinverse is denoted by the superscript +. The need for the approximation back in
Equation (3.58) is now clear: While the pseudoinverse will give a true inverse where possible, in
the direction corresponding to the deficient column, the pseudoinverse gives only an approximate
solution. The pseudoinverse does, however, give the best solution in the least squares sense, 1. e. the

error, || BF;;D,; — B || is minimized [47].

At this point, an analysis of the redistribution matrix, Dy; , is warranted. D,; has the form
of an identity matrix except that the i*" column has been replaced by a column which redistributes
the i*® control input to the remaining inputs. This property can be shown by simple manipulation

of Equation (3.63):

D, = (BFa,‘)+B (3.64)

3-31




~ (BF;)*B—Fg4 +Fg (3.65)
I~ (BFG,')+B — (BFai)+(BFag) + Fg; (3.66)

~ (BFai)+B(I - Fai) + Fgi (3.67)

The second term of Equation (3.67) creates a diagonal matrix with ones in the diagonal entry of
every column corresponding to a functional actuator. The first term, on the other hand, pulls off
the failed columns of (BF,;)*B and adds them to the this diagonal matrix to create D,;. As
an example, consider the redistribution matrix corresponding to an assumed failed left stabilator,

given for this research as:

0 0 0 0 O

Dar=1| 09060 0 1 0 0 (3.68)
—~0.9060 0 0 1 0

—0.7862 0 0 0 1

Equation (3.68) shows that commands to the four functional actuators get passed through un-
changed (as repfesented by the diagonal ones in Dyg;), but that the first column redistributes the
left stabilator command to the other functional actuators. Note also that the diagonal term corre-
sponding to the assumed failure (Dg;(¢,7), or Dg1(1, 1) in this example) is zero, ensuring that no
command is sent to the failed actuator. This form of the redistribution matrix is convenient in that,
knowing the assumed failure, ¢, and the associated column of Dg; is sufficient to characterize the
redistribution matrix completely. For ease of implementation then, a packed D, matrix is created
where the it* column of D, equals the #*» column of D,;. The D,; matrix used in this research is

presented in Section 5.3.3.
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3.9 Chapter Summary

This chapter introduced the VISTA F-16 and the nonlinear SRF VISTA simulation that was
used as the truth model. This was followed by an analysis of the linear model provided by the
SRF VISTA simulation. Additional models, for the measurements, outputs, noise, and actuators,
were presented which allowed the linear model to be expanded into a design model adequate for the
synthesis of the LQG controllers to be embedded into the MMAC structure. The controller synthesis
began with a derivation of the linear quadratic regulator problem. The motivation for Type I
tracking properties led to the augmentation of pseudointegrals, and the resulting proportional plus
integral controller was massaged back into the form of the LQ regulator to simplify controller
synthesis. The implicit and explicit model following techniques were then presented with the
premise that, if needed, they could be incorporated to help match the structure of the Block 40
flight control system and to enhance tracking and robustness. Finally the control redistribution for
MMAE-based controller was developed. The next chapter will present the results of implementing

the MMAC and MMAE-based control redistribution on the VISTA F-16 simulation.

3-33




4. Results
4.1 Chapter Overview

This chapter begins with an interpretation of the probability summary plots used to present
the multiple model algorithm performance resulting from various tunings of the Kalman filters
within the algorithm’s structure. Section 4.3 then presents several attempts at using tuning to
reconcile the difference between the linear and nonlinear models for lateral acceleration, followed
by a presentation of the final tuning used for the MMAC in this research. Necessary modifications
made to the dither signal are presented in Section 4.5, and an analysis of the numerical problems
associated with a discrete-time LQG/PI controller is given in Section 4.6. Next is a presentation of

the performance of the MM AE-based control redistribution method, followed by a chapter summary.

4.2 Interpretation of the Probability Summary Plots

The most vital part of any multiple model structure is the ability to provide accurate state
estimates and to determine the best parameter estimate quickly. These abilities are rooted in the
tuning of the Kalman filters. Therefore the first task is to ensure that the Kalman filters, and the
resulting MMAC, are properly tuned. In the context of this research, a well-tuned MMAC is one
which detects all failures as quickly as possible without introducing false alarms. This criterion
is perhaps best evaluated through the use of probability plots. Recall that each filter and its
associated failure hypothesis gets assigned a probability between zero and one, where a probability
greater than 0.95 triggers a failure declaration. This declaration results in a bank swap within the
hierarchical structure of Section 2.4.5, and it also is used for the decision on how to redistribute
control for the MMAE-based controller presented in Section 3.8. By simultaneously viewing the
probabilities associated with each filter, one can, at a glance, determine the declared failure status
of the MMAC. Additionally, viewing where the probabilities are when an incorrect declaration is

made gives insights as to how to tune the system for better performance.
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An example of a probability plot is shown in Figure 4.1, which was produced from ten Monte
Carlo runs of a truth model experiencing a normal acceleration (a,, ) sensor failure at one second into
the simulation. The probability plot shows twelve plots of probabilities versus time, corresponding
to the twelve filters (and their associated hypotheses) in the filter bank. The y-axis label of each
plot identifies the hypothesized failure condition for that particular filter, with the nomenclature
defined according to Table 4.1. The plots are arranged such that they directly correspond to the
ordering of the filters within the actual MMAE, and so the reader might imagine that this is what
one would see if one were able to open up the MMAE and peer inside, simultaneously viewing
the probability assigned to each filter at once. Each plot gives the mean (solid line) and + one
standard deviations (dotted lines) of the ten Monte Carlo runs. Because probabilities are limited
to the range 0 < px < 1 (actually the lower bounding described in Section 2.4.1 limits this range
even further to 0.001 < p; < 0.989), the y-axis is limited to show only the interval between zero

and one, cropping some standard deviation lines, but with no loss of information.

Table 4.1 Definition of the Y-axis Labels on Summary Plots

[ Abbreviation | Hypothesis [| Abbreviation | Hypothesis ]
ff Fully Functional Aircraft aoa Angle-of-attack Sensor
Is Left Stabilator Failure q Pitch Rate Sensor
TS Right Stabilator Failure a.n Normal Acceleration Sensor
If Left Flaperon Failure p Roll Rate Sensor
of Right Flaperon Failure r Yaw Rate Sensor
rud Rudder Failure ay Lateral Acceleration Sensor

Viewing along a line drawn vertically anywhere between the zero and one second marks of
Figure 4.1 shows that a probability of approximately one has been assigned to the fully functional
filter’s hypothesis, while all of other filters have assigned probabilities of approximately zero. There
is some slight jitter in the probabilities, but the MMAC maintains lock on the correct hypothesis.
At this point the MMAE is operating correctly since the mean probability is above 0.95 and each
run is initialized with a fully functional aircraft. A similar analysis made at three seconds shows

that an a, sensor failure is declared, with a transitional period evident between approximately
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Mean (+/- One Std Dev) Probabilities of Normal Acceleration Sensor Failure: 10 runs
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Figure 4.1 Example Probability Plot - Normal Acceleration Sensor Failure
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1.25 and 1.5 seconds. As the title at the top of the figure indicates, a normal acceleration sensor
failure really was implemented (at one second), so that in this example the MMAC successfully

and quickly declared this failure.

Two observations can be drawn from a closer inspection of Figure 4.1. First, outside of a short
transitional period, the MMAC is able to lock onto the correct hypothesis. In fact, this probability
plot would seem to indicate that this is a well-tuned MMAC, though the remaining failure conditions
must be tested to be certain. While there are some minor spikes in the standard deviations,
indicating that during some of the Monte Carlo runs, the MMAC is experiencing unexpected
motion, possibly due to unexpectedly large wind gusts, the MMAC still maintains lock on the
correct declaration. The possible exceptions to this positive lock statement are the flaperons and
stabilators. Being symmetric control surfaces, experience has shown that the MMAE typically has
difficulty identifying the correct failure within a pair, e. g. , it can quickly declare that a stabilator
failure occurs, but has more difficulty determining whether it is the right or left stabilator that
has failed. On the corresponding probability plot, shown in Figure 4.2 , this is seen by a mild
bouncing of the probabilities between the two flaperons. Second, even during the transitional
periods, the MMAE moves smoothly from the first hypothesis to the second hypothesis, 1. e. ,
during the transition the probabilities do not stray to any of the other filters. Based on these
observations, a simplification can be used to reduce the amount of data that needs to be presented
at once. Figure 4.3 shows just the strip from the probability plot containing the correct failure
hypothesis from Figure 4.1. The assumption is made (and holds true for a well-tuned MMAC)
that any probabilities not in this strip are contained in the fully functional filter. Therefore, 1t is
possible to arrange twelve of these strips into a single summary plot, showing virtually all pertinent

information about the MMAC’s failure detection performance.
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Mean (+/- One Std Dev) Probabilities of Left Flaperon Failure: 10 runs
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Figure 4.2 Example Probability Plot - Left Flaperon Failure
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Figure 4.3 Strip Showing Only the a,, Filter’s Probabilities

Figure 4.4 shows an example summary plot. Note that the only important facts to pull out of
the summary plot is that the probabilities linger around zero or one except for the short transition
period, marked by a sharply rising line which indicates the speed of response. Summary plots
will be used for the remainder of this chapter to present the effects of tuning in a concise, but

informative manner.

4.3 Lateral Acceleration Model

As revealed in Section 3.4.2, the nonlinear calculation of lateral acceleration gave a different
result in both magnitude and phase when compared to the acceleration calculated by the linear
model. When previous research [8] encountered the same problem, and no error in the linear
model could be determined, the decision was to substitute the linear models for both normal and
lateral acceleration into the nonlinear truth model. This section details an attempt at accounting
for the modeling discrepancy without resorting to modifying the truth model by making such a
substitution. The methods and results shown here may well extend to examples of mismodeling in

other applications.

Three approaches are presented. The first two retain the nonlinear model, and attempt to
compensate through tuning. The last method also retains the nonlinear model, but investigates
the effects of removing the linear measurement model from the MMAC completely. In both cases,
the tuning of the MMAC is accomplished by adding pseudonoise to the noise covariance matrices
Qg and R.. Increasing Qg, the dynamics noise covariance, tends to help mask mismodeling and

places less emphasis on the internal model when constructing the state estimate. Increasing R, on
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Summary Plot (with Mean +/- Sigma) for Final_tuning: 10 runs
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Figure 4.4 Example Summary Plot
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the other hand, has the effect of decreasing the reliance on the measurements with respect to the

internal model.

4.8.1 Tuning via Pseudonoise.  Figure 4.5 shows the summary plot corresponding to the
situation where the nonlinear lateral acceleration model is included in the truth model and no
pseudonoise has been added yet. The MMAE is only able to lock on to the flaperon and a, sensor
failures. A look at two representative probability plots, shown in Figures 4.6 and 4.7, shows that
the probabilities tend to bounce between the actuator hypotheses and the a, sensor hypothesis.
The reason is that the large mismatch between the two a, models generates such a large scalar a,
residual that it dominates the residuals associated with the true failure status. The sensors, other
than the ay sensor, are not particularly involved in this phenomenon since they each have their
own scalar residual, so the probabilities tend not to bounce into their associated filters. Actuator
failures, on the other hand, have no single corresponding scalar residual, and, in fact, affect all
the residuals through the dynamics model, so the large a, residual pulls probabilities into their
associated filters. Through tuning on the a, entry of R, detection is greatly enhanced for most
failure conditions. Unfortunately, as shown in Figure 4.8, the improvement comes at the cost of

completely forfeiting the ability to detect any true failures in the ay sensor.

Since informing the system that the linear model should be trusted more than the nonlinear
did not yield a particularly well-performing MMAE, other tuning strategies were sought. Note that
reducing a noise covariance is not typically well motivated as it implies that one can achieve a better
accuracy (lower error variance) than what the real-world system actually generates. Generally an
alternate route of increasing Qg is pursued instead. However, the exact relationship between Qg
and R is hard to define, and because a very specific response is desired, namely to allow the filters
to rely more heavily on the @, measurement only, reducing R was used as a technique to tune the

system. The result, shown in Figure 4.9, is even worse than the result achieved by adding pseudo-
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Summary Plot (with Mean +/- Sigma) for Nonlinear: 10 runs
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Mean (+/- One Std Dev) Probabilities of Fully Functional Aircraft: 10 runs
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Mean (+/- One Std Dev) Probabilities of Normal Acceleration Sensor Failure: 10 runs
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Summary Plot (with Mean +/- Sigma) for Increase_R: 10 runs
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noise. Now the MMAC is unable to detect any failures whatsoever. Again, most of the probabilities

are harbored by the actuator hypotheses and the a, sensor hypothesis.

The results of tuning with the nonlinear a, model can be summarized as: (1) No amount of
tuning yielded an MMAE algorithm that was capable of detecting all failures; (2) emphasizing the
linear model yielded a design with satisfactory detection of all failures not associated with the yaw
channel, i. e. the rudder and a, sensor failures; and (3) emphasizing the nonlinear model within

the SRF “truth model” simulation yielded a design incapable of detecting any failures.

4.3.2 Removing the Lateral Acceleration Measurement.  Based on these three observations,
the linear model would appear more likely than the nonlinear one to describe the relationship of a,
with the other system variables accurately, motivating the substitution of the linear model into the
SRF VISTA simulation. Before doing so, however, a second attempt to synthesize a viable MMAC
without modifying the software is made. This time, the ay sensor is completely removed from the
measurement vector. In doing so, the associated scalar residual which had been overshadowing the
pertinent residuals is removed. By completely removing the sensor reading from the measurement
vector, the MMAC forfeits the ability ever to detect an ay sensor failure. The resulting summary
plot is given in Figure 4.10. As seen, the MMAC is no longer able to lock on to either yaw rate sensor
failures or rudder sensor failures consistently. Apparently, the lateral acceleration measurement is
critical to failure detection in the yaw channel, and no amount of tuning is able to improve the

system.

4.4 Final Tuning of the Kalman Filters

In the process of retuning the Kalman filters, several modifications were made to the existing
SRF VISTA simulations. All modifications entailed a complete retuning of the Kalman filters,
demonstrating at first what appeared to be a very high sensitivity of the MMAC performance to

exact tuning levels. Fortunately, the sensitivity proved to be directly correlated to the amount of
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Summary Plot (with Mean +/- Sigma) for Remove_a_y: 10 runs
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mismodeling within the SRF simulation, and the final tuning used in this research did not exhibit
the same sensitive characteristic. In fact, whereas the original MMAE, from Eide’s work (8], required
extensive tuning on five terms within the dynamics noise, the final MM AC required no change at all
from the tuning originally accomplished by Menke [34,35] against a basically linearized truth model
of the VISTA F-16 (though including saturation effects) rather than a full nonlinear simulation of
the real-world aircraft (as accomplished herein, using the SRF simulation). Figure 4.11 shows the

performance of the MMAC with this specific tuning.

4.5 Asymmetric Dither

In the past, isolation and declaration by the MMAE of rudder and flaperon failures has been
much slower than the declaration of stabilator or sensor failures [8,34]. Furthermore, although the
VISTA F-16 is symmetric about the x-z plane (where the positive x-axis points out the nose, the
positive z-axis is normal to the x-axis and points out the underside of the fuselage, and the origin
is at the center of gravity), the right stabilator is typically harder to isolate than the left stabilator.
For example, Menke showed in [34] that, although failures of the left stabilator and all sensors
except the yaw rate sensor are detected in under 0.25 seconds, the MMAE was not able to isolate
and declare flaperon and rudder failures until approximately 1 second. Similarly, Eide showed in [8]
that the MMAE took two seconds to isolate and declare the rudder failure, and one second for the

flaperons (though the right flaperon never quite locked on).

This lackluster performance shown by Menke and Eide was rationalized by the belief that
the rudder and flaperons are harder to detect because they have less control authority than the
stabilators [33]. Also, a contributing factor is that sensor failures are faster to detect overall
compared to actuator failures because a sensor failure manifests itself directly in a single scalar

residual, whereas the actuator failures appear in many scalar residuals after slowly propagating
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Summary Plot (with Mean +/- Sigma) for Final_tuning: 10 runs
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through the dynamics model [34]. While both arguments have some degree of validity, a close

analysis, however, reveals that the slow responses are actually caused by an asymmetric dither.

The dither originally used in this research was developed by Menke [34] for use on a linear
truth model of the VISTA F-16, and was carried over to the SRF VISTA nonlinear truth model
by Eide [8]. The signal consists of three separate sinusoids of the same frequency but different
amplitudes, applied separately to each dynamic channel of the aircraft. These dither signals,
inserted via the associated input channel available to the pilot by using software to sum the dither
commands with the pilot commands, are summarized in Table 4.2. Note that the pitch stick dither

was required to be asymmetric so that the resulting flight path angle is constant (level flight).

Table 4.2 Original Dither Signals

Dynamic Associated | Command "Frequency | Magnitude | Phase
Channel Input Issued (rad/sec) (Ib) (deg)
Longitudinal | Pitch Stick | Normal Acceleration 15 +12/-12.5 0
Lateral Roll Stick | Roll Rate 15 11 180
Directional Pedals Sideslip Angle 15 30 0

This dither was originally selected based on a comparison to dithers of other wave forms [34].
Unfortunately, the interaction between the dither signals due to coupling inherent in the aircraft
was not previously considered. Pronounced by the fact that the same frequency is used for all
channels, the coupling effects are clearly demonstrated in Figure 4.12 in which the dither frequency
is (and should be) very evident in both the pitch rate and roll rate, but is conspicuously absent in

the yaw rate.

To illustrate the constructive interference occurring here, consider Figure 4.13. The first two
plots show the effects on yaw rate of applying individual dither signals, on two separate runs, to
the roll stick (lateral channel) and pedals (directional channel). The bottom plot shows that, if the
first two yaw rate plots are summed point for point, then the resulting plot is nearly equivalent
to the yaw rate resulting from applying dither to all channels at once, demonstrating destructive

interference.
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The effects of this interference are also made obvious by looking at the five commands actually
being sent to the actuators, as shown in Figure 4.14, versus the three dither commands being sent
to the controller. Note the interference commands, diminished in amplitude, being sent to the right
stabilator and rudder. Because failure detection heavily relies on the excitation of the states (thus
the need for dither in the first place), the lack of sufficient motion of these surfaces led to the slow
responses presented by Menke and Eide. Note that the offset bias in Figure 4.14 is a result of the

nonzero nominal commands needed to maintain the trimmed flight condition.
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Figure 4.14 Commanded Actuator Positions Resulting From Original Dither

Three steps were undertaken in order to achieve a truly symmetric dither with respect to
the actuator commands. First, the lateral dither was put back in phase with the longitudinal
and directional dither signals. Although this decision was somewhat arbitrary, initial analysis
showed that having the lateral and directional dither signals in phase resulted in a more effectual

rudder excitation. Second, the longitudinal dither were moved out-of-phase by 90° in order to get

identical peak magnitudes between the left and right stabilator. At this point the stabilators moved
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symmetrically (actually asymmetrically, but with equal magnitudes), but the range of motion was
not enough to excite the aircraft to allow detect ability. Simply increasing the magnitude would
have required an unacceptable input to the pitch stick of nearly 24 pounds, nearly all of the 30.25
pounds of input available. Therefore, the third step was to decrease the frequency of the longitudinal
dither by a factor of two. The resulting commands sent to the actuators are shown in Figure 4.15

and the modified dither signals are summarized in Table 4.3.
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Figure 4.15 Commanded Actuator Positions Resulting From Modified Dither

Table 4.3 Modified Dither Signals

Dynamic Associated | Command Frequency | Magnitude | Phase
Channel Input Issued (rad/sec) (Ib) (deg)
Longitudinal | Pitch Stick | Normal Acceleration 7.5 +12/-12.4 90
Lateral Roll Stick | Roll Rate 15 11 0
Directional Pedals Sideslip Angle 15 30 0

Although this modified dither enables the MMAC to detect all failure conditions successfully,

a review of Figure 4.16, showing the trajectory of a fully functional aircraft with no commanded
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Figure 4.16 Aircraft States Resulting from Modified Dither

inputs other than the dither, reveals that while the lateral and normal accelerations still fall within
specifications, the magnitude of the pitch rate oscillation calls into question the true subliminal
characteristic of the dither. Another issue is that of the induced actuator rates. The highest
frequency dither is at 15 radians per second. Reading the frequency off Table 4.3 and getting the
approximate angular amplitude from Figure 4.15, a very rough estimate for the flaperon positions
can be given as 5sin(15t) degrees. Taking the derivative to get the time rate of change, the

corresponding flaperon rate is roughly 75 cos(15t) degrees per second. Compare the amplitude of
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75 degrees per second to the maximum flaperon rate given in Table 3.8 as 62 degrees per second.
Fortunately, the approximation used here was conservative, and, as Figure 4.17 bears out, the

dither falls nearly inside the linear region.

The fact that the dither signal consumes nearly the entire allotment of actuator rates for all
surfaces may at first seem undesirable. After all, there is hardly enough control authority left for the
pilot to command inputs without hitting saturations. Recall, however, that the dither signal was
only necessary during benign flight where there is no pilot commanded input. Deliberate commands
will in general excite the system enough to facilitate detection without the use of dither. In fact,
the dither is implemented with a simple software switch that monitors the pilot commanded input
and disables the dither whenever an input is detected. A pilot override to disengage the dither can

also be provided.
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Figure 4.17 Induced Actuator Rates due to Dither
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4.6 Numerical Difficulties in the LQG Synthesis

Having tuned the Kalman filters, the next step is to synthesize and evaluate the two control
algorithms. Unfortunately, the first, the LQG synthesis, was fraught with numerical difficulties
which prevented its full implementation. The source of these numerical problems is attributed to

a necessary inversion in constructing the PI control law.

4.6.1 Inverting the Tl Matriz.  Recall from Section 3.6.2 the steps in a PI controller syn-
thesis. First the problem is recast as an LQR synthesis problem, using an angmented system, from
which the gains, G; and Gy, can be solved. In order to achieve true Type I characteristics, however,
the gains were massaged so that the system could be expressed in the form of Equation (3.41) in
which feedback on the error term, r —y(#;—1), forced tracking. The final result of this manipulation

was a transformation as given in Equation (3.46) and repeated here:

-1
®-1 By

[ K. K ] = [ G G, ] . (4.1)
0
aug

where the trailing matrix can be defined as I, and thus the augmented matrix within the inverse

can be designated II71.

While generating the LQG/PI controller via a MATLAB [21] script file, it became apparent
that JI-! was in fact not invertible. To resolve the problem, first allow the following definitions.
For the discrete-time, deterministic system,

x(tiy1) = ®x(t;)+ Bau(t)
; (4.2)

y(t:) = Caugx(t:)
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let n be the number of states, m be the number of inputs, and p be the number of outputs. The

matrices in Equation(4.2) can then be stated in terms of the following dimensions:

Q(nxn)» By (nxm)» and Caug (pxn) (43)

The composite matrix, II™!, is then of dimension (n + p) x (n + m), or, since the proper dimen-
sional values are n=13, m=>5, and p=3, respectively, dimension 16 x 18. Since II"! is not a square
matrix, the best that can be anticipated is a right inverse 1. Furthermore, the (right)inverse will
only exist if rank(I1™!) = 16. Herein lies the problem, for the design model chosen, the composite
matrix is rank deficient by one. A close inspection of II~! reveals the cause, which is not limited

to just this design model or even just to aerospace applications.

Consider the first row of II™! and note the first order approximations [23] to Equations (3.20)
and (3.21): ® ~ I+ A,u,At and By & By At. Using these approximations, the composite matrix

can be rewritten as:

AgugAt By At
n'~ (4.4)

Caug 0
Substituting in for the augmented matrices using the definitions implicit in Equations (3.17) and

(3.19) this becomes:
AAt BAt 0

O~ | 0 —14+1 141 (4.5)

C D 0

1If a square matrix were absolutely essential at this point, then two additional, linearly independent, outputs
could be created to force the number of inputs to equal the number of outputs, causing the composite matrix to be
square.
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where the diagonal blocks are 8x8, 5x5, and 3x3, respectively. In demonstrating rank, only the linear

dependence of the rows is of interest, so multiply the rows by arbitrary constants for emphasis:

B T
A B O
M'~|0 -1 1 (4.6)
C DO
L ]

Referring back to Equations (3.1) and (3.3), the first and last row partitions are actually the
continuous-time dynamics and output models. Therefore, if any output is linearly dependent on
the derivatives of the system states, then the composite matrix will be rank deficient. Consider
C*, the output used for controlling the longitudinal channel. From the derivations of the output

models in Section 3.4.2:

C*=g1-An+92-¢ (4.7)

For the the linear model, the derivative of pitch angle is pitch rate,? as is shown in the first row of
the dynamics model in Equation (3.1). Substituting in this relationship along with the model for

normal acceleration gives:
. u /. I . .
o —gl-(—;(a—9)+gq>+gz-0 (4.8)

By rearranging terms and grouping constants, it is clearly seen that C* is linearly dependent on

three components of longitudinal state variable derivatives:

o (e (A m)or (2)

2Seemingly intuitive, this relationship actually only holds for wings level flight where the Euler angle, © [3], is
the same as the pitch angle, 6.
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Furthermore, analogous to the pitch rate - pitch angle relationship, roll rate for the linear model is
equivalent to the derivative of roll angle, so, in fact, two of the three outputs are linearly dependent

on derivatives of the input, provided the first order approzimations are valid.

Under what circumstances do the approximations hold true? One criterion is that the sam-
pling period be much shorter than the characteristic times that describe transient system behav-
ior [24]. Borrowing from linear system theory, the engineering rule that can be applied is that, if
the ratio of real parts of the two system poles is greater than five, then the pole with the larger real
part is non-dominant [39]. Operating at 64 Hz, the sampling period of the flight control system is
15.625 msec. Comparing 0.016 to the real part of the eigenvalues (the reciprocal of the real part is
the time constant of the corresponding mode [39]) will then give an indication as to the validity of

the first order approximation. A summary of this analysis is provided in Table 4.4.

Table 4.4 Eigenvalues and their Ratio to Sample Period

Longitudinal Channel Lateral/Directional Channel
Eigenvalues ‘ Ratio Eigenvalues l Ratio
20.0268 £ 0.13767 | 1.71 | -0.3365 + 2.4070¢ 21.5
0.8341 53.4 -0.0444 2.84
-1.7455 111 -1.2305 78.8

Note that the linear model can be decoupled into separate longitudinal and lateral/directional
dynamics, as seen in the block diagonal structure of A in Equation (3.1). Table 4.4 separates these
two sets of dynamics in order to highlight for which channels the first order approximation can be
expected to hold true. As shown, all modes are faster than 0.016 sec (though two modes do not

meet the “five times greater” criteria), indicating potential numerical difficulties in both channels.

In practice, the numerical difficulties do appear first in the longitudinal channel. During the
construction of the TI matrix, it was the C* output row which caused II-! to be rank deficient
(at least to the numerical accuracy of the software used [21]). Although neither a true inverse nor
even a right inverse exists for a rank deficient matrix, the use of a pseudoinverse [43,47) allowed

the synthesis to continue. The pseudoinverse works by exploiting the singular value decomposi-
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tion to invert the matrix where possible and by minimizing the norm-squared error for all other
directions [47]. Physically, using the pseudoinverse for the LQG synthesis means that the outputs
which were linearly independent in the II-! matrix will track appropriately, but that the linearly

dependent rows will give only a solution with a least squares minimum error.

4.6.2 Comparison to a Previous LQG/PI Synthesis. ~ Martin [20], who designed separate
LQG controllers for the longitudinal and lateral /directional channels, had similar difficulties. In
Section 4.1 of his MS thesis [20], he found the LQG synthesis yielded an unstable design if C*
was chosen as the output variable. Through a similarity transform on the design model, he was
able to get what appeared to be stable output, provided pitch rate, ¢, was used as the output
variable. 3 In fact, however, stable performance was never truly achieved, as seen in the plots of
Appendix C of [20]. Martin may have been confusing the stability of controlled system with the
ability of his software package (an LQ synthesis program written by Payson [40]) to complete the
synthesis. Output from a sample run through this program, included in Appendix A of [20], reveals
that a pseudoinverse was indeed used (note the comment on page A-33 of {20]). This comparison
provides greater confidence that the current synthesis effort is being correctly performed, and that

the numerical difficulties are inherent to the problem and not due to erroneous implementations.

4.6.3 Response of the LQG/PI Controller. Despite the fact that numerical problems
limited the performance of the LQG/PI controller, the longitudinal response was still evaluated to
determine whether or not it would be suitable for controlling the aircraft. The initial weighting
matrices used to begin the iterative tuning process were created by placing the reciprocal of the
maximum values squared down the diagonal. The maximum values correspond to the smallest
deflection limits for U, the rate limits for Ug, and the maximum allowable command inputs as

shown on the command gradients [11] for Y. For reference, the deflection and rate limits are given

3Because C* was specified as the controlled variable, Martin iterated using g as the output variable until satis-
factory C* performance was achieved.

4-28




in Table 3.8, and the maximum allowable command inputs are summarized in Table 4.5. The

resulting matrices are:

Ur

2
T
(324)(180)
. \2
0 (30x180)

2
S
(19>< 180)

r

2
ks
(IQXISO) 0
2
[ S,
(21.5x 180)
. 2
0 (21.5X180)
[ 2
647w
60x 180
64 2
ks
(GOxlSU) 0
2
64rx
62x180
64 2
x
0 (62x180)

64x
120x 180

2
.
(30)(180)

;

(4.10)

(4.11)

(4.12)

Note that the number 64 in the numerator of the Upg terms is the sample frequency of the flight con-

trol system and is needed to convert the rate limits, given in terms of a continuous-time derivative,

into equivalent pseudorates as generated by the discrete-time system.

Table 4.5 Maximum Allowable Command Inputs

| Command Gradient | Maximum Command | Units |

Pitch 10.86 g’s
Roll 324 deg/sec
Rudder 30 deg

Unlike previous research which designed separate longitudinal and lateral/directional con-

trollers [20,29,31] the ability of the MMAC to correct for actuator failures relies partly on the
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inherent redundancy between control surfaces. For example, although less efficient because of a
smaller moment arm, the flaperons are capable of inducing a pitching moment, a motion primarily
attributed to the stabilators in normal operation. This interdependence requires a single model
to be used for the synthesis. Therefore, since the control surfaces are used by all channels, the
tuning on any one channel will primarily involve modifying the components of the Y weighting
matrix which penalizes the tracking error. For example, in the longitudinal channel, the stabilators
are the most effectual control surface. In tuning then, one might want to penalize more heavily
the flaperons and rudder in order to minimize unwanted effects. Duing so however will degrade
performance in the lateral channel since the same weighting matrices are used, and in the lateral
channel the flaperons are the primary control surface. On the other hand, tuning performed on
the C* component of Y will greatly effect performance in the longitudinal channel with little to no

adverse effect on the lateral and directional channels.

Response in the longitudinal channel was investigated to reveal the effects of the pseudoin-
verse. The initial closed loop system was unable to track a step C* input command, and was also
unable to settle to a steady-state value within the eight second simulation window. Although the
performance would seem to indicate an unstable system, a check of the closed loop eigenvalues
revealed a stable system (all eigenvalues of the state transition matrix were contained within the
unit circle). Possibly the system does eventually converge to a steady-state solution, but for aircraft
control, an acceptable settling time must be on the order of seconds, not minutes. In any case, a
series of iterations on the weighting matrices showed no notable improvement in performance. Fig-
ure 4.18 shows the C* step response for some representative tuning iterations on the C* component
of Y. Note that increasing the penalty on deviation from tracking the step input results not only
in a faster rise time, but also in a faster fall off after the peak has been reached. Not shown on
the graph is the fact that the bottom (dash-dot) line is something of a lower bound in that scaling

Y(1,1) by factors less than one resulted in curves nearly the same as this one.
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Responsas to a C* Unit Step Input - Tuning Y(1,1)
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Figure 4.18 Effect of Scaling the C* Penalty

Figure 4.19 shows that, as expected, increasing the penalty on the pseudorate greatly cripples
the ability of the actuator to respond rapidly. The effect on C* was to scale the magnitude reached
by the curve, but not to alter the shape of the C* curve. Interestingly, increasing the control input
weighting matrix, U had the opposite effect compared to what was expected. Generally, one might
expect that, as the control input was more heavily penalized, the input signal would diminish in
size, and the state deviations would increase. Actually the opposite occurred, as seen in Figure 4.20.
Increasing the penalty actually increased the size of both the stabilators and flaperons, as well as

the output, C*.

4.7 Matching the LQG/PI Controller to Block 40 FCS

One of the implicit assumptions made in this research was that an LQG controller could be

synthesized, possibly with the inclusion of implicit or explicit modeling, which would closely
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Responses to a C* Unit Step Input — Tuning U_R(1,1) and U_R(2,2)
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Figure 4.19 Effect of Scaling Pseudorate Penalties
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Figure 4.20 Effect of Scaling Actuator Position Penalties
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match the performance of the Block 40 flight control system. In making this assumption, some fun-
damental differences between linear and nonlinear controllers were overlooked which would prevent

this match from occurring.

Linear system theory shows that a linear system’s response can always be decomposed into
a homogeneous solution and a particular solution, where the homogeneous solution to differential
equations can be expressed as a sum of exponential terms and the particular response is based
on the applied input. Further, for a stable system, the homogeneous exponents are all negative,
resulting in a zero steady-state solution. Also, for a linear system, the particular solution for a zero
input is a zero output. Therefore, for a zero input, the complete solution must be zero. This fact
has particular implications for this research where a doublet is used as the test signal. 4 Consider a
fast pitch doublet beginning at 1 second and finishing one second later (this is the form of the test
signal used in this research to evaluate tracking). After two seconds into the simulation, there is
zero input and so the system states and outputs begin to decay away to zero. Assume a conservative
(for flight control applications) two second settling time. Five seconds after the simulations started,

the system states and output have settled back to essentially zero.

Contrast the response of the above linear system to a general nonlinear system, such as the
Block 40 flight control system. The nonlinear system is capable of achieving non-zero steady-
state zero-input responses. For the above example, then there is no qualification that, after the
doublet, the system states or output return to zero. In fact, for the Block 40 flight control system
executing the test pitch doublet described, the states do not return to zero. This response is shown
in Figure 4.21, where the maximum allowable command input is used to emphasize the problem.
Note that the pitch rate does return to zero, but that 6 does not. Also, while @ may slowly converge

on zero, the velocity, u, clearly diverges.

4The use of a doublet is motivated by the need to remain near the nominal trajectory to avoid violating the linear
assumptions.
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Response to a pitch doublet... 1 second duration, starting at 2 seconds
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Figure 4.21 Nonlinear Response Characteristic of the Block 40 FCS

Despite the fact that a linear controller cannot match all of the performance characteristics of
a nonlinear controller, for small amplitude inputs, even the LQG/PI controller with the numerical

difficulties can be tuned to provide an acceptable match. The weighting matrices used to synthesize

this LQG/PI controller are:

2
(tom8) x 75 0
2
Y = (m) (4.13)
. \2
0 (30)(180)
- v ]
(19x180)
. \2
(19x180’) 0
1 2
U= (215,;(180) (4.14)
2
0 (21.5;180)
. \2
L (30xxso) ]
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2
647
60x 180
64x 2
(GOX 180) 0
2
6471
62x130

Y
647\~
0 (62)(180)

Ugr (4.15)

2
64rx
120x180

Note that this is the same set of weights as that given in Equations (4.10)-(4.12), except for the

rescaled Y;; term and the scalar multiplier on U.

The test signals were selected as doublets in order to keep the aircraft within the bounds of
the linear approximations for the duration of the eight-second simulations. The doublets are of
a one second duration, starting at two seconds. For purposes of this research, the bounds were
determined as the maximum perturbations for which an MMAE-based controller, using the Block
40 FCS and with a fully functional aircraft status, was able to maintain lock on the correct failure
declaration. The magnitude of the doublets was selected to be 90% of the maximum control input,
applied individually to each channel, for which this criterion was met. Note that column three of
Table 4.6 gives the pilot commanded forces applied to the associated input given in column two.
These forces are used as the magnitude of the input to the nonlinear simulation. Column five gives
the equivalent command as calculated internally by the Block 40 FCS using software breakouts
and command gradients [11]. These values are used as the magnitude of the input to tﬁe linear
simulation and are required since the linear model does not include the nonlinear breakouts and

command gradients.

Table 4.6 Test Doublets

Dynamic Associated | Command | Commanded | Converted
Channel Input Magnitude Variable Magnitude
Longitudinal | Pitch Stick 91b ay 1.64231 g’s
Lateral Roll Stick 2.71b P 8.50 deg/sec
Directional Pedals 54.91b B 15.758 deg
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Figures 4.22-4.24 display the results of applying the test signals to the LQG/PI controller test
against the design model for a fully functional aircraft. For comparison, the response of the Block
40 FCS on the nonlinear truth model is also given. For the pitch doublet, only the longitudinal
states are shown as the lateral/directional states are all essentially zero. Similarly, for the roll
and yaw doublets only the lateral/directional states are shown. Although not exact, the state
trajectories of the LQG/PI controllers follow the form of the Block 40’s trajectories except in the
lateral /directional responses to the roll and yaw doublets. In the response to the toll doublet, roll
angle, roll rate, yaw rate all have slow initial responses in the opposite direction with respect to
the Block 40’s response. In addition, the actuators have moved in the opposite directions as well.
By three seconds, however, all but the roll angle have moved back in phase, and even follow the
form of the Block 40’s response. Similarly, the states and actuators are 180° out of phase in the
response to the yaw doublet as well. Applying a gain of -1 to the yaw input brings the response
mostly back in phase, as shown in Figure 4.25, and this gain is added as a modification to the
LQG/PI controller. Applying a similar -1 gain to the roll channel does not, however, achieve the

same result, as shown in Figure 4.26, and is therefore not added to the LQG/PI controller.

4.8 Investigation of Possible Errors in the Linear Model

The fact that the trajectory moves 180° out of phase would seem to indicate a problem in the
linear model, particularly in the input model since the actuators are out of phase as well. Moving
the actuators in the wrong direction will certainly push the states in the wrong direction, so the
actuators may well be the culprit. A review of the modified input matrix presented in Section 3.4.1
shows that the rudder, used for creating the yawing moments, effects only the lateral/directional
states (the second four variables in the state vector defined in Table 3.1), while the flaperons, used
primarily for rolling moments, effect both the lateral /directional and the longitudinal states. These

facts may explain why reversing the sign largely corrects the phase problem for the yaw doublet
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Response to the pitch doublet (solid) - LQG/PI, (dotted) - Block 40
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Figure 4.22 Linear Simulation of LQG/PI Controller - Pitch Doublet
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Figure 4.23 Linear Simulation of LQG/PI Controller - Roll Doublet




Response to the yaw doublet (solid) - LQG/PI, (dotted) ~ Block 40
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Figure 4.24 Linear Simulation of LQG/PI Controller - Yaw Doublet
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Responss to the yaw doublet (solid) - LQG/PI, (dotted) - Block 40
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Figure 4.25 Linear Simulation of LQG/PI Controller - Negative Yaw Doublet

4-40




phi (deg)

beta (deg)

|
©
(%))

p (deg/sec)

r (deg/sec)

o
N

a_y (g's)

bt
(&)

Response to the roll doublet

(=]

Yo

(=)

(=

(solid) - LQG/PI, (dotted) - Block 40

Time (sec)

Time (sec)

Figure 4.26 Linear Simulation of LQG/PI Controller - Negative Roll Doublet




but not for the roll doublet. Furthermore, the signs of the terms in the modified input matrix,

B4, are also informative. The modified input matrix, for the flight condition used in this research,

is given here with the appropriate values for the stability derivatives substituted in:

- 0 0 0
1.0439 1.0439 —-0.2713
-0.0342 —0.0342 -0.0169
—~1.8224 -1.8224 (.1428
Brod =
0 0 0
—0.0069 0.0069 —0.0003
44952 —4.4952 6.2036
0.5173 —0.5173 0.0654

1

0 0
-0.2713 0
—0.0169 0
0.1428 0

0 0
0.0003  0.0170
—6.2036 2.8629
—0.0654 —1.1652

(4.16)

Recalling the state and input vectors defined in Table 3.1, and based on the signs of the

components of By,.4, interpretations about the general response to an input can be made. Assuming

for the stabilators and flaperons that an asymmetric command sends the positive input to the right

surface and a negative input to the left, these interpretations are summarized in Table 4.7. Based

on this assumption, which is supported by Control Surface Mixer block diagram for the VISTA

F-16 [11], a positive input to the right stabilator produces the same response as a positive input

to the right flaperon in the longitudinal channel, but different responses in the lateral/directional

channel. Furthermore, the asymmetric inputs and the symmetric stabilator input have been verified

Table 4.7 Interpretation of the Modified Input Matrix

| Positive Input

| Primary Effect | Secondary Effect

]

Symmetric Stabilators | Nose up Decrease in velocity
Asymmetric Stabilators | Roll left Yaw left
Symmetric Flaperons Nose down Increase in velocity
Asymmetric Flaperons | Roll left Yaw left
Rudder Roll right Yaw left
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on the VISTA SRF simulation, seemingly isolating the problem to the terms of the input matrix
corresponding to a symmetric flaperon or rudder input. Unfortunately, due to time restrictions,

the exact location and source of the possible sign error remains unresolved.

Finally, with regards to the linear controller’s performance, note that while this controller
does give a rough match for the small test doublets used, it cannot in general match the nonlinear
Block 40 FCS’s performance. Specifically, the LQG/PI controller presented here does not meet
handling qualities as defined by MIL-STD-1797A [36]. For example, neither the pitch response
nor the roll response truly settles to a steady-state value. Also the controller is not capable of
rolling the VISTA F-16 through 90° in one second as required. Despite these shortcomings, the

implementation of the LQG/PI controllers into the MMAC may be insightful.

4.9 Implementation of the MMAC

Despite the fact that the LQG/PI controller was not able to meet the desired handling quali-
ties, the LQG/PI controller bank was still put into the MMAC and tested against the eleven single
failure conditions. The results, for which a representative summary plot is given in Figure 4.27,
show that the MMAC falsely declared a right stabilator failure at 0.05 seconds, despite the fact
that no failures were implemented until one second and the commanded doublet was not introduced
until two seconds. The MMAC remains locked on to this declaration for the remainder of the sim-
ulation. There are several possible reasons for this false declaration. If the mismodeling described
in the previous section does in fact exist, then the LQG controllers are likely supplying erroneous
control laws. Also, the fact that the controllers are sub-standard due to the numerical problems
may also contribute. Because of the poor LQG synthesis due to the numerics, the MMAC imple-
mentation was not pursued further, and the emphasis at this point is turned to the MMAE-based

implementation using control redistribution.
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Summary Plot (with Mean +/- Sigma) for Pitch_lqg: 10 runs
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Figure 4.27 Summary Plot for the MMAC with LQG/PI Controllers
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4.10 Control Redistribution

The method of control redistribution was tested using against two models: the linear design
model developed in Section 3.4 and the nonlinear SRF VISTA simulation. The goal of the linear
simulation is to verify the performance of control redistribution in an ideal environment, i. e. , where
the design model used for both the redistribution and LQG/PI controllers is exactly the same as
the truth model used for simulation. The nonlinear SRF VISTA simulation then incorporates a
multiple model structure and demonstrates the ability of MMAE-based control redistribution to
detect and compensate for sensor and actuator failures in a very realistic environment rather than
an idealized one. The initial test doublets used are those presented in Table 4.6, having a period

of one second and starting two seconds after the simulation has begun.

4.10.1 Vertfication of Control Redistribution.  This verification is made using linear models
and a completely deterministic system. The LQG/PI controllers, presented in Section 4.7, are
allowed full-state feedback, and the control redistribution is artificially informed of the correct
parameter realization. The failure is implemented at the start of the eight second simulation, and
the trajectories of the aircraft with redistributed control are compared to the trajectory of a fully
functional aircraft using only the LQG/PI controllers. The linear simulation incorporates both
position and rate limiting of the actuators, though the rate limiting, which is not as critical due to
the small magnitudes of the input commands, is not anticipated to be very accurate.’ As saturations
are induced in the actuators, and because pseudointegrators are used in the controllers, anti-windup
compensation [24] is employed by imposing limits on the control inputs. Note that, as mentioned
in Section 3.4, the VISTA F-16 with these LQG/PI controllers does not meet handling qualities
(and is not even a satisfactory closed-loop controlled system). The intent of these simulations is
only to verify the ability of control redistribution to match trajectories (regardless of controller),

and the results are not necessarily indicative of desired performance.

5The rate is calculated based on the pseudorates, which are only a first order approximations to the true actuator
rates.
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As expected, the use of control redistribution on the linear simulation allowed the failed
aircraft to follow virtually the exact same trajectory as the aircraft without failures when presented
with the test doublets. So flawless was the performance using control redistribution, in fact, that
rather than present the reader with repetitive figures, a composite test signal was created which
exercised control authority in all three channels simultaneously. This composite test signal serves
two purposes. First it poses a more challenging test signal (even inducing saturations due to the
rate and position limits), and second, it reduces the number of plots presented, while still conveying
the same amount of information. The composite signal is set up as an overlapping sequence of the
same three pulses given in Table 4.6, except that each pulse is lengthened to have a three-second
duration and the entire sequence of pulses begins one second after the simulation begins. Also,
to avoid saturating the rudder on the fully functional aircraft used for comparison, the § input is

reduced to ten degrees. Graphically the form of the input signal is given in Figure 4.28.

| Pitch Doublet
I
] Roll Doublet
L 7 "’
| Yaw Doublet
I

| | 1 | | | I time d

P S s ms m my s PRl

Figure 4.28 Composite Test Input

Figures 4.29-4.33 show the results of the linear simulations. Note that, for each of these
figures, the first column is the set of longitudinal variables, the second column shows the set of

lateral/directional variables, and the last column displays the control variables. Also, although not
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Response to the Composite Test Input with Failed Left Stabilator (solid - no failure, dotted - failure)

9 w o n 8
< [+ o] [+0]
[{e] O [{s] [{e]
L <t < <
(4] [oY] N [oY]
(@] o o o
(6p) yd (60p) e19G (oes/Bap) d (0as/Bap) 4 (sb) A7
0 [+0] [+ o] o]
[(e] [{o] © ©
L4 < < <t
N N o o
8§ 2 ° 2 ° @ g¢ ° eg o o- o =
1 I 1 { ] (S 6) U_E
(Bep) e13L) {ossm) n (Bap) eydie (oes/Bep) b !

Figure 4.29 Verification of Control Redistribution - Left Stabilator Failure
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Response to the Composite Test Input with Failed Right Stabilator (solid ~ no failure, dotted - failure)
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Figure 4.30 Verification of Control Redistribution - Right Stabilator Failure
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Response to the Composite Test Input with Failed Left Flaperon (solid - no failure, dotted - failure)
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Figure 4.31 Verification of Control Redistribution - Left Flaperon Failure
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Response to the Composite Test Input with Failed Right Flaperon (solid - no failure, dotted - failure)
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Figure 4.32 Verification of Control Redistribution - Right Flaperon Failure
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(solid - no failure, dotted - failure)
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Figure 4.33 Verification of Control Redistribution - Rudder Failure
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easily seen on most plots, each of these graphs really do contain two plots - a solid line correspond-
ing to the response of the aircraft using control redistribution and a dotted line corresponding to
the response of the fully functional aircraft without control redistribution. The control redistribu-
tion method proves to provide nearly identical performance with respect to the system states and
outputs. Only on the actuator plots, where a difference is expected, can the two responses be easily

differentiated.

Note that the flaperons and stabilators occur in pairs. While these sets are not truly redun-
dant pairs, they do have some redundant properties that make it easier to cope with recovery from
a stabilator or flaperon failure than recovery from a rudder failure. For example, in Figures 4.29-
4.32, the magnitude of the remaining functional surfaces increases to reflect the additional control
authority passed to them by the redistribution matrix, but the resultant positions are still reason-
able. Contrast this to Figure 4.33, where a rudder failure causes the remaining surfaces to saturate
under the additional load. However, because the controller is not attempting to drive the actuator
hard into saturation, the state trajectory is still very close to that of the functional aircraft. The
effects of position limiting on control redistribution can be enhanced by increasing the magnitude
of the yaw doublet to 30 degrees. Figure 4.34 shows the resulting trajectories for the case of a
failed rudder, where the redistributed controller is not able to follow the trajectory due to position
limiting. Rate limiting is also a concern, but due to limitations of the linear model, which did not

effectively implement rate limiting, the effect cannot be investigated here.

4.10.2 MMAE-based Control Redistribution. The evaluation of MMAE-based Control
Redistribution is made using the nonlinear VISTA SRF simulation, with modifications described in
Section 3.3, and incorporating the Block 40 FCS as the controller. The length of each simulation is
set to be eight seconds, with a failure introduced one second after the start of the simulation. The

test doublets are then introduced one second later. Note that a composite test signal such as that
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used for the linear simulation was not possible on the nonlinear simulation without either leaving
the self-imposed linear region, or else making the doublet amplitudes so small as to be uninter-
esting. Therefore, three separate test doublets, described in Table 4.6, are used here. Although
the requirement to stay within the linear region of the MMAE may seem overly restrictive, Sec-
tion 5.5 will present methods of implementation which will allow the operation of an MMAE-based

controller to overcomne this restriction.

Two sets of ten Monte Carlo runs are generated for each failure condition, and the results
plotted together for comparison. The first set is made with the reference, fully functional aircraft
and is used as a basis of comparison to evaluate the effectiveness of control redistribution. The
mean (dashed line) and + one standard deviation (dash-dotted line) are plotted. As the baseline,
these same three lines will appear in each figure, though the standard deviation is so small that
they may appear to the reader as one single line (the stochastic effects of the wind and noise is
negligible compared to the magnitudes of the dither and test doublets). The second set incorpo-
rates MMAE-based control redistribution and implements the failure condition noted on the plot.
Again, the mean (solid line) and + one standard deviation (dotted line) are plotted, and in most
cases these three lines will also appear as one solid line. Further, if the MMAE-based control
redistribution method worked perfectly, then the two sets of mean+one standard deviations would
overlap. However, an identical response is not anticipated considering the suspected mismatch,
described in Section 4.8, between the nonlinear model, incorporated in the VISTA SRF, and the

linear design model.

Although the original intent of this research was to use as the baseline a fully functional
aircraft controlled only by the standard Block 40 FCS (driven directly by sensor outputs with no
filter in the loop at all), a comparison of such a system and the same fully functional aircraft with
an MMAE-based controller using the Block 40 flight control system revealed minor differences in

the flight trajectories, as depicted in Figure 4.35 (the multiple traces are the two sets of mean+one

4-54




(o] -] [+ <] @© 0
3 0 © ©o o [{+]
]
7
< < < < <o
E
=
o o N N o
gece * °% ° § 8 °© 8 8 °8&°
(Bop) 4 (Bep) 4 (6ap) pru
i © ) ) © [}
<
- :
o
% » © © © © ©
_] g —_—
3 . g
Q < A3 ~ < ~ ®
5 . £
e =
Prd o~ o o o~ o~
%
-
e o o o o
w T T =) n- o b o b o - o =«
© ? (oes/Bep) d (oas/Bap) 4
(Bep) e10q
(-« / «© [ o] o]
!
© / © © ©
/ 3
< A g < < %
: £
X -
N (Y] N N
< N (=} co° 8 nw o l§° <t o [=] Qo w o lll)o N o i
-~ *- -— - -~ Lol - -~ o
@p)eew ¥ S n (6ep) Bydre (oes/Bep) b sBue

Figure 4.35 Comparison of the Original Block 40 FCS to an MMAE-based Controller using the
Block 40 FCS
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standard deviation trajectories for each aircraft). These differences arise from mismodeling in the
linear models, and due to the fact that the aircraft is not really trimmed at a steady state condition,
as noted in Section 3.4.1. Although not significant in terms of overall MMAC evaluation, these
discrepancies will confound the analysis of the MMAE-based control redistribution method, as any
deviations in state trajectory could be attributed either to the redistributed control or to the MMAE
itself. Therefore, the baseline for comparison is defined as a fully functional aircraft controlled by
an MMAE-based Block 40 FCS, rather than just the Block 40 FCS alone. This configuration is

identical to that used in previous research {8].

Note that only flight conditions in which an actuator failure is experienced are considered,
since sensor failures are not corrected by control redistribution. Sensor failures are compensated
within the MMAE itself through the blending of the state estimates. Eide’s MS Thesis [8] provides

an analysis of an MMAE-based controller’s response to sensor failures.

Figures 4.36-4.38 show typical comparisons between the (baseline) fully functional aircraft
controlled with an MMAE-based Block 40 FCS and the aircraft experiencing an actuator failure
controlled by MMAE-based control redistribution. The remaining comparisons are presented in
Appendix A. Note that the same set of baseline meantone standard deviation trajectory traces

do appear in each figure, though they may seem different due to changes in scaling of the axis.

For stabilator and flaperon failures, the longitudinal states are able to track very well. There
is a slight, steadily increasing, separation between the pitch angles, which results in an increasing
flight path angle and therefore also appears as a slow separation in the velocity trajectory. Angle
of attack and pitch rate are very closely matched by the redistributed control. Normal acceleration
tracks with a slight offset bias. This positive bias may very well be the cause behind the slow
changes indicated by the velocity and pitch angle. In the lateral/directional channel, the roll rate

and lateral acceleration are seen to track very closely. A slight separation appears in the yaw rate,
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Figure 4.36 MMAE-based Control Redistribution - Pitch Doublet - Left Stabilator Failure
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Figure 4.37 MMAE-based Control Redistribution - Roll Doublet - Right Flaperon Failure
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as well as the sideslip and roll angles. Noting the scale on the graphs, the difference in sideslip angle
can be dismissed as insignificant. Even the roll angle, which grows to a separation of approximately
five degrees, and shows the worst separation of any variable, is of relatively little consequence since

the pilot can manually adjust for such a small change in an angular component.

Based on the analysis of the linear simulation, the rudder failures are expected to present
the most challenging scenario since there is the least amount of redundancy for this component.
Figure 4.39 represents the worst response (the greatest amount of deviation, particularly with

regard to the standard deviation traces), though the trajectories are still a relatively close match.

4.11 Chapter Summary

This chapter began by presenting unsuccessful attempts to reconcile the MMAC with the fact
that the linear and nonlinear lateral acceleration models are grossly mismatched. N ext, the dither
signal was modified so as to maintain symmetry between the control surfaces, thereby greatly
enhancing failure detection. Section 4.6 then detailed the numerical difficulties inherent in the
discrete-time LQG/PI controller. Finally, Section 4.10 presented the performance of an MMAE-
based controller using control redistribution with the Block 40 FCS. The next chapter will draw

conclusion based on these results, and then provide recommendations for further research.
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5. Conclusions and Recommendations
5.1 Chapter Querview

This chapter provides conclusions based on the results presented in Chapter 4. Section 5.2
draws conclusions based on the LQG/PI controller and its MMAC implementation. Concluding
remarks concerning the MMAE-based control redistribution method are given in Section 5.3. Sev-
eral enhancements to MMAE-based control redistribution are then presented for consideration in
future research. These are followed by a closing description of a possible in-flight implementation
of MMAE-based redistribution. Recommendations for further research are provided throughout

this chapter where appropriate.

5.2 LQG/PI Performance

The numerical difficulties encountered in generating the IT matrix indicate that the LQG/PI
synthesis of a controller using an output linearly dependent on the state derivatives will be prob-
lematic. These problems may possibly be circumvented by “corrupting” the linear output model
with erroneous numbers just big enough to remove the linear dependencies, but small enough to
maintain acceptable generation of the control variable [44]. For example, a pitch rate output might
be constructed from § + e instead of just §, where € is a suitably small number. Initial attempts
at this technique, however, were unsuccessful, as the required magnitude of ¢ to alleviate the linear
dependency on state derivatives was found to be so large that the integrity of the output model
was unacceptably degraded. Similar methods of such intentional “corruption” may prove more
fruitful, though the use of such ad hoc methods may not yield a procedure readily portable to
other applications. Other possible solutions include using different design models, such as the short
period model for the longitudinal controller, or possibly using a balanced realization to improve the
conditioning of the matrices. Note that, for designs based on the F-16, which is statically unstable,

an inner loop must be used to first stabilize the system before the balanced method can be used.
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Finally, different output variables may be selected which are not dependent on the state derivatives,
though this precludes the use of C*, ¢, and ay, all desirable control variables for the longitudinal

channel.

Because of the unsuitable controllers generated by the LQG/PI synthesis, the MMAC imple-
mentation was not successful and yielded few insights. These results should not, however, dissuade
further research into the use of multiple model adaptive control. With a properly functioning con-
troller bank, the MMAC method has great potential for detecting and compensating for sensor and

actuator failures.

5.8 Control Redistribution Performance

The MMAE-based control redistribution has shown excellent results and yields a design which,
because it augments instead of replaces the existing flight control system, is easily implemented
for flight testing. The MMAE front-end is capable of detecting most single failures in less that
0.5 second. The hardest to detect failures are the angle of attack and the yaw rate sensors, but
both are still detected in under one second. Because these two slowest declarations involve sensor

failures, scalar residual monitoring could be used to reduce this detection time, if desired.

§5.8.1 Partial and Multiple Failures. Although partial failures and multiple failures re-
main to be tested using a full implementation of MMAE-based control redistribution, Eide [8]
did investigate the ability of the MMAE to detect (but not control) partial and multiple failures.
Since an MMAE can completely compensate for sensor failures,! what remains to be considered is
the ability of control redistribution to account for partial and multiple actuator failures. Because
control redistribution is able to compensate nearly perfectly for actuator failures, a partial failure

may best be labelled as a complete failure. This conservative declaration results in a more severe

INote that Section 5.6 will propose an alternate control method in which the redistribution technique is applied
to measurements as well.




reduction in control authority than may be truly necessary, but it also maintains the number of
elemental models required in the MMAE at one per actuator. For critical components, additional
models hypothesizing partial failures may be included in the discretized parameter space. Multiple
failures are readily admitted through the use of a hierarchical structure. Investigations of partial

and multiple failures are strongly recommended for future research.

5.3.2 Modeling.  Certainly the performance of any control scheme hinges on the accuracy
of the design model in representing the real world (or truth model). Some doubts as to the
relationship between the design model and truth model, as well as to the fidelity of the SRF VISTA
simulation itself, have been raised in this research. A more thorough analysis may yield better
models (and correspondingly better performance), particularly with respect to the input matrix,
B, which is critical to the synthesis of the redistribution matrices. At the same time it must be
noted that control redistribution is not limited to a time-invariant model. By simply relinearizing
at every sample period to enable the redistribution synthesis, a high order, nonlinear model can
also be used. Note that relinearization of the control redistribution model in no way effects the

control law generated by the Block 40 FCS; it only enhances the accuracy of the redistribution.

5.83.3 Preventing Saturations.  The use of control redistribution resulted in performance
by a failed aircraft nearly identical to that of the fully functional aircraft. In fact, when simulated
on the linear truth model, where the design model matches the truth model exactly, the two
trajectories were indistinguishable, provided no saturations occurred. If desired, the increased
likelihood of saturations, due to the additional load of the redistributed control, can be prevented
by attenuating the input commands. However, some loss of performance is expected for a failed
aircraft, and control redistribution has the desirable trait that it only shows this degradation at

the limits of performance.

Note that the range in which redistributed control can completely compensate for a failed

aircraft (before reaching saturations) is largely defined by the redundancy inherent in the control
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surfaces. For example, while the stabilators and flaperons occur in matched pairs, the VISTA F-16
has only a single vertical tail and therefore control redistribution must work hardest to maintain
commanded performance when experiencing a rudder failure. This fact is explicitly shown in the

packed redistribution matrix, D,, described in Section 3.8 and presented here for reference:

- 0 1.0000  1.1037 —1.1037 —1.2719-
1.0000 0 ~1.1037 11037  1.2719
D.=| 09060 —0.9060 0 1.0000  1.1524 (5.1)
—0.9060 0.9060  1.0000 0 ~1.1524
—~0.7862 0.7862 0.8678 —0.8678 0

where each column gives the redistribution for the corresponding actuator as listed in Table 3.3.
Note that the fifth column, corresponding to the redistribution of the rudder, contains the largest
magnitudes, representing the largest redistributed commands being sent to each of the remaining
actuators. This is corroborated by the fact that saturations occurred only for rudder failures in
Section 4.10.1. An aircraft with multiple rudders (vertical tails), such as the F-15 or F-22, would

alleviate this problem and increase the range for redistributed control (before hitting saturations).

5.8.4 Intermittent Failures. The detection of intermittent failures by the MMAE must
be treated somewhat differently than it has in the past, because control redistribution allows a
failed aircraft to respond in a manner indistinguishable to that of a fully functional aircraft. For
example, suppose that the right stabilator fails. The aircraft trajectory begins to deviate from that
expected by the MMAE, and within a fraction of a second the correct failure condition is declared.
Suppose that the failure is intermittent and that five seconds later the right stabilator becomes
fully functional again. Because, for moderate inputs, as described in Section 5.3.3, the performance
of the failed aircraft matches that of the fully functional aircraft, the MMAE has no reliable

way of distinguishing between the fully functional hypothesis and the previously declared failure




hypothesis. The MMAE is therefore unable to reverse its decision and decide that an actuator
in fact either has not failed (a false alarm) or is not currently failed (an intermittent failure).
Fortunately, there is little loss of performance due to the accuracy of control redistribution. Even
so, the MMAE can be forced to search for intermittent failures by periodically, or at pilot-specified
times, resetting the failure hypothesis back to that of a fully functional aircraft and setting the
redistribution matrix back to an identity matrix. In the third robustness technique recommended
in Section 5.5, the MMAE essentially accomplishes this restart every time it re-engages by passing

through the nearly nominal region.

5.4 Dither

Although the modified dither signal, as presented in Section 4.5, appears to result in sym-
metric commands sent to the actuators, the final tuning summary plot shown in Figure 4.11 reveals
that the left stabilator and flaperon failures are still detected more slowly than those of the right
stabilator and flaperon, indicating room for more improvement in the dither signal. Because the
ability of the MMAE to detect failures relies on excitation from the dither signal at benign flight
conditions, a better dither might in fact improve the detection times for all failures, though only
at benign flight conditions (dither is disabled when the pilot commands an input through the force

stick or pedals).

5.5 Enhancing Robustness of the Linear MMAE

The effectiveness of MMAE-based control redistribution relies on the ability of the MMAE
to declare the correct failure status of the aircraft accurately. The MMAE used in this research
accomplishes this detection of failures using linear Kalman filters. An obvious pitfall then is the
effect on the system when the aircraft moves away from the linear design point. Eide 8] investigated
this effect and noted that the MMAE quickly failed as the aircraft moved off nominal, i. e. , the

MMAE began to give completely erroneous failure declarations. While the use of gain scheduling
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can compensate for flight patterns involving varying dynamic pressure (such as those caused by
changing altitude or speed), changes in attitude (such as flying with wings not level) still upset
even the scheduled MMAE. For use in a highly maneuverable fighter aircraft, then, the robustness

of the MMAE must be enhanced to account for flying off the nominal design point.

Three methods are suggested for such an enhanced MMAE implementation. The first uses
extensive gain scheduling to account for all possible flight conditions and aircraft orientations.
For example, a multidimensional lookup table based on dynamic pressure, roll angle, and sideslip
angle (and possibly other variables) might prove successful. The complexity and magnitude of
such a table, however, deems it not practical for a real implementation for the entire flight regime.
Additionally, the variables needed to navigate the table are those estimated by the MMAE, which in
turn relies on the scheduled data from the table, resulting in an undesirable interdependence. More
pertinent to the current design, the issue of estimating the lookup table’s independent variable raises
the question of whether or not the MMAE should provide a dynamic pressure estimate since both
the Block 40 FCS and the LQG controller presented in this thesis rely on pressure measurements to
schedule variables. Adding a dynamic pressure estimate to the MMAE is recommended for future

research.

The second method is perhaps more feasible, but just as complex, and involves using higher
order models within the MMAE’s Kalman filters. For example, the use of nonlinear filters would
increase the robustness of the MMAE. Whether or not an MMAE using nonlinear filters is capable
of withstanding the extreme maneuvers required in a aerial dog-fight remains to be demonstrated.
Because of the additional computational burden required for the implementation of nonlinear filters,

however, this method may not be as suitable as the third technique.

The third technique, and the method recommended for future research, is simply to admit that
the MMAE is not effective at off-nominal flight conditions, and so use additional logic to disengage

the MMAE except when the aircraft is determined to be flying in a nearly nominal condition, nearly
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nominal being defined as being in approximately steady-state, trimmed flight. This decision might
be based on a comparison of state variables such as angular rates, sideslip angle and roll angle to
a predetermined threshold. Only if all variables fall below the specified threshold is the MMAE
engaged. Alternatively, the MMAE could be engaged manually by the pilot if a failure is suspected

and the aircraft is purposely brought to a nearly nominal flight condition.

This third technique still relies on gain scheduling to be effective at different dynamic pres-
sures, but this is not a considerable modifications since gain scheduling already occurs within the
Block 40 FCS. In this implementation, the controlling logic must also ensure that the parameter
estimate, @, is buffered when the MMAE is disengaged, so that the control redistribution back-
end maintains the failure declaration until the MMAE is again engaged and allowed to redeclare
the failures as appropriate. Although this configuration only enables the MMAE during nearly
nominal flight, because the MMAE requires less than a second to declare the correct failure, the
aircraft actually only needs to pass briefly through the nearly nominal region. Also, in such an
implementation where the aircraft is generally not in a benign flight condition, the need for dither

is eliminated completely.

5.6 Redistribution Applied to Sensor Failures

One problem with the suggested technique for robustness enhancement is that sensor fail-
ures are compensated via the state estimates, Z, which are generated by the MMAE. With the
recommended method described in Section 5.5, where the MMAE is disengaged when the aircraft
is off-nominal, this ability to compensate for sensor failures is lost. A solution may be to apply
the redistribution technique to the measurements as well as to the controls while the MMAE is
disengaged. The development of measurement redistribution follows that presented in Section 3.8

except that the defining relation is now:

2 % 2y (5.2)




or

Haugxaug ~ DsiFu'Haugxaug (53)

where Xqug=[xT uT )T and H;uy=[H D, ] as presented in Section 3.4.4, D,; and F,; are the
redistribution and failure matrices, respectively, for the i** sensor failure. In this configuration,
the MMAE-based controller redistributes both measurement and control signals during off-nominal
flight, but in the nearly nominal region only control redistribution is used and the more accu-
rate MMAE-generated state estimates are passed to the Block 40 FCS. Note that the ability to
redistribute measurements is possible because of the acceleration measurements, which are lin-
early dependent on several other of the other measurements. Investigation into the performance of

measurement redistribution is highly recommended for future research.

5.7 Real-Time, Man-in-the-Loop Simulation

While there are several aspects of control redistribution which remain to be investigated, a
real-time simulation of even single failures would serve to validate the concept and to demonstrate
its effectiveness in an even more realistic setting. A real-time simulation may be possible without
resorting to a distributed processor system due to improvements made to the FORTRAN source
code over the course of this research. The resulting eight second simulation uses less than six seconds
of processor time on a Sun SPARC 20 computer. The six seconds of processor time accounts for
the entire simulation, including aerodynamic updates and output operations to save the data files
on disk, not just the controller. These numbers are promising for a true single-processor, real-time,

man-in-the-loop implementation in the future.

5.8 In-flight Implementation

Although this chapter has highlighted many areas for future research, the suitability of

MMAE-based redistribution, including both control and measurement redistribution, for a true
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in-flight implementation cannot be overlooked. Figure 5.1 shows the block diagram of the flight
control system for such an implementation. Again, and this point is repeated for emphasis, the
existing Block 40 FCS is retained in its entirety, ensuring that the basic structure remains the same.
The additions are the MMAE for state and parameter estimation and the blocks for measurement
and control redistribution. Not explicitly included in Figure 5.1 is the fact that, as mentioned in
Section 5.6, during nearly nominal flight, the Block 40 FCS is provided the more accurate MMAE-

generated estimates instead of the redistributed measurements.

Because both of the redistribution matrices reduce to the identity matrix (they simply pass
through the measurements and control) for a fully functional aircraft, the control system has the
exact same performance as the existing Block 40 FCS. Herein lies the true benefit of MMAE-
based redistribution. First, during normal operation, the redistribution is completely transparent
to the pilot, and the achieved performance is identical to that anticipated by the pilot from the
Block 40 FCS. Second, in the event of a component failure, the redistribution ensures nearly the
same performance is maintained for moderate inputs. So, at worst, the system gives the same
performance as that already being flown on the VISTA F-16, and at best the system is able to

compensate for failure conditions such that the pilot is able to continue the mission and return

home.
L
Block 40 u Control WU
Measurement | Zr Flight Control System Redistribution
Redistribution
—>1 MMAE with | 3
| enabling logic

Figure 5.1 Possible In-flight Implementation of MMAE-based Redistribution




5.9 Chapter Summary

Although the MMAC using LQG/PI controllers did not yield an acceptable controller, the
use of control redistribution resulted in an MMAE-based controller with excellent performance
characteristics. All single failures were detected in less than one second, and the redistributed
control nearly matched that of the fully functional aircraft. This chapter presented areas for future
research and concluded with a description of a possible in-fight implementation of an MMAE-based

redistribution controller.
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Appendiz A. MMAE-Based Control Redistribution Plots

This appendix contains comparisons made while verifying the performance of MMAE-based

control redistribution on the SRF VISTA simulation. Description and analysis of the figures is

found in Section 4.10.2.
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Appendiz B. White Noise Approzimation to the Dryden Wind Model

The white nowse approzimation to the Dryden wind model was first presented in the current
form by Pogoda [{2]. What follows is excerpted from a presentation of that derivation by Stratton
[48] in Appendiz A of his MS thesis. The tezt has been modified somewhat to reflect the differences in
the research topics. Also Stratton makes many references to Martin’s thesis [20] (which immediately

preceded Stratton’s research). Stratton’s development, however, is complete in itself.

This appendix briefly repeats the results of approximating the Dryden wind model by zero-
mean white Gaussian noise found in [20]. According to [20], the Dryden form of the spatial spectra
for the turbulence velocities, as given in MIL-STD-1797A [36], must undergo two transformations
to obtain the basic Dryden state model. First, the spatial forms of the Dryden model must be
transformed to the temporal spectra forms, and second, the wind gust velocity terms (u, v, and w)
must be converted into the angular state variables. the final resulting power spectral densities for
the gust velocity, angle-of-attack, pitch rate, roll rate, sideslip angle, and yaw rate are expressed

as [20]:

2Vr 1
— 20’L 00+ 0
(Dug(W) = 0o, Lu w2 T (VT/Lu)Z (Bl)
2 1oy 2
Qag(“") = 0'3_' 2V3L “ + 12( T/Lu)z (B.2)
T Loy [uﬂ +(VT/LM)2]
WVT]Z w2
L] = |—] —m&, B.3
W) = ] e ®3
1 1/3
2 w0 1
®p (W) = ouVr [128, 000b7L,2,,] e (1rVT/4b)2 (B.4)
3 w4 (Vp/L,)
[0 = o? 12 B.5
3, (v) = mVr 2._____“’2___@ ) B.6
rg w - 3b wz +(7TVT/3b)2 ﬂg w ( . )
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These power spectral density functions can be expressed equivalently as transfer functions which

are driven by white noise, shown below:

_ u,y(s) _ 2Vr 1z 1
o) = 2= [n] T (5D
g o= ) [3 Y2 5 4+ (VpV/3/6Ly)
Gagls) = wy(s) “’[2VTLu] [s + (Vo /2Lu))? (B8)

_qe(s) _ TVt s
Gy, (s) = wi,(s)— 4b s+(7rVT/4b)Ga"(s) (B.9)

_opgls) rovd  1Y° 1
G, (s) = wi(s) = v [128,0001?@3,] s+ (nVr/4b) (B-10)
_ Bels) _ 3 1Y% s+ (Vrv3/6L.)
Gp,(s) = wi(s) = oy [2VTL'U] ot (/LT (B.11)
G,,(s) = :f((?) - ";;’T — (W; 7557 C() (B.12)

where wy, wy, wp and w, are independent white noise sources of unit strength, b is the aircraft
wing span, Vr is the aircraft velocity, Ly, Ly, and L, are the turbulence scale lengths, and oy, o,
and o, are the turbulence intensities., For the medium/high-altitude model. oy, = 0, =0y = ¢
and L, = 2L, = 2L,, = 1750feect [36]. The value of o is based on light, moderate, or severe

turbulence categories from Figure 262 of MIL-STD-1797A [36]. It should be noted that these
turbulence specifications are numerical categories that represent greater turbulence than a pilot
would normally expect from light, moderate, or severe designations [20].

The truth model of this thesis incorporates a zero-order wind model by approximating the
time-correlated wind disturbances uy(t), ay(t), g4(2), pg(t), B4(t), and ry(t) from the Dryden model

with the white noises:
w(t) = [wa, (E)wa, (E)w,, (t)wp, ()ws, ()wr, ()] (B.13)

where the white noise strengths are calculated by averaging the wind model power spectral density

over the appropriate frequency range.




WW(L G, i;(s) > q g(s)
Go(® = ag(®)
WV(.S)_, Gﬂe(s) . pg(s)

G & —= 1,6)

Figure B.1 Block Diagrams for Deriving Cross Spectral Densities

The white noise strengths become the diagonal elements of the Q matrix:

- -
Quy O 0 0 0 0
0 Q“.‘I Q"‘g‘lq 0 0 0
Q= O Qe G O ° ’ (B.14)
0o 0 0 @, O 0
0 0 0 0 ng Qs,r,
o 0 0 0 Qs Q@ |

The off diagonal elements of Equation B.14 are included since ay(t) and g,(t) are both
functions of wy(t), and similarly 8,(t) and ry(t) are functions of w,(t). Therefore, to obtain the
| off-diagonal elements the cross spectral densities must be calculated. The cross spectral densities

are defined by the relationships shown in Figure B.1, and by the equations:

Baye, () = Go,y(5)®a,(s) (B.15)

Dp,r,(s) = Gr,(s)p,(s) (B.16)
where

= xVrp s

%u(8) = T vy (B.17)

Gryls) = —DL___¢ (B.18)

3b s+ (xVp/3b)

B-3




Substituting s/j for w in Equations (B.2) and (B.5), and substituting the the results into Equa-
tions (B.15) and (B.16), respectively, yields the cross spectral density equations in Laplace s nota-

tion:

ro? s (Vr/Ly)? —s?

Doy, (s) = 32bl"/uw 51 (7Vi/ab) [(Vr/2L0)? = 32+]2 (B.19)
Bp,r, (5) —n9, 2 (r/L,)* - s* (B.20)

24bL, s+ (xVr /3b) [(Vr/2L,)? — 52+]2

Normally, the white noise strength approximation of a power spectral density function can be
found by obtaining the average magnitude over an appropriate frequency range from its Bode plot.
However, the cross spectral densities in Equations (B.19) and (B.20) include a complex component,
i. e. the white noise strengths cannot be simply obtained by the above method. Another method to
obtain the noise strengths is to take the inverse Laplace (or Fourier, as the case may be) transform
of Equations (B.19) and (B.20). From the transform, obtain the magnitude of the cross-correlation
at tau = 0, and denote this value as o'?; then the height of the power spectral density curve (white
noise strength approximation) is 2027, where T is the time constant of the first order transfer

function [20].

Another and perhaps easier method to obtain the cross spectral densities is first to approx-
imate the power spectral densities of Equations (B.2) and (B.5) as constant heights, which corre-
sponds to the white noises wq,(t) and wpy(t), respectively. The magnitudes of these power spectral
densities can then be used as inputs to the transfer functions described in Equations (B.17) and

(B.18) to approximate the cross spectral densities [20].

Repeated from [20], shown in Table B.1, is the bandwidth for each of the aircraft state
variables and the noise strengths based on a wind turbulence RMS value of o=1 ft/sec. Although
the value of o=1 falls into the category of light turbulence in MIL-STD-1797A, it more accurately
represents light to moderate turbulence [20]. The white noise strengths can easily be scaled for

increased (or decreased) RMS wind turbulence values, since each power spectral density equation
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contains a o2 term. Note that the values in Table B.1 are based on an aircraft velocity of 622 ft/sec
(0.6 Mach, 20,000 ft); the aircraft velocity used in this thesis is 415 ft/sec (0.4 Mach, 20,000 ft).
Although the difference in velocity results in some difference in the average noise strength, because
Eide [8] chose to use these same values when he incorporated the Dryden wind model into the SRF
VISTA simulation, the same values are carried over into the current MMAC research. (The only
exception is that the Q(1,1) term is scaled as described in Section 3.4.3 to account for the fact

that the resulting noise is not typically described as light turbulence).

Table B.1 Dryden Wind Model Noise Strength Approximations

{ Variable | Aircraft Bandwidth | Units | Average Noise Strength | Units |

u 0.25 zad 45 i
@ 4.0 rad 3.0°° rad-sec
q 20.0 e 1.5 x 105 rad
avsq 4.0 %f_% 1.1 x 10-8 rad?
p 15.0 rad 6.0 x 10-° rad
8 3.5 rag 3.0 x 10-° rad-sec
r 7.0 rad 24x10°° Fad
Bvst 3.5 rad 6.3 x 10~° rad?

The white noise strength approximations given in Table B.1 are then put into the appropri-
ate locations of the Q matrix as shown in Equation (B.14). the white noise approximations are
incorporated into the 8th-order aircraft model through the matrix G, as derived in [20] and defined
in Equation (B.21) in terms of the primed aircraft dimensional derivatives, as defined by [20] and

used in this thesis.

G= e (B.21)
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Appendiz C. SRF Modification Table

The SRF VISTA simulation [15,16] is provided by Wright Laboratories Flight Dynamics
Directorate. The source code is written in FORTRAN and setup for compilation on Sun SPARC-
stations. The MMAC code is based on the MMAESIM software written by Menke [34]. Eide [8]
incorporated this MMAESIM code into the SRF VISTA simulation. Eide also added improved
sensor/actuator failure models, a zero-order Dryden wind model®, and the linear lateral accelera-
tion model to the SRF VISTA. This software was further modified to accommodate the additional
controllers required for an MMAC. Tables C.1 and C.2 summarize the modified SRF files and the
additional MMAC files, respectively, needed to convert the original SRF VISTA into the version

used in this research.

Table C.1 Modified SRF Files

| Filename | Description of modification |
afm.F - Replace A, calculation with linear model
- Add full Dryden wind model (unused)
atr40.F - Add actuator failure model
buildmx.F - Modify to generate MATLAB readable output file
- Add G, C, D and B,,,,4
control.F - Replace FCS_IO call with MMAC function call
fesdo.F - Replace full-state feedback with state estimates

- Add control redistribution
- Add LQG function call

getcom.F - Add dither
quat.F - Add zero-order Dryden wind model effects
sensors.F - Add sensor failure model
- Add sensor noise corruption
turb2.F - Add Dryden rotational gusts P,Q,R (unused)
vista.F - Initialize MMAC
- Add file I/O headers and trailers
wind.F - Replace SRF wind model with zero-order Dryden model
windic.F - Remove call to SRF wind model

wind_setup.F | - Add zero-order Dryden wind model states
- Add Dryden wind model rotational states (unused)
datapool.inc | - Add (unused) variables for full Dryden wind model
wind.inc - Add zero-order Dryden wind model states
- Add Dryden wind model rotational states (unused)

1A full Dryden wind model was also implemented, though it has not yet been tested and is not used in this
research.
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Table C.2 Additional MMAC Files

| Filename | Description of contents
failchk.F - Evaluate probabilities and declare failures as appropriate
fitreq.F - Update and propagate the Kalman filters
getflags.F - Read in flags concerning operating and failure status
inimmae.F | - Read in filter/controller data
lqg.F - Implement the LQG controllers
matfunc.F - Library of matrix algebra functions
mmac.F - Top level function for the MMAC algorithm
mimnreset.F - Reset filter bank after a bank swap
nommmae.F | - Store nominal values of pertinent variables for use by the MMAC
probeval F | - Blend the estimates and control laws from the elemental filter /controllers
sort.F - Quicksort used by probeval to implement lower bounds
mmac.inc - Declare variables and parameters for use by the MMAC

For convenience, the modified SRF VISTA version allows one of four FCS modes to be selected

via software flags read into the simulation at run time. These modes are:

1. Block 40 FCS

2. MMAE-based controller using the Block 40 FCS

3. MMAE-based control redistribution

4. MMAC using the Block 40 FCS (if desired) and LQG controllers

All four FCS modes incorporate dither, sensor noise, and the linear lateral acceleration model. The
software flags, contained in file FLAGS.DAT, also select the failure modes and times of failures,
and enable/disable the zero-order Dryden wind model and bank swapping. The location of the

filter and controller files is also provided to the SRF VISTA via FLAGS.DAT.

Other simulation parameters, such as flight condition and piloted commands, are entered via
a name.par file created by the Transportable Applications Executive (TAE) [16]. To facilitate the
reproduction of the results contained in this thesis, the parameters used in this research are given
in Table C.3, reproduced from [8]. The first column of this table lists the variable as presented by
the TAE, the second column provides a brief description of that variable (the online help provides

more detailed descriptions), and the third column gives the values exactly as entered into the TAE.




Table C.3 SRF Parameter Values

| Parameter | Description | Value B
outfile Name of APRET output file “vista.output”
ofiletyp Output file format “apret”
eqmot Equation of motion to be used “gd”
stoptime Simulation duration (sec) 8.0
saverate Data recording sample rate (Hz) 32.0
afmrate Airframe model iteration rate 128.0
DFCSrate | DFCS iteration rate 64.0
trimic Trim with initial conditions “no”
ctlfile Name for SEL CTL file (null value)
altitude Initial altitude (ft) 20000
Mach Initial airspeed 0.4
Xpos Initial aircraft X axis (ft) 0.0
Ypos Initial aircraft Y axis (ft) 0.0
heading Initial A/C true heading (deg) 0.0
gamma Initial glide slope angle (deg) 0.0
threntrl Throttle control type “constant”
stores Stores configuration “standard”
fitcond Flight Condition “up+away”
atmos Type of day for atmosphere model | “standard”
cmdfile Name of command file (null value)
commands | Pilot commands (null value)
cmdmagn | Command magnitude (null value)
cmdtime Start time for each command (null value)
cmddur Duration of each command (null value)
gear Initial landing gear setting (null value)
geartime Time to toggle gear setting (null value)
spdbrake | Initial speed brake setting (null value)
spdtime Time to toggle speed brake (null value)
flap Initial flap setting (null value)
flaptime Time to toggle flap setting (null value)
mxfile Name of MATRIXXx file for “srfdat.m”

linear model generation
multwgt A /C weight multiplication factor 1.0
for linear model generation
Ise Local slope extraction “no”
saveit Debug data save flag “no”
savefn Debug data save filename “debug.iofn.dat”
restorit Debug data restore flag “no”
restorfn Debug data restore filename “debug_iofn.dat”
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