
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1995

Dynamic Transfer of Control between Manned and Unmanned Dynamic Transfer of Control between Manned and Unmanned

Simulation Actors Simulation Actors

Neal W. Schneider

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Schneider, Neal W., "Dynamic Transfer of Control between Manned and Unmanned Simulation Actors"
(1995). Theses and Dissertations. 6203.
https://scholar.afit.edu/etd/6203

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F6203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6203?utm_source=scholar.afit.edu%2Fetd%2F6203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ftmOvd fmr P3bh mleeQai

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GE /ENG /95D-24

Dynamic Transfer of Control
Between Manned and Unmanned

Simulation Actors

THESIS

Neal Wayne Schneider
Captain, USAF

AFIT/GE/ENG/95D-24

19960130 056
Approved for public release; distribution unlimited

AFIT/GE/ENG/95D-24

Dynamic Transfer of Control

Between Manned and Unmanned

Simulation Actors

THESIS
Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Science)
Neal W. Schneider, B. S.

Captain, USAF
December, 1995

Approved for public release, distribution unlimited.

Disclaimer: The views expressed in this thesis are those of the author and do no reflect
the official policy or position of the Department of Defense or the U. S. Government.

Acknowledgments

I would like to thank first and foremost the most important person in the

world to me, my wife, Vivian. This would not have been possible without her

help, endless love, and much needed encouragement. A special thanks goes to all

of my fellow sufferers in the graphics program, Mark Edwards and Lynda

Myers. Another special thanks goes to a veteran of the Graphics lab, Steven

Sheasby, who was instrumental in the work on the Object Manager and

Distributed Simulation. Finally, I must thank a long line of family, friends,

faculty, and fellow believers who made this a great experience.

ii

Table of Contents

A cknow ledgm ents ... ii

Table of C ontents ... iii

Table of Figures ... v

A bstract ... vi

1 Introduction .. 1

1.1 Problem Statem ent ... 2

2 Background .. 3

2.1 D istributed Sim ulation .. 3
2.2 DIS 2.1.1(Draft) Recommendations Entity Handoff 5
2.3 C oordinate Transform s ... 7
2.4 Sem i-A utonom ous Forces ... 9
2.5 Real-Tim e Issues of Entity Sw apping ... 10
2.6 M ultiple A ircraft Sim ulation .. 11
2.7 The V irtual C ockpit ... 12
2.8 The A utom ated W ingm an ... 14
2.9 For M ore Inform ation ... 15
2.10 Sum m ary .. 15

3 Requirem ents ... 17

3.1 Standards ... 19
3.3 M aterials and Equipm ent .. 19

3.3.1 O bjectSim .. 19
3.3.2 O bject M anager ... 20
3.3.3 IRIS Perform er ... 20

4 D esign ... 21

4.1 The "Big Picture." ... 21
4.2 A nalysis of D IS recom m endations ... 22

iii

4.3 M essage Com m unication Patterns ... 24
4.4 The Sw itcher Objects .. 26

4.4.1 SwitcherEntity Class ... 27
4.4.2 Sw itcher Class ... 28
4.4.3 VCSw itcher Class .. 29

4.4.3.1 AW Initiated .. 30
4.4.3.2 VC Initiated .. 31

4.4.4 FW _Sw itcher Class .. 33
4.4.4.1 FW Initiated ... 34
4.4.4.2 VC Initiated .. 36

5 Im plem entation .. 38

5.1 Communication Between Applications and Switchers 38
5.2 M odifications to the Object M anager .. 39
5.3 M odifications to the Aerodynam ics M odel ... 40
5.4 M odifications to the Virtual Cockpit ... 41
5.5 M odifications to the Autom ated W ingm an ... 42

6 Results and Recom m endations ... 43

6.1 Testing .. 43
6.2 Sw itching Delay .. 44
6.3 Operator Effectiveness In Switch .. 45
6.4 Re-engineer the current VC code ... 46
6.5 Provide The Ability to Support Different Aircraft 47

Bibliography .. 48

Appendix ... 51

V ita ... 5 7

iv

Table of Figures

Figure 1: DIS Recommended Entity Hand-Off Protocol 6

Figure 2: Relationship of Coordinate Systems [EDWA95] 8

Figure 3: The Interior View of the Virtual Cockpit ... 12

Figure 4: Some Components of the VC Application ... 14

Figure 5: Architectural View of the VC, AW and Switchers 21

Figure 6: Common Flow of Messages (AW Initiated) ... 24

Figure 7: Common Flow of Messages (VC Initiated). .. 26

Figure 8: Sw itcher Object Hierarchy .. 27

Figure 9: Definition of switcherstatetype ... 29

Figure 10: VCSwitcher State Transition Diagram (AW Initiated) 30

Figure 11: VCSwitcher State Transition Diagram (VC Initiated) 32

Figure 12: FWSwitcher State Transition Diagram (AW Initiated) 34

Figure 13: FWSwitcher State Transition Diagram (VC Initiated) 36

Figure 14: Transfer Time Vs Number of Network Entities 45

Figure 15: VC Code Exam ple .. 47

v

AFIT/GE/ENG /95-24

Abstract

This thesis continues the ongoing research at the Air Force Institute of

Technology's Virtual Environments Laboratory in the area of distributed

simulation. As the relevance and interest of interactive simulation as a training

medium continues to grow, there is a pressing need to provide more realistic and

numerous intelligent autonomous agents for simulations. As those autonomous

agents mature and become more realistic, the need exists to be able to handle

individual agents by taking control of them and operating them as manned

agents at certain points within the simulation. The author started with a

protocol proposed in a working draft of the Distributed Interactive Simulation

(DIS) Protocol Standard 2.1.1 (Draft). He demonstrates how this protocol can be

improved by swapping control between two entities involved in a distributed

simulation. The new protocol provides simultaneous transfer while being

compatible with the one proposed in the draft standard.

The protocol is implemented on two applications developed in the Virtual

Environments Laboratory, the Virtual Cockpit (VC) and the Automated

Wingman (AW). The anticipated flow of execution begins with the AW

requesting assistance. The operator of the VC then can reply by assuming

control of the AW. Once the required human operation has been performed, the

operator may switch back to the lead aircraft, completing the full cycle of

execution.

vi

1 Introduction

The Department of Defense has made a substantial investment in the

development of interactive training simulators. The Air Force Institute of

Technology (AFIT) has played an active role in the continuing research and

development of applications to enhance these interactive simulations. One such

area has been the development of the Virtual Cockpit. The Virtual Cockpit (VC)

application was first developed at AFIT in 1991 [SWIT92] and has evolved into a

realistic, interactive immersive simulation.

One of the present goals for the VC is to reduce the overall cost of

simulation systems. In fact, present simulators are quite expensive and

immobile. For example, Wright Laboratory's simulation facility has cost the Air

Force over $40 million dollars. The facility's very specialized mission is to

perform avionics integration testing, thereby serving a critical role [CHRI95].

Since it is not possible to have many such facilities, the VC is being researched as

a lower cost alternative. At a small fraction of the cost, AFIT's VC also

implements many the features necessary for successful training. Unfortunately,

the VC is limited in several respects. Most notably, it does not have full fidelity

like large scale simulators, nor does it provide haptic (gross motion) feedback

through the controls, or cockpit motion.

In addition to the cost of the individual simulators, Congress has

mandated that the Department of Defense be able to support distributed

1

interactive simulation capable of supporting 100,000 entities [ROGE94]. To meet

this goal, the Department of Defense must multiply its simulation capabilities.

In order to increase the number of flying entities in a simulation, AFIT has

developed the Automated Wingman. The Automated Wingman is an intelligent

entity that takes cues from another entity on the network, a lead aircraft, and

operates on a fuzzy logic inferencing engine to perform normal flying

tasks [EDWA95]. When the ability of the Automated Wingman is overloaded or

needs assistance, the lead pilot may intervene and take control of the wingman's

entity.

The focus of this research effort has been to incorporate this switching

capability into the applications at AFIT. This research has been tightly coupled

with the ongoing research on the Automated Wingman.

1.1 Problem Statement.

Given the aforementioned requirements, the need for a general capability

to switch between manned and unmanned simulators exists. The goal of this

research is to give the operators of AFIT's Virtual Cockpit and Automated

Wingman the ability to switch between different entities in a distributed

interactive simulation to facilitate semi-autonomous airborne forces.

2

2 Background

2.1 Distributed Simulation.

A distributed interactive simulation has the capability to be distributed

globally, across computers and networks from different geographic areas, and

from completely different simulation centers. Being distributed in nature, there

is no central host. Each machine involved has its own portrayal of the state of

the simulation. Communication is typically over a best-effort packet based

network. This form of networking has a smaller overhead than guaranteed

delivery and requires less bandwidth [DIS94] [GARD93].

Distributed Interactive Simulation (DIS) is a communications protocol for

the orchestration of a simulation over a wide area network. DIS has been

adopted as one of several protocols for interactive simulations for the DoD. The

protocol defines the terms and concepts involved in operating such a simulation.

A DIS-compliant application is software on a host computer that

communicates via a DIS simulation network. The application controls the state

and actions of at least one simulation entity. Simulation entities such as tanks,

aircraft, targets, or personnel are actors in the simulation environment and may

be either controlled by a person or the application. An entity controlled by the

application is considered as an autonomous force, or a computer-generated force.

Alternatively, the entity may be controlled directly by a person participating in

the simulation. In latter case, the application responds by rendering the other

3

entities in the simulation in its own view of the world. The application acts like

the device the person is operating, whether it be a tank, aircraft or ship [BELL93].

Simulation applications that have been developed at AFIT interface with

the DIS protocols using the Object Manager. The Object Manager is an AFIT-

developed library of C++ classes that have encapsulated the details of the

network protocols. Object Manager manages a few other entity related issues

including entity lists, position data, and dead-reckoning [SHEA92].

Dead reckoning is the method DIS uses to reduce the amount of

information required to be sent over the network. Rather than send only a

position update of an entity for each frame of the simulation, the application

sends both the position and velocity. The host that is rendering the entity

interpolates between position updates, giving the appearance of smooth motion.

Both the transmitting and receiving hosts run the dead-reckoning algorithm.

The transmitting host continuously compares the entity's true position with

where other hosts would believe its entity should be located. When the

difference between these two values reaches a specified error tolerance, a new

position update is transmitted [DIS94]. The DIS standard also specifies that all

entities must transmit a Protocol Data Unit (PDU) at least every five seconds.

The DIS protocol uses a broadcast User Datagram Protocol (UDP). The

protocol is defined in the Internet Engineering Task Force's (IETF) request for

comments [POST80]. According to the DIS protocol, the receiving hosts are not

required to check the source of the packets. This can be used to seamlessly

4

change the host that maintains the state of an entity. Since the source of the

PDUs are not checked, changes in the physical host that broadcasts the entity's

state PDUs will not be noticed by other applications on the network. The

network communication that would need to take place to ensure the proper

transition of control is not yet part of the approved standard and would take

place outside the DIS protocol architecture. Development of this communication

protocol was a major component of my research and will be discussed in the

following pages

2.2 DIS 2.1.1(Draft) Recommendations Entity Handoff.

The Distributed Interactive Simulation Standard has a recommended

technique to transfer control of an entity from one application to another in the

DIS 2.1.1 draft version. This protocol is called the entity handoff protocol (EHP)

in the standard. EHP will be described briefly, and its shortcomings for the swap

of entities will be demonstrated.

The recommended technique for EHP is a one-way transfer of control

from the application that is currently broadcasting the status of the entity to a

management host. For this discussion, the application that gives up control of the

entity will be called the "providing application," and the management

application that requests control of the entity will be called the "requesting

application."

The general exchange of messages within the DIS-defined entity hand-off

protocol is shown in Figure 1. All communication on DIS is carried by Protocol

5

Data Units (PDU). In general, only "best effort" datagram delivery is required of

the network, so there is always the potential for dropped or out-of-order PDUs.

Further information is given in [POST80] and [DIS94].

The transfer is implemented with three different PDUs: the Transfer

Control Request, Transfer Control, and Transfer Control Acknowledge PDUs.

The requesting application initiates the transfer by issuing a Transfer Control

Requesting Providing
Application Application

Ready
State Ready

SState
Requesting Tri 2 erCnt Reques5 Sat

S_ Control

Transfer

Transfer control
State

Receiving

Time State

Ready 6--
State

Ready
State

Figure 1: DIS Recommended Entity Hand-Off Protocol

Request PDU. It specifies the requested entity's identity: its site, application

number, and entity identifier. Once received, the receiving application transmits

6

a Transfer Control PDU that relays the state of the entity. The Transfer Control

PDU contains the position, orientation, linear and angular velocities of the

original entity. In addition, the Transfer Control PDU provides space to transmit

additional internal information of the entity. The Transfer Acknowledge PDU

closes the loop and informs the original application of the new entity's identifier.

2.3 Coordinate Transforms.

There are many coordinate transformations that are made each

computation cycle within the VC. All of these transformations must be used and

understood for the VC to execute a swap with any entity on the network. An

overview of the different systems is given in Figure 2. The normal flow of

calculations proceeds from right to left. The aerodynamics model that computes

the active forces and current positional data performs its calculations in the

aircraft body coordinate (ABC) system. The conversion between the ABC system

and the flat world is handled internally within the aerodynamic model. This

transformation is represented by the arc labeled "Quaternion." More

information about this transformation and the operation of the aerodynamics

model can be found in [COOK92]. This transformation is actually not needed,

and will most likely removed in future modifications of the aerodynamic model.

The flat world coordinate system is an artifact from the original source of the

aerodynamic model. The display of all of the objects in the visual system begins

in the Performer coordinate system. Fortunately, the transform between the flat

7

world and Performer is a fixed axis translation, and the calculations reduce to

swapping the X and Y coordinates and negating the Z.

The final coordinate transformation is executed just prior to transmitting

the location onto the network. To transmit onto a DIS simulation, the

Quaternion

Round Earth Coordinate Flat World Coordinate Aircraft Body Coordin
System System System

Z
zzz

x z

Swap

Performer Flat World
Round Earth Coordinate System

Utilities Z

XY

Figure 2: Relationship of Coordinate Systems [ED WA951

coordinates must be transformed into a standard coordinate frame. The DIS's

coordinate origin is at the centroid of the earth, with the Z axis passing through

the north pole, the X axis passing through prime meridian at the equator, and

the Y axis passing through 90 degrees east longitude at the equator. The

8

ObjectSim class, RoundEarthUtils, provides the necessary routines to

transform coordinates between the Performer and DIS coordinate

systems [ERIC93].

2.4 Semi-Autonomous Forces.

A semi-autonomous force (SAF) operates in a mode somewhere between

being completely computer controlled (autonomous) and human controlled.

Semi-autonomous forces are necessary because the operation of fully

autonomous forces has not yet been able to model the maneuvers of actual

forces, and require additional human interaction. Rather than have each entity

controlled by an individual, a compromise is made between automation and

human control. The operator of the forces controls the goals or methods of the

entities involved in the simulation, and the computer controls the detailed

actions and maneuvers. These entities may be used to augment the friendly or

enemy forces [CERA94].

The application discussed in Ceranowicz's paper, ModSAF, was applied

to ground-based forces. An analogous research project for aircraft currently

being conducted at AFIT is the Automated Wingman. Once developed, the

Automated Wingman will be a semi-autonomous force system. Development of

the Automated Wingman is challenging. As Ceranowicz noted, it is very

difficult to get tanks to behave intelligently in a synthetic environment. High

performance aircraft have even more degrees of freedom and must be responsive

9

in time as well. This added complexity requires the need for human intervention

when the autonomous wingman does not behave properly thereby making the

Automated Wingman a SAF.

2.5 Real-Time Issues of Entity Swapping.

Several issues involving time must be considered to swap entities in real

time. Cheung and Loper addressed several of the difficulties introduced by the

distributed nature of DIS, including latency between hosts and uncertainties in

timing and delivery. However, these problems are not difficult to overcome on a

single host or shared-memory multiprocessor machine, but they are more

profound if the responsibility of controlling an agent moves from one host to

another as in the VC environment [CHEU94].

Other important issues in the real time control of entities are PDU

ordering and event sequencing. Any control hand-off between an autonomous

agent and the controlling agent during the simulation must be carefully

coordinated to overcome the difficulties noted by Cheung and Loper.

The controlling agent can be considered a single resource among the set of

autonomous forces. This problem can be solved using a distributed mutual

exclusion algorithm addressed by Singhal [SING94]. Since the collection of

agents will be small, the use of a single controlling host to maintain requests of

the dependent agents is sufficient.

10

2.6 Multiple Aircraft Simulation.

The Air Force Armstrong Laboratory reported on the implementation and

training effectiveness of multiship air combat simulation [BELL93]. They

provided empirical evidence that a distributed architecture can provide effective

training. The architecture of the simulation tested is similar to AFIT's VC.

This simulation used a distributed collection of simulators interacting

together through an Ethernet backbone. A team of two pilots flew dome-based

simulators against four pilots operating enemy aircraft simulators. The

underlying communications protocol was SIMNET, a predecessor to the current

DIS protocol.

Overall, the results were positive. This experiment demonstrated air

combat simulations could be conducted on a lower-cost distributed architecture.

The pilots noted that the test was a realistic and positive training experience, in

most cases.

The experiment also had some shortcomings. The resolution was

insufficient to discern distant targets accurately. Also, any addition of new

simulation devices into the scenario had to be carefully examined due to

different levels of fidelity. These difference could have introduced unrealistic

advantages, which "may degrade rather than enhance the quality of

training" [BELL93].

11

2.7 The Virtual Cockpit.

Figure 3: The Interior View of the Virtual Cockpit

The AFIT Virtual Cockpit (VC) is a DIS-compliant application that

simulates the operation of an F-15E aircraft. The VC can give the operator either

a screen view of the cockpit or use a head-mounted display to give a fully

immersive presentation. The pilot controls the VC with the use of a hands-on

throttle and stick (HOTAS), and the flight motion is based on a compute-

optimized aerodynamic model obtained from the Naval Postgraduate School

12

[SWIT92][COOK92]. The interior of the cockpit is an accurate three-dimensional

representation of an actual F-15E cockpit. The 3-dimensional control panel

modeling is especially evident when the head-mounted display is used because

the instrument panels with their instrumentation appear properly in perspective,

and give the correct motion parallax. Figure 3 shows the interior of the Virtual

Cockpit, and what an operator would see, either using the head-mounted

display or the screen display. The figure also shows the indicator that is used for

the Automated Wingman, which is the yellow status light with red lettering at

the top of the console.

The VC application itself is very complex. Pieces of the code date back to

1991, and each year since, substantial modifications were made to the design of

the system. As a result, much of the original design has been lost, or has been

covered up with modifications. In most cases, all of the attributes and methods

of classes were left public, and there are many references to other objects by

pointers, accessing internal data members of other objects, even those that are

were not designed as 'global' objects. The end result makes it quite difficult to

maintain and modify. Figure 4 shows some of the design of the VC. It is by no

means a complete view of the simulator, but shows how some of the

communication occurs through the "Globals" object, and gives an overview of

the object relationships. The diagram uses the notation presented by Rumbaugh

[RUMB91], with diamonds representing components of a class, while the dotted

diamonds and lines indicate references to an object by a pointer. The top level

13

object is My-Simulation, which is an subclass of ObjectSim's Simulation class.

More detail about ObjectSim framework are given in [SNYD93].

Simulation

My-Simulation

Airplane

LeftPanel Right-Panel InstrumentPanel State RenderObj

Arm Pa i'

.......::: O o b ,
... G lob als

Figure 4: Some Components of the VC Application

2.8 The Automated Wingman.

The Automated Wingman (AW) application, beginning development this

year, is a semi-autonomous force that will take queues based on a lead aircraft in

14

the simulation. The AW and VC are the first applications that will incorporate

the switching capability. The AW is implemented using a fuzzy logic-based

engine. The wingman actually has a "Fuzzy Pilot" that controls the aircraft,

using throttle, stick, and rudder controls as would normal pilot. The goal of the

AW is to be a force multiplier in a training scenario on a DIS network [EDWA95].

2.9 For More Information...

More detailed discussions of various pertinent papers and readings are

summarized in the on-line annotated bibliography collection provided by AFIT's

World Wide Web server. The address for the Virtual Environments, 3D Medical

Imaging, and Computer Graphics Laboratory is

http://www.afit.af.mil/ENGgraphics/

The latest information about the current projects and the future directions can

always be found there. The author's collection of annotated bibliographical

sources may be found at

http: //www.afit.af.mil/ENGgraphics/annobib/annobib.nws.html

2.10 Summary.

The use of computer controlled forces is a method for reducing the cost of

interactive simulations. The biggest barrier to achieving fully autonomous

simulated agents is the incredibly complex and instantaneous decisions a pilot

must make that must be simulated in an autonomous force controller. One

15

would expect the operation of such a system would not be able to respond in all

situations, so the capability to respond to this situation needs to be addressed.

One manner is to allow a human operator to take control of the automated

system for a brief time in order to take any action that might be necessary.

Therefore, switching between a manned simulator and individual autonomous

agents need to be added to the VC and AW, and in particular, to better support

the required functions of the AW.

16

3 Requirements.

We anticipate that the Automated Wingman will not be able to respond to

all potential situations. Given the Automated Wingman can determine when

conditions require human intervention, it must be able to notify the lead aircraft

and request assistance, or rather a swap of control. The request must be made

known to the operator of the lead aircraft via a visual and audible queue. The

current configuration has minimal audio capabilities and a visual cue can be

used to further clarify the request to the operator. Furthermore, auditory cues

further increase the operators awareness [DOLL86] Once the operator is

notified, he must have the ability to ignore the incoming request for assistance.

The operator's response must be detected in an intuitive and easy-to-operate

fashion, and not require the operator to move his hands from the throttle or stick

of the aircraft. Once the operator has confirmed the request, the exchange of

entity states must be conducted in one second as per the DIS standard [DIS94].

Once the transfer has been carried out, the operator must have the ability to

initiate a swap back to the original entity and to resume the lead of the

formation, so that the operation of the scheduled mission would not be too

disrupted.

The design of the Switcher should be Object-Oriented, to fit within the

ObjectSim and Object Manager framework. Modification of the current Virtual

17

Cockpit application should be kept to a minimum, and the Switcher itself should

be self-contained.

The Virtual Cockpit needs to provide a visual and audible cue to the

operator to inform him of a request for assistance. The operator then will either

respond with a command or button-press, or ignore the request. The request

will time out after a defined time and either be re-issued if the assistance is still

required or terminate. This operator time out is not specified in the DIS

standard. Once the operator has confirmed the request, control of the wingman's

entity will be transferred to the Virtual Cockpit. The information that is updated

for the Virtual Cockpit will be at a minimum position, oriention, and velocities,

with potential for growth in the future for more capable simulation applications.

The exchange of the entities must be transparent to other applications that

are involved in a distributed simulation with the VC and AW. Applications

which are not aware of the entity hand-off protocol (EHP) must not lose

information due to entities being deleted and re-created on the network.

Additionally, existing applications that have been implemented must be able to

interpret the exchange and not lose information as well. This requirement

implies that the standard will be used in some fashion. Changes made to the

standard will be kept to a minimum in order to apply it to the swap.

18

3.1 Standards.

The applications developed will be compliant with the DIS version 2.0

(fourth draft). The Department of Defense has adopted this standard as the

defining document to interface distributed simulations [DIS941.

3.3 Materials and Equipment.

The development of the context switching occurred within the

development environment that has evolved in the past five years in AFIT Virtual

Environments Laboratory. Several tools and libraries have been developed here

as the subject of past research. The most pertinent to this research are ObjectSim

and Object Manager. In addition to these libraries, the available hardware and

system libraries of the graphics laboratory will be discussed.

3.3.1 ObjectSim.

ObjectSim is an object-oriented application framework that eases the

development of interactive graphical simulations. It encapsulates the complexity

of the three-dimensional rendering that is specific to the hardware of the target

system. It provides an organizational structure for implementing the various

functions necessary for an interactive simulation. Each function is each contained

in a separate class that is overridden based on the requirements of the particular

application.

19

3.3.2 Object Manager.

Simulation applications that have been developed at AFIT interface with

the DIS protocols using the Object Manager. The Object Manager is a library of

C++ classes encapsulating the details of the network protocols. Object Manager

also manages a few other entity related issues including entity lists, position

data, and dead-reckoning [SHEA95].

3.3.3 IRIS Performer.

Performer is a set of graphic rendering libraries specific to the Silicon

Graphics machine architecture. For much of the implementation of the Switcher,

ObjectSim will make the necessary calls to Performer to render the visual scenes.

Some portions, especially modifying the visual aspects of the interior of the

cockpit, will require using Performer directly.

20

4 Design

4.1 The "Big Picture."

Virtual Cockpit Application Automated Wingman

Object Airplane VC Switcher FuzzyPilot Airplane FW

Performer/GL Object Fuzzy Clips Aer Object
Libraries State Manager FeCis Aero ManagerInferencing Model

Visual System Aero Engine
Model

Send Daemon Receive Daemon Send Daemon Receive Daemon

DIS Compatible Broadcast Network

- Interface Requiring Customization

Figure 5: Architectural View of the VC, A Wand Switchers

As alluded to earlier, the VC and AW communicate through a DIS

compatible network. Figure 5 is a simplified high level architectural diagram

showing the relationship between the VC and AW applications and the

Switchers. Objects touching one another vertically within the diagram

communicate directly. From this diagram, one can tell that the Switcher objects

themselves only communicate with the Object Manager and the main

application, and are inserted between the applications and the Object Manager.

In the case of the VC, the application must respond to user requests to initiate the

21

swap, and then make modifications to the display, which are handled through

Performer and ObjectSim. In the VC and AW, the applications still communicate

to the network through the Object Manager for other actions.

4.2 Analysis of DIS recommendations.

The EHP as defined within the draft standard does not fully meet the

needs of the entity switcher for the Virtual Cockpit and Automated Wingman.

The reasons noted are as follows:

" EHP is unidirectional.

" EHP may confuse other applications.

Since EHP is unidirectional, the protocol either must be applied twice in

order to get the appearance of a swap, or may be further modified to minimize

the latency of network transmission. I chose to modify the ordering of the PDUs

to decrease the latency of the transfer. The reordering interleaves the two

exchanges, allowing some of the information to be transferred simultaneously

between the Virtual Cockpit and Automated Wingman. The sequence of

request-transfer-acknowledge is still maintained, but now some of the

transmissions overlap. To an observer on the network, this looks like two entity

handoffs, as it should, but introduces more complexity that must be accounted

for in the internal states of the involved players. The internal states of the objects

are discussed in more detail later.

22

Since EHP is still defined only in a draft standard, it will not be

implemented in most active DIS applications, leading to inconsistent information

contained within stealth viewers and other agents on the network. The Transfer

Acknowledgment PDU specifies the old and new entity identification triple,

specifying the entity's site, application, and entity identifier. With this

information, the original application deletes the old entity from its list, and the

receiving application adds the entity to its list. A problem arises when another

application is interacting on the network. For a brief time, that application will

witness two entities, possibly with diverging paths. DIS dictates that an entity

should be removed from the simulation if it does not have a entity state PDU

after twelve seconds. Therefore, this duplication will be temporary in nature, but

may still cause inconsistent information in an application's entity lists. Any

additional information or statistics that applications are keeping on entities will

also be disrupted.

To correct this duplication problem, I preserved the entity's identification.

The entity's site, application and ID are transferred across the network in the

Transfer Control PDU, as specified by the draft standard. But now, rather than

create a new triple based on the receiving application's ID, the application

maintains the original information of that entity. Thus, other applications on the

network do not see any change of the entity, which makes for a smooth

transition, and the transfer of control is transparent to other networked

applications. This approach has been discussed with members involved with the

23

development of the standard and was accepted as an viable alternative to the

current specification [NEFF95].

4.3 Message Communication Patterns.

As stated in the background section, the entity hand-off protocol as given

by the draft standard was insufficient to apply to the entity swapping for the

Virtual Cockpit and Automated Wingman. In order to minimize changes to the

standard, the same PDUs that are described in the standard are used. To an

Automated Virtual

Wingman Cockpit

Ready Messages Transfered

State Ready

Trans fer Cot Reque State

Pending erCnrlRqe
Transfer T

* Pending

Operator Request

Confirmation\
" -- Pending

Transfer Contol Tendin
Time a Reque' Transfer

Have State Transfer Co t01

Transfer Control Acknow1ege

ReadyReady

Figure 6: Common Flow of Messages (A W Initiated)

24

application that is aware of the standard, this exchange appears as two normal

entity hand-offs. To an application that is not aware of the EHP, these messages

are discarded. The entity identifiers are kept the same during the transfer, so any

other application that is on the network will not be aware of the transfer of

control.

Figure 6 shows the flow of communication between the AW and the VC

when the AW initiates the exchange. The exchange shown represents the case

when the AW requests assistance from the operator. One can see that there are

six messages, representing two transfers of control that might be picked up by

other applications. Figure 7 shows the common case of control transfer when the

transfer is initiated at the Virtual Cockpit. The diagram depicts the operator

unilaterally taking control of the wingman, which would happen when the

operator has completed performing the actions of the wingman. The cases are

similar as would be expected, but the state names are changed to keep the

transactions separated. Additionally, there is no operator confirmation for the

Automated Wingman, since it has no operator.

25

Virtual Automated
Cockpit Wingman

Ready Messages Transfered
State Ready

State essageTransereded

Pending [-sfer contr State
Transfer Pending

Request

tsnf t C 1111nt --o- Pending

Time eiqSa

Have UI State

Pending UI Ack Transfer conto

~Have UI State

Transfer Control Acknowlege

RaReadyReady Ir

Figure 7: Common Flow of Messages (VC Initiated).

4.4 The Switcher Objects.

The design of the switcher objects was developed using the

Rumbaugh [RUMB91] object-oriented software engineering methods. The first

step in the development of the design was to identify all of the potential objects

in the development. In this case, I selected a single object, the Switcher, to be the

top level object. The more specific implementations for the Automated

Wingman and Virtual Cockpit are subclasses of the Switcher class. The top

object, the Switcher, contains skeletal attributes and methods. The switcher class

26

constructor calls Init0 and does nothing else. This design enables a class object to

be re-initialized by calling the Init0 method directly. The overall object-oriented

diagram is presented in Figure 8.

4.4.1 SwitcherEntity Class.

The switcher entity class mirrors the information in the header of a DIS

PDU. The switcher-entity class contains the information of the entity's site, host

Switcher

current: SwitcherEntity SwitcherEntity
new-entity: Swicher Entity
request responsetimer: float siteid: int
request ack timer: float hostid: int

entityid: int

Init0 setsite id0
SetReceiveMan(...) sethost id0

SetSendMan(...) setentityjid0
Get_MyInfo(...) get-sitelid0~get-host-id0

get-entityid0

VCSwitcher FWSwitcher

currentstate: switcherstatejtype currentstate: switcher state-type
operatorjresponsetimer: float
swap-target: SwitcherEntity

GetState(...) GetState(...)
RequestControl(...) Request Takeover(...)
RelinquishControl(...) RelinquishControl(...)
GetControl_Info(...) GetControlInfo(...)

Figure 8: Switcher Object Hierarchy.

27

and entity identifiers. This is the identifier triplet used by DIS applications to

distinguish the different actors on the network. Naturally, the get and put

operations act on the associated attributes.

4.4.2 Switcher Class

The attributes current and newentity are class instances of the

switcherentity class. They are used to keep track of the important players in the

entity swap. Current points to the information of the current entity controlled by

the application. New-entity points to the information that has been received

from the network and will become the current when the transfer is complete.

The request-responsetimer and request acktimer are used store the time at

which a request and state are set respectively, and are used to determine when

the time-out periods expire.

In addition to these attributes, the Switcher base class also defines public

methods that set up the Switcher for communication with the Object Manager.

The SetSendManO and SetReceiveMan accept pointers to the send and

receive portions of the Object Manager respectively because the Object Manager

has separate objects for each function. These methods allow the Switcher sub-

classes to access the Object Manager directly to update and maintain the entity's

proper DIS information. The GetMyInfo0 method returns the DIS

identification values for the current entity.

28

4.4.3 VCSwitcher Class.

The VCSwitcher class is specific to the operation of the Virtual Cockpit.

The VCSwitcher's operation is modeled as a Moore state machine. The

currentstate attribute defines the current state of the switcher and guides the

actions of the Switcher and the VC application. Figure 9 gives the definition of

the switcherstatetype from the header file.

enum switcherstate-type [ready,
pending-request,
pending-transfer,
havestate,
pending-ack,
pending ui-transfer, // ui = user initiated
have ui state,
pending-ui-ack];

Figure 9: Definition of switcherstatetype

This variable provides synchronization between the VC application and

the Switcher. The meaning and use of each state is defined in more detail within

the implementation section along with the presentation of the state transition

diagrams.

The state transition diagrams for the VCSwitcher are given in Figure 10

and Figure 11. The Switcher has two independent paths of control starting at the

Ready state, so the overall state diagram can be partitioned into two independent

graphs that share only the Ready state. The loop in Figure 10 is initiated by the

receipt of a transfer request that is initiated by the AW. The loop in Figure 11 is

initiated by the operator.

29

Rx TransferControlRequest/
set operator-response-timer

operator-response-timer timeout

RelinquishControl()/
GetTransferControlInfoo/ Tx TransferControlRequest
Tx TransferControlAck Tx TransferControl

set request-responsetimer

request-responsetimer timeout

Have Pending
State Transfer

Rx TrasnferControl and
Rx TransferControl_Ack

Figure 10: VCSwitcher State Transition Diagram (AW Initiated)

4.4.3.1 AW Initiated

Ready. The Ready state is the common case and the beginning of this loop.

The VCSwitcher will be waiting in this state until a request is received or the

operator initiates the transfer. When the Transfer Control Request PDU is

received, it transitions to the Pending-Request state. Before transitioning to the

Pending-Request state, the operator-response-timer is set.

Pending Request. The VC has just received the request and is now

waiting for the operator to confirm. If the operator does not respond in the

amount of time specified by OPERATORTIMERTIMEOUT symbol, control

flows back to the Ready state. If the operator confirms, the VC calls the

30

RelinquishControlO method. This method sets the currentstate to

pending-transfer and issues two PDUs: Transfer Control Request and Transfer

Control. The request initiates the transfer of control from the wingman. The

Transfer Control sends the current position, angular and velocity along with

internal state information that the AW requires.

Pending Transfer. The VC is waiting on the state information of the

wingman and acknowledgment for the state it sent. When it receives those two

PDUs, it proceeds to the HaveState state. If the request responsetimer exceeds

the value in the REQUESTRESPONSETIMER symbol, the transfer aborts and

control passes back to the Ready state.

Have State. This state notifies that the application that the information

from the AW is ready to be received. The application responds by calling the

GetTransfer Controljnfo0 method. This method returns the values provided

by the AW and transmits the acknowledgment back to the AW. There is no

timer associated with this state because the application itself makes the call and

there is no involvement outside of the application for this transition.

4.4.3.2 VC Initiated.

The other half of the state diagram for the VCSwitcher is initiated by the

operator initiating the request. The operator's request is given in the same

manner as he acknowledges a request, by using a spare throttle switch button.

31

RequestControl()/
Tx Transfer Control Request
set requestresponsetimer

<::d > Transfer

requestresponsetimer timeout

Ix Transfert Control ACK Rx Trasnfer Control Request an

transferacknowledge
- timer timeout / Rx Transfer Control

restore original state

Pending Have UI
UI Ack 'V RelinquishControl/ State

Tx Transfer Control
Tx Transfer Control Ack
set transferacknowledgetimer

GetTransferControlInfo

Figure 11: VCSwitcher State Transition Diagram (VC Initiated)

Ready. This is the normal, waiting state. When the operator presses the

AW activate button, the application calls the RequestControl() and transitions to

the Pending.UITransfer state. Pressing the AW activate button means the

operator wants to take control of the attached wingman. RequestControlO sets

the current state to Pending.UlTransfer and sets the request-responsetimer

before it exits.

Pending UI Transfer. The operator has requested control of the wingman,

and the VCSwitcher has sent the request for control. Now the VCSwitcher is

waiting for the AW's information and request for the VC's information. If while

32

waiting, the request-responsejtimer becomes older than the

REQUESTRESPONSETIMER, the wait expires and the state is changed back to

the Ready state. This will be a rare case since the AW's response to the Transfer

Control Request PDU is automatic because there is no operator. When the

VCSwitcher receives the two PDUs, it sets the state to HaveUIState.

Have UI State. This state notifies the VC that a new state has been

received and that it needs to call the GetTransferControlInfo method to

proceed. There is no timer on this state since the methods will be called in the

next execution loop. The RelinquishControlO method passes the state

information of the VC and the acknowledgment to the AW. The call finally sets

the timer for the acknowledgment and sets currentstate to Pending UIAck.

Pending UI Ack. This state waits for the final acknowledgment from the

AW. When the acknowledgment is received the state is set to Ready. If the timer

expires, the old state is reloaded.

4.4.4 FWSwitcher Class.

The FWSwitcher class operates very closely to VCSwitcher class.

Indeed, the original design did not differentiate between them, but the VC's

requirement to give the operator the ability to confirm the swap made the

operation different enough to need different objects.

The state transition diagram of the FWSwitcher is parallel to the

VCSwitcher. The Ready state is the starting state, and two events cause it to

33

leave this state, each one starting it into separate loops of control. The first loop,

shown in Figure 12, is initiated by the AW. This control loop interacts with the

VCSwitcher's state diagram shown in Figure 10. The second loop, shown in

Figure 13, is initiated by a request from the VCSwitcher shown in Figure 11.

4.4.4.1 FW Initiated.

Ready. The FWSwitcher waits in this state until the FW calls the

request-response-timer timeou
RequestTakeover(/ Tx TransferControlRequest
Tx TransferControlRequest
set request response timer

Ready
Pending

J Transfer

CancelRequestTakeoverO

Rx Transfer-controlAck

transferacknowledgejtimer timeout/ Rx TrasnferControlRequest andtreane

Rx TransferControl

restore original stateRxTasecotl

Pending Have
Ack V RelinquishControlO/ State

Tx TransferControl
Tx Transfer Control Ack
set transferacknowledge-timer

GetTransferControllnfoo/

Figure 12: FWSwitcher State Transition Diagram (AW Initiated)

Switcher's RequestTakeovero method, or a Request-Control PDU is received

from the VC. In this case, a RequestControl() call is made. The

34

RequestControl0 method call is essentially the "Help Me!" message. In that

method, the FWSwitcher transmits the Transfer Control Request PDU to the

VC, sets the request-responsetimer and advances to the Pending-Request state.

Pending Request. The Pending-Request state waits for a reply from the

VC to relinquish control. It is possible for the operator of the VC to be occupied

and unavailable. If that is the case, the transfer-requesttimer will expire and

another request is sent. This will repeat until the VC operator acknowledges or

the AW no longer requires help. The AW cancels the request for assistance with

the CancelRequestTakeoverO method, which returns the Switcher to the ready

State. If the VC responds after the transition back to Ready, the request is

ignored. If both Transfer Control Request and Transfer Control PDUs are

received, control passes to the HaveState state.

Have State. The HaveState state signals the AW application information

is ready to be received, and the VC requires information in return. To collect the

new entity information, the FW calls GetTransferControl_InfoO. After this

method, the FW calls RelinquishControl to send its information and

acknowledge the receipt of the VC's information. Finally, the call advances the

state to PendingAck and starts the transferacktimer.

Pending Ack. The PendingAck waits for the final acknowledgment from

the VC. Once the acknowledgment is received, the state advances to the Ready

35

state. If the acknowledgment is not received, then the state is restored from the

original.

4.4.4.2 VC Initiated.

The final state diagram shown in Figure 13 gives the response of the

FWSwitcher to a Transfer Control Request issued from the VC. It is tightly

coupled with the states from the VC in Figure 11, where the operator initiates a

swap.

Rx TransferControlRequest

Ready Pending

Request

G f oRelinquishControl()/
Get_Transfer_Control_InfoO/ Tx TransferControlReque
Tx TransferControlAck Tx TransferControl

set request-responsetimer

requestresponsejtimer timeout

Have UI Pending U1
State Transfer

Rx TransferControlRequest and

Rx TransferControl

Figure 13: FWSwitcher State Transition Diagram (VC Initiated)

36

Ready. As with all of the other state transition diagrams, the starting state

is Ready. The exit condition in this case is the receipt of a Transfer Control

Request, and the state is advanced to Pending-Request.

Pending Request. This state notifies the AW that the operator of the VC

requested its control. The AW responds by calling the RelinquishControl()

method. The Switcher then transmits the Transfer Control PDU followed by the

Transfer Control Request PDU to get the VC's information. The method then

sets the request-responsejtimer and advances to the PendingUITransfer state.

Pending UI Transfer. This state signifies that the switcher is waiting for

information from the VC. The waiting is complete when it receives both the

Transfer Control and Transfer Control Request PDUs, and the state is advanced

to HaveUIState. If the request-responsejtimer expires before both PDUs are

received, the state is returned to Ready, and the exchange is aborted.

Have UI State. This state signals the AW that the information from the

VC has been received. The AW responds by calling GetTransfer ControlInfoO.

This call returns the information that was transferred over the network, sends the

acknowledgment and completes the transaction by returning to the Ready state.

37

5 Implementation.

5.1 Communication Between Applications and Switchers.

Several options exist to implement active objects such as the Switcher class

within an application in a multitasking environment. The first implementation

considered was to create a new thread of control in a separate process. This

method, although well suited to the design as presented in chapter 4, requires

substantial overhead, especially for the Virtual Cockpit. A Silicon Graphics four-

processor Reality Engine2 Onyx workstation is currently use to host the VC. The

Performer graphics imaging system uses three of the processors

[COOK92][SGI94. The Object Manager, network daemons, and the rest of the

VC application's aerodynamic and remaining functions execute on the final

processor. Running the Switcher as a separate task would have required

additional operating system level processes switches, and more interprocess

communication channels.

Another possible method would be to implement callbacks. To implement

callbacks, the calling procedure would provide a set of function pointers to the

Switcher. When the Switcher would need to perform functions as "notify the

user of an incoming request," the Switcher would call the function referenced by

the pointer. This limits the interaction with the Switcher to instantiation time,

38

where the objects would be given the callback functions, but the flow of control is

not evident, and there is little savings in execution time.

The final possible method, the one selected, was to use a state variable to

allow the application to take the correct selection action on the Switcher object

based on its current state. This method made the implementation

straightforward and the interaction between the applications and the Switchers

easier to understand.

Both the VCSwitcher and FWSwitcher objects have a GetState0

method which checks which of the different transfer control PDUs have been

received and its current state, determines the new state. The GetStateo method

returns a value of switcherstatetype as defined in chapter 4. The application

uses this value to determine its next course of action.

5.2 Modifications to the Object Manager.

Because the Object Manager had not been capable of sending and

receiving transfer control PDUs prior to this research effort, methods were

created to handle them. For each PDU type, Transfer Control Request, Transfer

Control, and Transfer Control Acknowledge, one shared flag and two methods

were created. Since the Object Manager is split into two separate objects, one

send and one receive, a broadcast and receive method for each PDU type are

added to the appropriate Object Manager class. The broadcast methods transmit

the respective PDUs on the network. When a PDU is received for the

39

application, it sets the shared flag to true. The switcher clears the flags by using

the act onTransmistControlRequestPDUO or the other corresponding

methods.

In addition to manipulating PDUs, the Object Manager must also report

and update its entity identifier so the Switchers can change the applications

reported entity. The entity's ID is set and retrieved by the set-entity-id-rec0

and get-entityjid-rec0 respectively. Since the Object Manager is separated into

two parts, the setentityid_rec must be called on both to ensure that both are

changed.

5.3 Modifications to the Aerodynamics Model

The Automated Wingman was based on the same aerodynamics code that

was in the VC at the beginning of the year. For convenience and efficiency

reasons, the VC's version of the aerodynamics model made extensive use of the

matrix representation structures and matrix manipulation routines available in

Performer. In order to make the AW more portable, all of these references to

Performer were removed and a generic, template-based set of classes were used

in the aerodynamics model instead. Once the AW's version of the aerodynamic

model had stabilized, it was re-integrated into the VC. This was done to keep the

underlying aerodynamics models the same between the VC and AW.

40

5.4 Modifications to the Virtual Cockpit.

In addition to the VC's aerodynamic model being closely tied to

Performer, it was contained within the State class, which contained much more

information than the internal variables of the aerodynamics code. All of the

different coordinate systems were also stored in state class, along with the public

aerodynamics variables. The code that performed the aerodynamic calculations

was imbedded in the State class and modified different variables in the State

Object. These problems were removed when the redesigned aerodynamics

model was re-integrated into the VC. The State object was not removed because

of how many times it was referenced by other parts of the VC, but its

understandability was enhanced by the change. Now the aerodynamics module

stands alone, and has no ties to the State object and is more reusable as well

In a ObjectSim application, prior to each frame display, the main

procedure calls each object's PropigateO method. The calls to the Switcher are

performed in the Airplane class's Propigateo method. Therefore, the switcher

object is checked at each frame.

The VC's visual display was modified to provide the required visual cue.

The topmost spare warning button on the panel was used for an indicator for the

AW. The object that contains this functionality was the Instruments class. To

make the indicator, a texture map with red lettering and a bright yellow

background was applied to the button and the action of the button was tied to a

41

boolean variable that was added to the Globals class in the same manner as the

remaining buttons and controls for the display. The boolean variable is then set

by the section of code in the PropagateO method that performs all of the Switcher

interfacing.

5.5 Modifications to the Automated Wingman.

The modifications to the AW were confined to the top level object of the

AW application. In a similar fashion to the VC, each computational loop the AW

checks the status of the Switcher and take the appropriate actions.

42

6 Results and Recommendations.

6.1 Testing

Testing was conducted with several tools developed in the Graphics Lab

in addition to the debugging output. The first tool is a debugging tool

developed in the Graphics Lab by Steven Sheasby, the PDUreader. The

PDU reader monitors the network for DIS PDUs and displays their contents into

a text stream. It can be configured to filter out arbitrary PDU types . The tool

proved to be quite useful in debugging, and later, demonstrating the correct

transmission of the PDUs sent by the switchers.

Although the debugging output provided a precise measure of the

accuracy of the information that had been transferred across the network, the

Synthetic Battle Bridge (SBB) gave a quick visual guide of how the objects were

flying and their position relative to the terrain. The SBB is a stealth viewer of the

network activity which uses the same terrain database and displays a 3-

dimensional view of the battle space. The SBB has the capability to tether to an

entity in the simulation and follow its position in the battle arena. The tethering

mode was used to watch the transfer between the VC and AW. The transfer

occurred transparently, but the error in the alignment was evident and the

aircraft's rocking was noticeable.

43

6.2 Switching Delay.

A major concern is the delay associated with the transfer of control

between entities. Another concern is how different numbers of entities affect this

delay. Figure 14 illustrates the measured time used to transfer the state across

the network and move to the new position as a function of network entities.

Since the state of the switchers is checked once each frame cycle, it turns out that

the delay associated with the switch is closely related to the frame rate of the

application. The measurements for the transfer time were measured from the

time that the operator depresses the switch consent button to the time that the

information is loaded on the VC. Even in the case of 1000 entities, the typical

delay was less than 0.2 seconds, and was humanly difficult to perceive.

At least ten switches were performed at each network load level. The

minimum and maximum of each set were also reported. The frame period was

calculated by averaging the times for frames 100 to 200 of the simulation. The

time measured is the time from when the operator acknowledges with the

throttle button switch to when the new state is loaded. The frame period

provides a baseline and a minimum time for the switch, and almost exactly

overlays the minimum delay in Figure 14.

44

0.3

0.25

0.2

0.15

0.1

l ,'. "' "--Average
,........ Minimum

0.05 Maximum

Frame Period

0 - i

0 100 200 300 400 500 600 700 800 900 1000

Number of Entities

Figure 14: Transfer Time Vs Number of Network Entities

6.3 Operator Effectiveness In Switch.

Considerable confusion may result when the operator switches into a

troubled aircraft. The pilot may not necessarily know the attitude of the aircraft

or have any tactical knowledge of the situation that he is assuming. Thus,

significant disorientation would be expected initially after a switch. The impact

on the reality of the simulation for other players in the simulation is not known,

since the actions of an operator switching into the cockpit of the wingman are

unpredictable.

45

A potentially useful method to give the operator better situational

awareness when switching into the AW's craft would be to allow the AW to

continue to fly the aircraft while the operator get an understanding of the tactical

situation. When the operator would feel comfortable in the new situation, he

would make a final commitment to the transfer and would assume control of the

new aircraft. This would require integrating the entire AW functionality into the

VC, and would be a substantial undertaking.

6.4 Re-engineer the current VC code.

As alluded to briefly in chapter two, the code of the VC is difficult to

modify. Although the code is divided into objects, most of the members of each

class are public. References to members of other objects greatly complicate

making modifications to the code due to dependencies that are created by those

references. For instance, in the short code fragment from the VC shown in Figure

15, one can see how tightly the different objects are coupled. PlayerPtr is a public

member of the VCNetManager class and the first two statements traverse

through three classes to get to the desired function. An occasional reference like

this in the code might not be all that detrimental, but this kind of reference is

quite commonplace in the code. The third statement demonstrates how the data

types of the VC are dependent on Performer. In that statement, a Performer

macro is used to set a data member two class references away. References to

Performer are not detrimental in themselves; indeed, they are necessary for the

46

application, but also make the application extremely difficult to port to other

systems, and add to the complexity of the code.

PlayerPtr->terrain->REU->rnd-pos tojflat(tempx, tempy, tempz);
PlayerPtr->terrain->REU->rnd-euler-to-flat(temph, tempp, tempr);

PFSETVEC3 (PlayerPtr->Coords->xyz, float(tempx),
float(tempy),
float(tempz));

Figure 15: VC Code Example

6.5 Provide The Ability to Support Different Aircraft.

The current implementation of the switcher is restricted to the exchange of

states between the VC and AW. Future enhancements should include the ability

to switch between different types of aircraft, including the ability to represent the

aerodynamic model of the different aircraft as well as a geometric representation

of the interior of the different aircraft. These enhancements would allow the VC

to be used in a broader array of military applications.

47

Bibliography

[BELL93] Bell, H. H., Peter M. Crane. "Training Utility of Multiship Air
Combat Simulation," Proceedings of the 1993 Winter Simulation
Conference, IEEE.

[CERA94] Ceranowicz, A. "Modular Semi-Automated Forces," Proceedings of
the 1994 Winter Simulation Conference, IEEE.

[CHEU94] Cheung, S., M. Loper. "Synchronizing Simulations in Distributed
Interactive Simulation," Proceedings of the 1994 Winter Simulation
Conference, IEEE.

[CHRI95] Christian, T. Chief of Simulation Systems, Wright Labs. Meeting 27
April 1995.

[COOK92] Cooke, J. T., Pameterized Plight Dynamics Simulation System Using
Quaternions, MS thesis, Naval Post-Graduate School (NPS),
Monterey, CA, March 1992.

[DIAZ94] Diaz, M. E. The Photo-Realistic AFIT Virtual Cockpit. MS thesis, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH
AFIT/GCS/ENG/94D-02, December 1994.

[DIS94] US Government. "Standard for Distributed Interactive Simulation -
- Application Protocols," Version 2.0 (Fourth Draft), 4 February
1994.

[DIS95] US Government. "Standard for Distributed Interactive Simulation -
- Application Protocols," Version 2.11 (Working Draft), 4 February
1994.

[DOLL86] Doll, T. J., Folds, D. J., "Auditory signals in military aircraft:
ergonomics principles versus practice," Applied Ergonomics,
December, 1986

[EDWA95] Edwards, M. E., The Automated Wingman: An Airborne Companion for
Users of DIS-Compatible Flight Simulators. MS thesis, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH
AFIT/GCS/ENG/95D-01, December 1995.

48

[ERIC93] Erichsen, M. N. Weapon Systems Sensor Integration For a DIS-
Compatible Virtual Cockpit. MS thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH
AFIT/GCS/ENG/93D-07, December 1993.

[GARD93] Gardner, M. A. A Distributed Interactive Simluation Based Remote
Debreifing Tool for Red Flag Missions, MS thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH
AFIT/GCS/ENG/93D-09, December 1993.

[GERH93] Gerhard, W. E. Weapon System Integration For The AFIT Virtual
Cockpit, MS thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH AFIT/GCS/ENG/93D-10, December 1993.

[HOUCK91] Houck, M. R., G. S. Thomas, H. H. Bell, "Training Evaluation of the
F-15 Advanced Air Combat Simulation (AL-TP-1991-00047),
Williams Air Force Base, AZ: Armstrong Laboratory, Aircrew
Training Research Division.

[NEFF95] Neff, K. Kaman Sciences Corporation, 2560 Huntington Ave.
Alexandria VA 22303, E-Mail dated Sep 29, 1995.

[POST80] Postel, J. "User Datagram Protocol," USC/Information Sciences
Institute, Internet Engineering Task Force Request for Comments
768, 28 August 1980.

[ROGE94I Rogers, D., "STOW-E Lessons Learned - Focused on the 3 Primary
Army STOW-E Sites," Cubic Defense Systems, February 1995.

[RUMB91] Rumbaugh, J. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, N.J. :, c1991

[SG194 Silicon Graphics, Inc. IRIS Performer Programming Guide (version 1.2)
Silicon Graphics, Inc., Mountain View, CA, 1994.

[SHEA92] Sheasby, S. M. Management of SIMNET and DIS Entities In Synthetic
Environments. MS thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH AFIT/GCS/ENG/92D-16, December
1992.

49

[SIMP91] Simpson, D. J. An Application Of The Object-Oriented Paradigm To A
Flight Simulator. MS thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH AFIT/GCS/ENG/91D-22, December
1991.

[SING94] Shinghal, M., N. Shivaratri. Advanced Concepts in Operating Systems,
McGraw-Hill, Inc., New York, NY, 1994.

[SWIT92 Switzer, J. C., A Synthetic Environment Flight Simulator: The AFIT
Virtual Cockpit. MS thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH AFIT/GCS/ENG/92D-17, December
1991.

50

Appendix
Appendix A: Listing of Switcher.h

#ifndef -SWITCHERH_
#define _SWITCHERH_

/FILE: FWSwitcher.h

/AUTHOR: Capt Neal Schneider

/DATE: 21 July 1995

//DESCRIPTION:

include "DISv2_cockpit-obj-mgr .h
#include 'DIS-v2-entity-objjngr .h
#include "switcher-entity-class .h"
include 'lya-clock.h

#define REOUESTRESPONSE_TIMEOUT 5.0
#define TRANSFERACK-TIMEOUT 1.0

//-- Communication flags for the Switching capability

//char received-Transfer_Control_RequestD; //These are declared in DIS-v2-entity-obj-mgr.h
//char received Transfer_Control_POU; //and therefore are not needed here, but its nice
//char received TransferControlAcknowledge-PoU; //to know what they are for.

class Switcher
public:

Switcher (tnit();I;
-Switcher();
void InitC);

void SetReceive-Man(entity-object-manager *net-manager);
void Set-SendMan (DIS-v2-cockpit-object manager *obj manager);

void Set-My-Info(unsigned short targetj&. -site,
unsigned short targetidhost,
unsigned short target-id-entity);

void Get-yInfo(unsigned short *targetid-site,
unsigned short *targetidbost,
unsigned short *target-id-entity);

protected:

switcher-entity * current,
*new-state;

float request-responsetimer;
float request ack -timer;
int request-response timer-on;
int request-ack-timer-on;
float request-response-timeout-length;
float request-ack-timeout_length;

ya-clock clock;

DIS-v2-cockpit-object manager *Send-Nan; // Send Portion of Object Manager
entity-object manager *Receive-Nan; //Receive Portion of object manager

#endif

51

Appendix B: Listing of switcher entity-class.h

#ifndef _SWITCHER ENTITYCLASS_H_
#define _SWITCHERENTITYCLASS_H_

// FILE: switcher-entity-class.h
//
// AUTHOR: Capt Neal Schneider
//
// DATE: 21 July 1995
//
// DESCRIPTION:

#include "entity-obj-mgr.h"

class switcher-entity // : public vehicle

public:

switcher-entity() (1;

void setsite-id (unsigned short site) [site_id = site;);
void set-host-id (unsigned short host) [host-id = host;);
void set-entity-id (unsigned short entity) tentity_id = entity;);

unsigned short get-siteid () (return siteid;);
unsigned short get-hostid() [return hostid;);
unsigned short get-entityid() (return entityjid;);

protected:

unsigned short site-id;
unsigned short hostid;
unsigned short entity_id;

#endif

52

Appendix C: Listing of VCSwitcher.h

#ifndef -VC-SWITCHERH_
#define -VC-SWITCHER H_

FILE: VC-Switcher.h*

AUTHOR: Capt Neal Schneider*

DATE: 21 July 1995*

DESCRIPTION:*

#include "Switcher.h

enum switcher-state-type (ready,
pending-request,
pending-transfer,
have Istate,
pending-ack,
pending-ui-transfer, //ui =user initiated
have Iui_state,
pending-ui-ack);

class VC-Switcher : public Switcher

public:

VC-Switcher();
void Init));
void Print-State));

int Ack-Pending-Request(); //App knows and

int Request-Takeover(unsigned short target-id-site,
unsigned short target id host,
unsigned short targetid-entity)//Help!

mnt Request-Control ();
mnt Request-Controlcunsigned short entityjid,

unsigned short target-id host,
unsigned short target-id-entity); //Want to help (take control)

mnt Relinquish Control(douhle vector-t location,
Euler -vector-t Eulerangles,
float -vector -t linear-velocity,
float vector-t linear-acceleration,
float -vector-t angular-Velocity,
float32_-t ql,
float32_-t q2,
float32_-t q3,
float32-t q4,
float32_-t throttle,
float32-t ailerion,
float32_-t rudder,
float32_-t elevator,
float32_t trim); // Send the information

int Get-Transfer Control-Tnfo(double-vector_t *location,
Euler vector t *Euler angles,
float-vector-t *linear -velocity,
float-vector-t *linear-acceleration,
float-vector-t *angular-velocity,
float32-t *ql,
float32_t *q2f
float32-t *q3,
float32_t *q4,
float32-t *throttle,

53

float32_t *aileron,
float32_t *rudder,
float32_t *elevator,
float32_t *trim);

int ConfirmTakeover();
int ConfirmControl();

// This function checks the incomming messages and current state and
// returns the new state of the switcher object
switcherstate-type GetStateu;

protected:

switcherstatetype currentstate;
float operator-response-timer;
float trigger timer; // used to give delay so swap will not be accidentally

// followed by a swap request.
switcher-entity *swap-target;1;

#endif

54

Appendix D: Listing of FWSwitcher.h

#ifndef _FWSWITCHER H
#define _FWSWITCHER H

// FILE: FWSwitcher.h
//
// AUTHOR: Capt Neal Schneider
//
// DATE: 21 July 1995
//
// DESCRIPTION:

#include "Switcher.h"

enum switcher-state type [ready = 1,
pending-request = 2,
needstate = 3,
pendingtransfer = 4,
havestate = 5,
pendingack = 6,
pending-ui-transfer = 7,
have uistate = 8];

// Nothing new here. The difference is in the definition of the
// virtual functions.

class FWSwitcher : public Switcher

public:

FWSwitcher();
void PrintState();
switcherstate-type GetState();

int Request-Takeover (unsigned short target idsite,
unsigned short target_id host,
unsigned short target-id entity); // Help!

void CancelRequestTakeover();

int Request-Control (unsigned short targetid site,
unsigned short targetid host,
unsigned short targetidentity); // Want to help (take control)

int Relinquish-Control (doublevectort location,
Eulervectort Euler angles,
floatvectort linear velocity,
floatvectort linearacceleration,
floatvectort angularvelocity,
float32_t ql,
float32_t q2,
float32_t q3,
float32_t q4,
float32_t throttle,
float32_t ailerion,
float32_t rudder,
float32_t elevator,
float32_t trim); // Send the information

int GetTransferControlInfo (double-vector_t *location,
Euler vector t *Eulerangles,
floatvectort *linear-velocity,
float vector t *linearacceleration,
float vectort *angular-velocity,
float32_t *ql,
float32_t *q2,
float32_t *q3,
float32_t *q4,
float32_t *throttle,

55

float32_t *aileron,
float32_t *rudder,
float32_t *elevator,
float32_t *trim);

int ConfirmTakeover();
int ConfirmControl();

// This method checks the status of the switcher, updates internal
// variables and returns the current status, letting the application
// know what to do next.

protected:
switcher-state type current_state;
int need_help;

#endif

56

vita

Capt Neal W. Schneider

He graduated from Lockhart High School in 1985 and entered -undergraduate

studies at Texas A&M at College Station, Texas, He graduated with a Bachelors

of Science in Electrical Engineering in May 1989. He received his coympission on.

I May 1989 upon completion of ROTC at Texas A&M. Hs first ass.,ignment w-as

to Scott AFB as a weather radar evaluation team leader. His second assignment

-was on the same base with the Air Forco Comnmand, Control, Commlaunicafionts,

and Computer Agency as a test engincer for C4 Systems. In M4ay 1995, he

entered the School of Engineering, Air Force Institute of Technology.

r Form Approved
REPORT DOCUMENTATION PAGE om Noved

PAG 0MB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and revwew g the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. - . R y tp r OVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DYNAMIC TRANSFER OF CONTROL BETWEEN MANNED AND UNMANNED SIMU-

LATION ACTORS

6. AUTHOR(S)
uaptal(nNeal W. Schneider

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GE/ENG/95D-24

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Electronic Systems Command AGENCY REPORT NUMBER

ESC/AVM
20 Schilling Circle
Hanscom AFB, MA 01731-2816

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; Distribution Unlimited

13. ft5TRACT fMaximym 200 words) .13. hesis continues the ongoing research at the Air Force Institute of Technology's Virtual Environments

Laboratory in the area of distributed simulation. As the relevance and interest of interactive simulation as a
training medium continues to grow, there is a pressing need to provide more realistic and numerous intelligent
autonomous agents for simulations. As those autonomous agents mature and become more realistic, the need
exists to be able to handle individual agents by taking control of them and operating them as manned agents
at certain points within the simulation. The author started with a protocol proposed in a working draft of the
Distributed Interactive Simulation (DIS) Protocol Standard 2.1.1 (Draft). He demonstrates how this protocol
can be improved by swapping control between two entities involved in a distributed simulation. The new protocol
provides simultaneous transfer while being compatible with the one proposed in the draft standard.
The protocol is implemented on two applications developed in the Virtual Environments Laboratory, the Virtual
Cockpit (VC) and the Automated Wingman (AW). The anticipated flow of execution begins with the AW
requesting assistance. The operator of the VC then can reply by assuming control of the AW. Once the required
human operation has been performed, the operator may switch back to the lead aircraft, completing the full
cycle of execution.

14. SUBJECT TERMS 15. LVMBER OF PAGES

Distributed Interactive Simulation, Virtual Cockpit, Autonomous Agents
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S ee o n Technical
applicable, enter inclusive report dates (e.g. 10 Documents."
Jun 87- 30 Jun 88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in parentheses. DOE -Enter DOE distribution categories

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organizationperforming the report. Blocks 17. -19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO: 1993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	Dynamic Transfer of Control between Manned and Unmanned Simulation Actors
	Recommended Citation

	tmp.1695749401.pdf.rEakO

